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ABSTRACT 

This work.develops the foundations of topological graph theory 

with a unified approach using combinatorial maps. (A combinatorial 

map is an n-regular graph endowed with proper edge colouring in n 

colours.) We establish some new results and some generalisations 

of important theorems in topological graph theory. The classification 

of surfaces, the imbedding distribution of a graph, the maximum 

genus of a graph, and MacLane's test for graph planarity are given 

new treatments in terms of cubic combinatorial maps. Among our 

new results, we give combinatorial versions of the classical theorem 

of topology which states that the first Betti number of a surface is 

the maximum number of closed curves along which one can cut 

without dividing the surface up into two or more components. To 

conclude this thesis, we provide an introduction to the algebraic 

properties of combinatorial maps. The homology spaces and Euler 

characteristic are defined, and we show how they are related. 
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PREFACE 

P R E F AC E 

Topological graph theory is concerned with the study of graphs 

imbedded in surfaces . During the past two decades ,  graph 

imbeddings in surfaces have received considerable analysis by 

combinatorial methods .  The concept that motivated this thesis i s  

the use of a special kind of edge coloured graph, called by Lins [ 1 1 ]  

a gem, to provide such a method to model graph imbeddings. For the 

most part, we shall push Lins ' model further by using more general 

edge coloured graphs, called cubic combinatorial maps, to establish 

some new results and some generalisations of important theorems 

in topological graph theory. (A cubic combinatorial map is defined as 

a cubic graph endowed with a proper edge colouring in three 

colours . )  It is the use of combinatorial maps that is the unifying 

feature in this thesis and its development of the foundations of 

topological graph theory . 



PREFACE 

An advantage of this approach over previous attempts to 

combinatorialise topological graph theory is that the theorems can 

be easily visualized , encouraging geometric intuition . We 

demonstrate how this axiomatic non-topological definition of a 

graph imbedding means that no topological apparatu s needs to be 

brought into play when proving theorems in topological graph 

theory. 

Following a chapter of introductory material, Chapter II gives 

a simple graph theoretic proof of the classification of surfaces in 

terms of cubic combinatorial maps .  This provides our first example 

of the naturalness of cubic combinatorial maps as a variation on the 

simplicial complex approach to topology . As in topology, we can 

now assign an orientability character and genus or cross cap number 

to a given cubic combinatorial map. This chapter also serves as an 

introduction to the special operation or "move" on combinatorial 

maps that permeates this thesis . 

In [24] , Stahl presents a purely combinatorial form of the 

Jordan curve theorem from which graph theoretical versions (for 

example [26] ) follow as corollaries . This was later (in [ 1 3 ] )  

presented in  terms of cubic combinatorial maps .  Generalisations of 

the Jordan curve theorem abound in topology, and therefore we 

make progress along these lines in Chapter Ill by presenting a 

generalisation of Stahl's work, motivated by the work in [ 1 3] .  We 

give a combinatorial version of the theorem of topology which states 

i i  
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that the first Betti number of a surface is the maximum number of 

closed curves along which one can cut without dividing the surface 

up into two or more components. 

No text on the foundations of topological graph theory would 

be complete without some study of the set of surfaces a given graph 

can be imbedded on, or more precisely the imbedding distribution of 

a graph. The principal objective of topological graph theory is to 

determine the surface of smallest genus such that a given graph 

imbeds in that surface. In general , this surface is difficult to find. By 

way of contrast, the surface of largest genus such that a given graph 

imbeds in that surface can be found. We define a special partition of 

the set of all cubic combinatorial maps, and we say that two cubic 

combinatorial maps that belong to the same cell are congruent. In 

particular, two congruent gems correspond to two possible 

imbeddings for a given graph. We analyse the distribution of the 

genus or cross cap numbers associated with the cubic combinatorial 

maps congruent to a given one in Chapter IV. In Chapter V, we 

calculate the maximum value in this distribution. This work 

generalises results of Khomenko [9, 10] and Xuong [32] . 

In [30] , short proofs of three graph theoretic versions of the 

Jordan curve theorem are given. In the spirit of Chapter Ill , we 

generalise the version, expressed in terms of a double cover for a 

graph, in Chapter VI. (A double cover is a family of circuits such 

that each edge belongs to exactly two.) .  Furthermore, we show how 

i i i  
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this work is related to our work on cubic combinatorial maps in 

Chapter Ill, and hence we proceed in the direction of Little and 

Vince in [ 14]. 

In an attempt to make a partial separation between graph 

theory and topology, MacLane proved that a given graph would be 

imbeddable on the sphere if and only if it had a certain combinatorial 

property . However, his characterization was proved by topological 

arguments . The tools introduced in Chapter VI which relate cubic 

combinatorial maps to double covered graphs are further applied in 

Chapter VII. Here we classify which cubic combinatorial maps are 

congruent to planar ones, where planarity is defined in terms of 

orientability and Euler characteristic. The classification given is a 

combinatorial generalisation of MacLane' s  test for planarity. 

A more general version of the cubic combinatorial map is found 

by dropping the restriction of cubic graphs so as to include n-regular 

graphs . Of course we increase the number of colours for the edge 

colouring to n. To conclude this thesis, we provide an introduction to 

the algebraic properties of such maps .  The homology spaces and 

Euler characteristic are defined, and we show how they are related. 

Furthermore, a general form of the "move" that permeates this  

thesis i s  presented, and we show how this move affects the Euler 

characteristic. 

i v  



NOTES OF FI GURES 

N O TE S  ON F I GURE S 

This thesis is mainly concerned with edge coloured graphs .  

Unfortunately , colour was not achieveable on  laser printers at our 

disposal . It is possible, using the postscript language, to dash 

curved lines and to vary the width of a line. Therefore we represent 

the various colours by dashing edges according to the following 

figure. 

e vertex 

• • 

-. ....................... -

· - - - - - - - · 

-----------· 

a blue edge 

a red edge 

a yellow edge 

a path of red and yellow edges 

a path of blue and yellow edges 

V 



NOTES OF FI GURES 

For labellings , we will usually use a ,  b or c, together with a 

subscript or a prime, to label r e d ,  b l u e  and y e l l o w  edges 

respectively. A vertex will always be labelled with u, v, w, x, y or z, 

together with a subscript or a prime. 

v i  
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