Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

SAME
Structured Analysis Modelling Environment
The Design of an Executable Data Flow Diagram
and Dictionary System

A dissertation presented
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy in Computer Science
at Massey University

Thomas William George Docker

1989

The research reported in this thesis has been an investigation into the use of data
flow diagrams as a prototyping tool for use during the analysis of a sysiem. Data flow
diagrams are one of the three main tools of structured systems analysis (the other two
are a data dictionary, and some means for representing process' logic, such as
minispecs).

The motivation for the research is a perceived need for better tools with which
analysts and end-users can communicate during the requirements gathering process.
Prototyping has been identified by many researchers and practitioners as such a tool.
However, the output from the requirements analysis phase is the specification, which is
a document that should provide the framework for all future developments of the
proposed system (and should evolve with the system). Such a document should be
provably correct. However this is seen as an ideal, and the most that can be hoped for
is a document which contains within it 2 mixture of formality.

Executable data flow diagrams are considered to provide an environment which
serves both as a means for communication between analysts and end-users (as they are
considered relatively easy to understand by end-users), and as a method for providing a
rigorous component of a specification. The rigour comes from the fact that, as
demonstrated in this thesis, data flow diagrams can be given strict operational semantics
based on low level ('fine-grain') data flow systems. This dual focus of executable data
flow diagrams is considered significant.

Given the approach adopted in the research, executable data flow diagrams are
able to provide an informal, flexible framework, with considerable abstraction
capabilities, that can be used to develop executable models of a system. The number of
concepts involved in providing this framework can be small. Apart from data flow
diagrams themselves, the only other component proposed in the research is a system
dictionary in which the definitions of data objects are stored. Procedural details are de-
emphasised by treating the definition of data objects as statements in a single-
assignment programming language during the executon of a model.

To support many of the ideas proposed in the research, a prototype
implementation {(of the prototype tool) has been carried out in Prolog on an Apple
Macintosh. This system has been used to produce results that are included in this
thesis, which demonsirate the general soundness of the research.

I would like to thank Professor Graham Tate, my chief supervisor, who has
provided useful guidance and support over the time taken to carry out and report on the
research discussed here. I would also like to thank Professor Mark Apperley, who as
my second supervisor, provided assistance at a critical time in the production of this
thesis. As well as these, thanks go to Dr John Hudson and Chris Phillips for reading
various portions of this tome. Last, but not least, the support provided by all the
Dockers is much appreciated.

List of figures and tables

Chapter 1: Introduction
1.1 Motivation for the researchc.ooviiiiiiiii i
1.1.1 Methods, methodologies, tools, and techniques............cccounne
1.1.2 Formal specificatons, and formal methodscoooeiiininels
1.1.3 Informal, semi-formal, and formal..............coociiiiiin
1.1.4 Semi-formal techniques in the specification of requirements.........
1.1.5 Software development ENVirONMENLSvvevnivrnreneensereannnn..
1.1.6 The sofiware development process and the software life cycle

1.1.7 Models, executable models, and prototypes ...coovvveveviiianann.,
Prototypes, and prototypingcooveeiiiiieniiiioiaiaiciiiiininnn,
1.2 Objectives of the research. ... e
JONC T B s T o) e 12 L1 | D O O OO TP
1.4 Structure of the diSSETTAtON vvuvie v ineieit i icre e reranr e eaen s
Chapter 2: Structured systems analysis
2.1 INIOAUCHON «.uuett ettt et et e tr e e e neeeanraeaeriatrarennanns
2.2 Component 10018 Of SO A Lo it i e
2.3 Data flow dlagramms. ...vvieieriiii ittt et r e aes
2.3.1 An application hierarchy of data flow diagrams
2.4 Data dicionary

..

iv

xi

Vo T TS e NEe R USTL

10
12
13
14
14
16

CONTENTS v

2.4.1 Defining 4ata ObJeCS . oiriiiii it e e e e rann 24

Data structures and abstractionscoeeieiiiiiiiiiiiiiiiiiinn. 24

2.5 Process ransfommationsoii it 26

2.5.1 Structured English. . 26

2.5.2 Decision 1aDIeS . .ttt e e e e 28

2.5.3 DECISION tBES ..ttt intieniai et it et et ean e st et aaraaassarearannannsrnrns 28

2.6 Combining the 10018 .. .o e et eas 30

2.7 Using SSA in specifying requirementsooiievroiciiieiaiiciaanencnnnn 31
2.7.1 The positive features of data flow diagrams

for use in SPeCifying TEQUITSMIEILS ..ovviiii et iireneiernnnrennnenes 31

2.7.2 Common ways of misusing data flow diagrams.......cccceeeevennnne 32

Avoiding procedural details in data flow diagrams.................... 35

Avoiding contro!l and physical details in data flow diagrams......... 36

2.8 Adictionary as @ general TESOUITE .t uuvurvrerrneireittisieeernereseeasresennianeres 36

2.9 Executable data flow diagrams.....c.ooiiiiiiiiiie it aeas 38

2,10 SUIMIDIATY L. v vutin e tee e e e e ae ettt e ettt e s e aa e rarnneaenanaannnan 39

Chapter 3: Data flow systems 40

TR 1515 ¢oa b [+ 1 10' o U ORI 40

3.1.1 An initial classification, and some definitionS...cocvieeeeeeieencnns 41

3.2 Data-driven SYSIIMIS o vttt et etieirer ettt ite ettt e earareiaeearanes 42

3.2.1 Conditionals and I00DS ...c.vviiiieiieiii it e e as 45

3.2.2 Karp and Miller — a reference data-driven model..................o... 51

3.2.3 Fine-grain data-driven architecture featurescooeviiiiveinenns 52

Direct communiCalion........c.covuiveiii it ieiiariarancnennas 53

Packet COMMURICAIIONc..iuiiiii ittt renenes 53

Static and dynamic architeCtures......covve v viiieiiiaeaeeianensians 55

Erabling conditions and output conditionS..........c.c.cooieeieiniinans 60

Summary of fine-grain data-driven systermscccieeeevnneinns 61

3.3 Demand-driven SYSIEIMISutiin e i i it e raeaetnanaaenaaaneannreanan 63

3.3.1 String 1edUuCtiON. it e e 64

3.3.2 Graph reduCiON uu i i ieevereiisaraitrastaneetiearaaereisanesiaanns 65

3.3.3 Demand-driven systems and functional languages.................... 67

3.4 Data flow systems and data flow diagrams............ccoiviiiiieiiiiiiniiinians 68

3.4.1 Fine-grain data flow semantics applied to data flow diagrams....... 68

3.4.2 Input to output set mansformatons.oooiiiiiiiiiiiiiia 72

3.4.3 Treating data flow diagrams
and transformations independently........c.ooiiiiiiiiiiiiiciiiaenenes 73

3.5 SUMIMIATY ettt ittt e iatiatenen e rarasrratransseranenesansanrirransannsss . 74

CONTENTS vi

Chapter 4: The data-driven model in SAME 79
L S 6T (o4 L1 Tdo (o’ + EUOURR O 79

4.2 The operational semantcs of a simple
data flow diagram model(DFDM1), and its comparison

with the Karp and Miller data-driven model..........c.coociiviiviiiiniiinnnnnn.. 81
4.2.1 External entities and data StOTES........ccevvevniieecreesireernireesannans 84
EXIernal €RLIIES ..o oo ittt e e 84

DatQ S1OTES. ittt ettt 86

4.3 The operational semantics of DFDM2. ..o 87
4.3.1 Limited import and €XPOTL SEIS.....ccciiiiieeemmmmmniiiairrrenieeeeennnns 88
Limited IMDOYE SEES .. v ee it ii i e e it ae e e itiiasannnnes 88

Conditional generation of data flows and limited export sets 90

4.3.2 Composition and decomposition of group objectsc.c..co..el 93

4.4 Stuctural completeness of data flow diagramsccoceviiiiiiiiiiiiinnn.. 85
4.4.1 Swucturally complete data flow diagramscoevvevviiiiiennnnnnns 97

4.4.2 Strucmrally incomplete data flow diagramscoeeeeeiiiianne. 98

4.4.3 Invalid data flow diagramscooiiiieiiiivirieiiaiiereeeneeaeens 100

4.5 Levels of rtefinement. ..o e 100
4.5.1 Hierarchy of data flow diagramsc.ovvveevveiivnernnreiieeeniannens 101

4.5.2 PrOCESS SOIS cuierentit ettt i e et aee et a e aanaann 102

4.6 Applicationsinthetoplevel model........ooiiiiiiiiiiiiiii i ieeieaaees 103
4.7 Parallelismin the top level model.......oooiiiiii il 105
4.8 DeadloCK S ie it et e e aa e ranan 106
ERP RN Vvl o ok: 1o A OO P U T U PP PUPPRUPPPI 107
Chapter 5: The demand-driven model in SAME 108
T B 69145076 L (o (o] s RO O P TSP UU U OPUTPR 108
5.2 The Bgis IangUage ..o it et 109
5.2.1 Opticns, conditionals and TEPEats ..o.veveiiii i i eiaes 112
077113 U U 112
ConditionalS..ccciiveiiiiiiiiii i 112

REDEALS ..o it it e it e re et a s 113

5.3 Demand-driven interpretation of Agis definitions.........ccoeeiiiiiiiiiniinin. 116
TG T S 0T 1111 ¢ 1 10) o SO U U P PPN 117

TUPLE CONSIIUCIOTS uiniuieiinenniiiiieieiereaiieiesieteraseteaeaiannannnes 118

SEre@m CONSIFUCIONS «.v ittt et i e eintreeaeaeaans 119

Basic 1ype CONSITUCIONS v vvniii et it iiaiiaaiercanrennanas 120

"Don't care” and empty VAIUES.....c..ccoeveeeriiiiiniieeennnnieiriienes 121

RIC TV 87 ¢ s (o) ¢ 1T U U SO OOPOPS 122

CONTENTS vii

5.4 Naming and bBinding...ooii e 123
541 NamMINZ oot i e et aa e 123
Environment, program, and working variables...................... 123
Version control and namingocooiiieieiiiiaiiiiiieiiininnnannn, 124
Naming of objects within SAMEc..coiiiiiiiiiiiiiiiia, 124
542 Binding ..oooiiiiiii i e e 126
5.5 Other characteristics of £gis
and the demand-driven executable environmentooeeieeiiininnnrnnnnnn. 128
5.5.1 Referential ManSparenCy ..ocrivereveevereneiinneanteeiiriierernnennens 128
5.5.2 Call-by-need and lazy evaluation.............coooiveiiiiiiiiiininnn 128
5.5.3 Typing and polymorphism..... ..o i s, 129
Strong, static, and dynamic IyDIRGcocov ittt 130
Polymorphism e 131
5.6 Language design principles and ZgIS......coiiiiiiiiiiiin i e 134
5.6.1 Procedural abstractionoveiiiiiiiniiiiie i 135
5.6.2 Data type COmPIetenessccuiiiait it iciii e eceaneaaaans 135
5.6.3 Declaration cOmesSpondencevvverieeiiiiinineiiiicaniaarrnns, 135
5.7 SUININZLY coeittrtitieiien et et aer e et ean e raetaeaenee e ratansaasarsernses 136
Chapter 6: The complete architecture of SAME 137
6.1 INTOAUCHON 1ot ieieiiit ittt it e et e s e et eaasaaanraaesanarans 137
6.2 A conceptual architecture for SAME e 137
0.2 L S D i e 139
The structure of the dictionary,
and the bindings between ObJECtS....cccoouiiiiiviriiririeineniannnnnnn 140
Data flow diagrams
as views onto data objects in the dictionaryc.ccoevivns 141
0.2, SY P e s 146
Staric definition facilitieS....c...ccciiiiiiiiiiiniiiiiiiniinaanss 146
The external entity interface ..ot aneanns 147
Data flow management (DFM)....cccooeeuiiiiiiiiiiiiiiiiiaiiiininnnn. 148
Multiprocessing and the scheduling of processors 148
6.3 Specifications and eXeCUHONS . .u i uieiiearieittierrareseaeeteitteiiaanriaareansas 149
6.3.1 Specification of applicaton environments,
applications, data flow diagrams, and data objects.................... 149
6.3.2 The execution of an applicAbON.......ivivvvervieieiiiie i raieenes 149
S I VAIEON ittt et et aaas 150
Missing data ODJECES..c...cceiiriieiiniiiiiiiieiieieieiierer e naaaans 150
TYDE CONFLICIS oo ee i et re et neaes 151

Inconsistencies, and their interpret@tionc.....cveeeiieiiieninnns 152

CONTENTS viil

SEIMANLIC @ITOFS .. i i e ar e aees 152
6.4 Datastores in SAME ... i s 152
6.4.1 Methods Of ACCESS. . vttt i iiiiei i it v ae e . 154
O S @01 ¢ i n) o L U O U PP 155
6.4.3 Exceptions handling.......cccoovrimiiiiiiiiii e, 156
6.4.4 NamME MAPPINGS . vttt ittt et et artaneaaaaeaneaaaas 156
6.4.5 Conceptual view of a datad SIOTC.....cccevivieiiiiiriinvierenieneneenean. 159
6.4.6 A data flow view of data StOTeS.....coiviiiiiiiaiiiiiieiiii e e 160
Referential transparenCyoooeeeieiieiies it iiiee s 161
5.5 SUIMIMATY L 1uitiiniitetirterareeratiteetcasaintnreannssannsasosssneenanseeronaensnsnns 162
Chapter 7: An implementation 163
AR R 115 (o 11 Te3 17w) o U U OO 163
7.1.1 Main features of the implementatonccoovviiiiiiianiannne.., 164
7.1.2 major features of the full SAME system

that have not been implemented.......ccooieviiiiiiiiiiiniiniininnns 164

7.2 Anintroduction to the definiton subsystem through
a simple example — finding the real roots of a quadratic equation............... 165
7.2.1 Creating a new applicadon, and drawing a data flow diagram....... 165
7.2.2 Defining data 0bectS.....iiuiiriiii i ea 167
7.2.3 Displaying data objects, their types, and their dependencies......... 168
7.3 Building and running an executable model............oiiiiiiiiiiin 172
7.3.1 Defining an executable process Sef....ocoiiiiiiiieiiiiieiiiiiiraannens 172
7.3.2 Running themodel.....ooviniiii e 173
7.3.3 Controlling the eXeCUtiON PIOCESS «.euuiautetreeneanacerirrrarrannennss 176
7.3.4 Tracing the exercising of amodelcovviiieiiiiiiieniii s 177
7.3.5 Exporting to external entities.....cooviiiiiiiii i naeneens 178
7.3.6 Execution Hme eXCePIiONS .. .ouuuvrereiiaisiaraneiteanersenasernrrrnenes 179
7.3.7 EXCTCIS N PIOCESSES it tetttennernneairsrennrnsressaransaeneeesneernesenn 180
ThE CORIEXE Of Q@ PTOCESS ..o vierveii e ti e e ieeieeanan 181
The fundamental algorithm for creating object instances 182
7.4 Applications with multipie levels of data flow diagrams.......................s. 182
7.4.1 Refining (expleding) data flow diagrams........cccceeereereieinnnenns 183
7.4.2 'Scope’ of ObJectS oo 184
7.4.3 Building an executable model............o.iiiiiiiiiii e ens 134
7.4.4 Hook composed data flow INSINCES ... uviiiie it iiieieeeeianaes 185
7.5 MOIE BITOT EXAMIPIES L tiiiiet ittt et it s et rsrrrerraeaanssaaenneanenss . 186
7.5.1 Missing data object definition.........oovviiiiii i s 186

7.5.2 Noimporters fora data flow......ccccoeiiiiiiiiiiiiiiiiiiirraens 187

CONTENTS x

7.6 Limited import sets, conditional exports, and 100pS...c.ccerincecinirirrinnn. 188
7.7 Prolog as the implementation Ianguageocviviiiaiiiiiiiiiii e 191
AR TN V)¢ o114 F: 1 o PSPPI 192
Chapter 8: An example analysis 193
I IS 9 T i o3 s 1o) URUOT O PO OO PO U OO UUUUUPIPRPN 193

8.2 A SAME model of the order processing example.......ovvvrivvecinenneen.. 194

8.2.1 The application data flow diagram hierarchy.................ooo e, 194
8.2.2 The data object definitions for the application........cccccceeeivinen.. 196
L IRC TN ¢To8 5 pr3 il o) g 010 S PP 201
8.3.1 The data SIores CONENIS . ..vuivvririeneisiiei i iaiie s iieirtaaeaans 202
8.3.2 Selected details from the development of the first prototype......... 202
8.4 The SeCONd PrOtOLYPE tovverieirtieterereteeanrerasiararettasttirstiesienreanesnnas 211
s N H 0016975 4 OO TP PP 216
Chapter 9: Alternative archifectures 219
0.1 INITOAUCHON e tueintnieenn it eteaetant vavenetcne et rnssatssessaentanenneaaeeanaann 219
6.2 Other executable coarse-grain data flow schemes.....cccocvieiveiiiiianiniannnees, 220
$5.2.1 The LGDF approach of Babb....ccoiiviiiiiiiricciiccvens 220
$.2.2 The Ada information management system
prototyping environment of Burns and Kirkham........................ 222
9.2.3 The DataLink environment of STONEoovvviiiiiiiiiiiiiiiiaiieen, 223
9.3 Structured Analysis Simulated Environment {SASE)ooiiiiiiiiiiiiian... 224
0.3,] ME T A i i e ettt e et et ea e e a e eas 225
9.3.2 The SASE process sub-SyStem .c..oiiiiiiiiiiiiiiiie e, 226
9.3.3 SASE as a means for building implementation models................. 227
0.4 Comparative SUIMLITATY ... ouvuuiuansseiinseiesareosernsaarsrarasessasansiassisisonaeos 227
8.5 Networks of von Neumann SySterms e i i iaiceiiciareaae g aaneanan 226
O 6 SUMIMIATY o.iienitiieiiines et annaees e rassneesasnenseaannaneseosraanteaarnssrassrerenns 231
Chapter 10: Conclusions and further research 232
10.1 Summary and concluSIonS..iviiviiiviiviiiii e 232
10.1.1 Objectives of theresearchc.ocoviiiiiiiiiiiiiiiiir e 233
10.1.2 That the executabie model be
rigorous enough to form part of the specificationcoocceae. 233
10.1.3 That the tool should have
a small number of (simple) COnCEePLS. .. .oivviiai it 234
10.1.4 That procedural details should be de-emphasised 234

10.1.5 That the tool should incorporate
high levels of abstraction in a relatively simple manner................ 234

CONTENTS

10.1.6 That the tool should make effective use of graphics....................235
10.1.7 That the tool should provide 'soft’' recovery from emors.............. 235
10.1.8 That the tool should be able to execute ‘incomplete’ models.......... 236
10.1.9 Primary ObjeCtiVe . ..ooiiiiiii e e 237
10,2 FUurther TeSearCh.. ittt e e vt s aanas 237
Glossary 239

Bibliography 257

Figures

1.1

2.1

2.2

2.3
2.4
2.5

2.6

2.7

2.8
2.9
2.10

2.11

2.12

The waterfalt model of the software life cycle,

showing the overlapping of Stages.....oviv v 12
Comparison of the Gane and Sarson,

and De Marco data flow diagram notationsS........ccereesnverecreciinnereseeces 18
Context, or Level 0, data flow diagram

for an order ProCesSINg SYSEIT .. ue et it ciitet vt et viras e eeseaneanaoaeanasn 20
Level 1 refinement of process ORDER PROCESSING . «..uvvvrvyeavsruncinerenssriinas 21
Level 2 refinement of process PRODUCE INVOICE...cc.cccueuierirccrvenceernenaaeee 22
The hierarchy of processes for the order processing

application modelled in Figures 2.2 10 2.4 ...oviiivnriiiiiiiii i niniaanees 22
A possible data structure hierarchy of the INVOICE

data flow shown in Figures 2.2 10 2.4 . ..viiiiiiime e cvnnns 24
A structured English minispec for calculating the

STALUS Of & CUSIOMIET ...ttt e s s e e e e 27
A decision table for calculating the status of a customer..............ooeie. 28
A decision tree for calculating the status of a CUSIOMeTvviveviiriiiironinanns 29

An integrated view of three tools described in Section 2.5,
showing how they combine to form a logical model

OF @ APPHCAION - .. ettt ettt et et aa s 30
Excerpt from a 'loose’ data flow diagram

in Wasserman e @l [WPSB0] .ot 33
Excerpt from a 'loose’ data flow diagram in Booch [Bo86}0, 34

xi

FIGURES AND TABLES X1

31

3.2

3.3

3.4

3.5
3.6

3.7
3.8
39

3.10

312

3.13

3.14
3.15

3.16
3.17
3.18

3.19

3.20
3.21
4.1
4.2
4.3
4.4

4.5

4.6

Data dependency graph for finding the (real) roots

o) S W [F: U § -1 5 1 3 U OSSN 43
Data flow graph for finding the (real) roots

Of 8 QUAATALIC. ... iuiiiiii ettt r e e e e e e et eas 44
A data-driven program for finding the (real)

TOOLS Of @ QUAGTATIC . .+ vvv i ietvan it teas e e e ettt e vae e sareteaesaaenaannn 45
A data flow graph for the conditional

ifx>ythen a:=vielse a = v2.. s 46
A cyclic data flow graph for calculating the factorial of N....................... 47
The general structure of a 'safe’ while-loop

Mmadata flow GTaph ... i e e 48
The occurrence of deadlock in a data-driven program graph..........coooeee.. 49
The occurrence of a race ConAItION ..ooveveinnvrriii it ceecieaas 50

The functional structure of a processing element
in a token storing data-driVen SYSIeITL. ..uueiveeir it iaiaeiieicitarneevneeennnns 54

The functional structure of a processing element
in a token matching data-driven SYSteImM....cvovvioiioiiiiinniiiiicins 55

A conceptual snapshot of an Id data flow program
showing the token <u.c.s.i, 4> on the arc connected

to input port 2 of the insouction {aCAVILY) S...ovviiiiiiiiiiiiiiiiiiiinnaes 57
A data flow graph for the processing of the loop by

(1T U111 g) = Lo U PP PPN 59
A categorisation of data-driven machines. The machines

discussed in this chapter are shown in the rectangles. ...l 61
A demand-driven program for finding the (real)

TOOS Of @ QUAGTALIC . o ev ittt ittt et r e e er e e s crernrennens 63
A string reduction execution sequence for the part of

the program in Figure 3.14 which finds the first root........ccocvivveeniiinenns 64
A graph reduction program corresponding to Figure 3.14ceeeens 66
The program graph of Figure 3.16 with reverse pointersooevenn... 67
Level 1 data flow diagram, and data dictionary definitions

for finding the (real) roots of a quadratic equationccovevviievviinnnnns 69
Level 1 data flow diagram for finding the (real) roots of a

quadratic APPHCALIONuviiiteiiiiia ittt e re e rerenner e aa e 70
Accessing the data store CUSTOMERS using CUST # as the key................... 71
Processing one COURSE_CODE against multiple STUDENT # tokens.............. 71
Level O data flow diagram for the order processing exampleoovvvvennin. 80
Level 1 data flow GIagram.......eeeoe it ie i e e e s eanaaees 80
Level 2 data flow diagram for process PRODUCEINVOICE.vveinrnnennrennns g0

Data flow diagram hierarchy for the order processing
application, showing the leaf processes shadedo.oovviviiiiiiiiinnnne 80

External entity e1, CUSTOMER, as the set
{INVOICE, ORDER_DETAILS UNFILLABLE_ORDER} of phantom nodes................ 86

An exarple which shows the decomposition and

FIGURES AND TABLES xiil

composition of data flows in data flow diagrams......cccceeeiieiiiciiiiicennn.. 93
4.7 A structurally incomplete formof Figure 4.2coooiiiiiiiiiiiiiiii 100
4.8 Possible different data flow process explosion rees

created during the analysis of an applicationc.cocoiiiiiiiiiiiiininnninn. .. 101
4.9 Virtual leaf process data flow diagram, 8p, for the

order processing applCationcciiiiiiiiiiiiii i i e e aaas 104
4.10 A snapshot of order processing ransaction hiStoriesooceevviiiniienann.., 105
5.1 Dictionary definitons relating tO INVOICEvvvreerieveieiaineevaieseansnnennns 110
5.2 EXample NVOICEciiiiii it ittt e rart v e s e e e r e aaaaas 114
5.3 Dependencies graph for INVOICEviiiiivetiie i s ier v veerein e e rereeeenaanas 117
5.5 The identity funcdon id implemented in four langnages that

support parametric polymorphisSmu. i 132
6.1 A conceptual architecture for SAMEo e 138
6.2 Dictionary definitions relating to the objects in

process 3, PRODUCE _INVOICE....ciiiiiuemerueiiniriseriseninreaerneeenesencnannns 139
6.3 Anexample invoice corresponding 1o the definitions

1N FIgUIE 6.2 ottt ittt e et i e e r e ae v e 140
6.4 Data object dependencies in process 3, PRODUCEINVOICE . ..iuviiieaniiniennnn. 142
6.5 Data object dependencies in the refinement

10 Process 3, PRODUCE INVOICE .vvu.vrtarunrunsinsuineneineainesaeinesnsnnvenenns 143
6,6 Using an exampie to show the associations (bindings)

between 0bJeCtS IN ST D Lou ittt iiirer ittt aas 145
6.7 Accessing the data store CUSTOMERS using CUST #asthekey.......c..vvevennn. 154

6.8 Adding a 'control’ dimension to a data flow diagram
in which the keys for accessing data store tuples
(among other things) can be specifiedccoooiiiiiiii i, 155

6.9 Part of a data flow diagram implicitly showing multiple data
flows referencing the same data store object

(not necessarily the SAme INStANCE) ... oiiiiiiiiiirscverreieirrereerneianeanns 158
6.10 A conceptual view of a SAME data SIOre......ocovviiivieiiiiiiiieianeereaans 160
7.1 Naming an apPliCAtOI ... e e iieieeeiie it iattaaiiiaseectrrreertrsenerraeerrnnss 165
7.2 AlLevel Odata flow diagram in the manner of Figure 3.18l 166
7.3 The structural details of the data flow diagram in Figure 7.2coooovvenn.es 167
7.4 Defining the data object coefficients to be the tuple (a, b, ¢).vrennnn. 167
7.5 A dialogue containing a menu for

selecting the data objects to disPlay .oovviiiiviiiiriiiiiieriir i i e en e 169
7.6 Display of all data objects currently in the dictionarycocvvieiiiiieiinnnns 169
7.7 The internal representation of data object definitions

for the roots exXample. e 169
7.8 Redundant rhs facts which are used

extensively in displaying data object dependencies........coovvieeereiiiennnn.. 170
7.9 A listing of data objects showing their (inferred) types.........covviveiiniinn.s 170

7.10 Arequest to display the dependency graph, to the selected
depth, of the data objects depended on by data flow

FIGURES AND TABLES Xiv

roots In Process £indRootsOEQLAdratiC i nesseesereineene- 1 71
7.11 Data dependency graph for data flow rocts in process

findRooLsOf0UuadratiC e e e e 172
7.12 Specifying the executable model process Set...coveuviiiiiiiiiiiiineann... 173
7.13 Request for user to supply external entity generated

data flOW INSTANCES .ottt et e et ii it iae e aatae e rnerane e 173
7.14 Sequence of requests for sub-object values

for an instance of data flow coefficients...ccccccimiiiiioniininiaens 176
7.15 An example full trace........ooiii 177
7.16 The executable model representation

Of external entity analy st ..ciocieiiiiiiieiiiiiierieeiaeiriciaaenenaenaans 177
7.17 An example error display prompt generated by SAME during the

creation of an instance of the data object root 1. Particularly, a

request to find the square root of -15 has been trapped.

(The user has supplied a further invalid value. See Figure 7.18.).............. 178
7.18 Following the user supplying an invalid value (as shown in

Figure 7.17), SAME displays an error message. The user

must supply a positive number before SAME will contdnue 179
7.19 Messages generated under full trace which relate to the two

attemnpts to find the square root of a negative number.........ccccceeee 179
7.20 The data flow reduction graph for data flow roots evaluated in the

context of process £indRoot sOfQUAATatic cuevierieerceiiiareeerenncnnns 181
7.21 A particular refinement of the process findRootsOfQuadratic

into the two processes computeRoot) and computeRoot2. .. u.e..... 183
7.22 A particular refinement of the process findRoots0fQuadratic

into the two processes computeRootl and computeRoot2 .. vvreiiuannn. 184
7.23 A request to form an application mode! from the leaf level

processes that are descendants of the process findRootsOfQuadratic

{namely the two processes computeRoot and computeRoOE2) iniecnnns 185
7.24 An instance of the data flow roots exported to

the external entity analyst by the hook root s, 185
7.25 Amendments to data object definitions for

the roots application, with an omission in

the definition of the Object sgr..vivievriei i, 186
7.26 An error dialogue of the same general format as Figure 7.17,

which indicates that no value could be found nor generated

fOr datd ObDJECE S QI .cieiiiaiiiiiiii ittt e e e e e e e en 187
7.27 Following the declaration of the data object sqr as

sqre=sqri(bsq - fourAC), the object dependencies will be as shown.... veeena 187
7.28 A different refinement of process findRootsOfQuadratic....cccee.... 188
7.29 An ermor dialogue stating that

no importers exist for data flow nil...cci . 188
7.30 A data flow diagram which contains aloop...oovvevviiiiiiienieni s 189

FIGURES AND TABLES XV

7.31 Data object definitions for the looping application;
and AN EXECULION ITACE.iiiuiervrirrnrrntiueenesiernreasenastsecnnemnnrnsinsenmnranns 190

7.32 Prompt to the user to define the action to take when a
currency mismatch oceurs, in the case where the automatic

fiushing of instances has been turned off.....c.c.cccciiiiiiiinnniiniiniininn, 191
8.1 Level 0 data flow diagram for the revised

order processing apPHCATONo.tisirieiii et et e aainannaarananans 194
8.2 Level | refinement of checkANdFill0Eder .oivververirerreaiiniinaniaraneannnns 195
8.3 Level 1 refinement Of produee Invo i G aeeeriaaaasnresarearenrnans 196
8.4 Data object defiNitiONS .iiiiieiiiiiiiieiiiici e eicert e e e aans 200
8.5 Datadependency graph for data object invoice .iocooiviiiiiiiniiiiiiiiiennn. 200
8.6 Data object definitions which

differ from those given In Figure 8.4 . ..ot eeeaes 201
8.7 Data store tuples used in the first prototype ...c..ovvieiiiiiiiiveeniicieeeens 202

8.8 Data store access details for constructing
instances of data flow customer details......covviiiiiiiiiiiaiininiiannn,.. 204

8.9 The objects tc be mapped between
the data flow adjusted credit and the

customer data store tuple component cust_available credita... 208
8.10 The generation of an invalid instance of cust_available credit........... 210
8.11 The instance of rejected order,

which correctly identifies the customer's lack of available credit............... 211
8.12 Revised form of Figure 8.1, with

the data store parts replaced by the external entity parts...........cvuveeennn, 212
8.13 Aninstance of data object updated_part details

which contains muitiple parts remainingINSIANCESvvieriveriinnrnnnn. 215
8.14 Aninstance of data object invoice

whicl contains multiple line item IMSIANCES ..voeivviiineiiiiiiiiereaeennins 216
9.1 Executable META minispec for

Process p3, PRODUCE INVOICE.. .. uviuuaetieanneeannennennentananaranssensacanss 225
9.2 A conceptual structure for a coarse-grain processing element...................230
Tables
I Important propertics of requirements and

design specifications, as identified by Howden [Ho82a]...ccocovcveiicannnnne 4
II The data dictionary language notation of De Marco......oooovvieiiiiiiiniininns 25
o A comparison of some reported date-driven architectures..........c.o.oceeveiene 62
IV Example tuple instances for specific definitions ... 118
A% Example tuple instances for group object definitionscoeiiiiniiinnns 121
VI Exarnple tuple instances using basic type CONSTUCIOTS vvvuovvvererrviraneneenns 121
VII The possible bindings between dictionary obJeCtS....cuvivvirereerreveeirrennnn, 144

VII A comparison of some coarse-grain data flow schemes................ocoviee 228

Part 1 contains the background material to the research reported in the
dissertation.

In Chapter 1 the motivation for the research is described, along with a statement
of the objectives. The principle objective has been to investigate the use of executable
data flow diagrams as a prototyping tool for use during the analysis phase of the
software life cycle. The approach adopted to achieve this objective is also given.

Chapters 2 and 3 contain discussions of the more important support material. In
Chapter 2 structured systems analysis, whicli is the method that has data flow diagrams
as a component tool, is discussed. Both advantages and disadvantages in the use of
structured systems analysis, and data flow diagrams in particular, are enumerated.

In Chapter 3 low level (fine-grain’) data flow schemes are discussed, and
characteristics which are particularly useful to a high level (‘coarse-grain’) data flow
systernt are 1dentified.

1.1 Motivation for the research

In the design of a software system, the output from a requirements capturing
exercise is the specification, which is a document that contains an abstract computer-
orientated representation of the set of end-user requirements.!

Producing a correct specification is seen to be the key to the successful, cost-
effective development of software systems [Bo76]. There are, however, problems in
knowing when a specification is correct, and even when it is complete; not least
because of the problems of adequately specifying what is required in the first place. In
the context of the specification of requirements, Howden has stated that ({Ho82al],
p. 72):

‘The principle idea in the analysis of requirements specifications is to make sure
that they have certain necessary properties.’

Howden tabulates some of the more important of these properties, included here
as Table I,

Some of the properties, notably completeness, must be viewed as ideals which

cannot be achieved in many software development projects.

I Terms in bold rype are included in the Glossary. In generai, the term ‘end-user(s) will refer to the potential
users of the system being analysed, who ere considered not to be software developers. The terms "user' and
‘analyst’ are used to refer 1o Lhe person(s} carrying out the analysis. The term "user’ generally appears when
the application of an analysis lechnique, or tool, is being discussed.

CHAPTER 1 — INTRODUCTION 4

Property Comments

Consistency Specifications information must be internally consistent, If
the information is duplicated in different documents,
consistency between copies must be maintained.

Completeness | Specifications must be examined for missing or incomplete
requirements and design information. All specificadon
functions must be described, including important properties

of data.

Necessity Each part of the specified system should be necessary and
not redundant.

Feasibility The specified system should be feasible with existing

hardware and technology.

Correctness In some cases, it 1s possible to compare part of the
specification with an external source for correctness.

Table I: Important properties of requirements and design specifications,
as identified by Howden [Ho82a].

Parnas and Clements enumerated various problems in the area of software

design [PC&5]. Some of particular interest, are couched below in requirements

specification terms:

In most cases the end-users do not know exactly what they want and are unable to
state what they do know,

Even if the initial requirements were known, other requirements usually surface as
progress is made in the development of the software.

Even if all of the relevant facts had been elicited and included in the specification,
experience shows that human beings are unable to fully comprehend the plethora of
details that must be taken into account in order to progress into the design and
building of a correct system.

Even if all of the detail needed could be mastered, all but the most tivial projects are
subject to change for external reasons. Some of those changes may invalidate
pIEVIOuS requirements.

Human errors can only be avoided if one can aveid the use of humans. No matter
how rational the requirements specification process, no matter how well the relevant

facts have been collected and organised, errors will be made.

CHAPTER 1 - INTRODUCTION 3

These problems suggest that as requirements are likely to change during
analysis, flexibility should exist in the methods and tools used to capture requirements.
As well, consistency needs to be maintained. In fact, checking for consistency is seen
to be the property in Table I which is the most achievable using computer tools. Given
the right tools, computers are particularly good at this type of task.

The correct specification of requirements is seen as the key to the successful,
cost-effective development of software systems [Bo76]. It is also generally agreed that
to be able to validate requirements, they must be rigorously specified. As Davis
succinctly puts it ({Da88], p. 1100):

'‘Use a formal technique when you cannot dafford to have the requirement
misunderstood.

In an attempt to improve both the capturing of requirements, and the production
of a specification document that can be effectively used throughout the software
development process, considerable effort is being expended on developing formal
specification methods (see, for example, {GT7%a, BO85, Wal3, Heg6, JoB6, ZS86]).
However, most, if not all, of the techniques proposed use formal methods and
languages which require a reasonably sophisticated level of mathematical maturity to be
fully understood. This tends to make them unsuitable as communications media
between analysts and most end users; which is unfortunate, as a further major
perceived parameter in the requirements capturing process is the active involvement of
end users (see, for example, [Al84, BW79, CM&3, De78, Ea82, 1084, MC83, Ri86,
SP88]).

Speaking specifically about understanding software requirements specifications,
Davis has observed that ([Da&8], p. 1112):

‘understandability appears to be inversely proportional to the level of
complexity and formality present.

There can be seen to be a tension between the need on the one hand for an
unambiguous, succinct, specification of requirements as the output from the analysis
process, and (at the least) the need to validate those requirements with end users.

Part of the purpose of the research reported herein has been an attempt to
address some aspects of this tension by adding formality, in the shape of a strict syntax
and operational semantics, to the data flow diagrams of structured systems
analysis (§SA), a semi-formal technique, to produce a computer-assisted
software engineering (CASE) prototyping tocl. Data flow diagrams are considered
relatively easy to understand [De78, Ri86, YBCE88], yet they have the potential to be
viewed more formally as high level data flow program graphs [Ch79].

The subsequent sections of this introduction more fully develop some of the

background to the research.

CHAPTER 1 - INTRODUCTION 6

1.1.1 Methods, methodologies, tools, and techniques

Quite often confusion exists in the use of the words 'method’ and
'methodology’. The sense in which they are used in this thesis is as follows
[Fr80, MMB5]:

Definition: A method consists of prescriptions for carrying out a certain type
of work process; that is, it 1s a way of doing something. ¢

Definition: A methodology is a collection of methods and tools, along with
the management and human-factors procedures necessary to their
application. *

Also 'tool' is used with a particular meaning [Fr80, MMZ&5]:

Definition: A tool is an aid, such as a program, a language, or documentation
forms, that helps in the use of a method. ¢

Frequently, in this dissertation, the term 'technique' appears. It is used informally
as an abstraction. For example, a set of objects may be described as 'techniques’ when,
say, some of them are 'methods’ and the rest are (parts of) 'methodologies’.

1.1.2 Formal specifications, and formal methods

The application of formal methods is viewed by many as being necessary for
the correct and unambiguous specification of objects (see, for example, [AP87, GMR6,
Jo86, LZ77]). Consequently considerable effort is being spent on research in this area.
'Formal methods' and 'formal specifications' are widely used terms that imply the use
of strict syntax and semantics in the description of objects; whether the objects are
statements, programs, requirements, or something else.,

The following definitions make clear what is meant by 'formal specification’
and the related term ‘formal method":

Definition: A formal specification is a specification which has been
defined completely in a language that is mathematically precise in
both syntax and semantics. ¢+

Definition: A formal method is a method with a rigorous mathematical
basis. *

CHAPTER 1 - INTRODUCTION 7

The extent to which formal methods can be successfully used is unknown.
Although some formal methods have been used to specify significant applications
[Su82, STER2], the correctness of the specifications has not been proved, and, in some
cases, has been shown to be incorrect {Na82]. As discussed in the next section, it
appears that the most that can be hoped for in practical situations is a specification in
which amenable parts of the requirements have been formally specified [Na82]. Any
specification which is not a formal specification will be described simply as a
'specification’. The integration of formal and informal specifications is considered
necessary. As Gehani and McGetirick have put it ((GM86], p. vii):

‘Formal specifications do not render informal specifications obsolete or
irrelevant; although they [formal specifications] can be checked to some degree
for completeness, redundancy and ambiguity, and can be used in program
verification, they are often hard to read and understand. Consequently, informal
specifications are still necessary as an aid to the understanding of the system

being designed, informal and formal specifications complement each other.'

1.1.3 Informal, semi-formal, and formal

The problems with proving the correctness and general applicability of formal
methods has led to the view that formal methods cannot be used without recourse to
informal techniques for specifying requirements {(nor even for specifying programs)
[MM835, Na82, Fe88). Naur has suggested that ‘formality' should be viewed as an
extension of 'informality' [Na82)]. He states that

'the meaning of any expression in formal mode depends entirely on a context
which can only be described informally, the meaning of the formal mode having
been introduced by means of informal statements.

Naur, himself, quotes from Zemanek discussing software development [Ze80]:

'No formalism makes any sense in itself; no formal structure has a meaning
unless it is related to an informal environment (...} the beginning and the end of
every task in the real world is informal.

The view of Naur is supported by Mathiassen and Munk-Madsen, who have
taken Naur's arguments, which were directed at program development, and applied
them to the more general area of systems development [MMB85]. Both the views of
Naur, and Mathiassen and Munk-Madsen, are supported here. As a consequence, the
following are offered as definitions for 'informal’ and 'formal' in the context of
describing some object:

Definition: The informal description of an object is a description that is done
without recourse to formal methods. .

CHAPTER 1 — INTRODUCTION 8

Definition: The formal description of an object is a description that is done
with recourse to formal methods. .

Note that a 'formal’ description could include 'informal’ descriptions within it,
as it is 'with recourse to' rather than 'solely with'. The counter-argument does not
apply: an 'informal' description contains no 'formal' descriptions within it.

It is possible to perceive of a spectrum of descriptions, going from informal at
one end, to totally formal at the other end. This is in keeping with Naur's proposals
[Na&2].

The term 'semi-formal' is used loosely to describe any technique that is formal,
but with distinctly informal compoenents, An example would be the structure charts
of structured design when interpreted using the algebraic approach(es) of Tse [St81,
Ts85, Ts85a, Ts86, Ts&7, YC79].

1.1.4 Semi-formal techniques in
the specification of requirements

Techniques of an informal nature for specifying requirements abound. The rmost
widely used is narrative text, but this frequently results in large, ambiguous, and
incomplete specifications that lead to communications problems between analysts and
end users; particularly when attempts are made to validate requirements [De78, Da88].
Starting in the early 197('s, semi-formal structured techniques have been
developed over the years in an attempt to improve both the approach to analysis, and to
place the emphasis more on the graphical presentation of information as a better method
of communications. Included in the structured approaches for the capturing and
specification of requirements are, Structured Analysis and Design Technique (SADT)
[Co85, Ro77, RS77, Di78, Th78], Information Systems work and Analysis of
Changes (ISAC) [BHE84, LGNS1, Lu82], Software Requirements Engineering
Methodology (SREM) [Al77, Al78, AD81, BBD77] which is more suited to embedded
real-time systems, and the class of techniques called 'structured systems analysis'
(SSA) [CB82, De78, GS79, WeS0L.

All of these have quite powerful abstraction capabilities which allow, for
example, objects in diagrams to be exploded into lower level diagrams in a top-down
fashion.

SSA techniques are the most widely publicised and used technigues, and are
based on data flow diagrams, which show the system in terms of data precedences: a
data-orientated approach. The SSA techniques also happen to be the most informal
of those mentoned. It is impossible to say whether their popularity is due to their
relative simplicity, although some statistical evidence does exist to suggest that this may

CHAPTER 1 — INTRODUCTION 9

be the case: in comparing the use of data flow diagrams and IDEFo (the graphically-

based function modelling part of IDEF, a component of SADT), Yadav et al. conciuded

that data flow diagrams appear slightly easter to use [YBC8Z].

Though the graphical features of the SSA techniques are seen to aid
communications between analysts and end users, they lack the necessary level of rigour
to satisfactorily facihitate the validation of requirements {Fr80, Ri86]. The lack of rigour
in these techniques stems from their generally free interpretation, which is due more to
a lack of strict semantics than a lack of syntax. Unfortunately, this lack of rigour invites
misuse [Do87]. It also leads to the possibility of incorrect, and ambiguous
specifications. Consequently, as a specification technique, SSA suffers from many of
the problems of narrative text. This is not surprising, because SSA still places a
reasonably heavy reliance on the use of textual data, although its syntax is generally,
but not completely, more formal than narrative text.

Some of the weaknesses of SSA are discussed in more detail in Chapter 2. At
this time it should be noted that they exist, and that an attempt to add formality to SSA
can be usefully applied to minimising the dependence on purely textual data. The means
used to achieve this minimisation is sketched out in Section 1.3, while the details form
the subject matter of Part IT of this dissertation.

SSA lias three major component tools which are of particular relevance in the
dissertation. These are:

+ Data flow diagrams — An application is modelled by a hierarchy of data flow
diagrams which show how data flows through the application.

+ Data dictionary — The descripton of data objects, and the transformations carried out
on them (by processes), are maintained in a data dictionary.

» Process specifications — For each bottom level (leaf) process, its process
specification (the process logic) describes how the data which flows into the
process is transformed into the data which flows out of the process.

These and the other component tools will be discussed more fully in Chapter 2.

1.1.5 Software development enviromments

In Iocking to define any tool for the capturing of requirements, consideration
should be given to the environment in which that tool will be focussed. The current
approach in software engineering is to develop tools within a framework known as
a software development environment (SDE) SDEs are also known as
software engineering environments (SEEs), and integrated project (or
program) support environments (IPSEs).

CHAPTER 1 — INTRODUCTION 10

The fundamental purpose of a SDE is to provide a computer-based set of
methods and tools — a methodology — to support the soffware (development)
process. The existence of a cohesive methodology is fundamental, as this
encapsulates the process model used in software development. In Dowson's words
([Do86], p. 6),

'We take the position that an unstructured "bag of tools” does not qualify as a
software development environment.'

Attempts have been made to define environments made up from existing
methods and tools. Howden discusses the architecture for four possible SDEs, each
based on the waterfall model of the software process [Ho82]. The differences between
the environments is the number and sophistication of the methods and tools included.
What is apparent is the large number of 'discontinuities’ which exist between the
different tools in each proposed environment. These discontinuities have to be bridged
generally by manual means, which makes them error-prone and unsatisfactory for the
development of other than small software projects.

The following definition emphasises the need for integration ({WD86], p. 5):

Definition: A software development environment is a coordinated
collection of software tools organised to support some approach to
software development or conform to some software process
model. +

It is argued that the real value of a SDE comes from the integraton between the
various methods and tools that it uses. This integration is provided by a specialised
data base environment. Conceptually, these specialised data bases have much in
common with the more recent of the data dictionary systems, which also aim to
provide an integrated view, and conrrel, of {all} the objects in some context (whether,

say, the context is an enterprise, or some division or department of that enterprise).

1.1.6 The software development process
and the software life cycle

The underlying structure of a SDE is the particular software process
development model adopted by the architects of the SDE. The purpose of this section is
to determine what a process development model is, and whether a standard model and,
hence, SDE exists into which the proposed tool could be usefully placed.

The software development process (also called the software life cycle) is

frequently shown as consisting of a number of stages, such as requirements, design,

CHAPTER 1 — INTRODUCTION 11

implementation, testing, and operation and maintenance [So85].2 The activities carried

out in each of these stages is described by Sommerville as ([So85], p. 3):

Requirements analysis and definition — The system's services, constraints and goals
are established by consultation with system end-users. Once they have been agreed,
they must be defined in a2 manner which is understandable by both end-users and
development staff.
System and software design — Using the requirements definition as a base, the
requirements are partitioned to either hardware or software systems. This process is
termed systems design. Software design is the process of representing the functions
of each software system in a manner which may be readily transformed to one or
MOTe COMpuUter programs.
Implementation and unit testing — During this stage, the software design is realised
as a set of programs or program units which are written in some executable
programming language. Unit testing involves verifying that each unit meets its
specification.
System testing — The individual program units or programs are integrated and tested
as a complete system to ensure that the software requirements have been met. After
testing, the software system is delivered to the customer.
Operation and maintenance — Normally (aithough not necessarily) this is the longest
life cycle phase. The sysiem is installed and put into practical use. The activity of
maintenance involves comrecting errors which were not discovered in eatlier stages of
the life cycle, improving the implementation of system units and enhancing the
system's services as new requirements are perceived.

Figure 1.1 shows the waterfall model view of this process, including:
The overlap between the stages — There are no 'clean' division points between the
activities across stages.
The feedback (and feed-forward) between the pre-operational development stages —
The next stage in the process is dependent on work carried out in the previous
stage(s) (feed-forward). Identifying errors, or accounting for changes, etc., require
changes to previous stages (feedback).
The feedback from the operational and maintenance stages — Once an application
becomes live, errors may surface, or changes be required over time, which lead to a
feedback to earlier stages.

It is possible to define ‘software development process' and ‘software life cycle' to have significantly
different rueanings. Compare, for example, the definition for ‘software (development) process in the
Glossary with the following definition for 'life cycle' ((MRY86], p. 83): 'The system life cycle is the
period of time from the initial perception of need for a software version to when it is removed from
service'.

CHAPTER 1 — INTRODUCTION 12

requirements e—
— design ;ﬁ Operarions
“—{ implementation %= and
— testing maintenance

Figure 1.1: The waterfall model of the software life cycle,
showing the overlapping of stages
(based on Sommerville [S085], Figs 1.1 and 1.2).

The end points of the stages in the waterfall model are generally seen to coincide
with major documentation and review points. They also tend to correspond with points
at which major changes occur in the techniques and or environments used for the
development, such as at the interface between (structured) design and implementation,
where a switch is made from using two-dimensional structure charts to using a one-
dimensional programming language [YC79].

The model in Figure 1.1 is extremely abstract, and a number of important
features have been omitted, including:

+ An indication of parallel activities within phases — Invariably, on other than the
smallest projects, developers work in tandem. This is certainly true of the
implementation phase, when a number of programmers will likely be concurrently
developing modules.

+ An indication of whether or not prototyping is supported, and if so, where.

+ An explicit indication of where verification and validation take place.

Figure 1.1 highlights a current major problem in the description of the software
process: the lack of a definitive process metamodel with which software process
models can be described, and checked for comrectness and completeness [PCS8S5,
WD86]. However, as this is a major research topic in itself, it will not be pursued
further here. Instead, the waterfall model of Figure 1.1 is accepted as adequate for the
purposes of the research reported herein.

1.1.7 Models, executable models, and prototypes
The use of models in analysis is now seen as fundamental. According to Quade

([Qu80], p. 31):
‘Analysis without some sort of model, explicit or otherwise, is impossible.

CHAPTER 1 —~ INTRODUCTION 13

The following defines what a 'model’ is understood to be:

Definition. A model of an object is a representation which specifies some but
not all of the attributes of the object. *

In the development of computer software, models are seen to be most useful if

they are executable {Ri86].

Definition: A dynamic model of an object 1s a model which can be made to
carry out a set of operations, possibly in some specified
sequence. ¢+

An 'executable model' is merely a dynamic model, which in the context of

software development specifies a software model that can be exercised on a computer.

Prototypes, and prototyping
As Carey and Mason have observed (CM&E3, p. 177), in computing:
'there appears to be little if any agreement on what a prototype is.'
The following simple definition is considered adequate:

Definition: A prototype is a model. ¢

A prototype is either an abstraction of the object it is modelling, a 'mock-up, or
it is a detailed representation of part of the object. SSA provides good facilities for
modelling parts of systems, as described in Chapter 2.

By implication, the medium used to construct a prototype need not be the same
as that used for the final object. A prototype of a menu system, for example, could be
constructed using the transition diagram interpreter (TDI) part of RAPID/USE
[WPS86], and then the real system could be constructed as part of a larger integrated
project using a language such as PL/L.

Definition: Prototyping is a method for building and evaluating prototypes. ¢

The purpose of prototyping, as it is seen here, is the same as that stated by
Carey and Mason ([CM83], p. 180):
'‘Our focus in this paper is on improving the final information system product
through use of prototypes to illuminate more clearly the [end-luser’s real

needs.

CHAPTER 1 - INTRODUCTION 14

This view of prototyping, as a productive way for analysts and end-users to
interact, is commonly held throughout the literature (see, for example, {AHNE2, Al184,
BW79, CM83, Ea82, TH87, JS85, KS85, MCR3, NJ82, SP88]). No other purpose
for prototyping is stressed here, although claims have been made for it as a replacement
for the 'classical' sofware development process [NJ82]. See, for example, the
discussion and references in Carey and Mason {CM&3].

Different approaches to prototyping in computing have been enumerated [IHE7,
JS85]. Ince and Hekmatpour, provide the following taxonomy {[IH87], p. 9):

s Throw-it-away’ prototyping — Which involves the production of an early version of
a software system during requirements analysis. This is then used as a learning
medium between the analyst and the end-user during the process of requirements
elicitation and specification.

« Incremental prototyping — Where a system is developed one section at a time, but
within a single overall software design.

+ Evolutionary prototyping — Where a system is developed gradually to allow it to
adapt to the inevitable changes that take place within an enterprise.

1.2 Objectives of the research

The principal objective of the research, has been to investigate the use of
executable data flow diagrams as a prototyping tool during the analysis phase of the
software life cycle.

Implicit in this objective are the following further objectives:
+ That the executable model, which is a significant output of a prototyping exercise, be

rigorous enough to form part of the specification, if required.

» That to serve as an adeguate communications medium between analysts and end-

users, the tool should:

have a small number of (simple) concepts;

— de-emphasise procedural details;

incorporate high levels of abstraction in a relatively simple manner;
— make effective use of graphics.
« To be an effective prototyping tool at the analysis stage, as well as the list of features
just given, the tool should:
— provide ‘soft’ recovery from errors;
- be able to exercise ‘incomplete’ models.

1.3 The approach
In arriving at the objective(s) given in Section 1.2, the following five factors

were identified as of particular importance to the successful capturing of requirerments:

CHAPTER 1 — INTRODUCTION 15

« Active user involvement — This is a long-held view in information systems
development. De Brabander and Thiers cite a paper written in 1959 which proposes
such an activity {DT84]. Active user involvement generally implies the need for
informal and semi-formal methods and tools.

+ The use of graphical techniques in place of textual descriprions, wherever
appropriate — Graphic techniques abound in commerce: PERT charts, pie charts,
histograms, and graphs, are notable examples. At the same time, purely textual
descriptions have been much criticised [Da88, De7§].

+ The use of executable models — Particularly in the form of prototypes, as a means to
illuminate clearly the needs of end-users [Al84, BW79, CM83, Ea82, M(C83, Ri86,
SP88]. A model should be viewed (at the least) as a form of documentation.

« Powerful abstraction capabilities — Analysis is a creative process which has to map
complex real world problems into the specification of solutions [We81].

« A specification should be unambiguous — This implies the existence of strict
semantics in the specification method(s), and ways of avoiding or checking for
contradictions [AP87, Da88, GM&6, Ho82a, Jo86, Rig6].

It was proposed that these factors can be addressed, to a significant degree, by
adding formality to SSA.

Following an initial study into using the three SSA tools mentioned in
Section 1.1.4, the approach adopted has been to specify the architecture for a tool
based on two of those components — data flow diagrams, and the data dictionary — plus
the development of a prototype {of the prototype system) to test out many of the ideas
put forward.

The formality added to the data flow diagrams has three components:

» A formal syntax for specifying data flow diagrams — To ensure that only a consistent
data flow hierarchy can be created, with vahd data flow connectons.

+ An operational semantics for data flow diagrams — These define how a data flow
diagram can be executed.

+ A consistent means of transforming data flows — This is achieved by treating the
definitions of data objects in the dictionary as programming language statements,
when executing data flow diagram processes.

The tool is described as 'semi-formal’. Work to provide a completely formal
‘back-end' is being undertaken separately from the research reported here.

Given the discussion in Section 1.1, the tool has not been fixed to any specific
methodology or, by implication, to any specific SDE or software development process
model. As a consequence of this, the tool can possibly have use beyond the
requirements specification phase. However, this is not argued in the dissertation, but is
suggested, in Chapter 10, as a possible topic for future research.

CHAPTER 1 — INTRODUCTION 16

The tool is not considered a panacea for all the iils bedevelling the specifying of
requirements. Again referring back to the discussions in previous sections, of necessity

it is seen as one of a collection of informal to formal tools for use during analysis.

1.4 Structure of the dissertation

The thesis 1s structured in three parts. Part I contains this introductory chapter,
and two further chapters which survey material relevant to the tool described in Part I

Part IT proposes a design for an executable data flow diagram tool in Chapters 4
to 6. Following this, in Chapter 7, a prototype implementation of the tool is discussed.
Many of the ideas incorporated in the architecture of the executable data flow diagram
environment have been incorporated into this prototype, which has been written in
Prolog. It should be realised that no attempt was made to develop a complete
commercial implementation. Having said this, the prototype source is over 400 Kbytes
in size.

The final chapter in Part II contains a detailed example application developed on
the system described in Chapter 7.

Part III contains two chapters. The first, Chapter 9, discusses other approaches
to the execution of data flow diagrams. Included there is an outline description of a
system that was also developed as part of this research, and is the precursor to the
system described in Part II. Finally Chapter 10 discusses the findings of the research,
and suggests further avenues of investigation.

