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Abstract

Current popularity and lack of successful innovation in the field of Graphical User Interface
(GUI) builders leads to the question of how we can pave the way for a second generation of
GUI builders. This question requires a new approach on GUI builder innovation by changing
event handling practices to integrate a Domain Specific Language (DSL). We propose a DSL
based on R2ML that can be pre-compiled to .NET framework source code. The adoption of a
DSL provides a starting point but offers similar problems with large numbers of rules like other
previous unsuccessful innovations. We attempt to mitigate this concern with the adoption of
an event correlation architecture which enables the realization of complex events. Complex
events allow for the combining of primitive events to gain a higher level event which we
propose is easier to relate to user requirements. We further reduce the number of rules
developers require by introducing querying techniques to provide indirect referencing, rather
than using traditional URI approaches which are more tightly coupled. Comparison of the lines
of code our solution requires, against a comparison not using our solution, demonstrates a
decrease in effort for developers. We also provide architectural reasoning to show developers
the design benefits of our approach.
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Chapter |

Introduction

1.1 Research Overview

“User interface software is often large, complex and difficult to implement, debug, and
modify” (Myers, User Interface Software Tools, 1994).

While the previous quote is a bold statement, the large number of Graphic User Interface (GUI)
builders on the market in comparison to data oriented tools such as class diagram editors
could be indicative of this issue. In this chapter we investigate GUI builder tools to see where
they fall short in aiding developers.

In this research we investigate a way to abstract events to a level where they are more usable.
Event driven programming is an approach to programming that facilitates system and user
actions to dictate the flow of a program. The previous way of programming applications was to
use batch programming where the flow of the program was dictated by the programmer. The
convenience of event driven programming is that it abstracts code closer to user
requirements.

A problem with event driven programming currently is that it is not as convenient as it could
be in that it works at a low level. An example of low level operation is the events ‘Click’ and
‘KeyPress’. This is compared to user requirements which are often described by high level user
actions. An example requirement could be that a user starts to print, hence disable all GUI
controls that trigger printing. That example illustrates a gap between the low level nature of
event driven programming in comparison to user requirements. This thesis attempts to
address this gap by raising the abstraction of programming language events.

There is also a problem that developers face when attempting to separate concerns which
arises from the high coupling of the User Interface (Ul) to the events which belong to the UL.
High coupling prevents developers from creating ‘event wire ups’ until a user interface has
been constructed. Wiring up events is a process of a listening object subscribing to an event
that is exposed on another object. High coupling can lead to architecturally problematic coding
practices.

A modern market push from software products (such as the Microsoft Expression Family)
tends to show an increasing ability to enable the option of outsourcing Ul design to specialist
designers. This would currently leave wiring of events and data binding (linking data with Ul)
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until the user interface has been completed. This gives developers less time to wire up the Ul
and also gives less time to the Ul developers as they have people dependent on their work.

The thesis also investigates rules as a way of specifying relationships. Rules have
predominantly been used in software engineering for specifying mappings between two data
sources and has been used for specifying higher domain logic. Specifying higher domain logic
in the form of rules is often beneficial to software users as they can change the rules often
without changing or understanding the software. We investigate both avenues as methods of
abstraction from low level event architectures employed by current programming languages
and frameworks. If there is one thing to come out of this research, we would like it to be the
advancement of event handling of modern programming languages. Modern programming
languages such as C# have improved on event handling by decentralizing events from an event
loop allowing for a more lazy approach by adopting functional mechanisms. These functional
mechanisms allow for easy subscription to events after the source code is compiled. With an
event loop, events are declared in a central location making runtime subscription more
difficult. While there have been functional improvements to modern languages, many use
cases still fall short of their potential due to the gap between user requirements and the
hardware mindset of events such as ‘Click’ and ‘KeyPress’.

1.2 Overview of Thesis

In this chapter we introduce the research areas of this thesis and discuss aspects such as the
goals and scope. In the next chapter we look into the background information relevant to the
thesis and extend on some areas introduced in this chapter such as querying and tagging
techniques. In chapter 3 we look at the theory involved in the chosen relevant areas
mentioned in chapter 2. We look at parts of implementation, but at a conceptual level. In
chapter 4 we address the implementation of the project. Chapter 4 also looks at how the
source code has been laid out, how it is deployed and the problems that arose. In chapter 5 we
look at validating our claims made in chapter 1. This chapter provides the information that
enables us to draw conclusions in chapter 6. Beyond chapter 6 we have the appendices which
provide additional information, such as use cases and code samples.

1.3 Goals and Scope of Research

When taking on this research, goals were established to measure progress and scope was
established to maintain course. In the following sections we discuss the goals and scope.
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1.3.1 Goals

Firstly, we need to approach the design and integration of a Domain Specific Language(DSL) for
event handling. The DSL will be based on existing event-condition-action rule standards. The
DSL will then be used to generate rules that the .NET framework can understand.

In chapter 2 we discover a requirement for the size of DSL rules to be minimal. To achieve this,
support for compact event handling specifications must be investigated. A starting point for
compacting the DSL is later identified as: complex events and querying.

With the development of a DSL it is important that life cycle support is provided. Life cycle
support refers to the ability to allow users to continuously update the DSL and have those
changes reflected in their workspace. Full life cycle support means the support of round
tripping and it also means that an approach that compiles away rules will not be used.

Another goal of this thesis is to provide a proof of concept in the form of a working prototype.
This prototype will provide insight into the feasibility of the approach taken. The prototype will
be later evaluated through code and design metrics to provide validation. The validation will
be used to conclude this thesis.

1.3.2 Scope

In order for this thesis to not deviate too far from the intent of the research we must define a
level of scope. In this section we outline the scope.

We have chosen to manually filter events for this research due to an unexpectedly large
volume of primitive events. Implementing event filtering would likely require significant
additional functionality to handle. The functionality that would be required would be wild card
operators for complex event definitions. This would likely require additional unit testing and a
large quantity of work to get temporal behaviour acting correctly.

We have chosen to limit the scope of the implementation of the proof of concept application
to desktop applications written in C# using the .NET 3.0 libraries. This has been done to
provide a realistic objective — in terms of time - to achieve during the course of this research.

We will not be placing importance on Rule Hierarchies (if rules conflict, which ones takes
dominance). An example of a situation where two rules would be affected by rule hierarchy:

Rulel: “If buttonl is clicked enable labell”

Rule2: “If button1 clicked disable labell”

Rule one and two demonstrate that order of execution can greatly change the outcome of a
set of rules. We will assume that verification mechanisms (software and user practice) can be
used to avoid these kinds of conflicts.
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Equally speed and concurrency optimizations are not deemed to be of great importance
besides demonstrating a probability of a reasonable response time to prove the concept.

We will not be implementing a full solution that is feature complete due to the time it would
require to make it. We are attempting to make a proof of concept that will provide enough
functionality to draw conclusions from.

In this research we do not investigate the idea of trust as we assume that trust is provided by
the programmer’s implementation of their application. Due to the open source nature of the
project, any strong name keys or product licence keys generated (that could provide elements
of trust) would have to be omitted from the repository.

We will also not be considering a non source code way of deployment. It is usual when
developing an API to provide the binary forms of libraries and allow users to additionally
download source code. As the source is going to be changing rapidly this method of
deployment would likely waste a lot of time. To overcome that problem we use a set of build
scripts to install binaries which are compiled from the source code provided.
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