Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

COMBINATORIAL MAPS

AND THE FOUNDATIONS

OF

TOPOLOGICAL GRAPH

THEORY

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University.

CRAIG PALLL BONNINGTON

ABSTRACT

This work develops the foundations of topological graph theory with a unified approach using combinatorial maps. (A combinatorial map is an n-regular graph endowed with proper edge colouring in n colours.) We establish some new results and some generalisations of important theorems in topological graph theory. The classification of surfaces, the imbedding distribution of a graph, the maximum genus of a graph, and MacLane's test for graph planarity are given new treatments in terms of cubic combinatorial maps. Among our new results, we give combinatorial versions of the classical theorem of topology which states that the first Betti number of a surface is the maximum number of closed curves along which one can cut without dividing the surface up into two or more components. To conclude this thesis, we provide an introduction to the algebraic properties of combinatorial maps. The homology spaces and Euler characteristic are defined, and we show how they are related.

TABLE OF CONTENTS

Preface i
Notes on Figures v
Acknowledgements vii
Dedication viii
Chapter I
INTRODUCTION

1. SETS AND FUNCTIONS 1
2. Graphs 3
3. ISOMORPHISM OF GRAPHS 5
4. SUBGRAPHS. 5
5. Coboundaries 6
6. Circuits, Trees and Paths 7
7. CONTRACTION 9
8. Cycle Spaces 9
9. 3-GRAPHS 10
10. GEMS 12
Chapter II
THE CLASSIFICATION OF COMBINATORIAL
SURFACES
11. INTRODUCTION 15
12. PREMAPS 16
13. DIPOLES 19
14. REDUCED AND UNITARY 3-GRAPHS 24
15. CANONICAL GEMS. 37
16. CONCLUSION 39
Chapter III
THE BOUNDARY AND FIRST HOMOLOGY SPACES
OF A 3-GRAPH
17. INTRODUCTION 41
18. THE BOUNDARY SPACE 42
19. SEMICYCLES 43
20. B-INDEPENDENT SETS OF B-CYCLES 45
21. LINKING THE SIDES OF SEMICYCLES 47
22. A CONDITION FOR A B-CYCLE TO SEPARATE. 53
23. FUNDAMENTAL SETS OF SEMICYCLES 59
24. IMPLIED SEMICYCLES 60
25. 3-GRAPHS WITH JUST ONE RED-YELLOW BIGON 63
Chapter IV
THE IMBEDDING DISTRIBUTION OF A 3-GRAPH
26. Introduction 68
27. The Genus and Crosscap Ranges of a 3- Graph 71
28. UNIPOLES AND POLES. 72
29. Reattachments and Twists 79
30. The Betti Number of a 3-Graph 85
31. Permitted Pole Sets 86
32. RINGS 92
33. ζ-MOVES 96
34. The EQUIVALENCE OF CONGRUENCE AND ζ -
EQUIVALENCE 97
35. ORIENTABLE INTERPOLATION THEOREM 101
36. AN Upper Bound on the Minimum Crosscap NUMBER 101
37. Arbitrarily Large Minimum Genus 102
Chapter V
MAXIMUM GENUS
38. INTRODUCTION 105
39. The Deficiency of a Graph 106
40. The Deficiency of a 3-Graph 106
41. Singular 3-Graphs 107
42. ELEMENTARY 3-GRAPHS 115
43. KHOMENKO'S THEOREM FOR 3-GRAPHS 118
44. Elementary Gems 121
45. Caps and Crosscaps of Blue-yellow Bigons 123
46. SEMI-GEMS 128
47. The Principal Partition 131
48. Relating the Deficiences of Gems and Graphs 133
Chapter VI
IRREDUCIBLE DOUBLE COVERED GRAPHS
49. INTRODUCTION 136
50. DOUBLE COVERS 137
51. The Dual of a Double covered Graph. 139
52. Uniform Double Covered Graphs 140
53. Independent Sets of Cycles 140
54. SEParating Cycles 141
55. IMPLIEDCYCLES. 142
56. LINK Contraction Sequences 142
57. AN UPPER BOUND ON $h(G, D)$ 145
58. Gem Encoded Double covered Graphs 147
59. REFINED 3-GRAPHS 150
60. Red-Yellow Reductions 152
61. ObTaining DOUble Covered Graphs from 3- GRAPHS 153
62. Relating the Separation Properties 154
Chapter VII
MAC LANE'S THEOREM FOR 3-GRAPHS
63. INTRODUCTION 158
64. REFINEMENTS 159
65. COVERS IN 3-GRAPHS 163
66. BOUNDARY COVERS 164
67. PARTIAL CONGRUENCE AND FAITHFULNESS 167
68. 3-Graph Encodings 172
69. Coalescing Red-Yellow Bigons 173
70. The Existence of Spanning Semicycle Covers 176
71. MACLANE'S THEOREM. 178
Chapter VIII
THE HOMOLOGY OF N-GRAPHS
72. INTRODUCTION 182
73. COMBINATORIAL MAPS 183
74. The Space of m-Chains 185
75. The Boundary Map 186
76. m-CyCLES 186
77. m-BOUNDARIES 187
78. $\delta_{m-1} \delta m$ IS THE TRIVIAL MAP 187
79. The Euler Characteristic of an n-Graph 189
80. DIPOLES 190

TABLE OF CONTENTS

10. CANCELLATIONS AND CREATIONS OF DIPOLES191
11. BALANCED DIPOLES 192
REFERENCES 199
INDEX 204

PREFACE

Topological graph theory is concerned with the study of graphs imbedded in surfaces. During the past two decades, graph imbeddings in surfaces have received considerable analysis by combinatorial methods. The concept that motivated this thesis is the use of a special kind of edge coloured graph, called by Lins [11] a gem, to provide such a method to model graph imbeddings. For the most part, we shall push Lins' model further by using more general edge coloured graphs, called cubic combinatorial maps, to establish some new results and some generalisations of important theorems in topological graph theory. (A cubic combinatorial map is defined as a cubic graph endowed with a proper edge colouring in three colours.) It is the use of combinatorial maps that is the unifying feature in this thesis and its development of the foundations of topological graph theory.

An advantage of this approach over previous attempts to combinatorialise topological graph theory is that the theorems can be easily visualized, encouraging geometric intuition. We demonstrate how this axiomatic non-topological definition of a graph imbedding means that no topological apparatus needs to be brought into play when proving theorems in topological graph theory.

Following a chapter of introductory material, Chapter II gives a simple graph theoretic proof of the classification of surfaces in terms of cubic combinatorial maps. This provides our first example of the naturalness of cubic combinatorial maps as a variation on the simplicial complex approach to topology. As in topology, we can now assign an orientability character and genus or cross cap number to a given cubic combinatorial map. This chapter also serves as an introduction to the special operation or "move" on combinatorial maps that permeates this thesis.

In [24], Stahl presents a purely combinatorial form of the Jordan curve theorem from which graph theoretical versions (for example [26]) follow as corollaries. This was later (in [13]) presented in terms of cubic combinatorial maps. Generalisations of the Jordan curve theorem abound in topology, and therefore we make progress along these lines in Chapter III by presenting a generalisation of Stahl's work, motivated by the work in [13]. We give a combinatorial version of the theorem of topology which states
that the first Betti number of a surface is the maximum number of closed curves along which one can cut without dividing the surface up into two or more components.

No text on the foundations of topological graph theory would be complete without some study of the set of surfaces a given graph can be imbedded on, or more precisely the imbedding distribution of a graph. The principal objective of topological graph theory is to determine the surface of smallest genus such that a given graph imbeds in that surface. In general, this surface is difficult to find. By way of contrast, the surface of largest genus such that a given graph imbeds in that surface can be found. We define a special partition of the set of all cubic combinatorial maps, and we say that two cubic combinatorial maps that belong to the same cell are congruent. In particular, two congruent gems correspond to two possible imbeddings for a given graph. We analyse the distribution of the genus or cross cap numbers associated with the cubic combinatorial maps congruent to a given one in Chapter IV. In Chapter V, we calculate the maximum value in this distribution. This work generalises results of Khomenko [9, 10] and Xuong [32].

In [30], short proofs of three graph theoretic versions of the Jordan curve theorem are given. In the spirit of Chapter III, we generalise the version, expressed in terms of a double cover for a graph, in Chapter VI. (A double cover is a family of circuits such that each edge belongs to exactly two.). Furthermore, we show how
this work is related to our work on cubic combinatorial maps in Chapter III, and hence we proceed in the direction of Little and Vince in [14].

In an attempt to make a partial separation between graph theory and topology, MacLane proved that a given graph would be imbeddable on the sphere if and only if it had a certain combinatorial property. However, his characterization was proved by topological arguments. The tools introduced in Chapter VI which relate cubic combinatorial maps to double covered graphs are further applied in Chapter VII. Here we classify which cubic combinatorial maps are congruent to planar ones, where planarity is defined in terms of orientability and Euler characteristic. The classification given is a combinatorial generalisation of MacLane's test for planarity.

A more general version of the cubic combinatorial map is found by dropping the restriction of cubic graphs so as to include n-regular graphs. Of course we increase the number of colours for the edge colouring to n. To conclude this thesis, we provide an introduction to the algebraic properties of such maps. The homology spaces and Euler characteristic are defined, and we show how they are related. Furthermore, a general form of the "move" that permeates this thesis is presented, and we show how this move affects the Euler characteristic.

NOTES ON FIGURES

This thesis is mainly concerned with edge coloured graphs. Unfortunately, colour was not achieveable on laser printers at our disposal. It is possible, using the postscript language, to dash curved lines and to vary the width of a line. Therefore we represent the various colours by dashing edges according to the following figure.

NOTES OF FIGURES

For labellings, we will usually use a, b or c, together with a subscript or a prime, to label red, blue and yellow edges respectively. A vertex will always be labelled with u, v, w, x, y or z, together with a subscript or a prime.

ACKNOW LEDGEMENTS

A NUMBER OF PEOPLE HAVE ASSISTED ME IN MANY WAYS DURING MY DOCTORATE STUDIES.

To my supervisor, Charles Little, for his ready advice and unfailing encouragement, and for introducing me to the topic of my thesis.

To my colleagues and friends, Mark Byrne, Aroon Parshotam, John Giffin, Mike Hendy, Graeme Wake, Kee Teo, Ingrid Rinsma, Mike Steel and Mike Carter, for their comments, ideas, encouragement and friendship - particularly in the early stages of my doctorate studies.

To the University Grants Committee, for financial assistance.

DEDICATION

To

my wife, Karyn, my Mum and Dad, and my brother, Alex.

T	H	1	s			T	H	E	s	1	s			W	A	s				T	\boldsymbol{Y}	P	E	s	E	\boldsymbol{T}					N			A	P	P	L	E
L	A	s	E	R	W	R	R 1	T	E	E R			J	1	N	\boldsymbol{T}			\boldsymbol{P}			1 N		T	E	R	s			1	N			\boldsymbol{T}	1	M	E	s
1	2	1	2	4	,		W I	1 T	T H	H	H	E	A	D	- l	N	G	s				N		C	0	P	P	E	R	P	L	A	T	E		A	N	D
\boldsymbol{P}	A	L	A	T	1 N	N	0	.		D	0	c	\boldsymbol{u}	M	E	N	T				R	E	P	- \mathbf{A}	R	P A	T	T I	0	- N	N		W	A	s		0	N
A	P	P	L	E					M	A	C	1 ,	N	T	0	s	H		C	0		M	P	\boldsymbol{U}	T	E	R	s	,					4	s	1	N	G
M	1	C	R	0	s	0	F	T			W	0	R	D	,		D	E	E	s)	G	N			5	c	1	E	N	C	E			M	A	T	H
T	\boldsymbol{Y}	P	E	,		A	L	D	\boldsymbol{U}	\boldsymbol{s}		F	R	E	$E E$	H	A	N	N D	D	,		A	N	D	D		C	L	A	R	1	s		C	A	D	.
C	R	0	S	5			R	R E	$E F$	$F E$	$E \quad R$	E	\boldsymbol{N}	N C	C 1	1 N	\boldsymbol{G}				A	N	N D	D			B	I	B	L	I	0	G	R	A	P	H	\boldsymbol{Y}
P	R	E	P	A	R	A	T	1	0	N		W	E	\boldsymbol{R}	P E		A	C	C	H	1	E	V	$\checkmark E$	E	0		W	1	T	H		C	L	A	R	1	5
F	1	L	E	M	A	K	E	\boldsymbol{R}		P	\boldsymbol{R}	0		A	N	D	W	\%	0	R	D	D		\boldsymbol{R}	E	F												

\qquad

