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Abstract

This thesis presents a theoretical study of ultra-cold gases in, or close to a Bose-
Einstein condensed phase. A system of two coupled Bose-Einstein condensates
shows strong resemblance to Josephson junctions, consisting of two supercon-
ductors linked via a thin insulating barrier. In these systems quantised ring
currents across the barrier (Josephson vortices) have been detected. We con-
centrate on similar macroscopic quantum states in our systems of linear and
annular coupled Bose-Einstein condensates, and test them towards their poten-
tial for showing macroscopic quantum tunnelling.

For the linear system we present a very detailed stability analysis of the station-
ary solutions, the vortex and the soliton, using Bogoliubov-de Gennes theory.
An analytic approximation of the unstable mode is provided. We show that the
transition between vortices rotating in opposite directions is possible and pro-
pose an effective potential separating these two states. For the annular system
of two coupled ring shaped condensates of different radii, we review the param-
eter regimes for finding vortices in the ground state. We show that pinning of
vortices via a repulsive external potential is possible and suggest further steps

towards the detection of macroscopic quantum tunnelling.
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