Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Rule Based User interface Builder for Visual Studio NET

A thesis submitied in partiat fulfitment of the
requirements for the degree of Master of

Science at Massey University, New Zeatand
¥ ¥

Richard Harry Wilburn

2007

Abstract

Current popularity and lack of successful innovation in the field of Graphical User Interface
(GUI) builders leads to the question of how we can pave the way for a second generation of
GUI builders. This question requires a new approach on GUI builder innovation by changing
event handling practices to integrate a Domain Specific Language (DSL). We propose a DSL
based on R2ML that can be pre-compiled to .NET framework source code. The adoption of a
DSL provides a starting point but offers similar problems with large numbers of rules like other
previous unsuccessful innovations. We attempt to mitigate this concern with the adoption of
an event correlation architecture which enables the realization of complex events. Complex
events allow for the combining of primitive events to gain a higher level event which we
propose is easier to relate to user requirements. We further reduce the number of rules
developers require by introducing querying techniques to provide indirect referencing, rather
than using traditional URI approaches which are more tightly coupled. Comparison of the lines
of code our solution requires, against a comparison not using our solution, demonstrates a
decrease in effort for developers. We also provide architectural reasoning to show developers
the design benefits of our approach.

Acknowledgements

| would like to thank my supervisor Dr Jens Dietrich, who not only provided a great level of
support and knowledge of rule based systems but also provided an enthusiasm to
understanding the .NET way of thinking as his preferred environment is currently Java.

Another group of people who deserve thanks is my family. | would like to thank both my
parents whose aid has largely put me through university. Towards the end of my research
however | required a quiet place to write my thesis and for that | must thank my grandparents
who donated their garage, which is now filled with computers and whiteboards.

Help with implementation aspects of this project were provided by the .NET community mainly
via the MSDN forums (Microsoft). Another community group that deserves thanks is the Castle
Project, who provided a key library for this project which has definitely made the
implementation easier than it would have otherwise been.

Contents

T L L s 14
LT RESCUNCI OVETVIEW v rssssoriiosss s oesssidss e s e sies (4563 6o skiss virassssstssrasivavinas cisin L
1.2 ' OVErVIEW OE THEBIS s vsvseuammnavcimusssmmmmwnssvonsssssos s s s iamsasis s s issasssnasns s ssvminsiodmmimivics 10
13 (GHalS Atid SCHpRBPRESEATEN o nvrms s s R G s T

B R o e PR s
B2 SCOPE it s s e e e s e e R s A rsnac X6

2 BaCKErOUNG iy S B SRR e IR
e T s PN | .
2.2 User INterface BUIIAEIS.......oovuieviieeiieiiieceesesieeteeteessssesaesessasaesstsessssssssssaesssasassasssassassraes 18

2.2, 1 EArIY APPIOACRES .ottt e n et 18
I T T T
2028l DUBEBBAINS uunnncrenmnuossonnsness oreres so ey semess s ¥oss bbs i sehshmsvss s s S ss SH e R AsesA R E 23
228 DIPNI.cioiieisiiie ettt nn s 22
2205 VABUBL SN0 s ivnsun v aoncsntonsm sty e v s AT S TR A B e 22
23 BRIt Er facE D eSTE N PEE RS tis i i b o S o e e S R e
2331 Madal View 'Controller (IMVC) i nsinmmmusims s asnsumyw2d
2.3.2 Model View Presenter (IMVP) ... i seeiiiessnesesosvissessssesessssessersnsss 24
2.3.4 Design CommON@ITIES ...ooivieieiieeeeee et e s e s esssaeessnns s seeeessreeees 20
2.4 Document ObJect MOAE!c..ccuiiiiiiieciiiiiiiieirictieesiesst e erseeersereeeereeeeseseseraeeeseeseesaeses 27
IR L I e - 28
I8 INET FraITTOWIOTK oxsvsusmosssosevsiossansses o s e st sosss snaiensaaas whes sses s ass duas s 4958 S A HAYS 28
T BIVT L iacsmms s s v b o MR S P S RN T A M AN e oS R T S e S S 30

2B O AN W OB st s o e A B S T B s s s 31

2.9 Understanding Windows Presentation FOuNdation...........c..cccuevviivieeniecereesee e cnees 32

2L RAIVIL s s v s o e e S A s 33

2.9.2 Event Routing Strategies and Traditional Event Systems.ccocceviieiiineninenn. 33
e T R 33
2.9.4 Bubbling & TUNNEIIINGeoiiiiiiit ittt sb s ss e sas s esesaes 35
2.10 Rule Based Software DevelOpPmMENTc.civvieierieieiees e essaessssiesssssssessssesssssssnssssssessnes 35
BT, (RS SIETYITTATY s s ismess sy s A A A R T R SA A R S P B R R B oices 36
R e B e e SN Pa T e e L ey e AL s 36
21T "RUIBINAL s comisasssanmssinsunsaunsansmmmnsssion s vy msssivssisnssssi s e s s s s a5 o 36
ZBLIL: BN ssnsacsvmsssas o aiossss s s s o e 0 3 S T S SR S R s S S BT 38
el TR s i s Va0 a4 S A 38
232 Reaction RUIBS :.unnsnnammmainmmmmstmronsmimiis sty s e v i siassson 39
2. 13 Event Algebra v nienasmiiniiiani i i 39
2035 EVer A OIS R R R R G 40
2.13.2 ALOMIC BVENT LYPES .ooueiiiiiiiiiierie et sreb et st ssa e e s e ssaesennaesesessassernesssnss 40
2.13.3 COMPIBX EVENTS ...eiiiiiiiiieieeiieiie e eesee s reresaesessesessaassassssasssssnsesssnensnsssnssarssssassns 40
2.13:4 Event Algebra NOTEION ... cumeromsimmssrressmnsrssn sossssmmmmsstvanssssessysmrap avarns rvssnesssss 41

2.13.5 Event Correlation SeIVICE . icssiisinsssssosnnssinniismsassissrssssssssssanersarnsnnsinssnnssasinasssansn bl

2:14 Visually Representing RUIES .. s aussmimsiusivisssssssisssusssesissisvinsassssvins G2

S TRIN UV L s scauion cnceininssaicnsns ohiomnion s s o o s S RS S T MM o A i 42
TR TR siivsisaviormsnns s h sl i DA S i G e A AN B S R re I A TR 43
283 SBOSE RUIEE iuvcciemmmnsy i i s e S o A s ST R B s SRR e el 44
2.14.4 Business Process Modelling NOtationcueimiiiie i 45
215 Reterence TetRnIQHES sumi r s R TR e S s 46
Z:15.1 “Hnigue Resotrce Ientiflar omiram it rms o s i tasadss isssmnnss 46
2.15.2 INET NamM@SPACINEG ...cciiiiriiiiiiieiie ettt a e eb e e snbe e e s ssseeesnnenesnnes 46
L N e T e T e e P 47
2 L S IR IO o s v A A AR L NS AR A A N SO0 S R 47
Theory and IMplementation Planning ... eiseiseessesse e sbsesssssesssanes 48
BT | TG CUIONN romussmssismsainasnssisiasmeavs s oxaies e mes s SR R o 4 RN SRR SRRV A R 48
Bulad: WSO CEEES. cuvvvensasvons s s s s o s Lok i s R o R R N S s AT i 48
3.1.2 Use Case 1: Click button, enable other Ul componentccccoovvviviiiieniviniin 49
3.1.3 Use Case 2: Click button, disable other Ul components...........cccovevvviiiiiiiiieiinnns 50
3.1.4 Use Case 3: Printing is triggered, disabling printing triggerscocccceiinvicennen. 51
3:1.5 Use Case 4: Composite eVeNES iiaiiiimiimiis i iimmmin i snssisstaares shsss 52

3.2
33

3.4

35

3.1.6

Use Case 5: Operating System Boot Loader........ccccovieviiiciiiiiiieicciiiisnniecseseeenns. D4

1 oEd =Tt dl 2 7=To | D111 5 7]) ¢ U O SO 55

RIS P SIS BTN unsvemnisss oo s e s i s S O e A P e

3.3.1
3.3.2
3.3.3

Scenario 1: Rules are interpreted at runtime from an XML List.......................... 55
Scenario 2: Rules Stored as Annotations in Code........ccccoooiiiiiiiiiiiiiiiiiiiiiciiinenn. 57

Scenario 3: Rules Generate Code ..o iiisiissinissssssssosesesssissseeesesns D7

R R s R s R R T sra s B 8

34.1
3.4.2
343
34.4

BB TS o i v S N A A O T B N S R R 0

351
3.5.2
3.53

Application Object Model CoNcepts......coviviiireiiiiciiiciciicecrie e D8
Query based referenCingcccvvevivveeieriecrireeee e see e ssbbe e sisssessensassessnnss B0
QuEryYing By Meta Dataccocvvieiiiieeiiiiinnieiiiiiie o ciiree i sibessesnnsseseeserserasaseenes. B1

Potential implications of non native QUEryiNgcccccciiiiiieciinnieciieiisniesee s 62

EVEHt AlBe D@ THOWENES wsn.csvsmmaivivnniss mssms s sasis s irsv s i sadesna i sbismass 0avs aivs 63
Event handling approachescccvvciiviiiiiiiiii i ssisecsnenseeens B3

Complex event ProCessiNg et s s 65

3.6 RuUle ERtry ApProach s i i s s b s s st iney 00

S DBl B P A I s e L Eems 5 s s S e s s A R S P R AT A PRI 67

Faa] o1 [=T o aT=T o) €= 1 4 To] o E OSSP TRRSPPR 70

O R Y (=Y T A= I o £ €Y= 1 < TSR TORRRRROPRRN 70

4.2
4.3

411
41.2
413
41.1
4.1.2

NISEIA] SEBION D DI s sersssmmmnmrrsmsrmrin s s e A MR R O e B T S
88514 75 V2 A S5] 7 SRS ST .
R B B IBHTIE s sunconsmumersiioim s om0 s P s TR A A S R 71
Scheia Based/ Cote GEReration . cuinasmmmnmnnisimmn s s s 2

NI LSRN ninnnmmimnismmisrsanmismimasamimsanmnd a9

Vistial Studio plugsinrmode] s s e s s T4

SO PR e e s v s R s R S e s e T8

431
43.2
433
434
4.3.5
436
4.3.7
4.3.8

Code generation PIUB-INccccoveiiirie e ensessssenseesnesnasens 17
Rule EAItOr PIUB-IN c.eciieiiiie it sesines s see s sreeesansesnnn s sanssnnessnsssnssss S0
Application OBJECct MOEel........cooviviiiiiiieniiiri i s irrssees s s sssesssssesssssssssisnssse s 82
O ETVEITIE. s vominsmnnsuinssvoes s o o AN N B R A B TN S N 83
NVelocity TemMPIate EABING ..uwwsssismssuisisisimineisonsssmmsiisresisisssirisssis irdeisssss 86

NI UaLSTOHIO TEMBIATES v s s i S e T e T 87

Build Scripts & Registry Modifications for Visual Studio.........cccccevvieriiiiiiiiininnnns 88

4.4 Further Implementation possibilIties........ccviiiiiiiiiiiciii e 89

5 ValidatioN. .. s 90
5.1 COMIPATISON cuuteeeieeteitineree s e absieae e e e st b b st e b e en b e e s bbeee e e ebbesbb e e e e s eababbbe e ee e e s ebanbae s ebas e e s e b e e sbrne 90

e I T o T g L e e A i 92

Bold O SO O O ON crrarimamis s smms e e R S e T T o O D T 93

B2 ORI VAT CIRTIONT cevscrsmannsevontosionsiusmesan s vt in o s e b 6 s s G mae s Vs 5 eSS G5 93
53 DIOBIUBBIINE e s oo s 55 e es vy s sV s a0 R 5 SN A S S H A N AR SR 5 93
838 COMPOSIE BVBIATS: iovniuuiviiarininisins sl s s s s ey koo v i s S s s s S sl o 94
8.5 Codpling ImprovemiBnts vaianmnmnumsmasaivbnsinr s el 94
5.6 [Facilitate tidy CoOaINg PraCt O8RS i i s s e e s B e Sy oSS s s s 96
5.7 Parallel development of U ciiiiisiiiiimmmsiisiimivmsimsimiiiinisis v inisvmssviis 96
5.8 User Requirements and COOcoovviiiiiiiiiiii i sessiesessis s sssessesesssesesssasssssnesssassssens 96
5.9 Standardization and Language INdependence.........coiiieiiiiniiiiieniniieein e 96
B R O N TSN o o o s e OO R R N AP R A E RPN NN 97

B OTCIUSTON xcronsansiancnrssnrnssvusonss smvsssvsesvassarsp s s asm i 5N e A e bR S VPO S NS BSNS54 PR ST G 98
Bl (OB IISHONY s s niosasians pussassssirusuuom oron s isassanssss vhsetssassessi o e baaasss kb SRS SN SE SR SRS eSS 98
Bi2 PUEUITE WWIOTK s wisnonsaasasuonsasiimassnss s s acss biss o rua s s by o3 65 S A oA TSRS S0 99
G2 L TRESBATEN «cuscvuvivmnmses s utan s S s oias 4 s eSS S Lo e TRV R NGRS S 99

6.2.2 SOftware IMpProvVEMENES ...t e s br e s be e nnbnnes 100

6:2.3° Additional FEatUres . s s i sy s e i sss 100

I - | ({1 1 1 B e e 102
B GlOSEatYcisiinnnibrsnnre st e e S 108
O USE CASES..cureerinrsrnemsisessanssunssssessssinsssnsssssssnssssssssesssssssssssssnssssssssssssssssrssssssssssasssssnssentanssnnsssssss 110
10 SE e OO e o s R T R R T TS A e e e A R 114

List of Figures

Figure 1 — A Simple Rule in Visual Age for Java.......cooiiiiiiciiiiiiiccinnccicieceieessieseesiseeennnerieeons 19
Figure 2 —Many Simple Rules in Visual Age forJavacoieciiiiieiiiiiciiciiiciicciieesiireeniiennan 21
Figure 3 — NetBeans Mobility GUI DeSIBNEr......ccc.ciciiviiiciiciiiciiiiieiecsiieeseeeiieeecreesies e eeneseeiasaneens 22
Figure 4 - Model View Controller taken from (Sun Microsystems)cccocvviiicriniinneenrinenninnn. 24
Figure 5 — Model View Presenter (Potel, 1996)... RS ST AT
Figure 6 - MVC & MVC2 comparison provided by (Sun Microsystemsj 26
Figure 7 - Document Object Model instance showing Functional Navigation (Microsoft) 27
Figure 8 - .NET Framework compilation process .. SRR e R 2
Figure 9 - Semantic Web Architecture (Berners-Lee, 2000) R L S e
Figure 10 - Framework Event Handling (Ferg, 2006)cccccoeeeviriiiniieciiiviiieeeiciiiniieneenennenesinnn. 348
Figure 11 - Event Bubbling and Tunnelling (Microsoft, 2004)cccceviiiiaiiinresiinesesssnseseineens 35
Figure 12 — An Atom structure in RuleML (Boley, Grosof, & Tabet, 2005).........cccccvvvveeeeeeiinnnnn. 37
Figure 13 — URML based Reaction Rule example (Rewerse Working Group, 2006).................. 44
Figure 14 — JBOSS symbols (Proctor, Neale, Lin, & Frandsen)cccccoeeevveeieeeeeecceecieecrie e, 45
Figure 15 - An example BPMN diagram (S. White IBM)......cccccooeiiiiiiiiiee e e 46
Figure 16 - Example Instance of an Application Object Madel.................coccceeiiiiiiiieiiiiiiiieinn.. 59
Figure 17 - Application Object Model HIerarchyccooiiiiiiiiiiii i 59
Figure 18 — Sample use of a Document Object Model (Martin Webb, 1999)ccccevveeneee. 60
FIBURE 19 = EVENY LOBD: wsmumrsssrsssrsorvssssmss nnvs s oo sosamsssin s ves e s o (o066 b s i e s s kuesae 63
Figure 20 — TUNNEl EVENT CROOSET ...uiiiiiiiiiieeis ettt e e s s baas s e e e e e e s e snans 64
Figure 21 - EVent QUEUE L.......oiiieiiiicieiiiiiii e iiees et e e s bn e e e s e s enbranaesseeesssnes DD
Figure 22 = Event QIUBHE 2 smiiviiimi i s r iy nsias 00
Figure 23 — A possible implementation approachc.ccccciiiiiiiiniiiiss e ses s srsseeessessenees 67
Figure 24 — Visual Studio Plug-in Interaction showing code generation and user interaction... 75
Figre 25 = THe SOIution EXPIOPAY s s i ma v basiusisais 10
Figure 26 - Accessing the code Generation Classes.......ccvvvviiiiiiiiiniicireiiiiisiiecssesneessseinns 18
Figure 27 - Wiring up generated code to User Codecrininiiiinineiesmeniinnesmeeresnessnens 19
Figure 28 - Rule Editor PIU-IN OVEIVIEWccovviiriicriieciiiiericcreiteesrseiesseessseeseesssseesseesseensssaeess 80
Eigure 29 RulaTab e Ctrl o e i i s s r R e sl 81
Figiare 30— Event Alpabrailmeatt suuamuiiimsme s e ns et 85
Figure 31 - VSPackage BUild ACEIONS ..coimmiamsiimistinsasinrii s isi ssesssisssiosssssisnrisvavasiosseess 88
Figure 32 — Tieted MVP based desiBNciumrmismemmsmvimssivisminsisisssssmsassmminimim i 39
Figure 33 - MVP based APl approach........ccecciieciiiiiieciiecccorieieieviesereveesseeserseeseseessseessesessseennens 95
FIBUIE 34 = USE CASE 1 ..uiiiiisiiiiiiises ittt a et e s e e e e st e e be s e e e eaeeas e baaasaesabasaaeseeaasbannaeeees 110
FIBUIE 35 - USE CASE 2....reiveiirirreeaaessnnesnsasssssnsasesessssssessesassssssassesesssssssssssssassesnssessssssssnnssnsens 111
Figure 36 -~ Use Case 3. miimir i maisimmmmmmammnvnsimsseinigs 111
Eigure: 37 = USBEa8e A umnianinamimiass i e i s s s e s e 112

Figure 38 - Use Case 5

11

List of Tables

Table 1 - UML Candidates for a Visual RUle LENGUAEE ..ot e, 43
TaD1E 2 - 88 G50 LIS i e et et e e e 48
TaBIE 3 - USE CABE L it ettt ettt b et et e e e 49
TADIE 4 - USE A5 2 oot et e e e e e 50
Table 5 - US Ca5E B it e e e e e e e 51
Tl B = 58 a0 G i i e e e e 53
T8 7 - LS8 G585 i e e 54
Table 8 - Architectural ArBUMENTS | e e 56
Table 9 - Architectural Arguments H.. e 57
Table 10 - Architectural Arguments . e 58

12

13

Chapter |

Introduction

1.1 Research Overview

“User interface software is often large, complex and difficult to implement, debug, and
modify” (Myers, User Interface Software Tools, 1994).

While the previous quote is a bold statement, the large number of Graphic User Interface (GUI)
builders on the market in comparison to data oriented tools such as class diagram editors
could be indicative of this issue. In this chapter we investigate GUI builder tools to see where
they fall short in aiding developers.

In this research we investigate a way to abstract events to a level where they are more usable.
Event driven programming is an approach to programming that facilitates system and user
actions to dictate the flow of a program. The previous way of programming applications was to
use batch programming where the flow of the program was dictated by the programmer. The
convenience of event driven programming is that it abstracts code closer to user
requirements.

A problem with event driven programming currently is that it is not as convenient as it could
be in that it works at a low level. An example of low level operation is the events ‘Click’ and
‘KeyPress’. This is compared to user requirements which are often described by high level user
actions. An example requirement could be that a user starts to print, hence disable all GUI
controls that trigger printing. That example illustrates a gap between the low level nature of
event driven programming in comparison to user requirements. This thesis attempts to
address this gap by raising the abstraction of programming language events.

There is also a problem that developers face when attempting to separate concerns which
arises from the high coupling of the User Interface (Ul) to the events which belong to the UL.
High coupling prevents developers from creating ‘event wire ups’ until a user interface has
been constructed. Wiring up events is a process of a listening object subscribing to an event
that is exposed on another object. High coupling can lead to architecturally problematic coding
practices.

A modern market push from software products (such as the Microsoft Expression Family)
tends to show an increasing ability to enable the option of outsourcing Ul design to specialist
designers. This would currently leave wiring of events and data binding (linking data with Ul)

14

until the user interface has been completed. This gives developers less time to wire up the Ul
and also gives less time to the Ul developers as they have people dependent on their work.

The thesis also investigates rules as a way of specifying relationships. Rules have
predominantly been used in software engineering for specifying mappings between two data
sources and has been used for specifying higher domain logic. Specifying higher domain logic
in the form of rules is often beneficial to software users as they can change the rules often
without changing or understanding the software. We investigate both avenues as methods of
abstraction from low level event architectures employed by current programming languages
and frameworks. If there is one thing to come out of this research, we would like it to be the
advancement of event handling of modern programming languages. Modern programming
languages such as C# have improved on event handling by decentralizing events from an event
loop allowing for a more lazy approach by adopting functional mechanisms. These functional
mechanisms allow for easy subscription to events after the source code is compiled. With an
event loop, events are declared in a central location making runtime subscription more
difficult. While there have been functional improvements to modern languages, many use
cases still fall short of their potential due to the gap between user requirements and the
hardware mindset of events such as ‘Click’ and ‘KeyPress’.

1.2 Overview of Thesis

In this chapter we introduce the research areas of this thesis and discuss aspects such as the
goals and scope. In the next chapter we look into the background information relevant to the
thesis and extend on some areas introduced in this chapter such as querying and tagging
techniques. In chapter 3 we look at the theory involved in the chosen relevant areas
mentioned in chapter 2. We look at parts of implementation, but at a conceptual level. In
chapter 4 we address the implementation of the project. Chapter 4 also looks at how the
source code has been laid out, how it is deployed and the problems that arose. In chapter 5 we
look at validating our claims made in chapter 1. This chapter provides the information that
enables us to draw conclusions in chapter 6. Beyond chapter 6 we have the appendices which
provide additional information, such as use cases and code samples.

1.3 Goals and Scope of Research

When taking on this research, goals were established to measure progress and scope was
established to maintain course. In the following sections we discuss the goals and scope.

15

1.3.1 Goals

Firstly, we need to approach the design and integration of a Domain Specific Language(DSL) for
event handling. The DSL will be based on existing event-condition-action rule standards. The
DSL will then be used to generate rules that the .NET framework can understand.

In chapter 2 we discover a requirement for the size of DSL rules to be minimal. To achieve this,
support for compact event handling specifications must be investigated. A starting point for
compacting the DSL is later identified as: complex events and querying.

With the development of a DSL it is important that life cycle support is provided. Life cycle
support refers to the ability to allow users to continuously update the DSL and have those
changes reflected in their workspace. Full life cycle support means the support of round
tripping and it also means that an approach that compiles away rules will not be used.

Another goal of this thesis is to provide a proof of concept in the form of a working prototype.
This prototype will provide insight into the feasibility of the approach taken. The prototype will
be later evaluated through code and design metrics to provide validation. The validation will
be used to conclude this thesis.

1.3.2 Scope

In order for this thesis to not deviate too far from the intent of the research we must define a
level of scope. In this section we outline the scope.

We have chosen to manually filter events for this research due to an unexpectedly large
volume of primitive events. Implementing event filtering would likely require significant
additional functionality to handle. The functionality that would be required would be wild card
operators for complex event definitions. This would likely require additional unit testing and a
large quantity of work to get temporal behaviour acting correctly.

We have chosen to limit the scope of the implementation of the proof of concept application
to desktop applications written in C# using the .NET 3.0 libraries. This has been done to
provide a realistic objective — in terms of time - to achieve during the course of this research.

We will not be placing importance on Rule Hierarchies (if rules conflict, which ones takes
dominance). An example of a situation where two rules would be affected by rule hierarchy:

Rulel: “If buttonl is clicked enable labell”

Rule2: “If button1 clicked disable labell”

Rule one and two demonstrate that order of execution can greatly change the outcome of a
set of rules. We will assume that verification mechanisms (software and user practice) can be
used to avoid these kinds of conflicts.

16

Equally speed and concurrency optimizations are not deemed to be of great importance
besides demonstrating a probability of a reasonable response time to prove the concept.

We will not be implementing a full solution that is feature complete due to the time it would
require to make it. We are attempting to make a proof of concept that will provide enough
functionality to draw conclusions from.

In this research we do not investigate the idea of trust as we assume that trust is provided by
the programmer’s implementation of their application. Due to the open source nature of the
project, any strong name keys or product licence keys generated (that could provide elements
of trust) would have to be omitted from the repository.

We will also not be considering a non source code way of deployment. It is usual when
developing an API to provide the binary forms of libraries and allow users to additionally
download source code. As the source is going to be changing rapidly this method of
deployment would likely waste a lot of time. To overcome that problem we use a set of build
scripts to install binaries which are compiled from the source code provided.

17

