Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Crystallographic analyses of apo and reduced azurins

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University.

> William E. Botelho Shepard 1991

Acknowledgements

I would like to sincerely thank my supervisors Prof. E.N. Baker and Dr. B.F. Anderson for their assistance and advice throughout this work. I would also like to thank Dr. G.E. Norris and Mrs. H.M. Baker for their kind support, encouragement and many helpful discussions during this study.

Thanks are also due to the following:

Kate McPherson and Musa Shongwe for helping with the mounting of the photographs in this thesis.

Dr. R.C. O'Driscoll for help with problems related to the word processor hardware used in the typing of this thesis.

Computer Centre Staff for help with computing problems.

Central Photographic Unit for processing the photos of this thesis.

Dr. G.E. Norris and Mrs. H.M. Baker for assistance in purification and crystallisation experiments.

Prof. E.N. Baker, Dr. B.F. Anderson and Dr. G.E. Norris for proof-reading and comments.

Dr. B.F. Anderson for help in computing and programming.

Special thanks and appreciation go to my parents and sister, and many friends who have given me much moral support and encouragement during this time; especially Dave Leithwick, Lawrence Mantjika, Kate McPherson, Joanna Nilsen, Mike O'Hara, Jeff Sluka, Karen Tyrrell, Hugo Vitalis and members of the Massey University Tae Kwon Do Club.

Finally, I would like to thank the Massey University for my appointment as Graduate Assistant, and the Society of the Crystallographers in Australia for the "1987 Scholarship" to attend the 15th I.U.Cr. Congress held in Bordeaux, France.

Abstract

Crystals of the blue copper protein azurin, from *Alc. denitrificans*, have been prepared in the apo (metal-free) and reduced (Cu(I)) forms by soaking oxidised (Cu(II)) azurin crystals in solutions containing cyanide and ascorbic acid, respectively. The apo and reduced azurin crystals are isomorphous with the oxidised crystals, containing two protein molecules in the asymmetric unit. A CAD4 diffractometer was used to collect X-ray diffraction data from these crystals, to 2.2Å resolution for apo-azurin and 1.9Å for reduced azurin. Both crystal structures have been refined using restrained least-squares methods, treating the two protein molecules of the asymmetric unit independently, to give final R-factors of 0.158 for apo-azurin (1956 protein atoms and 275 solvent atoms) and 0.166 for reduced azurin (1967 protein atoms and 269 solvent atoms).

Analysis and comparison of these structures with that of the oxidised form show that the protein structure is essentially identical between all three forms. However, very small changes, which are consistent between the two independent molecules of the asymmetric unit, are apparent at and near the copper binding site. Upon reduction of the oxidised form, all copper distances (left unrestrained during refinement) increase by 0.05-0.10Å, while the geometry remains unchanged. Thus the copper in reduced azurin is bound strongly by one thiolate sulphur (Cys-112) and two imidazole nitrogens (His-46 and His-117) in a trigonal arrangement, while a thioether sulphur (Met-121) and a carbonyl oxygen (Gly-45) approach the copper from axial directions to complete a distorted trigonal bipyramidal geometry. The Cu...S $_{\delta}$ 121 distance is 3.2Å, and does not agree with the 2.7Å distance predicted by EXAFS studies despite attempts to restrain this distance during refinement. Two S...HN hydrogen bonds, between the cysteine sulphur and peptide NH groups, are shortened by $\approx 0.2Å$ upon reduction of Cu(II) to Cu(I).

The configuration of the copper ligands and the surrounding structure are maintained when the copper is removed. This shows that the folding of the polypeptide chain determines the conformation of the metal ligands, enforcing a distorted geometry on the copper centre in both oxidised and reduced forms. The structure of the copper binding site in the apo form is more similar to the oxidised form than to the reduced form.

The observations made in the analysis of these three forms of azurin have implications for the biological function of the protein, which is thought to be electron transfer. The distorted geometry of the copper, which is enforced upon the metal by the protein, supports the concept of the entatic state, whereby the copper is held in a geometry approximating the transition state between the coordination preferences of Cu(II) and Cu(I). Since minimal changes at the active site occur upon reduction, the protein accomplishes its function of fast electron transfer by minimising the activation energy of the process.

Erratum

p. 45 Reference number 395 should be 210.

•

Table of Contents

Chapter	1	Introduction		1
	1.1	Copper in Biology		1
		1.1.1	Type 1 copper centres	1
		1.1.2	Type 2 copper centres	3
		1.1.3	Type 3 copper centres	4
		1.1.4	Other copper centres	6
	1.2	Proper	ties of the blue copper proteins	8
		1.2.1	Electronic absorption spectra	8
		1.2.2	Electron paramagnetic resonance spectra	9
		1.2.3	Redox potential	11
		1.2.4	Resonance Raman spectra	12
		1.2.5	Nuclear magnetic resonance spectra	14
		1.2.6	X-ray absorption spectral studies	16
		1.2.7	Three-dimensional structural studies	18
		1.2.8	Site Directed Mutagenesis Studies on azurin	22
	1.3	Structu	re-function relationships of azurin and plastocyanin	27
		1.3.1	General description of the structure of azurin	27
		1.3.2	Comparison of azurin and plastocyanin	32
		1.3.3	Reduction of plastocyanin and azurin	35
		1.3.4	Apo-plastocyanin and apo-azurin	37
		1.3.5	Proposed structural studies on reduced and apo-azurin	39
Chapter	2	Experimental		
	2.1	Preparation of reduced and apo-azurin crystals		42
		2.1.1	Preparation of reduced (Cu(I)) azurin crystals	42
		2.1.2	Preparation of apo-azurin crystals by soaking in cyanide	42
		2.1.3	Crystallization of apo-azurin from solution	44
	2.2	X-ray	data collection and processing	48
		2.2.1	Data collection	48
		2.2.2	Data processing	50
	2.3	Refinement methods		
		2.3.1	The starting model	61
		2.3.2	Restrained refinement	61
		2.3.3	PROLSQ and HKPROLSQ(FFT)	62
		2.3.4	Rebuilding the models	63
		2.3.5	Inclusion of the solvent structure	64

Chapter	3	Reduc	ed azurin		66
	3.1	Course of the refinement			66
	3.2	The structure of reduced azurin and its comparison with			
		oxidised azurin			
		3.2.1	Crystal packing		76
		3.2.2	Conformational angles		79
		3.2.3	Hydrogen bonds		83
		3.2.4	Superposition of the reduced and oxidised azurin		
			structures		93
		3.2.5	Consistent shift vector analysis		97
		3.2.6	The copper site		104
		3.2.7	Constraints on the copper site		115
		3.2.8	Surface features of reduced azurin		125
		3.2.9	Thermal parameters		127
		3.2.10	Solvent structure		129
	3.3	Compa	rison of the two independent molecules		132
		3.3.1	Intermolecular contacts		132
		3.3.2	Conformational angles		134
		3.3.3	Comparison of the hydrogen bonds	136	
		3.3.4	Comparison of the main-chain atom positions		138
		3.3.5	Comparison of the side-chain atom positions		141
		3.3.6	Comparison of the copper site and its surrounds		144
		3.3.7	Comparison of B-values		145
		3.3.8	Solvent structure		146
Chapter	4	Apo-azurin			152
	4.1	Refinement of apo-azurin			152
	4.2	The structure of apo-azurin			158
		4.2.1	Crystal packing		158
		4.2.2	Conformational angles		159
		4.2.3	Hydrogen bonding		163
		4.2.4	Superposition		165
		4.2.5	Consistent shift vector analysis		
	169				
		4.2.6	The Copper binding site		175
		4.2.7	The surrounding environment of the binding site of		
			apo-azurin		192

		4.2.8	Thermal parameters	199	
		4.2.9	Solvent structure	202	
2	4.3	Comparison of the two apo-azurin molecules		204	
		4.3.1	Lattice contacts	204	
		4.3.2	Comparison of the main-chain structure	206	
		4.3.3	Comparison of the side-chain structure	209	
		4.3.4	Comparison of the hydrogen bonds	212	
		4.3.5	Comparison of the binding sites and their surrounds	214	
		4.3.6	Comparison of the solvent structure	216	
	_			• • •	
Chapter 5	5	Concl	usions and Discussion	218	
	5.1	Conclu	usions from the structure of reduced azurin	218	
		5.1.1	Structural changes upon reduction	218	
		5.1.2	The CuS _{δ} 121 distance and EXAFS	221	
		5.1.3	pH-independent redox activity	222	
4	5.2	Conclusions from the structure of apo-azurin		227	
		5.2.1	Structural changes upon copper removal	227	
		5.2.2	Rate of copper removal	229	
		5.2.3	Mechanism for copper incorporation	229	
-	5.3	Implica	ations for biological function	231	
4	5.4	Future	directions for research on azurin	242	
Appendix A Ramachandran plots					
Appendix B Hydrogen bond geometry					
Bibliography					

i