Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A NETWORK TOPOLOGICAL APPROACH to CURRENCY CASCADES

A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy in Finance

Michael John Naylor

Massey University

New Zealand

2006

Abstract

The stability of international financial markets is an important issue for academics and policymakers. Crises in currency markets have become increasingly common with the 1990s in particular experiencing major episodes of currency turmoil. The causation and frequency of these crises is a puzzle, especially for semi-free-floating currencies.

In this thesis recent currency crises are introduced and examined. Theories and methodologies which evolved in complexity and network sciences are then shown to have analogies to currency crises and to offer insights for finance. Common factors of recent currency crises are shown to be explainable using complexity and network sciences, and that price determinant influences exhibit characteristics of a complex network. An alternative approach to currency crises based on binary choices using an agent-based model in an explicit topological sparsely clustered network is proposed. This is shown to be capable of generating complex dynamics, including cascades.

A proxy topology of currency influences is then extracted from the international foreign exchange price matrix and shown to exhibit a robust taxonomy. This topology is then subjected to cascade simulation analysis. The results show that node threshold values and the density of external links are the key parameters in terms of cascade propagation. It is thus shown that a simple parsimonious model of trader interaction within a foreign exchange network can produce dynamics which are complex and contingent, and match the proposed stylised facts of currency crises. Policy issues flowing from these findings are discussed. The results increase our understanding of price dynamics in financial markets.

Acknowledgements

I would like to begin by thanking my wife, Judith, for her patience, kindness and endless support throughout the long period this thesis took. This thesis is dedicated to her. I would also like to thank my children, Sean and Caitlin, for their patience in accepting that I was not going to play with them yet again. I would also like to thank my parents, Peter and Joan, for their continued support and encouragement.

I am indebted and thankful to Professor Lawrence Rose, Professor Anne de Bruin and Dr Brendan Moyle for their excellent supervision, guidance, insight and encouragement during the ups and downs of this research.

I would like to thank Professor Chris Moore for his understanding and the Department of Finance's financial support. I would also like to thank Maryke Bublitz, Fong Mee Chin and other members of the Departments of Finance, Banking & Property and of the Department of Commerce for their ever cheerful help. I would like to thank Dr Jonathan Marshall for coming to the rescue with programming support at a critical moment, and Prof Nigel French for his useful insights and advice on disease contagion and programming. I would like to thank Karen Stanley for graciously proofreading this thesis. I would also like to thank the examiners for taking the time to examine this thesis.

Table of Contents

Abst	ract		i
Ackr	nowledgen	nents	ii
List o	of Figures		viii
List o	of Tables		x
Chaj	pter One	Introduction	1
1.1	Internat	ional financial market stability	1
1.2	The Res	search Question	2
1.3	The An	ticipated Contribution	3
Chap	oter Two	Modelling Currency Crises	4
2.1	Introduc	ction	4
	2.1.1	Overview of crisis models	4
	2.1.2	Developing trader behavioural rules	5
2.2	Macroe	conomic Feedback Models	7
	2.2.1	Basics	7
	2.2.2	First generation models	7
	2.2.3	Second generation models	8
	2.2.4	Problems with the first two generations of models	10
	2.2.5	Third generation models	10
	2.2.6	General criticisms of macro-feedback models	11
2.3	Liquidit	ty and Bank Run Models	12
2.4	Micro S	Structure Models	13
	2.4.1	Behavioural finance models	13
	2.4.2	Positive and negative feedback models	14
	2.4.3	Rational bubble models	14
	244	Information flow models	15

2.5	Applica	tion of these Models to the Asian Crisis	17
	2.5.1	The wider Asian crisis	17
	2.5.2	The twin banking/currency crisis	18
	2.5.3	Empirical Research	19
2.6	Conclus	sion	20
Chapt	ter Three	e An Alternative Approach	24
3.1	Introduc	tion	24
3.2	Theoret	ical Issues	25
	3.2.1	Theoretical foundations	25
	3.2.2	The power-law distribution	27
3.3	The Stal	bility of Network Systems	30
	3.3.1	Basics	30
	3.3.2	Cascading failure	31
	3.3.3	Contagious disease models	33
	3.3.4	Physical science contagion models	34
	3.3.5	The dynamics properties of cascades in random networks	37
	3.3.6	Node centrality and importance	40
3.4	Currenc	y Crises : A Network Approach	42
	3.4.1	Price dynamics in foreign exchange markets	41
	3.4.2	Trader behavioural assumptions	43
	3.4.3	Cascades in currency networks	45
	3.4.4	Theoretical assumptions of a bootstrap binary model	46
	3.4.5	Sequential agent behaviour in a single decision bootstrap model	49
	3.4.6	Cascade conditions	51
	3.4.7	A fractional decision model	53
	3.4.8	Sequencing	54
3.5	Conclus	sion	55
Chap	ter Four	Topological Methodology	57
4.1	Introduc	etion	57
	4.1.1	Overview	57

Chapt	er Five	Topological Analysis	68
4.3	Methodo	logical Summary	67
	4.2.5	Eigenvalue analysis	66
	4.2.4	Ln-ln diagrams	65
	4.2.3	Matrix network theory	62
	4.2.2	Hierarchical structure theory	59
	4.2.1	Econometric techniques	58
4.2	Methodo	logical Techniques	58
	4.1.2	Outline of methodological issues	57

5.1	Introdu	ction		68
5.2	Data Su	ummary		68
	5.2.1	Introduc	ction	68
	5.2.2	Exchang	ge rate data	69
	5.2.3	Trade d	ata	70
	5.2.4	FX turn	over data	70
5.3	Topolo	Topological Results		
	5.3.1	Hierarcl	hical structure theory	71
		5.3.1.1	Introduction	71
		5.3.1.2	NZD matrix	72
		5.3.1.3	USD matrix	76
		5.3.1.4	NZD crisis matrix	80
		5.3.1.5	USD crisis matrix	82
		5.3.1.6	Conclusion	83
	5.3.2	Matrix	network methods	84
		5.3.2.1	Introduction	84
		5.3.2.2	NZD 5 link matrix	84
		5.3.2.3	NZD dichotomised matrix	87
		5.3.2.4	USD dichotomised matrix	89
		5.3.2.5	NZD crisis matrix	92
		5.3.2.6	USD Crisis matrix	93
		5.3.2.7	Trade matrix	94
		5.3.2.8	Foreign exchange centre turnover	98

		5.3.2.9	Conclusion	98
	5.3.3	Eigenva	lue analysis	98
	5.3.4	Power-la	aws and 1/f noise in the MYR market	99
5.4	Creation	of a Prox	ky Topological Map	101
5.5	Conclus	ion		105
Chapt	ter Six	Simulat	ion Analysis	106
6.1	Method	ology		106
0.1	611	Introduc	tion	106
	612	Simulati	on Methodology	100
62	The Sim	ulation N	[ode]	107
6.3	Experim	ents with	Threshold Parameter Distributions	109
0.5	6.3.1	Results	from differing metric on parameters	109
		6.3.1.1	Introduction	109
		6.3.1.2	Normal Distribution	110
		6.3.1.3	Power-law Distribution	113
		6.3.1.4	Uniform Distribution	116
		6.3.1.5	Conclusion	117
	6.3.2	Analysis	s of how many cascades of a given size contain	
		a given i	node	119
		6.3.2.1	Introduction	119
		6.3.2.2	Normal Distribution	119
		6.3.2.3	Power-law Distribution	121
		6.3.2.4	Uniform Distribution	122
		6.3.2.5	Conclusion	122
	6.3.3	Thresho	ld experiment conclusion	123
6.4	Experim	nents with	Linkage Densities	124
	6.4.1	Introduc	ction	124
	6.4.2	Changin	ng internal cluster density	125
	6.4.3	Changin	g external cluster density	127
	6.4.4	Conclus	ions from changing linkage densities	128
6.5	Simulation Conclusions			129

Chapter Seven Conclusion

7.1	Overvi	iew	131
	7.1.1	Thesis objectives	131
	7.1.2	Thesis summary	131
7.2	Summa	ary of Results	133
7.3	Contril	butions	134
	7.3.1	Theoretical contribution	134
	7.3.2	Methodological contribution	134
	7.3.3	Empirical contribution	134
7.4	Theore	etical and Policy Implications	135
	7.4.1	Theoretical implications	135
	7.4.2	Policy implications	137
7.5	Model	Extensions and Future Work	141
Chaj	pter Four	r Appendix	144
Chapter Five Appendix			173
References			183

131

List of Figures

Figures in main body of text

Figure 3.1	Regular vs Random vs Clustered Networks	26
Figure 3.2	Power-law versus Normal Distributions	28
Figure 5.1	NZD based FX minimum spanning tree (1995-2001)	74
Figure 5.3	NZD based FX hierarchical tree of subdominant ultrametric	
	space (1995-2001)	76
Figure 5.4	USD based FX minimum spanning tree (1995-2001)	77
Figure 5.6	USD based FX hierarchical tree of subdominant ultrametric	
	space (1995-2001)	79
Figure 5.12	NZD network graph of binary 5 link distance matrix	85
Figure 5.14	NZD network graph of dichotomised distance matrix	88
Figure 5.17	USD network graph of dichotomised distance matrix	90
Figure 5.19	Crisis period NZD network graph of dichotomised	
	distance matrix	92
Figure 5.24	Network graph of dichotomised trade flows at 5%	95
Figure 5.26	Network graph of dichotomised trade flows at 10%	97
Figure 5.33	Derived International Financial Flows Network	102
Figure 5.34	Simulation Topological Map	104
Figure 6.7	Effect of varying distributions on threshold parameters	118

Figures in Appendices

Figure 5.2	ln-ln diagram of links in NZD MST graph	146
Figure 5.5	ln-In diagram on links in USD MST graph	146
Figure 5.7	Crisis period FX NZD-based minimum spanning tree (1997-98)	148
Figure 5.8	Crisis period FX NZD-based hierarchical tree of subdominant	
	ultrametric space (1997-98)	149
Figure 5.9	Crisis period FX USD-based minimum spanning tree (1997-98)	150
Figure 5.10	In-In plot of USD-based based crisis MST graph	151
Figure 5.11	Crisis period FX USD-based hierarchical tree of subdominant	
	ultrametric space (1997-98)	152

Figure 5.13	One-step ego-nets for selected currencies for NZD 5-link	
	distance matrix	153
Figure 5.15	In-In plot of NZD-based dichotomised distance matrix	154
Figure 5.16	One-step ego-nets for selected currencies for NZD	
	distance matrix	155
Figure 5.18	One-step ego-nets for selected currencies for USD	
	distance matrix	156
Figure 5.20	One-step ego-nets for selected currencies for NZD	
	crisis-period distance matrix	157
Figure 5.21	USD-based crisis period network graph of dichotomised	
	distance matrix	158
Figure 5.22	One-step ego-nets for selected currencies for USD	
	crisis-period distance matrix	159
Figure 5.23	In-In plot of countries ranked by export trade	161
Figure 5.25	One-step ego-nets of trade flows dichotomised at 5%	162
Figure 5.27	One-step ego-nets of trade flows dichotomised at 10%	163
Figure 5.28	In-In plot of trade links dichotomised at 5%	164
Figure 5.29	In-In plot of FX turnover by centre	166
Figure 5.30	Time plot of MYR/USD (1990-2001)	167
Figure 5.31	Normality comparison for MYR/USD (1990-1998)	168
Figure 5.32	MYR/USD daily change distribution tests	169
Figure 6.1	Frequency of cascades starting at a particular node	
	normal distribution ($\mu = 0.3$, $\sigma = 0.28$)	175
Figure 6.2	Cascade sizes for nodes - normal (0.4)	175
Figure 6.3	Frequency of cascades starting at a particular node	
	power-law distribution ($\rho = 1.5$)	177
Figure 6.4	Cascade sizes for nodes - power-law distribution ($\rho = 1.5$)	177
Figure 6.5	Frequency of cascades starting at a particular node	
	uniform distribution	179
Figure 6.6	Cascade sizes for nodes - uniform distribution	179
Figure 6.8	Frequency of cascades containing a particular node	
	normal (0.3) distribution	181
Figure 6.9	Frequency of cascades containing a particular node	
	power-law (1.5) distribution	181
Figure 6.10	Frequency of cascades containing a particular node	
	uniform distribution	182

Tables in main body of text

Table 5.8	MYR descriptive statistics (1993-2001)	100
Table 6.2	Normal distribution cascade statistics	111
Table 6.4	Power-law distribution cascade statistics	114
Table 6.6	Comparison for uniform, $N(0.4)$, PL (1.2) distributions	116
Table 6.8	Comparison of node inclusion in cascades	120
Table 6.9	Effects on global cascades of varying % internal links	125
Table 6.10	Effects on global cascades of varying % external links	127

Tables in Appendices

Table 5.1	Countries selected for exchange data	144
Table 5.2	NZD-based FX distance matrix (1995-2001)	145
Table 5.3	Crisis-period NZD-based FX distance matrix (1997-98)	147
Table 5.4	Matrix of export trade in country percentage terms	160
Table 5.5	Turnover of FX trading by centre	165
Table 5.6	Eigenvalue of covariances of NZD matrix	166
Table 5.7	Eigenvalue of covariances of USD matrix	167
Table 5.9	MYR/USD daily change distribution tests	170
Table 5.10	MYR/USD daily change distribution tests (restricted sample)	171
Table 5.11	Internal triad linkage density	172
Table 6.1	Simulation output for normal distribution ($\mu = 0.3$)	174
Table 6.3	Simulation output for power-law distribution ($\rho = 1.5$)	176
Table 6.5	Simulation output for uniform distribution	178
Table 6.7	Containing simulation output for normal (0.3) distribution	180