Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Erratum

Page 1	paragraph 5	line 4	"were" should be "was"
Page 25	paragraph 5	line 4	"arising" should be "carried"
Page 28	paragraph 1	line 1	"periodical" should be periodic"
Page 29	paragraph 2	lines 1-3	should be "An alternative method of hydraulic cleaning is back-pulsing; short bursts of backpressure, alternative pressurising and depressurising and reversing the feed flow direction with the permeate exit closed (Scott, 1995)."
Page 31	paragraph 2	lines 4-5	should be "Only a few are actually compatible with membranes (Krack, 1995)."
Page 35	paragraph 1	line 5	"avoid" should be "prevent"
Page 85	paragraph 3	line 2	"decreased" should be "increased"
Page 86	paragraph 3	lines 1-8	should be "This work also assisted in highlighting that further work needs to be conducted to evaluate the performance of enzyme cleaners on a commercial scale. These are probably capable of removing foulants not easily removed by other cleaners and have the advantage of being gentle to membranes and of possibly increasing membrane lifespan. They also present fewer chemical disposal problems compared with caustic/acidic based cleaners. However, better performance must be achieved with these in order to realise their benefits."

Evaluation and Development of Chemical Solutions for Membrane Cleaning in the Dairy Industry

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Food Science at Massey University, Albany, New Zealand

> Nisha Maria D'Souza 1999

Abstract

Membranes must be cleaned regularly to remove organic material deposited on the surface from the food or biological fluids processed. Cleaning is a compulsory step in maintaining the permeability and selectivity of the membrane and is also necessary to return the plant to its original capacity, to avoid bacteriological contamination, and to produce products with a long shelf-life. Without cleaning, the flux of solution through the membrane would decline to uneconomic levels.

Caustic, acidic and enzymatic based cleaners may be used for membrane cleaning. Such cleaners affect the lifetime and performance of a membrane and should thus be surface-active, soluble, rinsable, non-corrosive, safe, effective and easy to use. The primary objective of work carried out was to evaluate a range of cleaning chemicals and cleaning regimes on a pilot-scale.

Cleaning regimes employing conventional caustic and acidic cleaners, and enzymatic detergents have been evaluated for a Desal ultrafiltration membrane. The membrane was reproducibly fouled during the processing of skim milk and skim milk concentrate on a pilot-scale plant supplied by Tuchenhagen (N.Z.) Limited and compared favourably with an industrial plant. A spiral wound membrane of polyethersulfone with an active area of 7.4 m² and a 10,000 molecular weight cut-off was selected. A transmembrane pressure of 2.5 bar, a retentate flow rate of 60%, a temperature of 18.5°C, and a recirculation flow rate of 7 m³h⁻¹ was kept constant during filtration. A combination of flux recovery after cleaning and solute resistance removal was used to assess cleaning performance.

Higher flux recoveries (87.3-93.6%) were achieved with surfactant based formulations compared with enzymatic detergents. This was attributed to the wetting action of surfactants which when used in conjunction with a high strength blended alkali solution, aided the convective cleaning solution flow through the membrane pores.

Enzymatic cleaning was found to be milder to the membrane. While the enzymesanitiser regime yielded good flux recoveries (68.4-87.3%), the enzyme-acid and acid-enzyme regimes were not capable of restoring membrane permeability, resulting in low flux recoveries 64.2-78.9%. The acid in these regimes caused the membrane pores to shrink, restricting the ability of the enzymatic detergent or rinse water to penetrate the foulant and remove it. Based on these results, a new formulation (DR292) with more surfactant action was developed and evaluated. Flux recovery using this new formulation increased by 3.5%.

Regimes incorporating non-ionic surfactants and high strength alkali solutions were found to successfully restore membrane permeability because a higher level of surfactant was obtained from the mixture. Further experiments using enzymeacid and acid-enzyme regimes, and the new formulation need to be trialed on new membranes to determine their long-term effect on membrane permeability and selectivity.

Acknowledgments

I wish to express my deepest thanks to God for blessing me with the health, patience, motivation and skill required to successfully complete this project.

My sincere thanks to my supervisors Dr. John Mawson at Massey University and Mr. Paul Hofland and Dr. Terry Smith at Orica (N.Z.) Limited, for their guidance, advice and encouragement throughout this project. They have enabled me to gain an understanding of the principles of membrane technology as well as helped me improve my research skills which will aid me in future work.

I also wish to thank The Foundation for Research, Science and Technology (FRST), for funding this project and to Tuchenhagen (N.Z.) Limited for supplying the pilot plant.

I would like to thank all those who helped me access information regarding this project and to all those at Anchor Products, Lichfield, for their invaluable assistance during the period of my research.

A big thankyou to Ms. Marian Holdaway and her family who opened their hearts and home to me while conducting research at Anchor Products, Lichfield.

Last but not least, I am honoured to have a loving family who have constantly supported and encouraged me to carry on when things got difficult. I am deeply grateful to them for everything and God bless them always.

Table Of Contents

Abstract	ii
Acknowledgments	iii
Table of Contents	iv
List of Figures	vii
List of Tables	x
1.0 Introduction	1
2.0 Literature Review	3
2.1 Introduction	3
2.2 Ultrafiltration	5
2.2.1 Ultrafiltration of whey	6
2.2.2 Ultrafiltration of milk	8
2.3 Membrane materials	9
2.3.1 Polymeric membranes	10
2.3.2 Mineral or ceramic membranes	11
2.4 Membrane configurations	11
2.4.1 Tubular	12
2.4.2 Hollow Fibre and Capillary	12
2.4.3 Plate and Frame	12
2.4.4 Spiral wound	12
2.5 Theoretical aspects	14
2.5.1 Fouling and Concentration polarisation	17
2.5.2 Fouling with dairy fluids	20
2.5.3 Physico-chemical factors affecting fouling	21
2.5.3.1 Role of Calcium salts	21
2.5.3.2 pH and Heat treatment	23
2.5.3.3 Proteins	24
2.5.3.4 Lipids	24
2.5.3.5 Phosphate interactions	25
2.5.4 Factors affecting flux: Operating parameters	25
2.5.4.1 Temperature	25
2.5.4.2 Shear rate	20
2.5.4.5 Pressure	27
2.5.4.4 Feed Concentration	27
2.6 1 Introduction	28
2.6.1 Introduction	20
2.6.2 1 Alkalis	31
2.6.2.7 Acids	31
2.6.2.3 Surfactants	31
2.6.2.4 Enzymes	33

2.6.2.5 Disinfectants	34
2.6.3 Physical aspects of membrane cleaning	35
2.6.3.1 Temperature	35
2.6.3.2 Mechanical aspects	35
2.6.3.3 Module design	36
2.6.4 Chemical aspects of membrane cleaning	37
2.6.4.1 Water quality	37
2.6.4.2 Influence of soil composition	38
2.6.5 Sanitation	38
2.6.6 Cleaning Procedures	39
2.6.7 Comparison of cleaning regimes	40
2.6.7.1 Effect of cleaning concentration using conventional cleaners	40
2.6.7.2 Effect of cleaning concentration using formulated detergents	41
2.6.7.3 Effect of cleaning order	42
2.6.7.4 Effect of cleaning frequency	43
2.6.7.5 Effect of cleaning temperature	43
2.6.7.6 Effect of pH on cleaning	43
2.6.7.7 Effect of cleaning velocity	46
2.6.8 Methods of checking the cleaning efficiency	46
2.7 Conclusions	47
3.0 Materials and methods	49
3.1 Materials	49
3.1.1 Membrane	49
3.1.2 Cleaning agents	50
3.1.3 Feed solutions	51
3.2 Method	51
3.2.1 Pilot plant setup	51
3.2.2 Fouling and cleaning experiments	55
3.2.2.1 Clean water flux	55
3.2.2.2 Fouling	55
3.2.2.3 Rinsing	56
3.2.2.4 Cleaning	56
3.2.3 Miscellaneous methods	58
3.2.3.1 Standardisation of instruments	58
3.2.3.2 Measurement of enzyme activity	58
3.2.3.3 Chlorine measurement	59
3.2.3.4 Titration curves	60
4.0 Results and Discussion	61
4.1 Calibration of the pilot plant	61
4.2 Experiments performed on the pilot plant	62
4.2.1 Fouling conditions	62
4.2.1.1 Effect of feed material	62
4.2.1.2 Effect of fouling time	64
4.2.1.3 Effect of operating temperature	65
4.2.2 Cleaning regimes	67
4.2.2.1 Cleaning Efficiency	67
4.2.2.2 Dosages of Orica cleaners	71

v

4.2.2.3 C	omparison of alkali cleaners	75
4.2.2.4 E	ffectiveness of enzyme cleaners	76
4.2.2.5 C	oncentration of Orica cleaners versus pH	77
4.2.3 Indust	rial versus Pilot-scale	81
4.2.3.1 C	irculation volumes of the two plants	84
5.0 Conclusion	ns and Recommendations	85
6.0 References	5	87
Appendices		
Appendix 1:	Operating details for the pilot plant	92
Appendix 2:	Calibration of the pilot plant (permeate and retentate	
	flowmeters)	94
Appendix 3:	Calibration of the FOSS NIRSystems LiquiFlow	
	Analyser (NLA)	97
Appendix 4:	Titration data for Reflux chemicals	98
Appendix 5:	Industrial plant flux data	100
Appendix 6:	t-Tests	101
Appendix 7:	Summary of experiments using cleaning regimes	
	A,B,C,D,E,F, and G	105
Appendix 8:	Flux data based on skim milk fouling	108
Appendix 9:	Flux data based on skim milk concentrate fouling	108
Appendix 10:	Flux data based on fouling at volume concentration	
	factor (VCF) 2	108
Appendix 11:	Flux data based on demineralised water	108

vi

List Of Figures

Figure 2.1	Schematic drawing of a single module design	6
Figure 2.2	Structure of polysulfone	10
Figure 2.3	Construction of a spiral wound module	13
Figure 2.4	Generalised correlation between operating parameters and flux, indicating the areas of pressure control and mass transfer control	15
Figure 2.5	Schematic of concentration polarisation during ultrafiltration of colloidal and macromolecular solutes, showing built-up gel-polarised layer and associated boundary layer	16
Figure 2.6	Conceptual stages of flux decline in ultrafiltration with constant pressure	18
Figure 2.7	Effect of back flushing on membrane flux rate	29
Figure 2.8	A surfactant molecule with hydrophilic and hydrophobic ends	32
Figure 2.9	General recommendation for cleaning RO, NF and UF membrane equipment	36
Figure 3.1	Process and Instrumentation diagram of the pilot plant	52
Figure 3.2	Front and side views of the pilot plant	54
Figure 4.1	Effect of transmembrane pressure on flux behaviour during ultrafiltration (demineralised water, 25°C)	61
Figure 4.2	Effect of transmembrane pressure on flux behaviour during ultrafiltration (demineralised water, 50°C)	61
Figure 4.3	Effect of feed material on ultrafiltration flux (18.5°C, 2.5 bar ΔP_{TM} , recirculation flow rate 7 m ³ h ⁻¹)	63
Figure 4.4	Effect of feed concentration on ultrafiltration flux (140 minutes, 18.5°C, 2.5 bar ΔP_{TM} , recirculation flow rate 7 m ³ h ⁻¹)	64
Figure 4.5	Flux behaviour during a 3 and 6 hour fouling with skim milk (18.5°C, 2.5 bar ΔP_{met} , 7 m ³ h ⁻¹)	64

Figure 4.6	Flux behaviour during a 2 and 4 hour fouling with skim milk concentrate (SMC) (18.5°C, 2.5 bar ΔP_{TM} , 7 m ³ h ⁻¹)	65
Figure 4.7	Effect of operating temperatures on flux behaviour during the ultrafiltration of skim milk (3 hours, 2.5 bar ΔP_{TM} , $7m^3h^2$).	66
Figure 4.8	Effect of operating temperatures on flux behaviour during the ultrafiltration of skim milk concentrate (SMC) (4 hours, 2.5 bar ΔP_{TM} , 7 m ³ h ⁻¹)	66
Figure 4.9	Cleaning effect of cleaning regimes A to F - final water flux and flux recovery after cleaning following fouling with skim milk and SMC (25°C, 2.1 bar ΔP_{TM})	68
Figure 4.10	Cleaning effect of cleaning regimes A to F - flux recovery and solute resistance removal (SRR) after cleaning following fouling with skim milk and SMC (25°C, 2.1 bar ΔP_{TM})	68
Figure 4.11	Cleaning effect of cleaning regimes A and G - final water flux and flux recovery after cleaning (25°C, 2.1 bar ΔP_{TM} , skim milk and SMC concentrated to VCF 2)	69
Figure 4.12	Cleaning effect of cleaning regimes A to G - flux recovery and solute resistance removal (SRR) after cleaning (25°C, 2.1 bar ΔP_{TM} , skim milk and SMC concentrated to VCF 2)	70
Figure 4.13	Dosage volumes of Reflux cleaners B610, R400 and S800 used for cleaning regime A after fouling with skim milk SMC at 18.5°C (50°C, 2.5 bar ΔP_{TM} , 7m ³ h ⁻¹)	71
Figure 4.14	Dosage volumes of Reflux cleaners B610, R400 and S800 used for cleaning regime A after fouling with skim milk and SMC at 50°C (50°C, 2.5 bar ΔP_{TM} , 7 m ³ h ⁻¹)	72
Figure 4.15	Dosage volumes of Reflux cleaners B620, R400 and S800 used for cleaning regime B after fouling with skim milk and SMC at 18.5°C (50°C, 2.5 bar ΔP_{TM} , 7m ³ h ⁻¹)	72
Figure 4.16	Dosage volumes of Reflux cleaners A230, B610, R400 and S800 used for cleaning regime C after fouling with skim milk and SMC at 18.5°C (50°C, 2.5 bar ΔP_{TM} , 7m ³ h ⁻¹)	73
Figure 4.17	Dosage volumes of Reflux cleaners E1000, B610 and S800 used for cleaning regime D after fouling with skim milk and SMC at 18.5°C (50°C, 2.5 bar ΔP_{TM} , 7m ³ h ⁻¹)	73
Figure 4.18	Dosage volumes of Reflux cleaners E1000 and R400 used	

viii

	for cleaning regimes E and F after fouling with skim milk and SMC at 18.5°C (50°C, 2.5 bar ΔP_{TM} , 7m ³ h ⁻¹)	74
Figure 4.19	Dosage volumes of Reflux cleaners B610, R400 and S800 used for cleaning regime A after fouling with skim milk and SMC concentrated to VCF 2 at 18.5°C (50°C, 2.5 bar ΔP_{TM} , $7m^3h^{-1}$)	74
Figure 4.20	Dosage volumes of Reflux cleaners DR292, R400 and S800 used for cleaning regime G after fouling with skim milk concentrated to VCF 2 at 18.5°C (50°C, 2.5 bar ΔP_{TM} , $7m^3h^{-1}$)	75
Figure 4.21	Concentration of Reflux B610 versus pH used for cleaning regimes A, C and D following fouling with skim milk and SMC (50°C, 2.5 bar ΔP_{TM} , 7 m ³ h ⁻¹)	77
Figure 4.22	Comparison of pH versus concentration of Reflux B610 with titration curves	77
Figure 4.23	Concentration of Reflux B620 versus pH used for cleaning regime B following fouling with skim milk and SMC (50°C, 2.5 bar ΔP_{TM} , 7m ³ h ⁻¹)	78
Figure 4.24	Comparison of pH versus concentration of Reflux B620 with titration curves	78
Figure 4.25	Concentration of cleaner DR292 versus pH used for cleaning regime G following fouling with skim milk (50°C, 2.5 bar ΔP_{TM} , 7 m ³ h ⁻¹)	78
Figure 4.26	Concentration of Reflux R400 versus pH used for cleaning regimes A, B, C, E, F and G following fouling with skim milk and SMC (50°C, 2.5 bar ΔP_{TM} , 7 m ³ h ⁻¹)	79
Figure 4.27	Comparison of pH versus concentration of Reflux R400 with titration curves	79
Figure 4.28	Comparison of flux behaviour during ultrafiltration on pilot- scale (18.5°C, 2.5 bar ΔP_{TM} , VCF 2, 7.4 m ² membrane area) and on industrial scale (~10°C, 3.2 bar ΔP_{TM} , VCF 2.7, 1583.4 m ² membrane area)	82
Figure 4.29	Comparison of flux behaviour on pilot and industrial scale after correcting for temperature differences	83
Figure 4.30	Comparison of flux behaviour on pilot and industrial scale after correcting for concentration differences	83

ix

List Of Tables

Table 2.1	Comparison of major pressure-driven membrane processes	4
Table 2.2	Applications of Whey protein concentrates	7
Table 2.3	Compositions of typical liquid dairy streams (%w/v)	8
Table 2.4	Qualitative comparison of four membrane configurations	13
Table 2.5	Cleaning agents and their general properties	30
Table 2.6	Recommended water quality guidelines for membrane cleaning and rinsing	37
Table 2.7	Cleaning regimes used in ultrafiltration equipment installed in the dairy industry	40
Table 2.8	Cleaning regimes used by different researchers	44
Table 3.1	Characteristics of the Desal polyethersulfone ultrafiltration membrane	49
Table 3.2	Characteristics of cleaning agents used	50
Table 3.3	Properties of cleaning agents used	51
Table 3.4	Component list of the pilot plant	53
Table 3.5	Fouling conditions for different experimental runs	55
Table 3.6	Cleaning regimes used to clean the pilot plant	57
Table 3.7	Properties of chlorine reagents used in the chlorine test kit	59
Table 4.1	Characteristics of the Industrial plant	81
Table A2.1	Calibration data for the pilot plant at 25°C using demineralised water	94
Table A2.2	Calibration data for the pilot plant at 50°C using demineralised water	95
Table A2.3	Nomenclature	96
Table A3.1	Calibration data for the FOSS NIRSystems Analyser using skim milk powder (SMP) samples	97

х

Table A4.1	Titration data for Reflux B610 at 25°C	98
Table A4.2	Titration data for Reflux B620 at 25°C	98
Table A4.3	Titration data for Reflux R400 at 25°C	99
Table A5.1	Flux data for the Industrial plant	100
Table A7.1	Summary of experiments using cleaning regime A after fouling at 18.5°C	105
Table A7.2	Summary of experiments using cleaning regime A after fouling at 50°C	105
Table A7.3	Summary of experiments using cleaning regime B	105
Table A7.4	Summary of experiments using cleaning regime C	106
Table A7.5	Summary of experiments using cleaning regime D	106
Table A7.6	Summary of experiments using cleaning regime E	106
Table A7.7	Summary of the experiment using cleaning regime F	106
Table A7.8	Summary of experiments using cleaning regimes A and G	107
Table A7.9	Summary of the experiment using demineralised water	107

xi