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Abstract—The most computationally intensive part of a wideband 
receiver is the channelizer, which extracts individual radio 
channels from the output of the ADC. The computational 
complexity of Linear Phase Finite Impulse Response (LPFIR) 
filters employed in the channelizer is dominated by the number of 
adders (subtractors) used in the implementation of the 
multipliers. Common Subexpression Elimination (CSE) has been 
proposed as an efficient method to minimize the number of adders 
in LPFIR filters. In this paper, two methods are proposed to 
efficiently implement the channel filters in a wideband receiver by 
optimizing CSE. We exploit the fact that significant amount of 
redundant multiplications exist in the filter bank channelizer as it 
extracts multiple narrowband channels from the wideband signal. 
By forming three and four nonzero-bit super-subexpression 
utilizing redundant identical shifts that exist between a two- 
nonzero-bit Common Subexpression (CS) and a third nonzero bit, 
or between two nonzero-bit CS, we show that the number of 
adders to implement the channel filters can be reduced 
considerably. Furthermore, the complexity of adders is analyzed 
and design examples of the channel filters employed in the Digital 
Advanced Mobile Phone System (D-AMPS) and the Personal 
Digital Cellular (PDC) channelizers show that the proposed 
methods offer considerable reduction in full adders when 
compared to conventional CSE methods.  
 

Index Terms— Adder complexity, Channelizer, Common 
subexpression elimination, Linear phase finite impulse response 
filters.  
 

I. INTRODUCTION 
IGITAL filters employed in the channelizer of a wideband 
receiver, which extracts several narrowband channels 
from a wideband signal, present a hardware design 

challenge [1]. LPFIR filters implemented with high-speed and 
low-power are required in channelizers. Although 
programmable filters based on digital signal processing cores 
offer the advantage of flexibility, they are not suitable for 
wideband receiver applications that demand high throughput 
and low-power consumption. Therefore, application specific 
digital filters are frequently adopted to meet the constraints of 
performance and power consumption in such applications. 

However, these filters employ a large number of multipliers 
that lead to excessive area and power consumption even if they 
are implemented in full custom integrated circuits. Therefore, 
the problem of implementing digital filters with small area and 
low-power consumption has received a great attention in the 
last decade. Early works have focused on replacing 
multiplications by decomposing them into simple operations 
such as addition, subtraction and shifts. Hence, the algorithms 
that minimize the complexity of multiplication in LPFIR filters 
focus on reducing the number of adders needed to implement 
the multipliers. 
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The number of adders required to implement a multiplier is 
proportional to the number of nonzero digits present in the filter 
coefficients. To reduce the complexity, the coefficients can be 
restricted to powers-of-two (binary) or expressed in Canonic 
Signed Digit (CSD) representation. On the average, the CSD 
representation offers a reduction of 33% of nonzero digits 
compared with the binary representation. Multiple Constant 
Multiplication (MCM) is a transformation closely related to the 
widely used substitution of multiplications with constants by 
shifts and additions. While the latter considers multiplication of 
only one constant at a time, the MCM considers multiplication 
of one variable with multiple constants. CSE tackles the MCM 
problem by minimizing the number of additions through 
extracting common parts among the constants represented in 
CSD [2]-[10]. In general, these methods eliminate redundant 
computations in multiplier blocks by employing the most 
common subexpressions consisting of two nonzero-bits.  In this 
paper, we show that conventional HCSE and VCSE methods 
using two nonzero-bit CS can be optimized to form three and 
four nonzero-bit Super-Subexpression (SS) by exploiting 
redundant identical shifts among them. The proposed 
techniques offer considerable reduction in implementing 
LPFIR filters employed in the channelizer of a wideband 
receiver where SS among the coefficients of several filters are 
utilized.  

The rest of this paper is organized as follows.  In section 2, 
the HCSE algorithm used to implement MCM in LPFIR filters 
is reviewed and its application in channelizers is discussed.  
The complexity of implementation is analyzed in terms of full 
adders required for each adder. A Horizontal 
Super-Subexpression Elimination (HSSE) algorithm by 
optimizing the HCSE method is presented in section 3. In 
section 4, a Vertical Super-Subexpression Elimination (VSSE) 
is presented by optimizing the VCSE algorithm. We relate our 
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method to high level synthesis methods in section 5. The 
implementation of channel filters for the D-AMPS and the PDC 
cellular standards using proposed HSSE and VSSE techniques 
are illustrated in section 6. We also provide comparison of 
hardware reduction achieved employing the proposed methods 
with that in conventional CSE methods. Section 7 provides our 
conclusions. 

II. COMMON SUBEXPRESSION ELIMINATION 

A. The HCSE Approach 
The idea of HCSE can be demonstrated on a LPFIR filter 

design example shown in Fig. 1. The function of the Multiplier 
Block (MB) shown in Fig. 1 is to compute the sum of partial 
products obtained when the input signal  is convolved with 
the filter coefficients   

)(x
).( ih

Definition 1 (Multiplier block adders): The adders used in the 
MB to compute the sum of partial products formed when x  is 
multiplied with  are called Multiplier Block Adders (MBA). ih

Definition 2 (Structural adders): The inter-tap adders used to 
compute the sum of convolved signals (shown between each 
delay stage) are called Structural Adders (SA). The number of 
structural adders in a filter structure is same as that of the 
number of distinct delay stages. 

If  and  represent the numbers of MBA and SA 
respectively, the total number of adders required to implement 
the filter,  is  

mbaT saT

),( aT
                                                            (1) sambaa TTT +=

The coefficients are represented using CSD. The number 
 is said to be in CSD format if each  is 0, +1, 

or –1 and no two consecutive  are nonzero [3]. In 
conventional implementation using shifts and adds, the output 
of the filter can be expressed as: 

1210 .... −Nbbbb ib

ib

                      and  ,861 >>+>>=− xxyk
                           (2) 8631 >>+>>+>>+>>= xxxxyk

where x  is the input signal and ‘>>’ represents shift right 
operation. (The output  is obtained from  i.e., 

 which is represented as ). In 
Fig. 1, the numbers adjacent to the data path represent the 
number of bit-wise right shifts. It requires four adders (MBA) 
to obtain the output expression (2) as shown in Fig. 1(b). The 
goal of CSE is to identify multiple occurrences of identical bit 
patterns that are present in the coefficient set. Since the 
computation of multiple identical expressions needs to be 
implemented only once, the resources necessary for these 
operations can be shared. The pattern [1 0 1] in the example in 
Fig. 1 is present thrice, which can be expressed as a Horizontal 
Common Subexpression (HCS), 

1−ky ),.( 1−khx

),22.( 86 −− +x 86 >>+>> xx

                                                               (3) 21 >>+= xxx
Using the HCS (3), the output of the filter can be expressed 

as 
                and          (4)   611 >>=− xyk 61 11 >>+>>= xxyk

Hence, an optimized structure shown in Fig. 1(c) that requires 
two adders less than the original structure can be implemented. 

Thus, using HCSE, multiple occurrences of identical bit 
patterns are eliminated by forming HCS, and the number of 
adders required to implement the filter structure is minimized.  

B. MCM in Filter Bank Channelizers 
One of the objectives of this paper is to apply the CSE 

algorithm to filter bank channelizers (FBC). Channelization in 
wideband receivers involves the extraction of multiple 
narrowband channels from a wideband signal using several 
bandpass filters, called channel filters. As shown in Fig. 2, the 
output of each bandpass filter is followed by a mixer, decimator 
and a sample rate converter before the signal is fed to baseband 
processing.  

The complexity of the FBC is dominated by the complexity 
of the channel filters since they operate at the highest sampling 
rate in the system. The channel filters must meet the 
high-speed/low-power requirements and need sufficiently large 
number of taps to meet the adjacent channel interference 
specifications. Efficient realization methods of channel filters 
are hardly discussed in the literature. We extend the 
conventional MCM problem proposed for individual LPFIR 
filters to FBC for multiplication of one variable (wideband 
signal) with multiple constants (coefficients) of a bank of 
bandpass filters. The idea is illustrated using Fig. 3. The most 
frequently occurring CS among the coefficients of M channel 
filters are identified to form a multiplier block. Further 
optimization of the multiplier block can be achieved using the 
proposed HSSE and VSSE methods. Exploiting the fact that the 
amount of CS grows linearly with the number of channels to be 
extracted, the CSE optimization techniques presented in 
sections 3 and 4 are applied to efficiently implement the 
channel filters.  

C. Analysis of the HCSE Method 
In this section, we discuss the implementation of a LPFIR 

filter using HCSE and provide an analysis of the issues related 
to its complexity. An 8-tap LPFIR filter whose coefficients in 
16-bit CSD form in Fig. 4 is used as an example to illustrate the 
HCSE method. 

It is well known that LPFIR filters are symmetric since its 
impulse response (which resembles a sinc function) satisfies 
the condition: 

                            )1()( nNhnh −−=                           (5) 
where N is the number of taps (filter length). Thus, only extra 
⎣ ⎦2/N  structural adders are required (floor value considered if 
N is odd) to obtain the filter output corresponding to the 
symmetric part. If  is the number of nonzero bits in the 
symmetric half coefficient set represented in CSD, it requires 

bN

1−bN  adders to obtain 
⎣ ⎦

∑
−

=

12/

0
. .

N

i
ihx  Therefore, the number of 

adders required to implement the filter is given by (6): 
                               ⎣ 2/)1( NNb + ⎦−                              (6) 

In this example, ,29=bN  and  Hence thirty-two 
adders would be required to implement the filter without using 
HCSE. The 2-bit HCS, [1 0 1] and [1 0 -1], shown inside the 
rectangles in Fig. 4 are given by: 

.8=N
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                  and           (7) 2112 >>+= xxx 2113 >>−= xxx
where  is the input signal. If  is the total number of 2-bit 
HCS in the symmetric half coefficient set and  is the 
number of adders required for distinct HCS, the reduction of 
adders achieved using HCSE is  Hence the number 
of adders required to implement the filter using HCSE can be 
obtained by modifying (6): 

1x hsN

asN

.ashs NN −

                                       (8) ⎣ ⎦ )(2/)1( ashsb NNNN −−+−
In this case  and  According to (8), 
twenty-one adders are required to implement the filter. This 
offers a reduction of 34% over direct implementation without 
HCSE.  

,13=hsN .2=asN

D. Adder Complexity 
All of the CSE techniques presented in literature discuss the 

reduction of hardware at the adder level to show the efficiency 
of those methods. However, the complexity of each adder is 
significant in practical implementations with 
high-speed/low-power requirements. In this section, we 
analyze the complexity of the adders, since it determines the 
actual cost of implementation. An adder that adds two n-bit 
numbers would require n full adders (FA) to compute the sum. 
We consider ripple carry adders (RCA) through out the paper 
on account of its low power consumption. Even if carry 
look-ahead adders (CLA) are considered on account of their 
improved speed, the full adder requirement of CLA is identical 
to that of RCA (the difference is that CLA will have an extra 
carry look-ahead logic to reduce the delay at the cost of more 
power consumption). The area, power, and speed of an adder 
depend on the value of n, which is called the adder width. 
Efforts to optimize these parameters should focus on 
minimizing the adder width, i.e., the number of FA. Firstly, we 
derive the expressions for analyzing the complexity of adders 
in HCSE optimized filters and then compute the number of 
FA’s required to implement them.  

Definition 3 (Nonzero terms): The subexpressions and the 
nonzero bits other than the subexpressions of a coefficient are 
termed as its nonzero terms. For example, the two nonzero 
terms of a coefficient represented in CSD,  (0.1010001), are [1 
0 1] (CS) and 1 (least significant bit). 

Definition 4 (Operands): The input signal shifted 
corresponding to the positional weights of the nonzero terms of 
the coefficient form the operands of the adders. For instance, in 
the case of the coefficient, (0.1010001), the operands are 

 and  where  is the input and 
 is the CS, [1 0 1]. Note that the number of 

nonzero terms and operands are identical. The number of 
adders required to compute the output for a coefficient is equal 
to one less than the number of operands.  

12 >>x ,71 >>x 1x
2112 >>+= xxx

Definition 5 (Span): The span is analogous to the wordlength, 
which is equal to the number of bits of an operand. Considering 
the above example, if  is an 8-bit quantized signal, the span 
of the operand,  is eleven and that of  is 
fifteen. 

1x
,12 >>x 71 >>x

Definition 6 (adder-step): One addition stage in a maximal 
path of decomposed multiplications is called the adder-step. A 

multiplication can have different adder-steps, depending on the 
structure of multiplication. 

We employ the high-speed tree structure shown in Fig. 5 to 
implement the MB. Using the binary tree in Fig. 5, the number 
of adder-steps,  required to compute the sum of partial 
products of n  operands (nonzero bits of the coefficient) is 
given by  From this, we obtain 

),( nA

.2 nn ≥A

                            ⎥
⎥

⎤
⎢
⎢

⎡
=

)2(log
)(log

10

10 n
An                               (9) 

 
The  obtained in (9) is the lowest number of adder-steps 
(lower bound) possible to achieve in an addition structure since 
the tree structure considered in our method performs parallel 
addition. Therefore, our method always results in a minimum 
adder-step implementation and hence has the lowest delay. 

nA

Case I - Odd number of operands:  
Consider the coefficient  If  

represents the input signal, the output can be expressed as 
).1001010101.0()( =nh 1x

               841)( 221 >>+>>+>>= xxxny                (10) 
where 2112 >>+= xxx  is the HCS corresponding to the bit 
pattern [1 0 1]. In this case, the number of operands is three 
(odd) and hence two adders are required to compute  If 

 is represented using 8 bits, the minimum span (neglecting 
the carry part) of  is 10 and those of the first, the second, and 
the third operands of (10) are 9, 14, and 18 respectively. For an 
adder whose operands have spans  and  such that 

 the adder width is  There are two possible ways to 
implement (10) as shown in Fig. 6(a) and (b). In the 
implementation shown in Fig. 6(a), both adders,  and  
have the maximum width of 18. In the case of Fig. 6(b), only 

 has the maximum width, 18, while the width of  is 14. 
Hence the implementation of Fig. 6(b) requires fewer FA’s than 
that in Fig. 6(a). Note that the number of adder-steps are 
identical (two) in Fig. 6(a) and 6(b). Thus, using the minimum 
FA scheme of Fig. 6(b), addition of three operands would 
require 

).(ny

1x

2x

1s 2s
,12 ss > .2s

1A ,2A

2A 1A

)( 32 ss +  FA’s, where and  represent the 
spans of the operands in (10) such that   

 , , 21 ss 3s
.123 sss >>

Filter coefficients in CSD form with wordlengths up to 
24-bits are considered here. Since no adjacent bits in CSD are 
one’s, a 24-bit CSD number can have a maximum of 12 
nonzero bits and hence at the most twelve nonzero operands 
could occur in a multiplication. Consider the filter tap shown in 
Fig. 7 that has an odd number of operands (nine), whose spans 
are indicated as  The  shown adjacent to the adders 
represent the adder widths. The total number of FA’s required 
to implement this filter tap is given by the sum of the widths of 
all adders, i.e., 

.is ssi '

.32 98642 sssss ++++  
By extending this minimum adder-step structure to 24-bit 

CSD coefficients, it can be shown that the number of FA’s, 
 required to compute the output corresponding to a 

coefficient with n operands can be determined using the 
expression: 

,0N
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  ++++++++= 978756534312 322 sassassassasNo  
                                 1211910 22 ssas ++                             (11) 
where  is the span of the nth operand and  are equal to 
zero except  For instance, if 7 operands are present, 
using (11) we get  Expression (11) 
can be represented in matrix form for easier computation of 
FA’s for any coefficient with n operands  since n is 
odd) as 

ns s'ia
.12 =−na

.22 76420 ssssN +++=

,11( ≤n

                                                   (12) ⎡ ⎤ SnUN
oH  . ) 2/ (0 =

where  represents the elements of the ⎡ ⎤  )  ( kU
oH ⎡ ⎤k -th row 

of the matrix and  is the span vector,   S

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2  1  0  3  0  1  0  2  0  1
1  3  0  1  0  2  0  1

2  1  0  2  0  1
1  2  0  1

1  1
1

oHU  and  .

.

.

.
3

2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ns

s
s

S

 
 
Case II - Even number of operands:  
Consider the coefficient,  The 

output can be expressed as 
).011001010101.0()( =nh

                 (13) 12841)( 1221 >>+>>+>>+>>= xxxxny
In this case, the number of operands is four (even) and hence 
three adders are required to compute  The possible 
addition sequences to obtain (13) are shown in Fig. 8(a) and 
(b). If the spans of the operands of (13) are and  
respectively, the implementation in Fig. 8(a) would require 

 FA’s. On the other hand, it 
would require  FA’s to realize the 
scheme in Fig. 8(b), which is larger than the former. However, 
it should be noted that implementation in Fig. 8(b) requires one 
less adder-step than that of Fig. 8(a) and hence its critical path 
is shorter. On account of its minimum critical path, we use the 
structure in Fig. 8 (b) in our method, though its costs a few 
additional FA’s. The addition scheme in Fig. 8(b) can be 
extended to 24-bit CSD to show that the number of FA’s,  
required to compute the output corresponding to a coefficient 
with n operands  is given by: 

).(ny

321 ,, sss 4s

52201814432 =++=++ sss
54)20(2142 42 =+=+ ss

,eN

)12( ≤n
                         (14) 1210186042 332 sscsscssNe +++++=

where  and  
⎩
⎨
⎧

≠
=

≡
6for  ,1
6for  ,2

0 n
n

c .  
10for  ,1
10for  ,2

1
⎩
⎨
⎧

≠
=

≡
n
n

c

For example, if six operands are present (i.e., 6=n ), it 
would require  FA’s. Using the matrix form, 
the number of FA’s for computing the output of any given 
coefficient with n operands is given by: 

)22( 642 sss ++

                                                      (15) SnUN
eHe  . ) 2/ (=

where S is the span vector as in (12), and  represents 

the elements of the -th row of the matrix, 

 )  ( kU
eH

k

              =
eHU   .

3  0  1  0  3  0  1  0  2  0  1
2  0  3  0  1  0  2  0  1

  3  0  1  0  2  0  1
2  0  2  0  1

  2  0  1
  1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

E. Full Adder Requirements in HCSE Method 
The number of full adders (MBA) required to compute the 

partial products for the filter in Fig. 4 can be determined using 
(12) and (15) for odd and even number of operands 
respectively. We consider the first two coefficients in Fig. 4 for 
illustration of FA estimation.  

1) Even number of operands: Consider the coefficient,  
The expression of the output,  is  

).0(h
),0(.)0( 1 hxy =

      13851)0( 3212 >>+>>+>>−>>= xxxxy            (16) 
where  and  are given by (7) and  is 16-bit input 
signal. Note that the spans of  and  are same, i.e., 18. In 
(16), there are four (even) operands and spans of second  
and fourth operands ( ) are 21 and 31 respectively. The 
number of FA’s for computing can be determined using 
(15):  

2x 3x 1x

2x 3x
)( 2s

4s
)0(y

                     == SnUN
eHe  . )2/ ( SU

eH  . ) 2/4 (  

                                       (17) [ ] 832 . 2  0  1 42

4

3

2
=+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ss

s
s
s

2) Odd number of operands: Consider  where output ),1(h
)1(.)1( 1 hxy =  is computed by ([-k] represents a delay of k):  

                  +>>−+>>−−>>− 8]1[4]1[2]1[ 231 xxx  
                             16]1[12]1[ 12 >>−−>>− xx                    (18) 
In this case, there is an odd number of operands (five) and 

 are 22, 30, and 32 respectively. Using (12), the 
number of FA’s for computing  is given by 

5,42  and , sss
)1(y

               ⎡ ⎤ == SnUN
oHo  . ) 2/ ( ⎡ ⎤ SU

oH  . ) 2/5 (  

                            (19) [ ] 1142 . 1  2  0  1 542

5

4

3

2

=++=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= sss

s
s
s
s

Using this method, the total number of FA’s required to 
compute the partial products of the MBAs of the LPFIR filter in 
Fig. 4 is 376. In the next section, we present an optimization 
technique that minimizes the number of FA’s.   
 

III. OPTIMIZATION OF HCSE METHOD 
We observe that several 3-bit and 4-bit Horizontal 

Super-Subexpressions (HSS) can be formed by exploiting 
identical shifts between an HCS and a nonzero bit or between 
two HCS, which will eliminate redundant computations of 
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HCS. While implementing multiplication using shifts and adds, 
if we could perform addition prior to shift, the adder width can 
be minimized. Note that in CSE implementations, the adders 
employed for CS have shorter widths since the shift operations 
for obtaining the final partial products are performed after the 
addition at the CS stage. In the proposed horizontal 
super-subexpression elimination (HSSE) method, shift 
operations are performed after additions at two stages - first at 
the HCS stage and then at the HSS stage. Therefore the adders 
at these two stages have shorter adder widths. Utilizing this 
fact, we shall now show that considerable reduction of FA’s is 
possible by forming HSS from HCS using the HSSE method.  
 

A. The HSSE Method 
The HSSE procedure is as follows. First, the 2-bit HCS are 

extracted from the coefficient set represented in CSD. These 
HCS are then examined for multiple occurrences of identical 
shifts with a nonzero bit or with another HCS within the same 
coefficient to form 3-bit and 4-bit HSS respectively. Consider 
the example in Fig. 4, where HCS are given by (7). Note that 
following multiple bit patterns can be formed: 

1) The HCS [101] and –1 with a shift of one unit between 
them (indicated by the connecting line, ‘a’) that occur within 
the coefficient to form a 3-bit HSS, [1 0 1 0 -1]: )0(h
                                                               (20)         4124 >>−= xxx                            

                                   

                              

      
2) The HCS [101] and [10-1] with two shift units between 

them (indicated by the connecting line, ‘b’) that occur within 
the coefficient  to form a 4-bit HSS, [1 0 1 0 0 1 0 -1]: )0(h

                             (21)      
3) The HCS [–101] and [101] with one shift unit between 

5325 >>+= xxx

them (indicated by the connecting line, ‘c’) that occur within 
the coefficient  to form a 4-bit HSS, [-1 0 1 0 1 0 1]: )1(h
                                                             (22)      4236 >>+−= xxx  

It may be noted that several HSS in ‘shifted and delayed’ 
forms of (20), (21), and (22) occur in the coefficient set. For 
instance, consider the HSS, [1 0 1 0 0 1 0 -1], given by  (21). 
The outputs corresponding to  that occur in the coefficients, 

 and  are given by  and 
 respectively.  Thus the output expression can be 

obtained from  by simple shift and delay operations. Note 
that no extra adders are required to compute this expression. 
However the HCSE method would require an extra adder for 
each subexpression.  

5x

5x
),2(),0( hh )3(h ,2]2[ ,8 55 >>−>> xx

9]3[5 >>−x

5x

We observe that several HSS exist in LPFIR filters, 
especially in the case where the number of taps is large and the 
bit precision of implementation is higher (16-bit and higher). 
We have investigated several examples of LPFIR filters with 
taps ranging from 100 to 1200 corresponding to different 
stop-band attenuation specifications. The infinite-precision 
filter coefficients were generated by the Parks-McClellan FIR 
filter design program provided by the MATLAB® “remez” 
function. Filter coefficients represented in CSD form for 
different wordlengths of 16-bits, 20-bits and 24-bits were 
considered. From the extensive examples we worked out, it has 
been observed that among the possible HSS, the 3-bit 

expressions [1 0 1 0 1], [1 0 1 0 –1], [-1 0 1 0 1], [-1 0 1 0 –1] 
and their negated versions are the most common HSS. 
Statistically, these 3-bit expressions form around 70% of all the 
possible HSS. Hence they account for the major reduction of 
adders in the proposed method. Employing the HSS (20), (21), 
and (22), the output of the filter whose coefficients given in 
Fig. 4 can be expressed as 

+>>−+>>−+>>−+>>+>> 12]1[4]1[2]1[81 46154 xxxxx  
+>>−+>>−+>>−+>>− 9]3[1]3[13]2[2]2[ 5635 xxxx  
+>>−+>>−+>>−+>>− 13]5[2]5[9]4[1]4[ 3556 xxxx  
+>>−+>>−+>>−+>>− 1]7[12]6[4]6[2]6[ 4461 xxxx  

8]7[5 >>−x                                                                   (23) 
Fig. 9 shows the filter structure using the HSSE method. 

Note that only seventeen adders (10 MBA and 7 SA) are 
required to implement the filter, two for HCS (7), three for HSS 
(20-22), and twelve for the filter output (23). It may be noted 
that though seventeen additions are present in  (23), using 
symmetry of LPFIR filters, only twelve adders are sufficient to 
compute the sum as shown in Fig. 9. This is because, the 
outputs of adders, A  and  can be shared by 
respective symmetric filter tap pairs as shown in Fig. 9. Note 
that the sharing of symmetric parts is shown in Fig. 9 using the 
symbol ‘@’. Thus, by sharing, we can save one adder each 
corresponding to  and two adders corresponding to 

 and  (sharing the output of  results saving of two 
adders,  and  Thus the total saving due to sharing is 
five adders.   Hence only twelve adders are required to obtain 
(23). Therefore, the HSSE implementation requires four adders 
less than the HCSE implementation. The adder-steps required 
to compute the partial products in the proposed method is four, 
which is the same as that of the HCSE method. Thus, both 
methods have identical critical paths of four adder-steps. 

,,, 986 AA

,, 1096 A

10A

, AA

7A 8A 8A
7A ).8A

 

B. Full Adder Requirements 
The number of full adders required to compute the partial 

products of the filter in Fig. 9 can be determined using (12) and 
(15) for odd and even number of operands respectively. Ten 
adders (  to ) are required to compute the partial 
products. Note that the adders  and  that compute 
the HSS part have relatively short adder-width when compared 
to other adders in subsequent stages. This is because the use of 
HSS adders allows us to perform most of the ‘right shift’ 
operations after addition, which is more efficient than the usual 
‘shift and add’ method. As a result, fewer FA’s are required to 
compute the partial products. Thus, using the HSSE method, 
only 253 FA’s are required to compute the partial products of 
the MBAs of the LPFIR filter in Fig. 4. This is a reduction of 
32.7% over the HCSE method. Design examples of 
implementing channel filters of a wideband receiver using the 
HSSE method is discussed in section 6. 

1A 10A
,, 43 AA ,5A

 

IV. OPTIMIZATION OF VCSE METHOD 
In the VCSE method [8], the fact that many vertical common 
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subexpressions (VCS) exist in an LPFIR filter since the 
adjacent coefficients have similar patterns in the MSB part is 
utilized for reducing adders. In this section, we show that the 
SS technique used for optimizing the HCSE method can also be 
applied to the VCSE method.  

Consider an 8-tap LPFIR filter whose coefficients in 16-bit 
CSD form are shown in Fig. 10. In this case, 

(considering symmetric half coefficients) and .22=bN 8=N  
Using (6), twenty-five adders would be required to implement 
the filter if VCSE is not used. The VCS, [1 -1] and [1 1], 
encircled in Fig. 10 are given by: 
                  and                (24) ]1[112 −−= xxx ]1[113 −+= xxx
Using these VCS, eighteen adders (12 MBA and 6 SA) are 
required to implement the filter, two for the VCS (24) and 
sixteen for the output. This offers a reduction of 28% over the 
direct implementation without VCSE. 
 

A. Proposed VSSE Method 
The 2-bit VCS used in VCSE method can be extended to 

obtain several 3-bit and 4-bit Vertical Super-Subexpressions 
(VSS) by exploiting identical shifts between a VCS and a 
nonzero bit or between two VCS. Consider the example in Fig. 
10, where VCS are given by (24). The following multiple bit 
patterns can be combined: 

1) The VCS [1 –1] and [-1 1], with a shift between them 
(indicated by connecting line ‘a’) that occur across the 

coefficients, [ , ] to form a 4-bit VSS,  )0(h )1(h :
1   0  1
1-  0  1  
⎥
⎦

⎤
⎢
⎣

⎡
−

                                                       (25) 2224 >>−= xxx
 2) The two VCS [1 1], with a shift between them (indicated 

by connecting line ‘b’) that occur across the coefficients, 

[ , ] to form a 4-bit VSS, :  )0(h )1(h
1  0  1
1  0  1
⎥
⎦

⎤
⎢
⎣

⎡

                                                          (26) 2335 >>+= xxx
Note that several VSS in ‘shifted and delayed’ forms of (25) 

and (26) occur in the coefficient set. Employing the VSS, the 
output of the filter in Fig. 10 can be expressed as 

13]2[4]2[9]1[145 44554 >>−+>>−+>>−+>>+>> xxxxx  
+>>−−>>−+>>−+>>− 4]4[1]4[11]3[1]3[ 4111 xxxx  

+>>−−>>−+>>−−>>− 5]6[9]5[13]4[11]4[ 4541 xxxx  
14]6[5 >>−x                                                                  (27) 

The filter structure using the VSSE method is shown in Fig. 
11. Only fifteen adders are required to implement this filter, 
two for VCS (24), one each for VSS (25) and (26), and eleven 
for the filter output (27) after using the symmetry of 
coefficients. Thus the VSSE method offers better reduction 
than the VCSE method. The adder-steps in both methods are 
identical (four) and hence their critical paths are the same. The 
reduction of FA’s,  offered by the VSSE method over the 
VCSE method can be determined using the formula: 

,RFA

                                   (28) )()(
1

)(
1

iSSDiSCSFA
n

j
j

m

i
R −∑∑=

==

where  is the span of a VSS,  is the span of the shift 
differential between the VCS of a VSS, m  is the number of 
distinct VSS in the symmetric half coefficient set, and  is the 
total number of VSS for each distinct VSS set.  

SCS SSD

n

We illustrate this using the coefficients of the filter in Fig. 

10. Consider the VSS,  and  across the 

coefficients, and  If the wordlength of  is 16 bits, 
then these VSS have spans  and 

,
1   0  1
1-  0  1  
⎥
⎦

⎤
⎢
⎣

⎡
−

,
1  0  1
1  0  1
⎥
⎦

⎤
⎢
⎣

⎡

)0(h ).1(h 1x
23716 =+ 321616 =+  

respectively. The spans of the VSS,  across  and  
is 

,5x )1(h )2(h
271116 =+  and that of  across  and  are 4x )2(h )3(h

22616 =+  and .311516 =+  Thus, the sum of spans is 135. 
The spans of the shift differentials (SSD) of the VSS,  and 

 are 18 each. Using (28), it can be found that the proposed 
VSSE method requires 99 FA’s fewer than the VCSE method, 
which is a reduction of 31%.  

4x
,5x

 

B. Compatibility Issue in Vertical Subexpression Methods 
An inherent drawback of the VCSE method is that the 

symmetry of LPFIR filter coefficients cannot be completely 
exploited for efficient implementation of the filter. In the case 
of HCSE method, since all the bits forming an HCS exist within 
the coefficient, its symmetric counter- part can be easily 
implemented using delays and structural adders. Thus extra 
adders (MBA) are not required to compute the symmetric half 
coefficients when HCSE method is used. However, the bits that 
form a VCS in VCSE method occur across the coefficients and 
hence the symmetry is destroyed when the bits are of opposite 
sign [4].  Hence in VCSE implementations, extra adders are 
required to obtain the symmetric part of the coefficients when 
more than one VCS with bits of opposite sign exist. Since the 
basic ideas of VCSE and VSSE methods are the same, the 
limitation inherent in the former exists in the latter also. 
Therefore, compatible VCS patterns have to be identified to 
form a VSS. Two VCS (4-bit VSS) or a VCS and a nonzero bit 
(3-bit VSS) are said to be compatible to form a VSS if its 
symmetry is not affected, i.e., no extra adders are required to 
compute the symmetrical part of the LPFIR filter. The signs of 
the bits in VCS determine the compatibility. We use the 
notation,  to represent ‘sign of bit ‘b’ in defining 
compatibility. 

),(bs

Definition 7 (Compatible 4-bit VSS): Let  and  

represent the VCS that form a VSS. These VCS are compatible 
if one of the following conditions is satisfied: 

⎥
⎦

⎤
⎢
⎣

⎡

1

0
b
b

⎥
⎦

⎤
⎢
⎣

⎡

3

2
b
b

                      (a) )()( 20 bsbs =  and  ).()( 31 bsbs =
   (b) )()( 20 bsbs ≠  and   ).()( 31 bsbs ≠

Fig. 12(a) and Fig. 12(b) illustrate compatible 4-bit VSS 
corresponding to conditions (a) and (b) respectively. The 
negated versions of these bit patterns are also compatible. Note 
that VCS, whose bits are related with delays up to two units, 
i.e., ],2[11 −± xx  are considered to form VCS in this proposed 
method. 
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Definition 8 (Compatible 3-bit VSS): Consider the VCS, 

 A 3-bit VSS can be formed by combining this VCS and a 

third bit,  In this case, the necessary conditions for 
compatibility are:  

.0

1

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

b

b

.2b

(a)  must have a unity delay relation with respect to  
and  and   

2b 0b
,1b

(b)   ).()( 10 bsbs =
Fig. 12(c) illustrates 3-bit compatible VSS patterns. Note that 
the bit ‘1’ which is combined with the VCS 101 can be 
anywhere in the second row. The notation ‘x’ denotes “don’t 
cares” since the bits in these locations will not affect the 
compatibility of VSS. Any VSS that does not satisfy the 
conditions mentioned above is incompatible. 

We investigated the same examples of LPFIR filters 
designed using Parks-McClellan method discussed in previous 
section. CSD coefficients of wordlengths 8-bits, 12-bits, 
14-bits and 16-bits were considered. It has been observed that 
the most common VSS are the 3-bit VSS that form around 60% 
of all the VSS and hence they account for the major reduction 
of adders in the VSSE method. Design examples of the HSSE 
and VSSE methods are provided in section 6. 
 

V. EXTENSION OF CSE TO HIGH LEVEL SYHTHESIS 

A. High Level Synthesis Transformation 
In high level synthesis, the primary goal of transformations 

has been to optimize the ASIC design to reduce cost metrics 
(area and power) while meeting throughput constraints [11]. 
The high level synthesis literature has an extensive coverage of 
CSE as a powerful transformation to reduce power 
consumption and area [2], [12]-[14]. Iqbal et al. [12] used CSE 
within their algebraic speed-up procedure for throughput 
improvement. The objective function in [12] was to reduce the 
critical path. The approaches in [2], [13] and [14] focused on a 
more apparent goal of reducing the number of operations, and 
therefore, area and power of designs. The significant 
advancement for the transformation using CSE was achieved 
by Potkonjak et al. in [13], [14]. They first formulated the 
MCM problem in high level synthesis by considering the 
multiplications of one variable with several constants at a time 
and also reduced the number of shifts and additions based on an 
iterative pairwise matching. Mehendale et al. [2] considered the 
CSE problem by examining the filter coefficient matrix and the 
iterative elimination of the most frequently occurring common 
subexpressions.  

In general, the high level synthesis tasks of the methods in 
[2], [13] and [14] are based on elimination of 2 nonzero-bit 
common subexpressions as shown in Fig. 13 (a). The operands, 
a, b, c, and d in Fig. 13 (a) represent the input signal of the filter 
and its shifted versions. The sums, e and f, are the common 
subexpressions that are shared for minimizing adders and 

 represent the shifts. Note that four adders are 
required to obtain the final expressions, h and i. Fig. 13 (b) 

illustrates our super-subexpression method, where the 
super-subexpression g is shared for further reduction of adders 
to obtain h and i using appropriate shifts. Note that only three 
adders are required using our method. Thus, by employing the 
new transformation (super-subexpression), our method 
improves the efficiency of CSE in high level synthesis and 
offers a more power efficient solution by reducing the number 
of operations (additions).  

4321 ,,, ssss

 

B. Area and Power Reduction 
In CMOS technology, there are three sources of power 

dissipation arising from: switching (dynamic) currents, 
short-circuit currents, and leakage currents. Among these 
parameters, the switching component, which is a function of 
the effective capacitance, plays the most significant role [15]. It 
is possible to reduce power by employing transformations such 
as reductions in critical path, number of operations and average 
transition activity. These transformations result in architectures 
that minimize the effective capacitance of the circuit [15]. The 
basic motivation behind critical path reduction is that the 
supply voltage can be lowered while keeping the throughput 
fixed. It can be noted from the design examples of previous 
sections that the tree-structured (parallel) addition (shown in 
Fig. 5) adopted in our method results in considerable reduction 
of critical path. Moreover, when compared with a chain (serial) 
implementation, the signal paths are more balanced in a tree 
implementation and the amount of extra transitions is reduced. 
For example, the capacitance switched for a chained 
implementation is a factor of 1.5 larger than the tree 
implementation for a four input addition [15]. Thus, the filter 
structure used in our method is efficient in terms of critical path 
length and transition activity. Having optimized these two 
parameters, the most obvious approach for capacitance 
reduction is to reduce the number of operations (and hence the 
number of switching events) in the data control flow graph. The 
super-subexpression elimination methods proposed in this 
paper is an efficient transformation that directly reduces the 
number of operations through the reduction of FA’s required 
for each adder.  

We illustrate the area reduction achieved in our method using 
the example of the 8-tap filter coefficients in Fig. 4. The area is 
computed in terms of full adder area, based on Synopsys 
0.35-micron library. In terms of gate equivalents, 1 full adder = 
7 gates (Note that the basic gate is NAND gate). Note that 376 
FA’s are required to implement the MB using HCSE method. 
As 1 full adder area = 14.46 units, it requires 

96.543646.14376 =×  units (area) to implement the MB of the 
filter coefficients in Fig. 4 using HCSE. On the other hand, our 
HSSE method needs only 253 FA’s, which is equivalent to 
3658.38 units for the MB. The higher reduction of FA’s 
achieved using our method in the case of channel filters (that 
possess large number of taps) employed in wideband receivers 
significantly reduces the cost metrics, area and power. 
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VI. DESIGN EXAMPLES 
The channel filters of a wideband receiver that operate in the 

intermediate frequency (IF) have large number of taps due to 
their narrow transition band and high sampling frequency 
requirements. Therefore, the CSE optimization methods 
proposed in this paper offers considerable complexity 
reduction when used to implement the channel filters. We 
present examples of implementing channel filters for the 
D-AMPS and the PDC cellular standards using the HSSE and 
VSSE methods. The proposed optimization methods are 
compared with conventional 2-bit CSE techniques and 
reductions of FA’s are determined. Based on the simulation 
results obtained for filters with different wordlengths, certain 
guidelines on the choice of HSSE and VSSE methods are also 
drawn. 

Example 1: We consider the LPFIR filters employed in the 
filter bank channelizer of the Digital Advanced Mobile Phone 
System (D-AMPS) in [16]. The filter bank structure in Fig. 2 is 
used. Note that decimation by N is moved to the left of the 
bandpass filters using the noble identity and the sampling rate 
chosen is 34.02 MHz as in [16]. The channel filters extract 30 
kHz D-AMPS channels from the input signal after 
downsampling by a factor of 350. The pass-band and stop-band 
edges are 30 kHz and 30.5 kHz respectively. The peak 
pass-band ripple specification is chosen as 0.1 dB. The filter 
stop-band specifications at different frequencies are chosen as 
in the D-AMPS standard [17]. The lengths of the LPFIR filters 
required to meet these specifications are determined using [18] 

                   1
6.14

13log10 2110 +
∆

−−
=

f
N δδ                      (29) 

where 1δ  and 2δ  represent the passband and stopband ripples, 
and  is the normalized width of the transition region. We 
applied the proposed HSSE and VSSE methods to implement 
the filters using 12-bit and 16-bit CSD coefficients. The 3-bit 
and the 4-bit SS formed from the 2-bit CS are utilized for 
optimization. Table I shows a comparison of the number of 
adders for computing the Partial Products (PP adders) required 
for implementing the filters using conventional HCSE and 
VCSE methods and the proposed methods. 

f∆

We compare the reduction rates of HCSE, VCSE, HSSE, and 
VSSE methods with respect to conventional CSD 
implementation without using any CS methods. The 
comparison of reduction rates of adders achieved using 
proposed methods and that of CSE methods for 12-bit and 
16-bit wordlengths are shown in Tables II and III respectively. 

It can be observed that the VSSE method offers a better 
reduction rate over the HSSE method when the bit precision of 
implementation is lower (12-bit). The VSSE technique offers 
an average reduction of 39.9% for the 12-bit implementation 
whereas an average reduction of 43.7% is achieved using the 
HSSE technique for the 16-bit implementation. Note that both 
methods require fewer PP adders than the 2-nonzero-bit CSE 
methods. The number of FA’s required for implementation is 
shown in Table IV. The reduction rates of FA’s achieved using 
VSSE and HSSE methods over 12-bit and 16-bit CSD 
implementations without using subexpressions are shown in 
Tables V and VI respectively. Both HSSE and VSSE methods 

results in significant reduction of FA’s when compared to 
HCSE and VCSE methods. In the case of implementation using 
12-bit, the VSSE method offers the best reduction (47.2%), 
whereas the reduction offered by the HSSE method is the best 
(54.2%) for the 16-bit case. 

The reduction achieved when the proposed methods are used 
to employ the D-AMPS channelizer where extraction of each 
channel requires a separate narrowband filter is examined. The 
wideband signal considered for channelization consists of 1134 
D-AMPS channels, each of 30 kHz spacing. We analyzed the 
requirement of PP adders to implement the filters for extracting 
70, 141, 283, 567, and 1134 channels. The number of filter taps 
chosen is 1180 and the coefficient wordlength considered is 16 
bits to meet the requirement of attenuating blockers that can be 
potentially 96 dB stronger than the wanted signal. Simulation 
results shown in Fig. 14 depict the adder reductions achieved 
using our proposed methods as a function of the number of 
extracted channels. The percent reductions are shown with 
respect to conventional implementation without using any CSE 
methods. Both the HSSE and VSSE methods offer considerable 
hardware reduction and also result in better rate of change in 
hardware reduction as the number of channels increases 
compared to the CSE methods. 

Example 2: In this example, we consider the channel filters 
employed in receivers for the PDC standard. The sampling rate 
of the wideband signal is 25.6 MHz, which covers 1024 
channels of 25 kHz spacing. We fix the filter length as 1000 to 
meet the maximum attenuation requirement of –90 dB and 
24-bit coefficients are considered. The number of PP adders 
required to implement the filter is shown in Table VII. The 
requirement of FA’s are also shown in Table VII, which shows 
that the proposed HSSE and VSSE methods offer a minimum 
reduction of 20% over the CSE methods. 

Based on the simulation results, the following guidelines for 
choosing the best implementation method can be formulated: 

1) As in the case of VCSE method, the coefficient symmetry 
of LPFIR filters cannot be completely exploited in VSSE 
method. Hence the proposed VSSE method offers better 
hardware reduction over the HSSE method only when the bit 
precision of implementation is lower. For larger wordlength 
implementations, the spans of the operands are also larger and 
hence the HSSE method results in better reduction of adders. 

2) For the 12-bit implementation, the VSSE method results 
in an average FA reduction of 20% over the VCSE method, 
whereas for wordlengths of 16-bit and higher, the HSSE 
method offers an average reduction of 25% over the HCSE 
method. 
 

VII. CONCLUSIONS 
In this paper, we have proposed two techniques for 

optimizing the CSE methods to efficiently implement 
low-complexity LPFIR filters. They are based on the extension 
of conventional 2-nonzero-bit HCS to form 3-nonzero-bit and 
4-nonzero-bit HSS by exploiting identical shifts between an 
HCS and a nonzero bit, or between two HCS. These HSS 
eliminate redundant computations of HCS and hence reduce the 
number of adders. We have also applied the optimization 
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technique to the VCSE method and formulated the VSSE 
algorithm. Furthermore, the complexities of adders are 
analyzed and expressions for determining the number of FA’s 
required for each adder in a filter are derived. The experimental 
results show that considerable reduction of FA’s can be 
achieved using proposed methods. Certain guidelines on the 
choice of HSSE and VSSE methods are also provided. We have 
applied the proposed methods to filter bank channelizers, 
where common CS that occur among a bank of filters are 
utilized. The design examples of channelizers based on 
D-AMPS and PDC cellular standards show that the 
optimization techniques presented in this paper offers an 
average reduction rate of 50% over conventional channel filter 
implementations.  
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Fig. 1. FIR filter implementation using HCSE. 
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Fig. 2. Filter bank channelizer of an SDR receiver. 
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Fig. 3. CSE implementation of channel filters in a filter bank channelizer. 
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Fig. 4. HCS and HSS in an 8-tap linear phase FIR filter coefficients. 
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Fig. 5. Tree structure used for addition of partial products in the multiplier block. 
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                                (a) Implementation without full adder optimization.        (b) Minimum full adder implementation. 
 

Fig. 6. Optimization of addition sequences (Odd number of operands). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

         Fig. 7. Implementation of filter tap for odd number of operands. 
 
 
 
 
 
 
 
 
 
 
 
 
                                        (a) Minimum full adder implementation                      (b) Minimum adder-step implementation         
                                       resulting in maximum adder-step.                                 requiring additional full adders. 
                                            

                   Fig. 8. Optimization of addition sequences (Even number of operands).  
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Fig. 9. Proposed filter structure using horizontal super-subexpressions of Fig. 4. 
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Fig. 10. VCS and VSS in an 8-tap linear phase FIR filter coefficients. 

 
 
 
 
 
 

1x  

2x  

3x  

⊕  - 1A   2A

D 

⊕  

D 

4x  

⊕  
2 

- ⊕  

2 

3A  4A  

Critical path = 
4 adder-steps 

 
 
 
 
 
 
 
 
 



Paper No. 1386  
 

14

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Proposed filter structure using vertical super-subexpressions of Fig. 10. 
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                                                                  (a) 4-bit VSS: case a                                                 (b) 4-bit VSS: case b 
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(c) 3-bit VSS 
 

Fig. 12. Compatible vertical super-subexpressions. 
 
 
 
 

⊕  

⊕  

h 

a b 

e 
 

⊕  

c d 

⊕  

f  3s

4s  

i 

2s  

1s
⊕  

a b 

e 

1s  

⊕  
f 

h

⊕  
g 

4s  2s  

3s  

i 

c d  
 
 
 
 
 
 



Paper No. 1386  
 

15

 
 
 
 
 
 
 
                                  (a) Conventional 2-bit CSE.                                                    (b) Proposed 3-bit/4-bit SSE. 
 
                                           Fig. 13. Subexpression sharing as a high level synthesis transformation. 

 
 
 
 

Table I Number of PP adders required to implement the filter in example 1 
 

PSR 
(dB) 

Filter length 
(N) 

CSD 
 

VCSE [8] Proposed 
VSSE 

HCSE [3] Proposed 
HSSE 

  12 bit 16 bit 12 bit 16 bit 12 bit 16 
bit 

12 
bit 

16 
bit 

12 
bit 

16 
bit 

-48 260 318 404 226 310 204 267 240 290 220 258 
-65 610 740 856 520 640 466 556 560 586 507 512 
-85 940 1010 1280 675 910 590 772 745 818 664 679 
-96 1180 1138 1480 736 1040 622 847 820 896 712 714 

 
 
 
 

 
Table II Reduction of PP adders in example 1 over 12-bit CSD implementation. 

 
Filter 

length (N) 
Reduction of adders over conventional 12-bit CSD implementation (%) 

 VCSE [8] Proposed VSSE HCSE [3] Proposed HSSE 
260 28.9 35.8 24.5 30.8 
610 29.7 37 25 31.5 
940 33.2 41.6 26.2 34.3 

1180 35.3 45.3 27.9 37.4 
Average 
reduction 

 
31.8 

 
39.9 

 
25.9 

 
33.5 

 
 
 

Table III Reduction of PP adders in example 1 over 16-bit CSD implementation. 
 

Filter 
length (N) 

Reduction of adders over conventional 16-bit CSD implementation (%) 

 VCSE [8] Proposed VSSE HCSE [3] Proposed HSSE 
260 23.3 33.9 28.2 36.1 
610 25.2 35 31.5 40 
940 28.9 39.6 36.1 46.9 

1180 29.7 42.8 39.4 51.8 
Average reduction  

26.8 
 

37.8 
 

33.8 
 

43.7 
 
 
 

Table IV Number of full adders required to implement the filter in example 1. 
 

PSR 
(dB) 

Filter 
length 

(N) 

VCSE [8] Proposed VSSE HCSE [3] 
 

Proposed 
HSSE 
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  12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 
-48 260 3729 6200 3170 5140 3840 5560 3380 4710 

-65 610 8730 12928 7250 10600 9072 11376 7892 8600 
-85 940 10125 18746 8106 14809 12218 16121 10385 12090 
-96 1180 11040 21632 8680 16660 13776 17740 11298 13042 

 
 
 

Table V Reduction of FA’s in example 1 achieved using vertical subexpression techniques 
 

Reduction of full adders using vertical subexpression techniques over CSD 
implementation (%) 

 

Filter length (N) 

12-bit 16-bit 
 VCSE [8] Proposed VSSE VCSE [8] Proposed VSSE 

260 26.1 41.1 27.7 44.8 
610 28 44.9 29.2 47.2 
940 30.1 50 31.1 52.1 

1180 31.4 52.8 33.8 56.7 
Average reduction  

28.9 
 

47.2 
 

30.45 
 

50.2 
 

 
 
 

Table VI Reduction of FA’s in example 1 achieved using horizontal subexpression techniques 

Reduction of full adders using horizontal subexpression techniques over CSD 
implementation (%) 

 

Filter length (N) 

12-bit 16-bit 
 HCSE [3] Proposed HSSE HCSE [3] Proposed HSSE 

260 22.8 34.7 26.9 42.2 
610 24.9 37.8 29.8 54.2 
940 26.2 41.2 33.2 58.2 

1180 28.1 46 35.6 62.1 
Average reduction  

25.5 
 

39.9 
 

31.4 
 

54.2 

35ed
uc
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Fig. 14. Reduction of adders to implement the D-AMPS channel filters 
in design example 1 for different number of channels extracted. 

 
 
 
 

Table VII Number of PP adders required to implement the channel filter for the  
PDC standard in example 2 

 
  Vertical subexpression (12-bit) Horizontal subexpression (16-bit) 

 VCSE [8] Proposed VSSE HCSE [3] Proposed HSSE 
Adders 696 610 852 746 
Adder reduction 
(%) 

30.6 39.1 33.8 42 

Full adders 10600 7488 17260 11180 
Full adder 
reduction (%) 

30.7 50.9 35.2 58 
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