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Abstract 

Sixty-nine years separated the first observation of Cryptosporidium by Tyzzer in 1907 

from the realisation in 1976 that this enteric protozoan parasite was pathogenic. It is the 

third major cause of diarrhoeal disease worldwide causing a self-limiting infection in 

immuno-competent humans and young vertebrates. As yet there is no antimicrobial 

agent that combats Cryptosporidium so the organism poses a life threatening risk to the 

immuno-compromised e.g., AIDS patients, patients on immuno-suppressive drugs, 

chemotherapy or congenital immune deficiencies. By 2000 AD 152 species of mammals 

had been reported as being infected with Cryptosporidium plus 57 reptilian species and 

many birds and fish. 

The advent of AIDS stimulated research into Cryptosporidium resulting in the large 

amount of information now becoming available, however little is known about the 

genetic characteristics, distribution and transmission cycles of Cryptosporidium species 

that cause human disease in New Zealand. To address these questions 1613 animal 

faecal samples and 423 human faecal specimens containing Cryptosporidium oocysts 

were collected from throughout New Zealand and examined by the polymerase chain 

reaction restriction fragment length polymorphism technique (PCR-RFLP). 

Indeterminant results were resolved by DNA sequence analysis of the small subunit 

ribosomal DNA (rDNA). 

Only 2.8% of the animal faecal specimens contained oocysts with the vast majority of 

these being C. parvum bovine genotype from calves. 

Two regions supplied the majority of human isolates, one rural and one urban. Overall 

C. hominis accounted for 47% of all human isolates with the remaining 53% being C. 

parvum bovine genotype. A difference however, was observed between the 

Cryptosporidium species from rural and urban isolates with C. hominis dominant in the 

urban region while C. parvum bovine genotype was prevalent in rural New Zealand. A 

shift in transmission cycles was detected between seasons with an anthroponotic cycle in 

autumn and a zoonotic cycle in spring. A novel Cryptosporidium, that on DNA sequence 

analysis showed a close relationship with C. canis, was detected in two unrelated 

children from different regions, illustrating the genetic diversity within this genus. 
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