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The research reported in this thesis has been an investigation into the use of data 

flow diagrams as a prototyping tool for use during the analysis of a system. Data flow 

diagrams are one of the three main tools of structured systems analysis (the other two 

are a data dictionary, and some means for representing process' logic, such as 

minispecs). 

The motivation for the research is a perceived need for better tools with which 

analysts and end-users can communicate during the requirements gathering process. 

Prototyping has been identified by many researchers and practitioners as such a tool. 

However, the output from the requirements analysis phase is the specification, which is 

a document that should provide the framework for all future developments of the 

proposed system (and should evolve with the system). Such a document should be 

provably correct. However this is seen as an ideal, and the most that can be hoped for 

is a document which contains within it a mixture of formality. 

Executable data flow diagrams are considered to provide an environment which 

serves both as a means for communication between analysts and end-users (as they are 

considered relatively easy to understand by end-users), and as a method for providing a 

rigorous component of a specification. The rigour comes from the fact that, as 

demonstrated in this thesis, data flow diagrams can be given strict operational semantics 

based on low level ('fine-grain') data flow systems. This dual focus of executable data 

flow diagrams is considered significant. 

Given the approach adopted in the research, executable data flow diagrams are 

able to provide an informal, flexible framework, with considerable abstraction 

capabilities, that can be used to develop executable models of a system. The number of 

concepts involved in providing this framework can be small. Apart from data flow 

diagrams themselves, the only other component proposed in the research is a system 

dictionary in which the definitions of data objects are stored. Procedural details are de­

emphasised by treating the definition of data objects as statements in a single­

assignment programming language during the execution of a model. 

To support many of the ideas proposed in the research, a prototype 

implementation (of the prototype tool) has been carried out in Prolog on an Apple 

Macintosh. This system has been used to produce results that are included in this 

thesis, which demonstrate the general soundness of the research. 
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Part I contains the background material to the research reported in the 

dissertation. 

In Chapter 1 the motivation for the research is described, along with a statement 

of the objectives. The principle objective has been to investigate the use of executable 

data flow diagrams as a prototyping tool for use during the analysis phase of the 

software life cycle. The approach adopted to achieve this objective is also given. 

Chapters 2 and 3 contain discussions of the more important support material. In 

Chapter 2 structured systems analysis, which is the method that has data flow diagrams 

as a component tool, is discussed. Both advantages and disadvantages in the use of 

structured systems analysis, and data flow diagrams in particular, are enumerated. 

In Chapter 3 low level ('fine-grain') data flow schemes are discussed, and 

characteristics which are particularly useful to a high level ('coarse-grain') data flow 

system are identified. 

2 



1.1 Motivation for the research 
In the design of a software system, the output from a requirements capturing 

exercise is the specification, which is a document that contains an abstract computer­

orientated representation of the set of end-user requirements.1 

Producing a correct specification is seen to be the key to the successful, cost­

effective development of software systems [Bo76]. There are, however, problems in 

knowing when a specification is correct, and even when it is complete; not least 

because of the problems of adequately specifying what is required in the first place. In 

the context of the specification of requirements, Howden has stated that ([Ho82a], 

p. 72): 

'The principle idea in the analysis of requirements specifications is to make sure 

that they have certain necessary properties.' 

Howden tabulates some of the more important of these properties, included here 

as Table I. 

Some of the properties, notably completeness, must be viewed as ideals which 

cannot be achieved in many software development projects. 

1 Terms in bold type are included in the Glossary. In general, the term 'end-user(s)' will refer to the potential 
users of the system being analysed, who are considered not to be software developers. The terms 'user' and 
'analyst' are used to refer to the person(s) carrying out the analysis. The term 'user' generally appears when 
the application of an analysis technique, or tool, is being discussed. 

3 



CHAPTER 1 - INTRODUCTION 

Property Comments 

Consistency Specifications information must be internally consistent. If 
the information is duplicated in different documents, 
consistency between copies must be maintained. 

Completeness Specifications must be examined for missing or incomplete 
requirements and design information. All specification 
functions must be described, including important properties 
of data. 

Necessity Each part of the specified system should be necessary and 
not redundant. 

Feasibility The specified system should be feasible with existing 
hardware and technology. 

Correctness In some cases, it is possible to compare part of the 
specification with an external source for correctness. 

Table I: Important properties of requirements and design specifications, 
as identified by Howden [Ho82a]. 

4 

Parnas and Clements enumerated various problems in the area of software 

design [PC85]. Some of particular interest, are couched below in requirements 

specification terms: 

• In most cases the end-users do not know exactly what they want and are unable to 

state what they do know. 

• Even if the initial requirements were known, other requirements usually surface as 

progress is made in the development of the software. 

• Even if all of the relevant facts had been elicited and included in the specification, 

experience shows that human beings are unable to fully comprehend the plethora of 

details that must be taken into account in order to progress into the design and 

building of a correct system. 

• Even if all of the detail needed could be mastered, all but the most trivial projects are 

subject to change for external reasons. Some of those changes may invalidate 

previous requirements. 

• Human errors can only be avoided if one can avoid the use of humans. No matter 

how rational the requirements specification process, no matter how well the relevant 

facts have been collected and organised, errors will be made. 
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These problems suggest that as requirements are likely to change during 

analysis, flexibility should exist in the methods and tools used to capture requirements. 

As well, consistency needs to be maintained. In fact, checking for consistency is seen 

to be the property in Table I which is the most achievable using computer tools. Given 

the right tools, computers are particularly good at this type of task. 

The correct specification of requirements is seen as the key to the successful, 

cost-effective development of software systems [Bo76]. It is also generally agreed that 

to be able to validate requirements, they must be rigorously specified. As Davis 

succinctly puts it ([Da88], p. 1100): 

'Use a formal technique when you cannot afford to have the requirement 

misunderstood.' 

In an attempt to improve both the capturing of requirements, and the production 

of a specification document that can be effectively used throughout the software 

development process, considerable effort is being expended on developing formal 

specification methods (see, for example, [GT79a, BO85, Wa85, He86, Jo86, ZS86]). 

However, most, if not all, of the techniques proposed use formal methods and 

languages which require a reasonably sophisticated level of mathematical maturity to be 

fully understood. This tends to make them unsuitable as communications media 

between analysts and most end users; which is unfortunate, as a further major 

perceived parameter in the requirements capturing process is the active involvement of 

end users (see, for example, [Al84, BW79, CM83, De78, Ea82, 1084, MC83, Ri86, 

SP88]). 

Speaking specifically about understanding software requirements specifications, 

Davis has observed that ([Da88], p. 1112): 

'understandability appears to be inversely proportional to the level of 

complexity and formality present.' 

There can be seen to be a tension between the need on the one hand for an 

unambiguous, succinct, specification of requirements as the output from the analysis 

process, and (at the least) the need to validate those requirements with end users. 

Part of the purpose of the research reported herein has been an attempt to 

address some aspects of this tension by adding formality, in the shape of a strict syntax 

and operational semantics, to the data flow diagrams of structured systems 

analysis (SSA), a semi-formal technique, to produce a computer-assisted 

software engineering (CASE) prototyping tool. Data flow diagrams are considered 

relatively easy to understand [De78, Ri86, YBC88], yet they have the potential to be 

viewed more formally as high level data flow program graphs [Ch79]. 

The subsequent sections of this introduction more fully develop some of the 

background to the research. 
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1.1.1 Methods, methodologies, tools, and techniques 
Quite often confusion exists in the use of the words 'method' and 

'methodology'. The sense in which they are used in this thesis is as follows 

(Fr80, MM85]: 

Definition: A method consists of prescriptions for carrying out a certain type 

of work process; that is, it is a way of doing something. • 

Definition: A methodology is a collection of methods and tools, along with 

the management and human-factors procedures necessary to their 

application. • 

Also 'tool' is used with a particular meaning (Fr80, MM85]: 

Definition: A tool is an aid, such as a program, a language, or documentation 

forms, that helps in the use of a method. • 

Frequently, in this dissertation, the term 'technique' appears. It is used informally 

as an abstraction. For example, a set of objects may be described as 'techniques' when, 

say, some of them are 'methods' and the rest are (parts of) 'methodologies'. 

1.1.2 Formal specifications, and formal methods 
The application of formal methods is viewed by many as being necessary for 

the correct and unambiguous specification of objects (see, for example, (AP87, GM86, 

Jo86, LZ77]). Consequently considerable effort is being spent on research in this area. 

'Formal methods' and 'formal specifications' are widely used terms that imply the use 

of strict syntax and semantics in the description of objects; whether the objects are 

statements, programs, requirements, or something else. 

The following definitions make clear what is meant by 'formal specification' 

and the related term 'formal method': 

Definition: A formal specification is a specification which has been 

defined completely in a language that is mathematically precise in 

both syntax and semantics. • 

Definition: A formal method is a method with a rigorous mathematical 

basis. • 
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The extent to which formal methods can be successfully used is unknown. 

Although some formal methods have been used to specify significant applications 

[Su82, STE82], the correctness of the specifications has not been proved, and, in some 

cases, has been shown to be incorrect [Na82]. As discussed in the next section, it 

appears that the most that can be hoped for in practical situations is a specification in 

which amenable parts of the requirements have been formally specified [Na82]. Any 

specification which is not a formal specification will be described simply as a 

'specification'. The integration of formal and informal specifications is considered 

necessary. As Gehani and McGettrick have put it ([GM86], p. vii): 

'Formal specifications do not render informal specifications obsolete or 

irrelevant; although they [formal specifications] can be checked to some degree 

for completeness, redundancy and ambiguity, and can be used in program 

verification, they are often hard to read and understand. Consequently, informal 

specifications are still necessary as an aid to the understanding of the system 

being designed; informal and formal specifications complement each other.' 

1.1.3 Informal, semi-formal, and formal 
The problems with proving the correctness and general applicability of formal 

methods has led to the view that formal methods cannot be used without recourse to 

informal techniques for specifying requirements (nor even for specifying programs) 

[MM85, Na82, Fe88]. Naur has suggested that 'formality' should be viewed as an 

extension of 'informality' [Na82]. He states that 

'the meaning of any expression informal mode depends entirely on a context 

which can only be described informally, the meaning of the formal mode having 

been introduced by means of informal statements.' 

Naur, himself, quotes from Zemanek discussing software development [Ze80]: 

'No formalism makes any sense in itself; no formal structure has a meaning 

unless it is related to an informal environment[ ... ] the beginning and the end of 

every task in the real world is informal.' 

The view of Naur is supported by Mathiassen and Munk-Madsen, who have 

taken Naur's arguments, which were directed at program development, and applied 

them to the more general area of systems development [MM85]. Both the views of 

Naur, and Mathiassen and Munk-Madsen, are supported here. As a consequence, the 

following are offered as definitions for 'informal' and 'formal' in the context of 

describing some object: 

Definition: The informal description of an object is a description that is done 

without recourse to formal methods. • 
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Definition: The formal description of an object is a description that is done 

with recourse to formal methods. • 

Note that a 'formal' description could include 'informal' descriptions within it, 

as it is 'with recourse to' rather than 'solely with'. The counter-argument does not 

apply: an 'informal' description contains no 'formal' descriptions within it. 

It is possible to perceive of a spectrum of descriptions, going from informal at 

one end, to totally formal at the other end. This is in keeping with Naur's proposals 

[Na82]. 

The term 'semi-formal' is used loosely to describe any technique that is formal, 

but with distinctly informal components. An example would be the structure charts 

of structured design when interpreted using the algebraic approach(es) of Tse [St81, 

Ts85, Ts85a, Ts86, Ts87, YC79]. 

1.1.4 Semi-formal techniques in 
the specification of requirements 

Techniques of an informal nature for specifying requirements abound. The most 

widely used is narrative text, but this frequently results in large, ambiguous, and 

incomplete specifications that lead to communications problems between analysts and 

end users; particularly when attempts are made to validate requirements [De78, Da88]. 

Starting in the early 1970's, semi-formal structured techniques have been 

developed over the years in an attempt to improve both the approach to analysis, and to 

place the emphasis more on the graphical presentation of information as a better method 

of communications. Included in the structured approaches for the capturing and 

specification of requirements are, Structured Analysis and Design Technique (SADT) 

[Co85, Ro77, RS77, Di78, Th78], Information Systems work and Analysis of 

Changes (ISAC) [BH84, LGN81, Lu82], Software Requirements Engineering 

Methodology (SREM) [Al77, Al78, AD81, BBD77] which is more suited to embedded 

real-time systems, and the class of techniques called 'structured systems analysis' 

(SSA) [CB82, De78, GS79, We80]. 

All of these have quite powerful abstraction capabilities which allow, for 

example, objects in diagrams to be exploded into lower level diagrams in a top-down 

fashion. 

SSA techniques are the most widely publicised and used techniques, and are 

based on data flow diagrams, which show the system in terms of data precedences: a 

data-orientated approach. The SSA techniques also happen to be the most informal 

of those mentioned. It is impossible to say whether their popularity is due to their 

relative simplicity, although some statistical evidence does exist to suggest that this may 
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be the case: in comparing the use of data flow diagrams and IDEFo (the graphically­

based function modelling part ofIDEF, a component of SADT), Yadav et al. concluded 

that data flow diagrams appear slightly easier to use [YBC88]. 

Though the graphical features of the SSA techniques are seen to aid 

communications between analysts and end users, they lack the necessary level of rigour 

to satisfactorily facilitate the validation of requirements [Fr80, Ri86]. The lack of rigour 

in these techniques stems from their generally free interpretation, which is due more to 

a lack of strict semantics than a lack of syntax. Unfortunately, this lack of rigour invites 

misuse [Do87]. It also leads to the possibility of incorrect, and ambiguous 

specifications. Consequently, as a specification technique, SSA suffers from many of 

the problems of narrative text. This is not surprising, because SSA still places a 

reasonably heavy reliance on the use of textual data, although its syntax is generally, 

but not completely, more formal than narrative text. 

Some of the weaknesses of SSA are discussed in more detail in Chapter 2. At 

this time it should be noted that they exist, and that an attempt to add formality to SSA 

can be usefully applied to minimising the dependence on purely textual data. The means 

used to achieve this minimisation is sketched out in Section 1.3, while the details form 

the subject matter of Part II of this dissertation. 

SSA has three major component tools which are of particular relevance in the 

dissertation. These are: 

• Data flow diagrams - An application is modelled by a hierarchy of data flow 

diagrams which show how data flows through the application. 

• Data dictionary - The description of data objects, and the transformations carried out 

on them (by processes), are maintained in a data dictionary. 

• Process specifications - For each bottom level (leaf) process, its process 

specification (the process logic) describes how the data which flows into the 

process is transformed into the data which flows out of the process. 

These and the other component tools will be discussed more fully in Chapter 2. 

1.1.5 Software development environments 
In looking to define any tool for the capturing of requirements, consideration 

should be given to the environment in which that tool will be focussed. The current 

approach in software engineering is to develop tools within a framework known as 

a software development environment (SDE). SDEs are also known as 

software engineering environments (SEEs), and integrated project (or 

program) support environments (IPSEs). 
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The fundamental purpose of a SDE is to provide a computer-based set of 

methods and tools - a methodology to support the software (development) 

process. The existence of a cohesive methodology is fundamental, as this 

encapsulates the process model used in software development. In Dowson's words 

([D086], p. 6), 

'We take the position that an unstructured "bag of tools" does not qualify as a 

software development environment.' 

Attempts have been made to define environments made up from existing 

methods and tools. Howden discusses the architecture for four possible SDEs, each 

based on the waterfall model of the software process [Ho82]. The differences between 

the environments is the number and sophistication of the methods and tools included. 

What is apparent is the large number of 'discontinuities' which exist between the 

different tools in each proposed environment. These discontinuities have to be bridged 

generally by manual means, which makes them error-prone and unsatisfactory for the 

development of other than small software projects. 

The following definition emphasises the need for integration ([WD86], p. 5): 

Definition: A software development environment is a coordinated 

collection of software tools organised to support some approach to 

software development or conform to some software process 

model. • 

It is argued that the real value of a SDE comes from the integration between the 

various methods and tools that it uses. This integration is provided by a specialised 

data base environment. Conceptually, these specialised data bases have much in 

common with the more recent of the data dictionary systems, which also aim to 

provide an integrated view, and control, of (all) the objects in some context (whether, 

say, the context is an enterprise, or some division or department of that enterprise). 

1.1.6 The software development process 
and the software life cycle 

The underlying structure of a SDE is the particular software process 

development model adopted by the architects of the SDE. The purpose of this section is 

to determine what a process development model is, and whether a standard model and, 

hence, SDE exists into which the proposed tool could be usefully placed. 

The software development process (also called the software life cycle) is 

frequently shown as consisting of a number of stages, such as requirements, design, 
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implementation, testing, and operation and maintenance [So85].2 The activities carried 

out in each of these stages is described by Sommerville as ([So85], p. 3): 

• Requirements analysis and definition -The system's services, constraints and goals 

are established by consultation with system end-users. Once they have been agreed, 

they must be defined in a manner which is understandable by both end-users and 

development staff. 

• System and software design - Using the requirements definition as a base, the 

requirements are partitioned to either hardware or software systems. This process is 

termed systems design. Software design is the process of representing the functions 

of each software system in a manner which may be readily transformed to one or 

more computer programs. 

• Implementation and unit testing - During this stage, the software design is realised 

as a set of programs or program units which are written in some executable 

programming language. Unit testing involves verifying that each unit meets its 

specification. 

• System testing - The individual program units or programs are integrated and tested 

as a complete system to ensure that the software requirements have been met. After 

testing, the software system is delivered to the customer. 

• Operation and maintenance - Normally (although not necessarily) this is the longest 

life cycle phase. The system is installed and put into practical use. The activity of 

maintenance involves correcting errors which were not discovered in earlier stages of 

the life cycle, improving the implementation of system units and enhancing the 

system's services as new requirements are perceived. 

Figure 1.1 shows the waterfall model view of this process, including: 

• The overlap between the stages - There are no 'clean' division points between the 

activities across stages. 

• The feedback (and feed-forward) between the pre-operational development stages­

The next stage in the process is dependent on work carried out in the previous 

stage(s) (feed-forward). Identifying errors, or accounting for changes, etc., require 

changes to previous stages (feedback). 

• The feedback from the operational and maintenance stages - Once an application 

becomes live, errors may surface, or changes be required over time, which lead to a 

feedback to earlier stages. 

2 It is possible to define 'software development process' and 'software life cycle' to have significantly 
different meanings. Compare, for example, the definition for 'software (development) process' in the 
Glossary with the following definition for 'life cycle' ([MRY86], p. 83): 'The system life cycle is the 
period of time from the initial perception of need for a software version to when it is removed from 
service'. 
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requirements 

design 
operations 

and 

testing t-11----l maintenance 

Figure 1.1: The waterfall model of the software life cycle, 
showing the overlapping of stages 

(based on Sommerville [So85], Figs 1.1 and 1.2). 

12 

The end points of the stages in the waterfall model are generally seen to coincide 

with major documentation and review points. They also tend to correspond with points 

at which major changes occur in the techniques and or environments used for the 

development, such as at the interface between (structured) design and implementation, 

where a switch is made from using two-dimensional structure charts to using a one­

dimensional programming language [YC79]. 

The model in Figure 1. 1 is extremely abstract, and a number of important 

features have been omitted, including: 

• An indication of parallel activities within phases - Invariably, on other than the 

smallest projects, developers work in tandem. This is certainly true of the 

implementation phase, when a number of programmers will likely be concurrently 

developing modules. 

• An indication of whether or not prototyping is supported, and if so, where. 

• An explicit indication of where verification and validation take place. 

Figure 1.1 highlights a current major problem in the description of the software 

process: the lack of a definitive process metamodel with which software process 

models can be described, and checked for correctness and completeness [PC85, 

WD86]. However, as this is a major research topic in itself, it will not be pursued 

further here. Instead, the waterfall model of Figure 1.1 is accepted as adequate for the 

purposes of the research reported herein. 

1.1. 7 Models, executable models, and prototypes 
The use of models in analysis is now seen as fundamental. According to Quade 

([Qu80], p. 31): 

'Analysis without some sort of model, explicit or otherwise, is impossible.' 
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The following defines what a 'model' is understood to be: 

Definition: A model of an object is a representation which specifies some but 

not all of the attributes of the object. • 

In the development of computer software, models are seen to be most useful if 

they are executable [Ri86]. 

Definition: A dynamic model of an object is a model which can be made to 

carry out a set of operations, possibly in some specified 

sequence. • 

An 'executable model' is merely a dynamic model, which in the context of 

software development specifies a software model that can be exercised on a computer. 

Prototypes, and prototyping 
As Carey and Mason have observed (CM83, p. 177), in computing: 

'there appears to be little if any agreement on what a prototype is.' 

The following simple definition is considered adequate: 

Definition: A prototype is a model. • 

A prototype is either an abstraction of the object it is modelling, a 'mock-up', or 

it is a detailed representation of part of the object. SSA provides good facilities for 

modelling parts of systems, as described in Chapter 2. 

By implication, the medium used to construct a prototype need not be the same 

as that used for the final object. A prototype of a menu system, for example, could be 

constructed using the transition diagram interpreter (TDI) part of RAPID/USE 

[WPS86], and then the real system could be constructed as part of a larger integrated 

project using a language such as PL/I. 

Definition: Prototyping is a method for building and evaluating prototypes. • 

The purpose of prototyping, as it is seen here, is the same as that stated by 

Carey and Mason ([CM83], p. 180): 

'Our focus in this paper is on improving the final information system product 

through use of prototypes to illuminate more clearly the [end-]user's real 

needs.' 
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This view of prototyping, as a productive way for analysts and end-users to 

interact, is commonly held throughout the literature (see, for example, [AHN82, Al84, 

BW79, CM83, Ea82, IH87, JS85, KS85, MC83, NJ82, SP88]). No other purpose 

for prototyping is stressed here, although claims have been made for it as a replacement 

for the 'classical' sofware development process [NJ82]. See, for example, the 

discussion and references in Carey and Mason [CM83]. 

Different approaches to prototyping in computing have been enumerated [IH87, 

JS85]. Ince and Hekrnatpour, provide the following taxonomy ([IH87], p. 9): 

• Throw-it-away' prototyping - Which involves the production of an early version of 

a software system during requirements analysis. This is then used as a learning 

medium between the analyst and the end-user during the process of requirements 

elicitation and specification. 

• Incremental prototyping - Where a system is developed one section at a time, but 

within a single overall software design. 

• Evolutionary prototyping - Where a system is developed gradually to allow it to 

adapt to the inevitable changes that take place within an enterprise. 

1.2 Objectives of the research 
The principal objective of the research, has been to investigate the use of 

executable data flow diagrams as a prototyping tool during the analysis phase of the 

software life cycle. 

Implicit in this objective are the following further objectives: 

• That the executable model, which is a significant output of a prototyping exercise, be 

rigorous enough to form part of the specification, if required. 

• That to serve as an adequate communications medium between analysts and end-

users, the tool should: 

have a small number of (simple) concepts; 

de-emphasise procedural details; 

incorporate high levels of abstraction in a relatively simple manner; 

make effective use of graphics. 

• To be an effective prototyping tool at the analysis stage, as well as the list of features 

just given, the tool should: 

- provide 'soft' recovery from errors; 

- be able to exercise 'incomplete' models. 

1.3 The approach 
In arriving at the objective(s) given in Section 1.2, the following five factors 

were identified as of particular importance to the successful capturing of requirements: 
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• Active user involvement - This is a long-held view in information systems 

development. De Brabander and Thiers cite a paper written in 1959 which proposes 

such an activity [DT84]. Active user involvement generally implies the need for 

informal and semi-formal methods and tools. 

• The use of graphical techniques in place of textual descriptions, wherever 

appropriate Graphic techniques abound in commerce: PERT charts, pie charts, 

histograms, and graphs, are notable examples. At the same time, purely textual 

descriptions have been much criticised [Da88, De78]. 

• The use of executable models - Particularly in the form of prototypes, as a means to 

illuminate clearly the needs of end-users [Al84, BW79, CM83, Ea82, MC83, Ri86, 

SP88]. A model should be viewed (at the least) as a form of documentation. 

• Powerful abstraction capabilities -Analysis is a creative process which has to map 

complex real world problems into the specification of solutions [We81]. 

• A specification should be unambiguous - This implies the existence of strict 

semantics in the specification method(s), and ways of avoiding or checking for 

contradictions [AP87, Da88, GM86, Ho82a, Jo86, Ri86]. 

It was proposed that these factors can be addressed, to a significant degree, by 

adding formality to SSA. 

Following an initial study into using the three SSA tools mentioned in 

Section 1.1.4, the approach adopted has been to specify the architecture for a tool 

based on two of those components - data flow diagrams, and the data dictionary - plus 

the development of a prototype ( of the prototype system) to test out many of the ideas 

put forward. 

The formality added to the data flow diagrams has three components: 

• A formal syntaxfor specifying data flow diagrams-To ensure that only a consistent 

data flow hierarchy can be created, with valid data flow connections. 

• An operational semantics for data flow diagrams - These define how a data flow 

diagram can be executed. 

• A consistent means of transforming data flows - This is achieved by treating the 

definitions of data objects in the dictionary as programming language statements, 

when executing data flow diagram processes. 

The tool is described as 'semi-formal'. Work to provide a completely formal 

'back-end' is being undertaken separately from the research reported here. 

Given the discussion in Section 1.1, the tool has not been fixed to any specific 

methodology or, by implication, to any specific SDE or software development process 

model. As a consequence of this, the tool can possibly have use beyond the 

requirements specification phase. However, this is not argued in the dissertation, but is 

suggested, in Chapter 10, as a possible topic for future research. 
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The tool is not considered a panacea for all the ills bedevelling the specifying of 

requirements. Again referring back to the discussions in previous sections, of necessity 

it is seen as one of a collection of informal to formal tools for use during analysis. 

1.4 Structure of the dissertation 
The thesis is structured in three parts. Part I contains this introductory chapter, 

and two further chapters which survey material relevant to the tool described in Part II. 

Part II proposes a design for an executable data flow diagram tool in Chapters 4 

to 6. Following this, in Chapter 7, a prototype implementation of the tool is discussed. 

Many of the ideas incorporated in the architecture of the executable data flow diagram 

environment have been incorporated into this prototype, which has been written in 

Prolog. It should be realised that no attempt was made to develop a complete 

commercial implementation. Having said this, the prototype source is over 400 Kbytes 

in size. 

The final chapter in Part II contains a detailed example application developed on 

the system described in Chapter 7. 

Part III contains two chapters. The first, Chapter 9, discusses other approaches 

to the execution of data flow diagrams. Included there is an outline description of a 

system that was also developed as part of this research, and is the precursor to the 

system described in Part II. Finally Chapter 10 discusses the findings of the research, 

and suggests further avenues of investigation. 




