
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



A CFD MODELLING SYSTEM FOR 
AIR FLOW AND HEAT TRANSFER 

IN VENTILATED PACKING SYSTEMS 
DURING FORCED-AIR COOLING OF 

FRESH PRODUCE 

A thesis presented in partial fulfilment of the requirements for 
the Degree of Doctor of Philosophy in Food Engineering 

at Massey University 

Qian Zou 
M.AppSci.(Hons) 

2002 



Abstract 1 

ABSTRACT 

Forced-air cooling is the common method for precooling horticultural produce. 

Ventilated packaging systems are often used to facilitate cooling efficiency. A 

computational fluid dynamics (CFD) modelling system was developed to simulate 

airflow and heat transfer processes in the layered and bulk packaging systems during 

the forced-air cooling of fresh produce. 

Airflow and heat transfer models were developed using a porous media approach. The 

areas inside the packaging systems were categorised as solid, plain air, and produce­

air regions. The produce-air regions inside the bulk packages or between trays in the 

layered packages were treated as porous media, in which the volume-average transport 

equations were employed. This approach avoids dealing with the situation-specific 

and complex geometries inside the packaging systems, and therefore enables the 

development of a general modelling system suitable for a wide range of packaging 

designs and produce. 

The calculation domains were discretised with a block-structured mesh system that 

was referenced by global and local grid systems. The global grid system specifies the 

positions of individual packages in a stack, and the local grid system describes the 

structural details inside individual package. The solution methods for airflow and 

heat transfer models were based on SIMPLER (Semi-Implicit Method for Pressure­

Linked equations Revised) method schemes, and the systems of linear algebraic 

equations were solved with GMRES (Generalised Minimum Residual) method. 

A prototype software package CoolSimu was developed to implement the solution 

methods. The software package hid the core components (airflow and heat solvers) 

from user, so that the users without any knowledge of CFD and heat transfer can 

utilise the software to study cooling operations and package designs. The user 

interaction components in CoolSimu enable users to specify packaging systems and 

cooling conditions, control the simulation processes, and visualise the predicted 

airflow patterns and temperature profiles. 
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When the predicted and measured product centre temperatures were compared during 

the forced-air cooling of fresh fruit in several layered and bulk packaging systems, 

good agreements between the model predictions and experimental data were obtained. 

Overall, the developed CFD modelling system predicted airflow patterns and 

temperature profiles with satisfactory accuracy. 
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