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Abstract 

 

New power electronics devices like Fundamental Frequency Front Ends (F3E) reduce 

procurement costs by eliminating or reducing the intermediate capacitors usually found 

on the DC-side of modern rectifier-inverter combinations. This cost-saving measure, 

however, eliminates the quasi-decoupling of rectifier and inverter; whereas interactions 

between rectifier and inverter could be neglected in most applications. These 

interactions  are relevant to the correct function and operation of the whole application 

in case of reduced intermediate capacitors. Without the decoupling of rectifier and 

inverter, the inverter input currents will be passed on to the rectifier, and ultimately, will 

be discernible on the power grid. As a result, the input currents of the appliance will 

deviate greatly from the idealised sinusoidal waveform. To reduce this effect, an input 

filter is used, which in turn might interact with other power electronics devices 

connected to the same power grid. 

To date, the scope of the rectifier inverter and the F3E third-party equipment 

interactions has not been sufficiently investigated. An examination with real devices is 

impractical due to the wide range of configurations possible and the potential harm to 

the equipment itself. In this study, the simulation models of the devices involved and 

the power grid connecting different appliances were developed. A theoretical analysis to 

identify possible areas of impaired or disturbed operation was undertaken. The areas 

identified were then analysed using the computer models developed. The simulation 

results, electrical currents, and voltages were examined with regards to their absolute 

values and their degree of deviation from the idealised sinusoidal form. Their harmonic 

spectra were likewise analysed. Finally, areas of disturbed operation and the conditions 

under which they occur were identified. This study, therefore, will provide the basis for 

the successive elimination of these areas of disturbed operation. 
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