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ABSTRACT 

Response surface methods are discussed, with emphasis on the 

particular experimentation problems encountered in their use. A 

brief outline of simulation and modelling is given. This includes 

an indication of the role of randomness. 

Two specific uses of computer simulation of biological phenomena 

are considered. The first is fitting growth curves to some cell 

growth data . This was done largely to develop techniques. The 

second and more significant use is in fitting stochastic selection 

values to some genotypic frequency data. To date, only deterministic 

estimates have been found from this data. 

Attention is given to the careful design of simulation 

experiments, in order to reduce the number of simulation runs 

needed. Response surface methods were used and proved to be 

efficient experimentation techniques. 
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INTRODUCTION 

A lack of exact analytical solutions to a mathematical system 

implies that numerical methods are needed to be able to study the system. 

Simulation is the technique of imitating as best as possible the 

behaviour of a system. Using a mathematical model of the system, the 

experimenter can observe the effect that a different set of parameter 

values has on the outcome of the model by running a simulation trial 

using those parameter values. This technique has become practical 

since the advent of high speed computers. Stochastic models which 

previously defied solution by the mathematical analysts can now be 

studied by simulation. 

The experimenter generally aims to estimate those values of the 

parameters which make the model as close to the real life situation 

as possible. Some criterion is needed for stating just how close the 

model is. If the simulated data is compared with observed data from t he 

real life system, then the distance between them would be a measure of the 

goodness of fit of the model. The experimenter thus wishes to estimate 

those values of the parameters which make the distance as short as 

possible. An average distance must be taken to a ccount for the variation 

in a stochastic model. 

Thus experimentation, particularly on a stochastic model, involves 

many simulation runs. It is desirable to keep the number of runs down 

as much as possible. This means that it is important to plan experiment­

ation so that the least distance is found with maximum efficiency. 

There are several alternative plans of experimentation available. 

Response surface methods were chosen for the following study since they 

involve experimental designs which are economical of simulation runs. 
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Literature Survey 

Hoel and Mitchell 

Hoel and Mitchell's (1971) paper first brought to notice the problem 

of fitting stochastic models using response surface methods. They 

proposed three compet ing stochastic models for the growth of a cell 

population and studied the goodness-of-fit of each model to the 

experimental data by measuring the sum of the squared differences between 

the simulated trials and the experimental data. They viewed the expect­

ation of this distance as a response surface over the parameter space of 

the model, then using response surface methods optimized the fit of the 

model. The competing models were fitted to some data of Kubitschek (1962) 

on the growth of colonies of E.coli cells. 

Response Surface Methods 

A variable classified as a response can be explained or predicted 

by means of a functional relationship with a prespecified number of 

independent variables called factors. The functional relationship 

defines a response surface and measures of the response taken at different 

factor levels are points on this surface. Response surface methods 

provide a means of studying the functional relationship. 

Initial interest in the use of response surface methodology was 

generated by Box and Wilson (1951 ). They first set forth the 

fundamentals and underlying philosophy of the use of this package of 

techniques and Box (1952) later extended this work for linear models. 

Davies (1956) edited an important textbook with a chapter dealing with 

the exploration of response surfaces. 

There has been extensive development of second order designs. 

Box and Hunter (1957) studied rotatable second-order designs in general 

and central composite designs in particular. Hunter (1954) 



discussed the problem of finding a stationary point on a fitted 

second-order response surface and pointed out that a general second­

order response surface could be transformed into a canonical form 0 

Box and Hunter (1954) developed a method of setting a confidence region 

on this stationary point. 

Box and Draper (1959) considered the problem of choosing a design 

such that a polynomial of degree d1 m~ght be most closely fitted to a 

response surface whose true representation is a polynomial of degree 

d2 >d1• Subject to this condition they chose their designs such t hat 

inadequate fit of the closest possible polynomial representation had 

a high chance of detectiono 

Since Box and Draper's, many other papers have been published on 

this subject. Hill and Hunter (1966) gave a review of the literature 

with particular emphasis on applications of the methodology. More 

recent publications were by VoJo Thomas (1971) who, in his MoSc o thesis, 

concentrated on second-order designs including conditions for 

orthogonality of estimates; and by Myers (1971) whose textbook gave 

a comprehensive study of response surface mettodology. 

Response Surface Methods and Simulation 

Modern use of the word 'simulation' traces its origin to the work 

of von Neumann and Ulam in the late 1940's when they coined the term 

"Monte Carlo analysis" to apply to a mathematical technique they used 

to solve certain involved nuclear-shielding problems. An interesting 

history of the technique is given in Hammersley and Handscomb (1964). 

In the early 1950's, the advent of high speed computers made simulation 

much more feasible. It is now a standard technique dealt with in many 

texts, including that of Naylor, Balintfy, Burdick and Chu (1966). 

3 

Computer simulation techniques have made it possible to perform a type 

of pseudo-experiment in areas where real-world experiments were otherwise 



impossible or impractical. 

Simulation has a lso enabled study of models for which the nature 

of the model as much as the nature of the equations prohibits analytical 

solution of the equations. Such a situation may arise, for example, 

upon int r oduction of stochastic variation to parameters of a model, 

thus making closed forms for maximum likelihood parameter estimates not 

onl y difficult but no longer possible to obtain. 

Hence an increasing concern with experimental design 1 response 

surface methods in particular. 

Hufschmidt (1962) analysed, using response surface methods , the 

response surface obtained from simulation of a simplified river- basin 

system. He gave in detail an account of t he complete experimental plan 

undertaken . Burdick and Naylor (1969) gave a general discussion of 

response surface methods applied to problems in Economi cs. They used 

simulation to study a model in a situation where r eal-world experiments 

would not have been feasible. Hoel and Mitchell (1971) used simulation 

and response surface methods to fit a model to some experiment al data. 

Hunter and Naylor (1970) referred to a specific example in order to 

discuss in detail the experimental design probl ems encounter ed when 

using simulation to explore response surfaces. 

Selection 

Allard, Kahler and Weir (in press) used genotypic frequency data 

from barley populations to obtain maximum likelihood estimates of 

selective values. They made selective value estimates from a pair of 

consecutive generations, then averaged these estimates over several 

pairs of generations. 

The next step might be to study the effect of allowing stochastic 

variation of selective values. Jain and Marshall (1968) reviewed 

4 
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the literature and found support for the idea of varying selection 

values. They examined by means of computer simulation the effect on 

genotypic equilibria of random fluctuations from generation to generation 

in selective values. They concentrated on values distributed according 

to a normal distribution. Barker and Butcher (1966) also studied the 

effect of generation - to - generation fluctuations in selective values. 

They ch ose selective values from a uniform distribution and, using 

simulation, observed quasi-fixation of genes in a population. 
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RESPONSE SURFACE METHODS 

Basic Concepts 

It is assumed that the experimenter is concerned with a system 

involving some response . Tl which depends on input variables i; 1 , i; 2 , •••, l;k• 

These, the natural variables, should be distinguished from the coded or 

design variables, the latter (x. 's) normally being simple linear functions 
l 

of the former. 

For example 9 if the experimenter wishes i;. to take a maximum 
l 

value of rr . and a minimum value of rr with n equally spaced ':»imax ':»imin 

values rr. (u = 1, 2, ••• , n) between, then a common linear function ':»iu 

is 

X. = 
lU 

rr . . )/(n-1 ) ':»imin 

where x. is then called the uth level of factor i 
lU 

and rr is the value of the natural variable to which this factor ':» iu 

level corresponds. 

It is further assumed that the , . 'scan be controlled by the 
, l 

experimenter with negligible error. 

In general, the response function can be written 

Tl 

where the form off is unknown and perhaps extremely complicated. The 

response surface is defined by f. The success of response surface methods 

depends on the approximation off by a low order polynomial in some 

region of the independent variables. 

The experimenter is, then, generally interested in finding in the 

smallest number of experiments (1) what value of the factors are optimum 

as far as the response is concerned, and (2) a suitable approximating 



function to f for the purpose of predicting future response. 

Now, a suitabl e approximating function can be obtained by -applying 

the Taylor series expansion to f around the origin (in factor-level 

notation the origin is x1 = x
2 

= o• • = ¾: = 0) 0 

Then 

f = fz=z\~J/,J1S".2 xi i ~j =l (~::iixl~ J:t.2 xixi + ,. • 

This series may be truncated at any point to give any desired 

closeness of fit (ioeo approximation) to the surface. The truncated 

polynomial is then called the fitted surfaceo 

A first order model of the response function would be 

T) = f x=o + (:!) x1 
~ ~ 1 

x2 0 0 0 +(0 
f ) ~ 0~ x=o 

x=o .... -~~ 

or, in the usual notation 

where 

13 0 = fx=o; 13 1 = (:!.) x=o 
"""11"-P l. """11QIV 

7 

The first order model is often useful when the experimenter is int-

erested in studying fin narrow regions of x1 , x2 , ••• , ¾:; that is, 

where little curvature inf is present. In a wider area it provides a 

rough approximation to the surfaceo The experimenter might use a second 

order approximating function to study the shape of the surface more closely. 

where 13 0 

k k 
T) = 13

0 
+ .E

1 
Q,x . +.E. 

1
13 .. x . x . 

J.= ~ ].]. i,J = J.J]. J 

and 13 . are as before, and 

i 1 (.o2
f ) 

13 = - -,.-...,-ij 2 ! 2x.ox . 
]. J ~=2. 



The respo~se surface study can now be thought of as being one in 

which the topography of an area is being exploredo The top of a 11 hill 11 

or 11 mound 11 represents a point of maximum responseo The bottom of a 

"valley" represents a point of minimum response o 

At times, models of order greater than two are used . 

Experimentation 

While the investigation would be planned so that experimental runs 

were made in the supposed region of optimum response, the experimenter 

often starts his work with complete ignorance of the proper region. In 

this case, the experimental plan would develop into a sequential 

determination. Some starting point is chosen . This point will most 

probably be remote from the optimum. From here, the experimenter can 

systematically work his way towards the desirable conditions. The 

experimental region is then in the general vi ci~i ty of the optimum and 

analysis of the fitted surface - probably using a second order model -

can proceed. 

The experimenter is immediately confronted with the problem of 

choosing a starting point. To aid the selection, a grid search could be 

performed. Each factor is allowed to vary over a specified range of 

levelso All possible combinations of factors at their various levels 

are then tested and the point of lowest response can be used as a 

starting point for further experimentation. 

But how are the range of factor levels to be chosen? From his 

experience with the system being studied, it would be hoped that the 

experimenter could narrow down the entire parameter space to some 

region of operability i.e. the parameter values would have to lie within 

the bounds of this region for experiments to take any real meaning. The 

experimenter would then again be looked to 9 for guidance in choosing 

a sub-region of this region of operability. The sub-region, called the 

8 



region of interest, would specify the range of parameter values within 

which interest is confined and the optimum was likely to occur. Experi­

mentation would then be concentrated on this smaller sub-region. 

A grid search should cover the region of interest. Thus the 

problem of range of factor levels is solved . But how many points should 

be included in the grid? The first problem to note is that the response 

function is generally stocastic in nature. The observed response, y, 

would then be subject to unavoidable uncontrolled factors and would vary 

in repeated observations, having mean n and variance d 2 , If the grid 

search covered the region minutely, stochastic variation would conceal 

true differences in · response. Groups of experiments would give similar 

responses, wasting information from many of the grid points. Should the 

response be deterministic, a close grid would accurately determine a 

point of low response. The number of experiments needed would be 

enormous, but the experimenter would have t he advantage of a clear idea 

of the relationship between the response and the factors. For more than 

one or two factors though, it would be quicker to perform fewer grid 

experiments and concentrate on experiments to lead toward the optimum. 

Unfortunately, an open grid search over a deterministic or stochastic 

response does introduce the possibility of reaching a local optimum only. 

The initial point of lowest response chosen from the grid can be 

used as a centre about which to concentrate further experimentation. 

Unless the experimenter knows otherwise (from prior information about 

the system), he must assume that he is remote from the true optimum and 

must aim to estimate the line leading to a better response. 

9 

1 The steepest descent procedure is a method whereby the experimenter 

proceeds sequentially along the path of steepest descent, that is, along 

1. The discussion following refers t0 seeking a minimum response. The 

process is similar, but with signs reversed, for seeking a maximum 

response. 
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the path of maximum ~ecrease in response, according to the following steps: 

(1) fit a first order model about the centre point, 

(2) use the information from step 1 to locate a path of steepest descent, 

(3) conduct experiments along the path until no further decrease in 

response is evident, 

(4) steps 1, 2 and 3 are then repeated using the point of minimum response 

on the line as the centre of the design for fitting the next first 

order model, 

(5) if lack of fit of the first order is significant, then fit a second 

or higher model and analyse the fitted surface. 

Discussing each step in turn: 

(1) It is extremely important that a decision be made at the outset 

regarding what experimental design points are to be used, These design 

points give the factor levels t o be used in experimentation. The 

coefficients ~ • f:3 . , , o" in the models given above are estimated from 
l 

data taken by the experimentero Good experimental design will accomplish 

the estimation with maximum effectiveness. 

A simple 2k factorial desig-n will estimate the l3 . IS• 
l 

A fractional 

factorial may be more economical with design points yet still give 

estimates of the ~ - 1 s - especially as the number of factors under study . l 

increases. If b0 9 b1 9 ooo are estimates of s
0

, 13
1

, oo o , then the first 

order response function is 

),, .. 
y = b + . 

k 
~ b . x ., 

J.. l. 
i =l 

The decision regarding which experimental design is used is often 

a very critical one. Variances of the estimates of ~O' ~1 , ••• are 

dependent on the design, and are minimized when the "spread" of the points 

in the design is greatest. However, in many cases, a model is assumed 

which is not an adequate approximation to the true system mechanism. 

As a result, the model coefficients are biased by terms that are of 



order higher than t he order of the assumed model. The extent of these 

biases can be altered by the choice of design. As spread of the design 

points is increat:c-.d to minimise variance, so bias increases , since the 

f itted sll!'face is less capable of giving an adequate representation of 

the true response su:r·face. Bearing these two considerations in mind, 

the experimenter must choose the design which best suits his particular 

situation. 

The choice of step sizes i oeo "spread" of design points, is thus 

far from straightforward. 

opposing design objectives . 

Minimum variance or minimum bias imply two 

Minimum variance of the b . 's requires a 
l 

large, "spread-out", design, but minimum bias requires a small, close, 

design. The lack of fit with a larger design is more significant. 

Step sizes should also be chosen t o ensure that the b . ' s are of 
l 

approximately the same order of magnitude. Then the effects of all 

factors are nearly equal. (If little change in effect is produced by 

an increased step size, then the factor may have negligible effect. If 

i ncreased step size produces a large change in effect , then the factor 

is near its optimum value. In this case the step size should be left 

smalla ) 

(2) 

first 

To understand the need for approximately equal b . 's, consider the 
l 

order model again. 

k .. 
.£ y = b + b .x. . 0 

i::;1 l l 

11 

This is a planar approximation to the response surface. Movement along 

the steepest slope of this fitted plane would produce the greatest change 

in response. It can be shown (see Myers (1971), for example) that the 

steepest slope of the plane is traced out by the points with co-ordinates 

' If any of the b. are 
l 

very small relative to the others, successive planar approximations in the 

steepest descent procedure will lead the experimenter in a "zig-zag" 
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fashion towards the optimum. Progress to the optimum will be slower, with 

the factor corresponding to the small b. moving steadily toward the 
l 

optimum, but other factors overshooting the optimum. Step sizes correspond-

ing to those factors with large b. 'swill be large relative to step sizes 
]_ 

corresponding to those factors with small b. 's. 
]_ 

(3) In general, it is found that experiments should be conducted along 

the path of descent U..""ltil two successive experiments give an increased 

response. At this stage, it can safely be assumed that further movement 

in the same direc:ti0n would not produce any decrease in response . The 

step size s~,o-u.ld then be r educed and experimentation concentrated about 

the point of lowes t response on the s teepest descent line. A good plan 

for one factor, x 11 would be that shown in figure 3.1. 

y 
(reosponse) 

Ii.mire ]_~.1. Pa i; ri of Steepe:::; t Des...:er. -

Et Fepest desc~nt path 
from I) 

'.) n ,prestnt s l:he c-£:ntre 
pojnt of factor ial 

.x.1 

(fact or-) 

By continually halving the step size , then conducting two more 

experiments - one on each side of the current minimum response on the 

line of steepest descent - the experimenter will "spiral in" on the 

optimum value QQ_ this line. To decide when t o stop " s piralling", the 

experimenter s hould consider the desired accuracy of the final estimate 

of the effects. If all effects are wanted to two decimal place accuracy, 

then 

of± 

an error of+ 0.01 in every effect will cause, at most, an error 
k 

( 0. 01 E lb. I ) in the response. Hence, experimentation should 
:i.::::1 ]_ 
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continue until a change in response of only + (0.01 t lb. I ) occurs. 
- .... - l. 

i 

When first setting out on the path of steepest descent, step sizes 

are fairly arbitrary but from experience it seems wise to ensure that the 

factor changing least has a step size smaller than the step size of the 

factorial design. 

(4) A new first order design can then be fitted with its centre at the 

point of minimum response found in step (3) . The experimenter then 

returns to step (1) and repeats the process. 

(5) Eventually the lack of fit of the first order model will become 

significant. This lack of fit can be tested in an analysis of variance. 

First order effects become negligible or interactions become significant. 

(The factorial design should allow at least some of the interactions to 

be estimated for just this checko) 

In any case, experiments along the line of "steepest descent" will 

produce no evident decrease in response. The analysis of variance method 

is to be preferred however, since then no experiments will be wasted in 

testing for lack of fit. 

If the experimenter follows the theory below, information from the 

design points used to set up this last first order design can be absorbed 

into the next experimental outlay. Once again, no experiments will be 

wasted. 

The experimenter must now fit a higher order model in order to 

better approximate the surface. The next step up from a first order model 

is a second order model. A second order approximation to the response 

function would be 

.. 
y -· 

where bi estimates ~i 

and b . . estimates 1!3 . .. 
l.J l.J 

bo + 
k k 

I; b.x , 
i=1 l. l. + ~ b .. x . x . 

i ;j=1 l.J 1 J 

Experimental designs for fitting a second order response surface 



must involve at least three levels of each variable so that the 

2k + (~) + 1 coefficients in the model can be estimated. The obvious 

choice of design would be a 3k factorial. However, fork> 3 the number 

of observations required are far in excess of t he number of parameters 

to be estimatedo 

Box and Wilso~ (1951) introd~ced a workable alternative to the 3k 

factorial system through the development of central composite designs. 

They are first order designs augmented by additional axial points to 

allow estimation of the coefficients of second order designs. The 

experiments of the first order design are still used - there is no 

wastage. 

The axial points have co-ordinates (x19 x29 000 7 xk) where 

(x1 9 x2 , ••o 9 ~) has the form 

{ ::6 • 0 • , , , ., C ) 

or 0, ±6 ~ ,,. 5 O) 

-~norooc?c~,:;.~·::..:c. 

or ' 0 • O • , , , , ±6 ; 
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Thomas (1971) showed that, by careful specification of o, any orthogonal 

first order design can be augmented in this man..~er to form an orthogonal 

second order designo Orthogonal estimates of the ~'s are then possible. 

These axial points are essential for non-singularity of the second order 

design matrix. 

In particular, if o is chosen such that 

E x . 2 2 
~ 

2 2 E X, = n X , x . 
J. U JU 1U J U u u 

(i I- j) 

where u is the level of the factor 

and n is the total number of points in the design; 

and if the quadratic terms are transformed to the new variables, . 
. . l. 

according to 

= X . 
l.U 

2 
1 -n 

2 .: x . 
l.U u 



then C . will be orthogonal to the mear1, the first order terms and the 
l 

* interaction terms. The "mean" b0 , as estimated from this central 

composite design, corresponds to 

1 
n 

2 E ( I: X , ) ) 
. . 1 t; 

1. 

where b0 is the true mean of the design. 

Centre points may be added, if the response is stochastic, to 

obtain an estimate of experimental error. This will not affect 

orthogonality provided the value of . o is adjusted accordingly. 

1 5 

An added added advantage of using central composite designs is that 

they are also rotatable. The experimenter does net know before his 

experiment is run, what will be the orientation of the system. A 

rotatable design est imates the response with the same precision at all 

points equally distant from the centre of the design o If this were not 

the case, there would be a certain "imbalance" in the reliability 

of experimental results from equidistant points in different directions 

from the centre. 

To analyse the shape of the surface, the second order model can 

be expressed in its canonical form • 

.. 
e , g , y + + + 

Standard texts, for example Myers (1971 ), describe the necessary 

techniques of translation and rotation of axes to transform from the 

original model to this for m. 

The experienced experimenter can learn much from canonical analysis 

of the fitt ed surface . Davies (1956) and others give useful assistance. 

For example, suppose a three factor model had the canonical form 

then (i) all Ai> 0 implies the contours of constant response are 



ellipsoidal. P.ny movement away from their centre (y1 y2 

y
3 

0) would r esult in an increase in y. 
( ii) ;1,

3 
= 0. 1 is very small compared to ~ 1 = 16.3 a.Yld A2 = 3.9. 

The contours are a t tenuated along the Y
3 

axis, and movement 

"'-
along this axis would result in very little increase in Y· 

( iii) the effect of factor Y
3 

~s almost negligible. 

Further experiments could be performed along the Y
3 

axis, and 

information from these i nc luded to estimate more accurately the l- 's 
l 

( see Box and Wilson ( 1 951 ) ) • 

If the stationary point of the fitted surface is estimated in 

conjunction wi th the canonical analysis, then more st i ll can be learnt : 

1 6 

For example, the experimenter may find that the stationary point is 

r emote from the design. But the fitted model only has meaning in the 

region of the des i gn and will not pr ovide a meaningful estimate of the 

co-ordinates of the stationary point or the corr esponding r esponse if 

they lie outside the region. The experimenter must move closer to the 

optimum. A useful plan i s to conduct experiments along the canonical 

axis giving the greatest decrease in r esponse (if the minimum i s sought). 

But how is this s~ationary point found? 

From the second order mode l 

k 
,s, 

y + .E 
i -1 --

b . x. 
1 l. 

k 
+ E b •. x . x . 

l.J l. J i ., j =- 1 

different iating with respect to x1 , x2 , ooo , ¾: in turn will give a 

stationary value. Whether it be a maximum or minimum depends on whether 

the matrix of sec0nd derivatives of y with respect to x1 , x 2 , oe•, ~ 

is neg~tive definite or positive definite respectively. 
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Solving 

2b11 b12 b13 C O O O 0 b1k 

b12 2b22 b23 0 61 0 0 0 b2k 

b13 b23 2b33 0 0 0 () () b3k = 

eooen ooooooooooooooooooooo 

a. a a a 2bkk 

will thus give the stationary poi nt. 

This stationary point analysis is a very i mportant part of the final 

analysis of the shape of the surfac e . 

As a final word of cau Jion to the experimenter, care must be 

exercised in choosing a step size for the design to estimate the 

parameter s of this second order model. I f the step size is to small , 

the statio:u.ary point will frequently lie outside the region of the design 1 

particularly if the response hu1c-tion is stochastic. In spite of this, 

the experimenter may be very close t o the optimum, so close that any 

at t empt to conduct experiments toward t he optimum would fail due to 

stochastic variation concealing actual changes in response. 

If the step size is t oo large, an estimate of the expected response 

at the stationary point will be very inaccurate. 

It is very difficult to state a criterion for step size . Behaviour 

of the response function along the immediately previous steepest descent 

could guide the experimenter~ but experience seems to be the best judge. 

Since it is not known at what stage the first order factorial design 

will have to be augmented, the experimenter must bear the problem in 

mind at all times. 
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SIMULATION AND MODELLING 

Basic Concepts 

Si mulation is essentially a working analogy • .Analogy means similarity 

of properties or relations, without identity. when anal ogous systems 

can be constructed, measurements or observations made on one of these 

systems may be used to predict the reaction of the others. Simulation 

involves the construction of a working mathematical model presenting 

this similarity of properties or relationships with the natural system 

under study. New models generally need to be made to fit a specific 

situation with the required precision. 

A model is a set of abstractions f~om the characteristics of a real 

systemo It must incorporate most of the useful aspec ts of a system but 

without becoming s o complex tr-at it i s difficult to understand and 

manipulate. 

Once the model has been defined in mathematical terms it can be 

investigated by simulation techniqueso Because of the complexity of the 

system studied 9 analog a..~d digital compu~ers are almost always necessary 

for sim11lation s tudies. Computer simulation is restri cted to logical and 

mathematical models, whose greatest advantage lies in their ability to 

provide precise quantitative predictions while still encompassing the 

intricacies of the real world. 

Rationale for computer simulation would be: 

(1) ru.n...~ing experiments on models involving stochastic parameters. 

(2) solving deterministic mathematical problems which cannot be solved 

easily (if at all) by strictly deterministic methods. It may be 

possible to obtain approximate solutions to these problems by 

simulating a stochastic process with statistical properties satis­

fying the functional relationships or solution requirements of the 

problemo 
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When the syst em under study is variable, one method of observing 

variability in the model is by random samplingo A simulation is 

essentially a random s ample of outcomes of the model. Since a variable 

model is the result of stochasti c parameters, a random sample of outcomes 

can be drawn by randomly -::;r..oosing values for these parameters from the 

probability distribution functions whi ch define their variation. This 

i s Monte Carlo samplingo Monte Carl o methods have been developed for 

simulating most of the well-knowr. pr·obabili ty dis tributions as well as 

any empirical distribution. 

The Monte Carlo me thod i s therefor e a simulation technique for 

problems having a probabilistic or stochastic bas i s - solution of 

probability problems by practical methods involving sampling experiments. 

Main features of the Monte Carlo me thod are: 

(1) since the process in.valves random sampling, a ready supply of random 

elements must be available to a user of the technique . 

(2) t he random samples are taken from t he probability distribution 

function of the par ameters co~cernedo 

(3) toge . a good estimate of the expected outcome of the model, many 

s amples must be ·takeno Repetition of the sampling process implies 

that a l arge number of random variates is required per simulation. 

The essence of good simulation by Monte Carlo methods thus lies in 

a good source of r andom numbers. 

The problem of sampling f r om any distribution is that of transform­

ing a random number representing the uniform [0 9 1] variate, (which most 

random number generators will generate), by means of the inverse 

cumulative distribution function, since F(x) (the cumulative distribution 

function of X, a random variable) has a uniform distribution on the 

interval [0 9 1] . 



To prove this let Y = F(X) 

then prob (Y ~ y) = prob (F(X) ~ y) 

prob (x ~ F-1 (y)) 

F (F- 1 (y)) 

= y 

hence prob (Y ~ y ) = 0 i f y <O 

= y i f 0 ~ y ~ 

= if ~ y 

So provided a value can be drawn that is randomly distributed 

on [0 9 1 ] 9 then it can be transformed to find any (continuously) 

distributed ra.ndom variable. 

F(X) 

Uniform 

Distribution 

Y = F(X) y -------

X X 

Figure 4~1 Transformation of a uniform random y to a 

random x with distribution function f. 

There must obviously be some means of obtaining large numbers of 

uniformly distributed ra_ndom variables. Since this discussion refers 

to computer simulation 9 the following will be expressed to some extent 

in computer terminology. 

The tw0 most important methods of obtaining the required random 

variables are: 

(1) lookup of tables of random numbers stored in the computer. However, 

20 
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this lookup would be slow and to store a large number of random digits 

would take a lot of r oomo 

(2) generation of pseudo-random numbers. These numbers, although not 

random in the strickest sense, have the advantage of being reproducible 

and fast to obtain. 

Ra._~dom Number Generation 

Most successful "random number" generators are special cases of the 

following scheme: 

if X (XO ~ o) is the starting value, 
0 

a (a ~ o) is the multiplier, 

C ( c ~ o) is the increment 9 

m (m > X 9a9c) is the modulus of the sequence 
0 

and 

then the des ir6d sequence of numbers X is attained by setting n 

X ~ aX + c (mod m) for n ~ 0 
n+1 n 

This is a "linear congruential sequence". The sequence will eventually 

cycle back to give~= X
0 

for some N. Careful choice of X, a and c 
0 

will maximise N. For computational convenience mis generally chosen 

to be the word size of the machine~• 

1 6 
m = 2 on the IBM 1130 

Sometimes the transformation mentioned earlier from a uniform to 

some other distribution is awkward to performo The "composition technique" 

can then be used in these situations . Two or more variates independently 

distributed but with the same density function are chosen. They are then 

combined in such a way that t ogether they compose an approximation to the 

distribution. 

For example, to generate a number from the normal distribution 

(which has an awkward cumulative distribution function) choose n values 

xi from a uniform [0 9 1] distribution (mean ~ 9 variance 1~ ). 



If X 

then from 

y == 

n 
£ X. n · l 

l.~1 
the Central 

- 1 
X - 7 

,./1/12n 
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Limit Theorem 

= N(0 9 1) as n becomes largeo 

For most practical purposes n == 12 is large enough, and convenient , since 

then 
12 

y = E X . - 6 
i :a:: 

]_ 

Test of "Randomness" 

It would be hoped that a sequence generated by any of the above 

methods behaved as though it were random. There are many statistical 

tests which will check for randomness. To check them properly, an 

exhausting var iety of tests should be performed. However 9 the few 

listed below would quickly give an indication of bad statistical 

properties. A mo~e detailed account of som& possible statistical tests 

may be found in a standard t ext 9 for example Knuth (1968). 

(1) a check on the sequence mea._~ and standari deviation - these can be 

compared with the population mean and standard deviationo 

(2) a comparison of the number of each of the digits 0 9 1 9 2, o & e , 9 in 

a sequence of length N 9 with the number of digits of each type 

expected in a completely random sequenceo Each digit is expected !o 
times if completely random. A x2 

test 

E 
type of 
digit 

(expected occurrence - observed occurrence)
2 

N 
10 

tests the hypothesis that the observed sequence of digits is random. 

(3) any serial correlation between numbers in a sequence should be 

checked for. 

Then rk == 

Suppose the sequence X. is of length N with mean x. 
N-k 1 

i~1 (xi - x)(xi+k - x) 

(N-k) s2 
for all k 1, 2 9 ••• 9 N 
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N 

where 2 
s = .E (x. - xf 

,l..,:::,,1 . l 

N - 1 

gives the serial correlation between numbers a distance k apart" For 

a completely random sequence, rk would have a value of approximately 

zero. 

(4) runs within the sequence should be tested by a gap tes~ , poker test 

and so Ono 

Testing the Model 

Once the tentative ma~hematical model is set up 9 it must be tested 

with actual data t ; see whether the simulated data are reasonable enough. 

Hope (1968 ) discusses a Monte Carlo procedure for testing the fit of 

a model. 

First, a reference s et is constructed o If lack of fit of the model 

is to be judged si~nificant at the 5% level, then the reference set consists 

of 19 random simulations. (If considered significant at the 1% level, 

the reference set consists of 99 random simulations)o 

A test criterion is considered, for ranking the observed data 

relative to the members of the reference set. If the test criterion of 

the observed data is ranked more extreme than the corresponding values of 

all members of the reference se t , then lack of fit is significant. For 

example, the test criterion might be the distance of one set of data from 

all the otherso If the distance corresponding to the observed data is 

greater than the distance corresponding to any of the members of the 

reference set, then there is only a 5% (or 1%9 depending on the size of 

the reference set) chance that the reference set might represent the real 

world situationo That is , the model fails to give an accurate account of 

what really happens in nature. 

While the Monte Carlo procedure tests the fit of the original 

hypothesized model, an analysis of variance will test for la.ck of fit 

of a fitted linear (ioee additive) polynomial model. 



Once the model has been tested 9 it can be modified a ccordingly. 

This modified model needs to be tested and modified again until a 

simulation close enough to reality resultso However, simulation is only 

24 

a best r epresentation of reali,tz? a guide t o thinking - not reality itself. 
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CELL GROWTH DATA 

To develop the response surface methodology, considerable study 

was given to the work of Hoel and Mitchell (1971 ). Thus this first 

example of model- fitting follows closely the procedures described in 

their paper. 

General Procedure 

A sto~hastic model for the growth of a cell population was 

proposedo To fit this model t ~ experimental data ~ repeated computer 

simulations were performed and t Le distance be tween the experimental 

data and simulated trials wa~ meas~rcd o This distance depended on the 

values of the parameters on the model a.~d hence to make the model fit as 

closely as possible to the data 9 those values of tre parameters which 

minimized the distance had to be estimated o Each time a new set of 

values was tested more simulations had to be performedo This could have 

become expensive in time and money so good experimental design played an 

important part in keeping the number of simulation runs downo 

Once the model was fittEd a Monte Carlo test and an analysis of 

variance were carried out to check on the goodness-of-fit of the model 

and the acc-i.iracy of estimation. 

Using these methods the experimenter can consider his data in the 

light of stochastic .models for which mathematical results are not 

availableo 

The Data 

Kubitschek (1962) studied the growth rate of several colonies of 

Escherichia coli by ~ecording the generation time of the cells. Each 

colony had an initial size of two, and recordings were taken until they 

reached a size of 630 The particular experimental data used were the 

results of observations on colony 1o1 of his study. 



Experi::r.e:'lta-tion was co:1-:.:entra-t:ed ::;n :n<:: t.c'..:..v cf the c ::;mpet i ng 

models stuc.i ed by h .:.:el ar.d Mi.t c~he ll a Tr. is m~.00·1, :r Lginany pr •::,posed 

by Kret chmar, was claimed by Hoe:. and MitchEcll L , gi v e H ,e best fit to 

the population gr·c-wth function N(t) associated with Kub1.tschek ' s da t a . 

Kretchmar's ll.iod.el: 

birtr commitment division 

-----------------------~t-----

.__ T --..:~----·~- T 
I 1 2 
1 
<114------"--- T 

1 

I 

+I 
I 

-+' 

time 

E.col i cells :rep:odt1c"' ty divisio:c_,, '1':te model ::::·,n sidns the. gene rati on 

time T cf e, , ,':-,l !. b bf' (,JIIlP(· SEd c1f t-wo ir..d-2per,d8n. ' . par•;s (see f igo 5o 1 ) . 

(i) T1 9 a :r-1::::_d -~m i::.::.-:; e r ; al .::e pre sent-ing t he time f :r·0m •;Le ·oirth of a 

cell 1.,-::.'!til :. t i'2 c omm::.. ttec. h rHvide a.1d 

(ii) T2 1 f:. r ~ .ci.: ·m i .c.te~,·al :representi:::.g the time :i:1'." om .::ommitmEmt t o 

divic.e ·,.:c:.ti. l diYis:i..o::c is complet&d o 

Thus tte generation time is T = T1 + T2 

Kretchmar (1969) pr. stulated that whatever inhibits cell division as the 

popu lation eize increases, a ct s to lengthen T
1 

ratter than T
2

• That is, 

once the cell is committed to divide it d.:,es so without regard to the 

size of the population. Fo~mally:-
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(i) probability that a cell commits itself to division in the interval 

(t, t+tO,t) is g(N(t))~t 9 ana 

( .. ) 
\1.1 O:'.lce a cell is committed to div i de, the time remai.ni:1g un";il 

division is completed has a probability density f(t
2

) " 

The function g and der:.sity f can be specified arbitrarily, in whatever 

way the m;:,d.e l builder thinks is appropria.tea 

To fit ¥-1.~atchma :.:- ' a m'Jde:!.. to Ku'b::-:sshek 9 s d.:1ta ~ Ho-31 and Mit,,hell 
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assumed that 

(i) g(N(t)) = l [N(t )J"'°' , s o that if~> 0 this decreases with increasing 

N 9 ar_d 

(ii) T2 = '1l'
0

, whsre 't
0 

is a constant 

ioeo f(t2) if t2 = 'o 
= 0 otherwise 

Fitting the Mod.el 

Give:'l Kubi ts--,f.'.ek ' s d.a"ta 9 t:he parameters of the postulated model 

had to be chosen iE such a way -chat the simulated growth function would 

correspond to the observed growth function as closely as the model would 

allow. 

As mentioned earlier, the fit of th€ model is gauged by using some 

measure of the distance between the observed growth function and the 

simulated growth function. The distance measure may be arbitrarily 

chosen, and in this instance was defined by S where 

for t. p the time of 
l 

Si9 -:;he time of 

k 
E ( t. - s. )2 

l l 
't~l 

the .t!l birth ]. 

the .th birth l 

in the observed growth fuJJ.ction 

in the s:i.mulated growth function 

k, the total number of births i~ the recorded history of the 

population. 

A different S value was produced by each repetition of the simulation 

since S was a random variable with a distribution dependent on the para­

meter vector. An a,rerage of S taken over a number of runs gave an 

estimate S of E(S), the expectation of Sa It was this S that was viewed 

as the response variable over the parameter space. Fitting the model as 

closely as possible to the data was then equivalent to finding that value 

of the parameter vector which optimized (iae o minimized) the response. 

An important design problem immediately arose. How many simulation 



runs at a point would have t o be performed in order that S provided an 

accurate estimate of E(S)? A natural desire for many runs at a point 

giving more accuracy had to be balanced against considerations of time 

and cost. 
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The results in table Vo1 s how an exampl e of thirty runs at a point 

giving thirty S value&. Average values, S 9 t aken over five , ten, twenty 

a...n.d thirty r uns ar·e a lso showr.o For eacr.. d~f f erent sample size, S was 

evaluat ed t wo mor e times, each t i me u.sing a different set of random 

numberso Res~lts are shown in table Vo2o The time t aken to make a 

single estimation of E(S ) i s a l s o shown in t his table . 



2 I 

3 

4 

5 I 

6 I 

7 

8 

9 

1 0 

Table V.1 

22 0 11 I 

24056 

22 . 33 

1 9.60 

25°53 - - --
24060 

210 00 

22 075 

26 005 

25028 

Sample of 30 simulations at the point (A, a f ) = (10, 1 . 29, 22. 7). 
- ~ 0 

I 11 I 29040 21 29 .. 61 

12 35003 22 21.93 

1 3 19094 23 17 0 31 

- 14 20099 24 300 68 
S over 5 runs 

2208 ± 1o0 1 5 21069 25 I 25048 _ _,__ _______ ~ 
a 

16 1 9o 78 ' 26 25022 

17 21072 27 24083 

'18 20076 28 180 71 

1 9 23 072 29 23 068 

-
S over 10 runs 20 20012 S over 20 runs 30 1 7 0 3, I 
23 04 ± 007 23.4 ±. 008 I 

I 

S over 30 r uns 

2303 + 007 

- - - --~ a:::::::11~-=-== -=-= ~ ---- -- __,,. - ~ ,-a,, _,. - -- = j - - - - - m = - _, •-

a. In calculating S 9 the point i = 16 was not included. 

This point corresponded to a cell whose generation time was so long, 

and whose daughters ' generation times were so short, that it was 

omitted from the calculations. 

I\) 

I.D 



Table V: . 2 

Comparison of S calculated at the point ( ~~U 9 i
0

) = (10~ 1.29, 22$7) 

from varying sample sizes. 

-
Number of r uns Time s 

5 57 secs 22.8 ± 1 oO 123~9 j;_ Oo9 25.4 ± 2. 9 

·10 1 min 56 S6CS 23~4 ± Oo7 23o3 ± ! 06 23.2 ± 1.4 

20 3 min 55 secs 
, ,. 

23o4 ± 008 22o2 ± Oo9 21. 0 ± o. s 

30 5 min 53 see;s 23o3 = 0,,7 21 . 1 ± 0.7 22.6 + o.s 

Noting the ~esults in table V.1 for five runs at a point showed a 

large variance, at-test was carried out to set a confidence interval 

on the mean respon.se Sas an estimate cf E(S )o Wi th parameter vector 

(A.
9
U,'l!' ) = (10, 1 . 29 , 22.7) a 95% confidence in the res ponse estimate 

was given by an interva l 5.6 standard deviations (i.e. 508 u.~its) wide. 

This fact, together with ~he observed wide variation in S values, 

indicated that while five runs only were quick to perform, the chance 

of missing some high or low respons e s was too large t o be ignored. 

30 

The th:ree remaining sample sizes (10 , 20 or 30 runs at a point) 

show that variation in the estimate di d not significantly decrease with 

increasing sample size af t er 10 runs. Other relevant considerations were 

that repeated estimates within each sample s i ze s till c ontinued to differ 

from each other even with as many as 30 runs at a point . A doubling in 

sample size only decreased the confidence interval on Sas an estimate 

of E(S) by a factor of J2 but increased by a factor of 2 the time taken 

to make the estimation. Since good design aims to keep the number of 

simulations down as far as accuracy will permit , it was decided to 

calculate estimates from a sample of size 10. Estimation from samples of 

this size had reasonable accuracy while enjoying the benefits of l ess 



time spent on s i m~lating and calculationsa There seemed no point in 

going to lar ger s ample s i z eso 

Seeking the Optimum 

The region of operati~i~y was ~efir-ed by .-

~ >C ; a, > 0; 'lr > 0 
0 

from C: '.)nsiderF.i.-::ion of ~;l:.e ticlogie:al sys t9m0 

The 1~egi.on of i::.·te::cest ·;,;-a cl c.efined by~ -

from consi.der ati::m L.f H,:,e l and Mitche ll's results a 

~ 'li 
. 0 

31 

An open grid sear :::h was per .. ormed f i rst to aid the choice of a 

l i kely region of low response on whi0h t o concentr ate experimentation. 

All combinat ions of t.h e pr oposed levels --.f ',he three factors were tested. 

Factor l evel s correspondEd. t i:: 

Thus the g:rid. sear,:,~ &n:ailed exp8r::?..me1::rat io!l. at 27 points o From 

this 9 a".l i nitial paramete:r· ~.·ector ( 1 0 9 ~ a 2'5 9 22 o 5) wa s chosen as the 

centre of' a region of low res ponseo It was also used for t he centre 

of the initia l fir s t o!."der design - a 23 fac t oria l wit h s tep sizes 

(100 9 Oo 1 , 1 oO) o A.ri. anal ysis of vari ance of the parameter estimates 

for this linear appr oxi mation indicated t hat the sums of squares 

attributab:e to l a ck of fit and first order i nter action t erms were each 

highly signif i cant o The or igi nal 23 f a c~or i al was then augmented by 

six axial points and six centre points t o f orm a second-order (central 

composite) design. The c o-ordinates of the axial points were 

(±6, 0, o) , (0, .±.6, o), (0 / '0 , ± 6) (in f actor level notation) 

where 6 = 10542649 was the value of .e necessary t o allow orthogonal 

estimates of the parameters from a design using six centre points. 



The par amet er vector a t the stationary point of the fitted 

quadratic surface was (10, 1023, 22 08) to the s ame a ccura cy as that 

quoted by Hoel and Mitchell . 
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An analysis of varian ce car ried ou_t on the quadratic appr oximation 

t o the surface still showed lac:k of f it t o be sigr~i icant. This could 

have reeulted fr-om 

( 1 ) Kretchmar 1 s moc.61 noT -oe=..:ig an a -..;-.;.ra te description of the 

popula tion gr0wt:_ f 1ill--~t i o1:o (PieloJ. ( 1 ) 58 ) poir..h: out that more 

t:t.an or..e d.i.f:fe~·s~.:; mcd=-1 may riE- £':'.. t. red e q1.:.a ll.y well to some observed 

dat a 9 but ".;hsre is LC way 0::' tell ..:;-:_g w~1:.d_ m::,del, if a.ri.y, ~s the 

(2) a th:'..:r·i -..:,:r h::.g:-:.2.:r ord.e:2 p c•J_:y-r.omi al ws.s nEed.ed "::; (' gh~e a ceiter 

fi: -cir...g· a t:ciri c:: i.e:::o p r.ly.comi al &.ppr ... x:i mat ior. tc -r;hP surface was 

c or.siderable and lack of fiG mi g~t ~ i l l be significant if the model 

was in fac t not good enougho 

A Monte Ca:rl o test was e:: ar'I·ied out on t.he model with parameter 

vectors ( 1 0, 1 023, 22 08) and ( 1 0, i O 299 2r ~\ c. o /) using a distance test 

criterion as des c ribed in s e ~ti~n 4o Res ults wer e: 

( 1 ) Parameter vector: ( 10 9 1 023' 22 08) 

Rari..ked distances: 14 08 1 5 o4 150 6 150 6 16 06 160 9 1 7 . 1 17 .4 

17 06 170'7 17 08 17 o9 18o2 1808 18o9 1 9o2 

21 06 2106 22 o4 24.2 

Experimental data: 22o4 

(2) Parameter V6 Ctor : ( 10 9 1029 9 22a?) 

Ranked distanc9s : 15o9 160 6 160 6 17o7 17 o7 1708 180 5 18.8 

180 9 19o3 1 9 o4 1908 2 0o3 20o7 22.5 23o5 

23o9 25o9 26o 7 26 o9 

Ex perimental data : 23 o5 
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(The random number generator giving uniformly distributed random 

variables was set at the same initial value in both cases.) 

Although the Monte Carlo test did not come as close to rejecting 

the model for Hoel and Mitchell's optimal parameter values, distances 

were consistently larger than distances for the Monte Carlo test on 

(10, 1.23, 2208)0 There was no positive reason for rejecting the 

model, 

Responses obtained at the stationary point (10 9 1 023, 2208) were 

(23o5+1o5) ; (2004±006); (21 o3+0o8); (21o 5±1 o5); (2104±0.7) 

with an average value of (21o5 ± 005). 

Expected value of the response at the stationary point was (23o3 ± 1.3). 

Responses obtained at the centre point of the design were 

with an average value of (23 06 ± Oo5), 

Responses at t he s tationary point of the f i tted surface were 

significa..~tly lower than responses at t he centre point of the design , 

confirming the choi ce of the stationary point to give the optimal 

parameter 7alues o 

t = 10; a.= 1.23; 

So best fit of the model was attained at 

Ir = 2208 
··· O 

There was a discrepancy between Hoel and Mitchell's results and 

those quoted above for the optimal parameter values, Hoel and Mitchell 

claimed optimal parameter values of (10, 1029, 22,7). 

Consider the canonical form of the quadratic representation of 

the fitted response surface: 

S - 23.3 = 2 2 2 
1 6 o 7X1 + 3 o 1 x2 + 1 o 0~ 

where x1 = -0.08 (>..-1 0) + 0.50 (a.-1 .. 23) + 0.86 (,- -22.8) 
-, 0 

x2 = 0. 14 (>..-1 0) + 0.86 (<iI.-1 023) + 0o49 (-r -22 .8) 
0 

~ = 0.99 (>._-1 o) 0o08 (a. -1 .23) + 0 .. 13 (r -2208) 
- 0 



Coefficients of x2 and~ are small compared with t:ie 

The term in ~ could be neglected without introducing m1,;.::::::C. '=' I':r'O!' ., 

Now if the "true" value of a. were 1 • 2 9 say, then ar.. e:r:r".l:!:' 0. 06 in 

the estimate a would cause a difference of approximately 0.47 ::.!1 tte 

response So 

i.eo (-- ) 2 3 16 2 31Y 2 1o0X...2 
S - 0.47 - 3. = •7Y1 + • 2 + 5 

where Y1 = -o.os (A-1 o) + o. 50 ( ""1.29) + o.s6 ( 1
0
-22.s) 

Y
2 

= 0.14 (A-10) + 0.86 (a.-1.29) - 0.49 (1
0
--22.8) 

and~ is unchanged. 

But (S - 0.47) is well within one standard deviation of -:he m:2 a::-:. 

Sat the point (10, 1.23, 22.8) and hence (S - 0.47) is not significantly 

different from s. i = 1.23 is then an acceptable estimate of~ · 

Apparently therefore, discrepancies between Hoel and Mit chell 1 s 

results and those reported above could be attributed to stochastic 

variation. Any difference in results need not necessarily imply that 

the results were incorrect. 

The Simulation Program 

Suppose the colo~y initially has N = 2 cells. 

The r..umber of cells not committed to divide (sat s1 ) is N1 °= 2. 

The number of cells committed to divide bµt having not yet 

completed the division process (set s2 ) is N2 = o. 

A vector (Q(i)) (i = 1, 2, ••• , N2), stores in descer..ding order 

of magnitude the times to division of the cells in set s2 at any tima t. 

Thus the time at which any cell in s2 is destined to divide is 

known at time t. 

If an "event" is a commitment to divide: 

The probability of an event occurring in time (t, t+At) is 

r 



which is a Poisson process 9 so t hat time between successive events is 

distributed as a negative exponential. Hence the probability of no 

events occurring before time tis 

e ->..N
1 

(N(t) ) -<ltt 

leaving the probability of an event occurring before time t to be 
->..N

1 
( N(t) ) -a.t 

1 - e 

(1) A random value, W say, representing the time to the next commitment 

of a cell in s
1 

must now be generated. 

By definition 

1 - = F(u) 

where 
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and f(u ) gives the probability of the next event occurring at time t. 

Hence by the theory of sec t ion 4, to generate a random value , w, for 

the time to the next event, a ra...~dom value, r say, distributed 

uniformly on the interval [o, 1] must be chosen and 

r = F(w) = 1 _ e:iN1 (N(t)ra.w 

giving 
( ( ))-a. ( ) -- F-1 (r) w = - N t · ~ log 1-r 

>i,N
1 

( t) 

(2) If this value w is less than the shortest time which must elapse 

until the next cell divides (ioe. w < Q(N2 )) then: 

(i) a commitment t akes place 

N1 +- N1 - 1 

N2 +- N2 + 1 

(ii) time tis advanced by w 

t +- t + w 



(iii) w is subtracted from all elements of the Q-vector 

Q(i+1 ) <- Q(i) i = 1 9 2, 0 0 0 ' N2 

Q(i) <- Q(i) - w i = 2, 3, 0 0 0 J N2 

Q( 1 ) <- f 
, 0 

and the process is started over at step 1. 

(3) If this value w is greater than the shortest time which must elapse 

until the next cell divides (ioeo w > Q(N2)) then: 

(i) a division takes place 

N1 <- N1 + 2 

N2 ,_ N2 - 1 

N<-N+1 

(ii ) time tis advanced by w 

t<-t+w 

(iii) w is subtrac ted from all elements of the Q-vector 

Q(i) <- Q(i) - w i = 1 , 2 9 o o o , N2 

and the process is started over at step 1. 

The simulations were continued unt il the cell colony reached a 

population size of 63 . 

Thus a set of values s. were generated which represented the 
J. 

th 
time of the i cell division. Table Vo3 gives a portion of a 
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simulation trial carried out at the optimal parameter values. Table Vo4 

gives the final results of this trial. 

All work was done on an IBM 1130 computer. The IBM subroutine 

RANDU was used for generating uniformly distributed random numbers. 

This package uses the linear congruential method mentioned in section 4o 

Evaluation of the Methods 

Although the grid search was open, a good starting value for the 

parameter vector was chosen. In fact it was so close to the optimal 



value that a first order design could not estimate a line of steepest 

descent which would in fact descend to point s of lower response. 

Consequent ly the first order design was immediately augmented to form 
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a central composi te desigfto The entire experimentat ion plan involved 

only 49 points; 27 from the gri d search 9 8 from the first order design, 

2 from testing the "steepest des cent" and a further 12 to form the 

second order designo These 49 points would take about 1½ hours of CPU 

time on the IBM 1130. Compare t his with Hoel and Mitchell's 1 hour on 

a GE430 - a bigger machine. Hoel and Mitchell do not give the number of 

simulations that they ran at a point. 

Although the stationary point of the fitted surface was taken as 

the point of optimal response, stochastic variation was such that one 

response of 23.5 ± 1.6 at the stationary point was higher than a response 

of 23.1 ± 1. 6 at the centre point of the second order design. Although 

lower responses could be obtained at other points, the stationary 

point was expected to give the optimal parameter values. 



Table Vo3 Example of the simulation procedure at optimal parameter values. 

Randon Q - vector Population 
size 

number 
w Q ( 1 ) Q(2 ) Q(3) Q(4) Q(5) N N1 N2 

00728 3 2 1 

001987 220800 00529 3 1 2 

005513 22 0271 4 3 1 

000592 220800 220 211 4 2 2 

001048 220800 220695 2201 06 4 1 3 

103605 220800 21 0439 21 °335 200746 4 0 4 

a 20054 Oo694 00589 5 2 3 

Oo-0551 220800 10 999 Oo638 00533 5 1 4 

000825 22.800 220717 1 0 91 6 00556 00451 5 0 5 

a. Where no random value is given, all cells are committed to 

divide and the next event must be a division - no random 

number need be chosen. 

Time 

Observed Simulated 

220 6 2208 

23o0 

28o5 23o5 

2306 

23.7 

25. 1 

44o9 45 08 

45 o9 

45 .9 

Comment 

Starting 
values 

Division 

Division 

. 

vJ 
O'.) 



Table v.4 Simulated data giving the lowest of ten responses at optimal parameter values. 

Generation 1 Generation 2 Generation 3 Generation 4 

Observed Simulated Observed Simulated Observed Simulated Observed Simulated 

2206 22.8 44.9 4508 66.6 69.6 89. 3 93.0 

28.5 23.5 45 . 7 46. 4 67.0 69.7 9L5 93.8 

46o2 46 . 5 67.1 71.1 93. 1 94o5 

46.2 48.8 6706 71.2 93.3 95. 1 

68.6 71.4 93 °5 95 °4 

68.9 71.7 94. 5 97o0 

69.0 72.2 96°3 97°3 

* * 89.0 74.3 97 . 5 97°4 

98o5 97.5 

9806 97°6 

98o9 97.8 

98o9 98o0 

99.7 98. 1 

1 oo. 0 99.0 

* Omitted from the calculations. 1 02. 9 1 01 • 0 

1 03. O 1 03.4 

\j,l 

\.0 
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Generation 5 Generation 5 
cont'd 

Observed Simulated Observed Simulated 

11 5o 3 1140 4 12300 122.3 

11 5o 7 11 5o 0 12300 1 24.1 

11607 116 08 123. 1 124.3 

11 803 117. 9 12306 125.2 

11808 118. 8 125 02 125 . 7 

11 9o2 11 9. 1 125.9 12508 

11 9o 3 11 9o 2 12 6.3 129.3 

11 9o 3 11 9o 3 126 04 129.6 

11 9o 7 11 9. 6 126.6 1 31 .1 

1200 5 11 9. 7 130.8 132. 5 

12007 11 9. 8 132.4 134.8 

120. 9 12000 132.6 139. 6 

121. 1 12004 141 0 0 141 . 2 

121.8 120. 5 141 03 141 .4 

122. 0 12007 144.1 142.9 

122.6 121 0 7 



SELECTION ESTIMATION 

A very large ~tudy ha~ been made on Composite Cross V, an 

experimental population of barley grown at Dav~s, California every yeax 

since 1937a Seed was saved from each generation and a record exists of 

the population structure over that period. 

Changes in gene and genotypic frequencies at four esterase loci 

were monitored over 25 generations to obtain experimental evidence 

concerning the balance of forces responsible for: 

(1) the marked differences in allelic frequencies observed among 

barleys from different ecogeographical regions of the world, and 

(2) the extensive allelic variation found within local populations 

of barley. 

One hypothesis to account fo the observed ratterns is that the 

various alleles confer different properties on the individual, to the 

extent of altering its contribution (through seed set) to the next 

generation. Allard, Kahler and Weir (in press) showed the frequencies 

observed and the patterns amongst them were certainly not consistent 

with those expected for neu-:ral genes in an infinitely large population 

with the observed amounts of self-pollination and outcrossing. They 

also showed mutations and migration could be excluded as the sources 
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of the obser·-ed higher than expected heterozygosity. Some form of selection 

was then considered as a possible explanation. 

Allard, Kahler and Weir used the genotypic frequency data to 

obtain maximum likelihood estimates of genotypic fitness values. They 

estimated one set of values from each pair of consecutive generations. 

Their final fitness estimates were average values taken over the sets of 

estimates from several generation pairs. 

It was decided in this work to allow stochastic variation of 



fitness values. The system should then be more realistic, f or determin­

istic estimates imply that selection is constant over the span of 

generations - rather an artificial situationo 

The Data 

The four esterase loci of CCV were called A9 B9 C and Do A and C 

each had thr3e alleles while B ar.d D each had two alleles . 

The Model 

For a mixed selfing and random mating population, as was CCV , 

the genotypic transit i on equations are ~ 

f' .. l l = s (w .. f .. + ½ E w. f . ) 
ll ll ..J O lm lm + .1. ( )2 

0 ,Ew. f. 
~ lm lm 

f' . . 
l J 

w 

SW • • f .. 
= ~ lJ 

2w 

m,..1. w m 
000 00 (1) 

+ .i 
2 

( I;w . f. ) (_;.;;w .f . ) 
- . lm l m . · nJ nJ 
w n n 

i I j 

where in any generations is the (constant) amount of selfing and 

t = 1 - sis the amount of outcross ing, w . . is the relative f itness 
l J 

for the genotype with alleles a . and a . , and sums are over the integers 
l J 

1, 2 9 ooo , k for a k-allele locus o For deterministic selection, 

substi ti.1ting observed frequencies f .. and solving these equations f or 
lJ 

w . . gave the maximum likelihood estimates of the w. ,o 
lJ l J 
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Introduetion of stochastic variation t o the fi tness values made it 

impossible to s olve for t hew . . 's analyticallyo Thus simulation techniques 
J.J 

became import arit. 

Stochastic variation was introduced i n t wo different ways; the 

population fitness values were hypothesised to fluctuate from generation 

to generation according to : 

(1) a normal distribution 

and (2) a uniform distributiono 



Tl::.ese hypothe~EE ~,a.me fro:r:n. wcrks by Jain and Marshall ( 1 968) who 

studied t he e :ffe ::'.ts of normally distrituted f itness values on genotypic 

equilibria, and Barker and But cher (1966) who studi.E-d the effects of 

uniformly di s tri but ed f i. -:,n.eE=s -ralues o~ quas i -fixation of genes. 

Es timation procedures emp1 oyed 1:y Allard, Kahler a..YJ.d We i r could not now 

be used t:J es-l:imate s t.o , hastie fitness v alues o Ins t ead response 

surface methods ana. simt .. lation were used. 
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In addition to the introduction of stochas tic variation , estimation 

procedures used took account of the amount of information in each 

generation . Essentially , a c ·.1...al numbers rath&r than fr.equencies of 

each genotype were used for estima-: ion at the different loci . An 

appropriat e weight , or c or...f i den ce 9 was thus placed on the information from 

the d i fferent generat i.0:1.s . Homcz.ygotes H:en had more ce-aring on the 

final estimates tnan did he terozygotes - l ogi : al ly so , since heterozygotes 

were so irif:.::•equent t hat a;[.;/ d<-dt; - l-ions mad E f r om ttP.ir numbers would 

ha.VE to bE :rsate-d with 1...-0:-::.. -ic.p,rabla cauticno C'.)mpare this data usage 

wi th that c-.f Allard, Kahler and Weir ~ So Tl::cd.:r maxi mum likelih ood 

estimation J.se,d genr -+ypi~ ::·:r~~ 2n~is s 9 hu!:' g:'..ving e qual i.mp0rtance to 

h-::imozygc te a:r_i l'.e · er:·zyg ore da:: a over the genera tions. 

A furi-;her m,.)difica t ion in estimation pr•o,.:,e,dures was introduced by 

estimat ing fit~ess va lu&s this time not from several pairs of generations, 

as did Allard, Kahler and Weir, but from the span of generations taken 

all at once. This should take a closer account of the overall changes 

in the genotypic frequencies observed. 

Measuring the Response 

Consider the B locus , for which genotypic data was known in 

generations 4, 5, 6 9 14, 15 , 16, 17, 24, 25 and 26. 

A set of genotypic fitness values was chosen from the distribution 

under consideration. Then using the genotypic data from experimental 



generation n - 1, an expected number of each genotype in generation n 

was calculated using the transi tion equations (1 ) a The expected 

(si mulated) data for generation n were then compared with the obser ved 

data for generati o::i n and the distar..ce mea.s-ured bet ween the t woo 

I f N 
(n ) ~ 

. . ~s 
lJ 

and EN h ) . ... 
. . lS t1~e 
lJ 

1:x:..e. or. se::::v-ed number of genotype B. B. in generation n 
l J 

expected number of genotype B. B. in generation n 
]. J 

then the r espons e had a 7aLrn 

(,,,) 
E £ (N . . ,~~ = 

1;_: i j 
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A new set of f i t ness values was then chosen from the distribution 

u...~der considerat ion and the process was repeated for the next consecutive 

pair of ge~era tions o 

The fiual distance between t he observed and the simul ated 

genotypic dat a f or the i t h s i mulation run was then 

s . 2 
1 

.E(E.E(N __ (n; 
n l. J lJ 

f or n 

An average value of -~t sse S. 2 t aken over m simulation runs was 
l 

then ,riewed a s the r es ponse variable in t he parame-cer space o "Best" 

fi t ness es t imates mi ::iimized t he distance between obser--ved and expected 

data; that is 9 minimiz ed the r esponse. Response surface methods were 

used to seek this minimumo 

All simulation was performed on an IBM 11 30. Random numbers from 

the normal distribut ion were generated using GAUSS 9 an IBM supplied 

subroutine operating a ccording t o the central limit method mentioned 

earlier. Tests on a sampl e of these numbers showed they were 

significantly more skew than the population of normal random numbers. 

Other sample characteristics up to kurtosis did not differ significantly 

from the expected values, and so GAUSS generates numbers which, apart 
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from skewness, are very nearly normal . 

Estimation Procedure 

Fitness value estimates were first calculated deterministically. 

Then, by allowing st ochastic variation ~ it should be possible to achieve 

a lower response than that achieved using deterministic fitness values; 

that is, it should be possible to get a shorter distance between observed 

and simulated data. 

Before the response could be measu.red a deci sion had to be made on 

how many sim-:1.laticm trials to make at a point . From considerations of 

time and acc,iracy (as in cel l growth work) 9 an optimal number of 20 runs 

at a point was decided ~pon. 

But a p::'.'oblem even more fundamental to the measurement of the 

response was that :;f r,ow to specify fitness va lues. Since these values 

are relative they c.,aruLt be determined u..n.iquely 1 but cnly to within a 

constant mult i ple of each other . This allows one of the values to be 

specified arbitrarily. Other values are measured with the specified 

value as unit size. 

It was decided t o fix w11 at 1.00 iI'- all estimation. All estimates 

were then specified relat ive to w11 • Allard 9 Kahler and Weir used the 

same relationship between their fitness values s o comparison of results 

from the different estimation procedures was easy. 

The A and C l oci ea ch had three alleles 9 while the Band D loci 

each had two. Sirce w11 was fixed 9 only fi tnesses w12 and w22 need to 

be estimatei at t he B and D loci. When compared with the problem of 

estimating fitnesses w22 , w
33

, w
12

, w
13 

a.n.d w
23 

at the A and C loci, it 

was decided to develop te chniques on the Band D l oci. Two different 

methods of estimation were used; 

(1) deterministic estimates of fitnesses were made. Then stochastic 
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variation was i ntroducedo The fitnesses were each drawn from the 

distribution under s tudy 9 using the earlier deterministic estimates 

as t he appropriate (constant) means and a variance a2
o The same 

variance was used f or the distribu~ion of both fitness valueso That 

value of cr giving a minimum r·e~ponse was used , together with the 

means of the dietributions 9 tc s pecify the s t art ing value for further 

experimentatior-o 

(2) Experimentation started with a grid search over the three-factor 

(w
22

9 w12 9 a ) space 0 The two fi tness values were chosen from their 

appropriate distributions ae in( ~ ) 9 but no prespecified values were 

used for the distribution means o The grid point giving the lowest 

response was then used as t he starting point for further experimentation. 

Tabl e VIo1 shows the results of estimation of fitness values at 

t he B locus by ea ~h ~f the two met~~ds with fi t nesses dist ributed both 

uniformly and n or mallyo The fi~st method of es t imai io~ gave consistently 

better results (io e o l ower r esponse) o I :' variance in t he fitness values 

was intr odi...ced a t t he very beginning of experi mentation 9 the response 

surface varied sc wic.sly that fitnsss value estimates were rather inaccurateo 

I n view of this fact 7 it was dec i ded to f ollow the first method of 

estimation given ab ove at t he A and C l ocio Experience showed that in 

moving from determinis tic to stochastic estimation 9 a first order 

approximation could be omitted : f or the variance a 2 
had only a small 

effect which meant that the starting value for stochastic estimation 

procedures was very close to the optimum response - so close that no 

descent to a lower response was possible. 



Table VI.1 Comparison of estimation methods at the B locus. 

Normally { 
distributed 
fitnesses 

Uniformly { 
distributed 
fitnesses 

Responses at Given Points 

(Actual response)a (Expected response) (Actual response)a 
Centre pt o .± sodo Stationary pt • .± s . d . Stationary pt • .± s.d. 

346 .72 ± 2.94 346°97 ± Oa79 345°33 .± 1.50 

361.78 ± 3.36 351032 ± o. 66 353.94 + 2.65 

345.90 .± 3°34 345.42 .± 0.58 347°74 .± 2.42 

362.01 .± 3°79 3 53. 2 5 .± 1 0 1 5 353°47 ± 2.53 

-

a. Actual responses are averages over six measurements. 

Fitness Estimates 

w11 w22 w12 (J 

1.00 1.1 0 0.33 o. 01 

1.00 1.09 1.00 0.02 

1.00 1.10 Oa31 0.02 

1.00 1.07 1 0 05 0.02 

b. For explanation of methods see Estimation Procedure Pg. 45 . 

Method 

( 1 ) 

(2) 

( 1 ) 

(2) 

b 

.p,. 
--J 
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The experimental designs used to fit the models to the response 

surface at the A and C loci are of particular interest. The following 

are degrees-of-freedom analyses for the different designs. 

~ 

(1) Deterministic estimation 

Source First order Second order 
model model 

First order effects 5 5 

Second order effects 10 1 5 

Error 1 6 

--------------- ~-------- ~------- -
Total 1 6 26 

Design for the first order model: 

1
/ 2 rep of 25 factorial with the five-factor interaction 

w22w
33

w12w13w23 confounded with the mean; one centre point 

was also added. 

Design for the second order model : 

the complete first order design with 10 axial points added. 

(2) Stochastic estimation 

Deifll:~B of Freedom 

Source First order Second order 
model model 

First order effects 6 6 

Second order effects 7 21 

Error 3 22 
' --------------- --------- ..,. ________ 

Total 16 49 

Design of the first order model: 

1!'. 6 4rep of 2 factorial with three three-factor interactions -



w22w
33

w12w
13 

- confounded with the mean. 

Design of the second order model : 

1,.~ rep of 26 factorial with the six-factor interaction 

w22w
33

w12w
13

w23 a confounded with the mean; 6 centre 

points and 12 axial points were also added. 

Some of the reasons for using these particular designs to estimate 

the stochastic fitnesses were 
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(1) since the first order model may have to be fitted more than once (at 

different stages of the steepest descent procedure) 9 it is most 

important to keep the number of first order design points downo A 

full 2
6 

factorial would have too many points 9 so it was decided to 

use a fractional replicate of the 26 factorial . The confounding 

scheme used to obtain a quarter replicate caused the two-factor 

interactions to be confounded into seven groups with one degree of 

freedom for each group. An estimate of only a represent ative inter­

action from each group was possible. This did not matter at the then 

stage, since the interactions were merely used as a guide to lack of 

fit of the first order model. 

(2) to estimate all second order effects for a second order model, a 

half replicate was needed o Axial points are necessary to obtain a 

non-singular precision matrix. Centre points are needed to separate 

experimental error from lack of fit error before a test on lack of 

fit can be madeo 

(3) half and quarter replicates used in their indicated situations gave 

orthogonal estimates of the model parameters . 

Check on Techniques 

A check on the simulation programs and estimation procedures was 

performed first. Checking was done at the B locus only using artificial 



data. The artificial genotypic data was generated as follows: 

(a) a set of artificial fitness values was arbitrarily chosen 

e.g. (1.009 0088, o.61) 
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(b) Taking the observed genotypic frequencies from generation 4 as 

starting values, the transition equations (1) were used to generate 

expected frequencies for generations 5, 6, 14, 15 , 16 9 17, 24, 25 and 26. 

(c ) By multiplying the expected frequencies from each generation by 

the total number of plants in the experimental sample for the same 

generation 9 a set of artificial genotypic data was generated . 

Only deterministic fitness estimates were made for checking on 

procedures. 

Region of operability was defined by:­

w11 ~ w22' w12 > O 

from considerations of the biological system. 

Region of interes t was defined by ~­

w11 = 1; 0 ~ w22' w1 2 ~ 2 

from considerations of All ard 9 Kahler and Weir's results. 

A grid search was first performed. Since w11 was fixed, 

experiments at all combinations of three levels of each of the other 

factors involved only nine points. The first order design (2
2 

factorial) 

gave a line of steepest descent leading to a much lower response. By 

repetition of the first order design - steepest descent sequence 

several times experimentation quickly came very close to the eventual 

optimum without wasting experimental points on insignificant changes 

in response values . The eventual optimal parameter values arrived at 

from fitting a second-order model were (1 . 00, 0.88, 0.52) with response 

estimate 3.78. First order designs and steepest descent only gave 

corresponding estimates (1 . 00, 0.89, 0.52) and 3.88. Compare these 

results with the true fitnesses (1.00, 0.88, o.61). 
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Deterministic fitness values generate a response surface with no 

stochastic variation. It is possic le to get very good estimates of 

parameter values from first order designs or-.ly. Hence second order 

designs can make little improvement on estimateso However, small numbers 

of heterozygotes caused inaccuracy in estimation of the heterozygote 

fitness. A large change in w12 will cause only a small change in the 

resp-:.,:2seo Tni s explai!ls t:te discrepancy between the ar t ificial fitness 

values ar-.d t:t.eir estima es. 

Resul ~s from Experiment al Dat a 

Tables VI o2, VI.3, Vlo4, Vlo5 give estimates of genotypic fitness 

values, made at loci A 9 B, C, D respectively, using response surface 

methods. For compari son the maximum likelihood estimates of Allard, 

Kahler and Weir are also shown. 

Whereas variances of es timat es given by Alla.r·d, Kahler and Weir 

reflect sampling error in genotypic frequencies and error in the 

estimation procedures, other variances quot ed in the table (cr ) reflect 

environmental effects . a is a parameter of the model. 



Table VI.2 Selection estimates at the A locus. 

Response Estimates at Given Points Selection Estimates at Stat. Point 

(Actual)a (Expected) (Actual)a 
w11 w22 w33 w1 2 w13 w23 a Centre± sd Stationary± sd Stationary± sd 

522.56 518. 54 520.83 1. 00 1.02 0.47 2. 95 o.01* 0.50 -

526. 54 ± 3. 13 505.61 ±. 0o45 531.72 ±. 1.29 1.00 1. 03 0.57 3.04 0.01* 0.49 b.017 

519.47 ± 3.12 511.28 ±. 0.82 535.42 ± 2. 58 1. 00 1.03 0.57 3. 11 0.01* 0.49 0.028 

756045 1. 00 0.99 0.90 1. 07 1o44 2.69 -
( o. 02) (0.05) 0.13) ,Oo27) 1.78 -

* Significantly negative 1 but actual response at the stationary point calculated using 

this arbitrary value. 

a. Actual responses are averages over six measurements. 

b. Methods of estimation: I - deterministic estimates 

II - normally distributed fitnesses 

III - uniformly distributed fitnesses 

IV - maximum likelihood estimates (variances in br~cke ts) 

- Allard, Kahler, and Weir 

Methodb 
of 

Estimation 

I 

II 

III 

IV 

\Jl 
f\.) 



Table VI.3 Selection estimates at the B locus. 

Responses at Given Points Selection Estimates at 
Stationary Point 

(Actualt (Expected) (Actua l)a 
Centre± sd Stationary± sd Stationary± sd w11 w22 w12 

345.49 345.49 345.49 1.00 1.09 0.35 

346.72 ± 2.94 346°97 ± 0.79 345.33 ± 1°50 1. 00 1 .1 0 0.33 

345°90 ± 3.34 345.42 ± 0.58 345.74 ± 2.42 1.00 1.10 o. 31 

356.25 1.00 1.08 0.1 3 

(0.05) (0.16) 

a. Actual responses are averages over six measurements. 

b . Methods of estimation: I - deterministic estimates 

II - normally distributed fitnesses 

III - uniformly distributed fitnesses 

cr 

-
o. 01 

0.017 

-
-

Method b 

of 
Estimation 

I 

II 

III 

IV 

IV - maximum likelihood estimates (variances in brackets) 

- Allard, Kahler, and Weir 

--

Vl 
\>I 



Tab-le VIo4 Selection estimates at the C locus. 

Responses at Given Points Selection Est i mat es at Stat o Point 

(Actual)a (Expected) (Ac tual)a 
Centre+ sd Stationary± sd Stationary± sd w11 w22 w33 w12 w13 

1 061 0 54 1058036 1 061 0 11 1000 1o2O 1008 2o11 OoO1 * 

1064085 ± 4o24 1052042 .± Oo57 1066003 ± 3oOO LOO 1 021 1007 2o42 OoO1* 

1066074 ± 3o62 1069096 ± Oo81 1 07 0 0 1 2 ± 2 0 88 1000 1 0 1 9 1002 2o 51 Oo29 

1278085 1000 1 01 7 1090 1 0 1 5 Oo83 

(Oo03) : 0.1 4) ( Oo 1 3) : Oo 31 ) 

* Significantly negative but actual response at the stationary point 

calculated using this arbi trary valueo 

a. Actual responses are averages over six measurementso 

bo Methods of estimation: I - deterministic estimates 

II - normally distributed fitnesses 

III - uniformly distributed fitnesses 

w23 

2o47 

2o47 

2o46 

1o74 

(o.80) 

O' 

-
00040 

00040 

-
-

IV - maximum likelihood estimates (variances in brackets) 

- Allard, Kahler, and Weir 

Method b 

of' 
Estimation 

I 

II 

III 

IV 

\Jl 
.p,. 



Table VIo 5 Selection estimates at the D locus. 

Responses at the Given Points Selection Estimates at 
Stationary Point 

(Actual)a (Expected) (Actual)a 
Centre± sd Stationary.± sd Stationary.± sd w, 1 w22 w12 a 

205044 2050 31 205050 LOO Oo73 Oo 23 -
207030 ± 19089 2040 74 ± 4o O7 205067 ± 1 Oo11 10 00 Oo'74 Oo 19 00022 

2140 73 ± 14029 21 5 0 52 ± 2 0 90 211oo3 ± 17o3O 1o OO 0. 73 Oo 23 00033 

215 029 L OO Oo'73 2o38 -
(Oo03) 2038 ) 

a . Aetual responses are averages over six measurement s o 

b. Methods of estimation : I - deterministic estimates 

II - normally distributed fitnesses 

III - uniformly distributed fitnesses 

Method b 

of 
Estimation 

I 

II 

III 

IV 

IV - maximum likelihood estimates (variances in brackets) 

- Allard, Kahler, and Weir 

-- --

\.n 
\.n 
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While it seems desirable to allow stochastic variation in selection 

values, further work than that reported here is necessary. Such natural 

phenomena as changing weather in different years will introduce "noise" 

into the system described by the genotypic transition equations (1) and 

it would be desirable to take account of this noise. This preliminary 

analysis merely imposes noise onto selection values, and there is no 

guarantee that the imposed noise should mimic the matural noise. It will 

generally reduce the chance of fitting the data in fact. One possible 

direction for further work to take is in the comparison in variation in 

genotypic frequencies, from those predicted by the equations, caused by 

sampling errors with the actual variationo Tests could be established 

to decide whether or not a.~y excess v.ariation was due to variation in 

selection intensities. 

Estimat ion of the fitness values by maximum likelihood and by 

response surface procedures gave similar results for homozygote 

fitnesses, but heterozygote fitnesses exhibited marked differences. 

However the response surface estimates were calculated from weighted data. 

Confidence in the results was increased since undue importance was not 

attached to the heterozygote data. 

One failing of the methods was observed. Because no non~negativity 

constraints were built into the model, w
13 

estimates at the A and C loci 

were negative for deterministic estimation. Allard, Kahler and Weir also 

obtained some negative estimates at these loci from their maximum likelihood 

procedures . They regarded these negative estimates as approximations to 

zero. When a variation in the fitness values was allowed, all but one w
13 

estimates were significantly different from (i.e. not within two standard 

deviations of) the small positive values quoted in the tables of results. 

However, the canonical analysis showed that, even in the deterministic 

case, a change to a positive fitness would make little difference in the 

response. 
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It should be noted that the experimental data was extremely variable 

for the 1 9 3 genotype making it hard for the fitted model to give an adequate 

representation of the system in this respe cto Apparently 9 with the given 

outcrossing among the barley plants 9 only a negative fitness could account 

for the dramatic dec.reases in heterozygote frequencyo What was earlier 

classed as a failing of t he model would seem to be therefore a failing of 

the datao 

It can be concluded that an unr0 eal result (the negative estimates) 

follows from an ur,.real situation (forcing fitnesses to remain fixed over 

all generations) o Introducing stochastic variation in the fitnesses 

he l ps restore realism to the model with a corresponding increase in the 

realism of the estimates o (There was one positive w
13 

value)o 

The estimated variance of the fitness values was very small for both 

uniformly and normally distributed fitnesseso There was no evidence for 

supposing that either distribution better represented the character of 

the fluctuations in the genotypic fitness valueso 



DISCUSSION 

Response surface methods for seeking optimum condit ions were 

effective means of fitting the stochastic models u.,.~der consideration. 
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One of their great advantages lies in their being able to use information 

from earlier expe~iments to continually improve the experimentation plan. 

When each experime~t is a number of computer simulation runs at a point, 

it is desirable ~ot to waste valuabie computer time - or money. 

Experimental design be comes important o The sequenti al nature of response 

surface methods :::auses no wastage and thus makes it possible to economize 

on the total number of runs needed to reach the optimum conditions sought. 

To put the response surface methodology into practice, a lot of 

careful thought is essentialo Even a question as seemingly simple as 

the positioning of points in a first order design has no clear cut answer. 

It seems inevitable that some time must be spent in learning by trial and 

error the design details best suited to a particular s i tuationo 

Si mulation was used in order to study models involving random 

elements o The genotypic fitness estimation (Chapter 6) highlights the 

particular attr ibutes of the technique o Given the genotypic transition 

equations, it can be seen that maximum l ikelihood estimates of the 

fitnesses 9 even if the fitnesses are regarded as deterministic, would 

be very difficult (if at all possible) to calculate when the genotypic 

data were used in the manner described in Chapter 6. With the introduction 

of stochastic variation in the fitnesses 9 these estimates would have been 

impossible to obtain by the maximum likelihood method. 

Simulation introduces new possibi lities of modelling. Models 

may be increased in complexity often bringing a corresponding increase 

in realism. (Recall again the genotypic fitnesses estimation&) 

Efficient experimental design makes it a reasonable proposition to study 

these improved models . 
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APPEND TX 1 

Th ,: f _._.i.rn-: ing proeram ,ms writ ten for an IBM ~ 130 , tc simulo.te the 

gr owt}; c:t ·~:'f: cc,ll pcpulaticn d6scr:i tea. i:i Sf• ct..1.::iL V, 

C- -MA IN PROGRAM 
C- -~--CALLS SU BPROGRAM CAMOl WHICH CA LCULATES 
C--- E( S ) 9 MEASURE OF DISTANCE OF 
C-----SI MULATI ON DATA FROM EXPTL DATA 

DIMENSION X(63)9Y(63) 
COMMON Y9 IX 9 X9 MX 
READ ( 2 11 31 1) ( X (I lvl=3 9b3 ) 
REA0 (29 3lU 

C--TY PE I N IX v THE STARTING VAL FOR RANDU 
READ ( 6 940 U IX 
WR IT E ( 19402 ) 
READ ( 6 94 04) MX 

C-~SET DATSW l ON**GO TO END 
C OFF*PERFCRM CALC NS FOR NEXT OF PA RAM VALS 

l WR I T E ( l 9 40 0 ) 
C--PAUSE ALL OWS FOR THE SETTl NG OF DATSWl 

PAUSE 
CALL OA Tsw q19I RR ) 
GO TO (lQ0 9lOl»9I RR 

1 0 1 CALL CAMO l 
GO TO 1 

100 CA LL EXIT 
311 FORMAT ( F7o 2 ) 
400 FORMAT ( SET DATSW l ON GO TO END**OFF CONTINUE 0 } 

401 FORMAT (1 5 ) 
402 FORMAT ( 0 ENTE R NO OF SIMN RUNS9 MX9 TO BE EXEC UT ED ') 
404 FORMAT «I 2 D 

END 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTI NE SIMULATES GROWTH CURVE DATA 
THEN CALCULATES THE RESPONSES 

EXPLANATION OF 
XL AMBs, ALPHA , TO 
NCELl 
Nl 
N2 
IX 
w 
X 
TIME11 T 
Q 
NPTR 
KK 
M 

VARIAB LE NAMES USED 
PARA MS ., OF MODEL 
NO ., OF CELLS FINALLY I N COLONY 
NO .. OF CELLS INITIALLY IN COLONY 
NO ~ OF CELLS WAITING TO DIV I DE 
INITIALIZATION VAL FOR SUBR .. RANDU 
RANDOM NO o FROM DIST RIBN ., 
MINI~M OF (QMIN,W ) 
TI ME TO NEXT DIVIS I ON 
VECTOR OF TIMES TO DIVISION 
MARKER FOR END OF Q VECTOR 
INDEX OF NO ., OF EXPTLo PTS .. 
I NDEX OF NO ., OF S I MN ., RUNS 

SUBROUTI NE CAMOl 
DI MENSION Q( 200)9X(63),Y(63 ), SSQR ( 30 ),S QRT (3 0 ) 
CO MMON Y,IX 9 X9 MX 
XMX = MX 

C==TY PE I N LAMBA 11 ALPHA, AND TO 
10 WRITE (1930 8 ) 

READ (69 301 ) XLAMB , ALPHA 9 TO 
IF (XL AMB=999 o) ll9l2 9ll 

11 WRI TE (39 302 ) XLAM8 9ALPH A9 TO 
C 
C- =RES PON SE CALCUL ATI ON 
C==~========-=---~--

C 

DO 20 M = 1, MX 
DO 1 I= lv 200 
Q (I) = Q,. O 

1 CONT I NUE 
NPTR = 0 
Nl = 2 
N2 = 0 
NN = 1 
NCELL = Nl + NZ 
T = OoO 

59 IF ( NCEll-63 ) 60 950 , 50 
60 XNl = Nl 

XC ELL = NCELL 
IF ( NU40 115, 40 

40 CALL RANDU (-IX 9 IY 9R) 
IX = IY 
W = =(XCELL**ALPHA )/( XNl*XLAMB )*ALOG (l., 0- R) 
IF ( NP TR ) 1 7 9 16, 1 7 , ·-

C--EVENT MUST BE A DECISION TO DIVIDE c--~----~---------------------
16 xx = W 

C--ADVANCE TI ME 
T = T + XX 
NPTR = NPTR + l 
QCNP T R ) = TO 

C--NEW POPULATION SIZES 
Nl = Nl ~ l 
N2 = N2 + l 

60 



NN = NN + 1 
GO TO 59 

17 IF ( W = Q ( NPTR ) ) 3 9 4 , 5 
C 
C=-EVENT IS A DECIS I ON TO DIV I DE 
C = -====•=====-========~-----== 

3 xx = W 
C== NEW POPU LATI ON SIZES 

Nl = Nl - 1 
N2 = N 2 + 1 

C==ADVANCE TI ME 
18 00 6 K = l9 NP TR 

Q (K» = Q ( K) - XX 
6 CON TI NUE 

T = T + XX 
C==CHAN GE Q= VECTOR 

NPTR = NPTR + 1 
MM = NP TR - K 

C 

DO 13 L = l9 MM 
Ll :: NP TR = L 
Q(L L +U = Q(LL } 

13 CONTI NUE 
Q« l» = TO 
NN = NN + 1 
NCELL = Nl + NZ 
GO TO 59 

C- =EVENT IS A DIVISI ON 
C-=~======-=-====--

5 XX = Q ( NP TR) 
C- =NEW POPULATION SI ZES 

Nl = Nl + 2 
N2 = N2 = 1 

C-=AOVANCE TI ME 

C 

DO 15 K = l9 NPTR 
Q«K » = Q { K} - XX 

15 CONT I NUE 
T = T + XX 
NPTR = NPTR - 1 
NCEll = Nl + N2 
IF ( NCEL L=63 ) 3O 93O93l 

31 WRI TE (19 303 ) 
3 0 Y ( NC ELL » = T 

GO TO 59 

C== EVENT I S A DECISION . ANO DIVISirn 

4 xx= W 
C--NEW POPULATION SIZ ES 

Nl = N 1 + 1 
NCEL L = Nl + N2 
IF ( NCELL-63 ) 32,32 , 33 

33 WRI TE (1, 303 ) 
C- = AOVANCE TIME 

32 TI ME = T + XX 
Y ( NCEL U = TI ME 
GO TO 18 
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C--NOW CALCULATES FOR EACH SI MN o RUN 
c--=======---==~---=--------------

50 SUM = OoO 
DO 21 I = 3963 
IF (1=1 6 ) 8 9219 8 

8 SQR = (X(I)-Y(I))**2QO 
SUM = SUM + SQR 

21 CONTI NUE 
SS QR ( M) = SU M 
SQRl« M» = SSQR ( M)**Oo5 
WRIT E ( 39312 ! M9SSQR ( M), SQRT( M) 

20 CO NlI NUE 
C- =NOW CALCULATE E ( $ ) FOR EACH SET OF RUNS 

XSQ RT = OaO 
00 22 MK = li, MX 

SQRT= XSQR T + SQRT( MK ) 
22 CONT I NUE 

SQRl M = XSQR T/ XMX 
WR IT E «2 9320 ) SQRTM 

C-=SIGNiFIC ANCE TESTS 
CHI = Oo 
DO 23 MK = l 11 MX 
CH I = CHI+ ( SQRT ( MK )-SQRTM ) **2 o0 

23 CONTI NUE 
CHISQ = CHI /( SQRTM**2 o) 
VAR ~ CHi l «XMX=lo) 
SO "" VAR**O a5 
SOM = SO/( XMX**Oa5 ) 

C=-OUlPUl RESU LTS 
WR ITE (39 315 ) SQRTM9CHISQ 
WR IT E ( 3 11 318 ) SD 9 SD M 

301 FORMAT (3F5 a0 l 
302 FORMA T (0 EXPTL PTS ARE 0 9F5 o29° 'ii 0 9F5o2 9° , 8 9F 5a2 ) 
3 03 FORMAT « 0 B00800* NC ELL TOO LARGE O ) 

308 FORMAT ( 0 EN TER LAMBDA 9 ALPH A9 TO I N 3F5 o0 6 ) 

62 

312 FORMAT 1° RUN NO o = 0 91 2, 0 0 9° SSQR = 8 9Fllo49 6 SQRT = 
1 °gF1a2» 

315 FORMAT «lH 11 31X11° MEAN SQR To = 0 11 F9 o5 11 5X , °CHISQ = 0 ,F7.4 ) 
318 FORMAT ( 0 0 945X 9°SD = 0 9F7 o4 9°S OM = 0 ,F7o 4 11//) 
320 FORMAT «Fl2o 8 ) 

GO T O 10 
12 RETURN 

END 
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APPENDIX 2 

Se l E:_;t;i c,L fil&f ·, a r,i .:. :::_ Si rr.:-lla t i on Program 

T-.""::. ,L:_: T,i _:r._g p:· gr-am wa2 wri t t e:!- :or a.._'l IBM 1 1 30, to simul ate 

** RESPON SE ESTI MA TES 
C**RESPON SE SURFACE ESTIMATES OF FITNESS VALUES* ************** 
C**PROGRAM EST1 MA TES DISTANCE BETWEEN OBSERVED DATA 
C**ANO EXPECTED VA LUES F~ STOCHASTIC 
C**F IT NESS VALUESo DA TA FROM ALLAR09 KAHLER , WEIR (1972) 
C 
C===REGION OF OPERABILITY U(l 9 J) POSI TIVE 
C-=====RE GI ON OF I NTERES T U(l9J ) S TWEEN O AND 3 
C 
C**PROG RAM EXITS BY CHOO SI NG MANUAL I NPUT OPTION AND THEN 
C**AN I NPUT OF 999 0 WITH SWI TCH 12 CJ\I WILL CALL EXI T 
C 

DIMENSION F«l0 96 )9 EF(l0 96 )9 XN ( l096 )9 EN ( l096 )9 XNSUM ( lO) 
DI MENSION X2{ 50 Dv X3 ( 50 )9 X4 ( 50 )9 X5 €50 )9X6 (50 )vSI G(50) 
DI MENSI ON RESP ( 20 ) 

C**SET UP DES IG N MA TRIX FOR AUTOMATIC FACTORIAL 
C 

C 

C 

DATA X2 / ]6*1o0 9l 6*=lo 0 92 o0, = 2o0 9l 6* 0 o O/ 
DATA X3/8*lo 0 98 *=lo 0 98*lo 0 98 *~lo092*0o O v2 o0 9=2 00 9l4*0oO / 
DATA . 4 / 4*lo0 9 4-*= l 00 9 4 *lo 0 9 4>:c-lo Q94*1 0 0 94*=1 oO 94*la 0, 

l4*=lo 0 94#0o 0 92 o0 9=2o09l2*0o0 / 
DATA X5 1 2*lo 0 9 2*=lo 0 v2* la0 9 2*-lo 0 92*lo09 2*- lo092*lo 0, 

12*=lo 0 92*lo 0 92*=lo0v 2* l o092*-lo0 92*lo0v2*- lo092*lo 0, 
22*=lo 0 96*0o0 92o Ov- 2o0 9l0 *0o O/ 

DATA X6/lo09=loOvlo 0 9-lo Ovlo Ov-lo Oplo 0 9-le 0 9lo 0 9- loO, 
llo 0 9=loO v loOv=lo Ovl~ Ov= lo0 9lo0 9-lo Ovlo 0 9- l o0 9le09 - l.O 
29loO,=loOvlo09-lo O,loOv- lo0 9 l o0 9-lo 0 9 l o 0 9-lo0 98*0 eO, 
32o 9 v=20 8 18*0oO/ 

DATA SIG / =lo Ov2*l o0 9-lo 0 9lo092*=lo 0 v 2*lo0 t 2*=l .. 0 9lo O, 
l=ll.o Ov 2* lo 0 9=1 o O 9 lo Ov 2*=lo 0 , 1.,0 9= 1 o O, 2* l oO v2*-l oO , 2*1 .. O 
2v=loOvlo 0 92*=lo Ovlo 0 9 l0*00012 o0 9=2o0 96* 0oO / 

COMMON MX9 MY 
MX = 3 
MY = 2 
T = 00005729 
Ul = loO OOOQ 
NGEN -= 10 
IX = 3 
WR I TE q lv 533) 
WR IT E «l, 536 ) 
WR ITE ( l9 520 ) 
WRI T E (1, 52 1) 
WRI TE (1,51 3 ) 
PAUSE 
WR ITE ( 3 9106 ) 
WRI T E ( 39120 ) 

C**EXPLANATI ON OF TERMS USED 



C**U lgU29U39U4vU5 AND U6 ARE FITNESSES OF GENOTYPES 
C llg229339l2913 AND 23 RESPECTIVELY 
C**XN «I9J» ARE NUMBERS OF EACH GENOTYPE 
C**F(l9 J) ARE FREQUENCIES OF GENOTYPES 
C**EF «!~ J) ARE EXPECTED FREQUENCIES OF GENOTYPES 
C**XNSUM I J ARE TOTAL NUMBERS IN EACH GENERATI ON 
C 
C**READ I N OB SERVED DA TA 

DO 20 I :a: l 9NGEN 

C 

20 READ «21d08 » XN U9U9 XNO 92)g XN ( I93 }9 XN(l94 h1XN (I9 5 ) , 
lXN«I9 6 ) 

CALL MA TI N«I CODE 9XNSUM9l0 9I R0W 9IC0L v! S9I ER ) 
READ «2935U 

C*#C 0NVERT ! NPUT QUANTITI ES TO FREQUENCIES 
C 

DO 1 I = lv NGE N 
F «I glD - XN(l9 l }/ XNSUM ( I ) 
F«! 92» ~ XN «I9 2 )/XNSUM ( I) 
F«!9 3 » ~ XN {Jg 3 }/ XNSUM (I) 
F«Io4 » = XN «Iv 4) /( XNSUM ( I)*2ol 
F«(9 5 ) ~ XN«Io 5 )/( XNSUM ( I)*2 o) 
F(r9 6 D "" XN «lo 6 )/( XNSUM (0* 2o) 

1 CONT I NUE 
C LL MtOU TClp F910 v6 vOv60 vl20vl) 
WR P' E C3 pl05 ) 
WR I TE C39 103 ) 

14 CALL DATSW I Ovl SWO ) 
GO 1 0 « 90 2 11 13 ) 11 I SW 0 

C 
C**0P ION l == AUTOMA TIC DESCENT 
C****~************************** 
C~=CAlC Ul TE STEP SIZ E RATI OS 

902 WR IT E (l910 03 ) 
READ (6111 002 ~A98 9CpD11 E9G9 H 
RA 2 -· A/ H 
RAl3 = B/ H 
R 14 -· C/H 
RAl 5 = 0/ H 
RAT6 ~ E/H 
RA T SG = G / H 
WR IT E ( lv lO OU 

C-=INP UT STAR TI NG VA LUE AND STEP SIZES 
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READ (691000 ) XMU29XMU3 9XMU4 9XMUS9XMU6 vSIGM , DU2,DU3,DU4, 
1 OU 5 9 DU 6 g D S I G 

15 CONT I E 
CALL DA TSW(0 9ISWO ) 
GO TO (906vl3 )g ISWO 

C--CAlCULATE CO=ORD OF POINT ON STEEPEST DESCENT 
906 XMU2 : XMU2 + DU2*RAT2 

XMU3 = XMU3 + DU3*RA T3 
XMU4 ~ XMU4 + DU4*RAT4 
XMU5 = XMU5 + DU5*RAT5 
XMU6 = XMU6 + DU6*RAT6 
SIGMA= SIGM + DSIG*RATSG 
GO TO 10 

13 CALL 0ATSW (l 39I SW13 ) 
GO TO (5159516)9 ISW13 



C 
C*::(g{)Pl ION 2 === INSERT PARAM o VA LS MANUALL Y 
C FROM TYPE WR ITER 
C**** ************************************** 

5 15 READ «6 vl 07» XMU2 9XMU3 9XMU4 9XMU5 pXMU6 9 SIGMA 
I F «XMU2 = 999 0» 517 9 11 9 517 

5 17 GO r o H) 
C 
C**OPlI ON 3 ==- PERFORM UTOMATIC FACTORIAL 
C*****************'************************* 
C== READ CENTR E PT OF DES IGN AND THE DISTo FROM O TO l 
C== AND NUMBER OF PO I NTS I N FACTORIAL 

5 16 WR IT E «l9l06 » 
READ [6910 7D XM2 p XM3 pXM4 9XMS 9XM6 sXS I G 
READ «6 ul 09 » R2 uXR3 pXR4 9XR59XR6 9XRSIG uNPTS 
IJ = l 

501 II = I J 
C==CA LGULAlE CO=ORDS OF POI NT I N FACT OR I AL DES I GN 

XMU2 r'1': M2 + R2*X2 « I I ) 

C 
C 

XMU3 = M3 + XR3* X3 (I I ) 
MU4 ~ M4 + XR4*X4 ! 1I) 

XMU5 = M5 + XR5*X5 (I I) 
XMU6 ~ M6 + XR6*X6 (II) 
SIGMA ~ XSI G + XRS I G* SI G( I I) 
IJ ~ tJ oir l 

C**RE SPONS E CALCUL ATIO N 
C*****~**************** 

10 DO 6 KK = lp 20 
SK :: OoO 
DO 5 L = lp 9 
I F « l = 3 » 30 11 5 u 30 

30 I F [L=7» 3111 5 u31 
31 CAll DA TS W«l 5 vIS W15) 

GO T O « 5 l Q" 5 1 U 'J I SW 15 
C== DRAW RANDOM VALUE S FROM DESIRED DISTR I BUTI ON 
C==NOR AL DISTR I BUTI ON 

510 CAll GAUSS«I XvSi GMA9XMU2 9U2 ) 
CALL GAUSS[ I X9SIGMA vXMU3 vU3 D 
CALL GAUSS «IX uSIGMApXMU4 vU4 ) 
CALL GAUSS CIX vSI GMA9X MU5 vU5 J 
CAll GAUSS(IXvSIGMA vX MU6 9U 6 ) 
GO TO 512 

C==UN IFORM DI STRIBUTION 
5 11 SPREO = (3o*SIGMA »**Oo5 

CALL RANOU { lXvlY9YFL} 
IX = IV 
U2 = XHU2 + i 2o*YFL=lo )*SPRED 
CALL RANDU(lX9IYvYFL) 
IX = IY 
U3 = XMU3 + (2o*YFL-lo}*SPRED 
IX = IY 

GALL RANDU ( IX9IY~YFL) 
U4 = XMU4 + ( 2 o*YFL-lo)*SPRED 
IX = IY 
CALL RANDU (IXvlYvY FL ) 
U5 = XMU5 + ( 2o*YFL=l o)* SPREO 
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IX = 1 Y 
CALL RAN DU «J X9lYvYFL) 
U6 ~ XMU6 + l 2 o*YF L- l oJ *SPRED 
!X ~ lY 

5 12 C. ONT! NUE 
C==CA l CULAl E MEAN FIT NESS 
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U ~ F(lglJ +U2* F (lu 2)+U3*F ( Lp3~+2o*U4*F (L, 4 ) +2o*U5*F (L?5 ) 
1+ 2a*U6 * F ( L 9 6 } 

C-=FORM I NTERMED I ATE RESULTS 
XP l = Ul*Ht,.U/U 
XP2 = U2*FeLv 2 1/U 
XP3 = U3*F[l93J/U 

P4 ~ U4*F(\l 9 4 »I U 
XP5 ~ U5*F«l9 5J/U 
XP6 = U6*FClv 6 J/U 
r or Pl ~ XPl + XP4 + XP5 
TOT P2 ·~ P2 + P4 + XP6 
lOT P3 ~ P3 + XP5 + XP6 

C-=HENCE EXP ECTED FREQUENCIES 
EFCL+lvlJ ~ (lo=TJ*(TOTP1 +XP1 )/ 2 o + T*! TOTP1**2 o) 
EFCL+lp2) - Clo=Tl*I TOTP2+ XP2)/ 2o + T* «TOTP2 **2 o ) 
EFI L+lp3I - «lo=Tl*(TOTP3+XP3 J/ 2o + T* I TOTP3 **2 o ) 
er:· ( ~-+ 1 I) 41 ·- n. 0 -n *XP4 + 2 0 *T* TOT Pl*TOTP2 
Ef~ L \>'1959 ., 1lo''T;):q:X P5 + 2o*T OTP1* TOTP3 
EF« t+ L,6); - (·lo ·~Tr*X P6 + 2a*T* TOT P2* TOTP3 

C==H ENC E f:XPECTFD QUANTITI ES 
DO 3 J ::;i l 96 
EN!L+loJ) M EFI L+lpJl* XNSUM ( L+lJ 

C==SUM OF SQUARE S « EXP ~ OBSV ) 

C 

S K = SK + «EN «L+l,J~"XN H.+l11JH** 2 o 
3 CONTI NU E 
5 CONT I NUE 

C**F I NA l RE SULTS 
RE SP«K KI ~ SK**Oa5 

6 CONTI NUE 
VAR "al OoO 
RESPM = OaG 
DO ·1 I : l 11 20 

7 RESPM = RE SPM + RESP (I)/ 200 
00 9 I = l 11 20 

9 VAR ~ VAR + ( RESP !I )-RESPM)**2o0 / l 9o 
SD = VAR**Oo5 

C 
C**OUTPUT RESU LTS 
C****~********** 

WR I TE «l g352 ) RESPM 
CALL DATSW ( l411IS W14 ) 
GO TO ( 51611514 ) 9 IS W14 

514 WR ITE ( 39104) Ul9XMU 2 9XMU3 9X MU4 vXMU59XMU6,SIGMA9RESPM,SO 
GO TO ( 1511905 )g ISWO 

985 GO TO fl3~519}~IS W13 
C==IF FACTOR IAL BE I NG EXECUTED THE RESPONSES PUNCHED ON CARDS 

519 WR ITE (21135 tH RESPM 
IF Ul=NP TSJ 50l9lhll 

C 
C**RES ET SWITCHES 
C****~********** 



11 WRI TE { 111 5 35 ) 
PAUSE 
CALL DA TS W{l29ISW12) 
GO TO ( 522 sl4 }\) ISW12 

522 CALL EXIT 
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180 FORMAT «0 RESP SURFACE ESTIMATES OF SELECTION VALUES') 
103 FORMAT P 0

9 2X , 0 U1° 9 5X 9 °U2 ° 9 5X 9
6 U3° 9 5X 9u u4 o 9 5X, 0 u5u,5x 9 

10U6°\)5X 9 °SIG MA 0
9 5X 9 

6 RESPONSE 9 ,8X 9 °S0 °) 
1 04 FORMAT P 0 ., 6 ( F5 o3 92X )9 F6 04 95X 9Fl 0o4 94X , F8 ., 4) 
165 FORM AT f. 0 GENOTYPIC FREQUENCIES Fll9 F22,F33 , Fl2 9 

1Fl3 AND F23° 9 //) 

106 FORM T « 0 TY PE I N CENTRE PT 9 STEP SIZES, NOQ FACT PTS IN 
l 6F 7o 0 9( 6F7o 0 11 I2 )) 

10 7 FORMAT «6F7o 0 ) 
108 FORMA «6F5 oOJ 
109 FORMAT {6F7o 0 9I2 ) 
120 FORMA «0 Ul FIXED AT lo00 °) 
350 FORMAT «Fl~o7) 
35 1 FO RMAT « I 2 ) 
352 FORMAT «Fl 2 o7i 
513 FORMAT «c SWITCH 15 ON NORMAL ** DFF UNIFORM DISTRIBN., OF 

l RANO o NO So O » 
520 FO RMAT qo SWITCH 13 ON TY PE IN VA LS ** OFF DO FACTORIAL 9 ) 

52 1 FORM T « 0 SWITCH 14 ON TO ENTER NEW STEP SIZES 6 ) 

533 FORMAT «0 SWITCH O ON AUTOMA TIC DESCEN T** OFF TRY OTHER 
10PTI ON S0 ) 

535 FORMA «0 RE SET SW ITCHES 0 ) 

536 FORMAT ( 0 SWl TCH 12 ON CA LL EXIT** OFF CONTI NUE 9 ) 

1 000 FORMAT « 12F7 aO) 
1001 FORMA « 0 ENTER XMU2 9X MU3 9 XMU4 9 XMU5 9XMU6 ., SIGM 9DU2,DU3, 

1 DU4,;, DU5 11 DU6 \) DS IG 9 IN 12F7o0° ) 
10 2 FORMAT «7F 8 o0 ) 
1003 FO RMAT «0 WR IT E IN VA LS NEEDED TO CALC STEP SIZE RATIOS 

1I N 1 8 oOU» 
END 
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