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ABSTRACT

This thesis describes an investigation into automatic recognition of
satellite imagery from the LANDSAT Project. Clustering techniques are shown
to be the most suitable; of the three clustering algorithms investigated the
k-means is shown to be the most effective. The need to perform edge detection
on the images prior to clustering is also demoﬁstrated. A suitable algorithm

for edge detection is described.

Indexing terms: clustering, LANDSAT Satellite project, pattern recognition,

Satellite data
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1 INTRODUCTION

As man seeks to automate increasingly more complex tasks, he demands
a higher degree of pseudo-intelligence from the controlling systems. This
pseudo-intelligence ensures that the system is indeed automated, requiring
less human intervention in either setting up or operation. In addition it
may assist people in making the 'best use' of such a system - since the
system is to be used why not make it do as much as possible of the work

itself?

The increased demand for machine intelligence has given rise to much
research effort in areas of Artificial Intelligence, one of the most prominent
being Pattern Recognition - the automatic recognition and classification of

objects into sets or classes.

1.1 Data Requirements

The type of Pattern Recognition techniques applicable in any particular
case is determined largely by the nature of the data to be analysed.
Consequently the first stage of the investigation described in this thesis
was to establish a source of a suitable set of data. Suitable data should

satisfy the following conditions:

a. It should be available with as little requirement as
possible for pre-processing. In the worst case, it should
be available at all, so that there would be no need for

data generation.

b. It should be sufficiently large to demonstrate the inherent
structure of the data and it should be a representative

sample from a larger population.



c. There should also be available sufficient information to
determine the accuracy of the recognition system output,

i.e. there should be a corresponding set of 'answers'.

d. If possible there should also be some practical applications

for the solution of a recognition system for the data.

0f the above, b is clearly the most important, since the data qsed will
determine the generality of the resulting system. Requirement c¢ is essential
for this research project since there is a need to measure the performance
of the system being developed to determine how nearly the original goals

have been met.

Contact was made with the Remote Sensing Section of the Physics and
Engineering Laboratory of the DSIR who were beginning work on Pattern Recog-
nition in satellite images to produce thematic maps. These include land
use maps, and maps for crop census work. They were able to supply data
from the Earth Resources Technology Satellite (ERTS) project which met the

requirements for this research.

1.2 Remote Sensing

In an effort to aid his understanding of his environment, man has
developed many diverse and specialised techniques to collect information
about it. The term Remote Sensing is used to refer to methods of obtaining

information by:

a. Gaining views which were previously impossible e.g. a

satellite photograph of a sub-continent in a single frame.

b. Gaining "unfamiliar views of familiar" [a], e.g. views at

infra-red or ultra-violet wavelengths.



Information is sometimes collected by non-photographic sensors - in
non-visible wavelengths - but stored in a photo like form, e.g. the ouéput
from a radar scanner may be used to expose light sensitive film in synéhro-
nised sweeps; since this has not strictly produced a photograph the terms

'image' and 'imagery' are often used.

Such imagery may be used in the discovery of previously unknown features
or in the grouping of features which are in some way alike. This grouping
may be done by detection of spectral signatures i.e. visual characteristics
of an object which define it and distinguish it from other similar objects.

This may be applied in a number of areas:

Meterology:- Forecasting, storm tracking.
Agriculture:- Plant disease, insect infestation.
Forestry:- Forest fire and disease detection.
Ecology:- Pollution monitoring e.g. oil spills,

thermal pollution.

Medicine:- Diagnosis of human ailments from thermal
infra-red body scans.

Natural Resource

Management :—  Mineral prospecting, mapping.

Because of the nature of such data, processing is most often necessary
to enable human observers to interpret it, certain applications may even
require on-line processing, thus high-speed computing resources have facil-
itated or even made possible for the first time the handling of such data
Further, some data retrieval systems provide a continous stream of high-
speed data e.g. satellite projects may return 10" bits per year, confirm-
ing the need for high speed data processing capabilities and large volume

storage.



1.3 LANDSAT

The primary objeﬁtive of the ERTS project, which launched the LANDSAT
satellites, was to assist in experiments concerning'utilization of the earth's
resources. This is done by monitoring and recording earth observation data
from space. The first LANDSAT satellite was launched in July 1972 into a
sun-synchronous orbit with a period of 103 minutes. A second similar satellite
was launched in January 1975. Each satellite orbits the earth 14 times daily
viewing a 185km wide swathe, covering the globe's entire surface in 18 days.
The term sun-synchronous means that any ground point is re-visited at the

same time of day thereby minimising the effect of shadows.

There are two separate sensor systems aboard LANDSAT. One system has
three television cameras in a Return Beam Vidicon (RBV) system which returns
a television image of the same ground scene in each of three wavebands between
0+48 and 0+83 um. Each image is of an area 185 km x 185 km. The second
system, which is of more immediate interest for this research project, is a
Multi-Spectral Scanner (MSS) in which an oscillating mirror scans the field
of view across the line of flight reflecting the radiation on to solid state
detectors. The detectors are sensitive to four wavebands, two in the visible
and two in the near infra-red spectrum. Each has a field of view of a ground
‘area of 79m x 79m, see fig 1. The data received by ground tracking stations
needs then to be corrected for aberrations in satellite platform attitude,
height and speed, and for distortion due to to forward motion while scanning,

and finally for the earth's rotation.

One of the most powerful aspects of the LANDSAT project is the fact that
not only spatial and spectral information is collected, but since each ground
point is revisited every 18 days, it is also possible to analyse the data
temporally i.e. to monitor not only what ground features are present but glso

how they change with time.
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6 detectors OSC%llating
per band mirror
(24 total)

185 km
’/26 lines/scan/band

direction
of flight

Fig 1 The LANDSAT Multispectral Scanner

1.4 The Research Objective

The aim of this research is to investigate and compare Pattern

Recognition techniques most suitable for recognition of LANDSAT MSS imagery.



2 PATTERN RECOGNITION

Before discussing the details of this‘rasearch project it is necessary
to outline the principles involved in recognising and classifying objects

or patterms.

2.1 General

Given a set of data it may be required to separate its elements into
groups or classes according to some criteria determined by the character-
istics of those elements. Each element in the set is a number of measure-
ments of an object in the physical world, P. It is called a pattern and
may be represented by a vector in a p-dimensional Euclidian Space called a
Pattern Space. If p is very large, in some cases it may be greater than
1000, a reduction in the number of dimensions will need to be made to
enable any further processing to be done. This is known as feature
extraction or feature selection and should ideally retain all the indepen-
dent variables, or features, so that no information is lost. A transform-
ation function is then applied to the pattern in order to determine to
which of a number of classes it belongs, being similar to the other members
of that class according to some criteria. There may also be an 'undecided'
class for those patterns which do not appear to be closely associated with

any of the other classes already defined.

This final classification or recognition phase forms the largest part

of most Pattern Recognition systems and may be one of several types:-

a. Template Matching. Stored within the Recogniser is a set

of patterns whose classes are known. Each pattern to be

classified is compared with those stored, one by one,



and is assigned to the class of the pattern it matches or
most nearly matches. This is a simple-minded but intolerant
approach, however it performs satisfactorily for near perfect
patterns, i.e. those which vary little within each class,

such as the characters of a known type font.

b. Similar Features. Each pattern's features are used to deter-

mine its similarity to sample patterns_stored in the system,
and it is classified according to the most similar pattern
class. For example, a character recogniser may search for
vertical or horizontal straight lines, or for curves or line
segment intersections, any particular letter corresponding
to a certain combination of such features. This relies on
the assumption that patterns belonging to a particular class
will probably display similar features. A difficulty may
arise in determining a complete of discrminating features

for each class.

c. Clustering. The structure of the data should produce local-
ised regions of high density in the pattern space. By
searching for and isolating these density maxima or clusters,
which should correspond to the classes, a pattern may then
be classified according to its membership of a cluster. A
drawback with this technique is in the measure of success
likely to be achieved since there exists no easily definable

criteria for optimal clusters. Possible measures are:

(1) Maximisation of correct classification, although this
requires an independent check on the data, i.e. know-

ledge of the 'answers', and may thus not be possible.



(2) Optimisation of some other criterion, such as
maximisation of inter-cluster separation, or

minimisation of intra-cluster distances.

The preceding three types of classification may be considered to be

arranged in order of suitability for processing data with fewer dimensions

although this may not hold true in all cases.

2.2 Choice of a Technique for LANDSAT Data

The LANDSAT data consists of a large number of points, or patterms
a standard image of 185 km square ground scene has 7.6 x 106 points each
of which has 4 values (p = 4) corresponding to the measured intensity
levels in the four wavebands. Sample patterns are generally not available
and the data is of few dimensions removing the need for feature extraction.
Clustering techniques are theréfore the most suitable. Thus the remainder

of this discussion concerns clustering methods.

2.3 Supervised and Unsupervised Recognition

Pattern recognisers or classifiers may have available to them repre-
sentative or sample patterns from each class to be recognised. The
techniques used are then called supervised. 1In such systems the recogniser
is taught or trained to recognise patterns from each class through exposure
to the sets of training patterns using some adaptive heuristics; they are
'taught' the representative characteristics which identify each class.

This teaching takes place in a separate training phase prior to the recog-
nition of unknown patterns, although further modification or adaptation may

be carried out during the actual recognition phase.



In certain applications there may be no training patterns available
because either they are difficult to collect or, possibly, the number of
classes expected may be unknown. In these cases the techniques used are
called unsupervisgg. The system may be given no information at all con-
cerning the representative characteristics of each class or of the number

of classes.

The nature of the LANDSAT project and its resultant data generally

precludes any form of training or supervision since:

a. The ground area covered may include features, corresponding
to pattern classes, which were previously unknown and hence
for which there are no training patterms available. 1In
effect this means that the number of classes to be expected
may be unknown.

b. Some features have a time varying spectral signature, e.g.
the sesonal variations in agricultural crops, thus current
or relevant training patterns may be difficult to correlate

with available satellite imagery.

2.4 Clustering Principles

Each data point, or pattern, may be represented by a p-dimensional

vector in a Euclidian Space:

T
= [xl, Loy vee xp}

where z, is the Zth measurement of the pattern

Clustering procedures seek to group the data according to any naturally
occurring structure within it, either as a means of data compression or in

order to determine differentiating characteristics to classify data

MASSEY UNIVERSITY
LIBRARY
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according to natural grouping tendencies.

These procedures may be separated into several types as follows:-—

a. A bottom-up approach in which the clusters are built up by
combining data points which are in some way measurably
similar. A hierarchical tree structure may be built in
which sub-clusters which are found to be similar enough
are combined to form fewer clusters at the next higher
level and so on. One of the simplest measures of similarity
between two points is that of proximity in the Pattern Space
using Nearest Neighbour.considerations, see [b]. A point
may be grouped together with its nearest neighbour, or
classified according to the most populous class of its k
nearest neighbours. Patrick and Jarvis [c] have proposed a
method of combining two points which have in common more

than a certain number of nearest neighbours.

b.‘A top-down approach in which the pattern space is partitioned
into regions according to population density considerations.
The space may be searched for local density maxima and their
surrounding minima which define the cluster boundaries.

Points are then classified according to the cluster boundaries

which include them.

c. A compromise between top-down and bottom-up approaches. Using
this procedure the clusters are created by using several
given cluster centres to group the points initially on a
nearest-is-best basis. These clusters are then refined in an

iterative fashion by using their member points to modify the
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cluster centres and then reclassifying all of the points etc.
This is the original K-means algorithm discussed in ref. [d].
A refinement of this method, the ISODATA algorithm also
discussed in ref. [d], includes possible fusing or lumping
of two neighbouring clusters, and the splitting of large
clusters. The parameters affecting such alterations may be
changed dynamically. Some method of selecting meaningful
initial cluster centres, by for instance choosing points

from the data set itself, will speed the iterative process.
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3 CURRENT SATELLITE IMAGERY RESEARCH

The advent of wide-spread availability of data from satellite projects
such as LANDSAT has instigated an increased amount of effort into automated

classification methods.

3.1 Traditional Approaches

A traditional statistical approach involving the computation of
covariance matrices has been suggested by Haidar [e]. This relies on the
assumption that the data points may be described by Gaussian probability
density functions. It also requires training patterns to be used in
estimating parameters for those density functions. The availability of
sufficient training patterns can not always be assumed, and in any case
such methods as are developed ought not be dependent on this. Also, because
of the large data sets being processed, the computational requirements for -
the matrices would be excessive, e.g. to process an image of only 1000

points an array of 500,000 elements is required.

Schell [f] proposes a 'spatial-spectral clustering'classification
philosophy. 1In this a fairly straightforward nearest-neighbour clustering
method is enhanced by use of spatial information. If there is any doubt as
to a point belonging to a particular cluster, e.g. if it is further than a
threshold distance from the cluster centre, the classes of the points ad-
jacent in the image are considered. This makes use of the intuitive prin-
ciple that adjacent points in the image may belong to the same ground
feature and thus to the same pattern class. Spatial considerations do
indeed add some information to a recogniser system, though it may be
regarded as only complementary. However, the extra effort required to

extract this information, e.g. by re-reading the file to find previous data



13

points, may not be justified by a small improvement in overall system

performance.

Some use of spatial information is also made by Jayroe et al [gl. An
attempt is made to identify areas of a mifnimum size which are spectrally
homogeneous, i.e. which probably correspond to large ground features. To do
this the areas must be isolated by detection of feature boundaries which
should enclose the areas. Spectral information for each area is then used
to determine whether any areas may be considered as the same class or
cluster, and the data set is classified around the determined clusters. A
second search is then made of the unclassified points to find any remaining
(smaller) homogeneous areas. Cluster statistics for these are calculated

as before and the data set reclassified.

The consideration of boundary points between ground features is an
important step since that may be, in part, how a human observer intuitively

distinguishes individual areas which are then compared with each other.

Other workers, such as Weeden et al. [h] and Borden [i], have developed
comprehensive interactive systems which may use operator interpretation of
preliminary images e.g. to identify homogeneous areas and choose them as
training patterns. However, since the objectives of this research did not
include the development of such sophistication, the criteria for the selec-
tion of suitable methods will probably not fully coincide with theirs.
Indeed it seems unreasonable to expect a completely automated system of

this type to perform as well as those which also incorporate human intuition.
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3.2 Important Aspects

It was apparent from the work described above that in the development
of an effective recogniser system no single clustering technique is
sufficient. Either two techniques are integrated, their combined effective-
ness being greater than that of either individually, or various methods of
enhancing the clustefing results are used. It was decided, therefore, to
first investigate several basic clustering algorithms to determine which
performs the most accurately with the least amount of resources. Refine-

ments or other enhancements could then be incorporated to improve the

performance.

Initially no use of spatial information would be made. This was to
avoid any over—complications of the system so that areas of strength or
weakness might be more easily identified. It was recognised, however, that
consideration of spatial information would provide confirmation or 'greater

certainty' when classifying.

Boundary information was thought to be important. Note that although
the boundaries do have relevance in a spatial context, they are detected
primarily from the spectral characteristics of the data and may therefore

be regarded as spectral in origin for the purposes intended here.
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4 PROBLEM APPROACH

The research to be undertaken could now be divided into three main
areas. An outline of each is given below, more or less in the order in
which they need to be dealt with, and successive chapters describe them in
greater detail. All programming was carried out on Massey University's
Burroughs B6700 system. The programming language used throughout was

Burroughs extended Algol since:-

a. Although portability was not seen to be a major consideration

all Universities in New Zealand have Burroughs systems.

b. The author finds it to be the most pleasant and effective
of the high level languages available in which to program,

but mainly

c. On this Computer system, this language is the most versatile.

4.1 General Data Manipulation

A need existed for a number of general utility programs. This includes
such things as restructuring the original data files for reasons of
efficiency, and routines to display and analyse the data in various ways.

Chapter 5 is concerned with these.

4.2 Edge Detection

Following from 3.2 an attempt to determine the edges or boundaries
between ground features in the images was to be made. This is to assist the
subsequent classification of the data. Chapter 6 explains in some depth the

reasons for this and the manner in which it was done.



16

4.3 Classification

In 2.4 three types of clustering methods were outlined. An attempt was
made to implement an algorithm to perform each of these. The principles are

described below and Chapter 7 gives details of the actual implementation.

4.3.1 Shared Near Neighbour

This is a bottom—-up approach which relies on the characteristics of the
data to effect the clustering. 1In the absence of any other information the
data points must simply be compared with one another in a meaningful way.
Jarvis and Patrick [c] prpose that a suitable similarity measure between
two points can be found using their nearest neighbours in the pattern space.
In this algorithm each point's nearest neighbours are tabulated, this
involves a pass through the entire data set for each point calculating the
point pair separations and retaining the % smallest of these. A comparison
is then made for all pairs of points between their sets of nearest neighbours
If there are more than a threshold number, kt’ of nearest neighbours common
to the two points, then the points are regarded as belonging to the same
class. The two points themselves must also be included in each other's list
of nearest neighbours. 1In this way the groups or clusters are built up as
more are determined to be similar enough, and representative values for
clusters may be calculated. By suitable selsction of k and kt the tolerance

in regarding points as similar enough may be varied.

4.3.2 The Divisive Approach

Intuitively an observer will group or cluster data in the pattern space
by identifying occurrences of comparative high density. Following this line
a top-down approach attempts to search the pattern space for local density
maxima which should correspond to clusters, or more correétly to cluster

centres. These centres may then be used to cluster the remainder of the data
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or indeed the entire data set. Two methods of searching the pattern space

were considered:-

a. The points are projected on to two-dimensional planes which
are then searched for local maxima. This reduction in
dimensions allows the use of normal hill-climbing methods
to find the maxima. Then by correlation of the coordinates
of the maxima between all (6) possible planes the coordinates
of the maxima in the pattern space can be found. Since this
technique was being investigated by M®Donnell et al [j] no

attempt was made to investigate this any further.

b. The pattern space is divided into equivolume hypercubes whose
populations are measured by counting the number of contained
points. This may be seen as another form of data compression
since the pattern space is divided into progressively fewer
cells, each of larger volume. As a result there are fewer
comparison operations necessary to determine local maxima.
There is also a corresponding lessening of precision since
the integrating effect of summing cell populations obscures

some of the detail.

4.3.3 The K-means Algorithm

This method is conceptually very simple, consisting of only three steps,
last two of which are repeated until a stopping criterion is satisfied, fig 2.
This algorithm essentially minimises the squared distances of all points
from their cluster centres, see e.g. Tou and Gonzalez [d]. The initialis-—
ations are arbitrary, as is k, but understandably they will affect the
performance of the algorithm. One variant chooses the first k déta points

from the data set as the initial values. During classification, which
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K-means
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Fig 2. The K-means Algorithm

should perhaps be more correctly called 'allocation', the points are assigned
to one of the clusters using a minimum distance criterion e.g. in the nth

iteration a point r is assigned to the jth cluster if:
d(zx, Ej(n)) < d(zx, Ei(nJJ

for all ¢ = 1,2,...,k 1i#]
where: Ei(n) is the centre of the Zth cluster
during the nth iteration, and
d(x, y) is some metric between vectors I
and y such as the Euclidian distance:
. P ,
dlz, y) =v E (z: - y;)
. 7 T
1=1
The cluster centres are then updated bv averaging the values of the

members of each cluster. Thus if there are N;(n) points belonging to the

1th cluster after the nth iteration and they are represented by the set Si(n),

then:
1 —
z.Mm+1) = I x i
™ Ni("} x € Si(n) b LaBewvagk
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The stopping criterion could be that there be no change between Ei(n)
and Ei{n+1) for 4 = 1, 25 a5l OF; similariy, that there be no change between

Nifn) and N£(n+1) fort= 1,2, conske

A more comprehensive version of the algorithm, known as ISODATA [dl],
includes heuristics to enhance its performance. It allows clusters to be
lumped or merged together if they are considered to be sufficiently close
i.e. sufficiently similar. It also allows the splitting of large clusters
(those which are large in spread - particularly in one dimension - not
merely populous) since this may indicate that two clusters are present but
are confused as one. ISODATA requires several parameters besides the centres

to be given to determine allowable cluster characteristics.
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5 GENERAL. DATA MANIPULATION

The data made available by the DSIR was an image 128 picture elements
(pixels) square of an area of the Canterbury Plains in the South Island of
New Zealand. This area was chosen because it is flat and features agricultural
crops with a high visual contrast, some ground truth was available for the
area. The frontispiece is an Infra Red aircraft photograph of part of the test
area.

A number of general routines were required since:

a. The format of the data as received was not optimal.

b. There needs to be some method of displaying the data pictorially.

c. To aid in preliminary numerical analysis statistical information

of the data needs to be displayed.

These tasks are now described in greater detail.

5.1 File Handling

Repacking

The data was contained in one file - all four bands - and some initial
restructuring was necessary to facilitate efficient I/0 operations. Since
each pixel represents a radiation level of between 0 and 127, an 8-bit byte
or character may be used to store its value, each scan or row of 128 pixels
thus requires 128 bytes. The B6700 system incorporates 6-byte words, so that
each data row would use 22 words, though to enable more efficient blocking
24-word records were used. A roﬁtine, FILEMAKER, descfibed in ANNEX A,

was written to perform this conversion.
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Flipping

Pattern Recognition usually requires the comparison of adj;cent pixels.
Rather than reading all the data into arrays which could then be scanned
either row-wise or column-wise, it was decided to create another set of four
files corresponding to the four already described but with rows and columns
transposed. That is to say each record of the second set of files contains
the data corresponding to a column of the image and not a row as before,
see ANNEX B.

5.2 Display Routines

The Raw Data

In order to have available an easily accessible visual record of the
'raw' data values, a procedure ALLLEVELS, see ANNEX C,was written to print the
intensity values for the entire image or any section of it for any one of
the wavebands. The procedure produces a matrix of points each with a symbol
representing the measured data value for the corresponding pixel. The B6700
lineprinter has available 64 distinct printable character symbols, therefore
to cover the entire range of 128 possible levels overprinting was used.
Where the value (Z) recorded was greater than 63 the printed symbol used is
the same as that used for 7-64 with the addition of an underscore bar: ' '.
The underscore was found to be a suitable comprbmise between distinctiveness
and obscuring of the overprinted symbol. Fig 3 shows the output produced by

ALLLEVELS for Band 7; in this particular case there were no pixels with a

value greater than 63.

Shaded Output

For ease of visual interpretation of the printed images SHADES produces
a grey tone version of the image by overprinting suitable combinations of
characters to give a shading effect. The number of grey levels may be varied

though 8 or 10 was found to produce the best picture since with any more the
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small increments between levels becomes difficult to distinguish, and with
fewer some effect is lost. In any ecase the lineprinter is, at best, a poor

graphics output device [k].

Thought was given to the use of a Tektronix 4010 display terminal as a

more effective graphics device but no further action was taken because:

a. Coding the character matrix itself was not possible, thus
only those character forms produced by the terminal are

available.

b. The screen is a storage type and although the terminal has
hardcopy facilities available the quality is questionable,

particularly since it is so variable.

c. This is of minor importance in this research - the shaded
images described will be used only as an aid, assisting in
identifying the presence and shape of ground features and
their similarity to other features in an effort to roughly

determine the recogniser's accuracy and consistency.

For similar reasons no effort was made to use the available drum
plotter as a display device. Fig 4 shows the shaded output produced by
SHADES corresponding to fig 3. note the distinctive forest and worked fields

(appearing as blue in the frontispiece). See ANNEX D for details of SHADES.

5.3 Analysis Routines

Two routines were written to display some aspects of the data charac-
teristics. They enable the distribution of the data values to be observed,

this is helpful in determining initial parameters.
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Histograms
HISTOGRAMMER, see ANNEX E, produces a histogram of the intensity levels
for any one file. Of particular interest are the maximum and minimum

intensity levels recorded for each file. Fig 5 shows the. histogram produced

for Band 7.

Distribution within the Pattern Space

The provision of any visual display of the distribution of the data
within the pattern space is limited by the fact that the space is four-
dimensional. The best that can be done is to use projections of the space
on to two-dimensional planes. A routine, DISTRIBUTION/ANALYSER (see
ANNEX F), was written to do this. As output from this routine shows only
two dimensions or files, it must be run against every possible combination
of pairs of files, i.e. 6, to display all the information. The number of
possible intensity levels conveniently corresponds to the number of pixels
along an edge of the images, i.e. 128. So either ALLLEVELS or SHADES may
be used to print out the output of DISTRIBUTION/ANALYSER. In fig. 6 the
correlation between Bands 4 and 6 has been displayed using SHADES, regions

of high density are confused because of the reduction in dimensionality.
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6 EDGE DETECTION

6.1 Fuzziness

Since each ground resolution element, or pixel, covers = sguare area
of side approximately 79m, the integrating effect of the sensors will ﬁerge
adjacent ground features at their boundaries producing indistinct or fuzzy
edges on the images. These may be seen in fig 4. In the pattern space
these will appear as points between the clusters, forming 'bridges' and as
a result the clusters' separations may be confused. Consequently it was
decided to investigate the removal or ignoring of such boundary points from
consideration in determining the clusters and cluster centres, so that only
reliable data is used. An attempt may be subsequently made to classify these
boundary points according to the calculated cluster characteristics. It is
important to note that this was not an attempt to define enclosed areas in
the image which may then be regarded as homogeneous features. Jayroe et al
[g] use information from such bounded areas as starting points for cluster

centres.

The principle used in edge detection is simply to detect any sudden
changes in intensity level in the image, Ll]. ‘A derivative operator will
" produce high values where edges of this sort exist. Since the imageé are
made up of discrete values the differentiating is carried out by differenc-

ing between adjacent values.

6.2 Differentiating

A routine called DIFFERENTIATOR (see ANNEX G) scans first rows and then

columns of an image, T, L to produce a further image in which a point Y; 3
3 3

is defined by:
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#e 2 = | @ | + | = |

a = Ba o e e -
T5d 1,d 1,J+1 Tad i+1,J

where: © is the row number and

J is the column number of the point in the image

i.e. the sum of the differences acrcs a row and down a column. The image
may then be printed out using either ALLLEVELS or SHADES. Fig 7 shows the
results of differentiating the image for Band 7 as printed by SHADES, and

may be compared with fig 4.

6.3 Finding Boundaries

Some decision needs to be made concerning the differential's value
below which it may be regarded as insignificant and therefore ignored, and
above which it indicates the presence of an edge or boundary. For this, rou-
tine BOUNDARYFINDER ( ANNEX H) was written to perform the following algorithm.
Each row of the image is scanned, if any pair of adjacent points differ by
more than 7% (of one of their values) then part of a vertical edge is con-
sidered found and one of the two points, say the leftmost, is 'marked' as a
boundary point. The threshold value, T, is a parameter supplied to the
routine. Next each column is scanned and, once again, where adjacent points
are found to differ significantly a boundary point is considered found, this
time corresponding to part of a horizontal edge. The rows and columns are in

fact scanned in both directions to average out any directional bias.

Up to this stage the difference was taken to be the absolute value of
the aritmetic difference between the two values; if it was greater than T%
of the larger value (and therefore both values) then it was regarded as
'significant'. However, this takes no account of the range of values encount-
ered in the imaée. If high values are being compared, the difference is much

less likely to be significant than if low values are being compared. A
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Fig 7. The output produced by DIFFERENTIATOR for Band 7, showing the
edges detected.
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modified test was tried in which the difference of each point pair was

compared with T% of the median value for that entire image, i.e.:

(maxvalue + minvalue)/2

Various values of T were tried in an effort to find an acceptable balance

between:

a. Too many points being identified as boundaries thus removing
information from being used in the later stages of clustering

and classification; and

b. Too few, thus not removing all of the 'unreliable' information,

the overall goal of this edge detection.

Fig 8 shows the edges detected in the top left hand corner of the test area
for the four files for T = 10%. Fig 9, similarly, shows the results for

T = 15%.

It may have been noted that these methods are most sensitive to edges
which lie parallel to the image axes, i.e. those previously referred to as
'horizontal' and 'vertical' edges. More complex algorithms exist which are
also sensitive to edges in other orientations.. These are intended for
applications where the edges themselves are of importance. In this project,
however, the concern is only to remove data which is probably 'unreliable'.
It is considered, therefore, that the algorithms used are sufficiently com-

prehensive for this purpose.

6.4 Correlating Boundary Information

There is one image of boundary points from each of the four wavebands,
and since each ground feature"'s boundaries will be more distinct in one

particular image - depending on its own signature and that of its neighbour-
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ing features - the complementary information from all four boundary images

needs to be combined in some way.

The routine BOUNDARYMERGER (ANNEX I) was written to experiment with
various methods of combining the four boundary images into one. Some of

the combinations tried were to:
a. Include those points which occurred in any of the four images.

b. Include those points which occurred in at least two of the

images.

c. Include those points which occurred in at least three of the

images.

d. Include only those points which occurred in all of the four

images.

Fig 10 shows some of the combinations for boundary points detected using
T = 10%, and fig 11 shows the corresponding images for T = 15%. Comparisons
with fig 4 are now less meaningful since these images also include information
from the other three bands. Once again a balance is needed between including
too many boundary points and too few. With this in mind the combination
chosen was that which included points common to at least two images for T = 156%

i.e. fig lla.
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7 THE ALGORITHMS USED

- Details of the implementation of the three clustering algorithms out-

lined in section 4.3 are now described.

7.1 Shared Near Neighbour

A program to perform the Shared Near Neighbour algorithm, see ANNEX J
was written. The unsuitability of the algorithm for use on large data sets
such as this one became apparent. If there are two neighbouring clusters it
is possible - in fact it is most probable - that some points will lie between
them, forming a 'bridge', the reasons for this were given in 6.1. As kt is
made smaller these points will become similar enough to points near to the
edge of one of the clusters, and thus are classified as belonging to that
cluster. If kt is too small they will, in a similar way, be also classified
as belonging to the other cluster. The effect is that both clusters are then
regarded as being in the same class, i.e. the system's discernment is im-
paired. This is a result of both the presence of such bridges, and the
system's sensitivity to the parameters k and kt' It is suggested that these
parameters may be altered according to information concerning the separation
between the point and its Kk nearest neighbours, e.g. kt could be determined

from the number of nearest neighbours lying within a certain distance.

In fig. 12 the classified image is shown corresponding to a small area
on the left side and slightly below the top of the test area, in all cases
k, the number of nearest neighbours being considered, is 20. Note in par-

ticular the sensitivity of the number of clusters to kt'

The most restricting feature of this method arises from the computation

2

requirements. Since for n points there are n“° distance calculations and up
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to n? x k® comparisons. It is true, though, that the calculation and tab-
ulation of nearest neighbours need only be performed once, subsequent to
which various values of kt may be used as required. Further, nearest neigh-
bour calculations may be optimised by use of algorithms such ~=s the Branch
and Bound algorithm described in ref. [m]. However, the restriction imposed
by resource requirements proved to be serious, e.g. the CPU time for the

20 x 20 pixel images in fig. 12 was about 75 secs, and increasing the image

to only 24 x 24 pixels would double the CPU time.

7.2 MAXFINDER - the Divisive Approach

Procedure MAXFINDER subdivides the pattern space into cells of a spec-
ified size, see ANNEX K.It then searches for and records those cells whose
population is greater than that of all immediately adjacent cells in all

directions. These are the required maxima.

Unfortunately no suitable compromise could be found between the cell

size being:

a. Too large, in which case the detail is obscured, i.e. more
than one cluster may be contained within one cell. This will
be particularly troublesome where clusters with markedly

different populations are adjacent in the pattern space. And

b. Too small, in which case little progress has been made - in
the limit the cell edge (and therefore the volume) is unity,
and the pattern space is unaltered. In these cases, e.g. for

cells of edge 2 or 3, several dozen local maxima were found.

Overall, the inflexiblity of the cell's shape and size proved to be too

limiting.
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7.3 CENTREFINDER - the K-means Approach

A procedure, CENTREFINDER, was written to implement initially only the
basic k-means algorithm, see 4.3.3 and ANNEX L. Values for k and the initial
cluster centres were chosen largely from experience gained with the data
during trials of other algorithms. Some simple modifications were added,
first a procedure to remove any clusters found to have zero population.

This occurred occasionally during the second iteration but most often during

the first, indicating an inappropriate initial value for a cluster centre.

The 'clean' data set produced by BOUNDARYFINDER and BOUNDARYMERGER (see
6.3 and 6.4) was used in subsequent versions of CENTREFINDER, thus the
boundary points were not used in determining the cluster centres. Values
for the spread of each ciuster were also calculated during the iterative
phase, these are simply the distances from each cluster centre to its furth-

est member point. Thus:
m: = dlzas Ba)
d d T

where: mj is the value of spread for the jth cluster, and

2. XT.) > z2.,, x T o & X,
d(zJ, xz) d(zJ, xz) for all zx € SJ, % £ .
After the iterations are completed a pass is made through the set of

boundary points and an attempt made to classify them according to the final
cluster centres. First the nearest centre to a boundary point is found, then
if the point is within the spread for that cluster it is classified with that

cluster, otherwise it is rejected as unclassified.

In fig 13a and 13b the clustered output from CENTREFINDER is shown for a
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In fig 13a and 13b the clustered output from CENTREFINDER is shown for
a 40 x40 pixel image. The b;sic algorithm produced the results in fig 13a
after 17 iterations, and the}attempt to classify the boundary points produced
fig 13b. Total CPU time was less than 28 secs. Fig lla has been repeated
for easier comparison and fig 13c shows the available ground truth for the

corresponding area, compare also with the frontispiece.

The distinction of forest and worked fields is very clear in both the
satellite images and the Infra-red aircraft image (frontispiece). However,
the distinction between wvarious types of pasture is not as clear. Since
this is true for both types of imagery it may indicate a limit to the recog-

nition possible using this type of data.

The attempt to classify boundary points has met with partial success -
about half the points being classified meaningfully i.e. in the same class
as one of their neighbouring points. Considering the simple-minded approach

used this is regarded as quite acceptable.
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8 PROJECT. ASSESSMENT

8.1 Practical Problems

When the data sets under consideration are so large there will almost
inevitably be some difficulties due to resource limitations. Thus although
the rate of correct classification remains the foremost criterion for the
effectiveness of the method, the 'practical' considerations, e.g. storage
requirements and computation times, may prove limiting. There are compro-—
mises available between one resource and another, e.g. instead of reading
the data into arrays and storing it there throughout the computation, the
files could be re-read. This is a trade-off between storage and I/0 require-

ments.
The realities of a practical situation, however, are that in order to
process such a large amount of information a correspondingly large amount of

computing resources are indeed required.

8.2 Boundary Points

The incidence of unreliable data points referred to as boundary points
has been found to be about 13% for this data seét. These boundary points lie
outside the hypersurfaces bounding the clusters in the pattern space. An
agglomerative method of clustering, such as the Shared Near Neighbour method,
will find these points troublesome since, through the chaining effect (see
7.1) all the clusters become grouped into one single class. The prior
removal of boundary points will lessen the chance of such difficulties. 1In
the K-means method, however, their effect is quite different. Cluster

centres are calculated by averaging the member points' values, and since:

a. The boundary points are relatively few, and -
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b. They are likely to 'surround the cluster,

then it is expected that they will not have a marked effect on the cluster

centress' coordinates.

8.3 Classification

0f the methods used, the shortcomings were apparent, and in two cases
proved the unsuitability of those methods. The k-means method has shown to
be effective, although its simplicity is a limiting factor to final recog-

nition accuracy.

8.4 Overall Success

Comparison of fig 13 with the frontispiece gives an idea of the consid-
erable recogniser accuracy achieved by the method investigated. There is,
unfortunately, no direct absolute measure of success since the ground truth
available was not sufficiently comprehensive. It is considered that the CPU
time needed for recognition is likely to be acceptable even though each
iteration involves a pass through the entire data set, although with further
development work this could be reduced by e.g. some form of pre-processing

to enable more suitable initial wvalues to be chosen.

8.5 Suggestions for Further Wofk

The area of greatest weakness. in current research is probably that of
knowledge of the clusters' sizes and shapes. The assumption has been made
that all are spherical and roughly equal in size, and in some cases this may
be in error. Some method of determining more accurately the cluster statis-
tics ought to be investigated, possibly by following and mapping cluster

boundaries by detecting density minima in the pattern space.
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ANNEX A

Routine: FILEMAKER

The original form of the data was one file containing ali four
wavebands. To convert this into an acceptable format for the B6700
FILEMAKER reads through this file once and produces four files (one
per waveband).of'lZS records,each of 144 8-bit characters - only 128

of which are used.

Input: The original data file - read from magnetic tape on to disk.
Output: Four optimised disk files.

Runnning Instructions:

RUN FILEMAKER;

FILE IN (TITLE=RAWDATA);
FILE ONE(TITLE=BAND/4);
FILE TWO(TITLE=BAND/5);
FILE THREE(TITLE=BAND/6);

FILE FOUR (TITLE=BAND/7);
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FILEMAKER

A
'a ¥
repeat
for
7 from
1l to 4
A
/
repeat Close and
for lock the
J from ith output
1 to 128 file.
AL
r oy
Read two Write a
records from record to
the original the 7th new
file. file.

Fig A.1 Structure diagram of FILEMAKER.
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ANNEX B

Routine: FLIPPER

FLIPPER inverts a square image about its leading diagonal, i.e.

transposes rows and columns.

Input: Any one of the (four) data files stored on disk.

OQutput: A disk file containing the inverted version of the input file.

Running Instructions:

RUN FLIPPER;
FILE IN (TITLE=BAND/7);

FILE OUT(TITLE=FLIPPED/BAND/7);
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FLIPPER

repeat repeat
for for
< from J from
1 to 128 1 to 128
A A
i ' —\
Read record repeat Write vector
into Zth for
row of from to output
array A4 to 128 file
A
r A\
B, 4. .
% Ty
Fig B.1. Structure diagram of FLIPPER.

Close and
lock the
output
file
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ANNEX C

Routine: ALLLEVELS

This routine prints out a pictorial representation of a file

using a different symbol for each different intensity level recorded.

Input: One of the data files stored on disk.

Output: A printed image, 128 x128 pixels, of the file. A key of the

symbol representing each intensity level is also printed.

Running Instructions:

RUN ALLLEVELS;

FILE IN(TITLE=BAND/7);



ALLLEVELS

' i
Initialise repeat
borders and : for Printout
border 7 from
index 1 to 128
_A A
' “\ r N
Read record Print repeat Print file
i Print
into 7th top for b title,
ottom
row of border row from A key of
array A 1 to 128 symbols
. A
p
repeat Put 1. and r. Overprint
for border chars both
col from in print print
1. te 128 buffers buffers
R,
/
Fill both buffs
with symbols
representing
value of Arow,coz .
co

Pig G.1.

Structure diagram of ALLLEVELS.
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ANNEX D

Routine: SHADES

SHADES prints out a grey tome version of one of the ;téred images.
In the standard version 10 grey levels are used and they are spread
evenly throughout the range of intensity levels recorded. A pass is
first made through the file to find the maximum and minimum values,

and hence the range.
Input: One of the data files stored on disk.
One card containing the required height and width of the image
(i.e. the number of pixels), in 2I3 Format.

Qutput: A printed grey tone version of the image.

Running Instructions:

RUN SHADES;
FILE IN(TITLE=BAND/7);
DATA

128128



SHADES

N
Initialise Read in repeat
arrays used height _ for PR CHGE
to print and from
borders ‘width 1 to height
N
Read width Find min. - repeat Print out
characters value in A t; for bottom
into ith row as min and bopde row from border and
of array 4 max. as max BOE& 1 to height file title
A
A\
repeat Put 1. and r. "Overprint
for border chars. all
col from in print print
1 to width buffers buffers
Fig D.l. Structure diagram of SHADES. -~

Fill print buffers
with symbols
representing

value in 4
row,col
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ANNEX E

Routine: HISTOGRAMMER

This routine prints out a histogram showing the frequency

occurrence of each intensity level in a particular image.
Input: The required data file (stored on disk).
Output: A printed histogram for that image.

Running Instructions:

RUN HISTOGRAMMER;

FILE IN(TITLE=BAND/7);

of
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HISTOGRAMMER

repeat

for

row from

1. to. 128

Read row of
data into
vector

A

repeat
for

col from
1 to 128

value <«

col

Countvazue

Count +1
value

Fig E.l.

Find maximum repeat Print
value stored while footings
in count max > 0
as max
A
s N
Fill print repeat
buffer, B, for " 7
with value from Ao o
blanks 0 to 127

Structure diagram of HISTOGRAMMER.
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ANNEX F

Routine: DISTRIBUTION/ANALYSER

This routine displays the correlation of data values between any
two wavebands. Each data point is plotted on a two-dimensional plane
by using its two measured values (the recorded intensity levels from
the two required wavebands) as coordinates. Data points with identical
values correspond, increasing thg value for that point in the new image.

Either SHADES or ALLLEVELS may be used to display the image.
Input: The two required data files - disk files.

Output: A disk file of the distribution as described above to be

printed by SHADES or ALLLEVELS.

Running Instructions:

RUN DISTRIBUTION/ANALYSER;
FILCE IN1(TITLE=BAND/4);
FILE IN2(TITLE=BAND/6);

FILE OUT(TITLE=DISTRIBUTION/4/6);



DISTRIBUTION

_A_
'd
repeat repeat Close and
for for lock
row from 1 from output
1 to 128 I to 128 file
A
A
N r 3
Read record Read record repeat Write Zth
from first from second for row of (C
file into file into col from to output
vector A vector B 1 to 128 disk file
—— A .
g |
=
A Acol y=* BcoZ Cac,y Cx, y”

Fig F.l1. Structure diagram of DISTRIBUTION/ANALYSER.
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ANNEX G

Routine: DIFFERENTIATOR

An image is scanned first across rows and then down columns. The
intensity level-recorded for each point is compared with that of the
adjacent point along the row, and also with that of the adjacent point
down the column. The absolute values.of these two differences are
added and this is stored as the value of that point in the new image.
This is a simple differencing or differentiating procedure. The new

image may then be printed using SHADES or ALLLEVELS.
Input: Both (standard and inverted) versions of one of the data files.
One card containing the required height amd width of the image,

in 2I3 Format.

Output: A diskfile of the differentiated image, to be printed by SHADES

or ALLLEVELS.

Running Instructions:

RUN DIFFERENTIATOR;

FILE IN1(TITLE=BAND/7);

FILE IN2(TITLE=FLIPPED/BAND/7);
FILE OUT (TITLE=DIFFERENCE/BAND/7);
DATA

128128



DIFFERENTIATOR

L.
r N
Read repeat —_——
height, for ?or
width col from g
1 to width 1 to height
N
'3 'l o~
Read height repeat Read width repeat Write
chars from for chars from for vector B
file 1 into row from file 2 into col from to output
vector A 2 to height vector A 2 to width disk file
A r______A
‘ N\
x+ A x + A
row col
¥y Arow-l Y +AcoZ—I
B B
row,col row, col
« |z-yl %m%mﬂ+|xﬁl

Fig G.1.

Structure diagram of DIFFERENTIATOR.
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ANNEX H

Routine: BOUNDARYFINDER

An image is scapned across rows and then down columns to look for
significant differences between adjacent pairs of points. Where such
differences are found a new image, initially all blank, is marked with
a '.' . These should correspond to the edges or boundaries in the image.

The level of significance, T, is input as a parameter. A printer file

and an output disk file may be selected by control parameters.

Input? Both (standard and inverted) versions of one of the data files.
Three control cards:

1. Containing the required height and width of the output
image, and the percentage significance threshold;
in 3I3 Format.

2. Containing the minimum and maximum intensity levels
recorded in the file, in 2I3 Format.

3. Determining presence of output printer file and disk file,

in 2L5 Format.
Output: Where selected: a printer file of the new image, showing '.'s for
boundaries, blank elsewhere.

Where selected: a disk file corresponding to the printer file.

Running Instructions:

RUN BOUNDARYFINDER; cont: DATA
FILE IN1(TITLE=BAND/7); 128128010
FILE IN2(TITLE=FLIPPED/BAND/7); 003057

FILE OUT(TITLE=BOUNDARY/BAND7/10); TRUE FALSE



BOUNDARYFINDER

N\
Read height, d <« repeat repeat
width, T, min, — T ~ for ~ for
max, printfile, 5 T 17 from 1 from
diskfile 1 to width 1 to height To fig H.2
A
'a A\ o~ 5 ™
Call Scan repent Call Scan repaat
for for
(file inli, Jj from (file zn2, J from
height ) 1 to height width ) 1 to width
e
£ o . 'l B
8; 5 ©B
Lt 4
iL
Fig H.1l. Structure diagram of BOUNDARYFINDER (i). Be » %"

1yd
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from fig H.1

o
'e N
T T
—
Print repeat Print repeat
top for bottom for
border 7 from border 1 from
1 to height 1 to height
A _A
B & N
Print Write Zith
ith row row of C
of to output
%4 disk file

Fig H.2. Structure diagram of BOUNDARYFINDER (ii).
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Procedure

Scan
(file f,n)
— ~ k,
Read n chars Fill vector repeat
from file f B with 1 for
into vector blanks from
A n-1 step -1 to 1
A
o r \
ik
.
-
1+1
B.
7
| F
B.- it it
_ 7
Fig H.3. Structure diagram of BOUNDARYFINDER (iii).
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ANNEX T

Routine: BOUNDARYMERGER

This routine combines the boundary files on disk so that information
from all four wavebands is used to produce a single boundary image.
There are four different combination functions available, the output
image may include:

a. Boundary points common to all four input files.

b. Bounddry points common to any three input files.

c. Boundary points common to any two input files.

d. Boundary points commor to any two input files plus those points
which have a certain minimum number of immediate neighbours
whiéh satisfy one of a. - c. above.

The resulting image may be printed or a disk file version of it

may be produced.

Input: All four disk files of boundary points - one per band.
Seven control and parameter cards:

1. Containing the required height and width of the output
images, in pixels. 2I3 Format. |

2 — 5. Containing headings for the four different iﬁages
which may be produced.

6. Determining which of the four combination functions
(a. - d. above) will be used. In 4L5 Format.

7. Determining whether a disk file is produced -~ the absence

of this card means that no file will be produced.

Output: Where selected: printer files for the selected boundary combin-

ations, showing '.' for boundary points and blank elsewhere.
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Where selected: a disk file of one of the selected boundary combin-

ations.

Running Instructions:

RUN BOUNDARYMERGER;

FILE IN1(TITLE=BOUNDARY/BAND4/10);

FILE IN2(TITLE=BOUNDARY/BAND5/10);

FILE IN3(TITLE=BOUNDARY/BAND6/10);

FILE IN4(TITLE=BOUNDARY/BAND7710);

FILE OUT(TITLE=DARFIELD/BOUNDARY) ;

DATA

128128

ONE - BOUNDARY POINTS APPEARING IN ALL FOUR FILES

TWO - BOUNDARY POINTS APPEARING IN AT LEAST THREE FILES
THREE - BOUNDARY POINTS APPEARING IN AT LEAST TWO FILES
FOUR - BOUNDARY POINTS APPEARING IN AT LEAST TWO FILES PLUS EXTRAS
FALSETRUE TRUE FALSE

THIS LAST CARD CAN HAVE ANYTHING WRITTEN ON IT



BOUNDARYMERGER

A
' X
Read height, repeat
width, headings, row for
partone, parttwo, row from
partthree, partfour 1 to height To fig 1.2 To fig I.3
A
' A\
Read width chars. repeat
from file I into a for
file 2 into b index from
file 3 into ¢ 1 to width
file 4 into d
.
il A\
A ;
count <« 0 row, index
“ count
{5 i T T
count + count = count + count <
count+1 count+1 count+l count+1
~J
W
. Fig I.1. Structure diagram of BOUNDARYMERGER (1).
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Procedure

Printout
A
- N
repeat
for
7 from
1 to height
A
{
Print Z<th
e diskfile

-
a

Write Zth
row of

B to output
disk file

Fig I.4. Structure diagram of BOUNDARYMERGER (iv).
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ANNEX J

Routine: SHAREDNN

This routine performs thé‘Shared Near Neighbour clustering

77

algorithm on LANDSAT MSS data. Two data points are classified as be-

longing to the same class if more than a threshold number, k

k nearest neighbours are common to both points.

of their

Boundary points are

skipped over during all stages of the processung.

Input: All four disk files of MSS data - one per waveband.

The disk file of boundary points.

Two control cards:

1. Containing k, the number of nearest neighbours to be

calculated for each point, and size,

the number of pixels

along an edge of the square image to be processed; in 2I3

Format.

2. Containing kt’ the threshold parameter, in I2 Foramt.

Output: A printed image of the clustering results with a digit representing

the cluster (or class) number corresponding to each data point.

points are left blank.

Running Instructions:

RUN SHAREDNN; cont:
FILE FIRST (TITLE=BAND/4);
FILE SECOND . (TITLE=BAND/5);
FILE THIRD (TITLE=BAND/6);
FILE FOURTH (TITLE=BAND/7);

FILE BOUNDARY (TITLE=DARFIELD/BOUNDARY);

DATA

020020

14

Boundary



SHAREDNN

\

4 into buff4
bound into buff0

AN
i —
Input. Tableformer Tableuser
(fig J.2) (fig J.3)
A
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Read repeat
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= from
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Read size chars. from repeat
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rowd; - 1 :
rowd; -1
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! h

rowls < buffl
row%+-buff2
rowd; « buijJ
rowa}-z— buf'f'-f}

Structure diagram of SHAREDNN (i).
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repeat
for
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Tableuser

A %
Read repeat Print
. for array
kt 7 from cluster
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A
P
repeat
f Y
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A
- N
Go to
repeat
bexit for bend:
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ANNEX K

Routine: MAXFINDER

This routine divides the pattern space into equivolume hypercubes,
or cells. The population (number of contained data points) for each
cell is calculated and compared with that of its immediate neighbours.
Those cells with a greater population than their neighbours are consid-

ered as probable cluster centres and their coordinates are printed out.

Input: All four disk files of data - one per waveband.
The disk file of boundary points.
One control card containingthe required cell edge length, size,

in I1 Format.

OQutput: A list of the coordinates of (one vertex of) the cells found to

contain a locally maximum number of points.

Running Instructions:

RUN MAXFINDER;

FILE INO(TITLE=DARFIELD/BOUNDARY);
FILE IN1(TITLE=BAND/4);

FILE IN2(TITLE=BAND/5);

FILE IN3(TITLE=BAND/6);

FILE IN4(TITLE=BAND/7);

DATA

3



MAXFINDER

) N
‘repeat Read regsit
for .
& Evom size from
1 to 128 1 by size to 128
A
Ve N
Read 128 chars. repeat repeat
from Znl into a for for
in2 into b J from J from
ind into e 1 to 128 1 by size to 128
ind into d
' N
repeat
for
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1 by 8ize to 128
4\__T
r N\ ™
W @ 8pace repeat
z + bY WssYs 2 for
y* o "+ 8pace +1 FEo
3+ d? 3 p Wy, Ty Y,3 by size to 128

Fig K.l. Structure diagram of MAXFINDER (i).
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@ from fig K.1

A
f N
Call Census Call Census
(1,3, 2,01) | |(2,4,%, 1+eize, vE = vl
v2)
_A_T
'd E |
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v2)
. P
—
- 5 Call Census ey
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|
N
Print
1335k, 1 Fig K.2. Stracture diagram of MAXFINDER (ii).
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ANNEX L

Routine: CENTREFINDER

This routine performs the k-means clustering algorithm using
LANDSAT MSS data. Initial cluster centres are progressively refined
in an iterative fashion by classifying the data points according to
the nearest cluster centre and then recalculating the centres by
averaging the member points' coordinates. Boundary points are ignored
during the first phase; then when this has converged they are class-
ified with the nearest cluster centre, providing they lie within the
value of spread calculated for that cluster. The number of clusters

to be considered, k, is input as a parameter.

Input: All four disk files of MSS data - one per waveband.
The disk file of boundary points.
Control cards:
1. Containing the height and width of the image to be
processed; and k, in 3I3 Format.
k cards each containing the coordinates of one initial

cluster centre, in 413 Format.
Qutput: The cluster centres and populations for each iteration, then a
printed image of the clustering results both before and after class-

ifying the boundary points.

Running Instructions:

RUN CENTREFINDER;
FILE INO(TITLE=DARFIELD/BOUNDARY);

FILE IN1(TITLE=BAND/4);



Running Instructions cont.

FILE IN2(TITLE=BAND/5);
FILE IN3(TITLE=BAND/6);
FILE IN4(TITLE=BAND/7);
DATA

40 40 8

18 16 69 38

30 35 71 41

33 41 59 49

13 41 &7 8

26 29 59 49

22 29 23 24

17 17 59 31

13 12 23 24



CENTREFINDER
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