
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

SAME
Structured Analysis Modelling Environment

The Design of an Executable Data Flow Diagram
and Dictionary System

A dissertation presented

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy in Computer Science

at Massey University

Thomas William George Docker

1989

The research reported in this thesis has been an investigation into the use of data

flow diagrams as a prototyping tool for use during the analysis of a system. Data flow

diagrams are one of the three main tools of structured systems analysis (the other two

are a data dictionary, and some means for representing process' logic, such as

minispecs).

The motivation for the research is a perceived need for better tools with which

analysts and end-users can communicate during the requirements gathering process.

Prototyping has been identified by many researchers and practitioners as such a tool.

However, the output from the requirements analysis phase is the specification, which is

a document that should provide the framework for all future developments of the

proposed system (and should evolve with the system). Such a document should be

provably correct. However this is seen as an ideal, and the most that can be hoped for

is a document which contains within it a mixture of formality.

Executable data flow diagrams are considered to provide an environment which

serves both as a means for communication between analysts and end-users (as they are

considered relatively easy to understand by end-users), and as a method for providing a

rigorous component of a specification. The rigour comes from the fact that, as

demonstrated in this thesis, data flow diagrams can be given strict operational semantics

based on low level ('fine-grain') data flow systems. This dual focus of executable data

flow diagrams is considered significant.

Given the approach adopted in the research, executable data flow diagrams are

able to provide an informal, flexible framework, with considerable abstraction

capabilities, that can be used to develop executable models of a system. The number of

concepts involved in providing this framework can be small. Apart from data flow

diagrams themselves, the only other component proposed in the research is a system

dictionary in which the definitions of data objects are stored. Procedural details are de­

emphasised by treating the definition of data objects as statements in a single­

assignment programming language during the execution of a model.

To support many of the ideas proposed in the research, a prototype

implementation (of the prototype tool) has been carried out in Prolog on an Apple

Macintosh. This system has been used to produce results that are included in this

thesis, which demonstrate the general soundness of the research.

ii

I would like to thank Professor Graham Tate, my chief supervisor, who has

provided useful guidance and support over the time taken to carry out and report on the

research discussed here. I would also like to thank Professor Mark Apperley, who as

my second supervisor, provided assistance at a critical time in the production of this

thesis. As well as these, thanks go to Dr John Hudson and Chris Phillips for reading

various portions of this tome. Last, but not least, the support provided by all the

Dockers is much appreciated.

ill

List of figures and tables xi

Chapter 1: Introduction 3
1.1 Motivation for the research . 3

1.1.1 Methods, methodologies, tools, and techniques....................... 6

1.1.2 Formal specifications, and formal methods . 6

1.1.3 Informal, semi-formal, and formal...................................... 7

1. 1 .4 Semi-formal techniques in the specification of requirements......... 8

1.1.5 Software development environments . 9

1. 1. 6 The software development process and the software life cycle 10

1.1. 7 Models, executable models, and prototypes . 12

Prototypes, and prototyping . 13

1.2 Objectives of the research.. 14

1. 3 The approach. 14

1.4 Structure of the dissertation... 16

Chapter 2: Structured systems analysis 1 7
2.1 Introduction . 17

2.2 Component tools of SSA.. 18

2. 3 Data flow diagrams... 18

2.3.1 An application hierarchy of data flow diagrams....................... 20

2.4 Data dictionary.. 23

iv

CONTENTS V

2.4.1 Defming data objects.. 24

Data structures and abstractions . 24

2.5 Process transformations... 26

2.5.1 Structured English... 26

2.5.2 Decision tables... 28

2.5.3 Decision trees.. 28

2.6 Combining the tools.. 30

2. 7 Using SSA in specifying requirements.. 31

2. 7 .1 The positive features of data flow diagrams
for use in specifying requirements . 31

2. 7 .2 Common ways of misusing data flow diagrams....................... 32

A voiding procedural details in data flow diagrams.................... 35

Avoiding control and physical details in data flow diagrams......... 36

2.8 A dictionary as a general resource.. 36

2.9 Executable data flow diagrams.. 38

2.10 Summary . 39

Chapter 3: Data flow systems 4 0
3. 1 Introduction . 40

3 .1.1 An initial classification, and some definitions.......................... 41

3.2 Data-driven systems.. 42

3.2.1 Conditionals and loops 45

3.2.2 Karp and Miller- a reference data-driven model...................... 51

3.2.3 Fine-grain data-driven architecture features............................ 52

Direct communication... 53

Packet communication.. 53

Static and dynamic architectures... 55

Enabling conditions and output conditions............................. 60

Summary of fine-grain data-driven systems........................... 61

3. 3 Demand-driven systems 63

3.3.1 String reduction.. 64

3.3.2 Graph reduction... 65

3.3.3 Demand-driven systems and functional languages.................... 67

3.4 Data flow systems and data flow diagrams.. 68

3 .4.1 Fine-grain data flow semantics applied to data flow diagrams....... 68

3.4.2 Input to output set transformations...................................... 72

3.4.3 Treating data flow diagrams
and transformations independently...................................... 73

3.5 Summary.. 74

CONTENTS ~

Chapter 4: The data-driven model in SAME 7 9
4.1 Introduction . 79

4.2 The operational semantics of a simple
data flow diagram model(DFDMl), and its comparison
with the Karp and Miller data-driven model....................................... 81

4.2.1 External entities and data stores.. 84

External entities.. 84

Data stores.. 86

4.3 The operational semantics of DFDM2.. 87

4.3.1 Limited import and export sets... 88

Limited import sets.. 88

Conditional generation of data flows and limited export sets........ 90

4.3.2 Composition and decomposition of group objects.................... 93

4.4 Structural completeness of data flow diagrams................................... 95

4.4.1 Structurally complete data flow diagrams . 97

4.4.2 Structurally incomplete data flow diagrams............................ 98

4.4.3 Invalid data flow diagrams... 100

4.5 Levels of refinement.. 100

4.5.1 Hierarchy of data flow diagrams.. 101

4.5.2 Process sets.. 102

4.6 Applications in the top level model... 103

4. 7 Parallelism in the top level model... 105

4.8 Deadlocks.. 106

4.9 Summary.. 107

Chapter S: The demand-driven model in SAME 108
5 .1 Introduction . 108

5.2 The lEgis language... 109

5.2.1 Options, conditionals and repeats....................................... 112

Options . 112

Conditionals .. 112

Repeats... 113

5.3 Demand-driven interpretation of lEgis definitions................................ 116

5. 3 .1 Constructors . 117

Tuple constructors... 118

Stream constructors . 119

Basic type constructors... 120

"Don't care" and empty values... 121

5.3.2 Operations.. 122

CONTENTS vii

5.4 Naming and binding.. 123

5.4.1 Naming ... 123

Environment, program, and working variables........................ 123

Version control and naming.. 124

Naming of objects within SAME.. 124

5.4.2 Binding... 126

5.5 Other characteristics of .tEgis
and the demand-driven executable environment.................................. 128

5.5.1 Referential transparency.. 128

5.5.2 Call-by-need and lazy evaluation.. 128

5.5.3 Typing and polymorphism... 129

Strong, static, and dynamic typing...................................... 130

Polymorphism ... 131

5.6 Language design principles and .tEgis... 134

5.6.1 Procedural abstraction.. 135

5.6.2 Data type completeness... 135

5.6.3 Declaration correspondence.. 135

5.7 Summary .. 136

Chapter 6: The complete architecture of SAME 137
6.1 Introduction... 137

6.2 A conceptual architecture for SAME... 137

6.2.1 SID ... 139

The structure of the dictionary,
and the bindings between objects.. 140

Data flow diagrams
as views onto data objects in the dictionary............................ 141

6.2.2 SYP ... 146

Static definition facilities.. 146

The external entity interface.. 147

Data flow management (DFM)... 148

Multiprocessing and the scheduling of processors.................... 148

6.3 Specifications and executions... 149

6.3.1 Specification of application environments,
applications, data flow diagrams, and data objects.................... 149

6.3.2 The execution of an application.. 149

Starvation... 150

Missing data objects... 150

Type conflicts.. 151

Inconsistencies, and their interpretation................................ 152

CONTENTS viii

Semantic errors.. 152

6.4 Data stores in SAME .. 152

6. 4 .1 Methods of access. 154

6.4.2 Operations.. 155

6.4.3 Exceptions handling... 156

6.4.4 Name mappings 156

6.4.5 Conceptual view of a data store.. 159

6.4.6 A data flow view of data stores.. 160

Referential transparency . 161

6.5 Summary.. 162

Chapter 7: An implementation 163
7 .1 Introduction . 163

7. 1.1 Main features of the implementation . 164

7 .1.2 major features of the full SAME system
that have not been implemented.. 164

7 .2 An introduction to the definition subsystem through
a simple example - finding the real roots of a quadratic equation............... 165

7.2.1 Creating a new application, and drawing a data flow diagram....... 165

7 .2.2 Defining data objects.. 167

7 .2.3 Displaying data objects, their types, and their dependencies......... 168

7. 3 Building and running an executable model . 172

7. 3 .1 Defining an executable process set...................................... 172

7. 3 .2 Running the model . 173

7. 3. 3 Controlling the execution process . 17 6

7 .3.4 Tracing the exercising of a model . 177

7.3.5 Exporting to external entities ... 178

7. 3. 6 Execution time exceptions.. 179

7. 3. 7 Exercising processes.. 180

The context of a process.. 181

The fundamental algorithm for creating object instances............. 182

7 .4 Applications with multiple levels of data flow diagrams......................... 182

7.4.1 Refining (exploding) data flow diagrams 183

7.4.2 'Scope' of objects ... 184

7.4.3 Building an executable model.. 184

7.4.4 Hook composed data flow instances 185

7. 5 More error examples . 186

7. 5 .1 Missing data object definition.. 186

7 .5.2 No importers for a data flow... 187

CONTENTS ix

7. 6 Limited import sets, conditional exports, and loops.............................. 188

7.7 Prolog as the implementation language.. 191

7 .8 Summary.. 192

Chapter 8: An example analysis 193
8.1 introduction.. 193

8.2 A SAME model of the order processing example................................. 194

8.2.1 The application data flow diagram hierarchy........................... 194

8.2.2 The data object definitions for the application.......................... 196

8.3 The frrst prototype.. 201

8.3.1 The data stores contents .. 202

8. 3 .2 Selected details from the development of the frrst prototype 202

8. 4 The second prototype . 211

8.5 Summary .. 216

Chapter 9: Alternative architectures 219
9. 1 Introduction ... 219

9.2 Other executable coarse-grain data flow schemes 220

9.2.1 The LGDF approach ofBabb .. 220

9 .2.2 The Ada information management system
prototyping environment of Burns and Kirkham 222

9.2.3 The DataLink environment of Strong 223

9.3 Structured Analysis Simulated Environment (SASE) 224

9.3.1 META ... 225

9. 3 .2 The SASE process sub-system .. 226

9.3.3 SASE as a means for building implementation models 227

9. 4 Comparative summary ... 227

9.5 Networks of von Neumann systems ... 229

9. 6 Summary .. 231

Chapter 10: Conclusions and further research 232
10.1 Summary and conclusions ... 232

10.1.1 Objectives of the research ... 233

10.1.2 That the executable model be
rigorous enough to form part of the specification 233

10.1.3 That the tool should have
a small number of (simple) concepts 234

10.1.4 That procedural details should be de-emphasised 234

10.1.5 That the tool should incorporate
high levels of abstraction in a relatively simple manner 234

CONTENTS X

10.1.6 That the tool should make effective use of graphics 235

10.1.7 That the tool should provide 'soft' recovery from errors 235

10.1.8 That the tool should be able to execute 'incomplete' models 236

10.1.9 Primary objective ... 237

10.2 Further research ... 237

Glossary 239

Bibliography 257

Figures
1.1 The waterfall model of the software life cycle,

showing the overlapping of stages... 12

2.1 Comparison of the Gane and Sarson,
and De Marco data flow diagram notations .. 18

2.2 Context, or Level 0, data flow diagram
for an order processing system... 20

2.3 Level 1 refinement of process ORDER PROCESSING 21

2.4 Level 2 refinement of process PRODUCE INVOICE................................... 22

2.5 The hierarchy of processes for the order processing
application modelled in Figures 2.2 to 2.4 . 22

2. 6 A possible data structure hierarchy of the INVOICE
data flow shown in Figures 2.2 to 2.4... 24

2. 7 A structured English minispec for calculating the
status of a customer.. 27

2. 8 A decision table for calculating the status of a customer......................... 28

2.9 A decision tree for calculating the status of a customer 29

2.10 An integrated view of three tools described in Section 2.5,
showing how they combine to form a logical model
of an application . 30

2.11 Excerpt from a 'loose' data flow diagram
in Wasserman et al. [WPS86] .. 33

2.12 Excerpt from a 'loose' data flow diagram in Booch [Bo86] . 34

xi

FIGURES AND TABLES xii

3 .1 Data dependency graph for finding the (real) roots
of a quadratic .. 43

3.2 Data flow graph for finding the (real) roots
of a quadratic .. 44

3.3 A data-driven program for finding the (real)

roots of a quadratic... 45

3 .4 A data flow graph for the conditional
if x > y then a : = v1 else a := v2 .. 46

3. 5 A cyclic data flow graph for calculating the factorial of N. 4 7

3.6 The general structure of a 'safe' while-loop
in a data flow graph.. 48

3. 7 The occurrence of deadlock in a data-driven program graph.................... 49

3. 8 The occurrence of a race condition . 50

3. 9 The functional structure of a processing element
in a token storing data-driven system.. 54

3 .10 The functional structure of a processing element
in a token matching data-driven system.. 55

3 .11 A conceptual snapshot of an Id data flow program
showing the token <U.c.s.i, 4> on the arc connected
to input port 2 of the instruction (activity) s 57

3 .12 A data flow graph for the processing of the loop by
the U-interpreter .. 59

3 .13 A categorisation of data-driven machines. The machines
discussed in this chapter are shown in the rectangles 61

3 .14 A demand-driven program for finding the (real)
roots of a quadratic. 63

3 .15 A string reduction execution sequence for the part of
the program in Figure 3.14 which finds the first root.. 64

3 .16 A graph reduction program corresponding to Figure 3 .14 . 66

3 .17 The program graph of Figure 3.16 with reverse pointers . 67

3 .18 Level 1 data flow diagram, and data dictionary definitions
for finding the (real) roots of a quadratic equation . 69

3 .19 Level 1_ data ~ow. diagram for finding the (real) roots of a
quadranc applicanon . 70

3.20 Accessing the data store CUSTOMERS using cusT_# as the key 71

3.21 Processing one COURSE_CODE against multiple STUDENT_# tokens 71

4.1 Level 0 data flow diagram for the order processing example 80

4.2 Level 1 data flow diagram ... 80

4.3 Level 2 data flow diagram for process PRODUCEINVOICE ••.••••••..•.•••••••••••• 80

4.4 Data flow diagram hierarchy for the order processing
application, showing the leaf processes shaded . 80

4.5 External entity e1, CUSTOMER, as the set
{INVOICE, ORDER_DETAILS,UNFILLABLE_ORDER} of phantom nodes 86

4.6 An example which shows the decomposition and

FIGURES AND TABLES xiii

composition of data flows in data flow diagrams................................. 93

4. 7 A structurally incomplete form of Figure 4.2 100

4. 8 Possible different data flow process explosion trees
created during the analysis of an application 101

4. 9 Virtual leaf process data flow diagram, Cop, for the
order processing application .. 104

4.10 A snapshot of order processing transaction histories 105

5 .1 Dictionary definitions relating to INVOICE ••..........•••••••..•..........••.•••••.• 110

5. 2 Example invoice .. 114

5. 3 Dependencies graph for INVOICE •••••••••••.......•..••••••••.....•••..•••••••.••••• 117

5. 5 The identity function id implemented in four languages that
support parametric polymorphism .. 132

6.1 A conceptual architecture for SAME ... 138

6.2 Dictionary definitions relating to the objects in
process 3, PRODUCE_INVOICE ... 139

6.3 An example invoice corresponding to the definitions
in Figure 6.2 .. 140

6. 4 Data object dependencies in process 3, PRODUCE INVOICE .••.••••••.•••••••..•.•• 142

6.5 Data object dependencies in the refinement
to process 3, PRODUCE INVOICE •••••••••••••••.••.•••.•.•••••..••••••..•••••••••••••• 143

6,6 Using an example to show the associations (bindings)
between objects in SYD ... 145

6. 7 Accessing the data store CUSTOMERS using cusT_# as the key 154

6.8 Adding a 'control' dimension to a data flow diagram
in which the keys for accessing data store tuples
(among other things) can be specified ... 155

6.9 Part of a data flow diagram implicitly showing multiple data
flows referencing the same data store object
(not necessarily the same instance) ... 158

6.10 A conceptual view of a SAME data store .. 160

7.1 Naming an application ... 165

7. 2 A Level 0 data flow diagram in the manner of Figure 3 .18 166

7. 3 The structural details of the data flow diagram in Figure 7 .2 167

7.4 Defining the data object coefficients to be the tuple (a, b, c) 167

7. 5 A dialogue containing a menu for
selecting the data objects to display .. 169

7. 6 Display of all data objects currently in the dictionary 169

7. 7 The internal representation of data object definitions
for the roots example ... 169

7 .8 Redundant rhs facts which are used
extensively in displaying data object dependencies 170

7. 9 A listing of data objects showing their (inferred) types 170

7 .10 A request to display the dependency graph, to the selected
depth, of the data objects depended on by data flow

FIGURES AND TABLES xiv

roots in process findRootsOfQuadratic .. 171

7 .11 Data dependency graph for data flow roots in process
f indRoot sOfQuadra t ic .. 172

7 .12 Specifying the executable model process set 173

7 .13 Request for user to supply external entity generated
data flow instances ... 173

7 .14 Sequence of requests for sub-object values
for an instance of data flow coefficients 176

7 .15 An ex amp le full trace ... 177

7 .16 The executable model representation
of external entity an a 1 y st ... 177

7 .17 An example error display prompt generated by SAME during the
creation of an instance of the data object root 1. Particularly, a
request to find the square root of -15 has been trapped.
(The user has supplied a further invalid value. See Figure 7 .18.) 178

7 .18 Following the user supplying an invalid value (as shown in
Figure 7 .17), SAME displays an error message. The user
must supply a positive number before SAME will continue 179

7 .19 Messages generated under full trace which relate to the two
attempts to find the square root of a negative number 179

7 .20 The data flow reduction graph for data flow roots evaluated in the
context of process findRootsOfQuadratic 181

7 .21 A particular refinement of the process findRootsOfQuadratic
into the two processes computeRoot 1 and computeRoot2 183

7 .22 A particular refinement of the process findRootsOfQuadratic
into the two processes computeRootl and computeRoot2 184

7 .23 A request to form an application model from the leaf level
processes that are descendants of the process findRootsOfQuadratic
(namely the two processes computeRootl and computeRoot2) 185

7 .24 An instance of the data flow roots exported to
the external entity analyst by the hook roots 185

7 .25 Amendments to data object definitions for
the roots application, with an omission in
the definition of the object sqr .. 186

7 .26 An error dialogue of the same general format as Figure 7 .17,
which indicates that no value could be found nor generated
for data object sqr .. 187

7 .27 Following the declaration of the data object sqr as
sqr<=sqrt(bsq - fourAC), the object dependencies will be as shown 187

7 .28 A different refinement of process f indRoot sOfQuadratic 188

7 .29 An error dialogue stating that
no importers exist for data flow n 1. .. 188

7 .30 A data flow diagrn,.'11 which contains a loop 189

FIGURES AND TABLES xv

7 .31 Data object definitions for the looping application;
and an execution trace .. 190

7 .32 Prompt to the user to define the action to take when a
currency mismatch occurs, in the case where the automatic
flushing of instances has been turned off .. 191

8. 1 Level O data flow diagram for the revised
order processing application .. 194

8.2 Level 1 refinement of check:AndFill0rder 195

8.3 Level 1 refinement of produceinvoice ... 196

8.4 Data object definitions ... 200

8.5 Data dependency graph for data object invoice 200

8. 6 Data object definitions which
differ from those given in Figure 8.4 .. 201

8. 7 Data store tuples used in the first prototype 202

8. 8 Data store access details for constructing
instances of data flow customer_details 204

8. 9 The objects to be mapped between
the data flow adjusted credit and the
customer data store tuple component cust_available_credit 208

8.10 The generation of an invalid instance of cust_available_credit 210

8.11 The instance of rejected order,
which correctly identifies the customer's lack of available credit 211

8.12 Revised form of Figure 8.1, with
the data store parts replaced by the external entity parts 212

8.13 An instance of data object updated_part_details
which contains multiple parts_remaininginstances 215

8.14 An instance of data object invoice
which contains multiple line item instances 216

9 .1 Executable META minispec for
process p3, PRODUCE INVOICE •.•••.••...••.•.•••••••.••••.•.••••••..•••••..•••••••••• 225

9.2 A conceptual structure for a coarse-grain processing element 230

Tables
I Important properties of requirements and

design specifications, as identified by Howden [Ho82a]........................ 4

II The data dictionary language notation of De Marco . 25

III A comparison of some reported date-driven architectures....................... 62

N Example tuple instances for specific definitions 118

V Example tuple instances for group object definitions 121

VI Example tuple instances using basic type constructors 121

VII The possible bindings between dictionary objects 144

VIII A comparison of some coarse-grain data flow schemes 228

Part I contains the background material to the research reported in the

dissertation.

In Chapter 1 the motivation for the research is described, along with a statement

of the objectives. The principle objective has been to investigate the use of executable

data flow diagrams as a prototyping tool for use during the analysis phase of the

software life cycle. The approach adopted to achieve this objective is also given.

Chapters 2 and 3 contain discussions of the more important support material. In

Chapter 2 structured systems analysis, which is the method that has data flow diagrams

as a component tool, is discussed. Both advantages and disadvantages in the use of

structured systems analysis, and data flow diagrams in particular, are enumerated.

In Chapter 3 low level ('fine-grain') data flow schemes are discussed, and

characteristics which are particularly useful to a high level ('coarse-grain') data flow

system are identified.

2

1.1 Motivation for the research
In the design of a software system, the output from a requirements capturing

exercise is the specification, which is a document that contains an abstract computer­

orientated representation of the set of end-user requirements.1

Producing a correct specification is seen to be the key to the successful, cost­

effective development of software systems [Bo76]. There are, however, problems in

knowing when a specification is correct, and even when it is complete; not least

because of the problems of adequately specifying what is required in the first place. In

the context of the specification of requirements, Howden has stated that ([Ho82a],

p. 72):

'The principle idea in the analysis of requirements specifications is to make sure

that they have certain necessary properties.'

Howden tabulates some of the more important of these properties, included here

as Table I.

Some of the properties, notably completeness, must be viewed as ideals which

cannot be achieved in many software development projects.

1 Terms in bold type are included in the Glossary. In general, the term 'end-user(s)' will refer to the potential
users of the system being analysed, who are considered not to be software developers. The terms 'user' and
'analyst' are used to refer to the person(s) carrying out the analysis. The term 'user' generally appears when
the application of an analysis technique, or tool, is being discussed.

3

CHAPTER 1 - INTRODUCTION

Property Comments

Consistency Specifications information must be internally consistent. If
the information is duplicated in different documents,
consistency between copies must be maintained.

Completeness Specifications must be examined for missing or incomplete
requirements and design information. All specification
functions must be described, including important properties
of data.

Necessity Each part of the specified system should be necessary and
not redundant.

Feasibility The specified system should be feasible with existing
hardware and technology.

Correctness In some cases, it is possible to compare part of the
specification with an external source for correctness.

Table I: Important properties of requirements and design specifications,
as identified by Howden [Ho82a].

4

Parnas and Clements enumerated various problems in the area of software

design [PC85]. Some of particular interest, are couched below in requirements

specification terms:

• In most cases the end-users do not know exactly what they want and are unable to

state what they do know.

• Even if the initial requirements were known, other requirements usually surface as

progress is made in the development of the software.

• Even if all of the relevant facts had been elicited and included in the specification,

experience shows that human beings are unable to fully comprehend the plethora of

details that must be taken into account in order to progress into the design and

building of a correct system.

• Even if all of the detail needed could be mastered, all but the most trivial projects are

subject to change for external reasons. Some of those changes may invalidate

previous requirements.

• Human errors can only be avoided if one can avoid the use of humans. No matter

how rational the requirements specification process, no matter how well the relevant

facts have been collected and organised, errors will be made.

CHAPTER 1 - INTRODUCTION 5

These problems suggest that as requirements are likely to change during

analysis, flexibility should exist in the methods and tools used to capture requirements.

As well, consistency needs to be maintained. In fact, checking for consistency is seen

to be the property in Table I which is the most achievable using computer tools. Given

the right tools, computers are particularly good at this type of task.

The correct specification of requirements is seen as the key to the successful,

cost-effective development of software systems [Bo76]. It is also generally agreed that

to be able to validate requirements, they must be rigorously specified. As Davis

succinctly puts it ([Da88], p. 1100):

'Use a formal technique when you cannot afford to have the requirement

misunderstood.'

In an attempt to improve both the capturing of requirements, and the production

of a specification document that can be effectively used throughout the software

development process, considerable effort is being expended on developing formal

specification methods (see, for example, [GT79a, BO85, Wa85, He86, Jo86, ZS86]).

However, most, if not all, of the techniques proposed use formal methods and

languages which require a reasonably sophisticated level of mathematical maturity to be

fully understood. This tends to make them unsuitable as communications media

between analysts and most end users; which is unfortunate, as a further major

perceived parameter in the requirements capturing process is the active involvement of

end users (see, for example, [Al84, BW79, CM83, De78, Ea82, 1084, MC83, Ri86,

SP88]).

Speaking specifically about understanding software requirements specifications,

Davis has observed that ([Da88], p. 1112):

'understandability appears to be inversely proportional to the level of

complexity and formality present.'

There can be seen to be a tension between the need on the one hand for an

unambiguous, succinct, specification of requirements as the output from the analysis

process, and (at the least) the need to validate those requirements with end users.

Part of the purpose of the research reported herein has been an attempt to

address some aspects of this tension by adding formality, in the shape of a strict syntax

and operational semantics, to the data flow diagrams of structured systems

analysis (SSA), a semi-formal technique, to produce a computer-assisted

software engineering (CASE) prototyping tool. Data flow diagrams are considered

relatively easy to understand [De78, Ri86, YBC88], yet they have the potential to be

viewed more formally as high level data flow program graphs [Ch79].

The subsequent sections of this introduction more fully develop some of the

background to the research.

CHAPTER 1 - INTRODUCTION 6

1.1.1 Methods, methodologies, tools, and techniques
Quite often confusion exists in the use of the words 'method' and

'methodology'. The sense in which they are used in this thesis is as follows

(Fr80, MM85]:

Definition: A method consists of prescriptions for carrying out a certain type

of work process; that is, it is a way of doing something. •

Definition: A methodology is a collection of methods and tools, along with

the management and human-factors procedures necessary to their

application. •

Also 'tool' is used with a particular meaning (Fr80, MM85]:

Definition: A tool is an aid, such as a program, a language, or documentation

forms, that helps in the use of a method. •

Frequently, in this dissertation, the term 'technique' appears. It is used informally

as an abstraction. For example, a set of objects may be described as 'techniques' when,

say, some of them are 'methods' and the rest are (parts of) 'methodologies'.

1.1.2 Formal specifications, and formal methods
The application of formal methods is viewed by many as being necessary for

the correct and unambiguous specification of objects (see, for example, (AP87, GM86,

Jo86, LZ77]). Consequently considerable effort is being spent on research in this area.

'Formal methods' and 'formal specifications' are widely used terms that imply the use

of strict syntax and semantics in the description of objects; whether the objects are

statements, programs, requirements, or something else.

The following definitions make clear what is meant by 'formal specification'

and the related term 'formal method':

Definition: A formal specification is a specification which has been

defined completely in a language that is mathematically precise in

both syntax and semantics. •

Definition: A formal method is a method with a rigorous mathematical

basis. •

CHAPTER 1 - INTRODUCTION 7

The extent to which formal methods can be successfully used is unknown.

Although some formal methods have been used to specify significant applications

[Su82, STE82], the correctness of the specifications has not been proved, and, in some

cases, has been shown to be incorrect [Na82]. As discussed in the next section, it

appears that the most that can be hoped for in practical situations is a specification in

which amenable parts of the requirements have been formally specified [Na82]. Any

specification which is not a formal specification will be described simply as a

'specification'. The integration of formal and informal specifications is considered

necessary. As Gehani and McGettrick have put it ([GM86], p. vii):

'Formal specifications do not render informal specifications obsolete or

irrelevant; although they [formal specifications] can be checked to some degree

for completeness, redundancy and ambiguity, and can be used in program

verification, they are often hard to read and understand. Consequently, informal

specifications are still necessary as an aid to the understanding of the system

being designed; informal and formal specifications complement each other.'

1.1.3 Informal, semi-formal, and formal
The problems with proving the correctness and general applicability of formal

methods has led to the view that formal methods cannot be used without recourse to

informal techniques for specifying requirements (nor even for specifying programs)

[MM85, Na82, Fe88]. Naur has suggested that 'formality' should be viewed as an

extension of 'informality' [Na82]. He states that

'the meaning of any expression informal mode depends entirely on a context

which can only be described informally, the meaning of the formal mode having

been introduced by means of informal statements.'

Naur, himself, quotes from Zemanek discussing software development [Ze80]:

'No formalism makes any sense in itself; no formal structure has a meaning

unless it is related to an informal environment[...] the beginning and the end of

every task in the real world is informal.'

The view of Naur is supported by Mathiassen and Munk-Madsen, who have

taken Naur's arguments, which were directed at program development, and applied

them to the more general area of systems development [MM85]. Both the views of

Naur, and Mathiassen and Munk-Madsen, are supported here. As a consequence, the

following are offered as definitions for 'informal' and 'formal' in the context of

describing some object:

Definition: The informal description of an object is a description that is done

without recourse to formal methods. •

CHAPTER 1 - INTRODUCTION 8

Definition: The formal description of an object is a description that is done

with recourse to formal methods. •

Note that a 'formal' description could include 'informal' descriptions within it,

as it is 'with recourse to' rather than 'solely with'. The counter-argument does not

apply: an 'informal' description contains no 'formal' descriptions within it.

It is possible to perceive of a spectrum of descriptions, going from informal at

one end, to totally formal at the other end. This is in keeping with Naur's proposals

[Na82].

The term 'semi-formal' is used loosely to describe any technique that is formal,

but with distinctly informal components. An example would be the structure charts

of structured design when interpreted using the algebraic approach(es) of Tse [St81,

Ts85, Ts85a, Ts86, Ts87, YC79].

1.1.4 Semi-formal techniques in
the specification of requirements

Techniques of an informal nature for specifying requirements abound. The most

widely used is narrative text, but this frequently results in large, ambiguous, and

incomplete specifications that lead to communications problems between analysts and

end users; particularly when attempts are made to validate requirements [De78, Da88].

Starting in the early 1970's, semi-formal structured techniques have been

developed over the years in an attempt to improve both the approach to analysis, and to

place the emphasis more on the graphical presentation of information as a better method

of communications. Included in the structured approaches for the capturing and

specification of requirements are, Structured Analysis and Design Technique (SADT)

[Co85, Ro77, RS77, Di78, Th78], Information Systems work and Analysis of

Changes (ISAC) [BH84, LGN81, Lu82], Software Requirements Engineering

Methodology (SREM) [Al77, Al78, AD81, BBD77] which is more suited to embedded

real-time systems, and the class of techniques called 'structured systems analysis'

(SSA) [CB82, De78, GS79, We80].

All of these have quite powerful abstraction capabilities which allow, for

example, objects in diagrams to be exploded into lower level diagrams in a top-down

fashion.

SSA techniques are the most widely publicised and used techniques, and are

based on data flow diagrams, which show the system in terms of data precedences: a

data-orientated approach. The SSA techniques also happen to be the most informal

of those mentioned. It is impossible to say whether their popularity is due to their

relative simplicity, although some statistical evidence does exist to suggest that this may

CHAPTER 1 - INTRODUCTION 9

be the case: in comparing the use of data flow diagrams and IDEFo (the graphically­

based function modelling part ofIDEF, a component of SADT), Yadav et al. concluded

that data flow diagrams appear slightly easier to use [YBC88].

Though the graphical features of the SSA techniques are seen to aid

communications between analysts and end users, they lack the necessary level of rigour

to satisfactorily facilitate the validation of requirements [Fr80, Ri86]. The lack of rigour

in these techniques stems from their generally free interpretation, which is due more to

a lack of strict semantics than a lack of syntax. Unfortunately, this lack of rigour invites

misuse [Do87]. It also leads to the possibility of incorrect, and ambiguous

specifications. Consequently, as a specification technique, SSA suffers from many of

the problems of narrative text. This is not surprising, because SSA still places a

reasonably heavy reliance on the use of textual data, although its syntax is generally,

but not completely, more formal than narrative text.

Some of the weaknesses of SSA are discussed in more detail in Chapter 2. At

this time it should be noted that they exist, and that an attempt to add formality to SSA

can be usefully applied to minimising the dependence on purely textual data. The means

used to achieve this minimisation is sketched out in Section 1.3, while the details form

the subject matter of Part II of this dissertation.

SSA has three major component tools which are of particular relevance in the

dissertation. These are:

• Data flow diagrams - An application is modelled by a hierarchy of data flow

diagrams which show how data flows through the application.

• Data dictionary - The description of data objects, and the transformations carried out

on them (by processes), are maintained in a data dictionary.

• Process specifications - For each bottom level (leaf) process, its process

specification (the process logic) describes how the data which flows into the

process is transformed into the data which flows out of the process.

These and the other component tools will be discussed more fully in Chapter 2.

1.1.5 Software development environments
In looking to define any tool for the capturing of requirements, consideration

should be given to the environment in which that tool will be focussed. The current

approach in software engineering is to develop tools within a framework known as

a software development environment (SDE). SDEs are also known as

software engineering environments (SEEs), and integrated project (or

program) support environments (IPSEs).

CHAPTER 1 - INTRODUCTION 10

The fundamental purpose of a SDE is to provide a computer-based set of

methods and tools - a methodology to support the software (development)

process. The existence of a cohesive methodology is fundamental, as this

encapsulates the process model used in software development. In Dowson's words

([D086], p. 6),

'We take the position that an unstructured "bag of tools" does not qualify as a

software development environment.'

Attempts have been made to define environments made up from existing

methods and tools. Howden discusses the architecture for four possible SDEs, each

based on the waterfall model of the software process [Ho82]. The differences between

the environments is the number and sophistication of the methods and tools included.

What is apparent is the large number of 'discontinuities' which exist between the

different tools in each proposed environment. These discontinuities have to be bridged

generally by manual means, which makes them error-prone and unsatisfactory for the

development of other than small software projects.

The following definition emphasises the need for integration ([WD86], p. 5):

Definition: A software development environment is a coordinated

collection of software tools organised to support some approach to

software development or conform to some software process

model. •

It is argued that the real value of a SDE comes from the integration between the

various methods and tools that it uses. This integration is provided by a specialised

data base environment. Conceptually, these specialised data bases have much in

common with the more recent of the data dictionary systems, which also aim to

provide an integrated view, and control, of (all) the objects in some context (whether,

say, the context is an enterprise, or some division or department of that enterprise).

1.1.6 The software development process
and the software life cycle

The underlying structure of a SDE is the particular software process

development model adopted by the architects of the SDE. The purpose of this section is

to determine what a process development model is, and whether a standard model and,

hence, SDE exists into which the proposed tool could be usefully placed.

The software development process (also called the software life cycle) is

frequently shown as consisting of a number of stages, such as requirements, design,

CHAPTER 1 - INTRODUCTION 11

implementation, testing, and operation and maintenance [So85].2 The activities carried

out in each of these stages is described by Sommerville as ([So85], p. 3):

• Requirements analysis and definition -The system's services, constraints and goals

are established by consultation with system end-users. Once they have been agreed,

they must be defined in a manner which is understandable by both end-users and

development staff.

• System and software design - Using the requirements definition as a base, the

requirements are partitioned to either hardware or software systems. This process is

termed systems design. Software design is the process of representing the functions

of each software system in a manner which may be readily transformed to one or

more computer programs.

• Implementation and unit testing - During this stage, the software design is realised

as a set of programs or program units which are written in some executable

programming language. Unit testing involves verifying that each unit meets its

specification.

• System testing - The individual program units or programs are integrated and tested

as a complete system to ensure that the software requirements have been met. After

testing, the software system is delivered to the customer.

• Operation and maintenance - Normally (although not necessarily) this is the longest

life cycle phase. The system is installed and put into practical use. The activity of

maintenance involves correcting errors which were not discovered in earlier stages of

the life cycle, improving the implementation of system units and enhancing the

system's services as new requirements are perceived.

Figure 1.1 shows the waterfall model view of this process, including:

• The overlap between the stages - There are no 'clean' division points between the

activities across stages.

• The feedback (and feed-forward) between the pre-operational development stages­

The next stage in the process is dependent on work carried out in the previous

stage(s) (feed-forward). Identifying errors, or accounting for changes, etc., require

changes to previous stages (feedback).

• The feedback from the operational and maintenance stages - Once an application

becomes live, errors may surface, or changes be required over time, which lead to a

feedback to earlier stages.

2 It is possible to define 'software development process' and 'software life cycle' to have significantly
different meanings. Compare, for example, the definition for 'software (development) process' in the
Glossary with the following definition for 'life cycle' ([MRY86], p. 83): 'The system life cycle is the
period of time from the initial perception of need for a software version to when it is removed from
service'.

CHAPTER 1 - INTRODUCTION

requirements

design
operations

and

testing t-11----l maintenance

Figure 1.1: The waterfall model of the software life cycle,
showing the overlapping of stages

(based on Sommerville [So85], Figs 1.1 and 1.2).

12

The end points of the stages in the waterfall model are generally seen to coincide

with major documentation and review points. They also tend to correspond with points

at which major changes occur in the techniques and or environments used for the

development, such as at the interface between (structured) design and implementation,

where a switch is made from using two-dimensional structure charts to using a one­

dimensional programming language [YC79].

The model in Figure 1. 1 is extremely abstract, and a number of important

features have been omitted, including:

• An indication of parallel activities within phases - Invariably, on other than the

smallest projects, developers work in tandem. This is certainly true of the

implementation phase, when a number of programmers will likely be concurrently

developing modules.

• An indication of whether or not prototyping is supported, and if so, where.

• An explicit indication of where verification and validation take place.

Figure 1.1 highlights a current major problem in the description of the software

process: the lack of a definitive process metamodel with which software process

models can be described, and checked for correctness and completeness [PC85,

WD86]. However, as this is a major research topic in itself, it will not be pursued

further here. Instead, the waterfall model of Figure 1.1 is accepted as adequate for the

purposes of the research reported herein.

1.1. 7 Models, executable models, and prototypes
The use of models in analysis is now seen as fundamental. According to Quade

([Qu80], p. 31):

'Analysis without some sort of model, explicit or otherwise, is impossible.'

CHAPTER 1 INTRODUCTION 13

The following defines what a 'model' is understood to be:

Definition: A model of an object is a representation which specifies some but

not all of the attributes of the object. •

In the development of computer software, models are seen to be most useful if

they are executable [Ri86].

Definition: A dynamic model of an object is a model which can be made to

carry out a set of operations, possibly in some specified

sequence. •

An 'executable model' is merely a dynamic model, which in the context of

software development specifies a software model that can be exercised on a computer.

Prototypes, and prototyping
As Carey and Mason have observed (CM83, p. 177), in computing:

'there appears to be little if any agreement on what a prototype is.'

The following simple definition is considered adequate:

Definition: A prototype is a model. •

A prototype is either an abstraction of the object it is modelling, a 'mock-up', or

it is a detailed representation of part of the object. SSA provides good facilities for

modelling parts of systems, as described in Chapter 2.

By implication, the medium used to construct a prototype need not be the same

as that used for the final object. A prototype of a menu system, for example, could be

constructed using the transition diagram interpreter (TDI) part of RAPID/USE

[WPS86], and then the real system could be constructed as part of a larger integrated

project using a language such as PL/I.

Definition: Prototyping is a method for building and evaluating prototypes. •

The purpose of prototyping, as it is seen here, is the same as that stated by

Carey and Mason ([CM83], p. 180):

'Our focus in this paper is on improving the final information system product

through use of prototypes to illuminate more clearly the [end-]user's real

needs.'

CHAPTER 1 - INTRODUCTION 14

This view of prototyping, as a productive way for analysts and end-users to

interact, is commonly held throughout the literature (see, for example, [AHN82, Al84,

BW79, CM83, Ea82, IH87, JS85, KS85, MC83, NJ82, SP88]). No other purpose

for prototyping is stressed here, although claims have been made for it as a replacement

for the 'classical' sofware development process [NJ82]. See, for example, the

discussion and references in Carey and Mason [CM83].

Different approaches to prototyping in computing have been enumerated [IH87,

JS85]. Ince and Hekrnatpour, provide the following taxonomy ([IH87], p. 9):

• Throw-it-away' prototyping - Which involves the production of an early version of

a software system during requirements analysis. This is then used as a learning

medium between the analyst and the end-user during the process of requirements

elicitation and specification.

• Incremental prototyping - Where a system is developed one section at a time, but

within a single overall software design.

• Evolutionary prototyping - Where a system is developed gradually to allow it to

adapt to the inevitable changes that take place within an enterprise.

1.2 Objectives of the research
The principal objective of the research, has been to investigate the use of

executable data flow diagrams as a prototyping tool during the analysis phase of the

software life cycle.

Implicit in this objective are the following further objectives:

• That the executable model, which is a significant output of a prototyping exercise, be

rigorous enough to form part of the specification, if required.

• That to serve as an adequate communications medium between analysts and end-

users, the tool should:

have a small number of (simple) concepts;

de-emphasise procedural details;

incorporate high levels of abstraction in a relatively simple manner;

make effective use of graphics.

• To be an effective prototyping tool at the analysis stage, as well as the list of features

just given, the tool should:

- provide 'soft' recovery from errors;

- be able to exercise 'incomplete' models.

1.3 The approach
In arriving at the objective(s) given in Section 1.2, the following five factors

were identified as of particular importance to the successful capturing of requirements:

CHAPTER 1 - INTRODUCTION 15

• Active user involvement - This is a long-held view in information systems

development. De Brabander and Thiers cite a paper written in 1959 which proposes

such an activity [DT84]. Active user involvement generally implies the need for

informal and semi-formal methods and tools.

• The use of graphical techniques in place of textual descriptions, wherever

appropriate Graphic techniques abound in commerce: PERT charts, pie charts,

histograms, and graphs, are notable examples. At the same time, purely textual

descriptions have been much criticised [Da88, De78].

• The use of executable models - Particularly in the form of prototypes, as a means to

illuminate clearly the needs of end-users [Al84, BW79, CM83, Ea82, MC83, Ri86,

SP88]. A model should be viewed (at the least) as a form of documentation.

• Powerful abstraction capabilities -Analysis is a creative process which has to map

complex real world problems into the specification of solutions [We81].

• A specification should be unambiguous - This implies the existence of strict

semantics in the specification method(s), and ways of avoiding or checking for

contradictions [AP87, Da88, GM86, Ho82a, Jo86, Ri86].

It was proposed that these factors can be addressed, to a significant degree, by

adding formality to SSA.

Following an initial study into using the three SSA tools mentioned in

Section 1.1.4, the approach adopted has been to specify the architecture for a tool

based on two of those components - data flow diagrams, and the data dictionary - plus

the development of a prototype (of the prototype system) to test out many of the ideas

put forward.

The formality added to the data flow diagrams has three components:

• A formal syntaxfor specifying data flow diagrams-To ensure that only a consistent

data flow hierarchy can be created, with valid data flow connections.

• An operational semantics for data flow diagrams - These define how a data flow

diagram can be executed.

• A consistent means of transforming data flows - This is achieved by treating the

definitions of data objects in the dictionary as programming language statements,

when executing data flow diagram processes.

The tool is described as 'semi-formal'. Work to provide a completely formal

'back-end' is being undertaken separately from the research reported here.

Given the discussion in Section 1.1, the tool has not been fixed to any specific

methodology or, by implication, to any specific SDE or software development process

model. As a consequence of this, the tool can possibly have use beyond the

requirements specification phase. However, this is not argued in the dissertation, but is

suggested, in Chapter 10, as a possible topic for future research.

CHAPTER 1 - INTRODUCTION 16

The tool is not considered a panacea for all the ills bedevelling the specifying of

requirements. Again referring back to the discussions in previous sections, of necessity

it is seen as one of a collection of informal to formal tools for use during analysis.

1.4 Structure of the dissertation
The thesis is structured in three parts. Part I contains this introductory chapter,

and two further chapters which survey material relevant to the tool described in Part II.

Part II proposes a design for an executable data flow diagram tool in Chapters 4

to 6. Following this, in Chapter 7, a prototype implementation of the tool is discussed.

Many of the ideas incorporated in the architecture of the executable data flow diagram

environment have been incorporated into this prototype, which has been written in

Prolog. It should be realised that no attempt was made to develop a complete

commercial implementation. Having said this, the prototype source is over 400 Kbytes

in size.

The final chapter in Part II contains a detailed example application developed on

the system described in Chapter 7.

Part III contains two chapters. The first, Chapter 9, discusses other approaches

to the execution of data flow diagrams. Included there is an outline description of a

system that was also developed as part of this research, and is the precursor to the

system described in Part II. Finally Chapter 10 discusses the findings of the research,

and suggests further avenues of investigation.

