
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Scalable Application Server
On Beowulf Clusters

A thesis presented in partial fulfilment of the requirement
for the degree of

Master of Information Science

At Albany, Auckland, Massey University
New Zealand

Supervised by: Dr. Chris Messom

Michael Zhiyong Zhou

2005

Abstract

Application performance and scalability of a large distributed multi-tiered application

is a core requirement for most of today ' s critical business applications.

I have investigated the scalability of a J2EE application server using the standard

ECperf benchmark application in the Massey Beowulf Clusters namely the Sisters and

the Helix. My testing environment consists of Open Source software: The integrated

]Boss-Tomcat as the application server and the web server, along with PostgreSQL as

the database. My testing programs were run on the clustered application server, which

provide replication of the Enterprise Java Bean (EJB) objects.

I have completed various centralized and distributed tests using the JBoss Cluster. I

concluded that clustering of the application server and web server will effectively

increase the performance of the application running on them given sufficient system

resources. The application performance will scale to a point where a bottleneck has

occurred in the testing system, the bottleneck could be any resources included in the

testing environment: the hardware, software, network and the application that is

running.

Performance tuning for a large-scale J2EE application is a complicated issue, which is

related to the resources available. However, by carefully identifying the performance

bottleneck in the system with hardware, software, network, operating system and

application configuration, I can improve the performance of the J2EE applications

running in a Beowulf Cluster. The software bottleneck can be solved by changing the

default settings, on the other hand , hardware bottlenecks are harder unless more

investment are made to purchase higher speed and capacity hardware .

II

Acknowledgement

My greatest appreciation goes to my supervisor: Dr Chris Messom, who has provided

endless support both technically and morally. His broad and insightful understanding

of the technology involved. his willingness to research emerging technology. his

concise yet plain explanation to technically challenging concepts has made my

learning process a pleasant experience .

Thanks to Dr Martin Johnson , Mr Andre Barczak and other people who have

contributed greatly developing the Massey Beowulf computers: the Sisters and the

Helix (the supercomputer) and made it available to us. Of course. thanks to the Allan

Wilson Centre for Mo lecular Eco logy and Evo lution (A WC) for funding the

deve lopment of the supe rcomputer.

Thanks to support from the system administrator James and the manager Lorri.

Also thanks to Massey University for the award of a Vice-Chancellor" s Masterate

Scholarship to support my study financially.

I must also thank the people working in the Open Source communities that have

provided high quality open source software for my study, especially to the people

working on Linux operating system. JBoss Group. Apache Tomcat Project and

PostgreSQL database.

Finally. thanks to my family for their understanding and support. They are my source

of energy and pleasure.

111

Table of Contents
ABSTRACT II

ACKNOWLEDGEMENT 11I

TABLE OF CONTENTS IV

TABLE OFTABLES VII

TABLE OF FIGURESIX

TABLE OF ABBREVIATIONS XI

CHAPTER 1: INTRODUCTION 1

I . I INTRODUCTION I
1.2 MOTi YA TION OF SCALAB ILITY STUDY FOR DISTRIBUTED APPLICA TIO S I
1.3 T ODAY'S TECHNOLOGY SUPPORT FOR SCALABLE APPLICATION 2
1.4 S IGN IFICANCE OF MY STUDY 3
1.5 O VERALL STRUCTURE OF THE THESIS 4
1.6 SUMMARY 6

CHAPTER 2: BACKGROUND KNOWLEDGE 7

2. 1 INTRODUCTION 7
2.2 COMPUTING TECHNOLOGY FOR A DISTRIBUTED SYSTEM 7
2.3 COMPARING J2EE WITH THE COMPETING TECH OLOGIES 9

2. 3.1 COREA 9
2. 3.2J2EE ll
2.3.3 .NET 12
2.3.4 Comparing J2EE with COREA 14
2.3.5 Comparing J2EE with .NET.. 16

2.4 CURRENT STUDY OF THE J2EE APPLICATION SERVER PERFORMANCE 18
2.5 MY RESEARCH APPROACH 22
2.6 SUMMARY 23

CHAPTER 3: HARDWARE FOR THE TEST 25

3.) INTRODUCTION 25
3 .2 INTRODUCTION OF SUPERCOMPUTERS AND B EOWULF CLUSTERS 25
3.3 M ASSEY B EOWULF CLUSTER 27
3.4 SUMMARY 29

CHAPTER 4: SOFTWARE FOR THE TEST 30

4. 1 INTRODUCTION 30
4.2 W HY CHOOSE OPEN SOURCE 30
4 .3 O VER VIEW OF OPEN SOURCE SOFTWARE FOR THE J2EE APPLICATION SEVER 31
4.4 JBoss APPLICATION SERVER 33

4.4. 1 JBoss structure based on JMX standard 33
4.4.2 JBoss Clustering & Naming service ... 34

4. 5 CHOOSING THE DATABASE 36
4 .6 CHOOSING ECPERF AS THE TESTING TOOL KITS 38

4. 6.1 Why choose ECperf. 39

IV

4.7 SUMMARY 42

CHAPTER 5: TEST DESIGN ... 43

5.1 INTRODUCTION 43

5.2 Two TYPES OF THE TESTING ARCH ITECTURE 43

5.2.1 Centralized workload architecture 43
5.2. 2 Distributed workload architecture -14

5.3 TESTING PROGRAMS AND RELATED CONFIGURATION ... 45

5.4 TEST DESIGN FOR SISTERS 46

5.-1.1 Type of planned test -16
5.-1.2 T,1 ·0 hardware architectures for testing the sisters -1 7
5.-1.3 Test design.for JVM test -19
5.-1.-1 Test design for Clustering o_f Session Beans 52
5.-1.5 Test design.for Cluster o_f all EJB 53
5. -I. 6 Test design for two databases 5-1
5.-1. 7 Test with Two partitions and two databases 56

5.5 TEST DESIGN FOR H ELIX 58

5.5.1 Type o_f planned test 58
5.5.2 Test design for J VM test 59
5.5.3 Test design for using the default DB pooling in }Boss 60
5.5.-1 Test design using optimised database pooling in JBoss cluster 61

5 .6 CONCLUSION 61

CHAPTER 6: TEST ON SISTERS 63

6.1 INTRODUCTIO 63

6.2 TEST WITH DIFFERE T JVM HEAP SIZE VALUE 63

6.3 TEST WITH CLUSTERING OF ONLY SESSION BEANS 68

6.3.1 Preliminary tests using the default connections in PostgreSQL. 68
6.3.2 Test by using optimised connections in PostgreSQL 70

6.4 TEST WITH CLUSTERING OF ALL EJ B 74

6.5 TEST WITH FIRST-AVAILABLE LOAD POLICY FOR CLUSTERING OF ALL EJB 76

6.6 TEST WITH TWO DAT ABASES 80

6.7 TEST WITH Two PARTITIONS AND TWO DATABASES··················· ·· ·· ·············· 82
6.8 TEST BY DISABLING THE LOG FILES WITH TWO PARTITION AND TWO DATABASES 85

6.9 DISCUSSIO OF THE SISTERS RESULT 87

6.10 SUMMARY 89

CHAPTER 7: TEST ON HELIX-THE SUPERCOMPUTER 90

7 . 1 INTRODUCTION 90

7.2 JVM HEAP SIZE TEST 90

7.3 TEST USING THE DEFAULT DATA SOURCE POOLING VALUES 94

7.4 T EST USING OPTIMISED DA TA BASE POOLING .. 96

7.5 SUMMARY······ ········· ···· ··· ····· ·· ············ ····· ········ ······· ······· ······ ······· ·· ····· ·················· 98

CHAPTER 8: PERFORMANCE ANALYSIS AND DISCUSSION 100

8.1 INTRODUCTION I 00

8 .2 SCALABILITY ANALYSIS FOR SISTERS AND H ELIX 100

8.3 BOTTLENECK ANALYSIS ... 104

8.4 PERFORMANCE TuNrNG FOR THE CURRENT TESTING SYSTEM 106

8 .5 F URTHER PERFORMANCE IMPROVEMENT DISCUSSION 110
8. 5.1 Scaling the database 110

V

8.5.2 Scaling the JBoss application server 112
8.6 POSSIBLE USE FOR COMMERCIAL APPLICATION 115
8.7 S UMMA RY 117

CHAPTER 9: CONCLUSION ... 119

9.1 INTROD UCTION 119
9.2 CONCLUSION 119

9.2.1 Contributions 119
9. 2. 2 Conclusion 120

9.3 F UTU RE WORK 121

REFERENCE: ... 124

VI

Table of Tables

Table 2.1: Comparison of basic features of J2EE and .NET

Table 2.2: Comparison of more critical features of J2EE and .NET

Table 6.1: Throughput of ECperf as function of the txRate

Table 6.2: JVM Heap Value vs . Maximum TPS Test

Table 6.3: Final Transaction output VS. txRate. (JBoss-Number = I)

Table 6.4: Final Transaction output VS. txRate. (JBoss-Number = I)

Table 6.5: Testing result of cluster all EJB on Sisters

Table 6.6: testing result of cluster all EJB using First Available load-balancing

Table 6. 7: test result with 2 databases

Table 6.8: Transaction output with 2 Partitions and 2 Database systems

Table 6.9 is the transaction output with 2 pa1titions and 2 databases and disabled log

Table 7.1: JVM Heap Value VS. TPS Test

Table 7.2 : Transaction output VS . JBoss Number

Table 7.3: Transaction Output VS . JBoss number in Helix

Table 8.1: Transaction Output in Sisters and Helix (JBoss= l)

Table 8.2 : Transaction Output in Sisters and Helix (JBoss=2)

VII

Table of Figures

Figure 2.1: The CORBA object invocation mechanism

Figure 2.2: the J2EE application architecture

Figure 2.3: .NET Framework

Figure 4.1: The ECperf Architecture

Figure 5.1: Example configuration for the Centralized Workload

Figure 5.2: Example configuration for the Distributed Workload

Figure 5.3: Architecture for Centralized workload using Sisters

Figure 5.4: The architecture for distributed workload using Sisters

Figure 5.5 The hardware architecture for JVM heap value test in Sisters

Figure 5.6: Cluster of only Session Beans

Figure 5.7: Cluster of all Enterprise Beans

Figure 5.8: Clustering all EJB with two databases

Figure 5.9: Test with two partitions and two databases

Figure 5.10: EJB Replication with 2 JBoss Partition & 2 Databases

Figure 5.11: The hardware architecture for JVM heap value test in Helix

Figure 5.12: The hardware architecture for ECperf Test in Helix

Figure 6.1: Throughput as a function of the txRate (-Xmx = 180MB)

Figure 6.2: Maximum throughput as a function of the JVM Heap Size

Figure 6.3: The Transaction Output (TPS) VS. Client Number

Figure 6.4: The Transaction Output (TPS) VS. JBoss Number

Figure 6.5: Transaction Output VS. JBoss number when clustering all EJB

Figure 6.6: Transaction output VS. JBoss number

Figure 6.7: Transaction Output using the distributed architecture

VIII

Figure 6.8 Transaction Output with 2Partitions and 2 Databases

Figure 6.9: Test with 2 partition, 2 DB & disable log file.

Figure 6. 10: All testing results for the sisters

Figure 7.1: Maximum throughput as a function of the JVM Heap Size

Figure 7.2: Transaction Output as a function of the JBoss number

Figure 7.3: Transaction Output VS. JBoss number in Helix

Figure 8.1: Helix and Sisters transaction output with one Jboss

Figure 8.2: Helix and Sisters transaction output with 2 Jboss

Figure 8.3: Example C-JDBC architecture

Figure 8.4: RAIDb-0 example

Figure 8.5 RAIDb-0-1 example

Figure 8.6 Architecture with JBoss and PostgreSQL cluster

IX

ANSI

API

BBop

BSD

CCM

CICS

CLR

CMP

COM

CORBA

COTS

CPU

CSIRO

DBMS

DCOM

EJB

HPC

HTTP

IMS-TM

INRIA

J2EE

JDBC

JDK

JMS

JMX

JNDI

JRE

JSP

JVM

LAN

MPI

Table of Abbreviations

American National Standards Institute

Application Programming Interface

Benchmark Business Operation

Berkeley Software Distribution

CORBA Component Model

Customer Information Control System

Common Language Runtime

Container-Managed Persistence

Component Object Model

Common Object Request Broker Architecture

Commercial off-the-shell

Central Processing Unit

Commonwealth Scientific & Industrial Research Organization

Database Management System

Distributed Component Object Model

Enterprise JavaBeans

High Performance Computing

Hypertext Transfer Protocol

Information Management System Transaction Manager

French National Institute For Research In Computer Science And

Control

Java 2 Platform, Enterprise Edition

Java Database Connectivity

Java Development Kit

Java Message Service

Java Management Extensions

Java Naming and Directory Interface

Java Runtime Environment

Java Server Pages

Java Virtual Machines

Local Area Network

Message-passing Interface

X

MPP

ODBC

OMA

OMG

ORB

PBS

PHP

PYM

RAIDb

RAM

RDBMS

RMI-IIOP

SARs

SFTP

SMP

SOAP

SP!

SSH

SUT

UDDI

UNIX

WAN

WSDL

XML

Massively Parallel Processing

Open Database Connectivity

Object Management Architecture

Object Management Group

Object Request Broker

Portable Batch System

Hypertext Preprocessor

Parallel Virtual Machine

Redundant Arrays of Inexpensive Database

Random Access Memory

Relational Database Management System

Remote Method Invocation Over Internet Inter-Orb Protocol (Rmi

Over liop)

Storage Area Network

Secure File Transfer Protocol Message-passing Interface

Symmetric Multiprocessing

Simple Object Access Protocol

service provider interface

Security Shell

System Under Test

Universal Description Discovery And Integration

Uniplexed Information and Computing System. (It was originally

spelled "Unics.")

Large Area Network

Web Services Description Language

Extensible Markup Language

XI

Chapter 1: Introduction

1.1 Introduction

This thesis presents a study of the performance and scalability of J2EE applications.

In particular, I concentrate on the application server, which is the core component of

the J2EE architecture. I use a cluster of JBoss application servers to test how the

scalability and performance of a J2EE application is effected.

In this introductory chapter, I start with the motivation of the scalability study and

explain why it is important in the business world. Then I give some brief technical

review about how scalability can be achieved using current available hardware and

software . I explain why my particular study is useful and finall y give an overview of

the contents in each chapter.

1.2 Motivation of scalability study for distributed applications

Large-scale distributed systems are becoming increasingly important in the world ,

especially with online business activities. The Internet has greatly improved the

accessibility to online businesses, and the increased accessibility has promoted ever­

increasing e-commerce applications. The performance and scalability of an

application is critical for a successful business, as a business application needs to have

high performance to achieve competitive advantages over their competitors.

Performance can refer to many aspects , such as scalability, availability, fault tolerance

and load balancing. I am particular interested in the scalability of an application. A

scalable application has the capacity to serve additional users or transactions without

fundamentally altering the application's architecture or program design . If an

application is scalable, you can maintain steady performance as the load increases

simply by adding additional resources such as servers, processors or memory.

The two most common types of scalability that can be applied to affect the overall

application performance are:

• Horizontal scalability: Adding more servers (web, application or database

servers) to improve performance.

• Vertical scalability: Adding more physical resources (memory, processors or

network cards) to a existing server to improve performance.

The key point of scalability is to decide how well an application will perform when

the size of the problem increases. Scalability is not only critical to maintain current

system functionality in a changing workload, but also a key factor to guarantee the

system can keep up with the growth potential and has the ability to scale to meet

future user ' s demand.

1.3 Today's technology support for scalable application

Today ' s technology has provided high-quality hardware and software to support the

development and deployment of applications with good scalability and high

performance.

For the computer hardware, we have consistently increasing computing power with

the CPU speed doubling every 18 months, while the price of a personal computer is

gradually getting cheaper. Various architectures built on PCs have provided

fundamental support for high performance computing.

Supercomputers, which are the most powerful computers in the world, are getting

more powerful. Beowulf Clusters, which are built using the Commercial off-the-shelf

(COTS) components such as PCs, are gradually becoming more important in the

supercomputer field [7]. A major merit of a Beowulf Cluster is its significant cost

advantages over traditional mainframe supercomputers with similar computing

capacity.

2

The wide adoptions of fast network connections, for either local or large area

networks, as well as the Internet technology have enabled reliable communication

facilities to support high performance applications. Combined with the

supercomputer and the reliable Internet connections, it is much more practical to build

a GRID [20] , a network of supercomputers using today ' s technology.

Software has been developed to take advantage of the hardware architecture to

achieve high performance and scalability. Using a cluster of application servers for a

J2EE application, the application server components such as an EJB can be replicated

across a cluster of application server machine. By load balancing the client request to

members in the application server cluster, each client can interact concurrently with

local copies of the same EJB component. This results in increased accessibility to

computing power. thus, an increased application performance and scalability can be

achieved.

I am gomg to investigate the J2EE application performance usmg open source

software. JBoss, the leading open source application server has recently introduced

cluster support, which I will use for my study.

1.4 Significance of my study

I am going to investigate application scalability using open source software running in

the Beowulf Cluster. The advantage of this approach is that I have total control of the

resource, because the Beowulf Cluster was built and maintained by our department in

the Massey University, and the open source software can be used free of charge with

access to the source code.

From a business point of view, I am using one of the most cost effective combined

hardware and software for running J2EE applications. Building a Beowulf Cluster

cost only 5% to 20% of total cost compared with traditional mainframe

supercomputers with the same computing power [21]. The JBoss application server is

3

free of charge but with most of the features a leading commercial application server

provides. PostgreSQL is the most advanced open source database. By running J2EE

applications using a Beowulf cluster as the hardware, the JBoss cluster, PostgreSQL

as software. I can expect good scalability results. A good scalability result means that

the system could be very useful for developing and deploying cost effective

commercial applications.

1.5 Overall structure of the thesis

The thesis is organised into the following nine chapters:

Chapter 1 introduces the overal I structure of the thesis. I start with the motivation for

the scalability study, followed by current hardware and software technology that can

be used to build scalable applications. I then give reasons why my particular approach

is useful, and finish with the overall thesis structure.

Chapter 2 presents some of the background knowledge necessary for understanding

my study. Three of the most important architectures for building large-scale

distributed applications are presented and compared. this information helps to identify

why I chose the J2EE architecture for my study. I give some of the related literature

review and also state my research hypothesis.

Chapter 3 gives a detailed description of the hardware architecture of my study. I use

the Beowulf Cluster computers in Massey University for my performance study.

Starting with the general architectures of various high performance supercomputers,

the advantages of cluster-based system are discussed. At last, the helix and sisters

clusters in Massey University are introduced in details .

Chapter 4 covers the software used in the study. I have chosen all software from

open source, which I am particularly interested in. I cover the software for running a

distributed applications based on J2EE technology. To be more specific, I give some

detail about why 1 choose the integrated]Boss-Tomcat as the application server and

web server, the PostgreSQL as the database and the ECperf as my testing application.

4

Chapter 5 describes the details of the test design for both the Sisters and Helix. I start

with different types of hardware architecture I will use, followed by some detailed

information about how to run various test programs in the system. The last part gives

my preliminary design selections on the type of test, and briefl y identifies the reason

for that se lection.

Chapter 6 gives detailed testing procedures for my study in Sisters. I have done

various tests based on different hardware architecture, software and the application

configurations. For each type of test, I present with details about the test design and

implementation procedures. Followed by a test result, Analysis and discussion on

these results reveal several important conclusions.

Chapter 7 gives detailed testing procedures for my study in Helix . Again , I have

followed a similar approach used for the Sisters. But the Helix concentrates on some

different aspect of my study and reveals some different results as compared with the

Sisters.

Chapter 8 covers the further analysis and discussions based on the results obtained

on both Sisters and Helix . I have given a broader view on how to further improve the

performance and scalability of my current system. A higher level of discussions about

how to improve the current implementation and use better software features and

hardware architecture are di scussed.

Chapter 9 gives the conclusion to my study. Based on the analysis of testing results

in the previous chapters, I make my final conclusions and show some of the

contributions made by my study. I also anticipated the future work in my research

field.

5

1.6 Summary

I have introduced the overall structure of the thesis. Firstly. I gave the motivation for

the scalability study. followed by the technical support that can be used for building a

scalable application. I then show why my particular approach is useful. Finally, I

listed the major topics of each chapter in the thesis.

6

Chapter 2: Background Knowledge

2.1 Introduction

This chapter gives an overview of the most important background knowledge that is

necessary for my study. First of all , a brief discussion of the current technology for

building distributed applications, followed by a comparison of merits and weakness of

each approach is given. The conclusions derived from these comparisons gives a good

foundation for why I chose the open source application server JBoss as the candidate

for study. After that, the performance issues especially the scalability of an

application is presented followed by the literature review of the current study of J2EE

middleware technology and application performance.

2.2 Computing technology for a distributed system

Historicall y, building a high quality distributed application was a challenging task for

a developer, because a lot of tasks need to be addressed.

In each local site, there are often different operating systems. Even with the same

operating systems, you have different versions (like Microsoft Windows) or just

different flavours (such as Linux) of the same operating systems.

Building a distributed enterprise application on top of the possible heterogeneous

operating systems connected with a network needs a lot of effort. For a particular

application such as a banking system, you have to consider many issues, which are

specific to this application .

Here is a list of possible problems that the developers have to consider when building

large business systems [I].

• Remote method invocations : networks method to connect a client and server.

• Naming: To allow entities to be looked up and shared by the whole system.

• Load balancing: Direct client to a server with the lightest load.

7

• Transparent fail -over: Can a client be rerouted to other servers without

interruption of the service? Then, how long will than taken?

• Back-end integration : How to integrate new data with legacy systems that

already exist?

• Transactions: How to make the database access smooth , without deadlock. and

recovery from transaction failure?

• Clustering: If one server crashes. if its state is replicated across all servers, the

client can use a different server.

• Dynamic redeployment: Can software of the system be upgraded without

shutting down the machine?

• Clean shutdown: If you have to shut down a server, can you do it in a clean

and smooth manner so that the current clients are not interrupted?

• Logging and auditing: In case of failing, is there a log that I can consult to

determine the cause of the problem?

• Threading: How to code for multiple client requests simultaneously.

• Object life cycle: How to manage the object creates and destroys cycle ins ide

the server?

• Resource pooling: How can resources inside a server been pooled for reuse by

other clients?

• Security: How to ensure onl y authorised users perform operations that they

have rights to perform?

• Caching: How can you store frequentl y accessed data in the server"s memory

to avoid repeated retrieval from the database?

• And many more.

Taking a layered approach, all the services in the above list can be categorised as

Middleware services [2]. The middleware services provide a set of software that sit

between various operating systems and higher-level distributed applications.

Without a properly available infrastructure for building a distributed application, a

company usually needs to build their own middleware to meet their specific

application requirement. Companies that build their own middleware risk setting

themselves up for failure. High quality middleware is extremely complicated to build

8

and maintain, requires expert-level knowledge, and is completely orthogonal to most

companies ' core business.

It has been a number of years now since the idea of multi-tier server-side deployment

was first introduced. Since then, many middleware services have begun to appear in

the market, such as the IBM ' s IMS-TM (Information Management System

Transaction Manager) transaction processing monitor [22] that provides some general

middleware service and the CICS (Customer Information Control System) [23]

transaction monitor that was made into a suite of middleware products to provide

middleware services for web applications.

Middleware such as the transaction monitors provide useful middleware support, but

these non-standard technologies have big limitations of addressing only particular

problems and are too hard to solve general problems. A standard architecture for

server-side components is required to overcome this problem. This architecture needs

to define the interface between the application server and the components contained

inside the server. The developer should be able to focus on the business logic of the

problem to be solved and not need to worry about the middleware services such as

resource pooling, networking, security, and so on.

The goal of standardization is for rapid development of server-side deployments,

allowing the development of existing middleware but still building portable server­

side components. Currently, three of the most important architectures for building

distributed applications are: CORBA, J2EE and .NET. The following section will

give a brief comparison of these technologies.

2.3 Comparing J2EE with the competing technologies

2.3.1 CORBA

CORBA: the original architecture

9

The first version of the Common Object Request Broker Architecture (CORBA 1.0)

was released in October 1991. It is a unifying standard for writing distributed object

systems. This standard is completely neutral with respect to operating system.

language. network and vendor [3].

The purpose of CORBA is to build a high level standard that is generally available for

any distributed applications. CORBA essentially has three parts: A set of invocation

interfaces, the object request broker (ORB). and a set of object adapters .

Dynamic
Invocation

Client

IDL
Stubs

ORB
Interface

ORB Core

Object Implementation

Static
IDL

Skeleton

Dynamic
Skeleton

Object
Adaptor

Figure 2.1: The COREA obj eel invocalion mechanism

Figure 2.2 [3] displayed the structure of the object invocation in CORBA. To make a

request, the client can use the Dynamic Invocation interface (the same interface

independent of the target object's interface) or an 0MB IDL stub (the specific stub

depending on the interface of the target object). The client can also directly interact

with the ORB for some functions [3].

The object Implementation receives a request as an up-call either through the OMG

IDL generated skeleton or through a dynamic skeleton. The object implementation

may call the Object Adapter and the ORB while processing a request or at other times

CORBA3 with Component Model (CCM)

At the end of year 2002,the new version of the CORBA 3 standard was completed,

which addresses some of the issues of the Object Management Architecture (OMA)

and CORBA Component Model (CCM) [3].

IO

The CORBA Component Model (CCM) is a specification for creating server-side

scalable, language-neutral , transactional , multi-user and secure enterprise-level

applications. It provides a consistent component architecture framework for creating

distributed n-tier middleware.

2.3.2 J2EE

The Java 2 Platform, Enterprise Edition (J2EE) specification was first released by Sun

Microsystems in 1999; it is a complete development platform using Java for server­

side programming. Built on top of the J2SE, it has defined a standard enterprise-class

platform that will be used to build platform independent, portable, multi-user, and

secure applications for server-side deployments written in the Java language.

The J2EE specification has defined a set of Java standard extensions that each J2EE

platform must support. They are called the J2EE APL They include: JDBC, RMI­

IIOP, EJB, Servlets, JSP, JMS, JNDI and JavaMail.

J2EE is a specification not a product. It has defined a standard way to build server

side applications. In order to simplify complexity for building server-side

applications, it uses a component-based architecture. There are currently over 60

J2EE application server products, which are implementations of the J2EE

specification. Most of them are commercial application servers; such as the Web

Logic, Web Sphere and SunONE, and the rest are open source application servers that

include JBoss and JOnAS .

The idea behind the J2EE platform is to provide a simple, unified standard for

distributed applications through a component-based application model. A complete

server-side application is always quite large and complex, the J2EE model tries to

break down an application into discreet modules that are each responsible for a

specific task, making the application much easier to develop, maintain and

understand. Java servlets, Java Server pages and Enterprise JavaBeans are all server­

side components for building enterprise applications.

11

Server-side component architectures allow writing complex business applications

without understanding detailed low level middleware services. Because the J2EE

platform has provided built in support for all important middleware services such as

transaction management. security issues. multi-threaded issues , resource management,

dynamic redeployment and much more. the developer can concentrate only on solving

the business logic problem.

Figure 2.1 is the basic J2EE application architecture. This architecture provides a very

basic framework on how to build enterprise applications using the J2EE technology.

J2EE Server

Enterprise IHTML: - Web Container Information

~ IServlets
I

System

!Applet :
--

!
!Other Client: EJB Container -

!Database I .
I Enterprise 11 Enterpri se

I
-

\Application 1 - Java Bean Java Bean
Client I

Figure 2.2: the 12££ application architecture

2.3.3 .NET

.NET is a mix of technology, standards and development tools from Microsoft that is

used for developing next generation Internet enabled applications .. NET contains the

following (36]:

• Windows.NET: windows operating system is the basic software in which all

.NET infrastructures will be integrated.

• Office.NET: A new version of Microsoft Office that will have a new .NET

architecture based on Internet clients and Web Services.

• ASP.NET is the latest version of ASP. It includes Web Services to link

applications, services and devices using HTTP, HTML, XML and SOAP.

12

• Visual Studio.NET is the latest version of Visual Studio that incorporates

ASP.NET, ADO.NET, Web Services, Web Forms, and language innovations

for Visual Basic. The development tools have deep XML support, an XML­

based programming model and new object-oriented programming capabilities.

• SQL Server 2000 is a fully web-enabled database; it has strong support for

XML and HTTP, which are two of the main infrastructure technologies for

.NET.

• Internet Information Services 6.0 has significant support for more

programming to take place on the server, to allow the new Web Applications

to run in any browser on any platform

The .NET Framework has defined the basic infrastructure for programming in .NET.

The major components of the .NET framework are shown in figure 2.3:

ASP.NET Windows Fonns

!Web Services I !Web Forms I Controls I Drawing

IASP. ET Application Services I Windows Application Services

.NET Framework

!ADO.NET I Threading 110

I Security

Common Language Runtime

I Memory Management !Common Type System I Lifecycle Monitoring

Figure 2.3: .NET Framework

At the base 1s the Common Language Runtime (CLR) that provides a run time

environment for .NET applications. It provides services such as the memory

management, garbage collection and cross-language support.

13

Built on top of the CLR are the services (include middleware services) that the .NET

Framework provides to the application, such as the Threading, Input and Output,

Security, XML and ADO.NET. For example, the ADO.NET provides service to

access the database data.

The top layer provides the programming interfaces. Window Fonns are a new way to

create standard Win32 desktop applications based on the Windows Foundation

Classes . Web Forms are a powerful , form-based user interface for develop web based

application. Web service provides a mechanism for programs to communicate over

the Internet using SOAP that provides functionality similar to COM and DCOM

interaction with objects. ASP.NET is the .NET Internet interface portion: it comprises

Web Forms and Web Services .

. NET has provided a complete set of solutions that incorporates the operating system ,

the web server, database engine, the basic application components, as well the tools

for development, deployment and running a completed distributed application in the

Internet.

2.3 .4 Comparing J2EE with CORBA

CORBA is a great idea theoretically, but a large specification covering everything is

also its weakness to being adopted by the community. CORBA is a high level

specification, which lacks details of how to solve a particular type of problem as

compared with J2EE.

The Object Management Group (OMG) invented the Common Object Request Broker

Architecture (CORBA). It is a unifying standard for writing distributed object

systems. This standard is completely neutral with respect to operating system,

language, network and vendor [3].

CORBA is just a standard like EJB. CORBA-compliant products, such as lnprise·s

YisiBroker for Java, IONA' S orbixWeb, implement the CORBA specification.

Using CORBA has some advantages [3] :

14

• The CORBA is not controlled by one company but has been invented by a

consortium of companies.

• CORBA is language-independent, which allows code written m several

languages to communicate. This allows for easy legacy integration using

CORBA.

• CORBA provides value-added services. The vendors of CORBA products can

add optional functionality to enhance the deployments, such as persistence,

security and transactions.

Disadvantage of using CORBA include: [3]

• The CORBA standard is slow moving. The openness of CORBA is a

drawback for adopting new features. This makes CORBA standard less

competitive comparing with other technologies such as Sun's J2EE and

Microsoft ' s .NET.

• CORBA has a steep learning curve. For example, the CORBA specifications

are thousands of pages and are quite challenging to master.

• Products developed under CORBA may have incompatible features. Because

no one company controls the standard, each company may have different

implementations for a CORBA product.

Based on the simple introduction, it ' s not hard to find out why CORBA standard are

still not so widely adopted after so many years. On the other hand, the Java and the

J2EE technology have becomes popular quickly.

• Java and J2EE is innovative technology targeting the business application

market.

• J2EE has a strictly defined architecture for building multi-tier applications and

the middleware that an application server must provide. There are J2EE

products compatibility test suits to ensure that all vendors abide to the J2EE

standard. But CORBA does not have these features.

• Building enterprise applications using J2EE compatible products can be

accomplished rapidly. But CORBA programming is much more tedious with

less middleware support.

15

2.3.5 Comparing J2EE with .NET

As CORBA is obvious a less competitive technology as compared with J2EE, the

more interesting comparison is J2EE with .NET, two of the most popular technology

for building enterprise applications .

. NET is essentially repackaging of existing Microsoft technology to provide

distributed. Internet enabled applications and services. For building web-based

application, .NET uses an architecture that is quite similar to J2EE.

Thinking about a layered approach , in the presentation layer, the J2EE uses Servlets,

JSP, whereas .NET uses ASP.NET. For the business logic tier. the J2EE uses EJB,

.NET uses .NET Managed Component. Table 2.1 is a simple comparison of the

technical features between J2EE and .NET.

Feature J2EE .NET
Type of technology Standard Product
Middleware Vendors 60+ Microsoft
Interpreter JRE CLR
Dynamic Web Pages JSP ASP.NET
Middle-Tier Components EJB . NET Managed Component
Database access JDBC, SQL ADO.NET
SOAP, WSDL, UDDI Yes Yes
Implicit middleware Yes Yes

Table 2. 1: Comparison of basic features of J2EE and .NET

From the comparison of the implementation features from J2EE and .NET, it can be

conduded that they have a quite similar architecture to build web based enterprise

applications. More analysis will give a clearer picture about them. Table 2 .2 is a

further comparison of features that are differences between J2EE and .NET platform .

16

Feature J2EE .NET
Vendor's support The entire industry Microsoft
Platform Proven platform Rewrite of exist platform,

risk for unknown factors
Code portability Existing code can translate DNA code can not directly

to web service ported to .NET
Existing hardware support Support existing hardware Not complete supported
Portability of code Good portability of code Only run in windows

system
Integrate with legacy Better integration using Limited support using
system Java Connector Host Integration Server

Architecture (JCA) 2000
Supported operating Any operating systems Windows only
systems
Programming language Java is more mature and C# is too new

with more market share
Independent Software Most of them will choose Choose .NET only useful
Vendor (ISV) and J2EE for customer's for Microsoft products
Consulting Company' s freedom of choice user
support
Development tools A few choices. Overall Visual Studio.NET has

functionality is good relatively better user
interface

Programming model More advanced model Simpler model , likely
more productive

Table 2.2: Comparison o_f more criNcalfeatures o_f J2EE and .NET

From the comparison results , these are clearer advantages of J2EE over .NET in a

number of issues.

• J2EE has support from all major vendors, but .NET are locked in to Microsoft.

• J2EE is a proven platform for many critical applications, but .NET is a rewrite

of an existing platform.

• J2EE can run in any operating systems, but .NET only runs using windows.

• J2EE is better integrated with the legacy systems than .NET.

• J2EE codes are portable between different vendors with only minimal work.

• There is more Independent Software Vendors (ISV) and Consulting

Companies to support J2EE as compared with .NET.

My conclusion is: The advantages of J2EE outweigh those offered by Microsoft's

.NET for building distributed enterprise application.

17

2.4 Current study of the J2EE application server performance

The popularity of the Internet has introduced huge potential for traditional client­

server applications. Access restrictions of the traditional Local Area Network (LAN)

or Large Area Network (WAN) on different geometrical areas and the user groups

have been greatly eliminated by using the Internet.

The Internet has brought huge opportunities for businesses. Businesses going on-line

have much better chance for increasing income. With the easy access to Internet

anytime and anywhere in the world, a customer can interact directly with a company;

activities such as the on-line transactions will bring direct benefit for both customers

and the service providers.

With the strong need for providing web service solutions in the Internet, Companies

in the computing industry are working hard to supply all sorts of services to enhance

e-business solutions. A suitable infrastructure is the most important framework to

enable a better web service.

Currently, the most widely used tools for building distributed multi-tiered applications

are J2EE, .NET and CORBA, which have been discussed in the last section. I will

concentrate on J2EE application server in my study.

In a typical four-tiered J2EE application that contains client, web server, application

server and the database, the application server is the core part. It provides built in,

otherwise would be very complicated middleware services such as concurrency,

transaction , security and persistence management to support business logic of an

application.

Enabling J2EE application servers with many middleware services will simplify the

process of developing enterprise applications, because the user can use the services

provided by the application server rather than reinvent the wheel. On the other hand,

this will add overhead to the overall performance of the application. For example,

enabling Entity Bean services will greatly simplify the operation of a database,

18

instead of usmg JDBC to explicitly access a database following a tedious and

sometimes error prone procedures, the developer needs only do an object lookup, and

then perform some object method operation. But making the EJB container handle the

complexity of the JDBC tasks will add overhead and is inefficient compared with

direct JDBC operations.

Since the first publication of the J2EE specification, there have been enormous

interest in the computer industry and the community for adopting this Java based

middleware standard that has great ly simplified the development and deployment of

multi-tiered enterprise applications and web services. Many standard compliant

application servers have emerged in the market place, the strong competition has

promoted the vendors to provide high performance, cost-effective, standard-based,

easily used and managed development environments incorporated with the application

server and web server.

The overwhelming popularity and fast development of the web-based applications in

the world has demonstrated both great potential and big challenges for any online

businesses. The dynamic nature of the web site and unpredictable nature of the users

distribution require a high performance and highly scalable architecture to support an

application. The overall performance of a large-scale mission critical application is

critical for achieving good level of user satisfaction.

There are some research activities that emphasise the performance and scalability of

the J2EE application servers. Though, the application server is the most critical

component in J2EE architecture, the performance of a J2EE application is a very

complicated issue. The entire application behaviour is the combination of the

behaviour of the hardware, the softwares that forms the J2EE platform and the

application running on this platform.

The following section will identify and discuss various performance studies related to

a J2EE application.

Individual vendors, companies and researches have developed their own testing

programs to run on one or more application servers for their special testing purpose.

19

The Software Architectures and Component Technologies R&D Group from CSIRO

has developed a test application called Stock-Online [4] which contains simple but

realistic stock transaction systems. There are two different implementations of

Session Bean and CMP Entity Beans that allow evaluation scalability and

performance of different design choices for different application servers. Cecchet and

Marguerite have taken a different approach by implemented an auction site with five

versions of EJBs of different design [5], running each version against the same

hardware and J2EE platform has revealed big performance gaps between different

application implementation methods.

As individual's testing application is only valid for their own purpose. a more general

testing program is necessary as a standard benchmark to test the performance of any

Standard compliance application servers . A benchmark is normally a widely accepted

test program used to compare the performance of hardware and/or software . When

comparing benchmark results , it is important to know exactly what the benchmarks

are designed to test. For example, Pennbench is a benchmark suite for embedded Java

enabled handset devices [24] . Linpack is designed to test performance of a

supercomputer [25]. SPECjvm98 is used to evaluate performance for the combined

hardware and software aspects of the JVM client platform [26] .

ECperf is a middle-tier benchmark designed to test the scalability and performance of

application servers and the computer systems that is used to run them. ECperf is

designed to reflect a complete heavy weighted, mission-critical real world application

by incorporate four domains : Customer Domain, Manufacture Domain , Supplier

Domain and Corporate Domain. It is widely accepted as an industrial standard testing

program for application server. Many application server vendors have submitted their

ECperf result to showcase the scalability and performance of their products since its

first publication. More details of ECperf test will be described in chapter 4.

With different testing tools , it is much easier to evaluate performance of a J2EE

applications and their supporting platform. The next question is how to improve the

performance of J2EE applications.

20

As mentioned before, a J2EE application performance is related to factors including:

the hardware to run the application , the operating system, the J2EE platform (include

the Java Virtual Machine, the application server and the web server) and the

application design and deployment.

The hardware that is running the whole software system is critical to the performance

of a J2EE application. There are different approaches for increasing the performance

and scalability of an enterprise application. There is some very basic hardware factors

that might affect the performance of a Java program [6] , such as: the RAM, cache

memory, CPU power, and basic 1/0 facilities. For a big multi-threaded java program,

the user must make sure the hardware is sufficient to support the program. For

example, running ECperf test must make sure there is enough RAM during the

running process, if many running threads need to be swapped out, the final output of

finished transaction will be greatly affected.

There are different hardware technologies that can improve the performance, as well

as increase the power inside a machine; there are two ways to increase the hardware

power in order to build a more powerful high-performance computer. One of them is

using multi-processors . There are many commercial available multi-processor

machines with two, four, eight or even more processors in one machine that could

greatly increase the computing power of a machine. This is especially true for J2EE

application servers, which requires significant computing power. Another way is to

build a computer cluster using multiple machines with high bandwidth connections

between them . This method is extremely flexible for building highly scalable power

computers . Building a clustering system using commercially available personal

computers is the most cost-effective way that cost only a fraction compared with

commercial computers with similar computing power. As a result, PC clusters are

becoming the most widely accepted method to build even the most powerful computer

systems in the world [7] .

With sufficient hardware, the next major factor related to performance is the software;

here I refer to all software, including the operating system, the J2EE platform and the

J2EE application running on them. Most developers do not consider the Operating

21

system, but it is likely to become the bottleneck when running applications on servers

(8] .

All Java programs run on Java Virtual Machines (JVM), this includes the application

servers written with Java Programming Language. Understanding the characteristics

of the JVM are the preconditions for tuning the performance of JYM . There are

studies on optimising Java code running on JVM with a performance optimised to the

level that is comparable with the CIC++ code (9]. cJVM is an interest approach to

provide a single JVM running on a cluster of nodes (27]. By running cJVM on a

cluster can obtain improved scalability of Java Server Applications by distributing the

application· s work among the cluster· s computing resources .

For the J2EE applications, there are many studies for the purpose of gaining better

performance by following good design and implementation guidelines. There are

J2EE design pattens (28] that give best practices for the design and implementation of

a J2EE application. For a comparison of performance and scalability of different

J2EE EJB implementations. fi ve versions of an auction s ite were implemented [5].

The author concluded that the most important factor in determining performance is

the implementation method, where EJB applications using Session Bean only as well

as using Java Servlet only performs an order-of-magnitude better than most of the

implementations using Entity Beans.

2.5 My research approach

Given the fact that the J2EE technology is still new in the market, and the limited

number of research activities associated with the J2EE application server, I do not

know how scalable a J2EE application in a clustered environment is. The ECperf

benchmark results from the industrial leading J2EE application server provider are

available, but these results only give the highest value of test against particular highly

optimised hardware, operating system and a vendor' s J2EE platform, which cannot

provide scalability information of their J2EE application server. I want to investigate

how scalable a J2EE application server is using a Beowulf Cluster as testing hardware

and open source as software.

22

A very basic technique to increase available services is through data replication.

Multi-copies of the same data in multiple machines will enable data to be more

accessible to client and thus improve the performance and scalability of the

application. Clustering has provided this service and so it has become more widely

adopted by the J2EE application server vendors. My hypothesis is: for a properly

implemented application server cluster, an application running on it should scale,

giving enough hardware and software resources. Ideally, without the overheads such

as communication between application servers and unbalanced load distribution, the

performance should scale linearly.

I will exam my hypothesis by running a benchmark programme. I will use the J2EE

platform as the infrastructure of my study. By using the Beowulf cluster in Massey

University Albany Campus as hardware, open source J2EE application server and

database as software, I can test how application server cluster can affect the scalability

of the testing application program.

The J2EE server software must support clustering, which enables multiple application

servers to work together in a distribute environment. There are many J2EE vendors

that provide commercial J2EE application environment to support the design,

implementation, test and deployment of distributed applications. On the other hand,

there are open source application servers that are among the most popular ones m

industry, though may not be the best.

I will follow consistently my approach and give the open source a priority when

choosing my software. The selection process and main functionality of the application

server, web server and the database will be given in chapter 4.

2.6 Summary

I have given a brief overview of the three most influential component based

architecture: CORBA, J2EE and .NET. By comparing the merits and weaknesses of

each approach, I concluded that J2EE is my best choice.

23

I then introduced how to build distributed applications using the J2EE technology. A

literature review gives various studies of the performance of the Java technology with

emphasis on the J2EE application server.

From these studies, I formed my research question of investigating the scalability of a

J2EE application running on a cluster of JBoss application server. My approach for

validating my hypothesis is through program test using the Beowulf cluster

supercomputer as hardware, and a set of open source software to form my J2EE

platform.

24

Chapter 3: Hardware for the test

3 .1 Introduction

This chapter covers the hardware architecture of the performance testing system as

well as some related technologies. The hardware used for the performance test is

Beowulf Clusters: the Helix and the Sisters in Massey University. The Helix is a large

supercomputer cluster and the Sisters is a smaller cluster.

To help understand the Beowulf cluster, I have firstly reviewed various architectures

for building powerful computers especially supercomputers, based on this

information , I have discussed why clustering of PC is one of the best choices among

these architectures. Lastly, the Massey University Beowulf cluster: the Helix and

Sisters are presented with more detail , because they are used extensively for my

performance test.

3 .2 Introduction of supercomputers and Beowulf Clusters

A Supercomputer is a computer that performances significant faster than most of

today ' s computers.

High Performance Computing (HPC) is constantly in need to address the problems

that are hard for a general computer to complete in a reasonable period of time.

Supercomputers were normally very expensive and were employed for specialized

applications that require immense amounts of mathematical calculations. For

example, weather forecasting requires a supercomputer. Other uses of supercomputers

include animated graphics, fluid dynamic calculations, nuclear energy research, and

petroleum exploration.

The supercomputer can be categorized differently according to different criteria.

Three major types of supercomputer can be identified as the following according to

how memory and processors are used in a system :

25

• Single memory and single processor: single CPU with one memory space

• Symmetric Multiprocessing (SMP): multiple CPUs that share a common

memory

• Massively Parallel Processing (MPP): multiple CPUs each with it's own

memory space.

In the list of the world·s 500 most powerful supercomputers [7], only SMP and MPP

still exist, it is impossible to create a single processor computer with one memory

space that is powerful enough to be in the list.

A Beowulf Cluster is a MPP built using commodity hardware components, such as

Personal Computers (PC) [I OJ . The first Beowulf cluster was made in National

Aeronautics and Space Administrator (NASA) in American in 1993 [29]. At that time,

they needed a supercomputer but could not afford to buy one, so they designed a

system with 16 nodes of Intel I 00 MHz DX4 processor. The researchers at NASA

discovered that their Beowulf Cluster had the computing power to compete with its

supercomputer contemporaries, such as the TMC C-5 and the Intel Paragon . Whereas

the old system of supercomputing required a huge budget and highly specialized

equipment, the Beowulf-Class System required a budget that might be allocated for a

computer lab at a college. A Beowulf Cluster consists of a collection of off the shelf

motherboards, processors, memory. and network support, and one computer with 1/0

capabilities

Beowulf Clusters have the following major advantages over traditional supercomputer

[30] :

• Significant Lower total cost

• Short assembly time and extremely easy and cheap to expand

• Total control of system: the builder designs the hardware and chooses the

software

• Easy to keep up with current technology with a flexible architecture

• Very stable and robust for the user and administrator

Some disadvantages of Beowulf clusters include:

26

• Communication could be slow compared with proprietary supercomputers

• No official system support, the builder is responsible for everything

The most important feature of a Beowulf Cluster is the cost advantage. The Centre

for Advanced Computing Research at Caltech [31] reported in 1998 that a 70 Node

Beowulf Cluster whose nodes peak at 1.066 Gtlops cost a total of US$ I 52,175, that is

US$2 I 74 per node. A typical configured supercomputer with similar processing

power cost about $1.5 to $2 millions dollars .

The software used by a Beowulf cluster to support parallel computing is much more

mature than before. Both Microsoft Windows and Linux can support Beowulf

clusters. The software to perform Inter-process Communications between different

machines is also available. A cluster system can use either Parallel Virtual Machine

(PYM) or Message-passing Interface (MPI) to make the cluster perform as a single

machine to the users . The limitation of the Beowulf cluster is that it only addresses

parallel problems efficiently.

I conclude that the Beowulf cluster is both currently and will be in future the most

cost-effective architecture for building a supercomputer. By comparing Beowulf

clusters with the Internet, the Internet has made the information system accessible to

the general public, and the Beowulf cluster has made the supercomputer accessible to

most small organizations or even private people.

3 .3 Massey Beowulf Cluster

Massey University Albany Campus in Auckland currently has two Beowulf Clusters:

Sisters and Helix. The Sisters consist of 14 nodes connected with I 00Mb/s fast

Ethernet adapters. The server node is a dual 667MHz Pentium lil with I GB RAM,

and the 13 client nodes using 667MHz Pentium lil with 256MB RAM. All the nodes

are connected to the server through a switch. The low bandwidth network could be a

key bottleneck in the system.

27

The Helix is a much bigger cluster supercomputer; it ranked Number 304 in the world

Top 500 November 2002 List with Lin pack Rmax rating of 234.8Gflops [11].

The Helix consists of 66 nodes connected with fast Ethernet adapters. The server node

is a dual Athlon MP2200 MHz AMO with 2GB RAM , and the 65 client nodes using

dual Athlon MP2200 MHz AMO with I GB RAM . All the clients are connected to

switches that are then connected to the server using I GB/s fast Ethernet adapters.

The state-of-the-art design and the careful selection of all the hardware parts and

software used in the Helix system makes it extremely scalable in performance. The

testing results from the Linpack benchmark (processor vs . Rmax rating) shows that

the system scales almost linearly [I I]. This is due to the high bandwidth , reasonable

latency switching and the grid layout of the nodes . The grid architecture is also

scalable for adding new processors with row and column size of 23 nodes, which will

be equivalent to I 058 processors with an expected Lin pack rating of 1.88 Tflops. This

rating will put it in the 24th positions in the ovember 2002 Top 500 list.

The basic software used for both Sisters and Helix is quite similar, though the Helix

has a stricter security and usage control. The following is a simple description of the

major software in the Helix.

Linux was selected as the operating system of Helix instead of the Microsoft

Windows. As the major consideration of building cluster system is based on the price

consideration, it makes more sense to choose the free software Linux rather than using

Windows that has licence fees. As the overall performance of the Linux is comparable

to the Microsoft Windows, it is reasonable that the majority of Beowulf cluster

systems use Linux. Linux has a better reputation m security compared with MS

Windows as it was derived from the UNIX.

Because the Helix is a supercomputer with MPP structure, it is very important to have

software to deal with the Inter-Process Communication of the different processes

running in the systems. MPI was selected to do this.

28

For a user to access the clusters anywhere through the Internet, the Security Shell

(SSH) is used. To copy files , Secure File Transfer Protocol (Sftp) is used. These

software, which use asymmetric cryptography, have greatly enhanced security, though

are very convenient to use.

3.4 Summary

I have covered in general various architectures for building a supercomputer

especially building the Beowulf cluster using the Commercial off-the-shelf (COTS)

components. Two examples Beowulf Clusters, the Sisters and the Helix in Massey

University were described in some detail.

I believe that the computing power of supercomputers have always been in demand

and will continue in the future, because many problems need computing ability that

general computers can not provide or might take too long to so lve. People will need to

rely on supercomputers to solve more and more complicated problems as computing

power increases.

Beowulf Cluster ' s architecture has proved a relatively easy and cost-effective way to

build powerful computers. Plus with a complete set of software such as the Linux

operating system and MPI , it is becoming more and more powerful. In the near

future , the Beowulf cluster will be available to a wider range of research institute,

educational institute, the computer industry and even personal users , the availability

of large computing power to the general public will become reality soon.

Massey Beowulf Clusters are used extensively in many research and study activities.

For my study of scalable application servers, the Helix or Sisters are ideal candidates

for providing the necessary hardware that is scalable in performance and support tight

cooperation while keeping each individual in the system independent. More detailed

information of the software used for my research work is described in the next

chapter.

29

Chapter 4: Software for the test

4.1 Introduction

This chapter will describe the software used for my test. One major consideration for

selecting my software is based on the price. As open source software are free to use

and are becoming viable in almost all aspects of the software industry, I will pay

particular attention to that.

For a typical J2EE application , I have four layers including: the client, the web server,

the application server and the databases. A client could be in different forms such as

Web Browser, Wireless Devices, Applications. Applet. CORBA Clients through

IIOP, or other system through web services technology such as SOAP, UDDI , WSDL,

ebXML. I use open source software to form my J2EE platform and database . Using

open source application servers on Beowulf Cluster hardware is a very cost effective

way to run J2EE applications.

4.2 Why choose open source

For most people, Open Source means freedom of choice. There are many different

types of Open Source, such as the GNU GPL, BSD, X Consortium and MPL. Though ,

each of them have differences in details regarding the licence and usage criteria, they

do have some common criteria. The most important criteria of Open Source are as

following [32]:

• Free redistribution of the original source code

• Source code must be available to the user

• Should allow modification and derived works on the original source

• No discrimination against any people and no discrimination against using the

program in a specific field of endeavour.

• And other related criteria.

30

Though, Open Source has existed for over 20 years, it wasn ' t a viable choice until

recently. With the widespread use of the Internet, the time for worldwide cooperation

to create a best possible open source solution is coming. It is now possible to create

open source software that is better than traditional proprietary closed model , in which

only a few programmers can access and modify the source code.

There are many successful open source softwares already. One of the most successful

open source projects is Apache Software Foundation [35]. Among many subprojects

in this foundation , the Apache HTTP Web Server is the most widely used in the

industry. The most popular application server in industry is JBoss with an annual

download of over 2 millions last year [33].

I expect a much better future for open source software through open and cooperative

work from people all around the world . Open source J2EE software is discussed in the

following section.

4.3 Overview of open source software for the J2EE application sever

The open source server side J2EE software includes: web server, application server

and the database . Here is the brief introduction to each of them.

Application Server

There are many commercial J2EE development and deployment environment such as

IBM ' s Websphere, BEA ' S Weblogic, Oracle ' s Oracle9i application server and Sun ' s

Sun ONE Studio. These products provide standard-compliant completed development

environment for the developer and also some level of user support. But all these

services are provided with a high charge. On the other hand, there are open source

application servers and web servers that provide most of the functionality , which a

commercial J2EE platform supports.

The existence of the open source application server has attracted large groups of users

from all around the world. Three of the most noticeable J2EE application servers are:

31

JBoss from the JBoss Group, JOnAS originated from France and OpenEJB. An open

source application server can be combined with other open source software to form a

complete J2EE platform.

JBoss has a fast growing community for both the developer and users. and the

increasing numbers of developers have contributed greatly to the innovation and

publication of new versions of JBoss with better features provided to the users.

JOnAS is an Open Source implementation of the J2EE 1.3 specifications and EJB2.0,

developed within the open source ObjectWeb consortium. JOnAS is a pure Java™

implementation of this specification that relies on the JDK. The objective of the

ObjectWeb is to develop and promote open source middleware software [34].

Web Server

There are different web servers, which support different functions. The most basic

general web server is the HTTP web server. which support communications with a

web browser client. Apache is the most famous HTTP web server. For J2EE

applications, I need to use a servlet server. Tomcat is the servlet container that is used

in the official Reference Implementation for the Java Servlet and Java Server Pages

technologies. Tomcat is the most widely used open source servlet container that 1s

also developed by the Apache Software Foundation [35].

For the convenience of the user, most vendors combined an integrated version of the

application server and the web server together. For JBoss users , it is more convenient

to use the pre-configured JBoss-Tomcat bundle rather that to download them

separately and then to configure them.

Database

Nowadays, databases have become very general tools; there are many databases

which support different levels of functionality. The range of databases include the

easiest ones with only very basic database functionality to more complicated ones that

can provide complete support for enterprise level applications.

32

Even for open source databases, there are various choices for the users. Some of the

popular open source databases include: MySQL, PostgreSQL, SAP DB and Firebird.

4.4 JBoss application server

I choose JBoss instead of JOnAS simply because it has a much bigger user and

developer community.

The objective of my study is the application scalability when using a Cluster of

application servers. To realize that goal , I need to understand the architecture of the

JBoss server as well as how to implement the different functionalities that JBoss

support. I will first introduction the JBoss architecture based on JMX standard, then I

will introduce the major features of the JBoss server followed by a detailed

description of the JBoss Clustering that I will use extensively in my application, some

basic knowledge of JBoss specific features in an J2EE applications will be presented.

4.4.1 JBoss structure based on JMX standard

The most important concept in the JBoss server is the JMX architecture, which forms

the backbone of the JBoss application server [12).

JBoss architecture

JBoss was the first application server that implemented the JMX standard [I 3). In the

instrumentation level , it implements the micro-kernel architecture of MBean

components, each of which implements different J2EE services or other server

infrastructure components. In the agent level , JBoss implements a JMX MBean

server, which act as the spine of the JBoss server. All the MBeans that provide

different J2EE services need to register to this MBean server. In the distributed

service level, a JMX HTML adaptor is available to allow access to the Mbean

Server's MBeans using a standard web browser.

There are distinct advantages of implement the micro-kernel architecture instead of a

monolithic application that contains all the J2EE services at any time. The JBoss

33

server is extremely adaptable and extendable to fit the users requirement. Adding a

new service is a matter of plugging a new MBean to the JMX MBean server, to

deploy this service, the administrator only needs to drop a XML file such as the jboss­

services .xml that contains the MBean to the deploy directory of the JBoss server.

Similarly, removing this file will undeploy the service.

I only introduce the JBoss services that I am interested with, such as the clustering

and the farming services in the next section .

4.4.2 JBoss Clustering & Naming service

Clustering in JBoss

My test will run a cluster of JBoss servers in my Beowulf cluster for the purpose of

the scalability and the performance study. To serve this goal, the following sections

will introduce the basics of the JBoss clustering and farming service.

As I have described before. a Beowulf cluster is a group of computers that are

connected with a high bandwidth network and performs as a single computer.

Traditional use of the Beowulf Cluster is for parallel computing that can greatly

improve the performance of any parallel program.

For a J2EE application , the concept of clusters have been extended to the software, for

a cluster enabled application server or web server, I can run multiple copies of the

server that can perform the same set of work simultaneously, by using a good load

balancing policy for the clusters of application server, it is theoretically possible to get

a linearly increasing scaling of the application servers.

I define a JBoss Cluster as a group of JBoss instance each running m different

machines that are configured to accomplish a common goal. The major features that

the current cluster implementation of JBoss Application Server supports are as

following (38]:

• JBoss instances in the cluster find each other automatically.

34

• Fail-over and load balancing for many services, include: JNDI , RMI , Entity

Beans and the Session Beans.

• HTTP session replication with the integrated web server, such as Tomcat or

Jetty.

• Farming service that provides distributed cluster-wide hot-deployment. By

deploying to the farm directory of one JBoss instance, it gets deployed to all

JBoss nodes in the cluster.

By providing the cluster support to all the server side components, it is possible to get

a highly scalable performance for applications running in the J2EE platform. A JBoss

cluster introduces the concept of a partition of hardware and software. A partition is a

group of JBoss instances that works cooperatively to provide the same service to the

client of the application server. A cluster enabled Enterprise Java Bean can be

replicated in a JBoss cluster, with the cluster wide JNDI services, smart proxy and the

implementation of load balance policy in the JBoss server.

HA-JNDI in JBoss

The Java Naming and Directory Interface (JNDI) is an application programming

interface (API) that provides naming and directory functionality to applications

written in Java™ programming language [19]. It is defined to be independent of any

specific directory service implementation. Thus a variety of directories can be

accessed in a common way.

The JNDI architecture consists of an API and a service provider interface (SP!). Java

applications use the JNDI API to access a variety of naming and directory services.

The SPI enables a variety of naming and directory services to be plugged in

transparently, thereby allowing the Java application using the JNDI API to access

their services.

Java JNDI services are only available within the same JVM , thus for a distributed

applications such as my clustered application server test, an extended JNDI model

that can be used to lookup objects located in another JVM is necessary.

35

The default JNDI lookup in local machine will not work properly to support object

lookup in the clustered environment. JBoss has implemented HA-JNDI, which is a

global, shared , cluster-wide JNDI Context that client can use to lookup and bind an

object [38]. Having a HA-JNDI on top of the local JNDI can provide fail-over and

load balance to applications running in a JBoss C luster.

A HA-JNDI property string for known servers can be specified as:

Java.naming.provider. url=helixl: 11OO,helix2:11OO,helix3:1100

A HA-JNDI client can locate objects that are bound to a machine using the property

string. Further more. if the property string is empty and multicast is supported in the

system; automatic discovery through multicast call on the network can be performed

using HA-JNDI.

Farming service

JBoss supports hot deployment of the assembled J2EE components, such as the EAR,

JAR or WAR files. For a running JBoss application server, your can deploy a file or

redeploy a file that has already been deployed by copying the file into the deploy

directory of the JBoss server.

The farming service is a natural extension of the hot deploy feature to the cluster of

JBoss, by copying a file to the server/all/farm directory of one JBoss instance in a

cluster, the file will be deployed to all JBoss instances in the cluster.

4.5 Choosing the database

There are many open source databases, such as the PostgreSQL, MySQL,

Firebird/ lnterbase and SAP DB. MySQL and PostgreSQL are the most widely used

databases. Because of their different design goals from the very beginning, MySQL is

more suitable for some applications, while PostgreSQL is more suitable for others

depending on the users' requirements. My goal is to identify the major features and

differences of them and decide which one is better for my application.

36

MySQL was originally developed and provided by MySQL AB, a virtual commercial

organization [I 4]. It is an open source relational database management systems that

extends the ANSI SQL92 standard. MySQL is considered to be the most widely used

database on the Internet.

The design goal of MySQL is to deliver very fast, multi-threaded, multi-user, and

robust SQL database that will be used for mission-critical , heavy-loaded production

systems as well as single users [16).

Major features of MySQL include:

• Speed: Written in C and C++ with multi-threaded, optimised execution of

queries to very fast B-tree disk tables with index compression.

• Portability: with support of all these major operating systems and easy to port

data to another operating system using building in program.

• Ability to interface with any programming languages such as PHP, Perl, CIC+,

Java, Python, and Tel , makes it very popular choices for programmers.

• Easy of use: There are complete basic functionalities as well as the users and

administrator ' s tools without many complicated features as compared with

commercial databases such as Oracle and DB2. This makes it relatively easy

to learn and use and satisfies most users requirements.

PostgreSQL [17) is an open source extension of Postgres, a research project of an

Object-Relational Database Management System at the University of California at

Berkeley. Due to its long academic history and its rich set of functionality, it is

considered the most advanced open source DBMS. The PostgreSQL project is under

very active development worldwide from a team of open source developers and

contributors.

Major features of PostgreSQL include [15):

• Standard compliant: Complete support of the core ANSI SQL99 new standard

with advanced features.

37

• Object-Relational DBMS: capable of handling object with complete routines

and rules. Examples of advanced functionalities are declarative SQL queries.

multi-user support. transactions and query optimisation.

• Client-server model : each database connection is started as a separate process

that ensures the completeness of any database transactions.

• Flexible AP!: a complete API has allowed vendors to provide development

support easily for the PostgreSQL RDBMS using interfaces including Object

Pascal. Python. Perl , PHP, ODBC, Java/JDBC, Ruby. TCL and CIC++.

• Advanced features: PostgreSQL provide complete functionalities that are

comparable with the most advanced commercial DBMS such as Oracle and

DB2. There are many features that are not supported by MySQL, for example,

the foreign keys, sub-selections, views, stored procedures. constraints, triggers

and extensible type system.

With these major feature comparisons, I concluded that MySQL is more suitable for

applications that need fast reactions but less complicated functionality. the popularity

of the MySQL in the web based applications are a good proof. Its ease of use for both

developer and the administrator has also contributed greatly to its popularity. On the

other hand, the PostgreSQL is more suitable for advanced users for tasks such as

performing more complicated database queries or applications that need better data

integrity.

My application will perform large amount of transactions on the data in the ECperf

database, the performance and scalability is an important requirement, to ensure data

integrity of all these transaction is another factor. Therefore, I choose PostgreSQL

because it ' s transactional and scalability advantages over MySQL.

4.6 Choosing ECperf as the testing tool kits

38

4.6.1 Why choose ECperf

ECperf is the industrial standard for test the performance and scalability of

middleware in a typical J2EE environment. It is composed of the ECperf

Specifications and the ECperf kit. The specification gives detailed description of the

ECperf test including the motivation for the ECperf test, information about the

application design, details of the workload description, the testing architecture

configuration, the scaling and running rules and result disclosure rules. The ECperf kit

provides a complete basic java program and the database data for running ECperf. A

J2EE vendor or user must modify the Kit with an application specific deployment

descriptor and configure it properly to run for particular application server and

hardware architecture.

Brief history of ECperf

To understand the importance of ECperf as standard for evaluating the performance

and scalability of application server, I need first give a brief history of the ECperf.

The ECperf version 1.0 was first released in May 200 I . Since then , it has attracted

many top industrial leading application servers submission of their testing results to

showcase the performance of their application servers. Those include the most

important J2EE application server vendors, such as IBM, BEA, Sun Microsystems,

Oracle and Borland.

The ECperf 1.1 was released in May 2002 as a maintenance version of the ECperf 1.0,

since the result of ECperf 1.1 is not allowed to be released publicly, it is more likely

to be used by the vendors and the developer as the benchmark for performance test

and tuning internally.

SPECjAppServer2001 was released in September 2002 as a result of repackaging of

ECperf 1.1 except for some minor changes to the source code, the metric, and the run

rules [40]. This benchmark does not restrict the publication of the results as does

ECperf 1.1, but users need to pay the licence fee.

SPECjAppServer2002 [40] is basically the same as SPECjAppServer2001 except that

the Enterprise Java Beans (EJB) is defined using the EJB 2.0 specification instead of

39

the EJB 1.1 specification. This new benchmark can then take advantage of the

features supported by the EJB 2.0 that include the local interface, CMP relationship

between entity beans and the EJB-QL query languages. So, the performance of the

new benchmark could be much better than the old one that uses EJB 1.1 .

Introduction of ECperf

The ECperf test models a complete distributed enterprise leve l real-world application.

It focuses on the test of EJB containers ability to handle the complexities of

middleware services such as memory management, connection pooling, caching and

activation/deactivation of EJBs.

ECperf simulates a multi-domain worldwide business that incorporates transactions in

e-commence, business to business, manufacturing and supply to sales chains. This

application is divided into four domains; each manages different business rules and

data [18].

• Corporate Domain: maintain information of the customer. supplier and parts.

• Customer Domain: models the customer interaction with the company where a

customer can create, delete or check the status of their orders .

• Manufacturing Domain : using "Just-In-Time·· manufacturing concepts to

maintain customer and orders status.

• Supplier Domain: maintains interaction with the suppliers of the parts.

Figure 4.1 [18] gives the architecture of the ECperf application. The five major parts

in the ECperf applications fit into the different layers of J2EE application: The Web

Server, Application Server, Database, Driver and Emulator Client. Each of which is

run on separate machines.

40

Driver System Under Test (SUT)

Order Agents

Mfg Agents

Emulator

Emulator
Servlet

Web Server

SupplierDoma
14+-+-+-.i inServlet

Application Server

jEJBs (Corp)

EJBs (Order)

EJBs (Mfg)

EJBs (Supplier)

Database

jCorpDB

IOrderDB

jMfgDB

I SupplierDB

L __________________________________ _

Figure 4. 1: The ECperf Architecture

Application Server: The application server is the core part of the ECperf application ,

where all the Session Beans that define the business logic and the Entity Beans that

represent data in the ECperf application reside.

Database: The database is the next most important part of the system. The ECperf

application requires that the database provide enough capacity to support all the

transactions in the system. There are four separate databases each related to one of the

domains in the system. Each of the databases has a few tables. The four databases can

be combined to one database for a centralized test.

Driver: the driver is a java application program. The driver runs in a multithread

mode with each thread acting as one client based on the input transaction rate value.

Emulator: The emulator is basically a web-based interface that can interact with the

ECperf application. The emulator allows manual interaction with the application one

transaction each time, thus is not a necessary component for a formal ECperf test. It is

useful for test each single function in the system.

Web Server: the web server is normally an important part for a J2EE application,

particular an online application. However, the ECperf emphasises the application

server performance and the driver client can interact with the Enterprise Java Beans

directly. So, the web server is only useful for the Emulator client.

41

The transactions in the ECperf application are essentially related to the activities of

process customer or distributor· s order, manufacturing process of products and parts

supplied by the supplier. Transactions in the Order Domain include: Create new

orders. Change of an existing order, get order information and cancel an order.

Transactions in the Manufacturing Domain include: get a large order and start

processing a work order based on it. create a new work order and cancel the work

order.

Each of the transactions in the ECperf application is called a Benchmark Business

Operation (BBop). The performance of the ECperf is measured by the average

finished transactions per minute that is BBop/minute. I will test with Cluster of

application servers and measure the maximum output that is related to a particular

hardware and software setting. With these results, I can evaluate the scalability of the

application server I use.

4.7 Summary

I have described software used for my test m detail. For a multi-tiered J2EE

application, I have chosen PostgreSQL as my database server. JBoss as the

application server, Tomcat as the servlet server and the web server. I use the

integrated version of JBoss-Tomcat as my server product in order to simplify my

usage .

With this testing platform, I have carefully chosen the testing program, instead of

building my own program that might only address limited issues ; I have selected the

ECperf, the industrial standard benchmark program for the application server.

42

Chapter 5: Test design

5 .1 Introduction

This chapter give details of the test design . Firstly, I will show two types of hardware

architecture for the performance test, the centralized and distributed testing systems.

Secondly, I will give brief information about how to run various test programs in the

testing system. In the last section, detailed design analysis and architecture for various

test in both the Sisters and the Helix are given.

5 .2 Two types of the testing architecture

As I have stated before, the ECperf application is formed with four domains: the

Corporation, Customer Order, Manufacturing and the Suppliers domain . Each of them

contains data that represent the work in that domain. To run the ECperf benchmark,

there are two possible architectures: the centralized and distributed workload

architecture, which is defined based on how those domains are encapsulated into the

databases [I 8] .

5.2.1 Centralized workload architecture

The Centralized workload is a testing architecture where all the four domains in the

ECperf are combined into a single database . Figure 5.1 shows an example layout of

the Driver client and the System Under Test (SUT) components for the Centralized

Workload . The SUT comprise all components, which are being tested, this include

network connections, application servers and databases [18] .

Driver
Client

Driver
Client

Balancer
L----

I ,
1 System Under Test (SUT)
I
I
I JBoss 1 (node 1)

J8oss3 (node 3)

Jboss4 (node 4)

PosgreSQL
Database

Figure 5.1 : Example configuration for the Centralized Workload

43

In the example centralized workload configuration, each Driver Client will run at one

machine, each JBoss will also run at a dedicated machine. which forms a cluster of

JBoss servers. The database will run on a dedicated machine that will interact

simultaneously with all JBoss instances . All those machines are connected through the

network. In my case, they are connected through the high-speed network adapters.

5.2.2 Distributed workload architecture

The distributed workload is a testing architecture where all four domains in the

ECperf are distributed into more than one database . Figure 5.2 shows an example

layout of the Driver client and the SUT components for the Distributed Workload.

Dri\'er C lient

--------------------------- ------------- ~
I

System Under Test (SUT) :

JBoss I (node I)

Jboss (node 4)

PosgreSQL
DB-I

I

I L __ ,

Figure 5.2: Example configuration.for the Distributed Workload

The hardware and software architecture in the example Distributed Workload

configuration is similar to the Centralized Workload configuration except that the

database is split into two separate databases, with each running on its own machine.

I will show in the later section of this chapter. for the clustered JBoss architecture, I

can further develop the distributed workload architecture by creating more than one

partition in the JBoss cluster. For example, to have two JBoss clusters, each of them

serving different EJBs. Through this schema, I can further improve the performance

of the ECperf application.

I will use both the centralized workload and the distributed workload as my testing

architecture. I will show later how these different architectures will affect the

performance of the benchmark program.

44

5.3 Testing programs and related configuration

A cluster-enabled configuration of JBoss will start JBoss with all services-enabled

including the Cluster support [37].

To use PostgreSQL, the source code must be downloaded and compiled with

appropriate parameters.

Ant [41] was used in the test for several tasks. It is used to compile the ECperf source

code, to package the ECperf application and deploy the application.

I use general Linux shell commands to monitor the workload of the machines used in

my testing system, such as the top command and the uptime command. Because the

top command gives detai Is of the system resource consumptions, I can easily identify

the hardware bottleneck if there are any. I use the Netperf [42] software to measure

the network traffic during the testing process.

Testing the ECperf application performance in the JBoss Cluster and PostgreSQL is a

tedious task, because there are many different types of test, and each of them has

specific hardware architecture and software configurations. I put all the testing related

information and the results in the appendix of the thesis. In the appendix, I give brief

instructions on how to use the JBoss Cluster and how to use the PostgreSQL

databases . I also cover how to configure and run a complete ECperf test as well as

related configurations.

A very useful feature of the Linux operation system is the use of the shell commands

in this case the Bash shell. Because Bash is a programming language, I can automate

my test by combining all these single testing steps into one Bash command file. I then

run this file to realize the automatic test.

By following the properly constructed control flows and combining the ant command

into my bash file , I have a complete automatic testing file that is flexible enough to be

45

modified for running different tests. All those necessary parameters for starting an

automatic test can be passed in through the Command line in Linux.

5 .4 Test design for Sisters

In order to achieve logical. concise and useful results, I will give detailed analysis of

the hardware and software included in my system. This design process will provide

different types of test as well as expected results in the Sisters.

5.4.1 Type of planned test

Preliminary research has revealed some of the important factors that can affect the

performance of a distributed J2EE application. These factors include resources

involved in the application environment: the hardware, software and the network.

The hardware of the Sisters contains many nodes: each of them can perform the same

or different functionalities. For example. nodes in a JBoss cluster normally perform

the same functions to serve the clients of the application server; a node that is running

a database has a different workload compared with a JBoss node. The total numbers

of nodes involved in a J2EE application , the distribution of nodes to different layers

of the application as wel I as hardware capacity of each node are all factors that will

affect the application performance .

Software is another ma1or factor that affects J2EE application performance. The

software used for the test include: the Linux operating system, the Java Virtual

Machine, JBoss application server, the Tomcat server, the PostgreSQL database and

the ECperf application. The quality and functionalities of software is critical to overall

application performance.

The Java Virtual Machine provides the environment where all the Java programmes

run, the settings and parameters of the JVM have a big influence on the performance

of software including the JBoss application server, the PostgreSQL and the ECperf

application.

46

The JBoss and Tomcat server is where the middleware services are provided to a

J2EE application , the functionalities and settings of JBoss will have big influence on

the ECperf application.

PostgreSQL provides the database support to the ECperf application that requires

high volumes of transaction support. Some of the default parameter settings in the

database are likely to become a bottleneck.

Other software such as the Linux and ECperf application do not need to be changed,

so these are less likely to be factors that affect the performance of the ECperf

application. I will a lso identify in the later section, that the network in my Sisters and

Helix are sufficient for my test.

Through initial test, I have identified several major factors that affect the application

performance. I have planned the following different types of testing architecture:

• Test with different JVM heap size value

• Test of cluster of session bean

• Test with cluster of all EJB using the default load-balance policy

• Test with cluster of all EJB using First Availab le load-balance policy

• Distributed test with cluster of all EJB

• Distributed test with two partitions of JBoss instance

I will give brief design analysis related to these architectures. I will identify the

hardware architecture for each type of test, and also some information about the

testing process in the following section.

5.4.2 Two hardware architectures for testing the sisters

I have introduced in chapter 3 the architecture of the sisters -- the small Beowulf

computer. There are 14 nodes in the Sisters, one (it0l 7577) is the server node and the

rest (it0l 7578 to it0127588 plus AMDI and AMD2) are the client nodes.

47

Dri\'er Client
(itOl 7577)

,----------------------------,
I System Under Test (SUT)
I
I
I JBoss I (itO 17579)

r-----
1 Proxy ---'--.i JBoss2 (itO I 7 5 8 I)

PostgreSQL
14----~Database

L ___ _ '-------~ (it017580)

JBoss3 (it01758'.2)

Jboss4 (itO 17583)

L __________________________ _

Figure 5.3: Architecture for Centralized workload using Sisters

Figure 5.3 gives the centralized architecture for running my test m Sisters. My

purpose here is to decide how to deploy and run each layer of the ECperf application

on nodes in the Sisters. To ensure the consistence and validity of the testing result, all

machines that belong to the SUT must be dedicated for the test. as sharing resource

with other program could lead to unreliable or even misleading testing results. On the

other hand. the Driver Client provides only a light load and does not belong to the

SUT, and can run in a machine shared with other programs. as long as that machine is

not overloaded.

As the Sisters is a cluster computer shared by a lot of users and the server node is

normally very busy, also because the Driver client is not part of the System Under

Test (SUT) in the ECperf application and requires least resources, I can run the client

by sharing system resource with other users without affect the testing result. I decide

to run the Driver client in the server machine (it0l 7577), which is shared by all the

users.

Because there is only one database node to support the entire JBoss cluster node, It's

very likely that the database will becomes the bottleneck at some stage of the test. I

want to have a node with good computing power such as better RAM, cache and a

fast read-write hard disk. Unfortunately, the best node is the server node that is always

busy and shared by all the users , all the remaining nodes are the same. So, I choose

it0 17580 node as the database node.

48

Because all JBoss application servers need to be configured to connect to the

database, it makes sense to fix the node that is running the database. In this regards, I

do not need to change the database related configurations for the JBoss server and

driver client for my test and simplify my configuration work. Another thing to think

about is the workload in the database node. Except the server node (it0 17577) and the

Database node (it0 17580), all the rest of the nodes can be used as the JBoss server

nodes when possible .

Sisters' users are required to submit their jobs to client nodes using Portable Batch

System (PBS) software [43] . Once one user has used a node, others will not normally

be able to use the same machine. This has ensured my repeated test can always use

the same system resource.

Following the same analyses as for the centralized architecture, I derive Figure 5.4 for

the hardware architecture for the distributed workload. The architecture for the

distributed workload is similar to the centralized workload except that the database is

split into two separate databases running on two Sisters machines: it0 17580 and

it0l 7584.

Driver Client
(itO 17577)

Proxy

r--------------------------
1 System Under Test (SUT)
I
I
I JBossl (it017579) MfgDB

(itO 17580)

I
Jboss4 (itO 17583)

I-------------------------
Figure 5.4: The architecture.for distributed workload using Sisters

5.4.3 Test design for JVM test

Hardware architecture of memory test

The Java Virtual Machine (JVM) is an abstract computing machine. The JVM 1s a

platform-independent execution environment that converts Java byte-code into a

particular machine language and executes it. The performance of an application

running on the JVM can be affected by various JVM parameters.

49

The performance of the J Boss application server is related tightly with the Java

Virtual Machine because JBoss is running on top of the JVM. The purpose of the test

is to find out the optimal Java Virtual Machine parameters settings that wi 11 be used

for the later test. I will examine in particular how the maximum and minimum value

of the JVM Heap size affects my throughput of the transactions when running ECperf

application.

Although, my major emphasis is to test perfomiance of a cluster of application server,

I will do the JVM heap size test using only one machine. Because finding out the

optimal JVM heap size settings for one machine, I can then apply this to the whole

cluster of J Boss servers.

Figure 5.5 presents the hardware architecture of my JVM heap size test. This

architecture is a simplified version of Figure 5.3 with only one JBoss_ Tomcat server,

one Driver client and one PostgreSQL database machines.

Dri,·er Client
(itO 17577)

r-----------------------------1
I System Under Test (SUT) I

I .------~ I
r-----

1
:

1
PostgreSQL I

Proxy, ,.,--+-+i~: JBossl(it017579) 1 Database(it017580) J

I I I ~-----~ I
L ____ _, I ~-----~ I

L----------------------------~
Figure 5. 5 The hardware architecture for JVM heap value test in Sisters

I have observed when running the tests with the default setting of the JBoss_ Tomcat

on the Sun ' s Java Virtual Machine ; the performance is very poor and unstable in

many cases. When running on the above architecture, even relatively small

transactions will cause the Java Virtual Machine in the JBoss server node to throw an

OutO.fMemo,yExceplion. This simply implies that the default memory space defined

by the JVM, where the JBoss is running is not sufficient for running my program. I

will give my analysis and design options for solving this problem.

The JVM heap is the memory space used by all Java program to store objects created

at run time. Java ' s new operator creates objects, and memory for new objects is

allocated on the heap at run time. In addition to the run time objects, the heap can also

50

contain memory reserved for the garbage collector and for some other JVM activities

[44].

JVM heap test design

The overall heap size is normall y set by the following two parameters [45]:

• -Xms: Specify the initial size, in bytes, of the memory allocation pool. Must

be a multiple of 1024 and greater than I MB. The default value for Sun ' s JVM

is2MB.

• -Xmx: Specify the maximum size, in bytes, of the memory allocation pool.

This value must be a multiple of I 024 greater than 2MB. The default value for

Sun ' s JVM is 64MB.

Though, there is no value that a programmer can use to control the increment of the

JVM heap size . The heap memory will change during the run time if the running Java

programs require more memory [45].

The default JYM heap value is set for general programming and is not optimised for a

large application that requires many system resources. Thus, I need to test to find out

the best JVM heap size. Giving the total RAM of a machine to the JVM heap may not

be the best choice, as JVM is not the only program that needs to consume system

resources.

Particularly, I need to design a series of tests that will find a pair of-Xms and -Xmx

values that can generate the best ECperf test result. How do I choose these values?

I decide to choose the same value for -Xmx and -Xms, that is: -Xms = -Xmx. By

assigning the same values to the maximum and minimum heap size, I can get the

maximum heap value at the very beginning and eliminate the overhead for the system

to increase or decrease the JVM heap size during the run time.

The default value of the Sun ' s JVM heap size is: -Xms = 2MB, -Xmx = 64MB. The

maximum memory available for my sister' s nodes is 256MB. So, I choose the

51

following values as my JVM heap size values as: The default, 64MB, I 00MB,

140MB, 180MB, 220MB, 256MB. I will examine which pair of Java heap value can

produce the best possible transaction output for ECperf application.

The details of the testing procedures and the result data analysis will be given in the

next chapters.

5.4.4 Test design for Clustering of Session Beans

Architecture and design

I have discussed in the last section the Java Virtual Machine parameters that could

affect the ECperf application performance in my system. I will now discus the

performance test using the Clustered JBoss. Figure 5.3 of the Centralized workload

architecture in the previous section gives the hardware system for running the J Boss

Cluster.

In the system. there is one Driver Client machine that is running a multi-threaded java

application to emulate many simultaneous client's access to the EJBs running on a

cluster of JBoss application servers each running in one node . The Session EJBs in

the application are replicated across the application server to provide high availability

and fail-over feature support.

The basic theory of a cluster of EJB is to replicate the EJB instance to multiple

machines. A JBoss Cluster has provided support for clustering of EJBs. For example,

when clustering of Session Bean in this test. each JBoss machine in the JBoss cluster

has a copy of local Session Bean, which represents the same Session Bean Object.

Through the replication of the Session Bean, the client of the Session Bean can easily

use a local copy of the Session Bean that can greatly increase the availability of the

Session Bean object and thus improve performance of the overall application. Figure

5.6 gives a graphic representation of clustering of a Cart Session bean and Order

Session bean in a JBoss Cluster with two nodes. Please note: the Order Entity Bean is

not clustered and has not been replicated in the JBoss cluster, this entity bean is only

available in the machine where the ECperf application is deployed.

52

Driver Client

,--- --1
1Proxy
I I
I
I -------

System Under Test (SUT)

JBossl

I CartSession I ~ ~ OrderSession I ~ OrderEntity

Jboss2

ICartSession2 ~ - - - -~OrderSession2 r

Figure 5. 6: Cluster of only Session Beans

PosgreSQL
Database

With the centralized workload architecture and clustering of only the Session Beans, I

will exam the best possible transaction output for different JBoss numbers in the

JBoss Cluster, which are I , 2, 4, 6 and 8 JBoss. I can see how the JBoss numbers in

the JBoss affect the scalability of the whole testing system.

5.4.5 Test design for Cluster of all EJB

Design and architecture

I will cluster all EJB here instead of only clustering Session Beans. I expect an

improved transaction output by clustering all EJBs compared with clustering of only

the session beans.

The architecture used for test is illustrated in Figure 5.3. I actually use the same

hardware architecture and software as the test with clustering of only Session Beans.

The only difference here is the deployment descriptor I used to define my EJB

clustering.

The basic theory of clustering EJB is through replication of one EJB instance to

multiple JBoss machines. In the last section, I only clustered Session Beans. I will

also cluster all Entity Beans for my new test. Through clustering of all EJB, each

JBoss machine in the cluster has local copies of all Entity Beans and Session Beans.

Because the Entity Bean is the object representation of one row of data in the

relational database, I expect the database related operations such as access speed to

53

the data will be increased compared with only clustering Session Beans thus

increasing the overall transaction output.

Figure 5.7 gives graphic representation of the clustering of the Cart Session bean,

Order Session bean and Order Entity Bean in a JBoss Cluster with two nodes. In this

schema, not only are all the session beans. but also all the entity beans are replicated

to each JBoss instance in the JBoss Cluster, thus the network overhead associated

with accessing an entity bean is eliminated.

Ori, er Client

,--- ---,
:Proxy ,
I
I -------

System Under Test (SUT)

JBossl

I CartSession I f. ~ OrderSession I f. ~ OrderEntity I

Jboss2

I CartSession2 f. ~ OrderSession2 f. ~ OrderEntity I

Figure 5. 7: Cluster of all Enterprise Beans

PosgreSQL
Database

With the centralized workload architecture, I expect better output performance and

scalability by clustering of all EJBs compared with clustering of only the Session

Beans. As the number of JBoss serves increase. I expect the overhead associated with

the replication to slowly decrease performance, so affecting the scalability.

5.4.6 Test design for two databases

Design and architecture

The centralized workload 1s very likely lead to bottlenecks in the PostgreSQL

database, because many machines in the JBoss Cluster need to interact with the

centralized database concurrently. To solve this problem, I will use the distributed

workload architecture for the ECperf so as to improve the transaction output.

As introduced earlier, the ECperf application is divided into four domains, the

corporate, the manufacturing, the customer and the supplier domain. The data in the

database can also be grouped accordingly. The only exception is the data in the utility

54

section, which acts as helper classes to all four domains. With this in mind, I split the

ECpertDS database into the following two databases:

• The OrderDS database, which contains the data m corporate domain , the

manufacture domain and the utility domain.

• The MfgDS database, which contains the data in manufacture domain and the

supplier domain .

Figure 5.4 of the distributed workload architecture in the previous section is used as

the hardware system for my test. In the testing system, The MfgDB database running

in machine it0 17580, the OrderDB database running in machine it0 17584.

Figure 5.8 is the EJB replication graph with two databases in the system. All the EJB

are replicated in all members in JBoss Cluster, but the data that represent these EJB

are split into two separate databases. During the testing process, the Driver client still

interacts with all JBoss servers, but a JBoss server needs to interact with two

databases depending on what data need to be accessed.

Driver
Cl ient

,- - - --,
1Proxy
I I
I
I -------

System Under Test (SUT)

JBossl

I CartSession I ~ ~ OrderSession I ~ ~ OrderEntity I

Jboss2

I CartSession2 ~ ~ OrderSession2 ~ ~ OrderEntity I

Figure 5.8: Clustering all EJB with two databases

PosgreSQL
OrderDB

PosgreSQL
MfgDB

With the distributed workload architecture and clustering of all EJBs, I can see what

level of scalability can be achieved by comparing the results with that of the

centralized workload architecture.

55

5.4.7 Test with Two partitions and two databases

Design and architecture

The clustering of EJBs is a good strategy to improve system performance, but too

many copies of one EJB object may not be desirable. As there are overheads

associated with the JBoss Cluster. the performance gain of the application may not be

proportional to the number of copies of the EJ B objects in the J Boss Cluster. The

overhead associated with the clustering of EJBs could be communication between

members in the JBoss cluster and action to synchronise access to an EJB to maintain

data integrity in the database.

For a better performance. I will do further test with two separate JBoss partitions.

Figure 5.9 gives the architecture of the ECperf applications running with two

partitions and two databases.

Dri\'er Client
(itO 17577)

System Under Test (SUT)
------------1
: Order-Partition

1
I OrderDB 1 JBoss l (it017579) _,._ ___ (itOl

7580
)

1---­
Proxy ----JBoss2 (it017581)

I

I
I
I
I
I
I
I

------------1
: Mfg-Partition :

1 JBoss3 (itOI 7582) -.+----MfgDB
(itO 17584)

I
1 JBoss4(it017583)
I~-----~ I L ___________ I

L __________________________ J

Figure 5.9: Test with two partitions and two databases

In this architecture, the JBoss cluster is divided into two separate partitions. There is

no communication between members in the two partitions; only members in the same

partition will interact with each other. As in the last distributed test, there are two

separate databases that are used for data in different domains of the ECperf

application; each database only interacts with JBoss servers from one partition.

Figure 5. IO gives an example testing architecture of clustering of all EJ Bs, using

First-Available load balance pol icy and with two JBoss partitions. In my example test

56

with four JBoss instance. JBoss I and JBoss2 belong to Order Partition, JBoss3 and

JBoss4 belong to Manufacturing Partition. I have the Order Database (OrderDB) that

contains data belonging to Corporate Domain and the Customer Domain; and the

Manufacturing Database (MfgDB) that contains data belonging to Manufacturing

Domain and the Supplier Domain.

,- - - - - -,
,Proxy
I
I
I
I L,. ______ 1

1

--,
System Under Test (SUT)

Order Partition

JBosst

I CartSession ~ ~ OrderSession ~ ~ OrderEntity I

Jboss2

I CartSession ~ ~ OrderSession ~ ~ OrderEntity I

~---·
Mfg Partition

JBoss3

BuyerSession ~ WorkOrderSession ~ ~WorkOrderEntit I

Jboss4

BuyerSession I WorkOrderSession ~ -,.':"' orkOrderEntit I
I

I--

OrderDB
Database

MfgDB
Database

-------------------- --------------------------------- ---------- -----

Figure 5.10: EJB Replication with 2 JBoss Partition & 2 Databases

An EJB will only be replicated in JBoss members that belong to one Partition. The

EJB such as the Cart Session Bean, Order Session Bean and Order Entity Bean are

only replicated in JBoss I and JBoss2 that belongs to Order Partition, and are stored in

OrderDB database only. Similarly, Buyer Session Bean, Work Order Session Bean

and Work Order Entity are only replicated in JBoss3 and JBoss4 that belongs to Mfg

partition, and are stored in MfgDB database.

In my test architecture, the client will still interact with all members in the JBoss

Cluster. A client ' s request will only be directed to a JBoss server in one partition

where the particular Session EJB exists, and JBoss servers in one partition only

interact with one of the two databases.

57

By using two separate partitions in the JBoss Cluster, each JBoss partition only has

half the number of JBoss members compared with using only one JBoss partition ,

thus effectively reduce the number of local copies of an EJB. I anticipate reduced

Entity EJB persistence overhead as well as the communication overhead between

JBoss cluster members. will improve the ECperf application performance. This

technique relies on a balance workload between the two partitions, which is the case

with ECperf.

5.5 Test design for Helix

The following section will give the design and architecture information of test on

Helix, the supercomputer.

5.5.1 Type of planned test

As described before, factors that affect the ECperf application performance in the

JBoss Cluster are essentially the same; these are the hardware, the software, the

network and application running in the system.

The fact that the Helix contains many more nodes than Sisters has given the chance to

run the ECperf programme in a bigger JBoss cluster. I will test with up to 32

machines in the JBoss cluster using Helix . As there are so many machines in the

system, there are extra overheads and complexity introduced.

Helix and Sisters are essentially the same type of Beowulf cluster; ECperf tests on

them use the same type of hardware architecture and the software. The only difference

is that Helix nodes are more powerful and Helix contains more nodes than Sisters.

Based on these similar characteristics. It's not necessary to repeat all types of test I

have planned in the Sisters. I will concentrate on a few experiments on Helix.

58

The Java Virtual Machine test in Helix is interesting, because a Helix machine

provides I 024MB memory instead of 256MB in a Sisters machine. A JBoss Cluster

will still be the major software feature in Helix to examine scalability of the running

ECperf application.

In summary, l have designed the following types of test in Helix:

• Test with different JVM heap size value

• Test with cluster of all EJB

• Test with cluster of all EJB using the optimised database pooling in JBoss

I will give brief design and analysis related to these architectures. I will identify the

hardware architecture for each type of test, and also some information about the

testing process .

5.5.2 Test design for JVM test

As for the Sisters, I will exam how the JVM machine setting will affect the

performance of the Clustered application .

Because a Sisters node has only 256MB total RAM, the scalability results of the JVM

test is not very good. Doing JVM test in a Helix node with total RAM of I 000MB

will gives better indication of how JVM heap size will affect the transaction output of

my program. The JVM test will find out the optimal Java Virtual Machine settings

that will be used for the later test.

Figure 5 .11 presents the hardware architecture of my JVM heap size test. Here, the

Driver client, JBoss_tomcat server and the PostgreSQL database are running on

separate machines. I only use one JBoss machine in the test, because the optimal JVM

heap size settings for one machine can be applied to all machines in the JBoss Cluster.

59

Driver Client
(l-lelix61)

r-----------------------------1
I System Linder Test (SlJT) I

I ~-----~ I
: ~-----~ PostgreSQL :

JBoss l (Helix62) ----Database (Helix65) I
I
I

L----------------------------~
Figure 5.11: The hardware architecture.for JVM heap value test in Helix

I choose -Xms = -Xmx (the default setting will be an exception). My test case will

include the following JVM heap size values: the default heap space, 100MB, 200MB,

300MB, 400MB, 600MB, 800MB and 1000MB. For each of these values, I will test

by gradually increasing the value of txRate (that represent the number of clients) in

the ECperf testing program . The JYM test will give a good indication of how JVM

heap size values affect the scalability of the ECperf application in Helix .

5.5.3 Test design for using the default DB pooling in IBoss

Figure 5.12 gives example hardware architecture in Helix with 4 JBoss in the JBoss

Cl uster.

Driver Client
(Helix60)

r-----------------------------
1 System Under Test (SUT)
I
I
I JBossl (He lix64)

r - - - - - PostgreSQL
1 Proxy ~---....-...i1Boss2 (Helix63) 14----_.,Database
L ___ _

,__ ______ ___, (Hel ix65)

JBoss3 (Heli x62)

I Jboss4 (Helix61)
I L ___________________________ _

Figure 5.12: The hardware architecture for ECperf Test in Helix

In the system, there is one Driver Client machine that running a multi-threaded java

application to emulate many simultaneous client's access to the Session EJBs running

on a cluster of JBoss application servers each running in one node. The EJBs in the

application are replicated across the application server to provide high availability and

fail-over feature support.

As the testing results in Sisters have shown that cluster of all EJBs will perfonnance

better than cluster of only session beans. I will not do tests with clustering of only the

60

session beans, instead, I will do the test for clustering all Enterprise Java Beans using

the default data source pooling in the JBoss servers.

The Enterprise Java Bean replication schema is displayed in Figure 5.7, where all

session beans and entity beans are replicated to all JBoss members in the JBoss

Cluster.

With the centralized workload architecture and clustering of all EJBs, I will examine

the best possible transaction output for different JBoss numbers in the JBoss Cluster,

which are with 1, 2, 4, 8, 12, 16, 24 and 32 JBoss. It can be interesting to see what

kind of scalability can be achieved with a large number of JBoss in the JBoss Cluster.

5.5.4 Test design using optimised database pooling in JBoss cluster

My pilot test in the Helix has shown that the database pooling is a very important

factor for the output of my program. In this test, I will explore the optimal database

pooling values in the JBoss application server in each machine. Also, I will disable

the JBoss log file , as the Sisters results have shown it is a useful factor to improve the

application performance.

The hardware architecture in Figure 5.12 will still be used for this test; the EJB

replication schema will still be the same as displayed in Figure 5.7, and also the same

testing algorithm will be used.

As I expect better transaction output for this test compared with using the default

database pooling in the JBoss Cluster, the PostgreSQL server is very likely to become

the bottleneck with relatively smaller number of JBoss in the JBoss Cluster. So, the

experiments will run with up to 8 JBoss members in the JBoss Cluster.

5.6 Conclusion

I have given some details of the design options for my test. I have presented two

types of testing architecture: the centralized workload and the distributed workload

architecture. The major difference of them is the centralized architecture uses only

61

one database, while the distributed architecture uses more than one database. More

detailed design and the architecture for various test in both the Sisters and the Helix

were discussed using different architectures and Enterprise Java Bean replication

schema.

62

Chapter 6: Test on Sisters

6.1 Introduction

In this chapter, I will present various test results for the Sisters. For each type of test, I

will start by giving a brief introduction of each test, followed by the test procedure,

and a discussion of the test result. A graph that gives the final test result will be

displayed for each type of test. Finally, I will discuss the transaction results, the

performance, scalability and the bottlenecks for each type of test.

I will do the following tests:

1. Test with different JVM heap size value

2. Test of clustering of session beans with default connections in the databases

3. Test with optimised database connections

4. Test with clustering of all EJB with the default load-balance policy

5. Test with clustering of all EJB with first available load-balance policy

6. Distributed test with clustering of all EJB

7. Distributed test with two partitions of JBoss instances

8. Distributed test with two partitions and disabled log file

6.2 Test with different JVM heap size value

Testing procedure

The JVM heap space test uses one of the Sisters client machines that have a total

memory of 256MB. To make sure other factors will not become possible bottlenecks

in the testing system; I use the optimised connections between the JBoss application

server and the database, which I will examine later in the chapter.

Using the hardware specified in the Figure 5.5 , I have done the JVM heap test using

values of the default, I 00mb, I 40mb, 180mb, 220mb and 256mb. Here is my testing

algorithm:

63

For -Xms equals -Xmx with value of (default, 100, 140, 180, 220, 256mb)
Do test with transaction rate = 1, 2, -I, 8, 12, 16, 20, 24, 28, 32
(Repeat three times for each transaction rate l'alue)

End

In the algorithm, for each pair of the -Xms and -Xmx values, I get a sequence of tests

result that corresponds to the txRate of I. 2. 4, 8. 12. 16. 20, 24, 28 and 32. I repeat

the test for each txRate value three times. By increasing the value of txRate in the

ECperf testing program, the number of threads , each simulating a client is also

increased .

I have repeated each identical test for three times. I take the ECperf Metric output for

each test from the ECperf summary file. I calculate the average of the three tests as

the final output.

As I have a lot of tests to complete, I have to make each test period shorter than the

standard minimum test time; this is acceptable for my purpose. Also, 1 relaxed the

output result by recording only the total transaction output even when there are some

errors in the output. Because the final output represents client request that have been

processed properly. they are all valid transaction output. All tests in my research are

under the same conditions.

JVM Heap space Testing Result

For every single test, output of 8 files are produced, they are:

• ECperf.summay

• Orders.summary

• Mfg.summary

• Orders.detail

• Mfg.detail

• ords.err

• plannedlines .err

• lo line.err

From the ECperf.summary file , I obtain the value of the ECperf Metric; this gives the

number of Transactions per second. For each pair of JBoss-Number and txRate value,

64

I have obtained three valid outputs of the ECperf Metric. I take the average of these

three as the final output.

Table 6.1 is an example result where -Xmx = 180MB. For each txRate value, I have a

correspondent transaction output (TPS) value when running the ECperf application in

the system. As discussed, the TPS value in the table is the average value of three valid

test outputs.

TxRate I 2 4 6 8 10 12 16 20 24 28

TPS 103 .6 198 .8 413.4 528.6 566.7 578.3 490 .3 533.7 496.7 406.4 425.4

Table 6.1: Throughput of ECperf as funcNon of the txRate

The graph of transaction output versus txRate that corresponds to each -Xmx value

can be drawn. Figure 6.1 gives the Relationship of txRate versus Transaction Output

when the JVM heap value equals 180MB.

Transaction Output VS. TxRate

800 -,----------------,

600 -t-------,,;;:::;;:;;oE'-----------j

~ 400 .J...--__,~-------~-..,._-1
f-

10 20 30

TxRate

Figure 6.1: Throughput as a/unction of the txRate (-Xmx = 180MB)

The transaction output increases when the transaction Rate increases from 1 to I 0, and

txRate = 10 actually gives the highest output. The output decreases when the

transaction rate increases after txRate = 10. The reason for this is obvious. Since the

JBoss console gives an OutOJMemoryException, this simply means that the memory

used by the JBoss application server is too small. The given JVM heap value of-Xmx

= 180MB needs to be increased.

I can get a similar graph as Figure 6.1 for each pair of JVM heap value, which will not

be displayed here.

65

For each JVM Heap value, I have a maximum value that is the maximum throughput I

can get for that Heap value. Taking the -Xmx and Maximum TPS pairs, gives the

results shown in table 6.2.

JVM heap 64 100 140 180 220 256
(-Xms = -Xmx)

TPS 313.7 536.5 571.5 578.3 557.1 552.7

Table 6.2: JVM Heap Value vs. Maximum TPS Test

The results in table 6.2 are shown as a graph reporting the Transaction Per Second as

a function of the maximum JVM Heap (-Xmx) in Figure 6.2 .

800

600

~ 400
t-

200

0

Transaction Output VS. JVM heap

/ -

•
0 100 200

Maximum heap (-Xmx)

~

I

!
:
!

300

Figure 6.2: Maximum throughput as a function of the JVM Heap Size

Result Analysis, further discussions and conclusion

Figure 6.2 shows how JVM heap size will affect the performance. With the increase

of the JVM heap size value, the transaction output is increased. When the value of

JVM heap size is smaller than I 00MB, the output increases significantly. Above

I 00MB the performance increment rate is slower until a top value is reached. After

that, the transaction output decreases slowly when the JVM heap size increase.

Figure 6.2 shows that when the JVM heap size value is from 45% to 100% of the

maximum memory available in a machine, the transactions output is pretty close to

the top output. The maximum transaction output was produced when the JVM heap

size value is 180MB. I will use this value for the remaining ECperf tests .

66

This is a reasonable result. Because the JBoss application server is running on top of

the JVM, the size of memory space in the JVM available to JBoss will be an

important factor related to how much work a JBoss can do . Given more JVM heap

size means more memory space available to store objects created by the application

running on JBoss, the number of transactions will increase with more resources

available.

As JBoss is not the only program that is running on the JBoss node machine, there are

other programs such as the operating system and related programs running together

with the JBoss application server. To get best performance from the machine,

Some system resources need to be reserved for them. So, when the memory

consumption of the JBoss application server reaches a point that is close to the

maximum memory available in the machine, the overall performance of the

application will decrease slowly while the memory consumed by JBoss increases . If

other operating programs do not have enough memory resources and start running too

slow, that will slow down the whole system, thus affecting the overall performance of

the JVM.

A small JVM heap value could greatly restrict application output with a high

workload. Giving the maximum possible JVM heap will generally increase the

application perfonnance, but does not guarantee to produce the best output. The best

JVM heap value for a particular application needs to be tested, and should normally

between the ranges of 50% to I 00% of the total RAM of a machine.

I will identify the bottlenecks encountered when doing the JVM heap value test. For

the default JVM value, the memory used by the JVM is obvious too small for my

application; the OutOJMemoryException clearly shows that the JVM heap value is the

bottleneck in the system. This is true when the JVM heap value is smaller than

140MB.

After the JVM heap value reaches 140MB. The memory space defined by the JVM

heap value is no longer a bottleneck in the system. I can see from the Linux top

command, that the JBoss node in the system has becomes the new bottleneck. The

CPU usage in the JBoss node is 100% (including the users plus the systems CPU

67

usage). As this CPU usage keeps consistent in the system, the Job queue in the JBoss

server keeps growing until the whole system becomes slower and slower and

eventually to a state where the performance is significantly reduced.

Sun has suggested some of the parameters in the JVM that could affect the

performance of the Java program running with the Sun ·s JVM [45]. I have tried other

JVM values, such as the NewSize and MaxNewSize for garbage collection,

AggressiveHeap that affect the working of JVM heap size, but none of them seems to

have an obvious effect on the transaction output of my ECperf program. Therefore no

further testing results related to them are presented.

The optimal JVM heap value of -Xms = -Xmx = 180MB is used for the test and

keeping other JVM parameters as default values.

6.3 Test with clustering of only session beans

6.3 .1 Preliminary tests using the default connections in PostgreSQL

Testing procedure

The testing hardware architecture for running this test was given in Figure 5.3 and the

design analysis for test of clustering of only the session beans was given in section

5.4.4.

The default database connections in PostgreSQL database is used for the test. The

default allowed maximum number of connections to the database is 32, in which, two

of them are reserved for the super user, and thus the actual maximum allowed

concurrent connection from the client to the database is 30 [I 7].

I will test the scalability of the J2EE application server. For this purpose, I need to get

the highest output for a particular JBoss Cluster. I have chosen the following testing

algorithm as a general testing procedure. These tests have been automated for the

purpose of convenience.

For JBoss-Number = 1, 2, 4, 6 and 8

68

End

Do test with transaction rate (txRate) = 1, 2, 4, 8, 12, 16, 20, 2-1, 28, 32
(Repeat three times for each txRate value)

Test result analysis

Preliminary testing results do not display expected scalability when the JBoss

numbers in the JBoss Cluster is increased. Instead, when using the default

PostgreSQL database connection, whenever testing with two and more JBoss in the

JBoss cluster, I got the following error message consistently in the PostgreSQL log

file:

FATAL: Sorry, too many clients already

FATAL: Non-superuser connection limit exceeded

I have got similar peak output results when the JBoss number is more than 2 in the

JBoss Cluster, which will not be displayed here . The default number of allowed

concurrent connections in the PostgreSQL database has become an obvious bottleneck

in my test with clustering of only Session Beans.

On the JBoss side, Database pooling is used to interact with the databases. The default

minimum and maximum database pool values in JBoss application server are 5 and 25

respectively [37] . Resource pooling is a very useful method for optimising the

performance of an application server. The JBoss application server uses database

connection pooling to optimise the usage of precious database connections. When an

enterprise bean requests a connection, the container fetches one from the database

pool and assigns it to the bean . Because the connection has already been established,

the bean can quickly reuse a connection. An EJB may release the connection back to

the database pool after each database call , thus many beans can share the same

connection sequentially.

2 JBoss servers can provide total of maximum-pooled connection of 50. As the

maximum allowed concurrent connections in the PostgreSQL database is only 30. I

can expect the above-mentioned error message once the JBoss cluster tries to establish

more than 30 concurrent connections.

69

Further tests using maximum allowed connections of 1024 in PostgreSQL have

greatly improved the output performance of the system (see the next section). For

example, over 70% increases for the peak output was observed using optimised

database connections compared with using the default one, when testing with JBoss

Cluster with 4 members .

For the rest of the tests in Sisters. I will use 1024 connections. that is the maximum

allowed by the Linux operation system without increasing available shared memory in

the Operating System. The following command is used to start the PostgreSQL

database .

Postermaster - 1-N 102 4 - B 20-18 > logfile 2 > & 1 &

Using connections of more than 1024 will result in "Maximum Shared memeory

errors". That means the PostgreSQL has tried to use memory space that exceeds the

default allowed values in the Linux operating system. The solution to this is for the

administrator to adjust the maximum-shared memory allowed to each program and

might also need to adjust the shared system semaphore value as well [46] . 1 do not

need to do this, as maximum connections of I 024 are already enough for the

remaining tests in Sisters.

6.3 .2 Test by using optimised connections in PostgreSQL

Design the testing procedure

The testing hardware architecture and the design analysis for test of clustering of only

the session beans has been discussed in the last chapter.

As mentioned in the early section of this chapter, these tests have been automated for

the purpose of convenience. I have chosen the following testing algorithm as a general

testing procedure.

Result

For JBoss-Number =l , 2, 4, 6 and 8

End

Do test with transaction rate (txRate) = 1, 2, 4, 8, 12, 16. 20, 2-1, 28, 32
(Repeat three times for each txRate value)

70

Table 6.3 shows the test result when there is 1 member in the JBoss Cluster:

TxRate 1 2 3 4 6 8 12 16

TPS 101.2 198.8 304.2 403.2 597.5 605.7 609.8 599.8

Table 6.3: Final Transaction output VS. txRate. (]Boss-Number = 1)

Figure 6.3 shows the transaction output that is the function of the transaction rate

(txRate) in the testing program. The number of clients can be calculated in the

following formula: number-of-client= txRate * 8.

700

600

500

II) 400
ll.
I- 300

200

100

0

0

Transaction Output VS. TxRate

/
J

/
/

/
~

5

-

10

TxRate

-

15

-
~

20

Figure 6.3: The Transaction Output (TPS) VS. Client Number

The graph shows that when the user number is less than 48, the Transaction output of

the program increases with the increase of the Client Numbers. After that, the output

is almost flat even when the Client Numbers increase. This means that the system has

reached a bottleneck. By checking the system resource consumption of each machine

in the SUT, I observed that a CPU bottleneck is actually reached in the JBoss

machine.

I will take the biggest output value as the final Transaction Output for one JBoss

server. I got: TPS = 609.8

Following the same steps, I will get the final TPS against each JBoss-Number of

server as in the Table 6.4.

71

JBoss No. I 2 4 6 8

TPS 609.8 989.7 1584.6 1993.4 1998.4

% of change 62 .3% 60.1 % 25.8% 0.3%

Table 6.-1: Final Transaction output VS. txRate. (}Boss-Number = 1)

These results are shown in the graph Figure 6.4, with the X-axis representing the

Number of JBoss in the test, Y-axis represent the Maximum output.

Transaction Output VS. JBoss No.

2500

2000

(I) 1500
Q.
I- 1000

500

0
0 2 4 6 8 10

JBoss No.

Figure 6.-1: The Transaction Output (TPS) VS. JBoss Number

Result analysis, discussion and conclusion

From Figure 6.4, it can be seen that when the JBoss number is between I to 6, the

transaction output of the application increases almost linearly, with a factor of about

62.3% to 50.6% increase of performance when the JBoss number is doubled, that is

by doubling the JBoss number from JBoss-Number = I to JBoss-Number = 2, the

performance increase is 62.3 percent. When the JBoss number becomes bigger, the

percentage of the performance increase is smaller. When the JBoss number is

increased from 6 to 8, the performance increases is very small. This indicates a

bottleneck is reached when JBoss-Number equals 6. I will discuss this in the

following section.

For the S UT with only one JBoss instance, when the highest output is created, the

bottleneck is the JBoss application server. Because the CPU usage of the JBoss

72

machine is 100% and the job queue of the CPU identified by load average value is

also very high. This shows that the full hardware capacity of the JBoss machine has

been used to process the ECperf program and the hardware bottleneck has been

reached.

For JBoss number equals two and four, the same thing happens for the JBoss

application server as that with only one JBoss in the SUT. One important factor that

needs to be identified is the load balance problem. The default Round Robin load

balance policy [38] for clustering of EJB in JBoss does not seem to works well with

high client request load. 1 have observed from the Linux utility command that in a

high volume of workload, the job queue in the node with the longest queue becomes

longer and eventually crashes.

The reason for this is reasonably clear with the Round Robin policy. The Driver

Client distributes EJB lookup to all JBoss servers one after other using the Round

Robin algorithm. Because each call can contains different types of transaction

requests and may not have equal workload. it is natural that some JBoss nodes have

more workload than others during the testing process. For a test with high transaction

rate, when a JBoss node becomes overloaded, it takes longer to process the same

client request than other JBoss nodes. But the Round Robin will not know that and

continue dispatching the workload in the same way. In the end , the heavy loaded

JBoss node will have an increasingly longer job queue and eventually crash.

For the case where the JBoss node equals six, I have observed a different bottleneck

neck in the SUT. The PostgreSQL database seems to become the bottleneck. When

the ECperf output is close to the maximum values, the job queue on the database

machine identified by the top command of the Linux operating system keeps high

during the whole testing process. Also the CPU usage is I 00% during most of the

testing process. When the number of JBoss nodes is six, the PostgreSQL becomes a

bottleneck, even when the JBoss nodes increase to eight, the actual performance

output does not increase at all.

When the targeted txRate is bigger than the txRate, which gives the maximum output,

the output variation under the same testing conditions is very big. That is to say, I

73

could have transaction outputs with big differences under the same testing conditions.

This could be explained by the highly unbalanced workload between each JBoss

instance in the JBoss cluster, which is caused by the default Round Robin load

balance policy. Under a heavy workload. one or more JBoss in the JBoss Cluster

becomes overloaded and does not work properly. As the testing process is highl y

dynamic , each experiment can produce a different transaction output that is dependent

on the workload distribution.

I conclude that clustering of only Session Bean on JBoss cluster could provide good

scalability up to six JBoss instances. However, the scalability is restricted due to the

Bottleneck generated in the PostgreSQL database when the JBoss number is six .

When the JBoss number varies from 1 to 4 in the JBoss Cluster, the bottleneck in the

system is the CPU capacity in the JBoss machines .

6.4 Test with clustering of all EJB

Testing procedure

Clustering of only Session Beans provides some level of scalability, however. the

transaction output could be restricted based on the fact that the Entity Beans have not

been replicated. In this section. I am going to test clustering all EJB in the ECperf

application.

As analysed in chapter 5, the testing architecture for Clustering of all EJB is exactly

the same as clustering of only the Session bean, but clustering all EJB makes each

node in the JBoss Cluster have a local copy of all EJB as illustrated in Figure 5.7. I

expect increased transaction output as compared with the test of clustering of only

session bean.

The testing process is exactly the same as testing of clustering of session bean .

Result

74

Table 6.5 gives the final result of test of Cluster of all EJB in the JBoss Cluster using

Sisters.

JBoss I 2 4 6 8

TPS 615 .1 I 056.4 1723.5 1966 .3 2286 .5

% of change 71.6% 63.1% 14 .1% 16.3%

Table 6.5: Testing result of cluster all EJB on Sisters

These results are shown in the graph figure 6.5 , with the X-axis representing the

Number of JBoss server in the test, and the Y-axis representing the Maximum output

against each JBoss value.

Transaction Output VS. JBoss

2500

2000

en 1500
a.
I- 1000

500

0
0 2 4 6 8 10

JBoss

Figure 6.5: Transaction Output VS JBoss number when clustering all EJB

Result analysis, discussion and conclusion

From the Figure 6.5 , it can be seen that when the JBoss number varies from 1 to 4, the

transaction output of the application increases almost linearly, with a factor of 71.6%

and 61.3% respectively when doubling the number of servers. However, the

transaction output increase from 4 to 6 is much smaller, with only 14.1 % increased

output from 4 to 6, and 16.3% from 6 to 8.

There is a clear performance improvement as compared with the testing result of

clustering only Session Beans. The peak performance has also increased from 6 to 8

JBoss servers when testing with clustering of all EJB.

75

The performance and scalability has improved by clustering all EJB instead of

clustering only Session Beans. The availability of the EJBs will be better when

clustering all EJB, thus generating a better transaction output.

I have observed similar bottlenecks as in the testing of clustering of only Session

Beans. For the test with only one JBoss instance. when the workload is heavy. the

CPU usage of the JBoss machine is 100% and the job queue of the CPU identified by

load average value is also very high , thus CPU capacity in the JBoss Cluster is the

bottleneck. This bottleneck can be identified for JBoss instance numbers equals one,

two and four.

For JBoss server equals six, both the PostgreSQL databases and some of the JBoss

machines with higher workload seem to be overloaded. When JBoss nodes equal

eight, the database becomes the bottleneck. When the ECperf output is close to the

maximum values, the job queue in the database node keeps high and CPU usage is

mostly I 00% during the whole testing process.

Again , I have observed a problem created by the default Round Robin load balance

policy. Some JBoss nodes have much higher job queues than others when the

workload is heavy in the system.

I concluded that a good scalability has been achieved by cluster of all EJB. Better

performance and scalability can be achieved by clustering all EJBs as compared with

that of clustering of only Session Beans. The database is certainly the bottleneck for

relatively larger JBoss Clusters. The load balance policy is a problem with heavy

workload.

6.5 Test with First-Available load policy for clustering of all EJB

Testing procedure

The default Round Robin load balance policy has been used for all previous tests.

Round Robin dispatches workload to each machine in the system one after another,

76

this schema will guarantee each machine gets the same number of job items

disregarding the actual weight of each job.

Starting from JBoss 3.2, a new load balance policy called First Available becomes

available for Clustered EJB. Under the first available policy, one of the available

target nodes is selected randomly from the list of JBoss nodes and is used for every

call [38].

I will test using the First Available load balance policy instead of the default one in

this section. I will see how the workload distribution and transaction output can be

affected by a different load balance policy.

Exactly the same test as with Clustering of all EJB in the last section will be run . I use

the same hardware and software as illustrated in Figure 5.3. I also use the same

testing procedure as described before.

Result

Table 6.6 is the final test result for clustering of all EJB with the First Available load

balance policy.

JBoss I 2 4 6 8

TPS 615.3 993 171 2.7 2217.4 2309.2

% of change 61.4% 72.5% 29.5% 4.1%

Table 6. 6: testing result of cluster all EJB using First Available load-balancing

Figure 6.6 shows transaction per seconds as the function of number of J Boss by using

the data in table 6.6.

77

Transaction Output VS. JBoss

2500

2000 I

1500 I
en I I
Q.
I- 1000

I 500

I 0
0 2 4 6 8 10

JBoss

Figure 6.6: Transaction output VS]Boss number

Result analysis, discussion and conclusion

In the graph, when the JBoss number varies from I to 6, the transaction output of the

application increases almost linearly, with a factor of between 59% to 72.5%

performance increases. whenever the JBoss number is doubled. When the JBoss

number is increased from 6 to 8, the performance increase is very small. This

indicates a bottleneck is reached when JBoss-Number equals 6.

Comparing the test result with that using the default Round Robin load balance

policy, there is an obvious performance gain when the JBoss number equals 6. Recall

for using Round Robin policy, I have both PostgreSQL and some of JBoss nodes

become the bottleneck. By using the First Available load balance policy, I have got

better load distribution in the JBoss Cluster, and thus effectively decreased the chance

of a JBoss server being the bottleneck in the system.

For the SUT with only one JBoss instance, the CPU capacity of the JBoss machine is

the bottleneck. Similar bottlenecks can be identified for JBoss instance numbers

equals two and four. The load balance problems still exist, but the load distribution is

much better than that of using the default one. For the number of JBoss node equals

six and eight, because of better load distribution in each of the JBoss instances, the

PostgreSQL database is the only bottleneck.

78

A good scalability result using the First Available load balance policy has been

achieved. A better load balance policy can effectively improve the performance of a

J2EE application by keep a better distributed workload in the JBoss Cluster, this has

been proved by the results using the First Available load balance policy compared

with that of using the default Round Robin policy. The database is certainly the

bottleneck when J Boss number is more than six in the testing system.

Comparison of load balance policies

By comparing the testing result using first available load-balance policy with that of

the default load-balance policy, the first available load-balance policy gives a much

better result when the txRate value is high.

The First Available load balance policy can achieve a better transaction output than

that of using the default Round Robin policy. Using First Available policy has created

two distinct output differences :

1. The best throughput is better than that of using the default load balance policy.

2. The output after the peak is much more stable than that of using the default

policy.

These two output characteristics can be explained with the load distribution result of

using different load balance policy. Because the First Available policy can results in

better distributed workload across the JBoss Cluster, the chance of one JBoss node

becoming overloaded is much smaller than using the default Round Robin policy. So,

I can achieve better transaction output under heavy workload.

Using the default Round Robin load balance policy, when one JBoss has been

overloaded and becomes slow, the Round Robin algorithm will continue to distribute

workload to each machine one after another. In the end, the overloaded machine will

becomes slower and slower, with the job queue becomes longer and longer until this

machine crashes. The Round Robin policy does not provide a chance for an

overloaded node to recover.

The First Available algorithm can improve this situation in some way. Because the

workload is distributed randomly, for a machine with higher workload, if new jobs

79

that are dispatched to this machine is less than to other machine, there is a chance for

heavy loaded machine to decrease its workload, this is a big improvement as

compared with the round robin algorithm that continues to dispatch workload to the

machines in sequence one after another. However. the unbalanced workloads still

exist because of the random distribution of workload in the JBoss Cluster. I will

discuss possible implementation of better load balance policies such as a dynamic

algorithm and weight-based algorithm in chapter 8.

Although, both the Round Robin and the First Avai lable load balance policy cannot

provide a really good workload distribution across machines in the JBoss Cluster, I

will use the First Available load balance policy, which performs better under higher

workload.

6.6 Test with two databases

Testing procedure

There are two problems in the previous testing results . The load balance problem has

been partially solved by using a different load balance policy. Another problem is the

PostgreSQL database problem, because the hardware in the database machine has

become the bottleneck. it ' s not possible to gain better performance by using just one

database. This can be improved by using a distributed testing architecture instead of

using centralized architecture . The database is split into two separate databases each

containing part of the centralized database.

I use the hardware and software as illustrated in Figure 5.8. My testing procedures

are slightly different compared with the centralized test. After splitting one centralized

database into two separate databases, I will examine how the workload distribution

and transaction output can be affected.

Figure 5.8 is the EJB replication graph with two databases in the system. All the EJB

are replicated in all members in JBoss Cluster, but the data that represent these EJB

80

are split into two separate databases. During the testing process, the Driver client still

interacts with al I J Boss servers, but the J Boss servers need to interact with the two

databases depending on what data need to be accessed.

Result

Table 6. 7 is the final result for test with two databases.

JBoss 2 4 6 8

TPS 1004.8 1710.4 2343.1 2907.4

% of change 70.2% 37.0% 24.1%

Table 6. 7: test result with 2 databases

These results are shown in the graph figure 6. 7; with the X-axis representing the

Number of JBoss server in the test, and the Y-axis represent the Maximum output

against each JBoss value.

3500

3000

2500

en 2000
II.
I- 1500

1000

500

0

0

Transaction Output VS. JBoss

_......
~

~
_/

~

2 4 6 8 10

JBoss

Figure 6. 7: Transaction Output using the distributed architecture

Result analysis, discussion and conclusion

Figure 6.7 shows a consistent performance gain when the JBoss number is increased

from I to 8. The application output increase is almost linear, with a factor of from

70.2% to 74% whenever the JBoss number is doubled.

By comparing the result with that of using one database, these are significant

performance gains with two databases

81

During the test, the JBoss machine is always the bottleneck from one to eight JBoss in

the JBoss cluster. When the JBoss servers are six or eight, the load balancing is a

problem. Even with the First Available load balance policy for all EJB, the workload

differences between each JBoss can become very large.

By using the distributed test architecture. the hardware bottleneck when using a

centralized database has been solved. Using two databases has effectively distributed

the database workload to two machines and thus solved the database bottleneck for a

centralized database.

A linear scalability could be achieved using a distributed architecture for the ECperf

test using Sisters. A much better performance and scalability have been reached by

using a distributed test rather than that of using centralized test. With two separate

PostgreSQL databases, the database always has enough capacity to deal with the

workload from the JBoss Cluster. thus making the JBoss Cluster the only bottleneck

in the system. this leads to linear scalability results. However, the load balance policy

is still a problem even using the First Available load balance policy.

6.7 Test with Two partitions and two databases

Testing architecture

The clustering of EJB 1s a good strategy to improve system performance. but too

many copies of one EJB object may not be desirable. As there are overheads

associated with the JBoss Cluster, the performance gain of the application may not be

proportional to the copies of the EJB objects in the JBoss Cluster. The overhead

associated with the clustering of EJB includes communication between members in

the JBoss cluster and action to synchronise an EJB access to maintain data integrity in

the database.

For a better performance, two separate JBoss partitions will be created, and each of

them interacting with a different database. Figure 5.9 in the last chapter gives the

testing hardware architecture with two JBoss partitions and two databases.

82

In the architecture, the JBoss cluster is divided into two separate partitions. There is

no communication between members in two partitions; only members in the same

partition will interact with each other. Only EJB that belong to the Order Database

will be replicated in the Order Partition, only EJB that belong to the Manufacturing

Database will be replicated in the Manufacturing Partition.

Figure 5.10 in the last chapter gives examples of how Enterprise Java Beans were

replicated to one of the two partitions in the JBoss Cluster; it also shows how each

JBoss server interacts with just one of the two databases. For example, EJBs such as

Cart Session Bean, Order Session Bean and Order Entity Bean are replicated to the

JBoss servers that belong to the Order Partition, and the JBoss servers in the Order

Partition only interact with the Order Database (OrderDB). In short, the client will

still interact with all the JBoss machines, but a client ' s request will only be directed to

a JBoss server in one partition where the particular Session EJB exists.

By using two separate JBoss Clusters, the numbers of local copies of an EJB are

effectively reduced. Reduced EJB persistence overhead as well as the communication

overhead between JBoss cluster members should improve the ECperf application

performance.

1 have chosen the following testing algorithm for this test.

Result

For JBoss-Number =I , 2, 4, 6 and 8

End

Do test with transaction rate (txRate) = I. 2, 4, 8, I 2, 16, 20, 24, 28, 32
(Repeat three times for each txRate value)

Table 6.8 is the final result of the ECperf applications running with two JBoss clusters

and two separate databases.

JBoss number 2 4 6 8

TPS 1148.8 1928 2590.5 3280.5

% of change 67.6% 34.4% 26.6%

Table 6.8: Transaction output with 2 Partitions and 2 Database systems

83

These results are shown in the graph figure 6.8. with the X-axis representing the

Number of JBoss servers in the testing program. and the Y-axis representing the

Maximum output against each JBoss value.

Transaction Output VS. JBoss NO.

3500

3000

2500

(/) 2000
Cl.
I- 1500

1000

500

0
0 2 4 6 8 10

JBoss No.

Figure 6.8 Transaction Output with 2Parlitions and 2 Databases

Result analysis, discussion and conclusion

Figure 6.8 shows consistent performance gains when the JBoss number is increased

from 2 to 8. The application output increase is almost linear, with a factor 67 .6%,

68.8% and 79.8% whenever the JBoss number is doubled . This trend indicates strong

scalability for testing systems with larger numbers of JBoss in the JBoss Cluster.

By comparing the result with that of using two databases and only one partition , there

is a significant performance gain when using two partitions and two databases.

The same bottlenecks as presented with the test of one partition and two databases

still exist. The JBoss machine is always the bottleneck from two to eight JBoss in the

JBoss cluster. Even with the First Available load balance policy, the differences of

workload between members in JBoss Cluster can become very large under heavy

workload.

I conclude that linear scalability can be achieved using a distributed architecture with

two partitions and two databases in the system. Improved performance has been

achieved as compared to a distributed test with only one partition. With two JBoss

84

partitions and two separate PostgreSQL databases, the database always has enough

capacity to deal with the workload from the JBoss Cluster, thus making the JBoss

Cluster the only bottleneck in the system, this leads to linear scalability results.

However, the load balance policy is still the problem even using the First Available

load balance policy.

6.8 Test by disabling the log files with two partition and two databases

Design of the test

Log files are very important for identifying errors while running a program and

getting useful history information for a user. However, for a high workload

application, because of the high volume of transactions in the system, a large amount

of information will be written to the log file and thus consume a lot of system

resources.

Disabling the writing of data to the PostgreSQL log files and writing information to

the JBoss application server log file , and only writing error messages to the console

window should further improve performance.

All the testing architecture and the procedures are the same as testing with two

partitions and two databases.

Result

Table 6.9 is the final result of the ECperf applications running with two JBoss

clusters, two separate databases and disabling the log files.

JBoss number 2 4 6 8

TPS 1140.8 2091.3 2983.2 3672.9

% of change 83.3% 42.6% 23.3%

Table 6. 9 is the transaction output with 2 partitions and 2 databases and disabled log

85

The result are shown in the graph figure 6.9, with the X-axis representing the Number

of JBoss servers in the test and the Y-axis representing the Maximum output against

each JBoss value

Transaction Output VS. JBoss No.

4000 ~ -----------------.

3000 +-----------,~----:I I
~ 2000 +------_,...,.__ _______ ----;
I-

0 +. --~-------------1
0 2 4 6 8 10

JBoss No.

Figure 6.9: Test with 2 partition, 2 DB & disable logfile .

Result analysis, discussion and conclusion

Figure 6.9 shows a consistent performance gains when the JBoss number is increased

from 2 to 8. The application output increase is almost linear. with a factor of 69 .9%

and 83 .3% when the JBoss number is doubled . This trend indicates strong scalability

for testing systems with a larger number of JBoss in the JBoss Cluster.

Comparing the result with that of using two databases and two partitions. I can see a

significant performance gain by disabling the log file. The default log file is useful

because it records most of the system activities, but when the workload is very heavy,

writing a lot of information to the log file , consumes a lot of system resources and can

becomes a big overhead for the JBoss application server. So, disabling log files in the

JBoss application servers has given a performance improvement.

The JBoss machines are always the bottleneck from two to eight JBoss in the JBoss

cluster. The databases have no problems handling the workload. An unbalanced

workload distribution in JBoss Cluster is still a problem when the workload is heavy.

I conclude that linear scalability can be achieved using a distributed architecture with

two partitions, two databases and disabled log file. Improved performance has been

achieved as compared with distributed testing with two partitions. The JBoss

86

members in the JBoss Cluster are the only bottleneck in the system. However, the

load balance pol icy is sti 11 a problem even using the First A vai I able load balance

policy.

6.9 Discussion of the Sisters Result

Initial conclusion from the Sisters result

Figure 6.10 gives transaction per seconds as the function of number of JBoss in the

JBoss Cluster. 1 have presented six different testing results:

• Test of Clustering of only Session Bean

• Test of Clustering of all EJB using Round Robin load balance policy

• Test of Clustering of all EJB using First Available load balance policy

• Test using two databases

• Test using two databases and two JBoss partitions

• Test using two databases, two JBoss partitions and disabled log file

4000

3500

3000

2500

2000

1500

1000

500 ✓

0
0 2 4 6 8 10

Figure 6.10: All testing results for the sisters

Scalability analysis for the Sisters results

--+--- SesOnly

• EJBAII

FirstA

D82

__._ p2os2

.............. oisalog

87

Good scalability results are shown with all types of test in Sisters. For the centralized

test, the database becomes the bottleneck when JBoss number is six in the JBoss

Cluster; the potential scale up to more than eight JBoss Cluster is not big. For a

distributed test with two databases, I have nearly linear scalability when the JBoss

number increase from one to eight. The scalability results have implied good

scalability potential for systems with more than eight JBoss. These results have been

further improved with partitioning the JBoss cluster and disabling extensive log file

outputs.

Performance Bottleneck analysis based on sisters result

Whenever the transaction output does not increase with the client workload , there is a

bottleneck in the system. The bottleneck could be any resources in the testing system,

such as the operating system, the Java Virtual Machine, the JBoss application server,

the PostgreSQL database , the hardware and the network resources .

By identifying the bottleneck in the test system. a suitable solution can be found and

further improvements made to the performance. One interesting point is that finally

the bottlenecks can never be resolved , because whenever one bottleneck is solved ,

another system resource will become the new bottleneck when the workload is higher.

Detailed description of the bottlenecks and solutions for each test are given in each

section. Comparing all testing results in Figure 6.10, improved performance has been

achieved when each solution was applied .

88

6.10 Summary

Various tests of the ECperf application running on the Sisters have been completed. A

centralized test with Java Virtual Machine heap size parameters, with the default

database connections, with the clustering of session bean, with clustering of all EJBs

using the default load balance policy and with cluster of all EJB using the First

Available load balance policy have all been completed.

I have also run distributed test with two databases, with two databases plus two

partitions and with disabled log file in both JBoss and the PostgreSQL databases.

With all these tests, very good scalability results have been achieved for 1-4 JBoss

server. For each test, when the JBoss number in the JBoss cluster increases, the

workload that the whole system can handle also increases. Good scalability up to 8

JBoss server has been achieved for distributed workloads.

In the process of identify the system bottlenecks and finding the solutions, the

flexibility that the J2EE provides can be seen. By using different deployment

architectures, improved performance can be achieved without changing the source

code. When moving from one application server vendor to another, the only file that

needs to be changed is the deployment descriptor of the ECperf application in XML

format. The flexibility of Beowulf Cluster allows hardware resources to be increased

by adding a JBoss instance machine into the JBoss Cluster and solving any problem

associated with the JBoss application server.

89

Chapter 7: Test on Helix - The supercomputer

7 .1 Introduction

This chapter will examine the performance of the ECperf application in the Helix. the

supercomputer in Massey University. Due to the similarity of the test in the Sisters

and the Helix. as well as the limitation of the hardware resources available in Helix

only a subset of the experiments will be discussed. The experiments to be presented in

this chapter are:

• JVM heap size test running one JBoss instance

• Test using the default JBoss connection pool value

• Test using optimised database pooling in JBoss

I will also give performance analysis and identify the bottlenecks based on each test

result.

7 .2 JVM heap size test

General hardware analysis in Helix

I have introduced in chapter 3 the architecture of the Beowulf supercomputer: the

Helix. There are 66 nodes in the Helix, one (HelixO) as the server node, and the rest

(helix I to helix65) as the client nodes.

The test program is a distributed application that needs to run in at least three layers:

the Driver Client (or the Emulator), the JBoss_tomcat server and the Database. Figure

5.12 in chapter 5 gives the hardware architecture of my test in Helix.

The basic requirement for the ECperf test is to use dedicated hardware for the System

Under Test (SUT), the SUT include all the JBoss server machines and the

90

PostgreSQL database machine. As the Helix is a supercomputer shared by a lot of

users and also because it is normally busy, the different components must be carefully

chosen.

As the Driver client is not part of the SUT, and also requires the least resources, it will

run on Helix0 - the server machine.

Choosing the database node needs careful consideration, because all JBoss servers

need to be configured to point to a database in a particular machine. A fixed database

machine can allow minimum tests. I choose Helix65 as the database node, as it is

most unlikely to be used by others. All the remaining Helix nodes, from Helix] to

Helix64 might be selected as the JBoss server nodes when possible.

Design of the JVM Heap Test

As for the Sisters, the JVM machine setting on the helix will affect the performance of

the Clustered application. The purpose of the test is to find out the optimal Java

Virtual Machine settings that will be used for the later test. Although, my major

emphasis is to test performance of a cluster of application servers, it ' s not necessary

to do that for JVM heap size test. Once the optimal JVM heap size settings for one

machine are found , it can then be applied to the whole cluster of JBoss servers.

Figure 5.11 in chapter 5 gives the hardware architecture of the JVM heap size test.

Here, the Driver client, JBoss_tomcat server and the PostgreSQL database are running

one separate machines.

The JVM heap space test used one of the Helix client machines that has a total

memory of I 000MB.The Min & Max heap size are set to be equal , that is -Xms=­

Xms (the default setting will be an exception). The test cases will include the

following: using the default heap space, I 00MB, 200MB, 300MB, 400MB, 600MB,

800MB and I 000MB. For each of these values, the value of txRate in the ECperf

testing program will be steadily increased, this will increase the number of ECperf

client that interact with the ECperf server.

91

Here is the test algorithm:

For -Xms equals -Xmx with value of (default, JOO, 200, 300, 400,600, 800, 1000)
Do test with transaction rate = 1, 2, 4, 8, 12, 16, 20, 24, 28, 32
(Rep eat three times for each transaction rate value)

End

In the algorithm, for each pair of the -Xms and -Xmx values. I get a sequence of tests

result that corresponds to the txRate of I. 2. 4, 8. 12. 16. 20. 24. 28 and 32. I repeat

test for each txRate value for three times. By increasing the value of txRate in the

ECperf testing program, the number of threads, each simulating one client is also

increased.

JVM Heap space Testing Result

For each of the JVM heap space values, there is a maximum transaction output. The

Maximum transaction output (TPS) VS the JVM heap space values (-Xmx) are shown

in table 7. I.

-Xmx 64 100 200 300 400 600

TPS 100.9 359.6 946 .8 1228.7 1743 .9 2140.1

Table 7.1: JVM Heap Value VS. TPS Test

These results are also shown in graph figure 7. I .

JVM heap VS. TPS

2500 ...----------------,

2000 +------:;;;,'"'c:!=~~===~-~
en 1500 -+------+--------------l
a..
I-

500 ------------------l

0 +-''---,----,-----,----,-----,------l

0 200 400 600 800 1000 1200

JVM heap(-Mxs=-Mxm)

800

2170 .9

Figure 7. 1: Maximum throughput as a function of the JVM Heap Size

1000

2095.6

92

Result Analysis, further discussions and conclusion

Figure 7.1 shows how the JVM heap size will affect the performance. With the

increase of the JVM heap size value, the maximum transaction output is increased.

When the value of JVM heap size smaller than 600MB, the rate of increase of the

output is good. Then the output increment rate is slower until a maximum

performance value is reached. After that, the transaction output decreases slowly

when the JVM heap size increases.

Figure 7.1 shows that when the JVM heap size value is from 60% to 100% of the

maximum memory available in a machine, the transactions output is close to the

maximum output. The maximum transaction output was produced when JVM heap

size value is 800MB. This value will be used for the remaining ECperf tests.

This is a reasonable result. Because the JBoss application server is running on top of

the JVM , the size of memory space in the JVM available to JBoss will be an

important factor related to how much work a JBoss can do. Given more JVM heap

size means more memory space available to store objects created by the application

running on JBoss, the transaction will increase with the more resources available.

When the heap value is less than 400MB the bottleneck is the size of the memory.

After the JVM heap value reaches about 500MB. The memory space defined by the

JVM heap value is no longer a bottleneck in the system. The utility command top

shows that the JBoss node in the system has becomes the new bottleneck. The CPU

usage in the JBoss node is 100% (including the users plus the systems CPU usage) .

As this CPU usage keeps consistent in the system, the Job queue in the JBoss server

keeps growing until the whole system becomes slower and slower and eventually to a

state of giving a very small output Figure 7.1 shows that the output keeps going down

after the best output is achieved with a heap size of 800MB.

The optimal JVM heap value of -Xms = -Xmx = 800MB is used for the remaining

tests and keep other JVM parameters as default values.

93

7.3 Test using the default data source pooling values

Design of the test of clustering all EJ Bs

In the system. there is one Driver Client machine that is running a multi-threaded java

application to emulate many simultaneous client"s access to the EJBs running on a

cluster of JBoss application servers each running in one node. The EJBs in the

application are replicated across the application server to provide high availability and

fail-over feature support.

As the test results in Sisters have shown that cluster of all EJBs will performance

better than cluster of only session beans. I will not test with clustering of the session

beans only, instead, I will test clustering of all Enterprise Java Beans using the default

data source pooling in the JBoss servers. The EJB replication schema is given in

Figure 5.8 where all EJBs are replicated to each JBoss member.

To test the scalability of the J2EE application server. I need to get the highest output

for a particular JBoss Cluster. The following test algorithm is used. As discussed in

the early section of this chapter, these test have been automated for the purpose of

convenience.

For JBoss-Number = 1, 2 , ./, 8, 16, 2./. 32

End

Result

Do 1es1 wilh rransaclion rale (rxRare) = 1, 2. 4, 8. 12. 16. 20. 1./, 28. 32

(Repeal lhree limes for each lxRale value)

Table 7 .2 gives the final result of test of Cluster of all EJ B in the JBoss Cluster using

helix.

JBoss I 4 8 16 24 32

TPS 81 I .5 1643 .6 2337.6 3035 3446.5 3744.5

% of change 102.5% 42.2% 29.8% 13.6% 8.6%

Table 7. 2: Transaction output VS. JBoss Number

94

The results are shown in figure 7.2 with the X axis representing the Number of JBoss

servers in the test, and the Y axis represent the maximum output against each JBoss

value.

4000
3500
3000
2500

1/l 2000 ll.
I-

1500
1000
500

/
1•

0
0

Transaction Output VS. JBoss

/
✓

. -----,,,,.-

10 20

JBoss

____.

30 40

Figure 7.2: Transaction Output as a function of the]Boss number

Result analysis, discussion and conclusion

Figure 7.2 shows that when the JBoss number 1s increased from I to 32, the

transaction output of the application increases. However, the rate of increase in the

performance is actually decreased when the JBoss number becomes bigger. I have

achieved 51.3%, 51.3%, 42.4%, 29.8% and 23.4% performance increase when the

JBoss number is doubled with I , 2, 4, 8, 16 and 32. The performance output increase

is almost flat when the JBoss number is increased from 24 to 32, with only a slight

8.6% increase in transaction output. This indicates a bottleneck is reached when

JBoss-Number is more than 24. I will discuss this in the following section.

For the SUT with only one JBoss instance, when the highest output is created, either

the JBoss or the PostgreSQL has become the hardware bottleneck, because the CPU

and RAM usage in both machines have not reach 100% limit. The PostgreSQL also

does not reach the maximum number of connection limit. However, the default

number of maximum connections allowed in the JBoss application server, the

MaxSize which defines the maximum allowed database connection pool numbers in

the JBoss server is 25. This can be a bottleneck as shown in the next section.

For the case where the JBoss node equals 24 and 32, I have observed a different

bottleneck neck in the SUT. The PostgreSQL database seems to become the

95

bottleneck. When the ECperf output is close to the maximum values, the job queue on

the database machine identified by the top command of the Linux operating system

keeps high during the whole testing process. Also the CPU usage is close to I 00%

during some of the testing process. When the number of JBoss nodes is 24. the

PostgreSQL becomes bottleneck. even when the JBoss nodes increase to 32; the

actual performance output only increases slightly.

I concluded that clustering of all EJBs using JBoss cluster in Helix could provide

good scalability up to 24 JBoss instances. However, the scalability is restricted due to

the Bottleneck generated in the PostgreSQL database when the JBoss number is 24.

When the JBoss number is from I to 16 in the JBoss Cluster, the bottleneck in the

system is the default maximum allowed database connection pool value in the JBoss

machines .

It should be noted that except for some poor load balancing effects the JBoss server

node were not overloaded in these tests .

7.4 Test using optimised database pooling

Design of the test of clustering all EJ Bs

The test performance on the Helix can be improved by using a better data source

pooling parameters in the JBoss Cluster and also disabling the JBoss log file. The

same hardware architecture as previous test is used. The following test algorithm is

used for this test

Result

For JBoss-Number = I , 2, 4, 8

End

Do test with transaction rate (txRate) = I , 2, 4, 8, 12, I 6, 20, 2-1 , 28, 32

(Repeat three times for each txRate value)

96

Table 7.3 gives the final result of test of clustering of all EJB in the JBoss Cluster

using helix.

I JBoss
TPS I ~355.4 I ~628 I ~680 I ~640

Table 7. 3: Transaction Output VS JBoss number in Helix

The results are shown in figure 7.3 with the X-axis representing the Number of JBoss

server in the testing program, and Y-axis representing the Maximum output against

each JBoss value.

4000
3500
3000
2500

~ 2000
1-

1500
1000
500

0

0

Transaction Output VS. JBoss

--
/

I •

2 4 6

JBoss

-

8 10

Figure 7.3: Transaction Output VS JBoss number in Helix

Result analysis, discussion and conclusion

Figure 7.3 shows that when the JBoss number is from I to 2, the transaction output

increases 54%, but this output is almost the maximum output, as a similar output is

obtained when the JBoss number is 4 and 8. This has indicated a bottleneck has

reached when the JBoss number is 2.

Comparing the results with results from the last section, the performance has

improved by using the optimal data source pooling values. With one JBoss in the

JBoss cluster the output increased 190.2%, and output increased 120.8% when the

JBoss number is 2 in the JBoss cluster as compared with the default database polling

values. These results have shown the default database pooling value is a bottleneck

when running the ECperf application in Helix.

In the test, the hardware such as the CPU and the RAM in the testing system do not

seem to be the bottleneck. However, the Job queue in the PostgreSQL database is high

97

during some of the testing period. The database is the bottleneck during the test. Due

to the bottleneck in the PostgreSQL database, it is natural that the ECperf application

output does not increase even when the JBoss number in the JBoss cluster is

increased .

7.5 Summary

Three experimental tests of the ECperf application running at the Helix were

completed. Tests were run with different JVM heap space values. a centralized test

with the default JBoss database pooling values and test with optimised values were

also run.

The testing results have shown good scalability for testing output. The JVM test

showed the optimised JVM heap size is critical for ECperf application output running

in a cluster of JBoss application server. When using default database pooling in the

JBoss members in the JBoss Cluster, a scalable result was reached up to 32 JBoss

members, this indicated very good performance potential for a cluster of JBoss

servers however the database polling bottleneck severely limited the maximum

performance achieved. The test using optimised database pooling in the JBoss

member has indicated scalability until the database becomes the bottleneck in the

testing system . It is disappointing that this bottleneck was reached with just 2 JBoss

servers .

When the JBoss number in the JBoss cluster increase, the workload that the whole

system can handle also increases, thus achieved scalability with the JBoss cluster.

Several factors such as the database connection pooling and the database scalability

might affect the system performance, Although a Beowulf cluster provides some

flexibility for distributed deployment, it also has some restrictions on software that

need particular good hardware resources. One example is the database, because there

is only one database machine in the system, it is easy to become the bottleneck due to

98

the hardware resources available in that machine. Ideally the database system

hardware should be better than the JBoss Cluster machines.

99

Chapter 8: Performance Analysis and Discussion

8.1 Introduction

In this chapter. scalability analysis based on the results from both Sisters and Helix is

presented. followed by a discussion of the identified performance bottlenecks for the

system. A general discussion about how to improve J2EE application performance

through the application design architecture, component implementation, application

deployment, system hardware. software and networks. is also given.

Techniques on how to improve the ECperf applications performance by changing the

hardware and software used for the JBoss server and the PostgreSQL database are

discussed . The chapter finishes with an architecture that can be further developed for

generating better performance. Finally, suggestions of how my research results might

be applied to the commercial world for running high performance J2EE application in

a cost effective way are presented.

8.2 Scalability analysis for Sisters and Helix

Concept of Scalability

Scalability is the ability to provide quality service to the client as the workload

increases. These are two ways to achieve scalability for a J2EE application.

Vertical scalability is achieved by upgrading hardware resources to existing system;

such as increasing the capacity of the memory, CPUs and Cache. Achieving vertical

scalability does not require a change to the system architecture or application running

on the system. An increased performance can be achieved, but reliability and

availability may not increase.

Horizontal scalability is achieved through duplicating the server (application server

and web server) or database resources. By using a cluster of application servers in the

100

system, the system architecture becomes more complex to manage, but with the added

performance, availability and fault tolerance also improves . Hardware or software

must be used to achieve load balancing for the cluster of application servers or

databases.

Vertical Scalability (JBoss=l)

Vertical and horizontal scalability have been used in the tests on the Sisters and Helix.

Table 8.1 gives the test results with the same hardware and software architecture in

Sisters and the Helix. The system contains one Driver Client machine, one JBoss

machine and one PostgreSQL database machine.

txRate I 2 4 8 12 16 20 24 28

TPS Sisters 103 .6 198.8 413.4 566 .7 490.3 533.7 496.7 406.4 425 .4

TPS Helix IO 1.6 201.4 409 .6 798.2 1221.8 1623 2030.4 2355 2095 .8

Table 8.1: Transaction Output in Sisters and Helix (JBoss =l)

Figure 8. I gives the final test results on the Sisters and Helix on the architecture,

which includes one Driver client machine, one JBoss application server machine and

one database machine.

2500

2000

"'
1500

ll..
I- 1000

500

0

0

TPS VS. txRate (JBoss=1)

10 20 30

txRate

-+- TPS Sisters

• TPS Helix

Figure 8.1: Helix and Sisters transaction output with one JBoss

Although the same test architecture is used for both the Helix and Sisters, the

hardware capacities of the two systems are different. The Helix consists of Athlon

MP2200 MHz AMO with I GB RAM for each of the 64 nodes, and the Sisters

101

consists of 667MHz Pentium Ill with 256MB RAM. Because each machine in Helix

has better CPU and RAM compared with the Sisters machine, vertical scalability is

displayed when comparing the result of Helix and Sisters with the same testing

hardware architecture.

Figure 8.1 shows the test results with only one JBoss node in the SUT. for this kind of

test, because the JBoss node is the bottleneck when the system reaches its highest

output, I can safely ignore the fact that the hardware used for PostgreSQL database

and Client Driver node in Helix is better than that in Sisters. The better CPU and

RAM in the application server can improve the performance of the ECperf

application.

The test results show that a 415% performance improvement results when running the

same test in Helix as compared with that in Sisters. This result has proved that vertical

scalability can be achieved by upgrading the CPUs, RAM or other hardware

resources. Identifying the bottleneck in the system is again important because

upgrading the hardware resources that are not the bottleneck of the system may not be

helpful at all. For example, the database has enough capacity to deal with the test with

only one JBoss node in the system, using a Sisters node or Helix node does not

matter.

Vertical scalability (JBoss=2)

Table 8.2 gives the test results with the same hardware and software architecture in

Sisters and the Helix. The system contains one Driver Client machine, two JBoss

machine and one PostgreSQL database machine.

txRate 1 4 8 12 16 20 24 28 32 36 40 44

TPS 98.3 405 .9 802 1056 960.9 930.8

Sisters

TPS 103 404.8 797 1213 1611 2005 2428 2807 3209 3587 3620 3645

Helix

Table 8.2: Transaction Output in Sisters and Helix (JBoss=2)

102

Figure 8.2 shows the final test results of Sisters and Helix on the hardware

architecture, which includes one Driver client machine, two JBoss machines in JBoss

Cluster and one database machine .

4000
3500
3000
2500

en 2000 0..
f-- 1500

1000
500

0

0

TPS VS. txRate (JBoss=2)

20 40 60

txRate

-+-- TPS Sisters

• TPS Helix

Figure 8.2: Helix and Sisters transaction output with 2 JBoss

The database and the client machine factors can be ignored based on the fact that the

JBoss machine is the bottleneck in the system. The test results show a 371 %

performance improvement results when running the same test in Helix as compared

with that in Sisters. This result has further proved vertical scalability by upgrading the

CPUs, RAM of the hardware resources. With properly identified hardware

bottlenecks in the system and applying solutions by upgrading the hardware resource,

good vertical scalability is achieved.

Horizontal Scalability Result

Horizontal scalability has been tested in the Sisters and the Helix. The results show

that Sisters can achieve very good scalability with the increase of the JBoss number in

the JBoss cluster. However, hardware is not the only important factor that affects the

system output. The software factors also contribute a lot to the J2EE application

server performance output. These factors include the Operating System, the Java

Virtual Machine, the JBoss application server, the database capacity and the ECperf

application deployment strategy.

The Helix also shows a very good potential for horizontal scalability. Unfortunately,

the hardware in the PostgreSQL becomes the bottleneck even when the JBoss node

103

equals 2 in the JBoss cluster. The hardware capacity for the database node is a critical

factor for a high performance application that requires high volumes of database

access through both read or write calls .

8.3 Bottleneck Analysis

Because of the complexity of the whole system, there are many factors that might

become a bottleneck with a high volume of workload on the sisters and helix. These

factors are mainl y related with the system hardware type. the software used and the

application deployment settings . Some of the bottlenecks can be solved with out

adding extra resources, while other can only be solved with extra hardware resources.

Hardware bottleneck

The hardware capacity 1s the most fundamental factor for supporting high

performance J2EE applications . Based on the fact that onl y a constant maximum

output capacity can be achieved with a particular hardware. it is normall y impossible

to accomplish better performance for applications running on particular hardware

architecture . However. with the Cluster of JBoss application servers, it is now

possible to solve hardware bottlenecks that occur in the application server or web

server by running a cluster of JBoss servers . Running JBoss clusters on a Beowulf

Cluster has simplified the deployment of the application. but also provided very

flexible hardware architecture that can scale in a cost effective way.

In the Sisters, 1 have seen the CPU of the JBoss machine becomes the bottleneck

when there·s only one or two JBoss in the testing system . Increasing the total JBoss

numbers in the JBoss Cluster can effectively solve the problem by distributing the

workload to each member in the Cluster.

Software bottleneck

The software performance is a complicated problem and related directly with the

implementation of the source code, such as the programming language efficiency, the

architecture and the quality of the source code. Different software can display

104

dissimilar features of flexibility to support applications that requires performance and

scalability. Good software provides adjustable parameters to support an application

that requires better performance and scalability.

Some of the software factors become the bottleneck when doing the test. For the Java

Virtual Machine, I have seen "OutOJMemeory " error message when using the default

JVM setting, I can solve this problem by simply redefining the Java heap value of -

Xmx to allocate more memory to the heap space. But the allowed JVM heap size is

restricted by the RAM space available in the machine where the JVM running. It is

counterproductive to allocate JVM heap size more than available RAM value.

The PostgreSQL database also has parameters to adjust its behaviour. I have seen

error message of "FATAL: Non-superuser connection limit exceeded" when using the

default allowed number of connection in the PostgreSQL database with higher

workload. I can easily solve this problem by defining the maximum allowed number

of connections and associated buffering size. The maximum allowed connection

wouldn ' t be more than I 024 for my Linux operating system, as the maximum-shared

memory defined by the Linux kernel cannot be exceeded unless changed by the

administrator. The transaction rates specified in my experience did not require more

than I 024 connections.

The JBoss application server has flexible clustering support. When a J2EE server

component such as EJB is clustered in the JBoss Cluster, each JBoss in the group

owns a copy of the EJB component, with the load balance mechanism provided by the

JBoss application server, the system can provide very good scalability and

performance. Most bottlenecks associated with using one JBoss server can be solved

by using JBoss Clustering.

Network bottleneck

The network was most likely to become a bottleneck historically due to the speed

limitation of transferring data. With today ' s higher bandwidth network using I Gbps

network adaptors, the network can normally provide enough speed to support

communications between each node in the system.

105

For the sisters, I have a I 00Mbps network connection: even this can support the

ECperf testing application without problems . For the Helix with I Gbps network

connections, the communication between nodes in the Helix is very good. I do not

anticipate any network bottleneck between any of the machines running the ECperf

application. To test the network traffic. I have used an open source network

benchmark application: the Netperf [42] to test my network traffic during various

testing conditions. For an ECperf test with 32 JBoss nodes in the testing system. the

peak total traffic volume for the busiest node (the database node) is about 180Mbps.

This testing result using the Netperf application has proved that the network in the

system is sufficient for my test.

8.4 Performance Tuning for the current testing system

Performance tuning requires consistent effort. Increased performance is normall y

achieved by identifying bottlenecks and by finding a way to solve the problem .

To achieve good performance and scalability, a broader view of most important

factors in the system that could affect a J2EE application performance must be given

A J2EE application performance is related to resources in the system. These factors

include generally the following:

• The application desi gn, assembly and deployment options

• The hardware capacity in the system

• The operating systems support to the application

• Java Virtual Machine

• JBoss cluster features

• JDBC connections and resource pooling

• PostgreSQL databases functionality

• Database Storage capacity

106

Application design options

The effects of bad application design and development cannot be easily overcome

with system tuning, or by making additional computing resources available to the

application. Therefore, application related best practices should be followed from the

start [46).

A pattern is a proved best practical solution to a common recurring problem. Using

design pattern in J2EE applications is particular useful as it is a new and still maturing

technology.

There are several different J2EE patterns that are used to address special problems.

For example, Session Fa<;ade is a very basic EJB pattern that wraps the entity bean

layer in a layer of session bean [28). Clients only need access to the business method

exposed by the session bean instead of the entity bean, thus simplify the application

design. Using Session Fa<;ade can also reduce the network overhead by combining all

the Entity Bean interaction into the session bean.

Using J2EE patterns or best practices in all levels of the application can make a clear

design and implementation as a well as a high performance output.

Hardware capacity

Hardware capacity, such as the CPU, RAM and cache size is critical for application

performance. To achieve high performance output, a computer system must provide

hardware capacity that is large enough. Any hardware bottleneck can restrict the

whole application ' s scalability.

CPU speed limits how much work a machine can handle in a given time of period.

The CPU usage in any machine in the system should be below I 00% during the

application-running period.

The CPU must deliver its data at a very high speed. The regular system RAM cannot

keep up with that speed. Therefore, a special RAM type on the processor called cache

is used as a buffering temporary storage. The fastest cache RAM is called LI cache.

The next layer is the L2 cache. When the CPU needs data, it first checks the fastest

107

source - LI cache. If the data is not there, the CPU checks the next-fastest source -

L2 cache. If the data still cannot be found , a time-consuming search of the slower

RAM is required.

Getting data from the L2 cache is about IO times faster than from the RAM. getting

data from the RAM is over 100 times faster than that of from the hard disk [4 7).

Luiz have show that online applications that have significant instruction and data

locality can benefit with large off-chip caches [48). The distribution of cache in a

computer system also affects application performance. Caches shared by multi­

processors can increase the cache hit and improve application output [49).

In conclusion, the L2 cache, CPU and RAM are critical for application performance.

A system that does not provide sufficient hardware resources can greatly restrict

performance of the application due to a hardware bottleneck in the system.

Java Virtual Machine memory allocation

The JVM is critical for the portability of a Java based applications across different

platforms. It is essentially a software virtual machine that translates the intermediate

Java Byte Code into a particular machine code that can be run in a local machine.

However, this portability does come with some performance penalty, as the default

parameter values of the JVM do not provide optimised performance for most

applications.

My JVM test results in both the Sisters and the Helix have demonstrated the important

of the Heap space values. For the output in the Helix, the maximum output using the

optimal -Xmx and -Xms values have achieved 20 times as many transactions as

compared to using the default JVM heap size values. Other factors such as the

parameters that define the JVM garbage collection could also affect the performance

of Java applications.

In general , to optimise the application performance, careful analysis of the resource

requirements of a particular java application must be made, and optimised JVM

parameters provided to match the application requirement.

108

JBoss cluster feature and the application deployment

How an application is deployed in a system can greatly affect the performance of the

application. This is especially true when there is an application server cluster in the

system. JBoss clusters provide a mechanism to scale an application output by

distributing the workload to member machines in the Cluster.

My test results in both the Sisters and the Helix have provided good scalability results

by running a JBoss cluster compared with that of only one JBoss machine in the

system. By deploying multiple copies of the same EJB to each member machine,

increased accessibility is achieved and the performance is greatly increased by sharing

work between the JBoss Cluster member machines. I have seen linear scalability

results when a well-tuned JBoss Cluster is used in the system.

JDBC connection and resource pooling

Different resources pooling such as the database pooling and thread pooling are used

to improve the performance of an application.

In database pooling, existing database connections are reused to eliminate the

overhead associated with expensive database connection creation and destruction. A

better performance can be achieved through this technique. The results show how the

database pooling affects output results. When the JDBC connections becomes the

bottleneck, increasing the default values of the maximum database pool size will

improve the output results

Thread pooling is another example of resource pooling. The JVM supports multiple

threads of executions for better performance, however, two many threads running

concurrently can lead to resource bottleneck and degrade the system performance.

Using threads pooling allows the user to set the maximum numbers of concurrent

threads and optimise the performance of the system. Current version of JBoss does

not support thread pooling; this seems to be the reason for the unstable performance

when there are a large numbers of concurrent threads running in a JBoss machine.

Other factors

109

There are others factors that affect a J2EE application performance but may not

directly related to ECperf test results . These include but are not limited to the Java

garbage collection, best practices for use of servlets/JSP and session management,

application assembly, HTTP server configuration. processor throughput, the

application server and servlet queuing and parameter tuning and the database

configuration.

8.5 Further performance improvement discussion

It should be possible to further improve ECperf performance by introducing new

factors that are related to the database and the JBoss application server.

8 .5 .1 Scaling the database

Clustering of Database: C_JDBC discussion.

In the J2EE application, these are four tiers: the client, the web server. the application

server and the database tiers. Good performance has been achieved for the web server

and application server tiers using JBoss and Tomcat cluster. The bottleneck for a large

system is the database . Using a cluster of databases, a much better overall output for

my ECperf application is expected.

Recently, open source software called C-JDBC has been developed that can be used

to build a cluster of databases. C-JDBC is the research result of French National

Institute For Research In Computer Science And Control (INRIA) [50] . It is a

databases cluster that allows any Java application to transparently access a cluster of

databases through JDBC without the need to modify existing client applications,

application servers or database server software.

When the database in a J2EE application becomes the bottleneck or single point of

failure , C-JDBC can be used to resolve the problem. Adding database nodes and

balancing the load among these nodes can achieve increased performance and

scalability. Similarly, high availability and transparent fail-over can be achieved.

110

Figure 8.3 gives the C-JDBC architecture. A generic JDBC driver called C-JDBC

driver is provided to the client. This driver forwards the SQL request to the C-JDBC

controller that balances them to a cluster of databases. The controller uses Redundant

Arrays of Inexpensive Database (RAIDb) to provide a virtual database to the DB

client. The underlying databases are distributed and replicated among several nodes.

Java Application or Servlet Containder or EJB Contiinver

C-IDBC driver

C-JDBC Controller (Scalability, Failover, logging, Monitoring ...)

Database JDBC driver

Database2 Database3 Database4

Figure 8.3: Example C-JDBC architecture

There are three basic RAIDb architectures in the C-JDBC framework. Figure 8.4

shows an example of a RAIDb-0 configuration. In the example, different tables in the

database are distributed to different backend nodes; this can achieve improved

scalability but not fault tolerance.

SOL command from client

RAIDb-0 controller

Table I Table 2 & 3 Table 4 Table n

Figure 8.4: RA!Db-0 example

RAIDb-1 provides full replication of the database on the backend. This schema

provides best fault support, since the whole database is available from any of the

backend database nodes, however RAIDb-1 does not provide improved performance

since the write to database need to be broadcast to all nodes. Some performance

improvement on reads can be achieved.

11 1

A nested RAIDb system can provide both improved scalability and fail over support,

Figure 8.5 shows a RAIDb-0-1 example. The top level RAIDb-0 can be used to

achieve good scalability and fault tolerance is achieved on each of the two partitions

using a RAID-I controller.

SOL command from client

RAIDb-0 controller

RAIDb-1 Controller RAIDb-1 Controller

Table I & 2 Table I & 2 Table 3 & 4 Table 3 & 4

Figure 8.5 RA/Db-0-1 example

8.5.2 Scaling the JBoss application server

To improve the JBoss application server performance. it is necessary to extend some

of the cluster features so as to improve the system performance. Some of the problems

I have identified for current JBoss cluster architecture and suggested possible

solutions are discussed below.

Recent versions of JBoss include JBoss2.4.4, JBoss3 .0.6, JBoss3.2.1 and JBoss3.2 .2,

and each version is integrated with the Tomcat Servlet server. JBoss2.4.4 does not

support the cluster feature; it was used in the very early stage of the study. JBoss3.0 .6

is the earliest stable JBoss3.X version, but has problems supporting reliable

deployment of J2EE applications in a Cluster environment. JBoss3.2 .1 has problems

for JBoss Cluster node members to communicate properly, whenever a member is

suspended temporally, it cannot effectively rejoin the JBoss Cluster again . This is due

to a bug when implementing the JBoss Cluster using JavaGroup [33] as the

communications software in JBoss Cluster. JBoss3.2.2RC I was used in these tests ,

which works well.

112

JBoss was implemented usmg JMX framework, which is very well structured.

However, this does not necessary give a performance advantage compared with other

application servers. Research has revealed big performance differences for using

different application servers. An auction site using a session fac;ade implementation

has recorded 267% more peak output when using JOnAS application server compared

with using JBoss application server [5].

As JBoss Clustering was only supported in recent months, the overall performance of

the JBoss Cluster, how well it support the features such as scalability and fail-over

need to be carefully tested.

Some of the problems associated with the J Boss application server, include the load­

balance policy, JBoss Partitioning support and the transaction support for EJB in a

JBoss Cluster. Some general JBoss features such as thread pooling also need to be

implemented for better performance.

Using better load-balance policy

Current JBoss cluster servers that work cooperatively in an application suffer from the

load-balancing problem.

The test results show that the client workload cannot be balanced well when using the

default Round Robin load balance policy. In a high workload, the workload in one or

two JBoss could be much higher than other machines, but the Round Robin algorithm

will continue to distribute workload to each machine one after another. In the end, the

machine with the higher workload will becomes slower and slower, with the job

queue becoming longer and longer until this machine does almost nothing.

The First Available algorithm can improve this situation in some way. Because the

workload is distributed randomly, for a machine with higher workload, if the new jobs

that are dispatched to this machine are less than to other machine, there is a chance to

have decreased workload for a machine that is overloaded. However, there is still a

problem of unbalanced workload, because random distribution could also make things

worse m some cases .

113

A better performance can be achieved by having a better load balance policy. If the

workload distribution can be decided in a dynamic way according to the workload in

each server machine, then there is much bigger chance that the load will be better

balanced . For example, WebLogic application server has implemented a weight-based

algorithm [51]. each node in the cluster can have pre-assigned weight of workload. By

improving this algorithm to assign weights dynamically to each member machine

during the working process based on the current load of the machine. a nearl y perfect

load balance in the JBoss Cluster should be achieved.

A better resource pooling such as the thread pooling

JBoss has the problem of managing large number of concurrent threads because

there ' s no definition of thread management in the JBoss application server. When the

number of threads in JBoss is too large, the JBoss server will work much slower than

normal , in the mean time it will not refuse any new connection requests, thus leading

to a crash of the system. This is a long existing problem for JBoss [5].

Thread pooling is the way to so lve this problem . A properly defined thread pooling

will allow threads to be allocated and returned to the thread pool algorithm for the

purpose of reuse, thus improving the performance of the application server.

In a thread pooling implementation. the max imum and minimum number of threads

allowed can be defined, and maximum idle time can be defined to prevent a thread

being used too long without being released. A working thread is assigned for each

client request, but only for the duration for that particular request. Also threads in the

pool can be dynamic changed to meet the client ' s requirement [52].

A server can define a maximum number of threads that can be allocated to handle

client requests. If there are no threads available in the pool and the maximum number

of threads has already been created, the request will block until a thread currently in

use has been released back into the pool , thus avoiding overloading or crashing the

server.

114

A better partition strategy

Currently JBoss clustering does not support sub-partitions. This is a big restriction for

applications that need to be deployed in a separate partition for performance purpose

[38].

Another problem for the current partition schema is the communication between

different partitions, there ' s no communication between different partitions and thus

very difficult to deploy one application to more than one partition.

A well-defined sub-partition schema and communication channels between them can

be used to solve the problem. With the flexibility of sub-partitioning and allowing

communication between different partitions in an application, the application can be

deployed more easily to support higher performance requirements. The partitioning of

the JBoss server machine and the EJB should be designed to simplify use but with

good support for applications that need flexible deployment.

Note: the experiment in chapter 6 used two sperate partitions rather than two sub­

partitions. This was suitable as in this application no communication between portions

was required.

8.6 Possible use for commercial application

In today's business environment, budgeting is restricted for almost all IT projects, in

the mean time; performance expectation is higher based on the customer's

requirement. So, a highly desirable system needs to provide high performance with

low expense.

Though, J2EE is one of the best architectures to build multi-tiered distributed system

that is widely supported by leading industrial companies, a vender specific J2EE

platform is usually associated with expensive hardware cost and software licence fees ,

thus the total ownership cost for a high performance J2EE application is high.

115

The alternative of good quality open source software with a large group of user and

developer support, to the general users, especially users with limited budget are large.

JBoss is one of the examples of successful open source software that can effectively

decrease the cost of software ownership.

For the hardware. a typical mainframe high performance computer system that is

necessary to run a large-scale application is usually expensive . Beowulf clusters have

effectively solved this problem by building high performance computer using

Commercial off-the-shelf (COTs) components. A Beowulf Cluster built using PCs

only spends about 5% to 20% of cost compare with commercial product with similar

computing power.

The tests discussed in this thesis run on a very cost effective architecture. The

Beowulf Cluster as the hardware, the open source JBoss as the application server and

the open source PostgreSQL as the database. Gives one of the lowest cost high

performances J2EE application platforms.

The test results have proved that this architecture is very good for implementing

enterprise solutions that can provide a system with high availability. fault tolerance ,

high scalability and performance.

This solution is very practical for businesses with a limited budget but who still want

to provide high performance computing solutions . To make the solutions more

reliable, a careful analysis of the system requirement is very important. A good design

of the application and careful evaluation of the system performance expectation need

to be specified.

A Beowulf cluster runs Linux as hardware, the open source Clustered JBoss and

Tomcat as the application server and web server, the C-JDBC with PostgreSQL as the

database cluster can be used commercially to achieve good performance and

scalability. Although, the C-JDBC has not been tested in this study, the distributed

experience with 2 databases indicates significant performance improvements can be

achieved.

116

Further more, adding Storage Area Network (SANs) to the database cluster will

enable support of better database access. SANs represent an emerging networking

technology that connects servers and storage (disks) at gigbaud speeds. Some of the

critical functionality such as fail-over, High Availability can be achieved without

affecting the client of the system [39].

Beowulf Cluster + Linux + JBoss-Tomcat Cluster + PostgreSQL Cluster + SANs.

I believer this is one of the most cost effective architectures for running a commercial

high performance application. Combining with the vertical and horizontal scalability

concept a very high performance can be achieved with little cost.

Figure 8.6 shows a example suggested hardware architecture with JBoss cluster and

PostgreSQL cluster to provide better scalability.

Driver Client
(itO 17577)

,-------------------------------------
' System Under Test (SUT)
I
I
I
I
I
I
I

Order-Partition
RAIDb-0
Controller

PostgreSQL
CorpDB

PostgreSQL
OrderDB ,----

1Proxy --~---+--JBoss2 (it017580)
I

JBoss4 (it0 17582)

PostgreSQL
MfgDB

PostgreSQL
SupplierDB

Figure 8.6: Architecture with JBoss and PostgreSQL cluster

8.7 Summary

By comparing the test results in Sisters with Helix, which are run using the same

testing architecture, good vertical scalability has been demonstrated . The test results

in both Sisters and Helix have also shown good horizontal scalability when increasing

the number of JBoss in the JBoss Cluster.

117

The possible bottlenecks in the test system have been identified and also solutions to

them proposed. The bottlenecks could be any resources in the test system, such as the

hardware (RAM , CPU speed and Hard Drive write speed), Software (JVM heap size,

application server connection pooling and database connections), network, operating

system and application configuration. By carefully identifying the bottleneck, a

solution that can further improve the perfonnance of the whole system under test can

be found.

1 discussed some of the most important factors that might have a large affect on J2EE

application and discussed how to achieve good performance output based on factors

such as application architecture design, implementation method. deployment, system

hardware, software and networks.

Techniques that could be implemented to further improve the J2EE application

performance have been discussed including the C-JDBC architecture that can be used

for building a scalable and fault tolerance database. Some of the problems that exist in

the current JBoss application server have been identified and possible solutions to

these problems given. Finally an improved architecture with support of JBoss Cluster

and database cluster has been given .

I 18

Chapter 9: Conclusion

9 .1 Introduction

Scalability tests of application server have been presented for a small and a large

system. These results have been discussed in chapter 8 and future: improvements

proposed.

This chapter provides a final conclusion to the thesis. I will identify what has been

achieved by my work and contribution of my research . Finally further work building

on this study is proposed.

9.2 Conclusion

9.2.1 Contributions

This research study has shown that good scalability result can be obtained for a

clustered application server using JBoss. Vertical scalability is achieved by using

hardware resources such as RAM and CPU in the application server machines. A

more general scalable result has been achieved by increasing the application server

numbers in the cluster.

The Beowulf cluster and open source application provide a very cost effective

hardware and software architecture to support high performance J2EE applications.

By using a Beowulf Cluster, I have high performance hardware that can be used

easily to support scalable applications. I have a JBoss and Tomcat integrated server

that can be used to support an application server Cluster. A JBoss cluster provides

cluster support to all the application server components, such as the cluster of

Stateless session bean, Stateful session bean, and Message Driven bean. Tomcat

provides a cluster of Servlet sessions. When the J2EE server component is replicated

in the application server cluster, a scalable performance can be achieved for the

application running on the JBoss server.

119

Open source software is a suitable choice for running a commercial J2EE application,

because it can be used free of charge for developing and deploying applications.

Combined with cheaper hardware such as a Beowulf cluster running on Linux

operating system, the potential total cost of ownership of an application could be

much lower than that of using commercial J2EE software running on hardware that is

specifically designed for the application server and database .

The advantages of using open source in the research study are clear. The free software

that can be used without restriction, a big open source user and developer group that

can be used to communicate on line are a major advantage for a research project. An

especially important point of open source is the free access to the source code.

Modifying and even adding source code for a particular functionality are easy to do

since the source code is available; this is almost impossible when using proprietary

software.

9.2 .2 Conclusion

The J2EE application server is critical for enterprise level applications. By running

the ECperf application , the industrial standard J2EE application server test program

using an application server cluster. several different performance results have been

obtained. The test results have shown good scalability of transaction output for the

test system.

Vertical scalability is achieved by only increasing the hardware capacity such as the

CPU power or RAM space. By comparing the Sisters and Helix result with the same

architecture, I have seen good vertical scalability.

Horizontal scalability is achieved by increasing the number of application servers in

the JBoss cluster, from the test results in both Sisters and Helix ; I have seen good

horizontal scalability. When the application server number in the cluster increases, the

transaction output is also increases.

120

There are always bottlenecks in the system that prevents the system achieving a better

transaction output. Hardware can easily become the bottleneck, such as the CPU and

RAM. When one of them reaches I 00% usage, the system is unlikely to get better

output.

Software is also important for the system, all software in the system, the Linux

operating system. the Java Virtual Machine, the application server and the database

are all likely to be the bottleneck.

Other factors also important for the application performance, the application itself and

the deployment are likely to contribute greatly to the application output. From the test

results, significant differences can be seen due to the different deployment properties

of the same application.

I have seen good horizontal scalability and vertical scalability for the ECperf

application. With different architectures in either the application server or database,

big differences for the transaction output are obtained. By careful analysis of the

system bottlenecks and using a flexible cluster strategy for both the application server

and the database, a much better output can be achieved. Some ideas for further

performance improvement are presented in the following section.

9 .3 Future Work

Based on the analysis from this thesis, there are three major elements that can be done

in the future: the database cluster implementation, the JBoss cluster feature

improvement and performance monitoring tools.

Since the database was one of the bottlenecks, a database cluster plus the Storage

Area Network could further improve application performance. Any application that

requires a high volume of database access needs a database system that provides high

scalability, availability and performance. As I have discussed the C-JDBC can build

scalable databases using PostgreSQL cluster to increase database capability.

121

JBoss clustering does support high availability and scalability. High availability can

be achieved by fail over to another JBoss node when one of them fails. Scalability can

be achieved by distributing workload to each node in the JBoss cluster. However,

there are some problems associated with the JBoss cluster implementation.

Load balancing is a big problem in high workload. JBoss currently support basically

two types of load balance policy: the default Round Robin and the First Available

load balance policy. Both of them work fine with lower workload but fail to achieve

good balanced load in high workload. A better strategy for load balancing such as

using a dynamic load balance that distributes load based on current workload in each

machine should be tested . A well-balanced workload in the JBoss cluster can

effectively improve the perfonnance of the whole J2EE application.

Resource pooling 1s good way to improve performance by reusmg the existing

resources. JBoss connection pooling is a good example of reusing the database

connections in the connection pool without the need to create and close database

connections for each database call. Thread pooling. which has not been supported by

current JBoss, is a problem for JBoss . Without properly defined thread pooling. such

as the maximum allowed thread for a JBoss, the JBoss can keep on receiving client

requests. If the client numbers are too big, the JBoss will be overloaded reaching a

state that works significantly slower than normal and finally crash. Adding thread

pooling can make JBoss work faster by reusing existing threads. Al so, extra clients

can be put in the queue so that JBoss can work in an efficient way without crashing.

To improve J2EE application performance requires identifying the bottlenecks in the

system, a good program that can give detailed statistics of the system resources usage

will help significantly. Monitoring that performance will enable a more accurate

report of the system resource usage and help to accurately identify the bottlenecks in

the system under test. By further analysing bottlenecks in the system, the application

can be tuned for a better performance.

I expect to achieve a high performance using Beowulf Cluster that is comparable with

that using a mainframe supercomputer. Commercial high performance computers that

122

are designed for J2EE application usually have better hardware such as large RAM

and Cache that can achieve high level of vertical scalability, but a Beowulf Cluster is

usually been built for general purpose computing and with fixed hardware capacity in

each nodes. A careful study needs to be done to identify how these hardware

differences affect the performance output of a test program.

123

Reference:

I. Roman, E. (200 I). Mastering Enterprise JavaBeans (Second Edition). John

Wiley & Sun Inc.

2. Tanenbaum, A .. Van Steen, M. (2002). Distributed Systems: Principles and

Paradigms. Prentice Hall.

3. The Object Management Group (OMG). ··Common Object Request Broker

Architecture: Core Specification", OMG Document: formal/2004-03-12

4. Commonwealth Scientific & Industrial Research Organization (CSIRO).

Evaluating J2EE Application Server:Version 2.1. http :/!," \\W.cmis.csiro.au

5. Cecchet, E. , Marguerite. J .. Zwaenepoel. W. (2002) . Performance and

Scalability of EJB Applications. Rice University.

6. Shirazi. J. (2000) . Java Performance Tuning (2nd Edition)

7. Top 500 computers. //Top 500 web site

8. Yoo, H .. Ko K. (2000). Operating System Performance and Large Servers.

Sun Microsystems. Inc.

9. Singha!, S .. Nguyen. B .. Redpath R. (2002). Building High-Performance

Applications and Services in Java : An Experiential Study. IBM T J. Watson

Research Center

I 0. Mark Baker (ed.) Cluster Computer White Paper, December 2000, to be

downloaded from: http://v,'W\\.clustercomputing.org/cluster \\hitc papcr.pdf

11. Barczak, A., Messom. C.. Johnson. M. (2003). Perfonnance characteristics of

a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer. Research

letters in the Information and Mathematical Sciences in Massey University.

Volume 5, June 2003.

12. Java Management Extensions Instrumentation and Agent Specification, v 1 .2 .

Sun Microsystems.

13. Lindfors, J. , Fleury, M. (2002). JMX: Managing J2EE with Java Management

Extensions. SAM Publishing.

14. Wildenius, M. , Axmark, D. (2002). MySQL Reference Manual. O 'Reilly

Community Press.

15. Worsley, J. , Drake, J. (2002). Practical PostgreSQL (O ' Reilly UNIX).

Command Prompt Inc.

16. MySQL AB. MySQL. http://www.mysgl.com

124

17. PostgreSQL. PostgreSQL documentation. http ://www .postgresql.org

18. Sun Microsystems, Inc . ECperf Specification version I.I.

http ://java.su n .com/ j 'ee/ecperf I

19. Rosanna Lee, Scott Seligman. (2000). JNDI API Tutorial and Reference:

Builing Directory-Enabled Java TM Applications. Sun Microsystems.

20. Smallen, S. ; Crine, W.; Frey, J. ; Berman, F. Combining workstations and

supercomputers to support grid applications: the parallel tomography

experience.Heterogeneous Computing Workshop, 2000. (HCW 2000)

Proceedings. 9th
. 1 May 2000. Pages: 241-252

21. Guest, M.F. , Sherwood, P. (2002). Computational chemistry applications:

performance on high-end and commodity-class computers. In High

Pe,formance Computing Systems and Applications, 2002. Proceedings. 16th

Annual International Symposium on, 16-19 June 2002. Pages 290-30 I.

22. Froidevaux, W. ; Murer, S.; Prater, M. The mainframe as a high-available,

highly scalable CORBA platform. Reliable Distributed Systems, 1999.

Proceedings of the 18th IEEE Symposium on , 19-22 Oct. 1999, Pages 310 -

315

23. Benda, M. Middleware: any client, any server. Internet Computing, IEEE ,

Volume: 1 Issue : 4 , July-Aug. 1997 Pages 94 -96

24. G. Chen, M. Kandemir, N. Vijaykrishnan, M.J.Irwin. PennBench: A

benchmark suite for embedded Java. Penn State University.

http://,-v"v,v.cse.psu.edu/-rn dl

25. Tani , K.; Aoki , T.; Matsuoka, S. ; Ohkura, S. ; Uehara, H.; Aoyagi , T. First

light of the Earth Simulator and its PC cluster applications. Cluster

Computing, 2002. Proceedings. 2002 IEEE International Conference on , 23-

26 Sept. 2002. Pages: 175.

26. Rajan, A.S . Shiwen Hu. Rubio, J. Cache performance in Java virtual

machines: a study of constituent phases. In Workload Characterization, 2002.

WWC-5. 2002 IEEE International Workshop on 25 Nov. 2002. Pages 81 -90.

27. Aridor, Y.; Factor, M.; Teperman, A. cJVM: a single system image of a JVM

on a cluster. Parallel Processing, 1999. Proceedings. 1999 International

Conference on , 21-24 Sept. 1999. Pages 4-11.

28. William Crawford, Jonathan Kaplan. J2EE Design Pattern. O 'REILLY.

125

29. Sterling, T. ; Becker, D.; Warren , M. ; Cwik, T. ; Salmon, J. : Nitzberg, B. An

assessment of Beowulf-class computing for NASA requirements: initial

findings from the first NASA workshop on Beowulf-class clustered computi ng

Aero.space Conference, 1998. Proceedings. , IEEE , Vo lume: 4, 21-28 March

I 998. Pages 367 -3 8 I .

30 . Sterling. T. Launching into the future of commodity cluster computing.

Cluster Computing. 2002. Proceedings. 2002 JEEE International Conference

on, 23-26 Sept. 2002. Pages 345.

3 I. The centra for advanced computing research (CACR).

http: //w,>..v, .cacr.ca I tech .edu/

32. Open Source Initiati ve (OS I). http ://\\,,\\.opensource.org

33. JBoss group. JBoss. http:/i,-\"" .jboss.org

34. ObjectWeb. JOnAS . http ://v,ww.objectwcb.org/

35. Apache Software Foundation. Tomcat. http://www.apache. or~/

36. Microsoft .NET home. http://wv,\,\,.microsoft.com/nct/

37. Scott Stark and the JBoss Group. JBoss Admini stration and Deve lopment.

JBoss Group, LLC.

38. Sacha Labourey, Bill Burke. JBoss Clustering. JBoss Group. LLC.

39. Milanovic , S.; Petrovic, Z. Building the enterprise-wide storage area

network. EUROCON'2001. Trends in Communications. International

Conference on .. Volume I , 4-7 Jul y 200 I. Pages 36 -139.

40. Standard Performance Evaluation Corporation (SPEC). SPECjAppServer.

http:/ /w,\ ,, .spec bench .org

4 I . Apache Software Foundation . Apache Ant. http ://www.apache.org/

42. Hewlett-Packard Company. Netperf. http ://netperf.org

43 . Adabala, S.; Kapadia, N.H. Interfacing wide-area network computing and

cluster management software: Condor, DQS and PBS via PUNCH. High­

Performance Distributed Computing, 2000. Proceedings. The Ninth

International Symposium on, 1-4 Aug. 2000. Pages 306-307.

44. Radhakrishnan, R. ; Vijaykrishnan, N. ; John, L.K. Java runtime systems:

characterization and architectural implications. Computers, IEEE Transactions

on, Volume: 50 Issue: 2 , Feb. 2001. Pages 131-146.

45. Sun Microsystems Inc . Java Virtual Machine (JVM). http :// java.sun.com.

46. Red Hat. Red hat Linux Manuals. http://www.redhat.com

126

47. Intel Corporation. Intel CPU. http://www.intel.com/

48. Luiz A. Barroso, KOUROSH Gharachorloo, Edouard Bugnion. Memory

System Characterization of Commercial Workloads. In Proceeding of the 25th

annual international symposium on computer architecture, pages 3-14, June

1998.

49. Karlsson, M. ; Moore, K.E.; Hagersten, E. ; Wood, D.A. ; Memory system

behavior of Java-based middleware . The Ninth JnternaNona/ Symposium on

High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.

, 8-12 Feb. 2003. Pages 217 -228

50. Emmaunel Cecchet, Julie Marguerite, Mathieu Peltier. C-JDBC User ' s Guide.

French National Institute For Research In Computer Science and Control

(JNRIA)

51. BEA Systems, Inc . Weblogic application server. http: //wv..-·w.bca.com

52. Borland Software Corporation. Borland Enterprise Server, AppServer

Edition. http://www.borland.com

127

