Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Hindgut Digestibility in the Dog (Canis familiaris)

A thesis presented in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE in Animal Science

at Massey University, Palmerston North, New Zealand

Ishwani Singh

2006

Abstract

Digestibility trials are important tools used by nutritionists to establish the nutrient requirements of an animal. The most common method used is total faecal collection, which involves the total collection of faeces over a limited period of time. Digestibility trials can also use indigestible markers, such as chromium oxide and titanium oxide, which eliminate the need for a total faecal collection and instead uses sub-sampling methods

The major aim of this thesis was to compare the suitability of chromium oxide (Cr_2O_3) and titanium dioxide (TiO_2) as indigestible markers in dogs. Due to constraints in the study design (limited space in the facility and therefore a requirement to house dogs in pairs), it needed to be established if TiO_2 interfered with the chemical analysis of Cr_2O_3 before any animal trials were undertaken. Different concentrations of both markers were added to freeze dried dog faeces. The indigestible markers were then analysed for in the laboratory and recoveries calculated. It was established that there was no interference of the analysis by either marker.

After a pilot study confirmed that coprophagy did not occur in the dogs, the first study (Chapter 2) used 12 entire female Harrier hounds housed in pairs in 6 concrete floor pens. The dogs were fed twice daily with one of 4 treatment diets; a high nutrient diet containing Cr_2O_3 or TiO_2 or a low nutrient diet containing Cr_2O_3 or TiO_2 or a low nutrient diet containing Cr_2O_3 or TiO_2 or a low nutrient diet containing Cr_2O_3 or TiO_2 or a low nutrient diet containing Cr_2O_3 or TiO_2 . Daily intake was recorded for each dog. Each dog received each of the 4 diets over 4 consecutive evaluation periods of 14 days each. This study showed that 100% recovery of markers was not achieved in the dogs. Recoveries of Cr_2O_3 were 58% and 76% respectively for high and low nutrient diets, and recoveries of TiO_2 were 80% and 74% respectively for the same two diets. These results suggest that TiO_2 is currently the best indigestible marker for use in dogs.

Study 2 (Chapter 3) used 5 adult female Beagle dogs with surgically prepared ileal cannulas. The ileal cannulation was conducted according to the method of

Walker *et al.* (1994), and the dogs were housed individually in floor pens in temperature controlled rooms. The dogs were fed 5 commercial AAFCO approved diets with free access to water. Dogs were randomised in a replicated 5×5 Latin-square design with 14 day periods, consisting of a 10 day adaptation period and a 4 day ileal and faecal collection period. It was found that there were significant differences between ileal and faecal digestibility of dry matter, crude protein, organic matter and carbohydrates of the nutrients that we tested, indicating that there was significant metabolism of nutrients in the hindgut of the dog.

ACKNOWLEDGEMENTS

Firstly, a very special and sincere thank you to my supervisor Dr. David Thomas for his kind supervision, advice, patience and the countless sessions of proof reading. Also a very special thanks to Mr Don Thomas for keeping me motivated and helping whenever the need arose also for his exceptional advice in all aspects of the study.

I would also like to extend my sincerest thanks to Ms. Kelly O'Flaherty, I would have been lost without her help, motivation and constant encouragement during the animal trials.

I acknowledge Mr Shane Rutherford for his advice on running the trials and his invaluable help in setting up the animal facility. I also acknowledge Charlotte James and Lesley Pearce for their assistance with the animal trials.

I would also like to thank my primary supervisor Dr. Wouter Hendriks.

TABLE OF CONTENTS

		Page
ABSTRACT	i	
ACKNOWLEDGEMENTS		iii
TABLE OF CONTENTS		iv
LIST OF TABLES		vii
LIST OF FIGURES		viii
GENERAL INTRODU	1	
CHAPTER 1 REVIEW	OF LITERATURE	3
1.1 Introduction		3
1.2 Physiology of digestion		4
1.3 General physiology of the mammalian intestine		9
1.3.1 Intestinal microscopic structure		10
1.3.2 Digestion in the	ne small intestine	12
1.3.2.1	Carbohydrate digestion	12
1.3.2.3	Lipid digestion	13
1.3.3 Absorption in the small intestine		13
1.4 The large intestine		14
1.4.1 Movement in the large intestine		16
1.4.2 Absorption in the large intestine		17
1.4.2.1 Primary Active Transport		17
1.4.2.2 Secondary Active Transport		18
1.4.2.3 Prote	19	
1.4.2.4 Fluid 1.4.2.5 True	and apparent digestibilities	22
1.5 Endogenous losses		24
1.5.1 Influence of gut bacteria		25

1.6 Digestibility		
1.6.1 Total collection method	25	
1.6.2 Slaughter method	26	
1.6.3 Cannulations 1.6.3.1 T-Cannula 1.6.3.2 Mobile nylon bag technique	26 29 29	
1.6.4 lleostamies	30	
1.6.5 Indigestible markers 1.6.5.1 Determination of chromium oxide 1.6.5.2 Determination of titanium dioxide	30 34 35	
1.7 Summary	36	
CHAPTER 2 INVESTIGATION OF INDIGESTIBLE		
MARKERS IN DOGS	37	
2.1 Introduction	37	
2.2 Materials and Methods	38	
2.2.1 Study 1: Interference between chromic oxide and titanium dioxide analysis	38	
2.2.2 Study 2: Investigation of coprophagy in dogs	39	
2.2.3 Study 3: Chromic oxide and titanium dioxide as indigestible markers in dogs 2.2.3.1 Chemical analysis 2.2.3.2 Statistical analysis	40 42 42	
2.3 Results	43	
2.3.1 Study 1: Interference between chromic oxide and titanium dioxide analysis	43	
2.3.2 Study 2: Investigation of coprophagy in dogs	46	
2.3.3 Study 3: Chromic oxide and titanium dioxide as indigestible markers in dogs	48	
2.4 Discussion		
2.4.1 Study 1: Interference between chromic oxide and titanium dioxide analysis	50	

2.4.2 Study 2: Investigation of coprophagy in dogs	50
2.4.3 Study 3: Chromic oxide and titanium dioxide as indigestible markers in dogs	52
<u>CHAPTER 3</u> INVESTIGATION OF THE HINDGUT OF THE DOG	54
3.1 Introduction	54
3.2 Materials and Methods	55
3.2.1 Chemical anlaysis	57
3.2.2 Statistical analysis	60
3.3 Results	60
3.3.1 Chemical composition	60
3.3.2 Apparent digestibilities	60
3.4 Discussion	65
CHAPTER 4 GENERAL DISCUSSION	
CHAPTER 5 LITERATURE CITED	

	List of Tables	
Table		Page
Chapt	er 1	
1.1	The relative gastro-intestinal tract lengths of four monogastric species	4
1.2	a summary of digestive activities which occur in the stomach of monogastric species	7
1.3	The difference between apparent nitrogen digestibility and true nitrogen digestibility in pigs	23
1.4	Classification of indigestible markers used in digestibility studies	31
Chapt	er 2	
2.1	Preparation schedule for the different faecal Cr_2O_3 and TiO_2 mixtures used in the marker interference study	39
2.2	Diet and indigestible marker allocation to each dogs in study 3	41
2.3:	The percentage of indigestible marker recoveries from faeces in study 1	46
Chapt	er 3	
3.1	Nutrient table of diets used in the trial	56
3.2	Apparent ileal and faecal digestibilities and SEM of 5 diets in dogs	62

List of Figures

Figure		Page		
Chapter 1				
1.1	A schematic diagram of the human gastro-intestinal tract	10		
1.2	The microscopic structure of the small intestine in transverse section	11		
1.3	A schematic diagram of the cellular layers of the large intestine	12		
1.4	A diagram showing the transportation of nutrients through the small intestine epithelium	14		
1.5	A diagram showing the different transport systems used to move substances across cell membranes in monogastric species	19		
1.6	A schematic diagram of a fixed fistula tube	27		
Chap	ter 2			
2.1	Linear correlation between the percentage of Cr_2O_3 added to the faeces (± SEM) vs the amount Cr_2O_3 analysed in the faeces (± SEM).	44		
2.2	Linear correlation of the amount of calculated TiO_2 as a percentage compared to analysed TiO_2	45		
2.3	Recoveries of individual indigestible marker of the faeces of each dog	47		
2.4	Indigestible marker recoveries of the individual dogs	48		
2.5	Recovery of the indigestible marker chromic oxide (C) and titanium dioxide (T) from the faeces of dogs when fed in combination with a high nutrient (H) and low nutrient (L) diet	49		