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ABSTRACT

Response surface methods are discussed, with emphasis on the
particular experimentation problems encountered in their use. A
brief outline of simulation and modelling is given. This includes

an indication of the role of randomness.

Two specific uses of computer simulation of biological phencmena
are considered. The first is fitting growth curves to some cell
growth data. This was done largely to develop techniques. The
second and more significant use is in fitting stochastic selection
values to some genotypic frequency data. To date, only deterministic

estimates have been found from this data.

Attention is given to the careful design of simulation
experiments, in order to reduce the number of simulation runs
needed. Response surface methods were used and proved to be

efficient experimentation techniques.
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INTRODUCTION

A lack of exact analytical solutions to a mathematical system

implies that numerical methods are needed to be able to study the system.

Simulation is the technique of imitating as best as possible the
behaviour of a system. Using a mathematical model of the system, the
experimenter can observe the effect that a different set of parameter
values has on the outcome of the model by running a simulation trial
using those parameter values. This technique has become practical
since the advent of high speed computers. Stochastic models which
previously defied solution by the mathematical analysts can now be

studied by simulation.

The experimenter generally aims to estimate those values of the
parameters which make the model as close to the real life situation
as possible. Some criterion is needed for stating just how close the
model is. If the simulated data is compared with observed data from the
real life system, then the distance between them would be a measure of the
goodness of fit of the model. The experimenter thus wishes to estimate
those values of the parameters which make the distance as short as
possible. An average distance must be taken to account for the variation

in a stochastic model.

Thus experimentation, particularly on a stochastic model, involves
many simulation runs. It is desirable to keep the number of runs down
as much as possible. This means that it is important to plan experiment-
ation so that the least distance is found with maximum efficiency.
There are several alternative plans of experimentation available.
Response surface methods were chosen for the following study since they

involve experimental designs which are economical of simulation runs.



Literature Survey

Hoel and Mitchell

Hoel and Mitchell's (1971) paper first brought to notice the problem
of fitting stochastic models using response surface methods. They
proposed three competing stochastic models for the growth of a cell
population and studied the goodness-of-fit of each model tc the
experimental data by measuring the sum of the squared differences between
the simulated trials and the experimental data. They viewed the expect-
ation of this distance as a response surface over the parameter space of
the model, then using response surface methods optimized the fit of the
model. The competing models were fitted to some data of Kubitschek (1962)

on the growth of colonies of E.coli cells.

Response Surface Methods

A variable classified as a response can be explained or predicted
by means of a functional relationship with a prespecified number of
independent variables called factors. The functional relationship
defines a response surface and measures of the response taken at different
factor levels are points on this surface. Response surface methods

provide a means of studying the functional relationship.

Initial interest in the use of response surface methodology was
generated by Box and Wilson (1951). They first set forth the
fundamentals and underlying philosophy of the use of this package of
techniques and Box (1952) later extended this work for linear models.
Davies (1956) edited an important textbook with a chapter dealing with

the exploration of response surfaces.

There has been extensive development of second order designs.
Box and Hunter (1957) studied rotatable second-order designs in general

and central composite designs in particular. Hunter (1954)



discussed the problem of finding a stationary point on a fitted
seccnd-order response surface and pointed out that a general second-
order response surface could be transformed into a canonical forme.

Box and Hunter (1954) developed a method of setting a confidence region

on this stationary point.

Box and Draper (1959) considered the problem of choosing a design
such that a polynomial of degree d1 might be most closely fitted to a
response surface whose true representation is a polynomial of degree
d23>d1. Subject to this condition they chose their designs such that
inadequate fit of the closest possible polynomial representation had

a high chance of detection.

Since Box and Draper's, many other papers have been published on
this subject. Hill and Hunter (1966) gave a review of the literature
with particular emphasis on applications of the methodology. More
recent publications were by V.J. Thomas (1971) who, in his M.Sc. thesis,
concentrated on second-order designs including conditions for
orthogonality of estimates; and by Myers (1971) whose textbook gave

a comprehensive study of response surface methkodologye-

Response Surface Methods and Simulation

Modern use of the word 'simulation' traces its origin to the work
of von Neumann and Ulam in the late 1940's when they coined the term
"Monte Carlo analysis" to apply to a mathematical technique they used
to seclve certain involved nuclear-shielding problems. An interesting
history of the technigue is given in Hammersley and Handscomb (1964 ).
In the early 1950's, the advent of high speed computers made simulation
much more feasible. It is now a standard technique dealt with in many

texts, including that of Naylor, Balintfy, Burdick and Chu (1966).

Computer simulation techniques have made it possible to perform a type

of pseudo-experiment in areas where real-world experiments were otherwise



impossible or impractical.

Simulation has also enabled study of models for which the nature
of the model as much as the nature of the equations prohibits analytical
solution of the equations. Such a situation may arise, for example,
upon intrcduction of stochastic variation teo parameters of a model,
thus making closed forms for maximum likelihood parameter estimates not

only difficult but no longer possible to obtain.

Hence an increasing concern with experimental design, response

surface methods in particular.

Huf schmidt (1962) analysed, using response surface methods, the
response surface obtained from simulation of a simplified river-basin
system. He gave in detail an account of the complete experimental plan
undertaken. Burdick and Naylor (1969) gave a general discussion of
response surface methods applied to problems in Economics. They used
simulation to study a model in a situation where real-world experiments
would not have been feasible. Hoel and Mitchell (1971) used simulation
and response surface methods to fit a model to some experimental data.
Hunter and Naylor (1970) referred to a specific example in crder to
discuss in detail the experimental design problems encountered when

using simulation to explore response surfaces.

Selection

Allard, Kahler and Weir (in press) used genotypic frequency data
from barley populations to obtain maximum likelihood estimates of
selective values. They made selective value estimates from a pair of
consecutive generations, then averaged these estimates over several

pairs of generations.

The next step might be to study the effect of allowing stochastic

variation of selective values. Jain and Marshall (1968) reviewed



the literature and found support for the idea of varying selection
values. They examined by means of computer simulation the effect on
genotypic equilibria of random fluctﬁations from generation to generation
in selective values. They concentrated on values distributed according
to & normal distribution. Barker and Butcher (1966) also studied the
effect of generation - to - generation fluctuations in selective values.
They chose selective values from a uniform distribution and, using

simulation, observed quasi-fixation of genes in a population.



RESPONSE SURFACE METHODS

Basic Concepts

It is assumed that the experimenter is concerned with a system
involving some response . %} which depends on input variables g,, §,, ¢¢e, §,*
These, the natural variables, should be distinguished from the coded or
design variables, the latter (xi‘s) normally being simple linear functions

of the former.

For example, if the experimenter wishes gi tc take a maximum
value of g. and a minimum value of B with n equally spaced
imax imin
values giu (u = 1y 25 weey n) between, then a common linear function
is

)

'y =B .= L(p. &+ .
*iu €iu (8 imax €imin

)/(n-1)

( €imax ~ Simin

where Xiu is then called the uth level of factor i

and giu is the value of the natural varigble to which this factor

level corresponds.

It is further assumed that the _gi‘s can be controlled by the

experimenter with negligible error.

In general, the response function can be written
ﬂ = f( gi’ §2! 6 o0y gk)
where the form of f is unknown and perhaps extremely complicated. The

response surface is defined by f. The success of response surface methods

depends on the approximation of f by a low order polynomial in some

region of the independent variables.

The experimenter is, then, generally interested in finding in the
smallest number of experiments (1) what value of the factors are optimum

as far as the response is concerned, and (2) a suitable approximating



function to f for the purpose of predicting future response.

Now, a suitable approximating function can be obtained by applying
the Taylor series expansion to f around the origin (in factor-level

notation the origin is Xy =X, = cee =X = 0).

Then
k k 2
of Q' f
E= f:-:‘o+=z_:', (5?) X +..E_“ (Sx.sx) e T
ol ) = i ol

This series may be truncated at any point to give any desired
closeness of fit (ioea approximation) to the surface. The truncated

polynomial is then called the fitted surface.

A first order model of the response function would be

of of (of
SPRIEI P IE

C ~ -~
L d

Ll

or, in the usual notation

n = Bo - Bix1 - ngg +- 55+ Bxxk

where

of
BO - fz:g’ Bi - (B_x.i) x=0
The first order model is often useful when the experimenter is int-

erested in studying f in narrow regions of Xys s soey X j that is,
where little curvature in f is present. In a wider area it provides a
rough approximation to the surface. The experimenter might use a second

order approximating function to study the shape of the surface more closely.

k k
e g w8 4 ™
N =B+ gk Byxg +iTi g BiyyXy

where B 0 and B ; are as before, and
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The response surface study can now be thought of as being one in
which the topography of an area is being explored. The top of a "hill"
or "mound" represents a point of maximum response. The bottom of a

"yalley" represents a peint of minimum response.

At times, models of order greater than two are used.

Experimentation

While the investigation would be planned so that experimental runs
were made in the supposed region of optimum response, the experimenter
often starts his work with complete ignorance of the proper region. In
this case, the experimental plan would develop into a sequential
determination. Some starting point is chosen. This point will most
probably be remote from the optimum. From here, the experimenter can
systematically work his way towards the desirable conditions. The
experimental region is then in the general vicinity of the optimum and
analysis of the fitted surface - probably using a second order model -

can proceed.

The experimenter is immediately confronted with the problem of
choosing a starting point. To aid the selection, a grid search could be
performed. Each factor is allowed to vary over a specified range of
levels. All possible combinations of factors at their various levels
are then tested and the point of lowest response can be used as a

starting point for further experimentation.

But how are the range of factor levels to be chosen? From his
experience with the system being studied, it would be hoped that the
experimenter could narrow down the entire parameter space to some

region of operability i.e. the parameter values would have to lie within

the bounds of this region for experiments to take any real meaning. The
experimenter would then again be looked to, for guidance in choosing

a sub-region of this region of operability. The sub-region, called the



region of interest, would specify the range of parameter values within

which interest is confined and the optimum was likely to occur. Experi-

mentation would then be concentrated on this smaller sub-region.

A grid search should cover the region of interest. Thus the
problem of range of factor levels is solved. But how many points should
be included in the grid? The first problem to note is that the response
function is generally stocastic in nature. The observed response, y,
would then be subject to unavoidable uncontrolled factors and would vary
in repeated observations, having mean 1 and variance ¢2, If the grid
search covered the region minutely, stochastic variation would conceal
true differences in response. Groups of experiments would give similar
responses, wasting information from many of the grid points. Should the
response be deterministic, a close grid would accurately determine a
point of low response. The number of experiments needed would be
enormous, but the experimenter would have the advantage of a clear idea
of the relationship between the response and the factors. For more than
one or two factors though, it would be quicker to perform fewer grid
experiments and concentrate on experiments to lead toward the optimum.
Unfortunately, an open grid search over a deterministic or stochastic

response does introduce the possibility of reaching a local optimum only.

The initial point of lowest response chosen from the grid can be
used as a centre about which to concentrate further experimentation.
Unless the experimenter knows otherwise (from prior information about
the system), he must assume that he is remote from the true optimum and

must aim to estimate the line leading to a better response.

The steepest descent procedg;gj is a method whereby the experimenter

proceeds sequentially along the path of steepest descent, that is, along

1. The discussion following refers to seeking a minimum response. The
process is similar, but with signs reversed, for seeking a maximum

response.
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the path of maximum decrease in response, according to the following steps:

(1) fit a first order model about the centre point,

(2) use the informaticn from step 1 to locate a path of steepest descent,

(3) conduct experiments along the path until no further decrease in
response is evident,

(4) steps 1, 2 and 3 are then repeated using the point of minimum response
on the line as the centre of the design for fitting the next first
order model,

(5) if lack of fit of the first order is significant, then fit a second

or higher model and analyse the fitted surface.
Discussing each step in turn:

(1) It is extremely important that a deéision be made at the outset
regarding what experimental design points are to be used. These design
points give the factor levels to be used in experimentation. The
coefficients BG’ ﬁ:; ... in the models given above are estimated from
data taken by the experimenter. Good experimental design will accomplish

the estimation with maximum effectiveness.

A simple 2k factorial design will estimate the Bi’s. A fractional
factorial may be more economical with design points yet still give
estimates of the _Bi's - especially as the number of factors under study
increases. If b

0° b1, soo are estimates of BO’ 51, cao, then the first

order response function is

k

l"' ‘; 5
Yy 5hy * ..E b.x,

i=1

The decision regarding which experimental design is used is often
a very critical one. Variances of the estimates of 30, 31, cse are
dependent on the design, and are minimized when the "spread" of the points
in the design is greatest. However, in many cases, a model is assumed
which is not an adequate approximation to the true system mechanism.

As a result, the model coefficients are biased by terms that are of



"

order higher than the order of the assumed model. The extent of these
biases can be altered by the choice of design. As spread of the design
points is increased to minimise variance, so bias increases, since the
fitted surface is less capable of giving an adequate representation of
the true response surface. Bearing these two considerations in mind,
the experimenter must chcose the design which best suits his particular

situation.

The choice of step sizes i.e. "spread" of design points, is thus
far from straightforward. Minimum variance or minimum bias imply two
opposing design objectives. Minimum variance of the bi‘s requires a
large, "spread-out", design, but minimum bias requires a small, close,

design. The lack of fit with a larger design is more significant.

Step sizes should also be chosen to ensure that the bi's are of
approximately the same order of magnitude. Then the effects of all
factors are nearly equal. (If 1ittle change in effect is produced by
an increased step size, then the factor may have negligible effect. If
increased step size produces a large change in effecty then the factor
is near its optimum value. In this case the step sizs should be left

smalla)

(2) To understand the need for approximately equal bi's, consider the
first order model againe.
. k

Lehy + T byxy

i=]1
This is a planar approximation to the response surface. Movement along
the steepest slope of this fitted plane would produce the greatest change
in response. It can be shown (see Myers (1971), for example) that the
steepest slope of the plane is traced out by the points with co-ordinates
(x1, X,y oo, xk) in the ratio (b1, b2’ vao, bk)' If any of the bi are

very small relative to the others, successive planar approximations in the

steepest descent procedure will lead the experimenter in a "zig-zag"
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fashion towards the optimum. Progress to the optimum will be slower, with
the factor corresponding to the small bi moving steadily toward the

optimum, but other factors overshooting the optimum. Step sizes correspond-
ing to those factors with large bi's will be large relative to step sizes

corresponding to those factors with small bi's.

(3) In general, it is found that experiments should be conducted along
the path of descent until two successive experiments give an increased
response. At this stage, it can safely be assumed that further movement
in the same direction would not produce any decrease in response. The
step size shoculd then be reduced and experimentation concentrated about
the point of lowest response on the steepest descent line. A good plan

for one factor, X4 would be that shown in figure 3.1.

¥ S0UEe rogponse

steepest descent path
f'rom 92

J represents the centre
point of factorial

{factor)

Figure 3.1 Path of Steepesct Descent

By continually halving the step size, then conducting two more
experiments - one on esch side of the current minimum response on the
line of steepest descent - the experimenter will "spiral in" on the
optimum value on this line. To decide when to stop "spiralling", the
experimenter siiould consider the desired accuracy of the final estimate
of the effects. If all effects are wanted to two decimal place accuracy,
then an error of + 0.01 in every effect will cause, at most, an error

of + (0.01 Z ’bil ) in the response. Hence, experimentation should
i=1
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continue until a change in response of only i.(OdﬁJz |bi| ) occurs.
i

When first setting out on the path of steepest descent, step sizes
are fairly arbitrary but from experience it seems wise to ensure that the
factor changing least has a step size smaller than the step size of the

factorial design.

(4) A new first order design can then be fitted with its centre at the
point of minimum response found in step (3). The experimenter then

returns to step (1) and repeats the process.

(5) Eventually the lack of fit of the first order model will become
significant. This lack of fit can be tested in an analysis of wvariance.
First order effects become negligible or interactions become significant.
(The factorial design should allow at least some of the interactions to

be estimated for just this check.)

In any case, experiments along the line of "steepest descent" will
produce no evident decrease in response. The analysis of variance method
is to be preferred however, since then no experiments will be wasted in

testing for lack of fit.

If the experimenter follows the theory below, information from the
design points used to set up this last first order design can be absorbed
into the next experimental outlay. Once again, no experiments will be

wasted.

The experimenter must now fit a higher order model in order to
better approximate the surface. The next step up from a first order model
is a second order model. A second order approximation to the response

function would be

, Bt B Bgmy
Sj=
where b, estimates B.
i 1

and b.. estimates B...
ij ij

Experimental designs for fitting a second order response surface
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must involve at least three levels of each variable so that the
2k + (g) + 1 coefficients in the model can be estimated. The obvious
choice of design would be a 3k factorial. However, for k > 3 the number

of observations required are far in excess of the number of parameters

to be estimated.

Box and Wilson (1951) introduced a workable alternative to the 3k
factorial system through the development of central composite designs.
They are first order designs augmented by additional axial points to
allow estimation of the coefficients of second order designs. The
experiments of the first order design are still used - there is no

wastage.

The axial points have co-ordinates (x1, B B xk) where

(x1, Xpy secoy xk) has the form

{30y Oy s €)
or ( 0,%8, o)
or ( Dy 0; secy28)

Thomas (1971) showed that, by careful specification of § , any orthogonal
first order design can be augmented in this manner to form an orthogonal
second order design. Orthogonal estimates of the B's are then possible.
These axial points are essential for non-singularity of the second order

design matrixe.

In particular, if § is chosen such that

2 2 2i. 2 y 5
Dx: " Bxn, = nE e (i # 3)
o u ju g 1u TJu
where u is the level of the factor
and n is the total number of points in the design;
and if the quadratic terms are transformed to the new variables (.
PO

according to
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then Cj—will be orthogonal to the mean, the first order terms and the
*

interaction terms. The "mean" bo , as estimated from this central

composite design, corresponds to

(E @ % )

1 1

bo +

=l o

where bO is the true mean of the design.

Centre points may be added, if the response is stochastic, to
obtain an estimate of experimental error. This will not affect

orthogonality provided the value of & is adjusted accordingly.

An added added advantage of using central composite designs is that
they are also rotatable. The experimenter does nct know before his
experiment is run, what will be the orientation of the system. A
rotatable design estimates the response with the same precision at all
points equally distant from the centre of the design. If this were not
the case, there would be a certain "imbalance" in the reliability
of experimental results from equidistant points in different directions

from the centre.

To analyse the shape of the surface, the second order model can
be expressed in its canonical form.

2 2

e.g. y = LiYi - X2Y2 + cee + lkYk

Standard texts, for example Myers (1971), describe the necessary
techniques of translation and rotation of axes to transform from the

original model to this form.

The experienced experimenter can learn much from canonical analysis
of the fitted surface. Davies (1956) and others give useful assistance.

For example, suppose a three factor model had the canonical form

~ 2 2 2
:{ =" 16°3Y1 + 3!9Y2 + 0.1Y3

then (i) all li > 0 implies the contours of constant response are



16

ellipsoidal. Any movemernt away from their centre (y1 = T

Il

Vs 0) would result in an increase in Y.
(ii) £3 = 0.1 igs very small compared to Xy = 16.3 andl.2 = 3.9

The contours are attenuated along the Y, axis, and movement

3

along this axis would result in very little increase in }.

(iii) the effect of factor Y, is almost negligible.

3

Further experiments could be performed along the Y3 axisg, and

information from these included to estimate more accurately the ki‘s

(see Box and Wilson (1951)).

If the stationary point of the fitted surface is estimated in
conjunction with the canonical analysis, then more still can be learnt.
For example, the experimenter may find that the stationary point is
remote from the design. But the fitted mcdel only has meaning in the
region of the design and will not provide a meaningful estimate of the
co-ordinates of the stationary point or the corresponding response if
they lie outside the regicn. The experimenter must move closer to the
optimum. A useful plan is to conduct experiments along the canonical

axis giving the greatest decrease in response (if the minimum is sought).
But how is this stationary point found?

From the second order model

M?{’
r
=<
>

y = by + I byxg ¢ E by,
i.j=1
differentiating with respect to Xys Xyp 000y X in turn will give a
stationary value. Whether it be a maximum or minimum depends on whether
the matrix of second derivatives of ¥ with respect to Xys X5 o00y X

is negative definite or positive definite respectively.
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Solving
2byy By, bByz  eeece by X by
b12 2b22 b23 PR b2k x2 b2
b 2b o0c0nNn b - — b
Yz Yoz Flgs x| | %3 3
ka b2k b3k o sis'ad 2bkk Xk bk

will thus give the stationary point.

This stationary point analysis is a very important part of the final

analysis of the shape of the surface.

As a final word of caution to the experimenter, care must be
exercised in choosing a step size for the design tc estimate the
parameters of this second crder mecdel. If the step size is to small,
the stationary point will frequently lie outside the region of the design,
particularly if the response function is stochastic. In spite of this,
the experimenter may be very clcse to the optimum, sc closge that any
attempt to conduct experiments toward the optimum would fail due to

stochastic variation concealing actual changes in response.

If the step size is too large, an estimate of the equcted response

at the stationary point will be very inaccurate.

It is very difficult to state a criterion for step size. Behaviour
of the response function along the immediately previous steepest descent
could guide the experimenter, but experience seems to be the best judge.
Since it is not known at what stage the first order factorial design
will have to be augmented, the experimenter must bear the problem in

mind at all times.
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SIMULATION AND MODELLING

Bagic Concepts

Simulation is essentially a working analogy. Analogy means similarity
of properties or relations, without i1dentity. When analogous systems
can be constructed, measurements or cbservations made on one of these
systems may be used to predict the reaction of the others. Simulation
involves the construction of a working mathematical model presenting
this similarity of properties or relationships with the natural system
under study. New models generally need to be made to fit a specific

situation with the required precision.

A model is a set of abstractions from the characteristics of a real
system. It must incorporate most of the useful aspects of a system but
without becoming so complex that it is difficult to understand and

manipulate.

Once the model has bsen defined in mathematical terms it can be
investigated by simulation techniques. Because of the complexity of the
gystem studied, analog and digital computers are almost aiways necessary
for simulation studies. Computer simulation is restricted to logical and
mathematical models, whose greatest advantage lies in their ability to
provide precise quantitative predictions while still encompassing the

intricacies of the real world.

Rationale for computer simulation would be:

(1) running experiments on models involving stochastic parameters.

(2) solving deterministic mathematical problems which cannot be solved
easily (if at all) by strictly deterministic methods. It may be
possible to obtain approximate solutions to these problems by
simulating a stochastic process with statistical properties satis-
fying the functional relationships or solution requirements of the

problem.
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When the system under study is wvariable, one method of observing
variability in the model is by random sampling. A simulation is
essentially a random sample of outcomes of the model. Since a variable
model is the result of stochastic parameters, a random sample of outcomes
" can be drawn by randomly choosing values for these parameters from the
probability distribution functions which define their variation. This
is Monte Carlo sampling. Monte Carlo methods have been developed for
simulating most of the well-knowr probability distributions as well as

any empiricsl distribution.

The Monte Carlo method is therefore a simulation technique for
problems having a probabilistic or stochastic basis - solution of

probability problems by practical methods involving sampling experiments.

Main features of the Monte Carlo method are:
(1) since the process involves random sampling, a ready supply of random
elements must be available to a user of the techniques.
(2) the random samples are taken from the probability distribution
function of the parameters concerned.
(3) to get a gecod estimate of the expected outcome of the model, many
samples must be taken. Repetition of the sampling process implies

that a large number of random variates is required per simulation.

The essence of good simulation by Monte Carlo methods thus lies in

a good source of random numbers.

The problem of sampling from any distribution is that of transform-
ing a random number representing the uniform [0, 1] variate, (which most
random number generators will generate), by means of the inverse
cunulative distribution function, since F(x) (the cumulative distribution
function of X, a random variable) has a uniform distribution on the

interval [0, 1 )



To prove this let Y F(X)

I

then prob (Y €y) = prob (F(X) € y)

= prob (x € ¥ (y))

- F (F ()
= ¥

hence prob (Y € y) = 0 if y<0
= y dif 0 sy &1
= 41 5% i Sy

So provided a value can be drawn that is randomly distributed
on [0, 1], then it can be transformed to find any (continuously)

distributed random wvariable.

F(X)
1

Uniform

Distribution

Y = F(X) L
|
I

-2 : 8

- X

Figure 4.1 Transformation of a uniform random y to a

random x with distribution function f.

There must obviously be some means of obtaining large numbers of
uniformly distributed random variables. Since this discussion refers
to computer simulation, the following will be expressed to some extent

in computer terminology.

The two most important methods of obtaining the required random

variables are:

(1) lookup of tables of random numbers stored in the computer. However,

20
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this lookup would be slow and to store a large number of random digits
would take a lot of room.

(2) generation of pseudo-random numbers. These numbers, although not
random in the strickest sense, have the advantage of being reproducible

and fast to obtain.

Random Number Generation

Most successful "random number" generators are special cases of the
g P

following scheme:

i€ X, (XO 2 0) is the starting value,
a: (a 2 O) is the multiplier,
¢z (¢ 20) is the increment,
and m: (m > Xoga9c) ig the modulus of the sequence

then the desired sequence of numbers Xn is attaired by setting

= aX_ + ¢ (mod m) forn 20
n+1 n

This is a "linear congruential sequence". he sequence will eventually
cycle back to give XN = Xo for some N. Careful choice of Xo’ a and c
will maximise N. For computational convenience m is generally chosen
to be the word size of the machine e.go

m = 216 en the IBM 1130

Sometimes the transformation mentioned earlier from a uniform to
some other distribution is awkward to perform. The "composition technique"
can then be used in these situations. Two or more variates independently
distributed but with the same density function are chosen. They are then
combined in such a way that together they compose an approximation to the

distribution.

For example, to generate a number from the normal distribution
(which has an awkward cumulative distribution function) choose n values

X, from a wniform [0, 1] distribution (mean %} variance %E).
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If x = T x
1=1
e Central Limit Theorem

=B

then from t

y = ~ N(0, 1) as n becomes large.

i

2n

For most practical purposes n = 12 is large enough, and convenient, since
then
12
y = ”E‘xi -6
1=1

Test of "Randomness"

It would be hoped that a sequence generated by any of the above
methods behaved as though it were random. There are many statistical
tests which will check for randomness. To check them properly, an
exhausting variety of tests should be performed. However, the few
listed below would quickly give an indication of bad statistical
properties. A more detailed account of some possible statistical tests

may be found in a standard text, for example Knuth (1968).

(1) a check on the sequence mean and standari deviation - these can be

compared with the population mean and standard deviation.

(2) a comparison of the number of each of the digits 0, 1, 2, oee, 9 in
a sequence of length N, with the number of digits of each type
expected in a completely random sequence. Each digit is expected #%;

times if completely random. A ')(2 test

z (expected occurrence -~ observed occurrence)2
type of g
digit 1 :

tests the hypothesis that the observed sequence of digits is random.

(3) any serial correlation between numbers in a sequence should be

checked for. Suppose the sequence Xi is of length N with mean X.
N-k

z —_— —
Then r, = 1= (% - x)(xiﬂ_c e I i, 2, ssuy X
(N-k) 82
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N

¥ i\ @
N =1

where 32 =

gives the serial correlation between numbers a distance k apart. TFor

a completely randoem sequence, r, would have a value of approximately

k

ZETO.

(4) runs within the sequence should be tested by a gap test, poker test

and so on.

Testing the Meodsl

Once the tentative mathematical model is set up, it must be tested

with actuel datz to see whether the simulated data are reasonable enough.

Hope (1968) discusses a Monte Carlo procedure for testing the fit of
a model.

First, a reference s=t is constructed. If lack of fit of the model
is to be judged significant at the 5% level, then the reference set consists
of 19 random simulations. (If considered significant at the 1% level,
the reference set consists of 99 random simulations).

A test criterion is considered, for ranking the observed data
relative to the members of the reference set. If the test criterion of
the observed data is ranked more extreme than the corresponding values of
&1l members of the reference set, then lack of fit is significant. For
example, the test criterion might be the distance of one set of data from
all the others. If the distance corresponding to the observed data is
greater than the distance corresponding to any of the members of the
reference set, then there is only a 5% (or 1%, depending on the size of
the reference set) chance that the reference set might represent the real
world situation. That is, the model fails to give an accurate account of

what really happens in naturee.

While the Monte Carlo procedure tests the fit of the original
hypothesized model, an analysis of variance will test for lack of fit

of a fitted linear (i.e. additive) polynomial model.
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Once the model has teen tested, it can be modified accordingly.
This modified model needs to be tested and modified again until a
simulation close enough to reality results. However, simulation is onl

a_best representation of reality., & guide to thinking - not reality itself.
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CELL, GROWTH DATA

To develop the response surface methodology, considerable study
was given to the work of Hoel and Mitchell (1971). Thus this first
example of model-fitting follows closely the procedures described in

their paper.

General Proceduyre

A stochastic modsl for the growth of a cell population was
proposeds To fit this model tu experimental data, repeated computer
simulations were performed and ttre distance between the experimental
data and simulated trials was measured. This distance depended on the
values of the parameters on the model and hence to make the model fit as
closely as possible to the data, those values of tke parameters which
minimized the distance had to be estimated. Each time a new set of
values was tesfted more simulations had to be performed. This could have
become expensive in time and money so good experimental design played an

important part in keeping the number of simulation ruans down.

Once the model was fitted a Monte Carlo test and an analysis of
variance were carried out to check on the goodness-cf-fit of the model

and the accuracy of estimation.

Using these methods the experimenter can consider his data in the
light of stochastic models for which mathematical results are not

available.

The Datsa

Kubitschek (1962) studied the growth rate of several colonies of
Escherichia coli by recording the generation time of the cells. Each
colony had an initial size of two, and recordings were taken until they
reached a size of 63. The particular experimental data used were the

results of observations on celony 1.1 of his study.



The Cellular Prolifergtion Model

Experimentatiorn was conceatrated sn ne cniy of the competing
models studied by Hoel and Mitenelle Tais medel, originally proposed
by Kretchmar, was claimed by Hoel and Mitcheil tou give the best fit to

the population growth function N(t) associated with Kubitschek's data.

Kretchmaris model:

birthk commitment division

} + +

' i i time
1 )

¢—= 1 g o

i 1 S T2 :

s T +

Figare 5.1

H.celi cells reproduce by division. Tke model c'naiders the generation
time T of a «z1. to be compcsed of +wo independent parts (see fige 5.1).
(i) T1, & rzrdeom intercal representing the time from <the oirth of a

cell until it is committed o divide and
(ii) TE’ z random iasterval representizng the time Ivom commitment to

divide until division is completeds

Thus the generation time is T = T1 + T2
Kretehmar (1969) p.stulated that whatever innibits cell division as the
population size increases, acts to lengthen T1 rather than TE' That is,
once the cell is committed to divide it does so without regard to the

size of the population. Formally:-
(i) probability that a cell commits itself to division in the interwval
(t, t+At) is g(¥(t))at, and
{ii) once a cell is committed to divide, the time remaining un*il
division is completed has a probability density f(tz)u
The function g and dersity f can be specified arbitrarily, in whatever

way the model builder thinks is appropriate.

To fit Kestchmaz's model to Kubitschek's data, Hoel and Mitchell
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assumed that
(i) g(N(t)) = k[N(t)]qx, so that if @ > 0 this decreases with increasing
N, and

(ii) T2 =T _, whsre To is a constant

il
H-
'—h

+
1l
=3

ie€o f(tz)

Fitting the Mgdsl

Given Kubitschek's data, the parameters of the postulated model
had to be chosen in such a way that the simulated growth function would
correspond tc the observed growth function as closely as the model would

allowe.

As mentioned earlier, the fit of the model is gauged by using some
measure of the distance between the observed growth function and the
simulated growth function. The distance measure may be arbitrarily

chosen, and in this instance was defined by S where

2 K 2
il -
g = z (ti si)
o |
¥
for t,, the time of the it‘1 birth in the observed growth function
8., the time of the ith birth in the simulated growth function

k, the total number of births in the recorded history of the

population.

A different S wvalue was produced by each repetition of the simulation
since S was a random variable with a distribution dependent on the para-
meter vector. An average of S taken over a number of runs gave an
estimate S of E(S), the expectation of S. It was this S that was viewed
as the response variable over the parameter space. Fitting the model as

closely as possible to the data was then equivalent to finding that value

of the parameter vector which optimized (ioeo minimized) the response.

An important design preblem immediately arose. How many simulation
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runs at a point would have to be performed in order that s provided an
accurate estimate of E(S)? A natural desire for many runs at a point
giving more accuracy had to be balanced against considerations of time

and cost.

The results in table V.1 show an example of thirty runs at a point
giving thirty S wvalues. Average values, E} taken cver five, ten, twenty
and thirty runs are alsoc shown. For each different sample size,'g was
evaluated twe more times, each time using a different set of random
numbers. Results are shown in table Vo2. The time taken to make a

single estimation of E(S) is aslso shown in this table.



Table V.1

1 22.11

2 24456

3 22+33

4 160 S over 5 runs

5 25,53 228 # 1.0

6 | 2400

T 21,00

8 22:75

B 26,05

0 25,28 S over 10 runs
2304 + 0.7

a. In calculating S, the point i

This point corresponded to a cell whose generation time was so long,

11

18
19

20

29.40
35403
19,94
20-.99
21.69
19476
21.72
20,76
23.72

20-12

S over 20 runs
23,4 + 0.8

16 was not included.

and whose daughters' generation times were so short, that it was

omitted from the calculations.

Sample of 30 simulations at the point (L, a, T ) = (10, 1.29, 22.7).
. (e

21
22
23
24

26
27
28
29
30

i s i e S— w— —

29.61
21,98
17.31
30,68
25:.48
25.22
24.83
18,71
2%.68

17-31

S over 30 runs
2353 + 0.7

62
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Table V.2
Comparison of S calculated at the point ( kiug1c ) = (10, 1.29, 22.7)

from varying sample sizes.

Number of runs Time s
}
5 57 secs | 228 + 100 [ 2359 + 069 | 2504 + 2.9
10 1 min 56 secs | 23.4 + 07 i 2303 + 166 | 23:2 + 144
20 % min 55 secs 2§il_t OOBE 2242 + 0.9 | 21,0 + 0.8
30 5 min 53 gecs | 23%.3 ;.oavi 21e1 + 0,7 [ 22:6 + 0.8

Nofing the results in table V.1 for five runs at a point showed a
large variance, a t-test was carried out to set a confidence interval
on the mean response S as an estimate of E(S). With parameter vector
(laﬁ,? ) = (10? 129, 22973 a 95% confidence in the response estimate
was given by an interval 5.6 standard deviations (i.e» 5.8 units) wide.
This fact, together with the cbserved wide variation in S wvalues,
indicated that while five runs only were quick to perform, the chance

of missing some high or low responses was too large to be ignored.

The three remsining sample sizes (10, 20 or 30 runs at a point)
show that variation in the estimate did not significantly decrease with
increasing sample size after 10 runs. Other relevant considerations were
that repeated estimates within each sample size still continued to differ
from each other even with as many as 30 runs at a point. A doubling in
sample size only decreased the confidence interval on S as an estimate
of B(S) by a factor of ,/2 but increased by a factor of 2 the time taken
to make the estimation. Since good design aims to keep the number of
simulations down as far as accuracy will permit, it was decided to
calculate estimates from a sample of size 10. Estimation from samples of

this size had reasonable accuracy while enjoying the benefits of less
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time spent on simulating and calculations. There seemed no point in

going to larger sample sgizes.

Seeking the Optimum
The region of gperability was defined byi-

A>0 a>0; 7.>0

from consideration of the bhiclogical systems

The region of interest was definsd by:i-

from consideration of Hoel and Mitchell's resultse

An open grid search was performed first to aid the choice of a
likely region of low response on which To concentrate experimentation.
All combinations of the proposed levels of the three factors were tested.

Factor levels corresponded to:

a : 1200, 1,50, 2,00

o 1'3-10, 20"’0’ 25“0

Thus the grid ssarsh entailed experimentation at 27 points. From
this, an initial parameter vector (10, 1.25, 22.5) was chosen as the
centre of a region of low response. It was also used for the centre
of the initial first order design - a 23 faztorial with step sizes
(1.0, 0.1, 150)0 An analysis of variance of the parameter estimates
for this linear approximation indicated that the sums of squares
attributable to lack of fit and first order interaction terms were each
highly significant. The original 23 factorial was then augmented by
six axial points and six centre points to form a second-order (central
composite) design. The co-ordinates of the axial points were

(+8, 0, o), (o, + b, 0), (0,70, +8) (in factor level notation)
where § = 1.542649 was the value of § necessary to allow orthogonal

estimates of the parameters from a design using six centre points.
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The parameter vector at the stationary point of the fitted
quadratic surface was (10, 1.23, 22.8) to the same accuracy as that

quoted by Hoel and Mitchell.

An analysis of varisnce carried out on the quadratic approximation
to the surface still showed lack of fit to be significant. This could
have resulted from
(1) Kretchmar®s model not peing an a-curate description of the

population growth function. (Pislou (19%8) peirts out that more
than ore differsut modsl may be fitted equally well to some observed

data, but Shere is ro¢ way of tellirg whick model, if any, is the

(2) a tnird or bigher order polyrcmial wzas needed to give a better
approximation o the response surfece. However, any move towards

-

itsing a third crder pelynomial apprizimatior to the surface was
viewed with the greatest reluctance. The work involwved would be

congiderable and lack of fit might still be significant if the model

was in fect not good enocugh.

A Monte Carlc test was carried out osn the model with parameter
vectors (10, 1.23, 22.8) and (10, 1.29, 22.7) using & distance test
criterion as described in section 4. Results were:

(1) Parsmeter vector: (10, 1.23, 22.8)
Ranked distances: 1408 15.4 15.6 15.8 16.6 16.9 171 17.4
176 177 17.8 17.9 18,2 18,8 18,9 19.2
21,6 2106 22.4 24,2
Experimental data: 22.4
(2) Parameter vector: (10, 1.29, 22.7)
Ranked distancss: 15.9 1606 16.6 177 177 17.8 18.5 18.8
18:9 193 194 198 20.3 20.7 22.5 23%.5
23,9 25.9 26.7 2649

Experimental date: 23.5
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(The random number generator giving uniformly distributed random

variables was set at the same initial value in both cases.)

Although the Monte Carlo test did not come as close to rejecting
the model for Hoel and Mitchell's optimal parameter values, distances
were consistently larger than distances for the Monte Carlo test on
(10, 1.23, 22.8). There was no positive reason for rejecting the

model.

Responses obtained at the stationary point (10, 1.23, 22.8) were
(2305 £ 1:5); (2004 £ 0.6); (213 + 0.8); (215 £ 1.5); (2104 £ 0.7)
with an average value of (2105 j_~‘005)v

Expected value of the response at the stationary point was (23.3 + 103).

Responses cbtained at the centre point of the design were
(23.1 + 166); (227 + 0o7): (2307 £ 101); (237 + 104): (2446 + 1.1)

with an average value of (23a6 + 005).

Responses at the stationary point of the fitted surface were
significantly lower than responses at the centre point of the design,
confirming the choice of the stationary point to give the optimal
parameter values. So best fit of the model was attained at

-

X =10; @ =1.23; t =22.8

There was a discrepancy between Hoel and Mitchell's results and
those quoted above for the optimal parameter values. Hoel and Mitchell

claimed optimal parameter values of (10, 1.29, 22,7).

Consider the canonical form of the quadratic representation of
the fitted response surface:

S - 23.3 = 16°7X12 + 3a1x22 + 1°0x32
where X, = -0.08 (A=10) + 0.50 (@-1023) + 0.86 _(;ro-zz.a)

X

i

0.14 (A=10) + 0,86 (@-1023) + 0.49 (-;O..zz,s)

I

0499 A-10) = 0.08 (@=1+23) + 0013 (10-22.,8)



Coefficients of X2 and KB are small compared with the cosffici=mi o1 X, .

The term in K3 could be neglected without introducing much =rror.

Now if the "true" value of a were 1.29 say, then ar error 0.06 in
the estimate @& would cause a difference of approximately 0.47 in ths
response Se

ie€o (-81 - 0'47) - 23-3 = 1607Y12 + 3'1Y22 + 100x32

where ¥, = -0.08 (A-10) + 0.50 (@&-1.29) + 0.86 (7,-22.8)

Y, = 0.14 (A-10) + 0.86 (@~1.29) - 0.49 (-ro-—zz.a)

and 33 is unchanged.

But (S - 0.47) is well within one standard deviation of “he meaw
S at the point (10, 1.23, 22.8) and hence (S - 0047) is not significantly

different from S. & = 1.23 is then an acceptable estimate of a-

Apparently therefore, discrepancies between Hoel and Mitchell's
results and those reported above could be attributed to stechastic
variation. Any difference in results need not necessarily imply that

the results were incorrect.

The Simulation Program
Suppose the colony initially has N = 2 cells.
The rumber of cells not committed to divide (set 51) is M = 2.
The number of cells committed to divide but having net yet
completed the division process (set 32) is N2 = Q.
A vector {Q(i)} (4 =1, 2, «es, N2), stores in descerding order

of magnitude the times to division of the cells in set S2 at any time t.

Thus the time at which any cell in 82 is destined to divide is

known at time t.

If an "event" is a commitment to divide:

The probability of an event occurring in time (t, t+At) is

i} AN, (N(£) ™ At
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which is a Poisson process, so that time between successive events is
distributed as a negative exponential. Hence the probability of no
events occurring before time t is

-a
e-XNl(N(t)) t

leaving the probability of an event occurring before time t to be
-a
—lﬂi(N(t)) t

1 -e

(1) A random value, W say, representing the time to the next commitment
of a cell in S1 must now be generated.
By definition
AN, (N(£) )%
f=e” = F(u)

where

AN, (W(£))% AN ((8)) P _ £(u)

and f(u) gives the probability of the next event occurring at time t.
Hence by the theory of section 4, to generate a random value, w, for
the time to the next event, a random value, r say, distributed

uniformly on the interval [O, 1] must be chosen and

Flw) =1 - e+ (N(£)) %

H
]

giving
-!th!)ﬂ; log(l-r) = F-1(r)

AN, (t)

=
Il

(2) If this value w is less than the shortest time which must elapse
until the next cell divides (i.e. w < Q(N,)) then:
(i) 2 commitment takes place
Nl «N1 -1
N2 «N2 + 1
(ii) time t is advanced by w

t=t +w
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(iii) w is subtracted from all elements of the Q-vector
Q(i+1) « Q(i) 1 =1y 2y ewwy N2 el
(i) «Q(i) =w 1i=2, 3, ceo, N2
Q1) 1

and the process is started over at step 1.

(3) If this value w is greater than the shortest time which must elapse
until the next cell divides (i.e. w > Q(N2)) then:

(1) a division takes place

N1 «N1 + 2
N2 « N2 -1
NeN+1

(i1) time t is advanced by w
te-t+w

(iii) w is subtracted from all elements of the Q-vector
(i) « (i) - w T =Y By wwey NB

and the process is started over at step 1.

The simulations were continued until the cell colony reached a

population size of 63.

Thus a set of values s, were generated which represented the
th
time of the i  cell division. Table V.3 gives a portion of a
simulation trial carried out at the optimal parameter values. Table V.4

gives the final results of this trial.

A1l work was done on an IBM 1130 computer. The IBM subroutine
RANDU was used for generating uniformly distributed random numbers.

This package uses the linear congruential method mentioned in section 4.

Evaluation of the Methods

Although the grid search was open, a good starting value for the

parameter vector was chosen. In fact it was so close to the optimal
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value that a first order design could nct estimate a line of steepest
descent which would in fact descend to points of lower response.
Consequently the first order design was immediately augmented to form

a central composite design. The entire experimentation plan involved
only 49 points; 27 from the grid search, 8 from the first order design,
2 from testing the "steepest descent" and a further 12 to form the
second order design. These 49 points would take about 1% hours of CPU
time on the IBM 1130. Compare this with Hoel and Mitchell's 1 hour on
a GEA30 -~ a bigger machine. Hoel and Mitchell do not give the number of

simulations that they ran at a point.

Although the stationary point of the fitted surface was taken as
the point of optimal response, stochastic variation was such that one
response of 23.5 + 1.6 at the stationary point was higher than a response
of 23.1 + 1.6 at the centre point of the second order design. Although
lower responses could be obtained at other points, the stationary

point was expected to give the optimal parameter values.



Table V.3 Example of the simulation procedure at optimal parameter values.
Randon Q = vector POPEi:zicn Time Comment
number
W Q(1) Q(2) Q(3) Q(4) Q(5) N | N1 | N2 | Observed | Simulated
0,728 % 2 1 22.6 22.8 Starting
values
0.1987 22,800 0529 3 1 2 2%.0
0.5513% 22.2T1 4 3 i 28.5 2%.5 Division
0.0592 | 22.800 | 22.211 4 | 2] 2 23.6
0.1048 22,800 22.695 22,106 4 1 3 23.7
1.3605 22,800 21.43%9 21.335 20,746 4 0 4 25.1
a 2,054 0.694 0.589 5 | 2 % 44.9 45.8 Division
0-0551 | 22,800 1.999 0.638 0533 5111 4 45.9
0.0825 | 22.800 | 22.717 1.916 00556 0:451 | 5 |0 | 5 45.9

as Where no random value is given, all cells are committed to

divide and the next event must be a division - no random

number need be chosen.

8¢



Table V.4 Simulated data giving the lowest of ten responses at optimal parameter values.

Generation 1 Generation 2 Generation 3 Generation 4
Observed | Simulated Observed | Simulated Observed | Simulated Observed | Simulated
22,6 22.8 44.9 45.8 6646 69.6 89.3 93,0
28.5 23.5 45.7 46.4 67.0 69-7 N.5 93.8

46,2 465 67.1 711 93,1 94.5
46.2 48.8 67-6 7.2 93.3 95,1

68. 6 T4 93.5 95.4
68.9 1.7 94.5 97.0
69.0 7202 96.3 97-3
89.0" 43" 97.5 97.4
98-5 97-5

9846 976

98.9 97.8

98- 9 98,0

99.7 98.1

100.0 99.0

* Omitted from the calculationse. 102.9 101.0
103.0 103.4

6¢



Table Vo4 (cont'd)

Generation 5

Generation 5

Observed | Simulated
115,73 114.4
115.7 115.0
1167 116.8
118.3 117.9
118.8 118.8
19,2 119.1
119.3 119.2
119.3 119.3
119.7 119.6
120.5 119.7
120.7 119.8
120.9 120.0
121.1 120.4
121.8 120.5
122.0 120.7
122.6 121.7

cont'd
Observed | Simulated
123.0 122.3
123,0 124.1
123.1 124.3
123.6 125.2
125.2 125.7
125.9 125.8
126.3 129.3
12644 129.6
126.6 131 .1
130.8 1325
132.4 134.8
132.6 139.6
141.0 141.2
141.3 141.4
144.1 142.9

40
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SELECTION ESTIMATION

A very large study has been made on Composite Crcss V, an
experimental population cof barley grown at Davis, California every year
since 1937. Seed was saved from each generation and a record exists of

the population structure over that period.

Changes in gene and genotypic frequencies at four esterase loci
were monitored over 25 generations to obtain experimental evidence
concerning the balance of forces responsible for:

(1) the marked differences in allelic frequencies observed among
barleys from different ecogeographical regions of the world, and
(2) the extensive allelic variation found within local populations

of barleye.

One hypothesis to account fo the observed patterns is that the
various alleles confer different properties on the individual, to the
extent of altering its contribution (through seed set) to the next
generation. Allard, Kahler and Weir (in press) showed the frequencies
observed and the patterns amongst them were certainly not consistent
with those expected for neutral genes in an infinitely large population
with the observed amounts of self-pollination and outcrossing. They
also showed mutations and migration could be excluded as the sources
of the observed higher than expected heterozygosity. Some form of selection

was then considered as a possible explanation.

Allard, Kahler and Weir used the genotypic frequency data to
obtain meximum likelihood estimates of genotypic fitness values. They
estimated one set of values from each pair of consecutive generations.
Their final fitness estimates were average values taken over the sets of

estimates from several generation pairs.

It was decided in this work to allow stochastic variation of



42

fitness values. The system should then be more realistic, for determin-
iatic estimates imply that selection is constant over the span of

generations - rather an artificial situation.

The Data
The four esterase loci of CCV were called A, B, C and Do A and C

each had thrze aglleles while B and D each had two alleles.

The Model
For a mixed selfing and random mating population, as was CCV,

the genctypic transition equations are:

8 i t 2
Blyg = 2 (gfys +BEwf) + % (Bwf,))
w mFl w m
30000(1)
£ro.o= Mg fay o4 B (mwf Maw £ 14
ij =a L7 am imt e g g
2w L m

where in any generation s is the (constant) amount of selfing and

t =1 - s is the amount of outcrossing, wij is the relative fitness

for the genotype with alleles a; and aj, and sums are over the integers
1, 2, 02, k for a k-allele locus. For deterministic selection,
substituting observed frequencies fij and solving these equations for

wij gave the maximum likelihood estimates of the wija

Introduction of stochastic variation to the fitness values made it
impossible to solve for the wij's analytically. Thus simulation techniques

became important.

Stochastic variation was introduced in two different ways; the
population fitness values were hypothesised to fluctuate from generation
to generation according to:

(1) a normal distribution

and (2) a uniform distribution.
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These hypotheses came from works by Jain and Marshall (1968) who
studied trhe effects of normally distributed fitness values on genotypic
equilibria, and Barker and Butcher (1966) who studied the effects of
uniformly distrituted fiiness values on gquasi-fization of genes.
Estimation prccedures employed ty Allard, Kahler aznd Weir could not now
be used to estimate stochastic fitness values. Instead response

surface methods and simulation were used.

In addition tc the introduction of stochastic variation, estimation
procedures used took account of the amount of information in each
)
generation. Essentially, actual numbers rather than frequencies of
each genotype were used for estimation at the different loci. An
appropriate weight, or confidence, was thus placed on the information from
the different generations. Homczygotes then had more tearing on the

final estimates tnan did heterczygotes - logizally so, since heterozygotes

were =0 infrequent that any dedi-tions made from thelr numbers would

4

have to be treated with comsiderabls caution. Compare this data usage
with that of Alilard, Kahler arnd Weir'se Their maximum likelihood
estimation used genatypi:» freguencies, thus glving equal importance to

homozygote avd heterczygote da*ta over the generations.

A further modification in estimation procedures was introduced by
estimating fitness values this time not from several pairs of generations,
as did Allard, Kahler and Weir, but from the span of generations taken
all at once. This should take a closer account of the overall changes

in the genotypic frequencies observed.

Measuring the Response

Consider the B locus, for which genotypic data was known in

generations 4, 5, 6, 14, 15, 16, 17, 24, 25 and 26.

A set of genotypic fitness values was chosen from the distribution

under consideration. Then using the genotypic data from experimental
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generation n - 1, an expected number of each genotype in generation n
was calculated using the transition equations (1). The expected
(simulated) data for generation n were then compared with the observed

data for generaticn n and the distance measured between the twoe.

(n)

s the observed number of genotype B_.B‘j in generation n

[

i
and EN. (=) ig the expected number of genotype BiBj in generation n
£

then the response had a value

= BN, €

3 3
d

o Y
3 (Niﬂ."“) (-‘”)

i |

=

A new set of fitness values was then chosen from the distribution
under consideration and the process was repeated for the next consecutive

pair of generations.

The final distance betweer the observed and the simulated
genotypic data for the itn simulation run was then

e }:(\E z(Nij(n) Emij(nj)z)
n T 3

for n=5; 65 15, 164 17; 255 26

An average value of these Si2 taken over m simulation rums was
then viewed as the response variable in the parameter space. "Best"
fitness estimates minimized the distance between cbserved and expected
data; that is, minimized the response. Response surface methods were

used to seek this minimum.

All simulation was performed on an IBM 1130. Random numbers from
the normal distribution were generated using GAUSS, an IBM supplied
subroutine operating according to the central limit method mentioned
earlier. Tests on a sample of these numbers showed they were
significantly more skew than the population of normal random numbers.
Other sample characteristics up to kurtosis did not differ significantly

from the expected values, and so GAUSS generates numbers which,-apart
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from skewness, are very nearly normal.

Estimation Procedure

Fitness value estimates were first calculated deterministically.
Then, by allowing stochastic variation, it should be possible to achieve
a lower response than that achieved using deterministic fitness values;
that is, it should be possible to get a shorter distance between observed

and simulated datas

Before the respense could be measured a decision had to be made on
how meny simulaticn trials to make at a point. From considerations of
time and accuracy (as in cell growth work), an optimal number of 20 runs

at a point was decided upon.

But a problem =ven more fundamental to the measurement of the
response was that of how to specify fitness values. Since these values
are relative they camnnot be determined uniquely, but cnly to within a
constant multiple of each other. This allows one of the values to be
specified arbitrarily. Other values are measured with the specified

value as unit size-

It was decided to fix Wy at 1.00 irn all estimation. All estimates

were then specified relative to w Aliard, Kahler and Weir used the

=

same relationship between their fitness values so comparison of results

from the different estimaticn procedures was easy-

The A and C loci each had three alleles, while the B and D loci

each had two. Sirce W4 was fized, only fitnesses w,, and w,, need to

i 22

be estimated at the B and D loci. When compared with the problem of

: . 2 &
estimating fitnesses Wons w33, Wyno w13 and w,, at the A and C loei, it

23
was decided to develop techniques on the B and D loci. Two different

methods of estimation were used;

(1) deterministic estimates of fitnesses were made. Then stochastic
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variation was intreoduced, The fitnesses were each drawn from the
distribution under study, using the earlier deterministic estimates
as the appropriate (constant) means and a variance a2o The same
variance was used for the distribubtion of both fitness values. That
value ¢f ¢ giving a minimum response was used, together with the
means of the distributions, tc specify the starting value for further

experimentation.

(2) Experimentation started with a grid search over the three-factor
(w22, w1zpo') space. The two fitness values were chosen from their
appropriate distributions as in (1), but no prespecified values were
used for the distribution means. The grid point giving the lowest

response was then used as the starting point for further experimentation.

Table VI.1 shows the results of estimation of fitness values a%
the B locus by eash of the two methods with fitnesses distributed both
uniformly and normally. The first method of estimation gave consistently
better results (i.e. lower response). If variance in the fitness values
was introduced at the very beginning of experimentation, the response

surface varied sc widely that fitness value estimates were rather inaccurate.

P

In view of this fact, it was decided to follow the first method of
estimation given above at the A and C lozi. Experience showed that in
moving from deterministic to stochastic estimation, a first order
approximation could be omitted: for the variance O ¢ had only a small
effect which meant that the starting value for stochastic estimation
procedures was very close to the optimum response - so close that no

descent to a lower response was possible.



Table VI.1

Normally
distributed

fitnesses

Uniformly
distributed
fitnesses

Comparison of estimation methods at the B locus.

Responses at Given Points

Fitness Estimates

Method

b

(Actual response)a

(Expected r95ponse)

(Actual response)a

Centre pto + s.d. | Stationary pte + s.d. |Stationary pte + s.d.| "11| ¥22| "12| ©
346,72 + 2.94 346,97 + 079 345.33 + 1.50 1400|1.10]0.33|0.01 (1)
361.78 + 3.36 35132 + 0466 353.94 + 2.65 1.00(1.09[1.00|0.02 (2)
345.90 + 3.34 345.42 + 0.58 34774 + 2.42 1,00(1.10/0.31|0,02 (1)
362.01 + 3.79 353.25 + 1015 353.47 + 2.53 1.00|1.07[1.05|0.02 (2)

a. Actual responses are averages over sSix measurements.

b. For explanation of methods see Estimation Procedure Pg. 45-

LY
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The experimental designs used to fit the models to the response

surface at the A and C loci are of particular interest. The following

are degrees-of-freedom analyses for the different designs.

13
(1) Deterministic estimation

5 First order Second order
Juree model model
First order effects 5 5
Seccend order effects 10 15
Error 1 6
Total 16 26

Design for the first crder model:
D% rep of 25 factorial with the five-factor interaction
w22w33w12w13w23 confounded with the mean; one centre point
was also added.

Design for the second order model:

the complete first order design with 10 axial points added.

(2) stochastic estimation

edo
FPirst order Second order
Bouree model model
First order effects 6 6
Second order effects 7 21
Error 3 22
s — ———— — —— — — —— — — b-ﬁ—-\n--——'—u-n—-ﬂ—- —————
Total 16 49

Design of the first order model:
Bﬁ_rep of 26 factorial with three three-factor interactions -

WooWazWox @) Wy W, 2V, @ and their generalized interaction
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(1)

(2)

(3)
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w22w33w12w13 - confounded with the mean.

Design of the second order model:
4 rep of 2% factorial with the six-factor interaction
w33w12w13w236 confounded with the mean; 6 centre

points and 12 axial points were also added.

o5

Some of the reasons for using these particular designs to estimsgte

stochastic fitnesses were

since the first order model may have to be fitted more than once (at
different stages of the steepest descent procedure), it is most
important to keep the number of first order design points down. A
full 26 factorial would have too many points, so it was decided to
use a fractional replicate of the 26 factoriale The confounding
scheme used to obtain a quarter replicate caused the two-factor
interactions to be confounded into seven groups with one degree of
freedom for each group. An estimate of only a representative inter-
action from each group was possible. This did not matter at the then
stage, since the interactions were merely used as a guide to lack of

fit of the first order model.

to estimate all second order effects for a second order model, a
half replicate was needed. Axial points are necessary to obtain a
non-singular precision matrix. Centre points are needed to separate
experimental error.from lack of fit error before a test on lack of

fit can be mades

half and quarter replicates used in their indicated situations gave

orthogonal estimates of the model parameters.

Check on Technigues

A check on the simulation programs and estimation procedures was

performed first. Checking was done at the B locus only using artificial
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data. The artificial genotypic data was generated as follows:
(a) a set of artificial fitness values was arbitrarily chosen
eogo (1200, 0,88, 0.61)

(b) Taking the observed genotypic frequencies from generation 4 as
starting values, the transition equations (1) were used to generate
expected frequencies for generations 5, 6, 14, 15, 16, 17, 24, 25 and 26.

(c) By multiplying the expected frequencies from each generation by
the total number of plants in the experimental sample for the same

generation, a set of artificial genotypic data was generated.

Only deterministic fitness estimates were made for checking on

procedures.

Region of operability was defined by:-
Wigo Woos w.|2>0

from considerations of the biological systems

Region of interest was defined by:-
ey, 1 NS = 2
W U 008 Wy Wy

from congiderations of Allard, Kahler and Weir's results.

A grid search was first performed. Since w,, was fixed,
experiments at all combinations of three levels of each of the other
factors involved only nine points. The first order design (22 factorial)
gave a line of steepest descent leading to a much lower response. By
repetition of the first order design - steepest descent sequence
several times experimentation quickly came very close to the eventual
optimum without wasting experimental points on insignificant changes
in response values. The eventual optimal parameter values arrived at
from fitting a second-order model were (1.00, 0.88, 0.52) with response
estimate 3.78. First order designs and steepest descent only gave
corresponding estimates (1.00, 0.89, 0.52) and 3.88. Compare these

results with the true fitnesses (1.00, 0.88, 0.61).
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Deterministic fitness values generate a response surface with no
stochastic variation. It is possitble to get very good estimates of
parameter values from first order designs only. Hence second order
designs can make little improvement on estimates. However, small numbers
of heterozygotes caused inaccurascy in esstimation of the heterozygote

fitness. A large change in w,

{2 will cause only a small change in the

response. This explains the discrepancy between the artificial fitness

values and tTheir estimatess.

Results from Experimental Data

Tables VI.2, VI.3, VI.4, VI.5 give estimates of genotypic fitness
values, made at loeci A, B, C, D respectively, using response surface
methods. For comparison the maximum likelihood estimates of Allard,

Kahler and Weir are also showne

Whereas variances of estimates given by Allard, Kahler and Weir
reflect sampling error in genotypic frequencies and error in the
estimation procedures, other variances quoted in the table (o ) reflect

environmental effects. @ is a parameter of the model.



Table VI.2

Selection estimates at the A locus.

Response Estimates at Given Points

Selection Estimates at Stat. Point

Method?
f
(Actual)? (Expected) (Actual)? L
Centre + sd Stationary + sd | Stationary + sd | ™11 | Y22 | 33| Y12 | ¥i3 | W23 | © |Bstimation
522.56 518.54 520083 1400 | 1.02 | 0.47 [2.95 | 0.01% 0.50 | - I
526.54 + 3413 505.61 + 0245 531272 + 1429 | 1200 | 1203 | 0.57 | 3.04 | 0.01%| 0.49 |0.017 I
51947 + 3412 511028 + 0,82 5350:42 + 258 [ 1,00 [1.03 [ 0057 | 3011 | 0.01%| 0.49 [0.028 11
756045 1.00 | 0:99 | 0590 [1.07 |1.44 |2.69 | - v
(0.02)(0.05)K0.13)(0.27)1.78) -

* Significantly negative, but actual

this arbitrary value.

a. Actual responses are averages over six measurements.

b« Methods of estimation:

IV

1 - deterministic estimates

II - normally distributed fitnesses

III - uniformly distributed fitnesses

maximum likelihood estimates (variances in bqackets)

- Allard, Kahler, and Weir

response at the stationary point calculated using

25



Table VI.3 Selection estimates at the B locus.
: . Selection Estimates at
Responses at Given Points ; "
Stationary Point Methodb
f
(Actual)® (Expected) (Actual)? e
Centre + sd Stationary + sd | Stationary + sd Y| Yoz | M2 9  [Hslssiion
345449 345.49 345.49 1,00 1.09 | 0.35 | - I
346,72 + 2.94 | 346,97 + 0.79 345433 + 150 1.00 | 110 | 0.33 |0.01 II
345.90 + 3.34 345.42 + 058 345074 + 2042 1,00 [ 110 | 031 [0.017 TET
356425 1.00 [ 1.08 | 0.13 - v
(0.05)|(0.16)| -

a. Actual responses are averages over six measurements.
b. Methods of estimation: I - deterministic estimates

IT - normally distributed fitnesses

ITT - uniformly distributed fitnesses
IV - maximum likelihood estimates (variances in brackets)

- Allard, Kahler, and Weir

¢S



Table VI.4 Selection estimates at the C locuse.

[
Responses at Given Points Selection Estimates at Stat. Point b
Method
of
(Actual)® (Expected ) (Actual)? oL
Centre + sd | Stationary + sd Stationary & od| "1 | ez | Y55 | Y| ¥iz| Yozt @ |Petiuation
1061.54 1058-.3%6 1061.11 100 | 1020 [ 1,08 [2.11 | 0.01%] 2,47 - I
1064.85 + 4.24 | 1052.42 + 0.57 1066503 + 3,00 [ 1,00 | 1.21 | 1,07 [2.42 [ 0.01% 2.47 | 0,040 1T
1066.74 + 3.62 | 1069.96 + 0.81 107012 + 288|100 | 1519 [1.02 | 2:51 [0.29 [2.46 [0-040 I1I
1278.85 100 [ 117 | 1290 [ 1-15 | 0.83 | 1.74 - v
(0:03)K0414)[(0.13)[0.31)|(0.80)| -

* Significantly negative but actual response at the stationary point
calculated using this arbitrary value.
as Actual responses are averages over sSix measurements.

b. Methods of estimation: I deterministic estimates

1I normally distributed fitnesses

III - uniformly distributed fitnesses
IV - maximum likelihood estimates (variances in brackets)

- Allard, Kahler, and Weir



Table VIo5 Selection estimates at the D locus.

i — Selection Estimates at
Responses at the Given Points Staticnsry Potnb ot .
ethod
f
(Actual)? (Expected) (Actual)? P
Centre + sd Stationary + sd Stationary + sd 11 Wo5 | "2 g Emtination
205.44 205,31 205,50 1,00 | 073 [ 0.23 - I
207-30 + 19.89 | 204.74 + 4.07 205,67 + 10,11 [ 1,00 | 0.74 | 019 | 0,022 II
214.T3 + 14,29 | 21552 + 2.90 211,03 + 1730 | 1,00 | 0273 | 023 | 0.033 IIT
215,29 1.00 | 073 [2638 | = v
(0.03)[2.38)

a. Aetual responses are averages over six measurementse.
b. Methods of estimation: I - deterministic estimates

IT normally distributed fitnesses

11T uniformly distributed fitnesses
IV -« maximum likelihood estimates (variances in brackats)

- Allard, Kahler, and Weir

1
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While it seems desirable to allow stochastic variation in selection
values, further work than that reported here is necessary. Such natural
phencmena as changing weather in different years will introduce "noise"
into the system described by the genotypic transition equations (1) and
it would be desirable to take account of this noise. This preliminary
analysis merely imposes noise onto selection values, and there is no
guarantee that the imposed noise should mimic the matural noise. It will
generally reduce the chance of fitting the data in fact. One possible
direction for further work to take is in the comparison in variation in
genotypic frequencies, from those predicted by the equations, caused by
sampling errors with the actual variation. Tests could be established
to decide whether or not any excess variation was due to variation in

selection intensitiese.

Estimation of the fitness values by maximum likelihood and by
response surface procedures gave similar results for homozygote
fitnesses, but heterozygote fitnesses exhibited marked differences.
However the response surface estimates were calculated from weighted data.
Confidence in the results was increased since undue importance was not

attached to the heterozygote data.

One feailing of the methods was observed. Because no non-negativity
constraints were built into the model, w13 estimates at the A and C loci
were negative for deterministic estimation. Allard, Kahler and Weir also
obtained some negative estimates at these loci from their meximum likelihood
procedures. They regarded these negative estimates as approximations to
zero. When a variation in the fitness values was allowed, all but one w13
estimates were significantly different from (i.e. not within two standard
deviations of) the small positive values quoted in the tables of results.
However, the canonical analysis showed that, even in the deterministic
case, a change to a positive fitness would make little difference in the

response.
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It should be noted that the experimental data was extremely variable
for the 1,3 genotype making it hard for the fitted model to give an adequate
representation of the system in this respect. Apparently, with the given
outcroasing ameng the barley plants, only a negative fitness could account
for the dramatic decreases in heterozygote frequency. What was earlier
classed as a failing of the model would seem to be therefore a failing of

the data.

It can ve concluded that an unreal result (the negative estimates)
follows from ar unreal situation (forcing fitnesses to remain fixed over
all generations)n Introducing stochastic variation in the fitnesses
helps restore realism to the model with a corresponding increase in the

realism of the estimates. (There was one positive w1 value)o

3

The estimated variance of the fitness values was very small for both
uniformly and normally distributed fitnesses. There was no evidence for
supposing that either distribution better represented the character of

the fluctuations in the genotypic fitness valuess
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DISCUSSION

Response surface methods for seeking optimum conditions were
effective means of fitting the stochastic models under consideration.
One of their great advantages lies in their being able to use information
from earlier experiments to continually improve the experimentation plan.
When each experiment is a number of computer simulation runs at a point,
it is desirable not toc waste valuable computer time - or money.
Experimental design becomes important. The sequential nature of response
surface methcds causes no wastage and thus makes it pessible to economize

on the total number of runs needed to reach the optimum conditions soughte.

To put the response surface methodology into practice, a lot of
careful thought is essential. Even a question as seemingly simple as
the positioning of points in a first order design has no clear cut answer.
It seems inevitable that some time must be spent in learning by trial and

error the design details best suited to a particular situation.

Simulation was used in order to study models involving random
elements. The genotypic fitness estimation (Chapter 6) highlights the
particular attributes of the technique. Given the genotypic transition
equations, it can be seen that maximum likelihood estimates of the
fitnesses, even if the fitnesses are regarded as deterministic, would
be very difficult (if at all possible) to calculate when the genotypic
data were used in the mammer described in Chapter 6. With the introduction
of stochastic variation in the fitnesses, these estimates would have been

impossible to obtain by the maximum likelihood method.

Simulation introduces new possibilities of mecdelling. Models
may be increased in complexity often bringing a corresponding increase
in realism. (Recall again the genotypic fitnesses estimation.)
Efficient experimental design makes it a reasonable proposition to study

these improved models.
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APPENDIX 1

Cell Greowth Sumulation Program

The fu_lowing progrem was written for an IBM 71130, to simulate the
growth ¢f Tie cell pepulation described in Section V.
C-=—MAIN PROGRAM
C—=—<CALLS SUBPROGRAM CAMO1 WHICH CALCULATES
s E{S) o MEASURE OF DISTANCE OF
C—=———=SIMULATION DATA FROM EXPTL DATA

DIMENSION X(63),Y(63)
COMMON Y, IX9XgMX
READ (2,311) (X(I)yI=3,63)
READ{2,311)
C~-TYPE IN IX, THE STARTING VAL FOR RANDU
READ (6,401} IX
WRITE {1:,402)
READ (6,404} MX
C—=SET DATSW1 ON**GO TO END
C OFF*PERFORM CALCNS FOR NEXT OF PARAM VALS
1 WRITE (1,400)
C——PAUSE ALLOWS FOR THE SETTING OF DATSW1
PAUSE
CALL DATSW{1l,IRR}
GO TO (100-,101)9IRR
101 CALL CAMOL
GO TO 1
100 CALL EXIT
311 FORMAT (FT.2)
400 FORMAT ( SET DATSW1 ON GO TO END**0OFF CONTINUE")
401 FORMAT (I5)

402 FORMAT (° ENTER NO OF SIMN RUNS; MX, TO BE EXECUTED"')

404 FORMAT (12}
END
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C SUBROUTINE SIMULATES GROWTH CURVE DATA

C THEN CALCULATES THE RESPONSE S

c

C EXPLANATION OF VARIABLE NAMES USED

C XLAMBy,ALPHA;TO PARAMS. OF MODEL

C NCELL NO. OF CELLS FINALLY IN COLONY

C NI NO. OF CELLS INITIALLY IN COLONY
C N2 NO. OF CELLS WAITING TO DIVIDE

c IX INITIALIZATION VAL FOR SUBR. RANDU
C W RANDOM NO., FROM DISTRIBN.

€ X MINIMUM OF (QMIN;W)

C TIMEGT TIME TO NEXT DIVISION

c Q VECTOR OF TIMES TO DIVISION

C NPTR MARKER FOR END OF Q VECTOR

C KK INDEX OF NO. OF EXPTL. PTS.

cC M INDEX OF NO. OF SIMN. RUNS

c

SUBROUTINE CAMO1
DIMENSION Q(200)9X{63)3Y(63),ySSQR(30);SQRT(30)
COMMON Yo IXgXgMX
XMX = MX
C==TYPE IN LAMBA; ALPHA; AND TO

10 WRITE (1:308)
READ (63301) XLAMB;ALPHA;TO
IF (XLAMB=-999,) 11,12,11

11 WRITE (343302) XLAMByALPHA,TO

C
C——RESPONSE CALCULATION
C~ -
DO 20 M = 1,MX
DD 1 I = 1,200
Q(I) = 0.0
1 CONTINUE
NPTR = 0
NL = 2
N2 = 0
NN = 1
NCELL = N1 + N2
T = 0.0
59 IF (NCELL-63) 60,5050
60 XN1 = N1
XCELL = NCELL
IF (IN1)40¢5,40
40 CALL RANDUIIXgIYsR)
IX = 1Y
W = —=({XCELL**ALPHA)/(XN1*XLAMB)*ALO0G(1.,0-R)
IF INPTR) 17916417 '
c
C—=EVENT MUST BE A DECISION TO DIVIDE
G
16 XX = W
C——ADVANCE TIME
T=T+ XX

NPTR = NPTR + 1
QI(NPTR) = TO
C—=NEW POPULATION SIZES
N1 = N1 - 1
N2 = N2 + 1



NN = NN + 1
GO TO 59
17 IF (W = Q(NPTR)) 354,35
C
C—=EVENT IS A DECISION TO DIVIDE

= = im0 9 s 5 e e S i s e 8

3 XX = W
C==NEW POPULATION SIZES
N1 = N1 =1

N2 = N2 + 1
C==ADVANCE TIME
18 DO 6 K = 1¢9NPTR
QiK) = Q{K) = XX
6 CONTINUE
T=T+ XX
C—~CHANGE Q-VECTOR
NPTR = NPTR + 1
MM = NPTR = K
DO 13 L = I?MM
LL = NPTR = L
QiLL +1) = Q(LL}
13 CONTINUE

Q1) = TO
NN = NN + 1
NCELL = N1 + N2
GO TO 59
C
C~=EVENT IS A DIVISION
C__-.._-...ﬂ. D £ 4 o o R R e 8 s ey

5 XX = Q(NPTR]}
C—-NEW PCOPULATION SIZES
N1 = N1 + 2
N2 = N2 = 1

C—<ADVANCE T IME
DO 15 K = 1¢NPTR
QfK} = Q(K) — XX
15 CONT INUE
T =T+ XX
NPTR = NPTR = 1
NCELL = N1 + N2
IF ({NCELL=63)30,30,31
31 WRITE (15303)
30 YINCELL) = T
G0 TO 59
C

C—=EVENT 1S A DECISION AND DIVISION
c -

4 XX = W
C-~—NEW POPULATION SIZES
Nl = N1 + 1

NCELL = N1 + N2
IF (NCELL-63)32532,33
33 WRITE (15303)
C~=ADVANCE T IME
32 TIME = T + XX
YINCELL) = TIME
GO TO 18
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C==NOW CALCULATE S FOR EACH SIMN, RUN

C—
50

21

20

SUM = 0.0

DO 21 I = 3563

IF (I-16) 8,21,8

SQR = (X{I)=Y(I))}*%2,0

SUM = SUM + SQR

CONTINUE

SSQRIM) = SUM

SQRT (M} = SSQR{M}**x0,5

WRITE (39312} MgSSQR(M), SQRT (M)
CONTINUE

C-=-NOW CALCULATE E{S) FOR EACH SET OF RUNS

22

XSQRT = 0.0

DO 22 MK = 1¢MX

XSQRT = XSQRT + SQRT({MK)
CONTINUE

SQRTM = XSQRT/XMX

WRITE (29320) SQRTM

C-=SIGNIFICANCE TESTS

23

CHI = 0o

DO 23 MK = 1¢MX

CHI = CHI + (SQRT(MK)=SQRTM) **2,0
CONTINUE

CHISQ = CHI /{SQRTM*x%2,)

VAR = CHI/Z(XMX~=1.)

SD = VAR¥%0,5

SDM = SD/ (XMX*%0,5)

C==0UTPUT RESULTS

301
302
303
308
312

1
315
318
320

12

WRITE (35315} SQRTMyCHISQ

WRITE (3,318) SDy SDM

FORMAT (3F5.0!}

FORMAT {0 EXPTL PTS ARE 94F5.2¢" ¢ 143F5.25% 3 '9F5.2)

FORMAT (° BOOBOO* NCELL TOO LARGE?)

FORMAT (° ENTER LAMBDA; ALPHA; TO IN 3F5.0")

FORMAT (° RUN NOo. = 04,]2,° 190SSQR = '4F1ll.44SQRT =
Y 9FTo2)

FORMAT (1H 931Xy "MEAN SQRTo = T9F9.595Xy'CHISQ = 3F7.4)
FORMAT (9 0,45X,9SD = 93FTo49%SDM = "4FT7c44//)

FORMAT (F12.8)

GO 70 10

RETURN

END
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APPENDIX 2

election Estiwnanics Simulstion Program

Tr= folliowirg program was writtez for ga IBM 1130, to simulate

fFiustuarions 12 genotypic fitnesses described in Section VI

¥ RESPONSE ESTIMATES

C*%*RES PONSE SURFACE ESTIMATES OF FITNESS VAL UE S dakxatok desfokor ek
C**PROGRAM ESTIMATES DISTANCE BETWEEN OBSERVED DATA

C**AND EXPECTED VALUES FOR STOCHASTIC

C¥*FITNESS VALUES., DATA FROM ALLARD; KAHLER,; WEIR (1972)

c

C====-—REGION OF OPERABILITY U(IsJ) POSITIVE
Cm=====REGION OF INTEREST U(Iy,JiS TWEEN O AND 3
c

C#**PROGRAM EXITS BY CHOOSING MANUAL INPUT OPTION AND THEN
C*¥AN INPUT OF 999, WITH SWITCH 12 ON WILL CALL EXIT

C v
DIMENSION F(1096) oEF({10,6)9XN{10:6)9EN{1096)3XNSUM(10)
DIMENSION X2(50)¢X3(50)oX4(50)¢X5(50)3X6(50)3SI1G({(50)
DIMENSION RESP{20)

C*¥SET UP DESIGN MATRIX FOR AUTOMATIC FACTORIAL

C

DATA X2/16%1.0916%~15092c05-2,0516*0,0/

D‘TA x3!8*1oo?8*""10098*10098*""10092*0:;0?2009‘:'200? 14*0&0[‘

DATA X‘n’"‘r*loﬁg"l*"l0094*1¢094—*—10094*10094*“10094*1909
14*‘“100{:4*@0002009“'200912*000,

DATA X5/2%1:0¢2%~=10092%16092%~16092%16092%=1,092%1,0,
12%=16092%10002%=16092%10c092%=1:092%1,092%=1052%1,0,
22%<=10096%060¢2:09=2.0910%0,0/

D‘TA x&flooﬁ'“looty 1009“‘10091009“"10091009"1909100?"‘100,
1100{"’“10091009'“1009 1009“’100?100?“’10091009“’10091.0?"’1.0
29 1009"‘"10091009"100;} 1009“’1009 10@9""10091009"10098*000'
32:090-2,098%0,0/

DATA SIG/=10092%1509=100510092%=1o052%1.092%=1.051.0,
1"'10092*‘1009‘”100910092*"’1009100?“’10092*1@0?2*"100?2*1.0
29=1060010092%=1o09100910%0,052.09-2,07,6%0.,0/

COMMON MXoMY
MX = 3
MY = 2
T = 0,005729
Ul = 1.00000
NGEN = 10
IX = 3
WRITE (19533)
WRITE (1¢536)
WRITE (19520)
WRITE (1,521)
WRITE (15513)
PAUSE
WRITE (35100)
WRITE (3,120)
c
C=*EXPLANATION OF TERMS USED



C*%Uly,U2,U3,U4oU5 AND U6 ARE FITNESSES OF GENOTYPES
C 11022933,12313 AND 23 RESPECTIVELY
C*¥#*XN(I,J) ARE NUMBERS OF EACH GENOT YPE
C**F{IoJ) ARE FREQUENCIES OF GENOTYPES
C**EF{IsJ) ARE EXPECTED FREQUENCIES OF GENOTYPES
CHxxXNSUM{I) ARE TOTAL NUMBERS IN EACH GENERATION
C
C**READ IN OBSERVED DATA
DO 20 I = 19NGEN
20 READ (2,108 ) XN{Io1)oXNIIo2) gXN(Ig3)sXN(I34])¢XN(I351),
LXN(TI96}
CALL MATIN(ICODEy;XNSUM;10,IROW; ICOLyIS,IER)
READ (29351}

C

C**CONVERT INPUT QUANTITIES TO FREQUENCIES

C
DO 1 I = 1oNGEN
FlLol) = XNiI,1}/XNSUM(TI)
FilIo2) = XNI{XIg2)/XNSUMII)
F{Ee3) = XNI{Io3)/XNSUM(I)
FlIe4) = XNIIg4) /UXNSUM{I)*2:1)
FILo5) = XNITI-5}/(XNSUMIT)}*2,)
FiIobl = XN{Lo6)/AUXNSUM{TI}*%2:)

1 CONTINUE
CALL MXQUT(1,F¢10¢690060:120,1)
WRITE {3,105}
WRITE (3,103}
14 CALL DATSW(OQyISWO)

GO 70 (902,131 ,1ISWO

(o

C*#0PTION 1 ——— AUTOMATIC DESCENT

C seseate e s e oo o oty o ey o e o oo o ool oo o e o e oK

C==CALCULATE STEP SIZE RATIOS
902 WRITE (1,1003)
READ ’369 1002‘! qupC{-Dg E9Gg|"|

RAT2 = A/H
RAT2 = B/H
RAT4 = GC/H
RATS = D/H
RAT6 = E/H
RATSG = G/H

WRITE (1,1001)
C==INPUT STARTING VALUE AND STEP SIZES

64

READ (6,1000) XMU2,XMU3,XMU4 ¢ XMUS5¢ XMU6,SIGM;DU2,DU3 3DU4,

1DU5,DU6,DSIG
15 CONTINUE
CALL DATSW(0,ISWO)
GO TO (906313)7,ISWO
C~=CALCULATE CO-ORD OF POINT ON STEEPEST DESCENT

966 XMU2 = XMU2 + DU2*RAT2
XMU3 = XMU3 + DU3*RAT3
XMU4 = XMU4 + DU4*RAT4
XMU5 = XMU5 + DUS*RATS
XMU6 = XMU6 + DUG6*RAT6E

SIGMA = SIGM + DSIG*RATSG
GO TO 10

13 CALL DATSW(13,ISW13)
GO TO (5159516}, ISW13
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C
C*#*QPTION 2 === INSERT PARAM. VALS MANUALLY
C FROM TYPEWRITER

(C 03 e s e oo o e ol oo o ke o o oo oot o e ot o o ok oo e e e o % ot o
515 READ (&4107) XMU2¢ XMU3 XMU4 o XMUS,; XMU6, SIGMA
IF {XMU2 = 999,) 5173114517
517 GO TO 10
G
C**0PT ION 3 =-=— PERFORM AUTOMATIC FACTORIAL
€ et ok steabe e sde o e e o e s e s ool o e ol e e e ot o e ok ek e o
C--=READ CENTRE PT OF DESIGN AND THE DIST. FROM 0 TO 1
C== AND NUMBER OF POINTS IN FACTORIAL
516 WRITE (1,106)
READ [(&,10T7) XM2, XM3  XM4&  XM5 , XM6. XS IG
READ (6¢109) XR2:XR3¢XR4,;XR5,XR643XRSIG ¢NPTS
IJ = 1
$S01 11 = 1J
C==CALCULATE CO-0ORDS OF POINT IN FACTORIAL DESIGN

XMU2 = XM2 + XR2#X2(II)
XMUZ = XM3 + XR3%*X3(1I)
XMU4 = XM& 4+ XR4#X4(I1)
XMUS = XMS + XR5%X5(11)
XMUG = XM6 + XR6#X6(II)
SIGMA = XSIG + XRSIG*SIG(II)
1J = 14 + 1

C

>

C**RESPONSE CALCULATION
C & oo e oo o oot e ol ot e e e
10 DO 6 KK = 1,20

SK = 0,0

DO 5 L = 199

IF (L=3) 30,5,30

30 IF (L=T) 31,5,31
31 CALL DATSW(15,ISWL5)

GO TO (51@,511) o ISW15
C==DRAW RANDOM VALUES FROM DESIRED DISTRIBUTION
C~-NORMAL DISTRIBUTION

510 CALL GAUSS(IX,SIGMA,XMU2,U2}

CALL GAUSSCIX,SIGMA XMU3,U3)

CALL GAUSS(IXy SIGMAy; XMU4,U4 )

CALL GAUSS{IX,SIGMAXMU5,U5]

CALL GAUSS{IX,SIGMA; XMUb,UG6)

GO TO 512
C==UNJFORM DISTRIBUTIGN

511 SPRED = (3,*SIGMA)}**0,5

CALL RANDU{IXoIYYFL)

IX = 1Y

U2 = XMU2 + (2.*YFL=1,}*SPRED

CALL RANDU[IXoIYsYFL}

IX = 1Y
U3 = XMU3 + (2,*YFL-1.)*SPRED
IX = 1Y

CALL RANDUIIXsIYsYFL)

U4 = XMU4 + (2.*YFL-1.)*SPRED
IX = IY

CALL RANDU(IXoIYoYFL)

U5 = XMU5 + (2o.%YFL-1,)*SPRED
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IX = 1Y

GCALL RANDU(IXoIYeYFL]

U6 = XMU6 + (2,%YFL=1,)*SPRED
IX = 1Y%

512 CONTINUE

C==CA

LCULATE MEAN FITNESS
U= F(Lg1I4U2%F (Lo 2)+U3¥F(L 3} +2o%U4*F (L ¢4 ) +2.*%U5%F (L 45)
1+ 2. %U6*F (Lo 6}

C—==FORM INTERMEDIATE RESULTS

XPL = UL*F{Lo1) /U
XP2 = U2¢F(L¢2] /U
XP3 = U3%F(Ly3) /U
XP4 = U4XF(Lo4) /U
XP5 = US#F(L,5) /U
XP6 = U6%F(L.6)/U
TOTP1 = XPl + XP4 + XP5
TOTP2 = XP2 + XP4 + XPé
TOTE2 = XP3 + XP5 + XP6

C-<HENCE EXPECTED FREQUENCIES

EF{L41o1) = (lo=T)®(TOTP14XP1)/2, + TH{TOTPL**2,)
EF (L4192} = (1lo=T)®(TOTP24XP2} /2, + TH*(TOTP2%%2,)
EF(L+#1p2) = (1lo=T)}*{TOTP34XP31/2, + T*i TOTP3%%2,)
EF(L+194) = (Lo=T)#XP4 + 2,%*T#TOTPL*TOTP2
EF(L+195) = [1o~T)¥XP5 + 2,*%TOTPL*TOTP3

EF(L+1¢6] = (1o-TI#XP6 + 2,%¥T*TOTP2%TOTP3

C==HENCE EXPECTEDC QUANTITIES

DO 3 J = 146
ENfL439d) = EF(L+1pJI*XNSUMIL+1)

C-=-=SUM OF SQUARES (EXP - OBSV}

3
5
C

SK = SK + (EN(L#1oJ)=XNIL+1oJ))*%2,
CONTINUE
CONT INUE

C**FINAL RESULTS

6

C

RESP(KK) = SK¥%0.5

CONT INUE

VAR = 0.0

RESPM = 0,0

DO 7 I = 1«_120

RESPM = RESFM + RESP({I)/20,

DO 9 1 = 1,20

VAR = VAR + (RESP{I)}—-RESPM}*%*2,0/19,
SD = VAR*%0,.5

C**0QUTPUT RESULTS
CAckdok st ek ok ool

WRITE (19352) RESPM

CALL DATSW (14,ISW14)

GO TO (516¢514) ; ISWl4

WRITE (391043 UL;XMU2; XMU3¢XMU4 o XMUS5 3 XMU6 ; SIGMASRESPM,;SD
GO TO (159905) 9ISWO

GO TO (13,519}, 1ISW13

FACTORIAL BEING EXECUTED THE RESPONSES PUNCHED ON CARDS
WRITE (29,350) RESPM

IF (IT-NPTS} 501511511

C**RESET SWITCHES
Coeokdok ol e dod e el oo
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11 WRITE (1,535)
PAUSE
CALL DATSW(12,ISW12)
GO TO (522514)5ISW12
522 CALL EXIT
100 FORMAT (® RESP SURFACE ESTIMATES OF SELECTION VALUES®)
103 FORMAT (0 932X 4%UL%95X,"U2745Xs?U3%,5X¢"U4" 35Xy 1US?45X
19U6" 35X *STGMA? 35X, "RESPONSE 7 38X SD? )
104 FORMAT (' ?36(F5,392X)gFbo495XsF100454XsF8o4)
165 FORMAT (' GENOTYPIC FREQUENCIES F11,F224F33,F12,
1F13 AND F23%4//)
106 FORMAT (° TYPE IN CENTRE PT, STEP SIZES, NO. FACT PTS IN
1 6F7.0,(6F7,0412))
107 FORMAT (6F7.0)
108 FORMAT (6F5.0)
109 FORMAT (6F7.0512)
120 FORMAT (? Ul FIXED AT 1,00']}
350 FORMAT (F12,7)
351 FORMAT (I2)
352 FORMAT (F12.7)
512 FORMAT (' SWITCH 15 ON NORMAL**0FF UNIFORM DISTRIBN. OF
IRAND . NOS. "}
520 FORMAT (¢ SWITCH 13 ONTYPE IN VALS #* OFF DO FACTORIAL®)
521 FORMAT (¢ SWITCH 14 ON TO ENTER NEW STEP SIZES')
533 FORMAT (' SWITCH O ON AUTOMATIC DESCENT#**OFF TRY OTHER
10PTIONS? }
535 FORMAT (' RESET SWITCHES'}
536 FORMAT {7 SWITCH 12 ON CALL EXIT #% OFF CONTINUE?)
1000 FORMAT (12F7.0)
1001 FORMAT {? ENTER XMU2,XMU3,XMU4;XMUS5,XMU6 ;SIGM;DU2,DU3,
1DU4,DU5,DU6,DSIGs IN 12F7.0°)
1062 FORMAT (7F8.,0)
1003 FORMAT (° WRITE IN VALS NEEDED TO CALC STEP SIZE RATIOS
1IN 7F8.,0")
END
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