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ABSTRACT

Symmetric adaptive decorrelation (SAD) is a semi-blind method of separating convolutely

mixed signals. While it has restrictions on the physical layout of the demixing equipment,

restrictions not present for many other blind source separation (BSS) techniques, it is more

ideally suited for some applications (for example, live sound mixing) due to the fact that

no post-processing is required to ascertain which output corresponds with which source.

Since the SAD algorithm is based on second-order statistics (SOS), it also tends to have a

lower computational load when compared with those based on higher order statistics . In

order to increase the efficiency of the SAD algorithm, a multibranched recursive structure is

investigated. While a nominal gain in efficiency is attained, we move away from this approach

in pursuit of more substantial gains. A frequency-domain symmetric adaptive decorrelation

(FD-SAD) algorithm is proposed, with savings increasing not only with larger filter sizes,

but also with increasing the number of sources. The convergence and stability of this new

algorithm is proven. A trade-off of the FD-SAD algorithm is that it introduces a delay in

the output, which renders the algorithm unsuitable for real-time applications. Therefore a

hybrid approach is also proposed that does not suffer from the lag of the frequency domain

approach. While the proposed algorithm is slightly less computationally efficient than the

pure frequency domain algorithm, it is significantly more efficient than the time-domain

approach. A comparison of the frequency domain and hybrid algorithms shows that both

achieve separation equivalent to the time-domain algorithm in a real-world environment. The

proposed adaptations could also be used to extend other BSS approaches (such as Triple-N

ICA for Convolutive mixtures (TRINICON) [1], which can also be based on SOS), and a

comparison of the proposed methods with TRINICON is explored.
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1. INTRODUCTION

The blind source separation (BSS) problem occurs when a desired signal (e.g. speech) is cor-

rupted by some undesired signal, and there is no information regarding the source positions,

probability density functions or frequency spectra.

When the undesired signal is known a priori, there exists a number of suitable super-

vised algorithms that can remove the noise from the mixture. For example, both the least

mean squares (LMS) [2] and recursive least squares (RLS) [3] algorithms operate under the

assumption that the undesired signal is known. These supervised algorithms use two mi-

crophones (in the two source case): one for the mixture, and the other to pick up a noise

estimate. They then proceed to remove any signal from the mixture that is correlated to the

noise estimate. However, in real environments, these approaches tend to degenerate due to

the presence of crosstalk from the desired signal in the noise estimate. In order for the noise

estimate to be signal free, the noise receiver has to be located a reasonable distance from

the desired source, yet the farther apart the two receivers are, the more the noise estimate

deviates from the noise component of the mixed signal.

BSS is the act of separating signals with the sole assumption that the sources are in-

dependent. This assumption widens the scope of potential applications when compared

to previous techniques because information on the geometry or spectral density is no longer

needed. This thesis covers a myriad of different techniques and explains the problem, the use



of second-order and higher-order statistics, demixing system structures, measures of indepen-

dence between signal probability density functions (PDFs), various optimization techniques,

and comparisons between the use of time and frequency domains in separation.

There are an extensive number potential applications for an algorithm that can success-

fully separate multiple mixed sources from their mixture. While the main focus of this thesis

is towards mixtures of audio signals (specifically speech) [4,5], such an algorithm would also

have potential applications in telecommunications [6,7], underwater sonar [8,9], the medical

industry [10,11], etc.

A number of aspects of the problem complicate it further, especially for audio applica-

tions. In a real-room environment, the mixture is not just a simple mixture of two signals.

The reverberations from the walls in the room will add to the signals, meaning that the

source components at each microphones do not identically match across the microphones,

but are filtered versions of each other. Furthermore, these filters may be non-minimum

phase, so any inverse of the filters will be unstable [12]. The presence of additive noise may

further corrupt the mixtures. These are all problems that need to be overcome in order to

implement a successful algorithm [9].

In order to attain a higher quality signal, there is a need for an algorithm that can

separate a mixture of signals into its original components. For audio applications, such a

method of separation needs to work well in highly reverberant environments. If it needs to

be implemented as a real-time process, another highly attractive feature is if the algorithm

is computationally efficient.

The work described in this thesis focuses on the approach known as symmetric adaptive
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decorrelation (SAD) [13], which is a semi-blind approach based on second-order statistics

(SOS). Adaptations to the base algorithm are proposed which increase efficiency signifi-

cantly for larger filter sizes, with little impact on separation performance.

In this work, the following contributions are made

• A detailed derivation of the multiple-input multiple-output (MIMO) SAD algorithm

• Introduction of a multibranched recursive adaptation to the SAD algorithm, increasing

efficiency.

• Proposal of the frequency-domain symmetric adaptive decorrelation (FD-SAD) algo-

rithm with an analysis of its convergence

• Development of a hybrid SAD algorithm that substantially increases efficiency without

introducing an input-output delay

The structure of the thesis is as follows. Chapter 2 contains a review of the literature re-

lating to the separation of mixed sources. Chapter 3 shows the derivation and analysis of the

time-domain symmetric adaptive decorrelation (TD-SAD) algorithm for MIMO situations,

and chapter 4 uses a multibranched approach to increase efficiency. While it does increase

efficiency, these increases are not overly substantial, so chapter 5 extends the SAD algorithm

to the frequency domain. Chapter 6 outlines a hybrid approach that does not introduce an

input-output delay as with the FD-SAD, but is significantly more computationally efficient

than the TD-SAD.

For the sake of conciseness of this work, only the key steps in derivations are included in

its body. Extended derivations can be found in Appendix B.
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2. LITERATURE REVIEW

2.1 Background Information

The problem of signals becoming corrupted by noise is inherent to many different methods

of measuring some unknown signal. This corruption will often have very adverse effects on

the quality of the observed signal , and if significant enough, may render it totally useless.

There has been much research done on ways of increasing the quality of a signal through

the use of either physical methods, or by post-processing. This review is focused on the use

of a class of signal-processing techniques to increase the signal to noise ratio (SNR) of the

mixture, with a specific emphasis on audio signals.

One of the main situations in which the noise is produced occurs when there are multiple

sources, of which only one is desired. For example, when a number of people are in a room,

all talking simultaneously, the human brain is able to process the speech coming from a

specific person. This is known as the cocktail party problem, and is yet to be adequately

solved using state-of-the-art techniques. However, much research has been done over the

past two decades in this area, with gradual progress.

A tool that is used extensively in the literature to combat this problem is the use of mul-

tiple receivers. Girolami [14] notes how for humans, binaural hearing has advantages over

monaural hearing not only in the removal of unwanted noise, but also in dereverberation

of the desired signal. This tends to indicate that the human hearing system incorporates
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Fig. 2.1: Simple Mixing System

the use of both ears not only when trying to increase the SNR of desired audio sources to

background noise, but also to reduce the detrimental effects due to reverberations from the

walls in a room. Similarly, many algorithms show that the use of multiple receivers can

significantly improve the signal-to-noise ratio.

Considering the simple system shown in figure 2.1,

x1 (t) =
L−1∑
i=0

h1,id (t− i) + h2,in (t− i)

x2 (t) =
L−1∑
i=0

h3,in (t− i) (2.1)

where d is the desired signal, n is the noise, h1, h2, h3 are the channel filter vectors defined

by

hj =

[
hj,0 hj,1 . . . hj,L−1

]T
,

L is the number of taps for each of the channel filters, d is the desired signal, n is the noise

signal, x1 and x2 are the mixture and noise estimate respectively, and the superscript T

12



denotes the transpose operation.

In the Z-domain, the filters hj are represented by their Z-domain equivalents Hj (z), and

the outputs x1 (t) and x2 (t) from (2.1) become

X1 (z)=H1 (z)D (z) +H2 (z)N (z)

X2 (z)=H3 (z)N (z) (2.2)

Because X1 (z) and X2 (z) are known, if H2 (z) /H3 (z) can be found, then it is possible to

remove any signal correlated to the noise from X1 (z), thereby resulting in a filtered version

of the desired signal.

Y (z)=X1 (z)− H2 (z)

H3 (z)
X2 (z)

=X1 (z)− H2 (z)

H3 (z)
H3 (z)N (z)

=H1 (z)D (z) +H2 (z)N (z)−H2 (z)N (z)

=H1 (z)D (z) (2.3)

In [2], Widrow et al. recognized this and developed the least mean squares (LMS) algo-

rithm. The LMS algorithm uses an adaptive filter to remove any signal from x1 (t) that is

correlated to the signal x2 (t). Once the filter has converged, and under the assumption that

there are no other noise components, the output will be the filtered version of the desired

signal d (t).

13



2.1.1 The Least Mean Squares Filter

The LMS filter operates by finding a vector w (t) =

[
w0 (t) w1 (t) . . . wL−1 (t)

]
that

minimizes the power of the error given by

E (z) = X1 (z)−W
(
z−1, t

)
X2 (z) (2.4)

where W (z, t) is the adaptive filter of length L, defined by

W (z, t) =
L−1∑
i=0

wi (t) z.

Because x2 (t) only includes the noise term, and it is assumed that the desired signal is

uncorrelated to the noise signal, the error will be reduced such that all components of x1 (t)

correlated to the noise signal are removed. The effect of this is that W (z−1, t) converges

to H2 (z) /H3 (z), thereby making the error approach y defined in Equation (2.3). The full

LMS algorithm for the update of the filter vector is given by the following equations

w (t+ 1)=w (t) + µe (t)x2 (t)

e (t)=x1 (t)−wT (t)x2 (t) (2.5)

where µ is the step size, and x2 (t) is the vector defined by

x2 (t) =

[
x2 (t) x2 (t− 1) . . . x2 (t− L+ 1)

]
.

One problem with the LMS filter is that if the step size is too small, then a low-powered

(low variance) x2 (t) signal will increase the convergence time, but if the step-size is too big, a

high-powered x2 (t) could potentially cause the algorithm to become unstable. Due to these

facts, the step-size is usually chosen to be a overly small value for stability reasons, making

14



the convergence time unnecessarily large.

In order to remedy this problem, Mathews and Xie [15] describe what is known as the

normalized least mean squares (NLMS) algorithm. The NLMS algorithm modifies the ordi-

nary LMS algorithm by making the step size adaptive. If the power of x2 (t) increases, then

the step size is decreased, but if the power of x2 (t) decreases, then the step size is increased.

This not only increases the stability of the algorithm, but also reduces the convergence time.

While the normalized algorithm uses the same error equation as ordinary LMS (as described

in Equation (2.5)), it substitutes the original update equation with the following

w (t+ 1) = w (t) +
µe (t)x2 (t)

xT
2 (t)x2 (t)

. (2.6)

This allows the step size to increase with decreases in source power, and decrease with

increases in source power, meaning that the algorithm is more stable and faster converg-

ing than its non-normalizing counterpart. In [16], Makino et al. propose an exponentially

weighted approximation of the power that increases convergence speed while having no extra

computational load.

There have been other adaptations to the LMS algorithm. In [17], Kalluri and Arce pro-

pose a class of nonlinear normalized adaptive filters based on LMS and the Volterra series ,

which can be thought of as the Taylor series with memory. For example, for a second order

system, a Volterra filter has two filter terms: a length-N array for the linear terms and a

N ×N matrix for the quadratic terms. For audio applications, this is unnecessary because

acoustic reverberation tends to be a linear mixture of signals [5], causing the quadratic term

in a Volterra filter to simply converge to all-zero matrices.
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Vector-LMS

In [18], Batra and Barry show how the LMS algorithm can be adapted to work on a vector

of signals rather than just individual signals. This should not be viewed as independent

LMS algorithms working in an array. Rather it is the LMS algorithm working on a mixture

of signals; it takes into account the crosstalk between signals. Its structure is very similar

to an ordinary LMS algorithm, except that instead of having scalar coefficients in the filter,

there are matrix coefficients. Benesty et al. show a similar result in [19], but also include the

recursive least squares (RLS) case, and in [20] Douglas shows that although the fundamental

behavior of the vector least mean squares (VLMS) algorithm is the same as ordinary LMS,

its convergence is slower for the amount of information contained in the sequence.

While ordinary LMS will find the transversal filter weights when given both the input

and output of a filter, VLMS will find the mixing system given the inputs and outputs of

the mixing system. For example, if we applied LMS to two-input two-output (TITO) system

shown in Fig. 4.1, the matrix-polynomial of the filter would converge to H. [18] shows the

derivation of the VLMS algorithm

W (t+ 1) = W (t) + µS (t) e (t)T

where W (t) is the estimate at time t of the mixing polynomial matrix H, µ is the step size,

S (t) =

[
sT (t) , sT (t− 1) , . . . , sT (t− L+ 1)

]T
is a vector of length 2L of the inputs

where L is the number of taps in the filter, and e (t) is a length-2 vector of the errors between

the desired filter output d (t) and its actual output x (t) where x (t) = WT (t)S (t).

16



Frequency-Domain LMS

An important adaptation to the LMS algorithm is to use the fast Fourier transform (FFT)

to perform both the filtering and the update in the frequency domain. The primary motiva-

tion for this is that convolution and correlation are computationally expensive operations,

but map to simple element-by-element multiplication in the frequency domain. Due to the

efficiency of the FFT algorithm, especially for larger filter lengths, there can be sizeable com-

putational savings. In [21], Dentino et al. first outline a frequency domain implementation

of the LMS algorithm. However, they neglect to account for the fact that multiplication in

the frequency domain is equivalent to circular convolution and correlation, not the linear

convolution and correlation that are needed for the LMS algorithm.

Ferrara, in [22], points this out, and shows how zero-padding the blocks prior to frequency

domain transformation can avoid the inaccuracies of this oversight. He then compares the

computational complexity between the algorithms for a variety of filter sizes and shows that

his proposed algorithm’s efficiency surpasses that of the time-domain algorithm when filter

sizes equal or exceed 64 taps. In [23], Shynk provides an outline of frequency domain pro-

cessing for any adaptive algorithm, but with a specific emphasis on LMS. He shows both

the advantages and the drawbacks of frequency domain adaptive filters (FDAFs); they are

much more computationally efficient but have an end-to-end delay and do not track as well

as their time-domain counterparts.

Because FDAFs are inherently block processes, the end-to-end delay is dependent on the

block size. In general, the block size is chosen to be equal to the filter size L, as this is the

most efficient choice [24]. This means that the end-to-end delay is equal to the length of the

impulse response of the adaptive filter. In acoustic environments, a room impulse response

may be several hundred milliseconds long, requiring the output of the adaptive filter to delay

17



the input by an equal length of time. This delay may be too substantial for comfortable use

in many situations.

The adaptive step size of FDAF algorithms also needs to be scaled down by a factor

of L [25]. If the spread of the input autocorrelation matrix is large, then the block imple-

mentations of the adaptive algorithms will converge more slowly than the sample-by-sample

implementations.

One significant problem inherent to algorithms such as LMS which are based on the mix-

ing system described in figure 2.1 is that they require a noise estimate free of any crosstalk

from the desired signal. While this may be feasible in some situations (such as a jet cockpit,

where a signal of speech-free engine noise is readily acquired), in most other applications

this is at best impractical if not impossible. The microphones need to be sufficiently far such

that x2 (t) does not contain any of the desired signal, yet they also have to be sufficiently

close such that the noise signal in each is closely correlated.

In order to solve this problem, Zinser et al. in [26] proposed cross-coupling two LMS

algorithms in order to simultaneously remove the crosstalk from each. They subsequently

showed that their algorithm performed substantially better than the ordinary LMS algo-

rithm. This concept has also been improved upon in the years following.

2.1.2 Blind Source Separation

The problem of crosstalk brought a new direction in the late 1980’s, when the concept of

blind source separation (BSS) was initially investigated [11]. Rather than making assump-

tions about how the microphones and sources are positioned, BSS only makes the assumption
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that the sources are independent of each other. This makes it a very powerful tool because

in many situations this assumption is true, and it does not need any other knowledge of the

sources or receivers in order to separate the signals.

From the start, BSS promised to be a very valuable tool for acquiring a desired signal

from a mixture of signals. Previous work was primarily aimed at beamforming, where the

signals coming from all but a specific direction were attenuated. However, this was based on

knowledge of the source’s position relative to the receiver; if this information was unknown,

or if the source was moving, beamforming was no longer a plausible solution. BSS could

potentially eradicate the need for this additional knowledge.

Because it is a discipline that has been investigated for nearly three decades, in the past

decade a number of authors have introduced standardized methods of measuring separation

performance. In [27] and [28], Vincent et al. propose a unifying measure of separation that

incorporates interference, additive noise, and any artifacts that may arise from the separation

procedure. Other papers focus on speech intelligibility as the ultimate goal, and attempt

to find metrics which are able to closely match the results of experimental human listening

tests [29–31].

This focus on standardization has then given rise to methods of better comparing algo-

rithms against each other. Two notable efforts are the PASCAL CHiME speech separation

and recognition challenge (as outlined in [32]), and the Signal Separation and Evaluation

Campaign (SiSEC) [33].

Blind source separation has then lead on to other techniques. For example, informed

source separation is a method of separating sources with a significantly higher quality of
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output than can be attained with BSS [34]. However, it requires that information is encoded

inaudibly within the mixtures, allowing the separator to better estimate the mixing matri-

ces. This means that the mixing system needs to be known a priori, which is possible for

applications such as artificially mixed music samples, but does not lend itself to naturally

mixed signals.

2.1.3 Potential applications

While the main focus of this work is in the area of separating mixed audio sources, there are

potential applications for many other fields. Possibly the most significant is in the field of

communications. [6,13,18,35–38] are just a few articles that specifically look into this problem

from a communications perspective. On a similar thread is [39] which looks at the problem

of separating radar signals. A number of papers also mention that source separation tech-

niques can be used for biomedical applications such as magnetic resonant imagings (MRIs),

electoromyograms (EMGs) and electroencephalogram (EEG) [8, 9, 40–53]. Other papers list

potential uses that include sonar [8,9,40,46], image enhancement [8,9,40,41,44,52,54], reduc-

tion of crosstalk between channels in twisted-pair bundesles or between tracks in magnetic

recordings [18], or machine vibrational analysis [10,55]. Some even more unique applications

are shown in [56], where BSS is used to analyze the radiated spectrum from exoplanetary

systems, or [57], where videos of peoples faces are processed in an attempt to provide a

non-contact method of discerning their pulse rate. However, the majority of papers covered

in this review pertain specifically to speech processing [5, 14,26–34,42,45,46,53,58–80].
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Fig. 2.2: The actual mixing system

2.2 The Problem

As mentioned in the introduction, the mixing system as described by figure 2.1 is based

on the assumption that a signal-free noise approximation can be acquired. Because this

cannot always be guaranteed, figure 2.2 better describes the true situation (assuming a non-

reverberant environment).

2.2.1 The Instantaneous Mixing System

The instantaneous mixing system (a mixing system that assumes no delay and single-path

propagation) as shown in figure 2.2 can be summarized by the following matrix equation

 x1 (t)

x2 (t)

=

 h1,1 h1,2

h2,1 h2,2


 s̃1 (t)

s̃2 (t)

 (2.7)
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Fig. 2.3: The simplified mixing system

where s̃1 and s̃2 are the sources, x1 (t) and x2 (t) are the observed signals, h1,1, h1,2, h2,1 and

h2,2 are the scalar mixing coefficients, and t is the time index.

Alternatively, this can be seen as each receiver is receiving some component of both

sources, with no delays and no filtering. Any developed separating system must converge to

some pseudo-inverse of the mixing system, which is generally assumed stationary over short

periods of time. How well the demixing system follows any changes that do occur in the

mixing system is known as its tracking ability.

The instantaneous model was used in the earlier investigations into the separation of

mixed signals (such as [6]). While it is more simplistic than what actually occurs in real

environments, it takes into account crosstalk, whereas adaptive filtering techniques such as

LMS do not. This substantially relaxes the requirements on the positioning of the sources

and sensors, and hence has provision for situations where it is either impossible or imprac-

tical to arrange the sensors in such a way that there is a signal-free noise estimate.

In the majority of situations, separation is achieved by the assumption of statistical inde-
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pendence of the sources. In [43], Cardoso gives a general overview of the statistical principles

used with BSS and independent component analysis (ICA). Although he looks at the problem

specifically from an instantaneous viewpoint, the concepts described within can be extended

to convolutive mixtures.

When only separation of signals is desired, a model based on figure 2.3 is sufficient. Under

these conditions, separation will not necessarily result in the original signals s̃1 and s̃2, rather

the scaled versions s1 = h1,1s̃1 and s2 = h2,2s̃2. Because the primary goal is to separate the

sources rather than measure their absolute magnitude, separation up to scaling is acceptable.

Another issue that arises is that the outputs may also be a permuted version of the

sources. In other words, without additional information about the sources and further pro-

cessing, there is no way of knowing which source maps to which output.

These two properties can be summarized by the equation

yins (t) = ΛP s (t) (2.8)

where yins is the vector of instantaneous separated signals, Λ is a diagonal scaling matrix,

P is a permutation matrix, and s is the vector of sources.

The assumption of a mixing system as in Fig. 2.3 will fall down for the case of an un-

derdetermined mixture. This occurs when the number of sources exceeds the number of

observations. While the current work will have a focus on the determined case, the underde-

termined problem is worth noting as many authors have investigated this specific issue. For

example, Li et al. in [53] look into this problem, and attempt to best estimate the mixing
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matrix where the number of sources is greater than the number of observations.

Although the convolutive model is generally more accurate than the instantaneous one,

there are some situations (such as the radar signal separation in [39]) where assuming a non-

convolutive model is not significantly detrimental to the results. Its comparative simplicity

may justify its use in these cases.

2.2.2 The Convolutive Mixing System

In recent years, more interest has been taken in convolutive environments due to the presence

of reverberation in real environments and non-instantaneous media [69,72,81]. The convolu-

tive model extends on the instantaneous model by exchanging the scalar mixing coefficients

with filters.

 x1 (t)

x2 (t)

=

 hT
1,1 hT

1,2

hT
2,1 hT

2,2


 s1 (t)

s2 (t)

 (2.9)

where s1 and s2 are the length-L source regressor vectors, h1,1, h1,2, h2,1 and h2,2 are the

length-L vectors of channel filter taps, x1 and x2 are the observed signals, t is the time index,

and the superscript T is the transpose operation.

For audio applications, this reverberation can be a very complex system. To give an

idea of just how complex, consider the work done in [75]. Described in this paper is a new

and efficient method of modeling the acoustic wave pattern using the parallel processing

of GPUs. When modeling a source in a mid-sized room, a one-second long room transfer
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function takes 18 minutes to calculate. This, however, is significantly faster than the five

hours it takes to model the wave pattern on a traditional CPU.

Although more complex than the instantaneous model, separating methods using the

convolutive model have more possible real applications because real environments tend to be

convolutive, and the medium upon which the signal propagates is never truly instantaneous;

there are always delays.

An important issue that arises when dealing with convolutive mixtures is that the sys-

tem may be non-minimum phase. Non-minimum phase channels occur when their zeros

exist outside of the unit circle in the Z-domain. This means that, although the channel itself

is stable, its inverse is not, rendering any separation algorithm using the channel inverse use-

less. In the audio environment, a minimum phase channel will occur when the room impulse

response is as heavily weighted towards early reflections as is possible for the given frequency

response of the channel’s tranfer function (see appendix A for more details). In [45], Lee et

al. show how a non-minimum or true phase system can be viewed as the combination of a

minimum phase system combined with an all-pass system.

h (z) = hmin (z)hAP (z) (2.10)

where hmin (z) is the minimum phase system with the same frequency response as h (z), and

hAP (z) is an all-pass filter that simply delays any signal that passes through it. This identity

allows for the calculation of a pseudo-inverse to the channel, although the output will be a

delayed version of the source signal. The amount of delay is defined by hAP (z) in Equation

(2.10).
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Fig. 2.4: A generic TITO demixing system.

2.3 Potential Solutions

In general, the purpose of any given separating algorithm is to find some demixing system

(as shown in figure 2.4) such that the outputs y1 (t) and y2 (t) match the sources s1 (t) and

s2 (t) up to some tolerable variation in form. Often all but one of the sources are simply

additive noise, meaning that the demixing system only needs one output. However, this is

based on a priori information about the sources which may actually be unknown.

One such method is beamforming as described in the overview given by Van Veen and

Buckley in [82]. Beamforming is based on the assumption that the direction of arrival (DOA)

of the desired source is known, therefore enabling signals received from all other directions

to be ignored. However, this makes beamforming inadequate for many situations as often

the DOA is unknown.

Either one of the two demixing systems as described in figures 2.5 and 2.6 may be used to

achieve separation. In general, the devised algorithm will adapt the filter weights according

to some specified separating requirements. Torkkola shows in [42] that methods using the

feedforward structure in figure 2.5 will result in white outputs, whereas those employing the

feedback structure in figure 2.6 will result in filtered versions of the sources.
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Fig. 2.5: A TITO feedforward demixing system structure.

Taking the feedforward case, both x1 and x2 contain a mixture of both sources. There-

fore, in maximizing independence, w1,2 and w2,1 will converge to values that remove not only

crosstalk between x1 and x2, but also any temporal correlation in the sources.

In essence, the feedforward case is solving the demixing problem from the view of

yff (z)=wff

(
z−1
)
x (z) (2.11)

whereas the feedback case is solving it from the perspective of

x (z)=wfb

(
z−1
)
yfb (z) (2.12)

27



x1 (t)
- w11 (t) -

+ m s -

y1 (t)

x2 (t)
- w22 (t) -

+ m s -

y2 (t)

�w21 (t)

?−

�w12 (t)

6−

Fig. 2.6: A TITO feedback demixing system structure.

where

x (z)=Z

 x1 (t)

x2 (t)


y (z)=Z

 y1 (t)

y2 (t)


and w (z−1) is the desired demixing system. In general, on separation wff 6= w−1fb and

yff 6= yfb, where yff and yfb are the output vectors of the feedforward and feedback cases

respectively. Rather, the desired yff and yfb are simply vectors with independent entries,

and are not unique.

Therefore, the choice of demixing system should be dependent on the application. Speech,

for example, is naturally temporally correlated; whitening the signal could make it sound

unnatural. On the other hand, if trying to separate communications signals, whitening may

be desired.

It is important to note that separation algorithms based on the mixing and demixing
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models described in this work do not work well in the case when the noise cannot be mod-

eled as a point source, known as diffuse noise. For example, in [83] Takahashi et al. points

out that ICA does not do well in separating a point source from diffuse noise. However, it

can adequately separate the diffuse noise from the point source. They use these properties

to improve on the performance of typical ICA by subtracting the separated noise from the

mixture in the power-spectrum, resulting in a better approximation of the point source. This

approach would also potentially be feasible to other algorithms that are based one one of

the structures in figures 2.5 and 2.6 but are not ICA-based.

2.3.1 Independent Component Analysis

ICA is based solely on the assumption that the sources are statistically independent. It was

first investigated in its present form by Jutten and Herault, who referred to it under the

acronym INCA [11]. In [43], Cardoso outlines how basic statistical principles lead to ICA,

and requirements for it to work. He then expands on this to shows how mixing signals tends

to Gaussianize them (according to the central limit theorem), indicating that a separating

procedure will de-Gaussianize the mixture. This fact can also be used to explain why two

Gaussian signals cannot be separated by this method, but require the existence of higher

order statistics (such as non-zero kurtosis).

For example, figure 2.7a (adapted from the example given in [43]) shows the probability

density functions (PDFs) of two independent sub-Gaussian (a process that has a PDF with

a kurtosis less than zero) signals, where the horizontal and vertical axes represent the two

sources, and each point represents the signal sent by each of the sources at a specific time.

As is clear from the figure, variations in one signal has no effect on the PDF of the other

signal.
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(a) (b)

Fig. 2.7: fig:LiteratureReview:SubgaussianPlatykurtic Independent and
fig:LiteratureReview:SubgaussianPlatykurticMixed mixed sub-Gaussian signals.

Figure 2.7b shows the PDF of the same sources, but after being passed through the

instantaneous mixing matrix

H =

 1 0.5

−1 1

 (2.13)

to give the displayed output.

From this figure it is clear that the variations of one signal does affect the PDF of the

other signal. Therefore the aim of ICA is to try to find a demixing matrix such that demixed

signals are again independent.

Figures 2.8a and 2.8b show a similar situation as in figures 2.7a and 2.7b, but with two
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(a) (b)

Fig. 2.8: fig:LiteratureReview:SupergaussianLeptokurtic Independent and
fig:LiteratureReview:SupergaussianLeptokurticMixed mixed super-Gaussian signals.

super-Gaussian (a process that has a PDF with a kurtosis greater than zero) signals rather

than two sub-Gaussian signals. Again, the dependence between PDFs in figure 2.8b is clearly

observed.

However, figures 2.9a and 2.9b show that for two Gaussian signals, the independence

cannot be verified. For example, if the two source signals are mixed by a rotation matrix

such that it rotates the PDF in figure 2.9a by the 45◦ rotation matrix

 1√
2
− 1√

2

1√
2

1√
2

 , (2.14)

the PDF will not have changed, even though the output will be as mixed as possible. From

this, it can be seen that the independence assumption is not adequate to separate a mixture
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(a) (b)

Fig. 2.9: fig:LiteratureReview:GaussianMesokurtic Independent and
fig:LiteratureReview:GaussianMesokurticMixed mixed Gaussian signals.

where more than one source is Gaussian.

In order to model these PDFs properly, there has to be some method of estimating the

PDFs. In [84], Comon illustrates how these functions can be modelled using the Edgeworth

expansion and the third and fourth order cumulants of the signals. Similar to how the Tay-

lor series is used to model a function given certain powers of the independent variable, the

Edgeworth expansion is a PDF estimator based on the cumulants of the variable.

One problem that can arise in ICA is what is known as the whitening effect. This occurs

not only when dependencies between channels are minimized, but also temporal dependen-

cies within channels are removed, in a similar way as with mutlichannel blind deconvolution

(MBD). Because speech is naturally temporally dependent, when these dependencies are
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removed the sound of the audio becomes unnatural. In [63], Liang et al. propose additional

constraints to the cost function to reduce this temporal whitening. In their paper they also

propose a method of increasing convergence rate by using a null beamformer to initialize the

separation matrix.

MBD stemmed from the problem of deconvolving signals in reverberant environments.

However, rather than the assumption of one source (such as Miyoshi and Kaneda in [5]) the

multichannel case attempts to deconvolve a mixture of sources. Its basic premise is very

similar to ICA, except that it also assumes that the sources are independent and identically

distributed (i.i.d.). On the basis that this assumption is correct, MBD outperforms conven-

tional BSS because it can reconstruct the original signals up to permutation and scaling,

whereas the assumptions of typical BSS only allow reconstruction of the signals up to per-

mutation and filtering.

While the assumption of temporal independence may be true of signals such as are present

in wireless communications applications, it is not so in human speech, which is highly tempo-

rally correlated. Douglas [62] approaches this problem with the assumption that speech can

be modeled as an autoregressive (AR) system which is driven by a temporally independent

signal. Using this, he is able to reconstruct the original signals up to permutation, scaling,

and possible delay.

ICA can be extended in various different ways. For example, in [52], Shi et al. exploit

non-Gaussianity , linear predictability, and nonlinear predictability to increase the computa-

tional efficiency of ICA.
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Independent Vector Analysis

In more recent years, there has been a focus on the convolutive case. As a result, in [76] (then

later in [80]), Kim et al. investigate the idea of independent vector analysis (IVA). Rather

than treating the sources as singular components, IVA transforms them to the frequency

domain, then treats them as vectors that span across all frequency bins. Treating them

as vectors allows separation, but with consistency across each frequency. This has the ad-

vantageous effect of solving the permutation problem that plagues many frequency-domain

algorithms.

This idea is also employed in [47] and [48] by Anderson et al. who use it to analyze

MRI signals, where there is high correlation between datasets. While they show that their

method works well for the case of MRI signals, they also note that it would not be suitable

for frequency domain BSS, where there is not a strong correlation between datasets.

Sparse Component Analysis

Another aspect of ICA that has been under investigation in recent years is sparse component

analysis (SCA). For a truly blind situation, there are many cases where we cannot guarantee

that the number of sources is not greater than the number of observations. SCA endeavors

to solve this problem.

In [53], Li et al. attempt to use sparsity to discover the mixing matrix of an underdeter-

mined system. They point out that while sources tend not to be sparse in the time domain

(they are consistently active), they may be sparse in the frequency domain. This sparsity

can be exploited to better estimate the mixing matrix, even though the number of sources

exceed the number of observations. In [85], Jayamaran et al. pick up this idea but also
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try to ensure that any matrix estimation will work in the case that the mixing system is

overdetermined (i.e. the number of sources is less than the number of observations).

Other work in this area includes that done by Mohimani et al. in [86], where the l0 norm

is used as a measure. Typically the l1 norm is used, but this adaptation performs similarly

while substantially cutting down on the computational requirements.

Virtanen [74] also uses SCA, although he specifically looks at the single-channel case.

The main application in mind for his work is separating a music mixture. These mixtures

tend to be instantaneous, so they are somewhat easier than the convolutive case. However,

this has high quality requirements, as music is for listening pleasure as compared to some-

thing like speech where the main aim is simply information transfer.

2.3.2 Maximum Likelihood

The maximum likelihood principle approaches the BSS problem with the assumption that

the approximate PDF of the sources is known a priori. It attempts to find a mixing matrix H

such that when its inverse is multiplied by the mixed signal vector x, it closely approximates

the assumed PDF of the sources. If taking the sub-Gaussian example as described by figures

2.7a and 2.7b, the maximum likelihood method would try to find H such that

Hx = ŝ (2.15)

where ŝ is a random vector of independent entries with the same statistical distribution as

what is assumed of the sources.
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One of the most common methods for measuring the deviation from the hypothesized

PDF is by using the Kullback-Liebler divergence. The Kullback-Liebler divergence is calcu-

lated using [43]

K [f |g],
∫
s

f̃ (s) log

(
f̃ (s)

g̃ (s)

)
ds (2.16)

where f and g are two random vectors, and f̃ (s) and g̃ (s) are their respective PDFs. This

function results in a quantity ≥ 0 with equality only when the PDF of f matches the PDF

of g. Although it is used to find the closeness of two PDFs, the Kullback-Liebler divergence

is not symmetric (ie. K [f |g] 6= K [g|f ]).

Girolami [14] notes that for speech, the PDF is a Laplacian distribution, which makes

speech super-Gaussian. He therefore proposes a PDF that closely approximates the Laplace

distribution for signals that are known to be super-Gaussian, with an alternative PDF for

signals that are known to be sub-Gaussian (such as a computer fan in an office environment).

A number of authors choose to do the separation in the frequency domain, which is ad-

vantageous because that signals in the frequency domain tend to have highly super-Gaussian

PDFs [60]. This not only makes modeling the sources easier (simply taking super-Gaussian

PDFs), it also means that there is potential for the separating system to achieve better

performance. However, along with its benefits, the frequency domain separation procedures

suffer from other problems, such as the permutation problem described in section 2.3.6.

Of important note is the infomax principle. Although it uses the Shannon entropy rather

than the Kullback-Liebler divergence, it results in the same contrast function as the max-

imum likelihood approach. One such approach that chooses to maximize the entropy over
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Fig. 2.10: The result of separation based on maximum likelihood when there is a model mismatch.

minimizing the mutual information is the approach proposed by Torkkola in [42].

2.3.3 Mutual Information

A significant problem with the maximum likelihood approach is that it is based on the

assumption that the approximate PDF of the sources is known. The mutual information

approach combats this problem by integrating a measure of deviation of the hypothesized

model from the true PDFs into the contrast function.

Take the case of trying to separate signals consisting of a mixture of two sub-Gaussian

sources as described by figure 2.7a when using a model based on super-Gaussian sources as

in figure 2.8a. The match will be closest when the global mixing matrix C is the 45◦ rotation
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matrix in (2.14), where

y=Cs (2.17)

This does not result in separation, rather in each of the entries of y having equal components

of each of the sources. The need therefore arises to integrate into the contrast function a

factor that measures the deviation between hypothesized and actual model PDF.

The first step in developing such a contrast function is to introduce a random vector ỹ

such that its entries are independent and have the same PDF as the output vector y. In [43],

Cardoso points out the important property that

K [y|ŝ]=K [y|ỹ] +K [ỹ|ŝ] (2.18)

where ŝ can be any vector with independent entries.

From this identity, we can see that the Kullback-Liebler divergence between the hypoth-

esized PDFs and the demixed signals’ PDFs is comprised of the sum two factors: 1) the

independence of the outputs and 2) how closely the hypothesized PDF matches the output

PDFon.

The described decomposition aids in preventing the contrast of any derived algorithm

from developing a global minimum that does not occur at total separation.
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2.3.4 Second-Order Statistics

A number of papers have proposed independence criterion based on second-order statistics

(SOS) [1]. However, as is shown in [87], SOS alone do not provide sufficient constraints for

complete separation. Therefore, further assumptions are needed. If not explicitly exploiting

higher-order-statistics in the form of kurtosis or other measures of non-Gaussianity, the cost

functions usually employ an assumption of either nonstationarity or nonwhiteness .

In [88] Tong et al. first proposed using singular value decomposition (SVD) on the autocor-

relation matrix of the observed signals to separate instantaneously mixed signals. Although

such a method is based only on SOS, it overcomes the insufficiency of SOS in separation by

exploiting the nonstationarity of the input signals. This procedure has come to be known as

joint diagonalization.

Joint diagonalization takes advantage of the following identity

Pt

(
z−1
)

= H
(
z−1
)
Dt

(
z−1
)
H
(
z−1
)H

(2.19)

where Pt (z−1) is the cross-spectral density of the observed signals at time t, H (z−1) is the

polynomial mixing matrix, and Dt (z−1) is the cross-spectral density of the sources at time

t, and the superscript H denotes the hermitian transpose. Note that due to the assumption

that the source signals are uncorrelated, Dt (z−1) will be diagonal for all t.

Therefore, if it is possible to estimate the operation as described in (2.19), then both the

mixing system and the original sources can be found. In [61], Rahbar and Reilly propose

such an algorithm in order to find the matrices that best approximate the diagonalization

procedure. They describe how not only is it possible to separate the sources, but that the
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separated signals are permuted and scaled versions of the original sources, rather than filtered

versions.

Because joint diagonalization is dependent on SOS, further assumptions have to be made

in order for separation to take place. The most common choice is either nonstationarity or

non-Gaussianity. Like Rahbar and Reilly, Mei et al. choose nonstationarity for the additional

information [41]. However, while Rahbar and Reilly attempt to find and demix the mixing

system, Mei et al. propose to directly find a demixing system, increasing computational ef-

ficiency.

In [46], Parra and Spence also suggest a procedure that utilizes the SOS at multiple time

periods. This allows for complete separation under the assumption that the cross-correlation

matrices change over time. This explicitly requires that the sources are nonstationary. Also,

unlike most other authors, they do not make the assumption that the sensors are noise-free,

but incorporate a noise component in their analysis. Under the assumption that the noise

signals on the different sensors are independent, they show that this noise does not have a

significant effect on the convergence properties of the separating system. In [89], Choi and

Cichocki also perform separation based on SOS under the constraint of a noisy environment,

showing the robustness of the joint diagonalization procedure to this additional noise.

Similarly, Sahlin and Broman in [65] exploit nonstationarity, but with an emphasis on

real-world signals. More recently, Kocinski et al. [30] also have an emphasis on a real-world

application, specifically speech. As a performance metric, they use speech intelligibility of

the separated signals, and compare it against the SNR of the observations, with fairly sub-

stantial results.

40



Buchner et al. [72] not only employ the assumption of nonstationarity, they also assume

nonwhiteness. Using these additional assumptions, a broadband frequency domain separa-

tion procedure is proposed. These additional constraints not only aid in providing constraints

for separation, but also in solving the internal permutation problem discussed in section 2.3.6.

Although not strictly only second order statistics, in [1] Buchner et al. also propose the

Triple-N ICA for Convolutive mixtures (TRINICON) framework which exploits the three

“N”s; nonstationarity, nonwhiteness, and non-Gaussianity. Although the non-Gaussianity

explicitly introduces higher order statistics, the inclusion of all three assumptions gives a

more robust algorithm. For example, when the signals are Gaussian, TRINICON can still

exploit nonstationarity and nonwhiteness to provide the constraints needed for separation.

Another class of algorithms based on SOS are those based on the crosstalk resistant

adaptive noise canceller (CTRANC) of Mirchandani et al. in [90]. It overcomes the SOS

indeterminacy by putting restrictions on the mixing system, meaning that it is no long en-

tirely blind. However, these mixing system constraints also mean that the outputs equal the

inputs up to filtering rather than filtering and permutation, which is common for most BSS

algorithms. This makes such algorithms more suitable for applications where permutation is

a significant problem, for example with live audio mixing. The CTRANC and other similar

algorithms are covered in more detail in section 2.3.7.

2.3.5 Optimization Procedures

When a contrast needs to be minimized, there are a number of methods available. The

important qualities of each method is:

• Convergence time. The more quickly an optimization procedure can converge to the

minimum of the contrast, the better it is at tracking any changes in the system.

41



• Convergence to the correct solution. It is important that the minimum of the contrast

is actually reached, and that the minimum actually corresponds to separation.

• Stability. Some optimization procedures are prone to instability under certain condi-

tions. In [91], Amari et al. perform a stability analysis of some of the more common

optimization algorithms; namely the gradient algorithms. They note that instability

often occurs when the source signals are a mixture of super-Gaussian and sub-Gaussian

signals.

In [92], Pham and Garat develop a relative gradient algorithm based on the maximum

likelihood contrast. They show how separation can be achieved by solving the following set

of estimating equations

Ê
[
ψi

(
eTi Ĥ

−1x
)
eTi Ĥ

−1x
]

= 0, i 6= j = 1, . . . , N (2.20)

where Ê is the sample average operator, ψ (·) is a nonlinear function based on its argument’s

PDF, ei is the ith column of the identity matrix I, Ĥ−1 is the demixing matrix estimate, x

is the vector of observed signals, and N is the number of sources to separate.

This shows an interesting property: because the output yi (t) is the only non-zero entry

of the vector

eTi Ĥ
−1x

the gradient is simply the expected value of a nonlinear function of the output signals Ĥ−1x.

Using this, they develop an off-line algorithm to separate the signals. Although they base

their algorithm on a maximum likelihood contrast, they show through simulations that if

even if there is a slight model mismatch, the algorithm can still converge to the correct

solution. However, if the mismatch is substantial enough, the algorithm will likely converge
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to a spurious result.

In [6], Cardoso and Laheld also implement a relative gradient approach, but based on

serial updating. Serial updating is when the update equations are in the form W (t+ 1) =

HW (t). Their update equation is

Wt+1=W (t)− λ (t)B (y (t))W (t)

=[I − λ (t)B (y (t))]W (t) (2.21)

where λ (t) is a sequence of adaptation steps, and B (y (t)) maps the length-n estimated

signal vector y (t) to a n× n matrix.

Serial updating has an interesting and useful property. The trajectory of the global mixing

system

C (t) = W (t)H (2.22)

is equivariant to the mixing matrix H for specified initial conditions W (0). This can be seen

as follows.

Let C (t) be defined in (2.22) as the global system. Considering Equation (2.21),

C (t+ 1)=[I − λ (t)B (y (t))]W (t)H

=[I − λ (t)B (y (t))]C (t) (2.23)

This shows that if the initial global state of two systems is the same, then the path taken by

the global system will be the same, regardless of the mixing system H.
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Let us now consider two unique mixing systems, one with a mixing matrix H, and the

other with the mixing matrix H ′. In order for the two systems to follow identical trajectories,

we must choose W (0) and W ′ (0) such that W (0)H = W ′ (0)H ′. This shows that changing

the mixing system is equivalent to simply changing the initial conditions.

Perhaps the most implemented optimization algorithm for use in BSS is the natural

gradient adaptation proposed by Amari in [93]. A vast number of papers opt to use the

approach due to its Newton-like convergence yet with a computational complexity similar

to that of stochastic gradient descent. While the ordinary gradient descent algorithm tends

to plateau before it properly converges to the equilibrium point, the natural gradient does

not slow its convergence as significantly when approaching the desired solution [40].

The reason that the natural gradient can converge to the solution more quickly than the

ordinary gradient is that the ordinary gradient assumes a Euclidean space for its contrast

where the natural gradient more correctly assumes a Riemannian manifold [8]. The result

of this is that the ordinary gradient descent only works well in contrasts that are isotropic

about the minimum.

For example, when the earth’s surface is mapped to an atlas, the shortest point between

two points on that atlas is not a straight line, but a curve. This is due the curvature of

the earth’s surface having to be reparameterized in terms of a Euclidean plane. If solving

a contrast using the ordinary gradient descent algorithm, this is equivalent to taking the

straight-line path according to the atlas, which is not necessarily the shortest distance [94].
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Amari and Douglas [94] show how on a Riemannian manifold, the distance between two

points a and c = (a + b) (where a and b are vectors) can be given by the following equation

√
bTG (b)b (2.24)

where G (b) is a matrix known as the Riemannian metric. When a and c are in Euclidean

space, the Riemannian metric is simply the identity matrix, and Equation (2.24) simplifies

to the Euclidean norm.

In [93], Amari derives in detail the natural gradient learning equation for BSS as

dW

dt
= µt

(
I − φ (y)T y

)
W (2.25)

where W is the demixing matrix, y is the vector of demixed signals µt is a step-size, and

φ (·) is defined by

φ (y)=[φ1 (y1) , . . . , φn (yn)] (2.26)

φl (yl)=−
d

dyl
log fl (yl) (2.27)

where fl (·) is a nonlinear function that is chosen based on the PDFs of the sources. While

exact choices of fl (·) for given PDFs optimize the convergence rate, in general the PDFs are

unknown exactly, so

fl (yl) = sign (yl) (2.28)

is typically chosen for super-Gaussian sources, and

fl (yl) = yl |yl|2 (2.29)

45



is typically chosen for sub-Gaussian sources.

Of important note is the fact that the natural gradient update equation in (2.25) is a

serial updating algorithm. As mentioned earlier, this means that the track taken by the

demixing matrix as it converges is independent of the mixing system, but only dependent

on the initial global mixing system.

The natural gradient can also be implemented on cost functions based on SOS. For ex-

ample, Aichner et al. [64] propose such an algorithm, and implement it in both the time

domain and in the frequency domain. While this may seem unnecessary, as contrasts based

on SOS are inherently isotropic, Amari and Douglas [94] point out that the demixing filter’s

Hessian matrix (the matrix of all second-order derivatives) is equal to the Riemannian met-

ric. This makes the natural gradient identical to Newton’s method, which has much higher

convergence rate than that of ordinary gradient descent.

In [81], Douglas et al. noted that when the natural gradient adaptation was used to

minimize finite impulse response (FIR) filters where the filter orders were less than order of

the channel,the filters would often converge to solutions that had spikes at either end of the

filter. They then propose an adaptation to the natural gradient adaptation to remove these

spikes, at the cost of an increase in compuational complexity.

Another optimization method is the use of Lagrange multipliers . In [60], Mitianoudis

and Davies use Lagrange multipliers to maximize a nonquadratic contrast, basing it on the

maximum likelihood estimation. They shows that, while it is more computationally expen-

sive than the natural gradient algorithm, it converges substantially faster.
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A somewhat different optimization procedure is a genetic algorithm. These algorithms

are based on a similar structure as natural selection works in the biological world. Two

“parent” systems produce a number of “offspring” systems with different permutations of

the parent’s parameters. Whichever offspring systems have the best outputs according to

some cost function are then mated to produce more offspring. Additionally, mutations are

allowed to prevent the optimization procedure from converging to local solutions. In the

approach proposed by Sundaralingam and Sharman [95] a genetic algorithm is used to opti-

mize infinite impulse response (IIR) filters. They show how it is fundamentally more stable

than gradient-based methods, and is not as susceptible to convergence to local minima. This

idea is then extended by Tan and Wang in [96] to the BSS problem.

2.3.6 Frequency Domain Algorithms

The main reason that authors choose to perform the separation procedure in the frequency

domain as compared to the time domain is that it tends to be computationally more effi-

cient. One reason for this is that while convolution may be a fairly computationally intensive

process in the time domain, in the frequency domain it maps to a simple multiplication oper-

ation. This also means that solving a convolutive BSS problem in the time domain becomes

solving multiple instantaneous BSS problems in the frequency domain, potentially simplify-

ing the problem. In [36] Joho and Schniter propose a frequency domain equivalent to the

MBD algorithm proposed by Amari et al. in [7]. They show that the adaptation makes the

algorithm three times more efficient, although this comes at a cost of having a threefold

increase of the convergence time.

Perhaps the most important problem unique to frequency domain BSS algorithms is

known as the permutation problem. This is different from (though not unrelated to) the
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global permutation which occurs in BSS where the ith source does not necessarily map to the

ith output of the separating system. Rather, the permutation inconsistency occurs when the

signals that are separated in different frequency bins are not mapped to the same sources.

This means that the separated signals in one frequency bin are not necessarily combined in

the correct order with the signals separated in another frequency bin. Without solving this

problem, conversion back to the time domain using the inverse Fourier transform will simply

mix the signals again.

Ikram and Morgan explore the permutation problem in more detail in [71] (and later

in [97]), and speculate that the problem may not be isolated to frequency domain algo-

rithms, but also may exist to some extent in time domain algorithms when the filter size is

large. However, as Buchner et al. point out in [72], while not disproven, this conjecture has

very little practical evidence. That being said, it is still a possibility that should be kept in

mind when developing time domain algorithms.

A number of approaches have been developed to combat this problem. In [60], Mi-

tianoudis and Davies propose a measure of signal amplitude across the frequency axis, as-

suming that one source is louder than another at a certain point in time. Using this, they

devise a method of using this loudness property to force the signals to separate to the correct

permutation.

Another possible approach to solving the permutation problem is to derive a broadband

frequency domain cost function as Buchner et al. do in [72]. While trying to minimize the

cross-correlation between two signals in the same frequency band, the algorithm also mini-

mized the correlation across different frequencies. This means that each signal is separated

into the correct permutation, therefore maximizing separation. In [79], Sawada et al. also
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use correlation across frequencies, but additionally incorporate DOA information.

Also proposed is to have a cost function that is well-defined in the time domain while com-

pleting the actual calculations in the frequency domain. Joho and Schiter’s [36] frequency

adaptation of the approach proposed by Amari et al. [7] is such a case. Because the cost

function is defined in the time domain, and assuming that time domain algorithms do not

suffer from this permutation problem, the resultant algorithm should not suffer from it either.

A more recent approach is that of IVA, as first proposed by Kim et al. in [76] and [80],

then later investigated by numerous authors (for example, [47, 48, 77]). This extends the

idea of ICA to vectors, which overcomes the permutation problem when performed in the

frequency domain. In [98], Itahashi and Matsuoka prove that a permuted solution never

becomes a local minimum, provided the contrast exhibits certain properties.

2.3.7 Crosstalk Resistant Adaptive Noise Canceling

The CTRANC is a method of essentially cross-coupling two LMS or RLS filters in order

to reduce the detrimental effect that crosstalk has on adaptive filters. In [13], Van Gerven

and Van Compernolle describe the basic premise behind the TITO case, and claim that it

is possible through only decorrelation to separate the signals using the feedback system as

described in figure 2.5 and the update equations

w1,2 (t)=w1,2 (t− 1) + µ1y1 (t)y2 (t)

w2,1 (t)=w2,1 (t− 1) + µ2y2 (t)y1 (t) (2.30)
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where w1,2 (t) and w2,1 (t) are the decoupling filters at time t, µ1 and µ2 are the adaptation

step-sizes, y1 (t) and y2 (t) are the system outputs at time t, and y1 (t) and y2 (t) are the

output regression vectors defined by

y1 (t)=[y1 (t− 1) , y1 (t− 2) , . . . , y1 (t−N2)]
T

y2 (t)=[y2 (t− 1) , y2 (t− 2) , . . . , y2 (t−N1)]
T

where N1 and N2 are the orders of the filters w1,2 (t) and w2,1 (t) respectively. The filters

w1,1 and w2,2 are set to unity gain, meaning that the outputs will be filtered versions of the

sources.

It is interesting to point out that the output signals will only be filtered versions of the

sources (not permuted). This lack of permutation is due to the CTRANC being a semi-blind

algorithm; the following restriction is placed on the mixing system - each microphone is the

closest microphone to a unique source. In more geometric terms, for the TITO case, the

sources are on either side of the plane that bisects the two microphones. Therefore, the

CTRANC is not truly as “blind” as some other approaches.

What might first appear as a flaw in the update equations of (2.30) is the existence of only

SOS. It is widely accepted that SOS are not sufficient for the separation procedure [43,72,87].

This seems to indicate that the separating algorithm in (2.30) is unlikely to properly separate

the sources since decorrelation relies solely on SOS.

Weinstein et al. [87] explore the second-order problems that arise with ordinary LMS

when in the presence of crosstalk. They also propose a separation system that utilizes two

cross-coupled adaptive filters. In a TITO model, it is proven that if one of the crosstalk filters
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are known a priori, decorrelation is sufficient to decouple the signals. However, if neither of

the crosstalk terms are known, they show that decorrelation is not sufficient for separation.

To remedy this, they suggest that decorrelation can be supplemented with other criteria

such as statistical independence (utilizing higher-order statistics), signal nonstationarity or

spectral matching to be sufficient to separate the signals. In their proposed algorithm, they

chose to use nonstationarity for the additional information.

In [43], Cardoso explains the insufficiency of the sole use of SOS in separating a mix-

ing system. With a demixing system as described by equations (2.11) and (2.12), there

are N2L unknowns, where the demixing matrix W is a N × N matrix of filters of order

(L− 1). Therefore, to discover what each of these coefficients are requires N2L equations.

However, SOS only supplies N (N + 1)L/2 equations, making it inadequate in solving for W.

The reason that crosstalk resistant adaptive noise cancelers can perform separation while

only utilizing SOS is based on the assumption that the mixing system is of the form in

Fig. 2.3, where w1,1 and w2,2 are both assumed unity gain filters, and w1,2 and w2,1 are

strictly causal filters.

In [99], Lindgren and Broman show that under certain mixing conditions, SOS are ade-

quate to separate a mixture of signals. If the cross-correlation matrix between the outputs of

the demixing system is diagonal, this does not always correspond with separation. However,

if certain constraints are placed on the mixing system, then the off-diagonal entries of the

cross-correlation matrix can only be zero at separation.

These constraints are as follows:

1. The sources s1 and s2 are mutually i.i.d. with nonzero variance and zero mean.

51



2. The direct channels from source i to observed signal i are asymptotically stable.

3. The length of the impulse response for every channel is less than or equal to the length

of the demixing filters.

4. The mixing system must be minimum phase.

5. The mixing system is strictly convolutive. The crosstalk channels must have at least

two nonzero coefficients each.

6. The channels must be causal.

The first three of the six constraints are assumed true for a large majority of BSS algo-

rithms, and the fourth is also assumed true for any that attempt to find an inverse of the

mixing system. The fifth constraint will be true for a majority of convolutive mixing sys-

tems; there are very few that have only one path from source to observed signal, especially

for audio applications.

The final constraint, that the channels must be causal, is one that few algorithms assume.

However, the CTRANC is one of them. This restricts the positioning of the physical system;

in an audio envirnoment, it means that each microphone has to be the closest microphone

to a unique source. While this may be impractical for a truly blind system, it also has the

advantage that the outputs match the sources up to filtering, rather than filtering and per-

mutation, as is common for truly blind techniques. Therefore if there is knowledge of which

source is the closest source to each observed signal, then no further processing is needed to

determine which output corresponds to which source.

When implemented in a feedforward structure (as in Fig. 2.5), (2.30) holds. However, [13]

also specifies that they can also be used in the feedback structure in Fig. 2.6, which assumes

that ∇w2,1y2 = ∇w1,2y1 = 0 where ∇uv is the partial derivative of v with respect to u. This

assumption greatly decreases the computational complexity of the algorithm, but it results
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in adding a bias to the update equations, skewing the results.

Lepauloux et al. show in [73] that when taking into account the effect that w1,2 has on

y2, the update equations are adjusted to

w1,2 (n+ 1)=w1,2 (n) + µ1y1 (t)
[
y2 (t) + wT

1 (t)∇w1,2y2

]
(2.31)

w2,1 (n+ 1)=w2,1 (n) + µ2y2 (t)
[
y1 (t) + wT

2 (t)∇w2,1y1

]
(2.32)

They then explain how this assumption can lead to biasing where the feedback symmetric

adaptive decorrelation (SAD) algorithm converges, but not necessarily to the correct solution.

Yousefi Rezaii and Geravanchizadeh [58] also chose to use the SAD implementation in a

feedback structure as the basis for their proposal (meaning that it is susceptible to biasing).

Rather than basing the algorithm on NLMS, they chose to cross-couple two least mean mixed

norm (LMMN) filters, which tend to have faster convergence than NLMS filters. They addi-

tionally incorporated a voice activity detector (VAD) to increase the computational efficiency

of the algorithm. Therefore, the SAD portion of their approach would only have to update

when voice was detected. However, this is based on the assumption of a robust VAD, and

would be ineffective in situations where the desired signal could not be detected by the VAD.

Considering the restriction that each source must be on either side of the plane that bi-

sects the microphones, Kuo and Peng [59] try to utilize this effect by adding a delay to one of

the observed signals. This approach, also based on the SAD algorithm, translates the plane

into a cone, making the CTRANC more directional. In their paper, they suggest a delay

that is one sample less than the time equivalent of the distance between the microphones.

This changes the operation of the CTRANC not dissimilar to that of a beamformer, only
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picking up signal from a specific direction. However, it varies from a beamformer in that it

assumes only one noise point source (for the case of a TITO system).

Mirchandani et al. [90] provide an alternative to the feedback SAD algorithm that does

not make the assumption that ∇w2,1y2 = ∇w1,2y1 = 0. This means that it does not have

the biasing problems of the feedback SAD algorithm, but on the other hand is much more

complex. In [26], Zinser et al. propose a similar approach.

In order to provide an algorithm that performs the correct convergence as described

in [26,90] but without the same computational complexity, Lepauloux et al. [73] describe an

alternate algorithm that does not assume ∇w2,1y2 = ∇w1,2y1 = 0. As opposed to [26, 90],

they make the assumption that the filters do not change significantly over time. This allows

them to substantially simplify the algorithm, decreasing its computational complexity. They

then show that their algorithm matches the performance of [90].

2.4 Summary

A number of approaches to solve the BSS problem are outlined in this review. The main

focus of this thesis will be on the procedure known as SAD, as its inherent simplicity and

dependence only on SOS potentially lends itself to being a less computationally intensive

algorithm than most others mentioned in this review. While it may not achieve the best

separation of the mentioned algorithms, its low computational requirements means that it

will potentially lend itself better to time-critical applications.
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3. MIMO SAD

The symmetric adaptive decorrelation (SAD) algorithm (as mentioned in chapter 2) is a

method of separating convolutely mixed sources based on second-order statistics (SOS).

While it has been previously derived for the two-input two-output (TITO) case [13], and

extended to the multiple-input multiple-output (MIMO) case [44], the MIMO algorithm was

not derived from first principles but simply an extension of the TITO case. As a result, there

has been no real analysis of its convergence properties, nor whether the constraints on the

mixing system as described in [13] need to be revised.

Van Gerven and Van Compernolle derive the equations for the TITO SAD algorithm as

shown earlier in (2.30). This idea is extended to the MIMO case by Mei and Yin in [44] to

get the following update equations.

wm
i,j (t+ 1)=wm

i,j (t)− µ

σ2
j

yi (t) yj (t−m)

wm
j,i (t+ 1)=wm

j,i (t)− µ

σ2
i

yj (t) yi (t−m) (3.1)

where the symbols are represented by the parameters in Fig. 3.6.

However, in order to derive the update equations for the TITO SAD algorithm, there are

constraints placed on the mixing system, and these constraints need to be altered in order
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Fig. 3.1: Simple Mixing System

for the extension to a MIMO demixing system to be justifiable. In this chapter we derive

the MIMO SAD algorithm and show the new constraints on the mixing system.

3.1 Background Information

The SAD algorithm is based on minimizing the correlation between outputs of the mixing

system. It is loosely based on the least mean squares (LMS) filter, but is less susceptible to

problems that arise due to crosstalk from the desired source in the noise estimate. A brief

discussion of both the LMS filter and the SAD algorithm follows.

3.1.1 Least Mean Squares Adaptive Filtering

The LMS filter is an adaptive filter that is designed to remove any component of a mixture

that is correlated to some known noise reference signal. The structure of the mixing system

is assumed to be as shown in Fig. 3.1, where an unpolluted version of the desired signal is

not known.

However, because a signal-free noise estimate is available, if the cross-filter h can be

found, then it is possible to remove any noise from the mixture resulting in a noise-free

though filtered version of the desired signal. Considering the structure in Fig. 3.2, if it is
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Fig. 3.2: LMS adaptive filter structure.

possible to find an adaptive filter w (t) that converges such that its output is identical to the

observed signal at the output of filter h in Fig. 3.1, then the error e (t) will converge to d (t).

The LMS filter was first proposed by Widrow and Hoff in [100], and finds an estimate of

the mixing filter h by using stochastic gradient descent to find the filter w (t) that minimizes

the power of the error e (t). Because power is a second-order statistic, gradient descent will

find the global optimum regardless of the initial conditions. Firstly, the error is defined as

e (t)=x (t)−wT (t)n (t) . (3.2)

To minimize the mean square error (the power of e (t)), its gradient must be found with

respect to the adaptive filter. Under the assumptions that the adaptive filter, desired signal

and noise are all mutually uncorrelated, and that the mean square error can be adequately

approximated by its instantaneous estimate, the gradient becomes

∂E [e2 (t)]

∂w (t)
≈2e (t)x (t) (3.3)
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where E [·] denotes the expectation operator, and

x (t)=

[
x (t) x (t− 1) . . . x (t− L+ 1)

]

and L− 1 is the order of the transverse filter w (t).

Using stochastic gradient descent provides the following update equation for minimizing

the power of the output of the adaptive filter

w (t+ 1)=w (t)− 2µe (t)x (t) (3.4)

where µ is the adaptive step-size, and should be bounded by

0 <µ<
1

E [xT (t)x (t)]
(3.5)

for stability’s sake.

The normalized least mean squares (NLMS) [15] algorithm takes advantage of this con-

straint to find the value of µ which maximizes convergence while maintaining stability. Tak-

ing µ = 1
2xT (t)x(t)

the new update equations become

w (t+ 1)=w (t)− e (t)x (t)

xT (t)x (t)
(3.6)

This means that the adaptive step size stays approximately around its most ideal value.

Because the LMS algorithm minimizes an isotropic cost function, the ideal step size will be

halfway between the minimum step size and maximum step size. However, although (3.6)

describes an algorithm that maximizes convergence speed, the update term is often scaled
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down to reduce the chance of instability being introduced by the instantaneous approxima-

tion of the scaling coefficient 1
E[xT (t)x(t)]

.

Also, because the LMS algorithm makes the assumption that the power of the filter

output E [e2 (t)] can be approximated by its instantaneous value e2 (t), the minimum cost

function that (3.4) minimizes constantly shifts about the actual values of w (t) that mini-

mize the power of e (t). Because of this, even though a value of µ may satisfy the stability

constraint in(3.5), a smaller value of µ will likely converge to a better estimate of the ac-

tual filter weights h, though convergence will take longer. This error in the cost function is

termed misadjustment by Widrow et al. in [101] and should be considered along with the

stability of the algorithm when choosing a suitable value for µ.

3.1.2 The Crosstalk Resistant Adaptive Noise Canceler

The crosstalk resistant adaptive noise canceller (CTRANC) was first developed in [90] to

nullify the effects that crosstalk has on the operation of a LMS filter. Rather than having a

signal-free estimate, it consists of two cross-coupled LMS filters to adjust for any crosstalk

from the desired source. Also, due to the fact that it is symmetric, the terms ‘desired’ signal

and ‘noise’ signal now have less relevance to the source signals.The structure of the CTRANC

is a feedback structure as shown in Fig. 3.3.

The update equations are

w1 (t+ 1)=w1 (t)− 2µy1 (t)
∂y1 (t)

∂w1 (t)

w2 (t+ 1)=w2 (t)− 2µy2 (t)
∂y2 (t)

∂w2 (t)
(3.7)
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Fig. 3.3: A feedback CTRANC.

which, like LMS, uses stochastic gradient descent to minimize the power of the outputs with

respect to the demixing filters. However, the CTRANC now needs two update equations, as

it no longer assumes that the noise estimate is signal-free.

The gradient term in (3.7) is shown in [90] to be

∂yi (t)

∂wi (t)
=C0 (t)

[
2L∑
k=1

Ci,k (t)
∂yi (t− k)

∂wk
i (t− k)

− yj (t)

]
(3.8)

where

yj (t)=

[
yj (t) yj (t− 1) . . . yj (t− L+ 1)

]T
,

Ci,k (t)=


k∑

l=1

wl
i (t)wk−l

j (t− l) 1 ≤ k ≤ L

L∑
l=k−L

wl
i (t)wk−l

j (t− l) L+ 1 ≤ k ≤ 2L
,

C0 (t)=
1

1− w0
1 (t)w0

2 (t)
(3.9)
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and

j=

 1 i = 2

2 i = 1

While not specified in [90], the feedback structure of the CTRANC gives rise to a causality

problem. In order to find y1 (t), one must know y2 (t), yet in order to find y2 (t), one must

know y1 (t). This paradox is easily overcome by making the assumption that either w0
1 (t) = 0

or w0
2 (t) = 0, but to retain the symmetric nature of the separator, we will assume that

w0
1 (t) = w0

2 (t) = 0. From (3.9), this makes C0 (t) = 1, and simplifies (3.8) to

∂yi (t)

∂wi (t)
=

[
2L∑
k=1

Ci,k (t)
∂yi (t− k)

∂wk
i (t− k)

− yj (t)

]
(3.10)

Once the size of the filter becomes large, the memory and computational requirements of

the CTRANC also increase significantly. In [13], Van Gerven and Van Compernolle address

this problem by proposing that the separating system be a feedforward structure. This is

discussed further in the following section.

3.1.3 Symmetric Adaptive Decorrelation

While the CTRANC is only proposed using the feedback structure of Fig. 3.3, the SAD pro-

posed by Van Gerven and Van Compernolle in [13] is also implemented using the feedforward

structure in Fig. 3.4 for the demixing system.

Although the CTRANC is derived by using stochastic gradient descent to minimize the

joint power of the outputs, the SAD algorithm is derived by using a Newton zero-search on

the cross-correlation of the outputs. For the feedforward structure, a Newton zero-search of
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Fig. 3.4: The feedforward demixing system.

the cross-correlation results in identical update equations to stochastic gradient descent of

the joint output power.

The fundamental form of the update equations as described in [13] are

w1 (t+ 1)=w1 (t+ 1) + µ1y1 (t)y2 (t)

w2 (t+ 1)=w2 (t+ 1) + µ2y2 (t)y1 (t) (3.11)

where

y1 (t)=[y1 (t) , y1 (t− 1) , . . . , y1 (t− L+ 1)]

y2 (t)=[y2 (t) , y2 (t− 1) , . . . , y2 (t− L+ 1)] (3.12)

and L− 1 is the filter order.

The main problem with the algorithm described by Equation (3.11) is that it assumes

that filter w1 has no effect on y2 and that w2 has no effect on y1. While this may be true for

the feedforward case, when implemented using a feedback structure, the SAD algorithm is
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prone to biasing. However, the update equations of the CTRANC provided by Mirchandani

et al. in [90] do include a gradient term that accounts for the dependence of y2 on w1 and

y1 on w1. Comparing the CTRANC update equations (3.7) to the SAD update equations

(3.11), it can be seen that the SAD algorithm arrives with a gradient term of

∂yi (t)

∂wi (t)
=−yj (t) (3.13)

which is incorrect when comparing it to the actual gradient term in (3.10). Although this

introduces a potential bias in the cost surface for the feedback SAD, it is computationally ex-

pensive to calculate the correct gradient term. Lepauloux et al. [73] propose a more efficient

version of the CTRANC by assuming that the room transfer function does not significantly

change over time, roughly halving the number of operations. The resulting algorithm, how-

ever, is still significantly more computationally complex than the SAD algorithm.

3.2 Derivation of MIMO SAD

While the TITO SAD algorithm has been derived for both a feedforward and feedback

demixing structure, the update term in the adaptive algorithm cannot be properly justified

for the feedback case [73]. For this reason, only the feedforward MIMO SAD will be discussed.

For the derivation, only the key steps have been included in the body of this work, for

a step-by-step extended derivation, see Appendix B.1. Firstly, we will define the following
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variables:

si (t),source i at time t

xi (t),observed signal i at time t

yi (t),output i at time t

si (t),

[
si (t) si (t− 1) . . . si (t− L+ 1)

]T
xi (t),

[
xi (t) xi (t− 1) . . . xi (t− L+ 1)

]T
yi (t),

[
yi (t) yi (t− 1) . . . yi (t− L+ 1)

]T

hi,j,
a vector containing the mixing filter taps for the filter

from source j to observed signal i

wi,j (t),
a vector containing the demixing filter taps for the filter

from observed signal j to output i at time t

For N sources and N observed signals, a linear mixture can be described by the following

equation

xi (t)=
N−1∑
j=0

sTj (t)hi,j (3.14)

where xi (t) is the ith observed signal, hi,j is the vector of mixing filter taps from source j to

observed signal i, and

sj (t)=

[
sj (t) sj (t− 1) . . . sj (t− L+ 1)

]
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Fig. 3.5: The simplified mixing system.

where sj (t) is the jth source at time t and L− 1 is the order of the mixing filter.

This is then simplified to the mixing system shown in Fig. 3.5, where the mixing filters

from source i to observed signal i are assumed to be unity-gain non-convolutive channels.

For this to be possible, the actual channels from source i to observed signal i must be mini-

mum phase, as the existance of the simplified mixing filters hi,j requires the invertibility of

the channels from one source to the corresponding microphone. This corresponds to what is

outlined in [99], where Lindgren and Broman show that separation based on SOS is possible

if the mixing system is minimum phase.
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Fig. 3.6: The demixing system.

Likewise a demixing system can be written as

yi (t)=
N−1∑
j=0

xT
j (t)wi,j (t) (3.15)

For equations (3.14) and (3.15) to properly match the mixing and demixing systems of

Fig. 3.5 and Fig. 3.6, we define the direct channels as

hi,i = wi,i (t)=

[
1 0 . . . 0

]T
.

If suitable constraints are placed on the mixing system, one possible way of minimizing

the crosstalk between outputs of the demixing system is by minimizing the cross-correlation

between the outputs. Between two outputs yi (t) and yj (t) the cross-correlation is defined
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as

Cyj ,yi (m)=E [yi (t+m) yj (t)] ∀m ∈ Z (3.16)

To remove crosstalk introduced by sources si (t) and sj (t) from output yj (t) and yi (t)

respectively, it is necessary to find the values of the filter vectors wi,j (t) and wi,j (t) such

that the cross-correlation defined in (3.16) is minimized.

However, due to the simplification of the mixing system represented by Fig. 3.5, we can

see that the values of m in the cross-correlation are bounded such that we can redefine the

cross-correlation between yi (t) and yj (t) due to the crosstalk from sj (t) into xi (t) as

Cyj ,yi (m)=E [yi (t) yj (t−m)] 0 < m < L. (3.17)

Given that the kth element of the filter wi,j only directly affects the xj (t− k) component

of yi (t), it also only directly affects Cyj ,yi (k).

Thus (3.17) should be used as the cost function for updating the filter weight wm
i,j (t).

Newton’s method states that in order to converge to a root of a function f (x), the value can

be updated according to the following equation

xn+1=xn −
f (xn)

f ′ (xn)
, (3.18)

which, after substituting the relevant variables, becomes

wm
i,j (t+ 1)=wm

i,j (t)−
Cyiyj (m)

C ′yiyj (m, t)
(3.19)
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where wm
i,j (t) is the mth element of wi,j (t) and

C ′yiyj (m, t)=
∂Cyiyj (m)

∂wm
i,j (t)

(3.20)

Substituting (3.14) and (3.15) into (3.17) then rearranging according to Appendix B.1.1

gives

Cyiyj (m)=
N−1∑
p=0

σ2
p

N−1∑
k=0

L−1∑
n=0

N−1∑
l=0

L−1∑
o=0

L−1∑
q=0

hqk,pw
n
i,k (t)hn+q−m−o

l,p wo
j,l (t−m)

(3.21)

where σ2
j is the power of the jth source.

However, when p = k,

hqk,p=

 1, q = 0

0, q 6= 0

and when p 6= k,

h0k,p=0

After this substitution and subsequent rearrangement as shown in Appendix B.1.2, (3.21)
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becomes

Cyj ,yi (m)=
N−1∑
p=0
p 6=i
p 6=j

σ2
p

2L−2∑
q=1

δqp,i (t) δq−mp,j (t−m)

+σ2
i

N−1∑
k=0
k 6=i

L−1∑
n=1

2L−2∑
q=1

hq−nk,i w
n
i,k (t) δq−mi,j (t−m)

+σ2
j

N−1∑
k=0
k 6=j

L−1∑
n=1

2L−2∑
q=1

hq−m−nk,j wn
j,k (t−m) δqj,i (t)

+σ2
j δ

m
j,i (t) (3.22)

where

δmi,j (t)=hmi,j + wm
i,j (t) +

N−1∑
k=0
k 6=i
k 6=j

L−1∑
n=1

hm−nk,j wn
i,k (t) (3.23)

defines the error of the filter tap from its optimum value.

We will now find the derivative of this with respect to the mth separating filter wm
j,i

∂Cyi,yj (m)

∂wm
i,j

=
N−1∑
p=0
p 6=j

σ2
p

L−1∑
q=1

hqp,jδ
q
p,j (t−m) + σ2

j (3.24)

Detailed information on finding this gradient term is given in Appendix B.1.3.

Substituting (3.24) into (3.19) in order to find the wm
i,j that gives zero cross-correlation
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results in

wm
i,j (t+ 1)=wm

i,j (t+ 1)− yi (t) yj (t−m)

σ2
j +

∑N−1
p=0
p 6=j

σ2
p

[∑L−1
q=1 h

q
j,pδ

q
j,p (t−m)

] (3.25)

Because the cross-correlation is a linear function of the tap weights, approximating the

denominator of the update term in Equation (3.25) as σ2
j will still result in convergence

provided that ∣∣∣∣∣∣∣∣
N−1∑
p=0
p 6=j

σ2
p

[
L−1∑
q=1

hqj,pδ
q
j,p (t−m)

]∣∣∣∣∣∣∣∣<σ
2
j (3.26)

Under the assumption that the powers of the source signals are approximately equal, we

can simplify (3.26) to

∣∣∣∣∣∣∣∣
N−1∑
p=0
p 6=j

σ2
p

[
L−1∑
q=1

hqj,pδ
q
j,p (t−m)

]∣∣∣∣∣∣∣∣<1 (3.27)

When substitutingN = 2, δmi,j (t) becomes
(
wm

i,j (t) + hmi,j
)
, thus the constraint in Equation

(3.27) simplifies to

∣∣∣∣∣
L−1∑
q=1

hqj,i
(
wq

j,i (t−m) + hqj,i
)∣∣∣∣∣<1

which is identical to the constraint given for the TITO decorrelator in [13].

With this constraint, (3.25) simplifies to

wm
i,j (t+ 1)=wm

i,j (t)− yi (t) yj (t−m)

σ2
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and finally an adaptive step-size constant is added to improve stability

wm
i,j (t+ 1)=wm

i,j (t)− µ

σ2
yi (t) yj (t−m) (3.28)

The pseudocode for this algorithm is shown in Program 1.

Program 1 MIMO SAD Pseudocode

Superscript T denotes the transpose operation.
n . the number of observed signal samples
N . the number of observed signals
L . the filter size
x1, x2, . . . , xN . the observed signals
y1, y2, . . . , yN . the outputs
wi,j . the vectors containing the filter weights

for t = 0→ n do
for i = 1→ N do

xi (t) = the next L samples of xi in reverse order.
end for

for i = 1→ N do
yi (t) = 0
for j = 1→ N, j 6= i do

yi (t) + = wT
i,j (t)xj (t)

end for

end for
for i = 1→ N do

for j = 1→ N, i 6= j do
wi,j (t) = wi,j (t)− yi (t)yj (t)

end for
end for

end for
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3.3 Convergence of MIMO SAD

Upon investigation of the mixing and demixing systems shown in Fig. 3.5 and Fig. 3.6, one

may see that the demixing system becomes the inverse of the mixing system when

wm
i,j,opt (t)=−hmi,j −

N−1∑
l=0
l 6=i
l 6=j

m−1∑
o=1

hm−oi,l wo
l,j (t−m) ∀i, j 6= i

Therefore, we define the deviation from the ideal solution as

wm
i,j (t)− wm

i,j,opt (t)=wm
i,j (t) + hmi,j

+
N−1∑
l=0
l 6=i
l 6=j

m−1∑
o=1

hm−oi,l wo
l,j (t−m) ∀i, j 6= i

=δmi,j (t) (3.29)

which will be zero on separation.

One may note that δmi,j (t) in (3.23) is slightly different from that defined in (3.29) in that

the limit on the second sum is L − 1 as compared to m − 1 in the earlier definition. The

justification for this is that because the mixing filters are strictly causal, hm−oi,l = 0 when

o ≥ m.

For convergence in the mean, if

∣∣E [δmi,j (t)
]∣∣≤ε (3.30)
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then the following must also be true,

∣∣E [δmi,j (t+ k)
]∣∣<ε ∀k ∈ Z+ (3.31)

for any real positive ε.

Using the definition in (3.23) for δmi,j (t), and under the assumption that wo
l,j (t) ≈

wo
l,j (t+ 1), l 6= i, j, the demixing filter tap update equation in (3.28) then becomes

δmi,j (t+ 1)=δmi,j (t)− µ

σ2
yi (t) yj (t−m) (3.32)

Taking expected values, and using (3.22) as the cross-correlation between yi and yj, the

expectation of (3.32) reduces to

E
[
δmi,j (t+ 1)

]
=E

[
δmi,j (t)− µ

{
δmi,j (t) + γ̃mi,j (t)

}]
(3.33)

where

γ̃mi,j (t)=


N−1∑
p=0
p 6=j
p 6=i

2L−2∑
q=1

δqp,j (t) δq−mp,i (t−m)

+
2L−2∑
q=1

δq−mj,i (t−m)
N−1∑
k=0
k 6=j

L−1∑
n=1

hq−nj,k wn
k,j (t)

+
2L−2∑
q=1

δqi,j (t)
N−1∑
k=0
k 6=i

L−1∑
n=1

hq−m−ni,k wn
k,i (t−m)

 (3.34)
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Taking absolute values of (3.33) gives the following inequality

∣∣E [δmi,j (t+ 1)
]∣∣≤∣∣(1− µ)E

[
δmi,j (t)

]∣∣
+
∣∣µE [γ̃mi,j]∣∣ (3.35)

If all the weights of all of the filters have fallen to within ε of the desired solution, γ̃mi,j (t)

can be linearized by ignoring all second order terms of ε. This results in the following

approximation

γ̃mi,j (t)≈εγmi,j (t)

where

γmi,j (t)=

∣∣∣∣∣∣∣
N−1∑
k=0
k 6=i

L−1∑
n=1

L−1−m∑
q=1

hqi,kw
n
k,i (t−m)

+
N−1∑
k=0
k 6=j

L−1∑
n=1

L−1∑
q=1

hqj,kw
n
k,j (t)

∣∣∣∣∣∣∣ (3.36)

and in general,

∣∣γ̃mi,j (t)
∣∣≤ε ∣∣γmi,j (t)

∣∣ (3.37)

Substituting (3.37) into the inequality in (3.35) results in

∣∣E [δmj,i (t+ 1)
]∣∣≤∣∣(1− µ)E

[
δmi,j (t)

]∣∣
+ε
∣∣µE [γmi,j (t)

]∣∣ (3.38)

Assuming that E
[
δmi,j (t)

]
has also fallen to within ε of the desired solution, (3.38) reduces
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to

∣∣E [δmi,j (t+ 1)
]∣∣≤{|(1− µ)|+

∣∣µE [γmi,j (t)
]∣∣} ε (3.39)

In order for convergence in the mean to be satisfied, (3.31) must be satistfied. From

(3.39), it can be seen that convergence to the desired solution will occur when

∣∣µE [γmi,j (t)
]∣∣− 1 <1− µ< 1−

∣∣µE [γmi,j (t)
]∣∣ (3.40)

There is no solution when µ is negative or zero, therefore (3.40) simplifies to

∣∣E [γmi,j (t)
]∣∣ <1<

1

µ
−
∣∣E [γmi,j (t)

]∣∣ (3.41)

which gives the following constraints on γmi,j (t) and µ

∣∣E [γmi,j (t)
]∣∣<1 (3.42)

0 < µ<
2

1 +
∣∣E [γmi,j (t)

]∣∣ (3.43)

These are also satisfied with the following simpler constraints

∣∣γmi,j (t)
∣∣<1 (3.44)

0 < µ<1 (3.45)

However, this only guarantees convergence in the mean. It is still possible to have a

system that converges in the mean but where the error is oscillating from a negative extreme

to a positive extreme. Therefore, in order to guard against this possibility, we must also
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show that the magnitude of the error does not diverge.

The following constraint is used to restrict the error’s magnitude: if

∣∣∣E {[δmi,j (t)
]2}∣∣∣≤ε2 (3.46)

then the following must be true,

∣∣∣E {[δmi,j (t+ k)
]2}∣∣∣<ε2 ∀k ∈ Z+ (3.47)

for any real positive ε2.

Using (3.33), we get

E
[{
δmi,j (t+ 1)

}2]
=E

[{
δmi,j (t)

−µ
[
δmi,j (t) + γ̃mi,j (t)

]}2]
=E

[{
δmi,j (t)

}2] (
1− 2µ+ µ2

)
−2µE

[
δmi,j (t) γ̃mi,j (t)

]
(1− µ)

+µ2E
[{
γ̃mi,j (t)

}2]
(3.48)

But under the approximation made of γ̃mi,j (t) in (3.37) and the constraints placed on

γmi,j (t) and µ in (3.44) and (3.45), (3.48) can also be written as the following inequality

E
[{
δmi,j (t+ 1)

}2]
<E

[{
δmi,j (t)

}2] (
1− 2µ+ µ2

)
+2µε

∣∣E [{δmi,j (t)
}]∣∣ (1− µ)

+µ2ε2 (3.49)
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If we make the assumption that the mean square error of the filter taps has fallen to

within ε2, then the maximum possible value for
∣∣E [δmi,j (t)

]∣∣ is ε. Therefore, if (3.49) is true,

the following is also true:

E
[{
δmi,j (t+ 1)

}2]
<
(
1− 2µ+ 2µ2

)
ε2

+2µε2 (1− µ)

<ε2 (3.50)

Therefore, under the constraints on γmi,j (t) and µ in (3.44) and (3.45), asymptotic stabil-

ity is guaranteed.

3.4 Experiments

In order to evaluate the performance of the proposed algorithm, the following experiment

was set up. Four speakers and four mics were set up in a 5m×3m room, as is shown in

Fig. 3.7. Human speech, taken from the ‘Lunatick-20080326-cc.tgz’ package from the Vox-

Forge speech corpus, was played through one of the speakers, and independent samples of

car assembly line noise, taken from the NOISEX database, were played through the other

three speakers. In Fig. 3.7, source 1 is the speech source; sources 2, 3, and 4 are all noise

sources.

Each of the sources were played independently, then mixed later with appropriate time-

lags. The reason for doing the experiment this way rather than playing all four sources

simultaneously was that the SNR of the observed signals and separated signals could be
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Fig. 3.7: The recording layout.

Fig. 3.8: The signal to noise ratio (SNR) converging over time.
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Fig. 3.9: The SNR over time for the final run.

better evaluated. It was calculated using

SNR = 10 log10

(
PS

PN

)
(3.51)

where PS is the power of the speech component of the signal and PN was the power of the

noise component of the signal. Because of the recording technique, the actual power of the

speech and noise components was available, and there was no need for any approximations.

In each channel, the desired and noise components were each mixed such that the average

SNR of each observed signal was 0dB. A four second sample of each mixture was passed

into the separating system. After the first pass through the data, the final separating filter

weights were stored and then used as the initial values for a second pass. This iterative pro-
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cess continued until the SNR had converged to a steady state. The SNR after each iteration

is plotted against the number of pass-throughs in Fig. 3.8.

After the final pass-through, the SNR was calculated on the output using a sliding win-

dow of length 2000. A comparison to the observed signal SNR is shown in Fig. 3.9. Of note

is the fact that the increase in SNR is moderately invariant to the observed signal SNR.

The actual waveform of the desired signal, mixture, and separated signal are shown in

figures 3.10a, 3.10b, and 3.10c respectively. One can see that the output in Fig. 3.10c more

closely matches the desired signal in Fig. 3.10a than the observed signal in Fig. 3.10b. It

also appears to be substantially less noisy than the observed signal.

3.5 Conclusion

In this chapter, the derivation and convergence analysis of the MIMO SAD are outlined.

Asymptotic stability is guaranteed provided that the step-size and mixing filter taps satisfy

certain constraints, which cannot be simply extended from the TITO case, but have been

re-derived. Experiments on real recordings show an increase in SNR of up to 9dB.

If this algorithm is to be used in a real-time application, then its computational efficiency

needs to be addressed. Because the filtering and update operations are based respectively on

convolution and correlation, the complexity as a function of length is O (L2). And because

there needs to be a filter from every mixture to all but one output, the complexity as a

function of number of inputs is also O (N2). This means that as filter size and number of

sources increase the complexity of the algorithm increases significantly. We attempt to find
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(a)

(b)

(c)

Fig. 3.10: The fig:MimoSad:DesiredSignal desired, fig:MimoSad:MixedSignal mixed, and
fig:MimoSad:SeparatedSignal separated signals.
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suitable solutions to this problem in following chapters.
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4. MULTIBRANCHED RECURSIVE CROSSTALK RESISTANT

ADAPTIVE NOISE CANCELLATION

The multiple-input multiple-output (MIMO) symmetric adaptive decorrelation (SAD) algo-

rithm in chapter 3 was shown to be a potentially viable method of separating convolutely

mixed signals. However, with increasing numbers of sources and filter sizes, the computa-

tional cost of the algorithms increased significantly. In this chapter, we endeavor to show

that using a cross-talk resistant noise canceller based on vector least mean squares (VLMS)

can improve computational efficiency without significantly compromising the degree of sep-

aration.

4.1 Background Theory

4.1.1 The Mixing System

We will first consider the case of a two-input two-output (TITO) system. Consider the mixing

system shown in Fig. 2.2. This shows how the received signals x1 (t) and x2 (t) are mixtures

of filtered versions of s̃1 (t) and s̃2 (t). In matrix-polynomial form this is

x (t) = HT s̃ (t) (4.1)



where x (t) =

[
x1 (t) x2 (t)

]T
, the superscript “T” denotes the transpose operator, t

denotes the time index,

H =


 h01,1 h01,2

h02,1 h02,2

 H1 . . . HL−1


T

is the mixing matrix with L taps (the superscript indicates the tap number), and

s̃ (t) =

[
s̃1 (t) s̃2 (t) s̃1 (t− 1) s̃2 (t− 1) . . .

s̃1 (t− L+ 1) s̃2 (t− L+ 1)

]T

This can be considered the convolutive analogue of (2.7). While similar to (2.9), it is different

as it interleaves the source signals rather than concatenating them.

Fig. 2.3 shows the simplified mixing system. In relation to the actual mixing system

shown in Fig. 2.2, we have

s1 = h1,1
(
z−1
)
s̃1

s2 = h2,2
(
z−1
)
s̃2

g1,2
(
z−1
)

=
h1,2 (z−1)

h2,2 (z−1)

g2,1
(
z−1
)

=
h2,1 (z−1)

h1,1 (z−1)
(4.2)

The equations in (4.2) show how the separation will not result in the original sources s̃1

and s̃2. Rather, at best it will separate the sources to s1 and s2, which are filtered versions
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of the originals.

The SAD algorithm can be used to solve this problem as shown in chapter 3, both for the

TITO case and the MIMO case. We now propose adaptation to the SAD algorithm which

increases its efficiency as the number of sources increases.

4.2 The Cross-Coupled Vector-LMS

In order to show the working of the crosstalk resistant adaptive noise canceller (CTRANC)

based on VLMS, we will consider the situation of four inputs and four outputs. In Fig. 4.1 we

have a matrix polynomial representation of the mixing system, where s̃1 (t) =

[
s̃1 (t) , s̃2 (t)

]T
and s̃2 (t) =

[
s̃3 (t) , s̃4 (t)

]T
are the four inputs multiplexed into two vectors, x1 (t) =[

x1 (t) , x2 (t)

]T
and x2 (t) =

[
x3 (t) , x4 (t)

]T
are the four outputs multiplexed into

two vectors, and H1,1, H1,2, H2,1, and H2,2 are all mixing polynomial matrices representing

the entire mixing system. Note that these should not be confused with their scalar counter-

parts.

Using the same reasoning as with the ordinary CTRANC, we derive the following update

equations for the separating polynomial matrices W1,2 and W2,1.

W1,2 (t+ 1) = W1,2 (t) + µY2 (t)yT
1 (t)

W2,1 (t+ 1) = W2,1 (t) + µY1 (t)yT
2 (t)

where µ1 and µ2 are convergence weights, y1 (t) and y2 (t) are the length-2 output vectors[
y1 (t) , y2 (t)

]
and

[
y3 (t) , y4 (t)

]
respectively, and the length-2L vectors Y1 (t) and
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s̃1 (t) t - H1,1
-
+ �
�� -

x1 (t)

s̃2 (t) t - H2,2
-
+ �
�� -

x2 (t)

- H2,1

?
+

- H1,2

6+

Fig. 4.1: The four input mixing system.

Y2 (t) are defined by

Y1 (t) =

[
yT
1 (t− 1) yT

1 (t− 2) . . . yT
1 (t− L+ 1)

]
Y2 (t) =

[
yT
2 (t− 1) yT

2 (t− 2) . . . yT
2 (t− L+ 1)

]

The essential operation of this algorithm is to separate a system of four mixed sources

into two systems of two mixed sources. One can then apply the algorithm from an ordinary

CTRANC to separate each of the sources into approximations of the original individual sig-

nals.

The pseudocode for this algorithm is shown in Program 2.
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Program 2 Multibranched SAD Pseudocode

Superscript T denotes the transpose operation.
Any numeric superscripts denote vector indices.
n . the number of observed signal samples
N0 . the number of observed signals
L . the filter size
x1, x2, . . . , xN0 . the observed signals
y1, y2, . . . , yN0 . the outputs
Wi,j,k (t) . the k × kL matrix consisting of all demixing matrix taps

from one quadrant of the demixing matrix

x0 (t) =
[
x1 (t) x2 (t) . . . xN0 (t)

]T
. an array of all observed signal samples at t

X0 (t) =
[
xT
0 (t) xT

0 (t− 1) . . . xT
0 (t− L+ 1)

]T
function MimoSad(X (t),N ,t)

for i = 0→ L− 1 do
for j = 1→ N

2
do

X
N
2
i+j

1 = XNi+j

X
N
2
i+j

2 = XN(i+ 1
2)+j

end for
end for
y1 (t) = x1 (t)−WT

1,2,N
2

X2 (t)

y2 (t) = x2 (t)−WT
2,1,N

2

X1 (t)

Y1 (t) =
[
yT
1 (t) yT

1 (t− 1) . . . yT
1 (t− L+ 1)

]T
Y2 (t) =

[
yT
2 (t) yT

2 (t− 1) . . . yT
2 (t− L+ 1)

]T
W1,2,N

2
= W1,2,N

2
+ µY2 (t)yT

1 (t)

W2,1,N
2

= W2,1,N
2

+ µY1 (t)yT
2 (t)

if N > 1 then
Y1 (t) = MimoSad(Y1 (t),N

2
, t)

Y2 (t) = MimoSad(Y2 (t),N
2
, t)

end if

return

[
Y1 (t)
Y2 (t)

]
end function

MimoSad(X0 (t),N ,t)
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4.2.1 Computational Efficiency

While [44] may have already proposed a CTRANC algorithm for more than two sources, the

advantage in using a multibranched recursive approach is that it is potentially more efficient

for more sources.

We will take the case when there are L = 4 sources. We will therefore need one 2 × 2

matrix CTRANC (which translates to two multivariable least mean squares (LMS) algo-

rithms) to separate the mixture into two mixtures of two signals, then we will need two

scalar CTRANCs (which translates to four scalar LMS algorithms) to separate the systems

into the individual signals.

For each multivariable LMS, there are

• 2LM2 +M multiplications

• LM2 +M additions/subtractions

where L is the number of taps in the filter and M is the number of inputs of the multivari-

able LMS. However, it is important to note that with an N -input matrix CTRANC, each

multivariable LMS only has M = N/2 inputs.

For each scalar LMS, there are

• 2L+ 3 multiplications

• L+ 2 additions/subtractions

Therefore, for N = 4 there will be a total of

• 24L+ 32 multiplications

• 12L+ 20 additions/subtractions
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for the multibranched CTRANC.

For the method proposed in [44], it is necessary to have N (N − 1) scalar LMS algorithms.

When N = 4, this means that there will be 12 scalar LMS algorithms, which requires

• 24L+ 36 multiplications

• 12L+ 24 additions/subtractions

For the full separation of four sources, the method proposed in this chapter only gives a

computational advantage of four multiplications and four additions/subtractions.

However, as the number of inputs increases, so does the savings in number of computa-

tions. For the multivariable CTRANC with 8 inputs we have

• 112L+ 136 multiplications

• 56L+ 80 additions/subtractions

as compared to the

• 112L+ 168 multiplications

• 56L+ 112 additions/subtractions

for the ordinary CTRANC, giving a computational advantage of 32 multiplications and 32

additions/subtractions.

Where the real computational efficiency is gained, however, is if there is only one desired

signal amongst the noise, and we know which channel it is on the output of the CTRANC.

If this is the case, then we only need one of each of the matrix-polynomial CTRANC steps,

and only one TITO CTRANC. For L = 4, we save 4L + 10 multiplications and 2L + 8

additions/subtractions. When L = 8, we save 28L + 70 multiplications and 14L + 56 addi-

tions/subtractions.
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While present, these gains are not overly significant when attempting to separate all of the

sources. For this reason, in subsequent chapters we will move away from the multi-branched

approach and toward a frequency-domain approach which offers better computational sav-

ings.

4.3 Separation Performance

We conducted a simple experiment to discover the relative separation of the proposed method

to the method in [44].

4.3.1 Experimental Procedure

The experiment was set up as follows: four microphones were placed as four corners of a

0.2m×0.2m square near the middle of a 4m×7m room furnished with a lounge suite, a piano

and a dining room suite. There were three noise sources, all samples of a car assembly line

from the file labelled ‘factory floor noise 2’ from the NOISEX database. The speech was

created by using a loudspeaker in front of the computer monitor, playing the speech sample

in the package ‘Lunatick-20080326–cc.tgz’ from the VoxForge speech corpus.

Using the described set-up, we used the proposed algorithm to reduce the noise level.

Each filter had 1000 weights. We chose this number because increasing the number of

weights beyond 1000 increased computational complexity with a negligible increase in signal

to noise ratio (SNR), while decreasing the number of weights adversely affected the results.
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Tab. 4.1: Increases in SNR

Input SNR Output SNR Increase in SNR
Proposed Method 7.7 dB 14.2 dB 6.5 dB
Mei et al. Method 7.7 dB 13.9 dB 6.2 dB

Because we do not have the power of the noise by itself, to calculate the SNR, we need

to use the following formula:

SNR = 10 log10

(
PSN − PN

PN

)
(4.3)

where PSN is the combined power of the speech with the noise and PN is the power of the

noise. This is based on the assumption that the noise and the speech are statistically inde-

pendent.

4.3.2 Results

Using (4.3), we obtained the results as shown in Table 4.1. In an informal listening test,

we also found that the speech was more comprehensible in the separated signals than in the

mixed signals.

The difference in SNR between the different approaches is negligible. This shows that,

while the proposed method is faster to execute, there is no drop in the degree of separation.

4.4 Conclusion

One solution to the problem of blind source separation is to use a cross-talk resistant noise

canceller to separate the signals. This chapter describes an adaptation to the CTRANC
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algorithm to increase its computational efficiency. Experimental data shows that there is no

drop in performance in spite of the decreased computational cost. It also has the advantage

that it is potentially even more computationally efficient if there is only one desired source,

and it is known which channel it will be separated to. However, while present, the compu-

tational savings are not overly substantial. Therefore, in future chapters other methods will

be investigated to increase computational efficiency in the aim of getting more significant

gains.
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5. FREQUENCY DOMAIN SAD

An adaptation to the symmetric adaptive decorrelation (SAD) algorithm that significantly

increases computational efficiency is proposed in this chapter. Because it is based on the

least mean squares (LMS) algorithm, if the bulk of the processing of the SAD algorithm can

be done in the frequency domain, the computational benefits are similar to those seen with

the LMS algorithm. While there are computational savings with an increase in filter order as

expected, it is shown that there are also computational savings relative to the time domain

implementation when the number of sources increases.

5.1 Background Information

The computational efficiency of the LMS algorithm can be significantly increased by transfer-

ral of the bulk of the work into the frequency domain. This is mainly due to two operations,

convolution when passing the noise signal n (t) through filter w (t), and correlation in the gra-

dient term of the update equation. If the fast Fourier transform (FFT) is used to efficiently

convert the signals and filters into the frequency domain, the convolution and correlation

time-domain operations become element-by-element multiplication.

The fast least mean squares (FLMS) algorithm was first proposed by Dentino et al. in [21],

but failed to zero-pad the filters in order to get the linear convolution/correlation. Rather,

the algorithm incorporates circular convolution, which results in an algorithm that does not



converge to the correct solution. Later, Ferrara in [22] proposed an overlap-save frequency

domain algorithm that performed the convolution and correlation in the frequency domain,

but utilized zero padding in the time domain in order to ensure that operations were linear

rather than circular. The resulting algorithm is less computationally efficient than [21] due

to the longer Fourier transforms, plus additional conversions to and from the time domain

in order to zero-pad the signals. However, it is still substantially more efficient that the

time-domain algorithm (for larger filter sizes), and correctly converges to the same solution.

In order to show the FLMS algorithm, the following notation will be used. For variables

that are implemented in both the time domain and frequency domain, time domain versions

are written in lower case (x) and frequency domain variables are denoted by an upper case

character (X). Scalars are in italics, and vectors are in bold; vectors which are in the time

domain are all of size L, those in the frequency domain are all of size 2L, where L− 1 is the

order of the demixing filters. The symbol t is used to indicate the iteration number in the

time domain, and k is used to indicate the block number when operating in the frequency

domain. The superscript T denotes the transpose operation and the overline (X ) denotes

complex conjugation. F is used to denote the discrete Fourier transform (DFT) matrix, and

F−1 its inverse. It should be noted that although the DFT matrix is used in the derivations,

this is purely for notational convenience. Actual implementation should use the FFT for its

computational efficiency. The derivation here closely follows that shown in [23].

For a frequency domain implementation, the LMS algorithm must first be converted to

a block algorithm. This is an important distinction between the two algorithms, as it means

that the filter w (t) cannot significantly change over L samples, and can be assumed constant
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over this time period. Therefore the LMS update equation in (3.4) becomes

w (kL+ L)=w (kL)− µ [e (kL)x (kL) + e (kL+ 1)x (kL+ 1)

+ . . .+ e (kL+ L− 1)x (kL+ L− 1)]

=w (kL)− µ∇ (kL) (5.1)

which gives us the update term

∇ (kL)=



∑L−1
i=0 e (kL+ i)x (kL+ i)∑L−1

i=0 e (kL+ i)x (kL+ i− 1)

...∑L−1
i=0 e (kL+ i)x (kL+ i− L+ 1)


(5.2)

which is the cross-correlation vector between e (t) and x (t). In the frequency domain, this

is calculated using

 ∇ (kL)

0

=GF−1
{
F [Ge2L (kL)] ◦ F [x2L (kL)]

}
(5.3)

where

G=

 IL×L 0L×L

0L×L 0L×L


is a zero-padding matrix, the overline indicates complex conjugation, which maps to time

reversal in the time domain, the operator ‘◦’ denotes element-by-element multiplication, and

the subscript 2L means that the regressor vectors are of size 2L rather than L.
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When converting to the frequency domain for fast convolution, zero-padding is an im-

portant step. Any signal that is bounded in the time-domain (such as a block used in

block-processing) needs to be represented by an unbounded frequency-domain series. This

is impractical, so instead the assumption is made that the time-domain block is not a block,

but an infinite series. The question then arises as to what this infinite time-domain signal

looks like outside of that defined by the block. The usual assumption (as is taken in the

FFT) is that the block simply repeats itself infinitely, thus allowing a bounded frequency

domain representation of the signal.

However, simply using elementwise multiplication in the frequency domain maps to a

convolution of these infinite series, which is not the same as a linear convolution in the time

domain, but what is known as circular convolution. This erroneous result can be avoided by

zero-padding in the time domain before performing the frequency domain transform. While

this is still technically a circular convolution, because portions of the convolved signals are

now zero, the result is in fact the same as a linear convolution of the original sequences.

Thus the spurious results that would normally occur due to circular convolution are avoided.

For the calculation of the error to be performed in the frequency domain, it too must be

implemented as a block algorithm. Equation (3.2) then becomes

e (t)=x (t)−



wT (t− 1)n (t)

wT (t− 2)n (t− 1)

...

wT (t− L)n (t− L+ 1)


(5.4)

However, because w (t) is only updated once every L time samples, w (t) remains un-
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changed over L updates. Therefore (5.4) becomes

e (kL)=x (kL)−



wT ((k − 1)L)n (kL)

wT ((k − 1)L)n (kL− 1)

...

wT ((k − 1)L)n (kL− L+ 1)


(5.5)

This can be calculated in the frequency domain as

 e (kL)

0

=Gx2L (kL)

−GF−1

F
 w (kL− L)

0

 ◦ F [n2L (kL)]

 . (5.6)

The block equations (5.1), (5.3) and (5.6) can then be used in lieu of the time domain

equations (3.2) and (3.4) as the updates for the filters. The main disadvantage of the fre-

quency domain algorithm over the time-domain algorithm is that it does not converge quite as

quickly, though further adaptations can be made to reduce this decrease in performance [23].

5.2 Frequency Domain SAD

Similar to how a frequency domain implementation can be found for the LMS algorithm, the

frequency-domain symmetric adaptive decorrelation (FD-SAD) algorithm can also be derived

for the SAD algorithm.

In order to implement the algorithm in the frequency domain, it must first be converted

to a block algorithm that is only updated once every L iterations, where L is the filter order.
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(3.28) therefore becomes

wi,j (kL+ L)=wi,j (kL)− µ

σ2
∇wi,j (kL) (5.7)

where

∇wi,j (t)=
L−1∑
l=0

yi (t+ l)yj (t+ l) (5.8)

The update equation in (5.7) can be rewritten in the frequency domain as

Wi,j (k + 1)=Wi,j (k)− µ

σ2
∇Wi,j (k) (5.9)

where

Wi,j (k)=F

 wi,j (kL)

0L


∇Wi,j (k)=F

 ∇wi,j (kL)

0L


where F is the DFT matrix.

Because the update term in (5.8) is acquired by finding the correlation between yi (t) and

yj (t), the frequency domain representation is found by element-wise multiplication in the

frequency domain then zero-padding it in the time domain

∇Wi,j (k)=F
[
G2LF

−1
{
G2LYi (k) ◦Yj (k)

}]
(5.10)

where ◦ represents element-wise multiplication, the overline denotes complex conjugation
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which maps to time-domain reversal, the frequency-domain output vector

Yi (k)=F

 yi (kL)

yi (kL− L)

 , (5.11)

and the zero padding matrix

G2L=

 IL×L 0L×L

0L×L 0L×L


is used to prevent circular correlation.

Therefore, using (5.9) and (5.10) the frequency domain update equation is found.

A similar approach can also be taken to find the filter outputs yi (kL), and with the

definition in (5.11) find Yi (k).

yi (kL)=



∑N−1
l=0 xT

l (kL)wi,l (kL)∑N−1
l=0 xT

l (kL− 1)wi,l (kL− 1)

...∑N−1
l=0 xT

l (kL− L+ 1)wi,l (kL− L+ 1)


(5.12)

where

xl (kL)=

[
xl (kL) xl (kL− 1) . . . xl (kL− L+ 1)

]T
.
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Under the assumption that

wi,j (t)=wi,j (t− 1)

=wij (t− 2)

...

=wi,j (t− L+ 1) (5.13)

we can simplify (5.12) to

yi (kL)=
N−1∑
l=0



xT
l (kL)

xT
l (kL− 1)

...

xT
l (kL− L+ 1)


wi,l (kL) (5.14)

This can be obtained in the frequency domain using the following sum

 yi (kL)

0L

=G2LF
−1

[
N−1∑
l=0

Wi,l (k) ◦Xl (k)

]
(5.15)

where

Xl (k)=F

 xl (kL)

xl (kL− L)



5.3 Comparison to the Time Domain Implementation

There is one fundamental difference between the time-domain and the frequency-domain

implementations of the SAD algorithm. This is the assumption that while the separating
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Program 3 The FD-SAD Pseudocode

◦ denotes entry-wise multiplication.
The overline denotes complex conjugation.
n . the number of observed signal samples
N . the number of observed signals
L . the filter size
x1, x2, . . . , xN . the observed signals
Wi,j . the length 2L vectors that contain the filter weights initialized to zero

for k = 0→ n
L
do

for i = 1→ N do
xi (k) = the next L samples of xi in reverse order.

Xi (k) = FFT

[
xi (k)

xi (k − 1)

]
end for
for i = 1→ N do

tmp2L =
[

0 0 · · · 0
]T

.
for j = 1→ N, j 6= i do

tmp2L+ = Wi,j (k) ◦Xj (k)
end for[
yi (k)
v

]
= FFT−1 [tmp2L]

end for

for j = 1→ N do

Yj (k) = FFT

[
yj (k)

yj (k − 1)

]
end for
for i = 1→ N do

Y′i (k) = FFT

[
yi (k)
0

]
for j = 1→ N, i 6= j do
∇Wi,j (k) = Y′i (k) ◦Yj (k)
Wi,j (k + 1) = Wi,j (k) + µ∇Wi,j (k)[
wi,j (k)

v

]
= FFT−1 [Wi,j (k)]

Wi,j (k) = FFT

[
wi,j (k)

0

]
end for

end for
end for
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filters w1 and w2 do change over L samples in the time-domain implementation, this change

is insignificant enough that they can be assumed constant, as described by Equation (5.13).

In [101], Widrow et al. show the calculation of the time constant for convergence of an

LMS filter. Because of its similarity to LMS, the SAD algorithm has comparable calculations

for the time constant.

The LMS filter (and therefore also the SAD algorithm) is based on the assumption that

the mean square error can be approximated by the instantaneous squared error. This results

in nonstationarity of the performance surface even for a stationary system. Although the

LMS algorithm converges in mean to the optimal solution, if µ is chosen too high, then a

significant amount of noise is introduced into the system due to convergence to the shifting

minimum. This was termed the misadjustment of the LMS filter by Widrow et al. in [101].

It is therefore important to choose µ such that this gradient noise is significantly reduced.

In [101], Widrow et al. define the misadjustment as

M,
average excess mean square error

minimum mean square error
(5.16)

and suggest that a value of ten percent is a suitable value for most engineering applications.

In order to obtain such a value, the number of samples required for the transients to settle

needs to be roughly ten times as long as the filter size, meaning that, although w1 will change

over L time samples in the time-domain symmetric adaptive decorrelation (TD-SAD) algo-

rithm, it will not be enough to significantly compromise the performance of the frequency

domain implementation. However, it is quite possible to choose µ such that the system is

stable, but the time taken for the outputs to converge is comparable to the time memory of
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the filters.

If µ is chosen such that it is on the upper end of this limit, stability is ensured but the

assumption that the filters w1 and w2 do not change significantly over time cannot be justi-

fied. However, in these cases, the only detrimental effect on the frequency domain algorithm

will be a slight increase in convergence time over the time domain implementation, not in

the degree of separation.

5.4 Computational Cost

A major advantage in processing the signals in the frequency domain is that there can be

significant computational savings both in the filtering of the signals and in the updates. We

will consider both the time domain and the frequency domain implementations and compare

the number of additions and multiplications required for each algorithm.

For the time-domain case, there are (N − 1) separation filters for every source to separate,

and therefore as many update equations. For each update equation, (assuming µ/σ2 is a

constant), there are

L+ 1 multiplications

and each demixing filter requires

L multiplications

to produce the separated outputs.
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Therefore, L iterations of the time domain demixing system requires

L (N − 1) (2L+ 1) multiplications

for every input. More detail on this derivation can be found in Appendix C.1.

For the frequency domain algorithm, it is important to keep in mind that each filter needs

to be twice the length of the time domain filters to combat problems arising from circular

convolution. Examining the code in Program 3, it can be seen that there are 2N + 2 FFTs

per input. Assuming real signals [102] each requires

2L log2 L− 5L+ 6 real multiplications

Aside from these multiplications, there are also 4L (N − 1) complex multiplications and

L real multiplications per output, which equates to a total of

2 (2L log2 L+ 3L+ 6) (N + 1)− 31L

real multiplications

per output. See Appendix C.2 for more details on how this was attained.

Although the frequency domain method has more multiplications per update of the

demixing filter coefficients, it should be noted the update only needs to occur once per

L time samples.

Table 5.1 shows a comparison of multiplications required for two sources for varying filter

lengths, and table 5.2 shows the ratio of multiplications required in the frequency domain
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Tab. 5.1: Multiplications Required for N = 2

Filter order TD-SAD FD-SAD
8 0.32 ×103 0.44 ×103

16 1.22 ×103 1.19 ×103

32 4.61 ×103 3.08 ×103

64 1.77 ×104 0.76 ×104

128 6.86 ×105 0.18 ×105

2048 1.69 ×107 0.05 ×107

Tab. 5.2: FD-TD Ratio of Multiplications Required

Filter order 2 sources 4 sources 8 sources 16 sources
8 1.38 1.19 1.13 1.10

16 0.98 0.77 0.70 0.67
32 0.67 0.49 0.43 0.41
64 0.43 0.30 0.26 0.24

128 0.27 0.18 0.15 0.14
2048 0.029 0.018 0.015 0.013

to those required in the time domain.

From these tables, it can be seen that not only does the relative computational efficiency

of the FD-SAD algorithm increase as the separating filter order increases, it also increases

as the number of sources increases. The primary reason for this is that during the filter-

ing stage of the algorithm, the time domain implementation requires N (N − 1) convolution

operations, but the frequency domain implementation only requires N FFTs. This is clear

from the pseudocode in Program 3.

5.5 Simulations

Simulations were undertaken in order to compare the difference in performances of the time-

domain and the frequency-domain SAD algorithms. Although it is shown in section 5.4 that

the separating filters need to be at least 32 taps long for any improvement in computational
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Fig. 5.1: The filter weights after 256 time samples with µ = 0.02.

complexity for 2 sources, for clarity’s sake we will only show here filters of length 8. Other

simulations have shown that the algorithm works equally well for separating filters beyond

32 taps. The data and adaptive step size µ were identical for both the time domain and the

frequency domain algorithms.

Figure 5.1 shows the convergence of the tap at index 1 of w1 over 256 time samples for

both algorithms, and figure 5.2 shows the entire filter for both algorithms after 256 time

samples. From these figures one can soon see that although the convergence of the frequency
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Fig. 5.2: The convergence of the tap at index one over 256 time samples when µ = 0.02.

domain implementation of the SAD algorithm does lag the time domain implementation by

approximately 8 samples, this has very little effect on the actual filter value. This is because

µ = 0.02 has been chosen such that the number of iterations for convergence is far higher

than the number of taps in the filter. Figure 5.3 shows that when the demixing filters con-

verge, they both closely match the desired solution.

In order to show the problem that arises due to the assumed semi-stationarity of the

demixing filters, the step sizes µ1 and µ2 for both algorithms were set to 0.2. It was found
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Fig. 5.3: The filter weights after 32 000 time samples with µ = 0.02.

that the system lost stability when the adaptive steps sizes were increased to more than 0.5,

so a value of 0.2 ensured stability while illustrating the problem described in section 5.3.

From Figure 5.4, one can see that the frequency domain algorithm lags the time domain

algorithm by roughly 8 samples, similar to the case for a small adaptive step size (Fig. 5.1).

In contrast to the earlier example, the difference between the values of the weights for the

time-domain and frequency-domain algorithms is substantially larger. This can be seen in

Fig. 5.5, where the time domain result does appear to match the desired result better than
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Fig. 5.4: The convergence of the tap at index one over 32 time samples when µ = 0.2.

the frequency domain algorithm. However, figure 5.6 shows that when such an adaptive step

size is chosen, the misadjustment (as described in [101]) means that there is still a significant

error in the values of the filter taps long after the algorithms should have converged. The

case as described in section 5.3 where the time domain implementation would have a signif-

icant advantage over the frequency domain implementation is therefore impractical from a

convergence standpoint.

One case where the time-domain implementation still has an advantage over the frequency-
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Fig. 5.5: The filter weights after 32 time samples with µ = 0.2.

domain implementation is with applications where the separated signals are needed in real-

time. Because of the block structure of the frequency domain implementation, the outputs

are delayed by L samples, whereas in the time domain implementation the outputs are only

delayed by 1 sample. For example, with an audio signal sampled at 44.1 kHz and filters

of size 1024, the lag for the frequency domain algorithm will be 23 ms compared to the

time-domain’s 23 µs. Therefore the frequency-domain SAD algorithm may be ill-suited for

some time-critical applications.
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Fig. 5.6: The filter weights after 32 000 time samples with µ = 0.2.

5.6 Conclusion

Because of the computational efficiency of the FFT, a frequency-domain implementation

of the SAD algorithm is proposed which is more efficient than the time-domain equivalent,

especially for higher-order separating filters and a greater number of sources. It was found

that the frequency domain implementation was more efficient than the time-domain imple-

mentation when the filters were at least 16 samples long when separating convolutely mixed

sources. Simulations showed that there is no significant difference in separation performance
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between the time domain and frequency domain implementations.

This, however introduces an input-output lag that means that the straight FD-SAD may

be unsuitable for time-sensitive applications. For this reason, we investigate a hybrid method

in the next chapter in order to reduce this lag without significantly affecting computational

efficiency.
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6. HYBRID FREQUENCY-DOMAIN TIME-DOMAIN SAD

A major advantage of the frequency-domain symmetric adaptive decorrelation (FD-SAD)

algorithm over the time-domain symmetric adaptive decorrelation (TD-SAD) algorithm is

that it is substantially more computationally efficient. However, it has the downside that

the outputs lag the observed signals by L samples, whereas with the TD-SAD, the lag is

only dependent on the speed of whatever is processing the signals. Therefore the TD-SAD

is far better suited to real-time applications that need the output as early as possible. For

example, with live music reproduction, even an echo that arrives greater than 20 ms after

the line of sight signal can be intolerable for the audience [103]. With a sample rate of 44100

kHz a filter of length 1024 means that that the loudspeakers are reproducing the audio 23

ms after receiving it. This could potentially disconcerting to the audience, and even more

so to the performers so should be avoided.

In this chapter is proposed an adaptation to the symmetric adaptive decorrelation (SAD)

algorithm that exploits the fast Fourier transform (FFT) to create an algorithm that is more

efficient than the TD-SAD but does not suffer from the same lag that the FD-SAD does.

It would therefore be suitable for real-time applications as it has increased computational

efficiency over the TD-SAD, but the delay from the observed signal to the output is only

dependent on the speed of the processor.



6.1 Background Information

The hybrid SAD algorithm in this chapter is based heavily on the ordinary SAD algorithm,

but is more computationally efficient than the time-domain counterpart (chapter 3) without

having the delayed output associated with the FD-SAD algorithm (chapter 5).

The primary advantage of performing the separation in the frequency domain is that

there is potential for significant computational savings. The main cause of these savings is

due to the fact that the convolution and correlation operations in the time domain map to

element-wise multiplication in the frequency domain. For the SAD algorithm, there are two

instances where the computational savings of this transformation could be advantageous.

The first is in the convolution operation for the filtration of each observed signal through

each separating filter, and the second is in the correlation operation in the actual update

equations.

However, there are also a few disadvantages in implementing the algorithm in the fre-

quency domain. One disadvantage is due to the block processing delaying the output by up

to the block size. This may become a problem where the outputs are needed in real-time.

Another problem is that the upper limit on the adaptive step size µ must be scaled down

by a factor of L. This results in slow convergence if the observed signal correlation matrix

has a large eigenvalue spread.

In this chapter, we propose a hybrid frequency-domain time-domain approach that over-

comes the first problem by performing the filtering in the time domain but the update in

the frequency domain. While this approach is marginally more computationally expensive
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than the pure frequency domain approach, it is significantly less computationally expensive

than the time-domain approach without being subject to the lag associated with the pure

frequency domain approach. Therefore, such a hybrid approach would be suitable for appli-

cations such as live sound mixing, but still have substantial computational advantages over

a purely time-domain approach.

6.2 The Hybrid Algorithm

The block time-domain update equation is given in (5.7) as

wi,j (kL+ L)=wi,j (kL)− µ

σ2
∇wi,j (kL) (6.1)

where

∇wi,j (t)=
L−1∑
l=0

yi (t+ l)yj (t+ l) . (6.2)

However, this is only the update for the filter itself, not the outputs. Therefore a trivial

solutions would be to update the demixing filters on a block-by-block basis using frequency-

domain correlation, but filtering the observed signals at every sample. This would allow

for some of the computational savings available to the frequency domain components of the

hybrid algorithm, without introducing the length-L lag. Therefore the block output equation

in (5.15) can be replaced with the time domain outputs as described in (3.15)

yi (t)=
N−1∑
j=0

xT
j (t)wi,j (t) (6.3)
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As the filter size begins to increase, a larger and larger percentage of the computing

requirements is needed for the filtering rather than the update because the update becomes

more efficient for larger filter sizes. In the TD-SAD algorithm, roughly half of the comput-

ing resources are required for the filtering, and the rest are required for the update, but the

long-filter efficiency of the new algorithm means that this is not the case. As one would

expect, as the filter size increases, the computational requirements of the hybrid algorithm

as it stands has a lower bound of half the requirements of the time-domain algorithm.

Another interesting point is that the FD-SAD algorithm actually increases efficiency over

the TD-SAD algorithm as the number of sources to separate increase. The main reason for

this is that there are N (N − 1) convolution operations required for the filtering portion of

the algorithm, but because the frequency-domain forms of the input signals can be stored,

only 2N FFTs are required, cutting down substantially on the computational requirements

as the number of sources increase. Due to the fact that the suggested algorithm only exploits

frequency domain efficiencies for the update of the adaptive filter, the increase in efficiency

as the number of sources increses is not nearly as significant as that for the FD-SAD. If it is

possible to utilize some frequency domain techniques for the filtering as well as the update,

the computational savings for the hybrid algorithm would be even more substantial. These

savings would not only be seen as the demixing filter sizes increase, but also as the number

of sources increase.

In [4], Gardner compares filtering in the frequency domain to filtering in the time domain

and proposes a novel algorithm that utilizes the FFT while suffering from no input-output

lag. He points out that because the convolution operation is a linear operation, and the

discrete Fourier transform is also a linear operation, the convolution operation can be par-
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Fig. 6.1: The hybrid frequency-time domain filter.

tially computed in the time domain and partially computed in the frequency domain, then

combined later to give the full convolution. However, Gardner’s algorithm was designed for

simulation, which involves static filters. Because SAD algorithm is an adaptive filter, further

investigation is needed to ensure that his proposals can still be used.

In fact, for the straight TD-SAD, because the filter is getting adjusted for every time-

sample, these frequency-domain techniques can no longer apply, unless the TD-SAD algo-

rithm is first converted into a block algorithm. In which case it is mathematically identical

to the hybrid algorithm, but with greater computational requirements for the update.

Consider Fig. 6.1, where the observed signal x, output y and demixing filter w are all

divided into blocks of size K, where K is the size at which convolution in the frequency

domain becomes more efficient than direct convolution. This will normally occur with a

block size of 32 or 64. The double subscript wi,j indicates that it is the block that is made

up of all size-K blocks from wi to wj.

The output y (t) can be found by the following convolution

yi (t) = w0,L−K
K
∗ xi− L

K
,i (t) ∀i (6.4)
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where ∗ denotes the convolution operation.

Because of the linearity of the convolution operation, and for simplicity taking the case

of i = 0, (6.4) can be decomposed to the following sum

y0 (t)=w0 ∗ x−1,0 (t) + w1 ∗ x−2,−1 (t) + . . .+ wL−K
K
∗ x− L

K
,K−L

K
(t) . (6.5)

Each of these individual convolutions do not have to be calculated the same way. If K

is the number at which convolution in the frequency domain becomes more efficient than

convolution in the time domain, then it is desirable to do as many of these convolutions as

possible in the frequency domain. To have zero lag, the first convolution must be done in the

time-domain, as the block x0 (t) is not known until after y0 (t) is needed. However, all other

convolutions can be completed in the frequency domain, increasing computational efficiency.

As the size of the block increases, the computational savings in using frequency-domain

convolution also increases. Using this, (6.5) can also be calculated more efficiently.

y0 (t)=w0 ∗ x−1,0 (t)

+w1 ∗ x−2,−1 (t)

+w2,3 ∗ x−4,−2 (t)

+w4,7 ∗ x−8,−4 (t)

+ . . .

+w L
2K

,L−K
K
∗ x− L

K
,−L
2K

(t) (6.6)
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Note that for all of the convolutions in (6.6), only K samples of the result will be needed.

However, many of the unused samples will be needed in the calculation of future blocks. For

example in calculating the term

w2,3∗x−4,−2,

one can actually calculate the following

w2,3∗x−4,−1,

but use the following K samples of the result to aid in the calculation of y1 (t), thus increas-

ing computational efficiency further. The pseudocode for the hybrid algorithm is shown in

Appendix B.4.1.

6.3 Experiments

6.3.1 Comparison between SAD approaches

In order to evaluate the efficacy of the hybrid algorithm in comparison to the time domain

and frequency domain algorithms, all three algorithms were used to increase the signal to

noise ratio (SNR) of a ten-channel live recording that was 2 minutes, 40 seconds long. The

channels were as follows:

1. Bass drum

2. Snare drum

3. Hi-hat

4. Hanging tom

5. Floor tom
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6. Bass guitar

7. Electric guitar

8. Backing vocal

9. Backing vocal

10. Lead vocal

and the separating filters were all of length 1024, as smaller filter sizes did not perform as

well, but there was no significant increase in performance for larger filter sizes.

Because the individual components of each channel were not available (as in chapter 3)

the SNR could not be directly calculated, but had to be estimated. The SNR formula in

(3.51) is given as

SNR = 10 log10

(
PS

PN

)
(6.7)

The power of the signal PS and the power of the noise PN have to be estimated by taking

regions that are approximately noise-free (for PS) and signal-free (for PN). While it was

easy to find periods where the observed signal was signal-free, it was more difficult to find

regions that had only the desired signal with no noise. What compounded this problem was

the fact that both the noise and desired signal were nonstationary, so even using the noise

power from the signal-free sections as an estimate of the noise component of the power when

there is also a desired signal component could not be completely justified.

However, because the main purpose of these experiments is to compare the performance

of the three different algorithms against each other, rather than with the variety of other

algorithms available, the absolute value of the SNR is less important that the consistency of

its calculation between the three cases. As a result, for the purposes of this evaluation, we
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Fig. 6.2: The desired component of the hanging tom microphone.

define the approximate SNR as

SNRapprox = 10 log10

(
PS+N,1

PN,2

)
(6.8)

where PS+N,1 is the combined power of the signal and noise at time t1 and PN,2 is the power of

only the noise at time t2, and t1 and t2 are chosen such that the desired signal is the primary

component at t1, and there is no desired component at t2. The power of the observed sig-

nals and outputs was calculated using exponential smoothing with a smoothing factor of 0.01.

Two of the ten channels will be analysed; a backing vocal microphone, and the hanging

tom drum microphone. The backing vocal microphone selected was the vocal microphone

that audibly had the most crosstalk from the other instruments, primarily the drums. The
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Fig. 6.3: A signal free portion of the hanging tom microphone.

tom drum microphone was chosen because it was one of the microphones most dissimilar

to the vocal microphone; its close proximity to the other drums meant that the SNR was

substantially lower, and also the time taken for the noise from the other undesired drums to

reach it was far less, meaning that earlier taps of the demixing filters would be used.

Figures 6.2-6.5 show the powers of short selections of output signals for two different

channels of the demixing system. Fig. 6.2 shows a sample of the exponentially smoothed

power of the tom microphone where the main component of the signal is the tom drum itself.

Although this only actually shows the observed signal, the outputs of all of the algorithms

were visually indistinguishable from it. Due to the high SNR of the observed signal, this

is actually a good sign as it indicates that the desired component of the output is a fairly

close representation of the desired component of the observed signal. This would be a highly
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Fig. 6.4: The desired component of the backing vocal microphone.

desirable characteristic of an algorithm that is used for sound reproduction.

Fig. 6.3 shows a portion of the tom drum channel where there is no desired component.

Again, because the algorithms behaved so similarly, there was no reason to put all of them

on the same graph, as it would be nearly impossible to differentiate them. Therefore, only

the observed signal and output powers have been plotted.

Fig. 6.4 and 6.5 show the desired and undesired powers respectively of the backing vocal

microphone. There is not quite the same attenuation in the undesired component when

compared to the tom microphone, but it is still fairly significant. There are a couple of

possible reasons for this. The power of the undesired component was far less significant at

the backing vocalist’s microphone than what it was at the tom microphone. This would have
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Fig. 6.5: A signal free portion of the backing vocal microphone

Tab. 6.1: Comparison of SNRapprox of a tom drum microphone

Input 6.33 dB
TD-SAD 11.79 dB
FD-SAD 11.77 dB

Hybrid SAD 11.77 dB

contributed toward slower convergence of the algorithm, as its convergence rate depends on

the power of the observed signals. Also, when listening to the track, it could be heard that

the most significant undesired noise came from the drums. The time lag for this would

be more significant than with the tom drum’s microphone, and the separating filters were

limited to 1024 taps, which may not have been enough to remove all of the drum’s residual

reverberation.
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Tab. 6.2: Comparison of SNRapprox of a backing vocal microphone

Input 18.59 dB
TD-SAD 20.98 dB
FD-SAD 20.96 dB

Hybrid SAD 20.96 dB

Tables 6.2 and 6.1 show the SNRapprox of the observed signal and outputs for each of the

algorithms. This was calculated using (6.8) where the power of the signal plus noise was

taken at the peak at 98.2s for the tom microphone, and the peak at 94.9s for the backing

vocal microphone. The power of the noise alone was taken as the peak at 68.9s for the tom

microphone and at 19.2s for the backing vocal microphone. These tables show that there is

only a trivial difference between the performance of the algorithms.

6.4 Computational Cost

In Appendix C.1, it is shown that the computational cost for L updates of the TD-SAD

algorithm with N observed signals and demixing filter length L is

LN (N − 1) (2L+ 1) real multiplications (6.9)

per observed signal, whereas the equivalent for the FD-SAD algorithm is shown in Ap-

pendix C.2 to be

2 (N + 1) (2L log2 L+ 3L+ 6)− 31L real multiplications (6.10)

per observed signal.
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Tab. 6.3: Multiplications Required for N = 2

Filter order TD-SAD FD-SAD Hybrid SAD
16 1.22E3 1.19E3 1.23E3
32 4.61E3 3.08E3 3.18E3
64 1.77E4 0.76E4 0.79E4

128 6.86E4 1.82E4 1.87E4
256 2.69E5 0.42E5 0.44E5
512 1.06E6 0.10E6 0.10E6

1024 4.23E6 0.22E6 0.22E6
2048 1.69E7 0.05E7 0.05E7

According to the calculations shown in Appendix C.3, the algorithm needs

2

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+ (N − 1)

log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+8NL log2 L+

(
K̂ − 4 log2 K̂ − 2

)
NL

−4L log2 L−
(
K̂ − 4 log2 K̂ + 7

)
L+ 12N real multiplies (6.11)

for L time samples of each observed signal, where K is the block size at which frequency-

domain convolution becomes more efficient than time-domain convolution. It was found that

depending on L and N , this was either 8, 16, or 32. Because there was little difference, we

will assume that K = 16. K̂ is used to denote the minimum of K and L.

Table 6.3 shows a comparison of the multiplications required for varying filter lengths

when separating two sources. Even for small filter sizes the hybrid SAD algorithm shows

similar computational requirements to the TD-SAD algorithm. As the filter sizes get larger,

the hybrid SAD algorithm nearly matches the FD-SAD algorithm in computational com-

plexity.
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Tab. 6.4: Ratio of Multiplications Required

Length 2 sources 4 sources 8 sources
FD/TD Hyb/TD FD/TD Hyb/TD FD/TD Hyb/TD

16 0.98 1.01 0.77 0.93 0.70 0.90
32 0.67 0.69 0.49 0.61 0.43 0.58
64 0.43 0.45 0.30 0.38 0.26 0.36

128 0.27 0.27 0.17 0.23 0.15 0.22
256 0.16 0.16 0.10 0.13 0.09 0.13
512 0.09 0.09 0.06 0.08 0.05 0.07

1024 0.05 0.05 0.03 0.04 0.03 0.04
2048 0.03 0.03 0.02 0.02 0.01 0.02

Table 6.4 shows the ratios of multiplications required for each of the algorithms against

the TD-SAD algorithm for varying filter sizes and number of observed signals. This table also

show that it is for the longer filter sizes that the computational savings of the hybrid algo-

rithm start to take effect. It also shows that as the number of sources increase the efficiency

(in comparison with the TD-SAD algorithm) increases. While the increase in efficiency as

the number of inputs increases does not match the increases seen for the FD-SAD algorithm,

they are still significant. The reason for this is that for the O (N2) convolutions required for

the filtering portion of each algorithm, the FD-SAD algorithm only needs O (N) FFTs to

transform the observed signals into the frequency domain. The hybrid algorithm also only

needs O (N) FFTs to transform the observed signals into the frequency domain. However,

the FD-SAD algorithm already has all of the O (N2) filters in the frequency domain from the

update portion of the algorithm. Because the hybrid SAD algorithm cannot use the length-

2L frequency domain representations of the demixing filters, it also must perform O (N2)

FFTs to transform the filters to the frequency domain for frequency-domain convolution.

Both algorithms require O (N2) FFTs for the update. For the filtering portion of the al-

gorithm, the FD-SAD algorithm only requires O (N) FFTs, while the hybrid SAD algorithm
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requires O (N2) FFTs.

6.5 Future Work

One problem with the hybrid algorithm is that it does not have a constant computational

load. For example, it needs to be able to calculate the FFT for the previous block before the

first sample of the next block is actualy received. This means that, while it is substantially

more efficient overall than the time-domain approach, the computational load changes with

time. To run such an algorithm on low-specification hardware would require an input-output

delay due to that fact that it wouldn’t be able to reliably calculate the output within one

sample. There would be two ways to approach this problem.

The first would be to actually introduce an input-output delay that gave time for the

hardware to perform the necessary computations. This approach would still reduce the com-

putational requirements of the algorithm when compared to the time-domain approach, but

it would be at the cost of an input-output delay.

The second (and more robust) approach would be to increase the minimum subblock

size [4]. This would slightly increase the overall computational complexity of the algorithm,

but also gives more time during computationally-intensive periods to perform the necessary

calculations.

A fundamental flaw with the current approach is that SAD is one of the earlier attempts

to achieve blind source separation (BSS). As a result, its separation performance in com-

parison with more modern algorithms is somewhat lacking. Due to its reliance on only
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second-order statistics (SOS), and its basis in the least mean squares (LMS) algorithm, it

is a good starting point, as, in comparison with more recent attempts at BSS, it tends to

be quite computationally efficient. If computational efficiency is the desire, this justifies its

use as a test-bed for future approaches. The first step in development of a better approach

would be to find a more recent algorithm that also does its update and filtering in the fre-

quency domain and has a computational cost on the same order as SAD, but separates with

markedly better results.

One such approach could be Triple-N ICA for Convolutive mixtures (TRINICON) [1],

which is a BSS method that can also be based solely on SOS. TRINICON is a method

that exploits the three ‘N’s (non-stationarity, non-Gaussianity, and non-whiteness) in an

attempt to improve separation performance. The following section shows a comparison of

TRINICON and SAD, with respect to separation performance, convergence rate, and com-

putational complexity.

6.5.1 Experimentation

Because it is a more recent approach, and is fairly well-known, TRINICON was deemed a

good choice to be a comparison. Also, due to the fact that it can be implemented using

solely SOS, this similarity to SAD made it a good option as an alternative algorithm. The

implementation itself was made available by Anderson et al. [47], and was run using MAT-

LAB.

The experimentation for comparing the proposed algorithm with TRINICON was com-

pleted on audio samples obtained by Sawada et al. in [104]. These samples included separate

recordings for each channel; there was a file for each component of every observed signal.
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Because of the restriction on SAD that each source must be the closest source to a unique

receiver, this allowed the reconstruction of a mixing system with an arbitrary distance be-

tween microphones. For the case of this experiment, the distance chosen was one meter.

This meant that there could be an accurate calculation of the SNR, as each output could

be decomposed into components that were dependent only on individual sources. Therefore

the equation in (6.7) could be used directly, rather than the approximation in (6.8).

Whereas the previous comparison between the different hybrid SAD approaches could

simply use the same step size, the choice of step sizes for the comparison between hybrid

SAD and TRINICON may greatly influence the results. There needs to be a method of

choosing step sizes which lessens the effect of its choice.

For this reason, the separation of the mixed signals was performed using both the hybrid

SAD and TRINICON approaches, with varying step sizes. The increase in SNR for each

case was measured. It was found that the increase in SNR hit an upper limit, and as the

step size was increased further, the system lost stability. The step size was then taken as

the value which gave a maximum SNR near this limit, and had a high convergence rate, but

did not have any visual signs of instability.

Both algorithms were passed multiple times over the mixture, each time initializing the

filters to the final values of the previous run. The SNR was calculated for each epoch, and

the results are plotted on Fig. 6.6.

This shows how TRINICON produces far better results than the proposed algorithm.

The increase in SNR is on the order of 20 dB, whereas for the hybrid SAD algorithm it is

on the order of 5 dB. From this graph, the only apparent advantage that the hybrid SAD
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Fig. 6.6: The increase in SNR for repeated runs over a sample mixture.

approach has is that it appears to converge to its final value more quickly, especially right

at the beginning. With informal listening tests, the TRINICON method also appeared to

produce markedly better results.

It is important to note, however, that the hybrid SAD approach is a truly real-time

approach. Both methods exploit the computational advantages provided by the FFT algo-

rithm, but it is only with TRINICON that there is an input-output delay.

It is, however, feasible that the same frequency-domain adaptations made to the SAD

algorithm to eliminate the input-output delay could also be made to the TRINICON algo-

rithm. This would require further investigation.
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Fig. 6.7: Multiplications required for separating two sources.

6.5.2 Computational Complexity

In order for an approach such as TRINICON to be viable as an alternative to SAD as a basis

for these frequency domain adaptations, its computational complexity needs to be roughly

the same as that of FD-SAD. In this section, we show that it is.

The formulae for calculation of computational complexity for both FD-SAD and hybrid

SAD are given in (6.10) and (6.11). For TRINICON, the computational complexity as

calculated in Appendix C.4 is

6LN2 log2 L+ 81LN2 + 18N2 − 2LN log2 L− 43LN − 6N real multiplies (6.12)
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Fig. 6.8: Multiplications required for separating with filter length = 1024.

The computational complexity for TRINICON was higher than that of both the FD-SAD

and the hybrid SAD. Fig. 6.7 shows the number of multiplications required as the filter size

increases for all three. This was based on a mixing system with two sources. Trinicon re-

quires the most computations, but it still appears to be on the same order as both FD-SAD

and hybrid SAD.

Fig. 6.8 shows the number of multiplications required for all three algorithms as the

number of sources increase. This was calculated using a filter length of 1024. Again, TRINI-

CON requires the most computations, however, we see the gap between FD-SAD and hybrid

SAD decrease as the number of sources increases. If a hybrid TRINICON approach was

constructed, one might anticipate to see a similar merging of computational complexity of

the hybrid TRINICON and pure frequency-domain TRINICON implementations.
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6.6 Conclusion

The hybrid frequency-domain time-domain SAD algorithm exploits some of the computa-

tional efficiency of the FD-SAD algorithm without having the associated delay in output.

This makes it more relevant for time-critical applications than the FD-SAD algorithm, while

being more computationally efficient than the TD-SAD algorithm. Experiments have shown

that there is no decrease in separation performance, and a computational complexity anal-

ysis shows that it nearly matches the increase in efficiency seen by the FD-SAD algorithm,

especially when the number of sources to separate is small. Future work could include the

incorporation of frequency-domain techniques investigated in this chapter to other, more

modern algorithms (for example, TRINICON).
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7. CONCLUSION

This work describes a number of extensions to the symmetric adaptive decorrelation (SAD)

algorithm. The first extension focuses on the scalability of the algorithm by increasing the

number of inputs and outputs. Constraints that were on the two-input two-output (TITO)

system no longer hold for the multiple-input multiple-output (MIMO) case, so a new set

of constraints was defined. An analysis was undertaken on the convergence properties of

the algorithm which ensures that stability is maintained if the new constraints were met.

Simulations were run to check the effectiveness of the multi-channel algorithm, and these

simulations showed good increases in signal to noise ratio (SNR).

A SAD algorithm based on vector least mean squares (VLMS) is also described, which

increases in computational efficiency as the number of sources increase. It splits the sources

using a divide-and-conquer approach similar to how the fast Fourier transform (FFT) al-

gorithm achieves its computational efficiency. Simulations again show increases in SNR at

least as substantial as the scalar SAD algorithm.

The second aim of this work was to provide adaptations to the algorithm that increased

its computational efficiency with applicability to real-life situations. The main cause of the

increases in efficiency was due to frequency domain processing. Fast convolution and fast

correlation could be achieved by exploiting the FFT, which the transforms relatively com-

putationally intensive convolution and correlation operations into the far simpler operation



of element-wise multiplication.

The straight frequency-domain symmetric adaptive decorrelation (FD-SAD) algorithm

has a significant downside, however. While the time-domain symmetric adaptive decorre-

lation (TD-SAD) algorithm is substantially more computationally intensive, especially for

longer filter sizes, it is possible to obtain the output with minimal lag to the input. However,

because it is block-processed, the FD-SAD algorithm must wait for the entire block of input

data to be processed before it can obtain the separated signals. This could potentially be a

problem in real-time applications.

The first step in overcoming this is through the realization that it is only the filtering

portion of the SAD algorithm that means that the output is delayed. The update itself has

no bearing on the delay so can successfully use blockwise processing without any lag. For

the filtering portion of the algorithm, the filter can be divided up into subblocks of increas-

ing length and still use frequency domain techniques on most of these subbblocks without

introducing any delay. This new hybrid algorithm has a computational complexity that is

only slightly greater than the FD-SAD, but has the potential to be used in a real-time en-

vironment.

All three algorithms were run on real recordings, and the results compared. There was no

discernible difference in separation performance, but as expected, the two latter algorithms

completed substantially more quickly.

Possible future work could include combining the frequency-domain adaptations with

the VLMS adaptations in order to increase the performance of the algorithm even further.

Because the VLMS primarily gets an increase in computational efficiency as the number of
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sources increase (rather than an increase in the length of the filters), it would be of interest

how this translated when also using the frequency domain techniques which see performance

gains for increases in both. It would also give the algorithm a more modular structure, which

would give greater flexibility in real environments.

Another significant aspect of the hybrid approach is that, although it can have no lag,

it does not have a constant computational load. The responsibility of this irregular load

is primarily on the update portion of the algorithm. When the final sample of a block is

received, a FFT needs to be performed on that block before the first sample of the next block

is received. If it is possible to filter the signal with a method similar to how the update is

performed for the hybrid algorithm, the computational load would likely be more uniform.

This would also offer the opportunity to update some taps in the filters more regularly than

once every block, which could potentially improve convergence properties.

Now that the basis for frequency-domain adaptations to a blind source separation (BSS)

algorithm has been established, these techniques could also be extended to other frequency-

domain algorithms. Triple-N ICA for Convolutive mixtures (TRINICON), for example, is a

BSS approach that can also be based on second-order statistics (SOS), thus the convolution

operations in the time domain can also be calculated using element-wise multiplication in

the frequency-domain. This particular approach could also utilize the proposed adaptations

to allow an efficient algorithm with zero input-out lag, and potentially have significantly

greater performance than is acheived by SAD.

One application which could use such hardware would be live sound mixing. The main

constraint of the SAD algorithm is that each source must be the closest source to a unique

receiver, and for live sound mixing this requirement will almost always be met. Because
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the hybrid algorithm is substantially more efficient than the TD-SAD algorithm, it would

provide a means of separation that would require less expensive hardware. And although

not quite as efficient as the pure frequency domain algorithm, the hybrid algorithm does not

suffer from the end-to-end lag, making it far more suitable for a real-time application such

as live sound mixing. However, in order to have a truly real-time implementation on low-

specification hardware, the problem of constant computational load would need to be solved.
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APPENDIX



A. THE NON-MINIMUM PHASE ENVIRONMENT

A non-minimum phase environment is an environment which is itself stable, but its inverse is

not. This occurs when the zeros in the Z-domain occur outside the unit circle. For example,

consider the following finite impulse response (FIR) filter

1 + z−1 − 1.5z−2 + z−3 (A.1)

This transfer function has the roots as defined in figure A.1a. This, being a FIR filter with

no poles, is naturally stable. However, if it is inverted, the zeros become poles, therefore

making instability possible. The inverted system is defined in the complex plane by figure

A.1b. This system is not stable, as one of its poles lies at −2, which is outside the unit circle.

In a practical situation, it has been claimed that non-minimum phase environments occur

(a) (b)

Fig. A.1: A fig:NonminimumPhaseSystem non-minimum phase system and fig:UnstableSystem its
inverse.



when one of the reflections has a greater magnitude than the direct signal [45]. However,

this is not the case, which can be shown by the following reasoning. Take for example, a

simple first order FIR filter.

X1 = 1 + a1z
−1 (A.2)

In order for this system to be minimum phase, |a1| must be less than 1, meaning that the

direct signal is greater in amplitude than the reflection. However, if we then take a second

order FIR filter,

X2 =
(
1 + a1z

−1) (1 + a2z
−1)

= 1 + (a1 + a2) z
−1 + a1a2z

−2 (A.3)

The requirement for the system in (A.3) to be minimum phase is that the magnitude of both

a1 and a2 are less than 1. While this may guarantee that the coefficient in front of z−2 is

less than the direct signal, it does not guarantee that a1 + a2 is less than 1. Therefore we

cannot state that the requirement for minimum phase systems is that the direct signal has

the greatest amplitude. However, we can state that they will tend to be weighted toward

earlier reflections over later reflections.

If there is a desired frequency response, there exists more than one filter if all that is desired

is a specified magnitude response. Each of these filters will also have a phase response, which

will not be identical. The minimum phase filter is the filter which has minimum group delay
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for the given magnitude response. For example, take the following first order system

H (s)=s+ a

H (jω)=jω + a (A.4)

where a is an arbitrary positive value. We then find the frequency magnitude response of

this system

HdB (jω)=20 log10 |jω + a|

=20 log10

(√
ω2 + a2

)
=10 log10

(
1 +

ω2

a2

)
(A.5)

If we then take the similar, but non-minimum phase case of

H (s) = s− a (A.6)

we find that we get an identical magnitude response. This shows how two unique filters can

have the same magnitude response, yet one can have zeros in the left half s-plane, and one

can have zeros in the right half of the s-plane. Similar proofs can be shown in the Z-domain.

If we now look at the phase response of the system in Equation (A.4), we get

φ {H (jω)}=φ {jω + a}

=tan−1
(ω
a

)
(A.7)

Therefore, as ω → 0, φ→ 0, and as ω →∞, φ→ π/2. If we now consider the non-minimum
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phase case in Equation (A.6), we get

φ {H (jω)}=φ {jω − a}

=tan−1
(
ω

−a

)
(A.8)

In this case, as ω → 0, φ → π, and as ω → ∞, φ → π/2. From these two examples of the

phase response, we can see that the system with its zero in the left half plane advances the

phase within the range 0 ≤ φ < π/2, whereas the system with its zero in the right half plane

advances the phase by π ≤ φ < π/2.

If we then extend this to an nth order case, there will be four potential filters of the same

magnitude response, in the form

(s± a1) (s± a2) . . . (s± an) . (A.9)

The filter that results in minimal change of phase will be the filter

(s+ a1) (s+ a2) . . . (s+ an) . (A.10)

Therefore, systems with zeros only in the left half-plane will have the minimum group delay

in phase across all frequencies for a given magnitude response. Hence the term non-minimum

phase. In a practical application, this means that a minimum phase system is one that for a

given frequency response has the weights as early as possible in its transfer function. This,

however, does not mean that the first weight must the heaviest weight.
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B. DERIVATIONS

B.1 MIMO SAD

B.1.1 Proof 1

In order to find the derivative of the cross-correlation with respect to each demixing tap, we

must first rearrange the expression in (3.17) to be a function of the source powers. By using

the identities in (3.14) and (3.15), we get

Cyiyj (m)=E

[
N−1∑
k=0

xT
k (t)wi,k (t)

N−1∑
l=0

xT
l (t−m)wj,l (t−m)

]

=E

[
N−1∑
k=0

L−1∑
n=0

xk (t− n)wn
i,k (t)

N−1∑
l=0

L−1∑
o=0

xl (t−m− o)wo
j,l (t−m)

]

=E

[(
N−1∑
k=0

L−1∑
n=0

N−1∑
p=0

sTp (t− n)hk,pw
n
i,k (t)

)
(

N−1∑
l=0

L−1∑
o=0

N−1∑
q=0

sTq (t−m− o)hl,qw
o
j,l (t−m)

)]

=E

[
N−1∑
k=0

L−1∑
n=0

N−1∑
p=0

N−1∑
l=0

L−1∑
o=0

L−1∑
q=0

L−1∑
r=0

L−1∑
u=0

sp (t− n− r)hrk,pwn
i,k (t)

sq (t−m− o− u)hul,qw
o
j,l (t−m)

]
(B.1)



which is only nonzero when p = q and u = n + r −m− o assuming stationarity, whiteness,

and no correlation between the sources. Thus (B.1) becomes

=E

[
N−1∑
k=0

L−1∑
n=0

N−1∑
p=0

N−1∑
l=0

L−1∑
o=0

L−1∑
r=0

sp (t− n− r)hrk,pwn
i,k (t)

sp (t− n− r)hn+r−m−o
l,p wo

j,l (t−m)
]

=E

[
N−1∑
k=0

L−1∑
n=0

N−1∑
p=0

N−1∑
l=0

L−1∑
o=0

L−1∑
q=0

sp (t− n− q)hqk,pw
n
i,k (t)

sp (t− n− q)hn+q−m−o
l,p wo

j,l (t−m)
]

=
N−1∑
p=0

σ2
p

N−1∑
k=0

L−1∑
n=0

N−1∑
l=0

L−1∑
o=0

L−1∑
q=0

hqk,pw
n
i,k (t)hn+q−m−o

l,p wo
j,l (t−m) (B.2)

which gives the result in equation (3.21).

B.1.2 Proof 2

Here we calculate the derivative of the cross-correlation with respect to the demixing filter

taps. The cross-correlation in (3.21) has many terms that reduce to zero, due to the con-

straints on the mixing system.

When p = k,

hqk,p=

 1, q = 0

0, q 6= 0

and when p 6= k,

h0k,p=0

The equivalent taps in the demixing filters also reduce to zero.
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If we go through all of the terms in (3.21), methodically removing all that reduce to zero

because of the above constraints, it becomes

Cyi,yj (m)=
N−1∑
p=0
p 6=i
p 6=j

σ2
p

N−1∑
k=0
k 6=p
k 6=i

N−1∑
l=0
l 6=p
l 6=j

L−1∑
n=1

L−1∑
o=1

L−1∑
q=1

hqk,pw
n
i,k (t)hn+q−m−o

l,p wo
j,l (t−m)

+σ2
i

N−1∑
k=0
k 6=i

N−1∑
l=0
l 6=i
l 6=j

L−1∑
n=1

L−1∑
o=1

L−1∑
q=1

hqk,iw
n
i,k (t)hn+q−m−o

l,i wo
j,l (t−m)

+σ2
j

N−1∑
k=0
k 6=i
k 6=j

N−1∑
l=0
l 6=j

L−1∑
n=1

L−1∑
o=1

L−1∑
q=1

hqk,jw
n
i,k (t)hn+q−m−o

l,j wo
j,l (t−m)

+
N−1∑
p=0
p 6=i
p 6=j

σ2
p

N−1∑
k=0
k 6=p
k 6=i

L−1∑
n=1

L−1∑
q=1

hqk,pw
n
i,k (t)hn+q−m

j,p

+σ2
i

N−1∑
k=0
k 6=i

L−1∑
n=1

L−1∑
q=1

hqk,iw
n
i,k (t)hn+q−m

j,i

+
N−1∑
p=0
p6=i
p 6=j

σ2
p

N−1∑
l=0
l 6=p
l 6=j

L−1∑
o=1

L−1∑
q=1

hqi,ph
q−m−o
l,p wo

j,l (t−m)

+σ2
j

N−1∑
l=0
l 6=j

L−1∑
o=1

L−1∑
q=1

hqi,jh
q−m−o
l,j wo

j,l (t−m)

+
N−1∑
p=0
p6=i
p 6=j

σ2
p

L−1∑
q=1

hqi,ph
q−m
j,p
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+
N−1∑
p=0
p 6=i
p6=j

σ2
p

N−1∑
k=0
k 6=p
k 6=i

L−1∑
n=1

L−1∑
o=1

hm+o−n
k,p wn

i,k (t)wo
j,p (t−m)

+σ2
i

N−1∑
k=0
k 6=i

L−1∑
n=1

L−1∑
o=1

hm+o−n
k,i wn

i,k (t)wo
j,i (t−m)

+σ2
j

N−1∑
k=0
k 6=j
k 6=i

L−1∑
n=1

hm−nk,j wn
i,k (t)

+
N−1∑
p=0
p 6=i
p 6=j

σ2
p

L−1∑
o=1

hm+o
i,p wo

j,p (t−m)

+σ2
jh

m
i,j

+
N−1∑
p=0
p 6=i
p 6=j

σ2
p

L−1∑
n=1

N−1∑
l=0
l 6=p
l 6=j

L−1∑
o=1

wn
i,p (t)hn−m−ol,p wo

j,l (t−m)

+σ2
j

L−1∑
n=1

N−1∑
l=0
l 6=j

L−1∑
o=1

wn
i,j (t)hn−m−ol,j wo

j,l (t−m)

+
N−1∑
p=0
p 6=i
p 6=j

σ2
p

L−1∑
n=1

wn
i,p (t)hn−mj,p

+
N−1∑
p=0
p 6=i
p 6=j

σ2
p

L−1∑
n=1

wn
i,p (t)wn−m

j,p (t−m)

+σ2
jw

m
i,j (t)

Looking through this, we can see that it can be factorized into the following.
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=
N−1∑
p=0
p 6=i
p 6=j

σ2
p

2L−2∑
q=1

hqi,p + wq
i,p (t) +

N−1∑
k=0
k 6=p
k 6=i

L−1∑
n=1

hq−nk,p w
n
i,k (t)


hq−mj,p + wq−m

j,p (t−m) +
N−1∑
l=0
l 6=p
l 6=j

L−1∑
o=1

hq−m−ol,p wo
j,l (t−m)



+σ2
i

N−1∑
k=0
k 6=i

L−1∑
n=1

2L−2∑
q=1

hq−nk,i w
n
i,k (t)

hq−mj,i + wq−m
j,i (t−m) +

N−1∑
l=0
l 6=i
l 6=j

L−1∑
o=1

hq−m−ol,i wo
j,l (t−m)



+σ2
j

N−1∑
k=0
k 6=j

L−1∑
n=1

2L−2∑
q=1

hq−m−njhlgk wn
j,k (t−m)

hqi,j + wq
i,j (t) +

N−1∑
l=0
l 6=i
l 6=j

L−1∑
o=1

hq−ojhlglw
o
i,l (t)



+σ2
j

hmi,j + wm
i,j (t) +

N−1∑
k=0
k 6=j
k 6=i

L−1∑
n=1

hm−nk,j wn
i,k (t)


which becomes equation (3.22). Note that the terms of the form

h+ w +
∑∑

hw

are actually a measure of the deviation of a tap from its ideal value.

B.1.3 Proof 3

We will now find the derivative of equation (3.22) with respect to the separating filter tap

wm
i,j.
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Fig. B.1: The mixing system.

∂Cyi,yj (m)

∂wm
i,j

=
N−1∑
p=0
p 6=j

σ2
p

2L−2∑
q=1

hq−mj,p

hq−mj,p + wq−m
j,p (t−m) +

N−1∑
l=0
l 6=p
l 6=j

L−1∑
o=1

hq−m−ol,p wo
j,l (t−m)

+ σ2
j

=
N−1∑
p=0
p 6=j

σ2
p

L−1∑
q=1

hqj,p

hqj,p + wq
j,p (t−m) +

N−1∑
l=0
l 6=p
l 6=j

L−1∑
o=1

hq−ol,p w
o
j,l (t−m)

+ σ2
j

which equals (3.24).

B.2 TITO SAD

The formulae for one side of the symmetric adaptive decorrelation (SAD) algorithm are

y1 (t)=x1 (t)−wT
1 (t)x2 (t) (B.3)

w1 (t+ 1)=w1 (t) + µy1 (t)y2 (t) (B.4)
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Fig. B.2: The demixing system.

where w1 is the vector of the filter weights,

x2 (t)=

[
x2 (t) x (t− 1) . . . x2 (t− L+ 1)

]T
y2 (t)=

[
y2 (t) y (t− 1) . . . y2 (t− L+ 1)

]T

Rewriting (B.4) as a block algorithm becomes

w1 (kL+ L)=w1 (kL) + µ1 [y1 (kL)y2 (kL) + y1 (kL+ 1)y2 (kL+ 1)

+ . . .+ y1 (kL+ L− 1)y2 (kL+ L− 1)]

=w1 (kL) + µ1∇1 (kL) (B.5)

⇒ FFT [w1 (kL+ L)]=FFT

 w1 (kL)

0

+ µ1FFT

 ∇1 (kL)

0

 (B.6)
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which can be rewritten as

ŵ1 (k + 1)=ŵ1 (k) + µ1∇̂1 (k) (B.7)

where the ˆ denotes the frequency domain implementation of the variables and are defined

by the terms in (B.6).
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The first thing that we will do is derive a frequency domain representation of the accu-

mulation of update terms in (B.5), which can be rewritten as

∇1 (kL)=



∑L−1
i=0 y1 (kL+ i) y2 (kL+ i)∑L−1

i=0 y1 (kL+ i) y2 (kL+ i− 1)

...∑L−1
i=0 y1 (kL+ i) y2 (kL+ i− L+ 1)


(B.8)

If we now consider the convolution of the following two vectors



y2 (t+ L− 1)

y2 (t+ L− 2)

...

y2 (t)

y2 (t− 1)

y2 (t− 2)

...

y2 (t− L+ 2)

y2 (t− L+ 1)



∗



y1 (t)

y1 (t+ 1)

...

y1 (t+ L− 2)

y1 (t+ L− 1)


(B.9)
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we get the following sequence



y1 (t) y (t+ L− 1)∑1
i=0 y1 (t+ i) y2 (t+ L− 2 + i)

...∑L−2
i=0 y1 (t+ i) y2 (t+ 1 + i)∑L−1

i=0 y1 (t+ i) y2 (t+ i)∑L−1
i=0 y1 (t+ i) y2 (t− 1 + i)

...∑L−1
i=0 y1 (t+ i) y2 (t− L+ 2 + i)∑L−1
i=0 y1 (t+ i) y2 (t− L+ 1 + i)∑L−2

i=0 y1 (t+ i+ 1) y2 (t− L+ 1 + i)

...∑1
i=0 y1 (t+ L− 2 + i) y2 (t− L+ 1 + i)

y1 (t+ L− 1) y2 (t− L+ 1)



(B.10)

If we discard the first L− 1 and the last L− 1 terms of (B.10), we get (B.8).

When implementing convolution by using the frequency domain, it is actually circular

convolution, so we can perform this circular convolution on the following vectors, and only

take the first L terms.
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v1=



y2 (t+ L− 1)

y2 (t+ L− 2)

...

y2 (t− L)


∗



0

0

...

0

y1 (t)

y1 (t+ 1)

...

y1 (t+ L− 1)



(B.11)

This can be written in the frequency domain as

v̂1=FFT

[
y2 (kL+ L− 1)

]
◦ FFT

 y1 (kL+ L− 1)

0

 (B.12)

where the overline denotes complex conjugation and maps to time reversal in the time

domain. If we set

ŷ′1 (k)=FFT

 y1 (kL+ L− 1)

0


ŷ2 (k)=FFT

 y2 (kL+ L− 1)

y2 (kL− 1)

 (B.13)

we can simplify (B.12) to

v̂1 (k)=ŷ′1 (k) ◦ ŷ2 (k) (B.14)

This completes the update equations for the separating filters.
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Now we must derive equations for the filter outputs , y1 and y2.

y1 (t)=x1 (t)−wT
1 (t)x2 (t)

⇒ y1 (t)=x1 (t)−



wT
1 (t)x2 (t)

wT
1 (t− 1)x2 (t− 1)

...

wT
1 (t− L+ 1)x2 (t− L+ 1)


(B.15)

Under the assumption that

w1 (t)=w1 (t− 1)

=w1 (t− 2)

...

=w1 (t− L+ 1) (B.16)

we can then simplify (B.15) to

y1 (t)=x1 (t)− u1 (t) (B.17)

where

u1 (t)=



wT
1 (t)x2 (t)

wT
1 (t)x2 (t− 1)

...

wT
1 (t)x2 (t− L+ 1)


(B.18)
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This can be obtained by implementing the following circular convolution

 w1 (t)

0

 ∗



x2 (t− 2L+ 1)

x2 (t− 2L+ 2)

...

x2 (t− L)

x2 (t− L+ 1)

x2 (t− L+ 2)

...

x2 (t− 1)

x2 (t)



(B.19)

=



...

To Discard

...

wT
1 (t)x2 (t− L+ 1)

wT
1 (t)x2 (t− L+ 2)

...

wT
1 (t)x2 (t− 1)

wT
1 (t+ L− 1)x2 (t)



(B.20)

of which the last L terms are the time-reversed equivalent of the filtered signal given in (B.18).

In the frequency domain, the circular convolution result in (B.20) can be gained by the

following calculation

ŵ1 (k) ◦ x̂2 (k) (B.21)
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where

ŵ1 (k)=FFT

 w (kL)

0


x̂2 (k)=FFT

 x2 (kL)

x2 (kL− L)

 (B.22)

But time reversal in the time domain maps to complex convolution in the frequency

domain, therefore

u1 (t)=First L terms of
{

FFT−1
[
ŵ1 (k) ◦ x̂2 (k)

]}
(B.23)

B.3 FD-SAMLE

The update equations for the time domain algorithm are given by

wm
i,j (t+ 1)=wm

i,j (t)− µsgn (yi (t)) yj (t−m)

E {|yi (t)|}
(B.24)

This can be rewritted for the update of the entire vectors.

wi,j (t+ 1)=wi,j (t)− µsgn (yi (t))yj (t)

E {|yi (t)|}
(B.25)

where the vector yi (t) is defined as

yi (t),

[
yi (t) yi (t− 1) . . . yi (t− L+ 1)

]T

In order to convert (B.25) into a frequency domain function, we must first implement it
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as a block algorithm.

wi,j (kL+ L)=wi,j (kL)− 1

E {|yi (t)|}
[sgn (yi (kL))yj (kL)

+ sgn (yi (kL+ 1))yj (kL+ 1) + . . .+

+ sgn (yi (kL+ L− 1))yj (kL+ L− 1)]

=wi,j (kL)− ∇i,j (kL)

σ2
(B.26)

where ∇i,j (kL) is self-defined by this equation.

For the conversion to the frequency domain, we take the fast Fourier transform (FFT) of

both sides, giving

FFT

 wi,j (kL+ L)

0

=FFT

 wi,j (kL)

0

−
FFT

 ∇i,j (kL)

0


σ2

(B.27)

which can be rewritten as

ŵi,j (k + 1)=ŵi,j (k) +
∇̂i,j (k)

σ2
(B.28)

where the ̂ denotes the frequency domain implementation of the variables as defined by

(B.27).

We now consider the time domain block update term ∇i,j (kL). This is defined by the
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vector

∇i,j (kL)=



∑L−1
l=0 sgn (yi (kL+ l)) yj (kL+ l)∑L−1

l=0 sgn (yi (kL+ l)) yj (kL+ l − 1)

...∑L−1
l=0 sgn (yi (kL+ l)) yj (kL+ l − L+ 1)


(B.29)

This is equivalent to the first L terms of the circular convolution operation

vi,j (k)=



yj (kL+ L− 1)

yj (kL+ L− 2)

...

yj (kL− L)


∗



0

0

...

0

sgn (yi (kL))

sgn (yi (kL+ 1))

...

sgn (yi (kL+ L− 1))



(B.30)

The equivalent frequency domain operation simplifies to

v̂i,j (k)=FFT

 yj (kL+ L− 1)

yj (kL− 1)

 ◦ FFT

 sgn (yi (kL+ L− 1))

0

 (B.31)

where the overline denotes complex conjugation and maps to time reversal in the time
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domain. If we set

ŷ′i (k)=FFT

 sgn (yi (kL+ L− 1))

0


ŷi (k)=FFT

 yi (kL+ L− 1)

yi (kL− 1)


then (B.31) becomes

v̂i,j (k)=ŷ′i (k) ◦ ŷj (k) (B.32)

A similar route can also be taken for the filter outputs yi (kL).

yi (kL)=
N−1∑
l=0

xT
l (kL)wl,i (kL)

⇒ yi (kL)=



∑N−1
l=0 xT

l (kL)wl,i (kL)∑N−1
l=0 xT

l (kL− 1)wl,i (kL− 1)

...∑N−1
l=0 xT

l (kL− L+ 1)wl,i (kL− L+ 1)


(B.33)

Under the assumption that

wi,j (kL)=wi,j (kL− 1)

=wi, j (kL− 2)

...

=wi,j (kL− L+ 1) (B.34)
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we can simplify (B.33) to

yi (kL)=



∑N−1
l=0 xT

l (kL)wl,i (kL)∑N−1
l=0 xT

l (kL− 1)wl,i (kL)

...∑N−1
l=0 xT

l (kL− L+ 1)wl,i (kL)



=
N−1∑
l=0



xT
l (kL)

xT
l (kL− 1)

...

xT
l (kL− L+ 1)


wl,i (kL) (B.35)

This can be obtained using the following circular convolution

N−1∑
l=0

 wl,i (kL)

0

 ∗



xl (kL− 2L+ 1)

xl (kL− 2L+ 2)

...

xl (kL− 1)

xl (kL)



=
N−1∑
l=0



...

To Discard

...

xT
l (kL− L+ 1)wl,i (kL)

xT
l (kL− L+ 2)wl,i (kL)

...

xT
l (kL− 1)wl,i (kL)

xT
l (kL)wl,i (kL)



(B.36)
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of which the last L terms are the time-reversed equivalent of the filtered signal given in (B.35).

In the frequency domain, (B.36) can be obtained using the following point-by-point mul-

tiplication

N−1∑
l=0

ŵl,i (k) ◦ x̂l (k) (B.37)

where

ŵl,i (k)=FFT

 wl,i (kL)

0


x̂l (k)=FFT

 xl (kL)

xl (kL− L)

 (B.38)

But reversal in the time domain maps to complex convolution in the frequency domain,

therefore

yi (kL)=First L terms of

{
FFT−1

[
N−1∑
l=0

ŵl,i (k) ◦ x̂l (k)

]}
(B.39)

B.4 Hybrid SAD

The update equations for the demixing filters of both the feedforward and the feedback SAD

algorithm are given as

wm
1 (t+ 1)=wm

1 (t) + µy1 (t) y2 (t−m)

(B.40)
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where wm
1 (t) is the mth tap of demixing filter 1 at time t, µ is an adaptive step size, and

y1 (t) is the first output at time t. This can also be written in vector form as

w1 (t+ 1)=w1 (t) + µy1 (t)y2 (t)

(B.41)

where

w1 (t)=

[
w0

1 (t) w1
1 (t) . . . wL−1

1

]T
,

y1 (t)=

[
y1 (t) y1 (t− 1) . . . y1 (t− L+ 1)

]T

The outputs of the demixing system can then be given by

y1 (t)=x1 (t) + wT
1 (t) y2 (t)

=x1 (t) +
L−1∑
i=0

wi
1 (t) y2 (t− i)

⇒ y1 (t)=x1 (t) +
L−1∑
i=0



wi
1 (t)

wi
1 (t− 1)

...

wi
1 (t− L+ 1)


◦ y2 (t− i)

where x1 (t) is the observed signal regressor vector at time t, ◦ denotes element-wise multi-

plication or the Hadamard product.

Assuming demixing filter stationarity over a period of L updates, we get

y1 (t)=x1 (t) +
L−1∑
i=0

wi
1 (t)y2 (t− i)
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But with w0
1 (t) = 0,

y1 (t)=x1 (t) +
L−1∑
i=1

wi
1 (t)y2 (t− i)

and likewise for y2,

y2 (t)=x2 (t) +
L−1∑
i=1

wi
2 (t)y1 (t− i)

Writing this in terms of the observed signals results in

y1 (t)=x1 (t) +
L−1∑
i=1

wi
1 (t)

{

x2 (t− i) +
L−1∑
j=1

wj
2 (t− i)

{

x1 (t− i− j) +
L−1∑
k=1

wk
1 (t− i− j)

{
. . .

}}}
=x1 (t)

+
L−1∑
i=1

wi
1 (t)x2 (t− i)

+
L−1∑
i=1

L−1∑
j=1

wi
1 (t)wj

2 (t− i)x1 (t− i− j)

+
L−1∑
i=1

L−1∑
j=1

L−1∑
k=1

wi
1 (t)wj

2 (t− i)wk
1 (t− i− j)x2 (t− i− j − k)

+ . . .

Assuming that the observed signals are stationary, and uncorrelated to the demixing filter
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taps,

y1 (t)=



y1 (t)

y1 (t− 1)

...

y1 (t− L+ 1)



=



y1 (t)

y1 (t)

...

y1 (t)


Therefore, we are only interested in the scalar y1 (t) rather than the output regressor

vectors.
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E [y1 (t)]=E [x1 (t)]

+E

[
L−1∑
i=1

wi
1 (t)x2 (t)

]

+E

[
L−1∑
i=1

L−1∑
j=1

wi
1 (t)wj

2 (t− i)x1 (t)

]

+E

[
L−1∑
i=1

L−1∑
j=1

L−1∑
k=1

wi
1 (t)wj

2 (t− i)wk
1 (t− i− j)x2 (t)

]
+ . . .

=E [x1 (t)]

+E

[
L−1∑
i=1

wi
1 (t)

]
E [x2 (t)]

+E

[
L−1∑
i=1

wi
1 (t)

]
E

[
L−1∑
j=1

wj
2 (t− i)

]
E [x1 (t)]

+E

[
L−1∑
i=1

wi
1 (t)

L−1∑
k=1

wk
1 (t− i− j)

]
E

[
L−1∑
j=1

wj
2 (t− i)

]
E [x2 (t)]

+ . . . (B.42)

For the feedback structure, there are two forms of stability that are of interest. The first

is the convergence of the filter weights, which is also in common with the feedforward case,

but there is also whether the demixing system, once converged, is stable due to the feedback

structure. We will presently look at the latter case.
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Assuming that the weights have converged, (B.42) becomes

E [y1 (t)]=E [x1 (t)]

+
L−1∑
i=1

wi
1 (t)E [x2 (t)]

+
L−1∑
i=1

wi
1 (t)

L−1∑
j=1

wj
2 (t)E [x1 (t)]

+
L−1∑
i=1

wi
1 (t)

L−1∑
j=1

wj
2 (t)

L−1∑
k=1

wk
1 (t)E [x2 (t)]

+ . . . (B.43)

Letting

α (t)=
L−1∑
i=1

wi
1 (t)

L−1∑
j=1

wj
2 (t)

means that (B.43) becomes

E [y1 (t)]=E [x1 (t)]
{

1 + α (t) + α2 (t) + . . .
}

+E [x2]
L−1∑
i=1

wi
1 (t)

{
1 + α (t) + α2 (t) + . . .

}
(B.44)

Which will be stable in the mean if

|α (t)| < 1 (B.45)

To ensure complete stability

E
[
y21 (t)

]
(B.46)

must also converge as t → ∞. Note that again this is investigating the stability of the
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converged demixing system, not of the filter convergence itself.

E
[
y22 (t)

]
=E

[{
x1 (t)

+
L−1∑
i=1

wi
1 (t)x2 (t− i)

+
L−1∑
i=1

L−1∑
j=1

wi
1 (t)wj

2 (t− i)x1 (t− i− j)

+
L−1∑
i=1

L−1∑
j=1

L−1∑
k=1

wi
1 (t)wj

2 (t− i)wk
1 (t− i− j)x2 (t− i− j − k)

+ . . .

}{
x1 (t)

+
L−1∑
i=1

wi
1 (t)x2 (t− i)

+
L−1∑
i=1

L−1∑
j=1

wi
1 (t)wj

2 (t− i)x1 (t− i− j)

+
L−1∑
i=1

L−1∑
j=1

L−1∑
k=1

wi
1 (t)wj

2 (t− i)wk
1 (t− i− j)x2 (t− i− j − k)

+ . . .

}]
=E

[
x21 (t)

+2x1 (t) (B.47)

B.4.1 Hybrid SAD Pseudocode
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Program 4 Hybrid SAD Pseudocode

◦ denotes entry-wise multiplication.
The overline denotes complex conjugation.
Superscript T denotes the transpose operation.
Any other vector superscript denotes the vector length.
All vectors are length K unless otherwise defined.
n . the number of observed signal samples
N . the number of observed signals
K . the minimum block size for frequency-domain convolution
L . the filter size
x1, x2, . . . , xN . the observed signals
y1, y2, . . . , yN . the outputs
wi,j,k . the vectors containing the filter weights for sub-block index k

for t = 0→ n do
k = t

K

for i = 1→ N do
xi (t) = the next K samples of xi in reverse order.

end for

for i = 1→ N do
yi (t) = 0
for j = 1→ N, j 6= i do

yi (t) + = wT
i,j,0 (t)xj (t)

end for
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Program 5 The Hybrid SAD Pseudocode (Part 2)

for l = 0→ log2
L
2K

do
if k

2l
∈ Z then

tmp2(l+1)K = 02(l+1)K

for j = 1→ N, j 6= i do

tmp2(l+1)K+ = FFT


wi,j,2l (t)
wi,j,2l+1 (t)

...
wi,j,2l+1−1 (t)

02lK

 ◦ FFT


xi (t)

xi (t−K)
...

xi

(
t− 2l+1K

)


end for
yi

(
t+ 2lK

)
yi

(
t+ 2lK + 1

)
...

yi

(
t+ 2l+1K − 1

)
discard2lK

+ = FFT−1
[
tmp2l+1K

]

end if
end for

y (t) + = mod (n, k)th element of y (t−mod (n, k))
end for
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Program 6 The Hybrid SAD Pseudocode (Part 3)

k = t
L

if k ∈ Z then
for i = 1→ N do

Y2L
i (t) = FFT

[
y2L
i (t)

]
Y′2Li (t) = FFT

[
yL
i (t)
0

]
end for
for i = 1→ N do

for 1 = 1→ N, i 6= j do
∇W2L

i,j (t) = Y′2Li (t) ◦Y2L
j (t)

W2L
i,j (t+ 1) = W2L

i,j (t) + µ∇W2L
i,j (t)

wi,j,1 (t)
wi,j,2 (t)

...
wi,j,L

k
(t)

vL

 = FFT−1
[
W2L

i,j (t)
]

W2L
i,j (t) = FFT


wi,j,1 (t)
wi,j,2 (t)

...
wi,j,L

k
(t)

0L


end for

end for
end if

end for
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C. COMPUTATIONAL REQUIREMENTS

C.1 TD SAD

The update equations for the multiple-input multiple-output (MIMO) time-domain symmet-

ric adaptive decorrelation (TD-SAD) algorithm are according to the following

wi,j (t+ 1)=wi,j (t)− µyi (t)yj (t) (C.1)

which requires L+ 1 multiplications, where L is the length of the demixing filter. For every

source, N − 1 filter updates are needed, which results in

(L+ 1) (N − 1) multiplies

The filtering equations are as follows

yi (t)=xi (t) +
N−1∑

j=0j 6=i

xT
j (t)wi,j (t) (C.2)

which requires

(N − 1)L multiplies

per source, bringing the total computational requirements of the entire TD-SAD algorithm



(all sources) to

N (N − 1) (2L+ 1) multiplies

However, because we are comparing this to algorithms that use block-updating, it is more

convenient to specify the number of multiplies per L updates. This becomes

NL (N − 1) (2L+ 1)

=
(
N2L−NL

)
(2L+ 1)

=2N2L2 +N2L−NL2 −NL multiplies (C.3)

C.2 FD SAD

For implementation in the frequency domain, the FFT algorithm will be utilized. According

to Bergland in [102], for real time-domain signals, a length 2L FFT requires

2L log2 L− 5L+ 6 real multiplies

Considering the algorithm specified in Program 3, there are 2 FFTs per source for the

filtering, requiring

4L log2 L− 10L+ 12 real multiplies.

Because the length of all of the frequency-domain vectors is 2L, aside from the FFTs,

there are also

2L (N − 1) complex multiplies
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for the frequency-domain convolution.

For every complex multiplication, four real multiplies are needed. This brings the total

number of multiplies for filtering the signals to

4L log2 L− 10L+ 12 + 8L (N − 1)

=4L log2 L− 10L+ 12 + 8LN − 8L

=8LN + 4L log2 L− 18L+ 12 real multiplies (C.4)

For the update, 2 FFTs are needed per source to find the output correlations. An

additional 2 (N − 1) FFTs are needed to zero-pad the frequency-domain filters. This requires

a total of

(2 + 2 (N − 1)) (2L log2 L− 5L+ 6)

=2N (2L log2 L− 5L+ 6)

=4NL log2 L− 10NL+ 12N real multiplies

Aside from the multiplications required for the FFTs, there are also 2L (N − 1) complex

multiplications required for the frequency-domain correlation and L real multiplications for

the adaptive step size, requiring

8L (N − 1) + L

=8NL− 7L real multiplies
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bringing the total number of multiplies for the update to

4NL log2 L− 10NL+ 12N + 8NL− 7L

=4NL log2 L− 2NL+ 12N − 7L real multiplies (C.5)

(C.4) and (C.5) can then be summed and multiplied by the number of sources to find

the total requirement for the frequency-domain symmetric adaptive decorrelation (FD-SAD)

algorithm.

N(8LN + 4L log2 L− 18L+ 12 + 4NL log2 L− 2NL+ 12N − 7L)

=4LN2 log2 L+ 6LN2 + 4LN log2 L− 25LN + 12N2 + 12N real multiplies

(C.6)

C.3 Hybrid SAD

For the Hybrid SAD algorithm, the update is identical to the update of the FD-SAD algo-

rithm, so requires

4NL log2 L− 2NL+ 12N − 7L real multiplies (C.7)

per source.

To find out the computational requirements of the filtering portion of the algorithm is a

much more complex procedure. First we introduce a constant K, which is the sub-block size

at which convolution becomes more efficient in the frequency domain. K changes depending

on how many sources need to be separated, but tends to be 8, 16 or 32. We make the
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x−1 (t) x0 (t) x1 (t) x2 (t) . . . x7 (t)

w0 w1 w2,3 w4,7

y−1 (t) y0 (t) y1 (t) y2 (t) . . . y7 (t)

r
4K

r
2K
r

K
r

K
r

K
r -�

Fig. C.1: The hybrid frequency-time domain filter.

following assumptions about K and the filter size L

K=2i, i = 0, 1, 2, . . .

L=2j, j = 1, 2, 3, . . .

K≤L
2

Considering Fig. C.1, the output y (t) can be found by the following

y0=w0 ∗ x−1,0 (t) + w1 ∗ x−2,−1 (t) + w2,3 ∗ x−4,−2 + . . .+ w L
2K

,L−K
K
∗ x−L

K
,− L

2K

y1=w0 ∗ x0,1 (t) + w1 ∗ x−1,0 (t) + w2,3 ∗ x−3,−1 + . . .+ w L
2K

,L−K
K
∗ x1− L

K
,1− L

2K

. . .

The first term is a length K convolution, which must be computed in the time-domain

if zero lag is required. Because all input blocks prior to x0 (t) are known before y0 (t) is

required, all of the other convolutions can be performed in the frequency domain. This
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means that the input signals must be filtered separately by unique block filters, of length

2kK, k = 0, 1, 2, . . . , log2

(
L

2K

)

which means that each of the input signals need to be transformed to the frequency domain

log2

(
L
K

)
times, each time doubling the sub-block size.

Keeping in mind that to avoid circular convolution, the FFT size must be twice that of

the sub-block size, to filter the entire block of x (t) using sub-block filters of size 2kK requires

L
2kK

length-2k+1K FFTs. Each length-2k+1K FFT requires

2k+1K log2

(
2kK

)
− 5× 2kK + 6

=2k+1K
(
log2

(
2k
)

+ log2K
)
− 5× 2kK + 6

=2k+1K (k + log2K)− 5× 2kK + 6 real multiplies,

resulting in a total of

log2( L
2K )∑

k=0

L

2kK

(
2k+1K (k + log2K)− 5× 2kK + 6

)
=

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK
real multiplies

for conversion of each signal into the frequency domain and the same to convert back to the

time domain. Over the entire algorithm, this results in

2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK
real multiplies (C.8)
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Each of the filters have to be divided into sub-blocks and converted into the frequency

domain also. However, every time-domain filter weight is only converted to the frequency

domain once, unlike the time-domain samples of x (t). For every filter, one FFT for each

2kK-length sub-block is needed, and there is only one sub-block for each k. This means that

log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6 real multiplies,

are needed for each of the N (N − 1) filters. This means that to convert all of the filters for

hybrid filtering,

N (N − 1)

log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6

 real multiplies

(C.9)

are required.

For the actual filtering, elementwise multiplication in the frequency domain is needed.

For each frequency-domain filter that passes over the sequence, L complex multiplications

are needed. Because there are log2

(
L
K

)
frequency-domain sub-filters, this results in a total

of

4 log2

(
L

K

)
L real multiplies

per separating filter, or

N (N − 1) 4 log2

(
L

K

)
L real multiplies
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for all of the filters. Note that this will become negative for L ≤ K. We therefore use K̂ to

denote the lesser of K and L.

N (N − 1) 4 log2

(
L

K̂

)
L real multiplies (C.10)

The last part of the calculation is finding the number of multiplications required by the

time-domain filtering. Because the time-domain filter is K̂ taps long, it requires

N (N − 1) K̂L real multiplies (C.11)

for all of the filters.

Combining (C.8), (C.9), (C.10) and (C.11) gives the total number of multiplications

required for the filtering portion of the algorithm.

2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+N (N − 1)

log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+N (N − 1) 4 log2

(
L

K̂

)
L

+N (N − 1) K̂L
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=2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+N (N − 1)

log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+4
(
N2 −N

) (
log2 L− log2 K̂

)
L+N2K̂L−NK̂L

=2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+N (N − 1)

log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+4N2L

(
log2 L− log2 K̂

)
− 4NL

(
log2 L− log2 K̂

)
+N2K̂L−NK̂L

=2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+
(
N2 −N

)log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+4N2L log2 L+

(
K̂ − 4 log2 K̂

)
N2L− 4NL log2 L−

(
K̂ − 4 log2 K̂

)
NL
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Combining this with (C.7) gives the total number of multiplies for the entire algorithm.

2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+
(
N2 −N

)log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+4N2L log2 L+

(
K̂ − 4 log2 K̂

)
N2L− 4NL log2 L−

(
K̂ − 4 log2 K̂

)
NL

+4N2L log2 L− 2N2L+ 12N2 − 7LN

(C.12)

=2N

log2( L
2K )∑

k=0

2L (k + log2K)− 5L+
6L

2kK

+
(
N2 −N

)log2( L
2K )∑

k=0

2k+1K (k + log2K)− 5× 2kK + 6


+8N2L log2 L+

(
K̂ − 4 log2 K̂ − 2

)
N2L

−4NL log2 L−
(
K̂ − 4 log2 K̂ + 7

)
NL+ 12N2 real multiplies

(C.13)

C.4 Trinicon

For implementation in the frequency domain, the FFT algorithm will be utilized. According

to Bergland in [102], for real time-domain signals, a length 2L FFT requires

2L log2 L− 5L+ 6 real multiplies

For the Triple-N ICA for Convolutive mixtures (TRINICON) algorithm, there are 2 FFTs
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per source for the filtering, requiring

4L log2 L− 10L+ 12 real multiplies.

In addition to this, there are also

6L (2N − 1) complex multiplies

for the frequency-domain convolution, which is required for filtering.

For every complex multiplication, four real multiplies are needed. This brings the total

number of multiplies for filtering the signals to

4L log2 L− 10L+ 12 + 24L (2N − 1)

=4L log2 L− 10L+ 12 + 48LN − 24L

=48LN + 4L log2 L− 34L+ 12 real multiplies (C.14)

For the update, 3N − 1 FFTs are needed per source to find the gradient term. This

requires a total of

3 (N − 1) (2L log2 L− 5L+ 6)

=6NL log2 L− 15NL+ 18N − 6L log2 L+ 15L− 18 real multiplies

Aside from the multiplications required for the FFTs, there are also 6L (2N − 1) complex

multiplications for the update term, requiring

24L (2N − 1)

=48NL− 24L real multiplies
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bringing the total number of multiplies for the update to

6LN log2 L− 15LN + 18N − 6L log2 L+ 15L− 18 + 48NL− 24L

=6LN log2 L+ 33LN + 18N − 6L log2 L− 9L− 18 real multiplies (C.15)

(C.14) and (C.15) can then be summed and multiplied by the number of sources to find

the total requirement for the FD-SAD algorithm.

6LN2 log2 L+ 33LN2 + 18N2 − 6LN log2 L− 9LN − 18N + 48LN2 + 4LN log2 L− 34LN + 12N

=6LN2 log2 L+ 81LN2 + 18N2 − 2LN log2 L− 43LN − 6N real multiplies

(C.16)
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Abstract 

A new structured approach to adaptive noise-cancellingof non-stationary stochastic signals is 

given. The divide and conquer method subdivides the problem into a number of sources with 

a power of 2 and subdivides the solution to smaller problems in a similar fashion to that of a 

fast-Fourier transform (FFT). Hence with number of sources 2 p where p is a positive integer, 

the problem is successively reduced to simpler solutions at each stage of order 2 p /2. In its 

basic form the method uses only multivariable least-mean-squares (MLMS),ordinary LMS 

and only second-order statistics. 

Keywords: Blind-source separation (BSS), least-mean squares (LMS), automatic noise 

canceller (ANC). 



 

 

1.Introduction. 

The problem of optimally separating a stochastic signal from random noise has its roots in 

modern times with the work of Wiener [1], Kolmogorov [2] for stationary signals and later 

Kalman [3] for the non-stationary case. Although these solutions can lead to the solutions of 

many realistic problems, the more difficult problem of separating non-stationary signals from 

each-other or non-stationary signals from non-stationary noise cannot be solved for a single 

sensor (or measurement) without further information of the signal and noise properties. In 

fact, if the spectra of signal and noise are overlapping, then removing the noise will always 

impair the signal. It was later shown that by using two or more sensors that extra information 

can be gathered about the signal and noise properties and the beginnings of a solution could 

be found under certain restrictive conditions[4]. For example, when using two sensors to 

cancel a single noise-source requires one of the sensors to pick up the mixture of signal and 

noise and the second to pick up just the noise alone. This is rarely encountered in many real-

world problems since more than often the noise sensor also picks up the signal as well as the 

noise and the automatic noise-canceller (ANC) ends up cancelling the desired signal with the 

noise. Placing sensors long distances apart does not improve matters either, since very long 

filter lengths are needed and this leads to excess mean-square error. There are certain 

applications (eg where there is a natural acoustic barrier for sound signals)  between sensors 

[5] that the basic adaptive  filtering method will work, but these are not so commonly met in 

everyday office or outdoor situations. 



Nevertheless the fundamental solution, which relies on the least-mean-squares (LMS) 

algorithm can be modified so that the sensors are close together. There have been many 

attempts at this for the case of acoustic signals and noise but the main drawback has been that 

the modified ANC requires a voice-activity detector (VAD) that can rapidly detect periods of 

noise and switch multiple LMS algorithms on and off depending on whether noise on its own 

is present.[6, 7]. Essentially the first LMS activates during noise-alone and the second during 

signal plus noise. Although speech has the advantage that many silence periods exist for 

normal sentences, it is nevertheless harder than expected for a VAD to determine what is 

speech and what is noise in some environments where for example there are two or more 

competing talkers. In the so-called cocktail party effect, it is difficult for such an algorithm to 

know which speech signal is desired and which is to be rejected. Geometric approaches do 

exist that simplify the VAD problem somewhat to a particular direction[8], but nevertheless it 

becomes necessary to find a method that does not rely on VADs at all. 

Such a method has been explored in so-called blind-source separation (BSS) using the 

natural-gradient algorithm[9]. However such approaches can be computationally intensive 

and rely on probability density functions to model the desired speech. These approaches have 

been termed unsupervised adaptive filters as opposed to methods which rely on measured 

reference signals which are now known as supervised adaptive filters. This is with analogy to 

neural networks where the theory of many of the BSS methods originated independently of 

the LMS based approaches. 

There is simpler method however which can separate two (later extended to more than two) 

non-stationary signals (or a signal from noise) without a VAD and by using LMS or the faster 

but more complex recursive-least squares (RLS) methods. The method relies on de-

correlation between the two sources[10, 11] and separates the sources up to a polynomial ie 



the separated speech is convolved with an unknown filter. Fortunately the dynamics of this 

filter does little or no harm to the quality of the recovered speech. A similar approach is given 

by Weinstein et al [12] and for multiple sources using LMS and RLS by Mei and Yin [13]. 

Other more sophisticated methods also exist e.g. [14] which take into account of the inherent 

weight-vector bias that the method involves. The technique has become known as crosstalk- 

resistant adaptive noise-cancelling. (CRANC), or even symmetric adaptive decorrelation 

(SAD). 

The CRANC method employed here is for multiple blind-source-separation and is an 

extension of the earlier work to the multivariable case. Although the multivariable case has 

been considered elsewhere [13], their method is essentially a scalar technique applied to the 

multivariable case, whereas this approach is entirely different. Note that technically the 

method should be known as an adaptive noise-cancelling approach but since the sources can 

be separated from one another the term BSS is also of some relevance. 

 

Mathematical preliminaries: 

If a  polynomial-matrix  defined as 1 1 2 1 3 2( ) ... n nz z z zX X X X X  of degree n  

with real matrix coefficients has all roots of 1det[ ( )] 0zX inside the unit circle in the z 

 plane, then it is termed strict sense minimum phase. Superscripts are used here to denote the 

 individual polynomial matrix and should not be confused with the usual usage as the power  

of an expression. For example the term 1z denotes the inverse of the scalar z-transform  

operator in the usual fashion. Where the superscript is used as a power of a matrix, we use 

 square brackets 1[ ]k i
Φ  thus to denote a matrix raised to the power k-i-1 and to avoid  



confusion with its other meaning discussed above. 

 No zeros are assumed to be on the unit circle for any polynomial matrix. For a polynomial-

matrix with any roots of 1det[ ( )] 0zX lying outside of the unit circle in the z-plane, it is 

termed non-minimum phase. For simplicity 1( )zX  is often written as X , omitting the 

complex argument. To avoid mixing time-domain and frequency-domain properties, define 

the backwards shift operator 1q   when dealing with time-domain signals. Hence for some 

signal or vector 1

1k kq x x  or 1( )k kqy X u .The identity matrix is defined as nI for an 

identity matrix of order n. For example, in the text 4I and 2I  represent the identity matrices of 

order 4 and 2 respectively. For matrix polynomials we use the notation of subscripts to denote 

sub-matrix polynomials. For example 

11 12

21 22

-1 -1

-1

-1 -1

(z ) (z )
(z )=

(z ) (z )

G G
G

G G
 

2.Mixture of 4 random uncorrelated signals. 

For simplicity first consider a convolution mixing (or correlating) transfer-function matrix  

for 4 uncorrelated sources and time-index k=0,1,2... 

 

    
1)x H( tk kq

      (1) 

Where ( )-1zH is a 4X4 matrix-polynomial which can be written as a polynomial-matrix of 

degree n with 1( ( ))det z 0H . 

    1 0 1 1( ) ... n nz z zH H H H  

The vector 1 2 3 4[ , , , ]T

k k k k kt t t tt  is composed of the 4 clean desired zero-mean and uncorrelated  

random signals which are to be estimated from observations of xk . Should the inverse of 

( )-1zH  not exist then it is not possible to separate the sources. No restriction is made on 

whether the desired signals are stationary or non-stationary, but they must be “persistently 

exciting”[15] in order for the adaptive estimation algorithms to converge properly. However, 

the random signals must be purely nondeterministic i.e. the signals cannot be predicted from 



their own past[16]. Now suppose that ( )-1zH  is split into 4, 2X2 sub-polynomial-matrices 

thus 
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as shown in Figure 1. 
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Figure 1. Four input mixture process. 

 

The vectors 1 1 2[ , ]T

k k kt tt and 2 3 4[ , ]T

k k kt tt shown in bold should not be confused with their 

scalar counterparts. 

Then by defining two vectors of length 2 1 1 1

11( )k kqs H t and 2 1 2

22 ( )k kqs H t  we can write a 

new simplified 4X4 coupling polynomial-matrix G where 

    1( )k kqx G s
      (2)

 

with the vectors 1 2[( ) , ( ) ]T T T

k k ks s s  and 1 2[( ) , ( ) ]T T T

k k kx x x also suitably partitioned and 
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where  1

12 12 22( ) ( ) ( )-1 -1 -1z = z zG H H  and 1

21 21 11( ) ( )-1 -1 -1(z )= z zG H H  are 2X2 polynomial 

matrices.  This is illustrated in Figure 2. 
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Figure 2. Simplified four input mixture process. 

 

We must assume that the 2x2 sub-polynomial-matrices 11( )-1zH  and 22 ( )-1zH also of degree 

n, are non-singular and for causality must also be  strict sense minimum-phase polynomial 

matrices. For the non-minimum phase case it is not possible to write the polynomial- matrix-

fractions 1 1 2 2

12 12 12( ) ...-1z = z zG G G and  1 1 2 2

21 21 21( ) ...-1z = z zG G G as a convergent power-

series. We can write from the above 

    1 1 1 2

12 ( )k k kqx s + G s
     (3a) 

    
2 2 1 1

21 )k k kqx s + G ( s
     (3b) 

and attempt to estimate 1

ks  and 2

ks  from measurements of 1

kx  and 2

kx . We then  re-define the 

integer n to be the degree of two polynomial-matrices found from 12

-1(z )G and  21

-1(z )G  

suitably truncated at n, viz 1 1 2 2

12 12 12 12( ) ...-1 n nz = z z zG G G G  and 

1 1 2 2

21 21 21 21( ) ...-1 n nz = z z zG G G G . We note that it is necessary when defining these 

polynomial matrices that the zeroth coefficient matrices are both zero. This is necessary when 

estimating these matrices in the next section. 

 

The backward vector separation method 

If we assume initially that 12G and 21G are known, then we can define a backward separation 

method 

   
1 1 1 2

12- ( )k k kqy x G y
      (4a)

 



   2 2 1 1

21- ( )k k kqy x G y
      (4b) 

As illustrated in Figure 3. 
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Figure 3. Backwards vector separation method. 

By substituting (3a) and 3(b) into (4a) and (4b) and provided 
 

   2 12 21I G G 0        

we arrive after some algebra with the two vectors 

   
1 1

k ky s
 

   2 2

k ky s
 

 

3.Multivariable LMS (MLMS)
 

There are two cross-coupled equations which describe the multivariable LMS (MLMS) 

backwards separation method for the case with 4 inputs. (two 2 dimensional vectors) 

 

   
1 1 1 1

1 1 ( )T

k k k kC C U e
      (5a) 

   
2 2 2 2

1 2 ( )T

k k k kC C U e
     (5b) 

and we define two error vectors of length 2 as part of  (5a) and (5b) given by 



   1 1 1 1( )T

k k k k-e = x C U       (6a) 

   2 2 2 2- ( )T

k k k ke = x C U       (6b) 

The two coupled MLMS equations (5a,b) minimise the mean-square error vectors 1 1[( ) ]T

k kE e e  

and 2 2[( ) ]T

k kE e e , (appendix A), The coupled MLMS algorithm also implements (4a,b) so that 

the separated vectors appear as the error vectors of each MLMS and 1

kC , 2

kC must also contain 

estimates of the coefficient matrices of polynomial matrices 12G and 21G respectively. e.g. for 

the first of these 
1 1 2

12 12 12
ˆ ˆ ˆ[ , ... ]n T

kC G G G  and  
2 1 2

21 21 21
ˆ ˆ ˆ[ , ... ]n T

kC G G G  for the second. Compare for 

instance equation (6a,b) with (4,a,b). The two error vectors (6a,b) now provide the separated 

output vectors after convergence.  

The 1

kC and 2

kC  matrices are of order 2nx2, 1  and 2 are step sizes. (see appendix A) Also

1

kU , 2

kU  are regressor vectors, each with length 2n whose elements are composed of regressor 

error terms accordingly 

   1 2 2 2

1 2[( ) , ( ) ...( ) ]T T T T

k k k k nU e e e     (7a) 

and 

   2 1 1 1

1 2[( ) , ( ) ...( ) ]T T T T

k k k k nU e e e     (7b) 

Note that there are no error terms in ke for physical realiseability. This also implies that 

12 210) (0) 0G ( G  giving a strict causal set of equations[13]. 

Substituting (6a) and (6b) into (5a) and (5b) and after some algebra  

 

   1 1 1 1 1 1

1 2 1 1[ ( ) ] ( )T T

k n k k k k kC I U U C U x    (8a) 

   2 2 2 2 2 2

1 2 2 2[ ( ) ] ( )T T

k n k k k k kC I U U C U x    (8b) 

There are other forms of multichannel LMS in existence e.g. [17, 18] which could also be 

used but they differ in that the weight matrix herein is a vector in other work. A normalised 

MLMS version has also been studied[19]. 

 

 

Steady-state performance of ideal solution. 

Although the LMS algorithm convergence can easily be proven (appendix A), global 

convergence of cross-coupled multivariable LMS algorithms as  in (5a,b) cannot. Even the 



simple scalar case has not been solved, though a simple example with two weights has been 

illustrated in[10]. However, what we can prove is that if the algorithm converges at all, then it 

could converge to the following solution. We do not claim however that this solution will be 

the one that it converges to. It is worth going down this track initially rather than more 

complex approaches to see if the method can be made to work though the convergence is not 

guaranteed. A more rigorous approach would be to include cross-coupling terms in the 

derivation as was carried out in the scalar case in [20]. It has been shown for the scalar case 

that the following solution is just one of many possible equilibrium points[21]. 

Write both equations (8a) and (8b) in augmented state-variable format, and after taking 

expectations we arrive at: 

   
1k kC ΦC B       (9) 

where the 4n symmetric square matrix Φ  is 

2 1 11

2 2 22

n

n

I R 0
Φ =

0 I R
 and the vector 1 1 2 2

T[ ]B = B B has length 4n and 

1 2
T

k k kC C C . 

The bar above the matrices in (9) refers to statistical steady-state. 

The two correlations matrices 1 1

11 [ ]T

k kER = U (U )  , 2 2

22 [ ]T

k kER = U (U )  where E[.] is the 

expectation operator and 1 1

1 [ ) ]T

k kEB U (x , 2 2

2 [ ) ]T

k kEB U (x . Now in closed-form the state-

vector responds to a statistical steady-state vector input B according to the standard discrete 

matrix convolution 

   

11

0

k ik

k

i

C Φ B       (10) 

which can be written as 

   
1

0

k
i

k

i

C Φ B       (11) 

Now 
1

0

k
i

i

Φ is a matrix geometric sequence which has a closed form (provided that the 

eigenvalues of Φ all lie within the unit circle in the z-plane) 
1

1

4 4

0

k
i k

n n

i

- -Φ I Φ I Φ . 

Now since lim
k

k
Φ 0  (the null matrix), the sum to infinity 

1

4

0

i

n

i

-Φ I Φ ,and the 

resulting steady-state converged augmented weight-matrix is 



   
1

4[ ]opt nC I -Φ B       (12) 

   1 1

11 1 22 2[ ]T
R B R B       (13) 

These are the following solutions of the two Wiener-Hopf equations 

   
1 1

1 1 1[ ) ]T

k k kEU UR C U (x       (14a) 

   
2 2

2 2 2[ ) ]T

k k kEU UR C U (x      (14b) 

Where for each case in steady-state, the error vector is orthogonal to the observations of its 

opposite number.(since 1

kU contains errors in 2

k ie  and 2

kU contains errors in 1

k ie )  It should be 

noted however in the above proof ,that the two multivariable LMS equations (8a) and (8b) are 

linked such that  the convergence of the second implies the convergence of the first and vice-

versa. Therefore as pointed out for the scalar case by[10], global convergence to the optimal 

weights is by no means assured theoretically due to the fact that the two are bootstrapped 

together and (14a,b) is just one possible solution.  

We can proceed further by considering the first error vector on its own from (6a) and writing 

   1 1 1[ ( ) ]T

k kJ trE= e e
      (15) 

and minimise the above by finding the derivative of 

   1 1 1 1 1 1 1[ ( ) ][( ( ) ]T T T

k k k k k kJ trE - ) -= x C U x U C    (16) 

or expanded 

 1 1 1 1 1 1 1 1 1 1 1{ ( ) ( ) ( ) ( ) ( ) ( ) }T T T T T T

k k k k k k k k k k k kJ trE x x C U x x U C C U U C
 (17) 

Taking the gradient with respect to the matrix 1

kC  

1

1
1 1 1 1 1

1
[ 2 ( ) 2 ( ) ] 0

k

T T

k k k k k

k

J
J E crossgradientterms

C
= U x U U C

C
  (18)

 

If the cross gradient terms are assumed to be zero then we quickly arrive at (14a). However, it 

has been pointed out for the scalar case in [14] and [20], that terms such as 

1

1 1 1 1 1[( ) ( ) ] ( )
k

T T T

k k k k ktrE
C

C U x U x , since this ignores the fact that the weight matrix 1

kC is 

correlated with the matrix 1

kU . However, this paper will make such an assumption since the 

alternative is a much higher overhead in computation, and the case above still has much 

merit. It should also be pointed out that although cross-coupled multivariable (and scalar) 

LMS algorithms have a bias, ordinary multivariable LMS (appendix A) or ordinary LMS 

does not. 

 



    
 

The two individual recovered vectors 1ˆ
ks and 2ˆ

ks (the error vectors) are in themselves the 

output of two further 2X2 polynomial matrix mixing matrices 
11( )-1zH and 

22 ( )-1zH i.e. 

1 1

11
ˆ ( )-1

k kzs H t  and 2 2

22
ˆ ( )-1

k kzs H t . Both of these signal vectors can be further separated to 4 

individual signals by applying two, two-input-output cross-coupled (scalar) LMS algorithms 

to 1ˆ
ks and 2ˆ

ks . This will recover the source signals up to an unknown shaping transfer-function 

for each signal. These scalar transfer functions are unlikely to cause any form of audible loss 

of quality to the recovered signals since the main source of noise is cross-coupling from the 

other sources. 

4. Separation of non-stationary mixtures. 

By using MLMS it has been shown that a vector of four mixed sources can be separated into 

two vectors, each with two mixed sources. The separation of two mixed sources has been 

explored in some detail elsewhere[10] and requires only two cross-coupled LMS algorithms. 

For example, consider the two vectors recovered from the coupled 2 X 2-input MLMS 

algorithms, 1 1 1

11
ˆ ( )k kqs H t and 2 1 2

22
ˆ ( )k kqs H t . They require 4 LMS algorithms in total to 

recover the 4 individual signals.  Overall we require 2 MLMS and 4 LMS algorithms.  The 

separation of two coupled sources is given below[10, 13]: 

The 2-input (dual input)  separator. 

Assume the 2x2 coupling matrix of FIR transfer functions 11H is non-singular with  

             
1

1 1 1 11 12

11 2

21 22

( ) ( )
ˆ ( )

( ) ( )

-1 -1

k

k k -1 -1

k

th q h q
q

th q h q
s H t

 

To proceed, we must further assume that 22h and 11h  are both minimum-phase
 

and write 

   

1 1

12

2 2

21

1 ( )

( ) 1

-1

k k

-1

k k

s rg q
=

s rg q
 

where 1 1

11k kr h t  and 2 2

22k kr h t , 12 12 22/g h h , 21 21 11/g h h and we estimate the r terms instead 

of the t terms. The r signals will only differ by  FIR transfer functions from the t signals. 

Separation is then found via the weight-vector updates of the two LMS algorithms: 

   1 1 1 1

1 1 ( )T

k k k kew w X
     (19a) 

   
2 2 2 2

1 2 ( )T

k k k kew w X
     (19b) 

Where , 1,2i i T i

k k k ke s iX w , 1 2 2 2

1 2[ , ... ]T

k k k k ne e eX  and 2 1 1 1

1 2[ , ... ]T

k k k k ne e eX
  



and the two de-correlated random signals are ˆ , 1,2i i

k kr e i . We make the assumption for 

strict causality that the two polynomials 12 21(0) (0) 0g g . The same technique can then be 

applied to a non-singular 22H . The convergence of this algorithm is studied in [10]. A further 

refinement of a delay in one of the paths is discussed in [22]. 

The 4-input separator. 

The 4 source blind separation solution is illustrated below. 
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Figure 4. The 4-input separator. 

Computational Cost 

For L=4 sources it is easy to find the computational cost of this algorithm. Figure 4 shows 

that we require 2 MLMS algorithms and 4 LMS algorithms. Define N=n+1 where n is the 

order of the system to be identified using either LMS or NLMS.  

Then for 1 MLMS requires 

Multiplies: 22NL L
 

Adds/subtracts: 22 1NL L
 

 

For 1 LMS requires 

Multiplies: 2 1N
 

Adds/subtracts: 2N
 

We note that although 2 MLMS algorithms are required for L=4 that each error vector is of 

length L/2. Therefore the total computation can be found as 

Total computation cost for L=4 (2 MLMS + 4 LMS) 

Multiplies: 24 8N
 

Adds/subtracts: 24 2N
 



At this stage it is convenient to compare with previous work[13] which uses solely LMS 

algorithms. The Multi-LMS algorithm is as follows 

 

   
1;

ˆ( )
L

i i ij T j

k k k k

j j i

e x w Y
     (20a)

 

   
1 , , 1,2,... ,ij ij i j

k k ij k ke i j L i jw w Y
   (20b)

 

Where 
1 2[ , ... ]j j j j T

k k k k ne e eY .
 

These equations require L(L-1) LMS sets of equations. For L=4 this is 12 sets of LMS 

requiring  

Multiplies: 24 12N
 

Adds/subtracts: 12N
 

So we find for L=4 that the Multi-LMS method requires 4 less multiplies and 2 more 

adds/subtracts. This will potentially provide a marginal improvement in computation time. 

Separation of 8 sources or above. 

The separation of  2pL sources for some integer p can be performed by using the results for 

1,2,4 etc in higher-order solutions. For example for p=3, 8 sources, we require two NLMS 

algorithms each estimating error vectors of size 4. The algorithm already discussed for 

separating 4 coupled sources can then be used twice to separate the two error vectors each 

with 4 mixed outputs. The algorithm for 4 inputs in turn relies on two- 2- input algorithms. 
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Figure 5. Illustrates the separation of 8 mixed non-stationary random signals. 

For the new algorithm when L=8,we need 112N+24 multiplies and 112N+10 adds/subtracts. 

For the Multi-LMS algorithm we require L(L-1)=56 LMS algorithms which results in 

112N+56 multiplies and 112N adds/subtracts. The proposed method therefore requires 32 

fewer multiplies and 10 more adds/subtracts.  



Likewise we can show that for L=16 that the new approach needs 176 fewer multiplies 34 

more adds/subtracts. The Multi-LMS method also requires no fewer than 240 LMS equations. 

For an L-square convolution mixing matrix 1( )zH  we must have for separation to exist that 

the mixing matrix is invertible and that its z-transform elements (0) 0, , , 1,2...ijh i j i j L

for causal backward separation to exist. We also require that the diagonal elements of the 

mixing  matrix 1( )zH  must be all strict sense minimum phase. i.e. the roots of each of 

1( ) 0, 1,2...iih z i L  must have their roots within (and not on) the unit circle of the z-plane. 

 

 

 

Algorithm 4.1 Multivariable CRANC for L source separation. 

For L=2 sources we use the previously references cross-coupled dual LMS algorithms. 

For L>2 sources: 

Step 1. Ensure that L>2 is an integer power of 2 and employ a hierarchical multivariable 

LMS approach beginning with two cross-coupled MLMS algorithms each with error-vector 

size L/2. 

Step 2. The two L/2 error vectors are then feed two 2 further cross-coupled MLMS 

algorithms each with error size L/4 giving 4 lots of MLMS algorithms of size L/4. 

Step3. This procedure is repeated until finally there are only two dimensional error-vectors 

remaining. There will be L/2 lots of cross-coupled dual-LMS algorithms left (each with two 

error outputs)  and hence L separated signals in total. 

For any L there will be L-2 MLMS cross-coupled algorithms used in total plus L/2 cross-

coupled scalar LMS algorithms. 

4. Results 

Simulation 

Four signals were mixed using the following second order mixing system 



 

0 4

1

2

0 0.1 0.4 0.6
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There was only one source of interest; the other three sources were taken to be background 

noise disturbances. The source of interest, shown as the first source in Figure 6 was the 

speech sample kdt_002.wav taken from the KED_TIMIT database. The other three signals 

were samples of a car assembly line taken from the NOISEX database, labelled “Factory 

floor noise 2” at the Signal Processing Information Base(SPIB) at Rice University USA. The 

separating system used three tap-weights for each of the stages in the divide-and-conquer 

algorithm. 

Figure 6 shows a definitive improvement in the signal-to-noise ratio (SNR). Because speech 

is temporally dependent, there are some periods of noise alone, during which the power of the 

noise can be estimated. During speech, the combined power of the speech and noise can also 

be estimated. Assuming that the speech signal is orthogonal to the background noise, the 

SNR can be calculated using 

 10 10SNR 10log 10logSN N NP P P
 

Where PSN is the combined power of the speech and noise, and PN is the power of the noise 

by itself.  Using this, we calculated an increase in the SNR of 9dB between (b) and (c) of 

Figure 6. 

 

 

 

A real room recording 

 To test the algorithm in a real environment, we set up the equipment as shown in Figure 7. 

The room was 4m wide, 7m long, 2.3m high with a carpeted floor, plasterboard walls and 

ceiling, and typically furnished with a lounge suite, a piano, a table and four chairs. Four 

loudspeakers were set up in the position of the sources. The noise sources, symbolized by the 

speakers in Figure 7, were the same noise sources used in the simulation, now only played 

through the loudspeakers. The speech, symbolized by the head in Figure 7, was the speech 

sample contained in the package „Lunatick-20080326-cc.tgz‟ from the VoxForge speech 



corpus, also played through a loudspeaker. The microphones were placed in a square, with 

20cm between adjacent microphones, and recorded using a sampling rate of 44.1 kHz.
 

 

Figure 6. The separation results of four convolved sources. (a) are the clean input 

signals before mixing, (b) are the mixed signals as would be blindly received, and (c) are 

the unmixed signals. 

Using 500-taps in both the cross-coupled MLMS and the ordinary cross-coupled LMS, we 

obtained an increase in SNR of 5dB. Figure 8 shows the results using the both the cross-

coupled LMS method described in this paper, and also the results of the method proposed by 

Mei et al in[13]. Table 1 shows the input SNR and output SNR of both methods with 

different tap-lengths. The tap-weights for the proposed method defines the number of taps for 

each stage in the divide-and-conquer algorithm. 

 

(b) (a) (c) 



 

Figure 7. The experimental set-up 

 Input SNR Output SNR Increase in SNR 

Proposed Method    

500 tap-weights 7.7 dB 12.6 dB 4.9 dB 

1000 tap-weights 7.7 dB 14.2 dB 6.5 dB 

1500 tap-weights 7.7 dB 14.3 dB 6.6 dB 

    

Mei et. al. Method    

500 tap-weights 7.7 dB 12.4 dB 4.7 dB 

1000 tap-weights 7.7 dB 13.9 dB 6.2 dB 

1500 tap-weights 7.7 dB 13.8 dB 6.1 dB 

 

Table 1. SNR Improvement for the two methods. 

 



 

 Figure 8. The separation of speech using real recordings. (a) are the recorded signals; 

(b) is the separated speech using the proposed method and 500, 1000, and 1500 weights 

(a) 

(b) (c) 



respectively; and (c) is the separated speech using the method proposed by Mei et. al. 

with 500, 1000, and 1500 weights respectively. 

We also note that for such an example we can dispense with one of the two dual-LMS 

algorithms in the solution (see Figure 4) since the recovery of one signal only is necessary 

and the three others are “don‟t care” noise signals. This gives a computational saving of 

4N+1 multiplies and 2N+2 adds/subtracts. These types of realistic noise signals are 

particularly difficult to remove, especially since they are coming from three different 

directions. It was found with informal listening tests that the quality of the received speech 

was quite clear and easy to understand with much roughness from the noise removed 

including the distant sound of a circular saw. As an alternative to LMS and MLMS an 

approach using recursive-least squares (RLS) and its multivariable counterpart (Appendix B) 

can be used instead. However, with large numbers of weights required for realistic 

environments the time taken to run such simulations can be prohibitively large and tracking 

performance of RLS is known to be inferior to that of LMS, relying on ad-hoc methods using 

forgetting factors.  

Just as with BSS methods, it is not obvious which of the separated outputs is the one of 

interest. However, with analogy to the (two LMS) scalar case of two coupled LMS 

algorithms, if a 90 degree line bisecting the line of microphones is drawn, then the most 

likely output of the desired speech will occur at the microphone who‟s corresponding 

decorrelated output is nearest. It should also be pointed out here that the same data was run 

through the algorithm with eight (i.e. an overdetermined system) rather than four microphone 

inputs with identical results. In this sense the algorithm behaves much like an analogy to the 

FFT algorithm. That is, the number of data points in an FFT must be a power of 2, but this 

causes little real-world problems since zero-padding can be used if this is not the case. 

 

Conclusions 

A new approach to blind-source separation of non-stationary signals has been shown. The 

hierarchical method is based on multivariable coupled LMS of decreasing vector size and has 

been shown to work well in a realistic acoustic environment. Although convergence is not 

mathematically guaranteed it was found that coupled LMS or MLMS algorithms always 

converge to a solution that gives overall noise-reduction. A difficult real-world example of 

separation of a continuous sentence of speech from three non-stationary noise sources has 

been shown to give improvements in SNR in the range 5-6dB. 



Appendix A. Multivariable least-mean square (MLMS) algorithm. 

We examine the LMS algorithm where the error is a vector of length L rather than a scalar. 

Many other authors have also investigated this problem[23] and it is sometimes known as 

vector LMS or multiple-error LMS. As pointed out in [23] , algorithms which operate on 

multiple parallel scalar LMS algorithms are not equivalent to the multivariable case since the 

vector LMS algorithm exploits the crosstalk between the different signals, whereas a bank of 

scalar LMS algorithms effectively treats the interference as noise.  

Preliminaries: We need the following standard matrix results[24]. For matrices X,R,A 

( )T Ttr X RX RX R X
X

 and if R is symmetric this result becomes ( ) 2Ttr X RX RX
X

 

( )Ttr X A A
X

, ( ) Ttr AX A
X

 

Cost function: 

   [ ]T

k kJ=E e e  

Where E[.] is expected value. We can write the above as 

   [ ]T

k kJ=trE e e  

Where k k ke x y is the vector error signal, kx is the desired signal vector and T

k k ky C U is 

the filter vector output all of dimension L. The vector kU is a vector of regressor vector inputs 

of dimension (n+1)L and the matrix kC has dimension (n+1)LXL. We assume for this 

application that 0 1 2[ , ... ]T n

k k k k kC C ,C C C  n+1 weight matrices to estimate in total for an nth 

order multivariable filter. The regressor vector  

   1[( ) , ( ) ...( ) ]T T T T

k k k k nU u u u
 

Where ku is the filter input vector of dimension m ie 1 2[ , ... ]m T

k k k ku u uu  . This is illustrated in 

Figure A1.  
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Figure A1. Generation of the error vector for MLMS 



Now  

   T T T T T T T

k k k k k k k k k k k k k ke e x x C U x x U C C U U C  

and 

   [ ] { }T T T T T T T

k k k k k k k k k k k k k kJ=trE trEe e x x C U x x U C C U U C  

Using the previous matrix derivative results gives the gradient vector as: 

 

   { 2 2 } 0T T

k k k k k

k

J
J E U x U U C

C
 

Define [ ]T

k kE xB U  and [ ]T

k kER U U and we have 

   
1

optC = R B  

as the optimal weight-matrix. Substituting the value back into J gives the minimum of the 

cost function after some algebra as 

   
2

min [ ]T

opt kJ tr E= B C x
 

 

 

Method of Steepest Descent 

The equation for steepest descent has the form 

 

   1

1

2
k k - JC = C  

   [ ]k opt= C B RC  

We require for convergence a further energy constraint 
1

sup 1
2

T

k kU U
 

where is a constant  and kU is purely nondeterministic[16]. 

 

But B and R cannot be known apriori, then replace them with their instantaneous estimates. 

   1 [ ]T T

k k k k k kC = C U x U C  



or alternatively in more familiar form: 

   
1

T

k k k kC = C U e  

Where 

   T

k k k ke x C U   

Convergence in the mean of multivariable LMS. 

From the earlier result 

   1 [ ]T T

k k k k k kC = C U x U C
 

Taking expectations and assuming that the regressor vector is uncorrelated with the weight 

matrix, we have 

   1

T T

k k k k k k kC = C U U C + U x
 

Defining the correlation ]T

k kER = [U (U ) and we ]
T

k kEB = [U x
 
as previously, we have  

   1[ ] [ ] [ ]k kE EC = I - R C B  

Where the identity and correlation matrices above have dimension (n+1)L. The above 

expression is a state-variable expression with constant input B and the solution can be found 

in a similar manner to equation (10) 

    
1

1

0

[ ]
k

k i

k

i

E C I - R B

 

or equivalently 

    

1

0

[ ]
k

i

k

i

E C Γ B

  

Where the matrix Γ = I R  is defined in the above.

 

Now 
1

0

k
i

i

Γ is a matrix geometric sequence which has a closed form (provided that the 

eigenvalues of Γ all lie within the unit circle in the z-plane) 
1

1

0

k
i k

i

- -Γ I Γ I Γ . 

Now since lim
k

k
Γ 0  (the null matrix), the sum to infinity 

1

0

i

i

-Γ I Γ ,and the 

resulting steady-state converged augmented weight-matrix is 

    
1[ ]optC I - Γ B   



Which is of course the statistical steady-state optimal (Wiener) weight-matrix. 

     

   1

optC R B   

We should note therefore that the necessary condition for convergence is that the eigen-

values of Γ = I R  must all have magnitude less than unity leading to the well-known 

formula for the upper limit on the step-size: 

   max0 1< < /  

Where max is the largest eigenvalue of the correlation matrix. This last step follows simply 

by a spectral decomposition of Γ into  

   1
Γ =TΛT   

where Λ  is the diagonal matrix of eigenvalues and T is the modal matrix of eigenvectors. 

Clearly lim
k

k
Γ 0

 
iff the eigenvalues have magnitude less than unity since  

   
1lim

k

k
TΛT 0  

Appendix B. Multivariable recursive-least squares (MRLS) algorithm. 

Although the scalar RLS algorithm is commonly found in the literature, it is much harder to 

find a proof of the MRLS algorithm. Traditionally in multivariable control problems the input 

signal vector to a system is known and hence the MRLS problem can be split into several 

scalar RLS algorithms instead. However, when, as in the cases here we do not have 

measurements of the input then we require the MRLS algorithm. The RLS family of 

algorithms has significantly faster convergence rate than LMS but suffers from lack of good 

tracking ability and stability issues when used to estimate AR or ARMA type systems. We 

avoid the stability issues here by using an FIR(MA) model for the multivariate time-series. 

Considering that the FIR multivariable output vector of order m is T

k k ky C U
 
and can be 

written for N=(n+1) consecutive sample vectors (since there are n+1 unknown matrix 

weights)  

   

0

1

1 1

. . .

. . .

T T

k k k

T T

k k k

T T n

k N k N k

y U C

y U C

y U C

 

Or alternatively 



   k k kY X W
 

Where kY is NXm, kX is NXNm and kW  is an NmXm matrix respectively. It is then required 

to find the matrix kW  which contains the impulse response of the multivariable FIR  system. 

ie  0 1[( ) , ( ) ...( ) ]T T n T T

k k k kW C C C .  

Define an error matrix 

   T

k k k kE Y - X W  

and minimise the cost function 

   EEJ min trace( )= Φ
 

 

Where [ ]T

EE k kEΦ E E is error spectral density matrix and E[.] represents statistical 

expectation. 

Using results similar to Appendix A we differentiate J to give the optimal  least-squares 

estimate: 

   1

0 ( ) ( )T T

k k k kE EW X X X Y
     

 

Now define an NmXNm symmetric positive-definite error-covariance matrix 
1[ ] 0T

k k kP X X  and define T

k k kB = X Y  and therefore 

1 1

1

T

k k k kP P U U  and 1

T

k k k kB = B + U y . We can invert 1

kP by using the matrix inversion 

lemma (Sherman-Morrison-Woodbury)  1 1 1 1 1 1( ) (1 )T T T
A+ UU = A A U U A U U A  

and this gives an update 

   1 1
1

11

T

k k k k
k k T

k k k

P U U P
P P

U P U
 

We also define the column vector kK  of length Nm 

   1

11

k k
k T

k k k

P U
K

U P U
 

  

and note that  

   1 1(1 )T

k k k k k kK U P U P U  



From which 

   
1 1[ T

k k k k k kK P K U P ]U  

    k k= P U
 

Substitute 
1

T

k k k kB = B + U y  and 
1 1

T

k k k k kP P K U P  into the weight matrix estimate vector

ˆ
k k kW P B  

  

   1 1 1
ˆ [ ][ ]T T

k k k k k k k kW P K U P B U y
 

We note that 1 1 1
ˆ

k k kW = P B  so that after simplification we get the weight-matrix update as 

   1 1
ˆ ˆ ˆ[ ]T T

k k k k k kW = W + K y -U W  

MRLS Summary 

To identify an nth order multivariable FIR system with m inputs and outputs. As with the 

MLMS case (see Fig A1) the regressor vector has the form 1[( ) , ( ) ...( ) ]T T T T

k k k k nU u u u . A 

forgetting factor 0 1has been added to improve the tracking performance.
 

1.Initialise 0 0 ( 1)n mpP = I  where 0p can be either small or large depending on the speed of 

convergence required and initialise the (n+1)mXm weight matrix 0Ŵ to some initial values 

(possibly zero). 

2. Update the m length column error vector 1
ˆ ]T

k k k ke = y -W U  

3. Update the (n+1)m length column gain vector 1

1

k k
k T

k k k

P U
K

U P U
 

4. Update the (n+1)m square covariance matrix 1 1
1

1

1
[ ]

T

k k k k
k k T

k k k

P U U P
P P

U P U
 

4. Update the weight matrix  1
ˆ ˆ T

k k k kW = W + K e  where 
0 1ˆ ˆ ˆˆ [( ) , ( ) ...( ) ]T T n T T

k k k kW C C C
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Abstract 

Crosstalk resistant adaptive noise cancellation (CTRANC) is a method of separat-
ing convolutively mixed sources where little a priori  information is known about 
the system. Possible areas of application for such an algorithm include speech sig-
nal processing, in telecommunications, and in the biomedical industry. In this pa-
per we propose a novel adaptation to the traditional CTRANC which increases 
computational efficiency when the number of sources fits the requirement of 

2nL   where n  and 1n  . Preliminary results also show a modest im-
provement in separation performance when comparing it to the multiple-input 
multiple-output method proposed by Mei and Yin (2004). 

1 Introduction 

The blind source separation problem is the problem of trying to identify the indi-
vidual sources with no a priori knowledge of the sources or the mixing system. 
Normally, all that can actually be acquired is different mixtures of the sources us-
ing multiple sensors. If only interested in the unmixed signals, this crosstalk has a 
detrimental effect on the usefulness of the acquired signal, and if significant 
enough, may render the raw signal totally unusable.  

A real-life example of blind source separation is what is known as the “cocktail 
party problem”. Consider the case where there is a room of people, all of whom 
are talking simultaneously; the human brain is able to adequately extract one per-
son’s speech from the rest. If an algorithm can be found to replicate these results, 
it would provide a very useful tool in the area of automatic speech recognition, 
which in turn could be used for speech control.  
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The application of such an algorithm need not be restricted solely to audio ap-
plications. In the medical world it could be used to isolate signals for electrocardi-
ograms (ECGs) or electromyograms (EMGs) (Zhang and Cichocki 2000). It could 
also be used in telecommunications to reduce the crosstalk created by multiple 
transmitters (Pedersen et al. 2007). Another less obvious application for blind 
source separation is to separate images that have been mixed (Amari and Cichocki 
1998), though this does not apply to CTRANCs. 

One trivial way of solving this problem is to use a Widrow-Hoff least mean-
squares (LMS) filter and an approximation of the noise signal to remove the noise 
from the mixture. However, this has the fundamental flaw that the noise signal has 
to be relatively signal-free. While there may be situations in which acquiring such 
a noise approximation is the quite plausible (for example, in a jet cockpit, where 
the engine noise can be obtained with negligible speech crosstalk), in the majority 
of everyday situations this assumption cannot be justified. 

To overcome this problem, Zinser et al. (1985) proposed a cross-talk resistant 
adaptive noise canceller. The basic premise was that cross-coupling two LMS fil-
ters could result in an adaptive noise canceller that was not susceptible to crosstalk 
from the desired signal in the noise estimate. 

In this paper, we propose a novel adaptation to the cross-talk resistant noise 
canceller that utilizes vector-LMS to increase the computational efficiency of the 
algorithm when dealing with 2k  input signals, where 1k  . We then show that 
the proposed algorithm actually slightly outperforms the multiple-input multiple-
output (MIMO) cross-talk resistant adaptive noise canceller proposed by Mei and 
Yin (2004) in terms of input-output signal-to-noise ratios with while reducing 
computational complexity. 

This paper is organized as follows. In section 2, the background information of 
all of the components required for the development of a CTRANC based of vec-
tor-LMS are discussed. Section 3 shows the derivation of the novel algorithm, and 
compares its computational complexity to the CTRANC proposed by Mei and Yin 
(2004). The experimental set-up and results are discussed in section 4, and the pa-
per is then concluded in section 5. 

2 Background Information  

The Mixing System 

We will first consider the case of a two-input, two-output (TITO) system.  In ma-
trix form this is 

       T tt tx G S  (1) 

where       1 2
,

T
t x t x tx , the superscript T denotes the transpose operator,  



Blind Source Separation for Adaptive Speech Control      3 

Fig. 1. The simplified mixing system 
 
t  denotes the time index, 

       0 1 1 Tnt G t G t G t   G  

is the mixing matrix with n  taps (the superscript number indicates the tap index), 
and 

 

          
   

1 2 1 2

1 2

1 1

1 1

t s t s t s t s t

s t n s t n

  
     

S    

 
 

However, because we are more interested in the separation of the signals rather 
than the deconvolution of them, we take the assumption that the channels between 
each source and the closest microphone are simply the Kronecker delta function. 
This simplifies the problem because it means that we only have to account for two 
unknown filters rather than four. Fig. 1 shows the simplified mixing system.  

On the other hand, this means that at best, we will separate the signals only up 
to filtered versions of the original. In order to find the original unfiltered versions 
of the sources, blind dereverberation is needed. This is a very difficult problem 
when only given one instance of the filtered speech; temporal whitening is not 
recommended since pure speech is naturally temporally correlated (Douglas 
2003), and temporal whitening would make the speech sound unnatural. On the 
other hand, temporal decorrelation may have its uses in applications where listen-
ing to the signal is not needed - e.g. automatic speech recognition. 
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Fig. 2. The separating system 

The Cross-talk Resistant Adaptive Noise Canceller  

Zinser et al. proposes an adaptation to the LMS filter in order to make it more resi-
lient to cross-talk. Rather than feeding the noise estimate directly into the LMS fil-
ter as a reference, he describes how a second LMS filter can be used to remove 
any of the crosstalk from the noise estimate, resulting in a better noise approxima-
tion (Zinser et al. 1985). Fig. 2 shows a block diagram of the backward-separation 
system. It can be seen that as 

12
Ĥ  and 

21
Ĥ  converge to 

12
H  and 

21
H  respectively, 

1
y  and 

2
y  will converge to 

1
s  and 

2
s  respectively. Note that permutation of the 

order of inputs to outputs cannot occur. This permutation occurs where there is no 
guarantee that any specific source will be mapped to a specific output. The inabili-
ty to permute differentiates the CTRANC from other methods of blind separation 
(such as independent component analysis (Comon 1995)), which is based purely 
on the independence of the outputs. However, this is based on the assumption that 
each microphone is the closest microphone to a unique source. 

Mei and Yin expand on this idea to derive the following simplified equation 

updates for the filters 12Ĥ  and 21Ĥ  (Mei and Yin 2004). 

 
       
       

12 12 1 1 2

21 21 2 2 1

ˆ ˆ1

ˆ ˆ1

H t H t y t t

H t H t y t t





  

  

Y

Y
 

where 1  and 2  are the positive learning rates,  1y t  and  2y t  are the esti-

mates of the separated signals at time t , and 

 
       

       
1 1 1 1

2 2 2 2

1 , 2 , ,

1 , 2 , ,

T

T

t y t y t y t n

t y t y t y t n

      

      

Y

Y
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Vector-LMS 

While ordinary LMS will find the transversal filter weights when given both the 
input and output of a filter, vector-LMS will find the mixing system given the in-
puts and outputs of the mixing system. For example, if we applied vector-LMS to 
two-input two-output system shown in equation (1), the matrix-polynomial of the 
filter would converge to G . Batra and Barry show the derivation of the vector 
LMS algorithm 

          1
T

t t t t  G G S e  

where   tG  is the estimate at time t  of the mixing polynomial matrix G ,   is 

the step size,        , 1 , ,
TT T Tt t t t n     S s s s  is a vector of 

length 2n  of the inputs where n is the filter order, and  te is a length-2 vector 

of the errors between the desired filter output x  and its actual output x  where 
 Tx G S   (Batra and Barry 1995). 

In this paper, we develop a crosstalk resistant adaptive noise canceller that uti-
lizes vector-LMS to obtain a multibranched-recursive structure, creating a more 
modular algorithm with increased computational efficiency. 

3 The Cross-coupled Vector-LMS 

In order to show the working of the CTRANC based on vector-LMS, we will con-
sider the situation of four inputs and four outputs. In Fig. 3 we have a matrix poly-
nomial representation of the mixing system, where  1 1 2

,
T

s ss    and 

 2 3 4
,

T
s ss    are the four inputs multiplexed into two vectors,  1 1 2

,
T

x xx  

and  2 3 4
,

T
x xx  are the four outputs multiplexed into two vectors, and 11G , 

12G , 21G , and 22G  are all mixing polynomial matrices representing the entire 

mixing system. Note that these should not be confused with their scalar counter-
parts. Using the same reasoning as with the ordinary CTRANC, we derive the fol-

lowing update equations for the separating polynomial matrices 12H  and  21H . 
         
         

12 12 2 1

21 2 1 2

1

21

1 1

1 1

T

T

t t t t

t t t t





   

   

H H Y y

H H Y y
 

where 1  and 2  are convergence weights, 1y  and 2y  are the length-2 output  
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Fig. 3. The four input mixing system 
 
  
vectors  1 2,y y  and  3 4,y y  respectively, and the length- 2n  vectors 1Y  

and 2Y  are defined by 

 
     

     
1 1 1 1

2 2 2 2

1 , 2 , ,

1 , 2 , ,

TT T T

TT T T

t t t n

t t t n

      

      

Y y y y

Y y y y
 

Essentially what this algorithm will do is separate a system of four mixed 
sources into two systems of two mixed sources. One can then apply the algorithm 
from an ordinary CTRANC to separate each of the sources into approximations of 
the original individual signals. 
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Table 1. Multiplication operations required. 
 

Table 2. Addition/subtraction operations required. 

Computational Efficiency 

 
Mei and Yin (2004) proposed an adaptation to the TITO CTRANC that extended 
it for use with more than two input signals. This was simply an extension of the 
two-channel case. For example, with three sources each input needed two LMS 
filters removing the crosstalk from the other two channels. Thus the computational 
complexity of their algorithm was equivalent to  1L L   LMS algorithms. The 

multibranched recursive approach that we propose is more efficient under certain 
conditions as will now be shown. 

We will now consider the computational requirements for the proposed algo-
rithm. With 2kL   inputs, it requires two 12k -vector LMS algorithms, four 

22k -vector LMS algorithms, etc. The number of multiplication and addi-
tion/subtraction operations for each vector LMS algorithm is given by the follow-
ing equations. 

 
 
 

2

2

2 1 multiplications

1 additions/subtractions

n M M

n M M

 
 

 

where n  is the filter size and M is the size of the input/output vectors. These eq-
uations also work for scalar LMS, when 1M  . 

Another advantage in the proposed method is that its modular structure allows 
the removal of portions that may be unnecessary. For example, in an eight-input 
system, if only one source needs to be extracted, and it is known which output 
channel that source maps to, then six scalar LMS and two 2-vector LMS algo-
rithms can be discarded. This allows for further computational savings.  

Tables 1 and 2 show the multiplication and addition/subtraction requirements 
for 4, 8, and 16 input systems for the cases where all sources need to be extracted, 

Number of Inputs Proposed Method Mei and Yin Method 
 Separate all Extract one  
4 24 32n   20 26n   24 36n   
8 112 136n   84 98n   112 168n   
16 480 544n   340 370n   480 720n   

Number of Inputs Proposed Method Mei and Yin Method 
 To separate all To extract one  
4 12 20n   10 16n   12 24n   
8 56 80n   42 56n   56 112n   
16 240 304n   170 200n   240 480n   
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and when only one needs to be extracted. These results show that the current me-
thod is more computationally efficient than that proposed by Mei and Yin for all 
given cases. 

4 Separation Performance 

We conducted a simple experiment to discover the relative separation of the 
proposed method to the method in (Mei and Yin 2004). 

Experimental Procedure  

The experiment was set up as follows: four microphones were placed as four 
corners of a 0.2m0.2m square near the middle of a 4m7m room furnished with 
a lounge suite, a piano and a dining room suite. There were three noise sources, all 
samples of a car assembly line from the file labeled ‘factory floor noise 2’ from 
the NOISEX database. The speech was created by using a loudspeaker playing the 
speech sample in the package ‘Lunatick-20080326–cc.tgz’ from the VoxForge 
speech corpus. The algorithm was implemented using NI LabVIEW. 
 

Using the described set-up, we used the proposed algorithm to reduce the noise 
level. Each filter had 1000 tap-weights. We chose this number because increasing 
the number of tap weights beyond 1000 increased computational complexity with 
a negligible increase in SNR, while decreasing the number of tap-weights adverse-
ly affected the results. Because we do not have the power of the desired signal by 
itself, to calculate the SNR, we net to use the following formula  

 1010 log SN N

N

P P
SNR

P

 
  

 
 (2) 

where SNP  is the combined power of the speech with the noise and NP  is the 

power of the noise. This is based on the assumption that the noise and the speech 
are statistically independent. 

Results 

Using the formula for calculating signal-to-noise ratios given in equation (2), we 
obtained the results as shown in Table 3. In an informal listening test, we also 
found that the speech was more comprehensible in the separated signals than in 
the mixed signals. 
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 Input SNR Output SNR 
Proposed Method 7.7 dB 14.2 dB 
Mei and Yin Method 7.7 dB 13.9 dB 

Table 3. Increases in SNR 
 
There is a modest gain in the SNR for the proposed method when comparing it 

to the method described by Mei and Yin. This indicates that the proposed method 
can perform separation at least as well as the method proposed by Mei and Yin, 
while saving in computational complexity. 

5 Conclusion 

One solution to the blind source problem is to use a cross-talk resistant noise can-
celler to separate the signals. This paper describes an adaptation to the CTRANC 
algorithm to increase its computational efficiency. Experimental data shows that 
there is a modest increase in performance due to these adaptations. It also has the 
advantage that it is potentially even more computationally efficient if there is only 
one desired source, and it is known which channel it will be separated to. In future 
studies we propose to incorporate this method with an automatic speech recogni-
tion system, and evaluate its performance in that capacity. 
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