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Mt. Ruapehu is Te Whare Toka o Paerangi (The HotiStone of Paerangi, N Rangi ancestor), Matua te
Mana (The Powerful One; “Mana” means prestige amdlering, spiritual power) in Ngi Rangi maori
culture. The Waikato-iti stream, in the Rang[pesert, is Te Onetapu (sacred place) whergtNgangi people
rise their “karakia” to the volcano, their ancestor



Dedicated to the Niji Rangi Iwi on behalf of all the indigenous comritigs living around active
volcanoes in the world, who constantly teach usiatiee unfolding of life, the dynamic
interdependence between people and the environarehtiow to integrate all sources of knowledge
to consciously and truly build sustainable commiaasit

He Ruruku: Mai ara ra!

Mai ara ra! Mai ara ra!
Mai ara ra te Tupua!
Mai ara ra te Tawhito!

Tenei au
Tenei au te rangahau ana, ki te ao, ki i@ p
Kia Ranginui e iho nei,
Kia Papatuinuku e takoto ake nei.

Mai ara ra, mai whea radku ahunga mai?
Tahuri whakataumaha, huri whakaima
E te Kzhui Maunga ko wai ra koe?

Ina, Matua Te Mana te aunahigiaata natahi
Pikimai Rawea te kai-kukume ake matua whewuaai

Te rongo nei ia i,
Te rongo nei ia iha me hukadtairango.
Tina, tina toko te manawa ora, he manawa ora!

Ko te Roi-a-Rangi mo Rua-te-Tipua
Ko te Roi-a-Rangi & Nukuhau e
Te patukituki ka &z whakahirahira kthui Maunga m.

Ko toka pokohiwi ka hora maru tapu, e Nguri-o-Murimotu
Te ahi l& o Paerangi i te Whare Toka
Te puta mai te Bhui-o-Rangi, te Khui-a-Rua
Tona hekenga mai i Te WaHMoe ki Paretetaitonga
Ko te ara hekenga, ko te ara hokinga ma ng kotuku
Ka tuku, ka tuku atu i righau kaha ia Parakakariki, ia Mouwhakaarahia

Hei tohu, hei whakaatu ki te ao!
Whiti, whano, hara mai te toki!
Haumia! Hui e!
Taiki e

! Karakia (i.e. prayer) offered by Ngati Rangi lwiNit. Ruapehu, their ancestor. Provided by Che akils
Ohakune 2011, Aotearoa.



ABSTRACT

A new detailed stratigraphy was developed for aieege of pyroclastic deposits including
the largest known eruptions associated with Mt.feba, deposited in the period ~27-10 ka
BP cal. From the largest Plinian eruption depositsthis sequence, subtle lithofacies
variations within componentry, pumice textures asatlimentary features were used to
identify a systematic change in eruptive conditiomer time. Early eruptions involved steady
eruption columns, while younger eruptions involwetsteady, collapsing columns. Isopach
and Isopleth (pumice and lithic) mapping of mostlegpread and distinctive units show that
the largest explosive eruptions known from thiscaob attained peak column heights
between 22 and 37 km, with mass discharge ratehirea10-10° kg/s.

To characterise the conditions controlling the estgf Plinian eruptions at this andesitic
volcano, and to explain the systematic variatiocaotumn stability over time, five key units
were sampled in detail, exemplifying the major casting lithofacies. The sampled tephras
underwent grain-size analysis, along with quardtfan of componentry, porosimetry and
density on particles of a range of size classegjedisas 2D and 3D microtextural analyses of
juvenile pumice clasts to define vesicularity amgstallinity. In addition, physiochemical
factors such as melt-evolution and volatile-cordemere determined by analysing bulk
pumice, glass-inclusions and residual glasses walbctron microprobe and FTIR-
spectroscopy.

Bulk compositions of these tephras vary from basaltidesite to andesite (56-62 wt.%,
Si0y), and had minimum pre-eruptive,® contents of 4-5 wt.%. The evolution of eruption
behaviour over time was not correlated to any msgive change in bulk geochemical
properties, but instead resulted from variationsphysical processes within the conduit.
Ascending magmas experienced heterogeneous buhbbleation, and later-erupted units
showed increasing degrees of rheological heteragemedeveloped across the conduit.
Differences between units were due to changeseimiiigma decompression rates, the degree
of bubble-crystal-melt interactions and bubble singa as well as the composition of the
residual melt. Conditions that led to the mostafale physical states of the magma reaching
the fragmentation level resulted in the highestialality in pumice textures, the greatest
range in styles of fragmentation, and the mostalmsteruption columns.

A new model describing the pre-eruptive magma gmnr&gion, conduit processes, magma
fragmentation, and pyroclastic dispersal duringiBh eruptions at Mt. Ruapehu is proposed.
This hypothesises that eruption column unsteadiardscollapse occurs when magma shear
reaches extreme levels along the conduit underitonsl of low isolated porosity (<3
vol.%). This situation also generates the worsedaazard scenarios expected for Ruapehu,
eruptions, where Plinian columns of over 30 km mpeyduce widespread tephra fall, as well
as partially collapse to generate pyroclastic dgrsirrents of over 15 km runout.
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Figure 3.2 Deposits at location 14 (Appendix A), not includedthin the original definition of the Bullot
Formation but indicating similar eruptive behavidhick pumice lapilli fall beds are found belowa) the
Kawakawa Tephra or fluvial deposits reworking tigighra, andb) the deposits described by Donoghue (1991)
and Donoghue et al. (1995b) as the first unit{IXtoe Bullot Fm... ... e 44

Figure 3.3 Bullot Formation as seen on the eastern Ring P&ihower part of the studied sequence, 15 km
from Crater Lakeb) Middle part of the sequence, 17 km from Crater Lakeortant markers are shown: the
Okataina caldera Rerewhakaaitu (Rw) and Waiohau) féfihras, Mt. Ruapehu Okupata Tephra (Okp), and Mt
Tongariro Pahoka Tephra (Pk}d) Upper part of the sequence, 15-17 km from Crat&elL&lg-1-2: Ngamatea
Lapilli 1-2 as defined by Donoghue (1991) are th& kubplinian eruptions from Mt. Ruapehu beforedhset

of the most explosive period of Mt. Tongariro, eggnted by the Pahoka-Mangamate sequence, aseztibfi
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Figure 3.4 Figure 3.4 Hokey Pokey eruptive urdl General stratigraphic profile of the Hokey Pokeyptive
unit b) HP subunits (HP-1 to 4) ~9 km from the vent, vifie main lapilli fall deposits and interbeddednti
stratified diluted lahars and fluvial deposit¥;Bread-crust bombs in the main Plinian fall depoaite common
in the first 10 km from the vent. Solid lines reggat regionally exposed, major discontinuities fiing eruptive
units, and dashed lines indicate locally exposeihomdiscontinuities separating deposits of erugtiv
phases/pulses within the same UNIt ... e 52

Figure 3.5 Post-Okareka, pre-Rerewhakaaitu eruptive unitolXVI as:a) exposed within 10 km from source,
showing the inner distinctive subunits as descrilmethe text. The white arrow points the 17,62525 £al
years BP rhyolitic markeh) Detailed deposits overlying unit IX, with the disttively pink fall bed of eruptive
unit XIlI; ¢) NW-SE stratigraphic correlation from unit IX to X\l) Exposure at a small tributary to the Upper
Waikato stream, showing the lateral facies vamatibthe inter-eruptive fluvial deposits: thick ¥ial sequences
commonly fill paleochannel StruCtures (ArrOWS) .......cc.oi it e e e e e 55
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Figure 3.6 General stratigraphic profile showing the eruptivaits IX to XVI, accumulated between the
Okareka Tephra (Ok) and the Rerewhakaaitu Tephva).(Rhe legend for the sedimentary structures & th
same as in Fig. 3.4. Solid lines represent regipeaxiposed, major discontinuities delimiting eruptunits, and
dashed lines indicate locally exposed, minor difiooities separating deposits of eruptive phasds#suwvithin
L 0TI U4 T= 0 T PP 56

Figure 3.7 Proximal deposits on the eastern slopes of Mt.pRhba showing angular discontinuities. There is
one distinctive above which unit XIIl was deposit®iv: 17,625 + 425 cal years BP, rhyolitic Rerekdwitu
BLIC=] o]0 = 1= U ] PP 57

Figure 3.8 a) Fall deposits of units XlIl to XIX as exposed atdia distances. Interbedded fluvial deposits
lateral facies variation is evident, with thickemgsences filling paleochannels) Zoom of the lithic-rich unit
XVII; ¢) Zoom of the lithic-poor Upper XVIII unitil-e) Stratigraphic correlation from unit XVII to XIX... 59

Figure 3.9 General stratigraphic profile showing the eruptivits XVII to XXII, as described in the text. The
legend for the sedimentary structures is the sarie kig. 3.4. Solid lines represent regionally @sgd, major
discontinuities limiting eruptive units, and dashédes indicate locally exposed, minor discontirast
separating eruptive phases/pulses within the Samhe.UL........ ... e 60

Figure 3.10 Units XVII and XVIII at location B49 (Appendix Ayhowing pyroclastic density current (PDC)
facies, characterised bg) poorly sorted, matrix-supported, block (bombs) andice lapilli deposits; blocks
and bombsk) have different degrees of oxidation and vesidtylausually showing vesicular cores and dense
riMS With radial JOINES ). .. .....e o e e e e e e e e 61

Figure 3.11 Deposits signalling the beginning of the Tukinaive Period: a) Zoom in eruptive unit XIX. b
and c show the overlying units XX and XXI, with ttistinctive dark grey, dilute lahar depositioraties ... 63

Figure 3.12 a) Eruptive units grouped within the Karioi Eruptiveridd (XXIII to XXVI) highly distinctive in
their high lithic content and lithic type varialbyj b) Zoom into the Shawcroft lapilli (Plinian phase of@igtive
unit XXVI), presenting bread-crust bombs of ~30 endiameter 10 km downwind the main SE depositional
lobe; ¢) Detailed stratigraphic profile of the eruptive wnXXIll to XXVI comprising deposits of th&arioi
= U] 01T ) =T =T T Yo PP 65

Figure 3.13 a-b) Stratigraphic correlation of units XXVII to XXIX, haracterized by well bedded deposits
shown inc-to-e; €) Matrix supported facies of unit XXVII, interpretexb resulting from pyroclastic density
LolU ] =T o 1 TP 68

Figure 3.14 a) Uppermost part of the studied stratigraphic recetmhwing the distinctive white lapilli fallout
bed of unit XXX and the widely distributed Okupdtephra (zoomed i), both formed during the Taurewa
Eruptive periodc) General stratigraphic profile showing the eruptivets XXX to the Mt. Tongariro sourced
Pahoka Tephra. The pyroclastic density current sigp@dPDC) of the unit XXI corresponds to the Pbura
pyroclastic flow of Donoghue et al. (1995a) .........uiuuiimmere et e e e e e e e 71

Figure 3.15 Pyroclastic density current (PDC) deposits witthie Okupata-Pourahu eruptive unit (Okp-Ph),
characterised by poorly sortéd), channel-infilling(b), matrix-supported pumice lapilli and bloc{d facies,
varying in thickness with diStan@) ......... ..ot e 73

Figure 3.16 Classification diagrams of the studied Mt. Ruapehits, based on key field criteria for lithofacies
correlation:a) Bed structurep) Dominant component;) Pumice colour, directly linked to pumice texturas a
L] 11011 o PSPPI 77

Figure 3.17 Schematic interpretation of the studied stratigiapécord, to visualize in a comparative way, the
most plausible eruptive styles for Mt. Ruapehu’plesive activity between the time of accumulatidntize
Hokey Pokey lapilli (younger than 27,097 + 957 gedrs BP and older than 24,800 + 500 cal years &),
the 11,620 + 190 cal years BP Okupata Tephra. TiheaP activity of Mt. Tongariro is firstly identiéd in the
interbedded Rotoaira units (as identified by Shetnal., 2008), followed by the here named “blagkllg, and
clearly beginning the series of major eruptiong fhraduced the ~11 ka BP cal., Pahoka-Mangamaigatieeu
sequence (Narin et al., 1998). The newly definegptre units: Mangatoetoenui (Mgt), Shawcroft (Sw),
Oruamatua (Oru), Akurangi (Ak), and Okupata-Pouré®iup-Ph) typically represent contrasting lithoti
associations and related eruption BENAVIOUT. ... ... .. eoci e .81
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Figure 4.1 Lithofacies association type 1, represented byMhagatoetoenui Tephra) Stratigraphic position
within the Bullot Fm., above the 21,800 + 500 ocadss BP, rhyolitic Okareka Tephita); Exposure 15 km from
source showing normally graded L-Mgt and massivégt-pumice lapilli beds, locally separated by syn-
eruptive fluvial deposits (IX-1d)g) Phases distinguished in proximal areas by coimigagrain-sizes;d)
Composite stratigraphic profile. Relative propantiof juvenile glass (J), crystals (X), and lithi¢9 are given
for the main Plinian deposits as vol.% based onpmrant analysis of 300 grains within 1, 2, ang 8ize
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Figure 4.2 Isopach maps fora) Mgt-Mangatoetoenui Eruptive Unit (lithofacies asisdion-type 1);b) Sw-
Shawcroft Eruptive Unit (lithofacies associatiopdy?2); c) Oru-Oruamatua Eruptive Unit) Ak-Akurangi
Eruptive Unit; €) Okp-Lower and Upper Okupata tephras(c-e: lithaacassociation-type 3); f) U-Pk-Mt.
Tongariro sourced Upper Pahoka Tephra (N: currggauxuhoe vent; R: current Mt. Ruapehu Crater Lake).
Contours are labelled within white squares and showcentimetres (cm), drawn on a proximal 5 m DEM
combined with a distal 20 m DEM. In black squarems of the local average field data values are sh@ee
Appendix B.1). Upper right sub-quadrants show tlataurs interpreted from field data to illustratee t
dispersion axes in relation to intermediate-disthan areas (e.g. Napier, Hastings) .........ccccoovoviinnnad 93.

Figure 4.3 Isopleth maps showing the distribution of lithinda pumice clast diameters in mra:b)
Mangatoetoenuig-d) Shawcroftie-f) Oruamatuag-h) Akurangi;i-j) Okupatak-l) U-Pahoka. Isopach traced
axis extrapolated towards the craters are shovenlifigures suggesting North Crater as the mostgtebvent
for most units, but not the youngest Okupata tephndnich originated from a vent closer to Cratekd,aand
the Pahoka tephra which was produced by Mt. TongaNC: North crater, CC: Central Crater, SC: South
Crater, N: Mt. Ngauruhoe (see Appendix B.2 for ctatefield data set) ...........coevivviiiiiiiii i, 95

Figure 4.4 Lithofacies association type 2, represented byShawcroft Eruptive Unit (Sw)a) Stratigraphic
position above the 13,635 + 165 cal years BP, itigdVaiohau Tephra (Wh)) close-up view at 10 km from
the vent showing the deposits of individual phasg§;ypical lithic-rich, coarse grained lithofaciestbe main
phase (i.e. Shawcroft lapilli) with bread-crust Hasmup to 30 cm in diameted) Proximal outcrop (5 km)
showing cross-laminated pyroclastic surge dep@Xix/I-1s) interbedded within the main lapilli fatleposits.
Note the impact-sag (sketched in e), under a hballdast, the crossed lamination and accretiorapjli
(arrows) in f;g) Composite stratigraphic profile. Relative propamtiof juvenile glass (J), crystals (X), and
lithics (L) are given for the main Plinian deposits vol.% based on component analysis of 300 guveiithsn 1,
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Figure 4.5 Bedded lithofacies association type 3, Oruamatud Akurangi eruptive unitsa) Relative
stratigraphic position above Sup) Individual subunits representing different eruptiphases within the
Oruamatua eruptivec) Lithic-rich Lower-Oru;d) Middle-Oru showing three bedsets indicating threain
fallout phases separated by fine ash (oscillatmlgrans or wandering plume effectg); Upper-Oru, partially
reworked here (B15 iN APPENAIX A) ... n ittt et e et et e e e e et e e e aae e e ens 100

Figure 4.6 Stratigraphic profile from the Oruamatua and Akgyieeruptive units showing lateral variation from
fall to pyroclastic density current deposits (PDC)......vu it e e e e e e 101

Figure 4.7 Uppermost studied units, comprisirg): the last known Plinian deposit sourced at Mt. Rimap
(Okp-Ph) and the first Plinian deposit of the Patdangamate explosive period of Mt. Tongariro (Uppe
Pahoka Tephra)p) Detail of the two main fall deposits forming th&upata-Pourahu eruptive unit (L-and-U-
Okp), separated by a co-ignimbrite ash at proxitoaehtions (and in the same stratigraphic positientte
pyroclastic flow deposit nhamed Pourahu member byhdgbue et al. 1999; Ph-1d bedj Composite
stratigraphic profile (See legend Fig. 4.4). Rektproportion of juvenile glass (J), crystals (&hd lithics (L)
are given for the main Plinian deposits as vol.%elbaon component analysis of 300 grains within, Bn2l 3¢
LS4 =8 = T 10 P 102

Figure 4.8 Upper Pahoka Tephra as exposgdin proximal locations (< 6 km from source) on tiw@theastern
slopes of Mt. Ruapehu. Note the dense, chilled i ypical facies at intermediate locations (13.5fkam
source), showing the detailed textures represettimghases described in the text ........................... 104

Figure 4.9 SEM images of juvenile ash grairg: Mgt juvenile, highly vesicular glass shardg; Sw poorly
vesicular glass shards. Note the conchoidal fractmd sharp edges zoomed on the uppermost-rigigeirogn
Oru coarsely vesicular shards with thick vesicldlsvaround large, irregular vesicles d) Ak platypkd and
poorly vesicular glass shardd;Okp fibrous glass shardd;Mt. Tongariro Pk glass shards...................... 106
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Figure 4.10 Whole-deposit isopach data plots for each erumhwwing:a) Thickness vs. Isopach ardsg;Log

(T) vs. Distance expressed as (Isopach Afeaidividual eruptive units show two to three indival segments
with different slopesc) Mangatoetoenui (Mgt)l) Shawcroft (Sw)g) Oruamatua (Oru)f) Akurangi (Ak); g)
Combined Lower and Upper Okupata (Okp); Upper Pahoka (U-Pk). Colours mh separate different
segments (S): proximalySred), proximal-intermediate;Sblue), and in some cases intermediate-distal S
72 10 ) 108

Figure 4.11 Classification schemes for the studied erupti@dsopach and Isopleth data in the Pyle (1989)
diagram lie within the Plinian fieldy) Isopleth data in the Carey and Sparks (1986) dragor column height
and wind-speed, based on 0.8 cm-diameter lithistgldatac-d) Sparks (1986) diagram to determine Mass
discharge rates considering column heights obtaivitdthe Carey and Sparks (1986) methgdapd Sulpizio
(2005) methodd). Other eruption parameters are respectively gudofibr comparison ............c..cooovvveeneens 112

Figure 4.12 Comparison of eruptive parameters with others ghkll for Plinian eruptions at andesitic
volcanoes worldwide. Our data indica#:Increasing column heights with erupted volumelaisined from the
whole deposit of each unit afxd with MDR; c-d) Eruptive intensity (MDR) and column height vs.gniéude
(M = Log (Mass of the deposit in kg) — 7), with hag intensitiesd) and column heightgdj reached at larger
[Tz Vo 10 Lo [ 113

Figure 5.1 Mangatoetoenui Eruptive Unit, consisting of twoimaubunits separated by a thin fluvial deposit
(IX-1d) marking a short-time break in the eruptaetivity. The L-Mgt indicates a vent/conduit opemiphase
(IX-1a) immediately followed by the main Plinianent (1X-1b-and-c). The second Plinian (IX-2) deposi
locally overlies a thin fluvial deposit. (B15 isclated at LAT:-39.27671548, LONG: 175.68911796, Z: 1165 m
ADOVE SEA IBVEI) oeiieie it e s e e —————— 121

Figure 5.2 Detail of the Mangatoetoenui Eruptive Unit andeiméd eruptive phases. Grain-size distribution
histograms for the main eruptive phases are shanith, the corresponding cumulative curve and siatist
parameters as calculated with SFT software. Reardtsypical of pyroclastic fall deposits .................. 122

Figure 5.3 Pumice types identified at the same stratigrapénel within: a) L-Mgt and b) U-Mgt. Note
contrasting vesicle sizes. Thin sections from treerd-members are shown, includiy:Foamy end-member
with subspherical vesicles between 50 and 2®0n diameter, and with smooth vesicle outlines tid walls.
Different degrees of coalescence are illustratadjls-direction arrows show the initial stages lifts vesicle
wall deformation, while double-direction arrows poout aperture throats and interconnection. Thisipe is
transitional to coarsely vesicular, expanded tydg$&luidal pumice clasts with strong alignment anshghtion
of vesicles, parallel to tabular phenocryg}sCrystal-rich, microvesicular end-member with hightegular and
distorted micro-vesicles showing abrupt terminai@nd refolded shapes. Note the increase in phgstecr
glomerocrysts (Gx), and microlite content from gitpl foamy f), fluidal (g), to microvesicular K)
(2 (L0 | = PP 123

Figure 5.4 Back scatter electron images (BSE), at three mdiffemagnifications, showing pumice samples with
contrasting textures, varying frona-c) foamy with subspherical vesicles showing thin wadnd smooth
outlines; d-f) fluidal texture formed by aligned and oriented igles showing thick walls, some wrinkled.
Vesicles are irregular, most of them showing pimncbdges. Note the relatively high phenocryst cdnigi
Microvesicular texture within the U-Mgt, with abuartt and larger phenocrysts and greater oxides ico(dE).
Microlite content is also high and vesicles areraxiely distorted, most of them showing collapse
(U ot 1T {1 T TP PTPIN 124

Figure 5.5 Main crystal phases in the Mgt un#f) ( Plagioclase phenocrysts are commonly euhedvaka p),
subhedral sievedc( d), an occasionally show plastic micro-deformati@h Clinopyroxenes are commonly
subhedral to anhedral and occasionally show “butalié-texture” €, g). Orthopyroxenesh( i) are commonly
euhedral to subhedral, sieved, and vesicles deseein to wet the crystal. Oxides are commonly emdxkdd
within vesicles j, k). Vesicles embedding pumice fragmenjsof glass shardsn) are common. Non juvenile
fragments are mainly volcanic aphaniti) 6r microphaneritic andesiteg-@)............c..ocvvveeeviieieennenn, 125

Figure 5.6 Bulk componentry analysis for ash size fractiofsp<based on 300 grains counted per size fraction
and normalized as vol.%. Analyzed eruptive unitsniroldest to youngest are) Mangatoetoenuib)
Shawcroft,c) Oruamatuag) AKurangi,€) OKUPALA..........c.vuirie it e e e e e e eaeenes 126

Figure 5.7 Relative proportions of the different glass morphy normalized over total glass content as
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Figure 5.8 a) Main pumice clasts classes identified within the ngl@toetoenui Unit, under binocular
microscopeb) Foamy, highly vesicular pumice shard with subsighévesiclesc) Cuspate glass shard derived
from bubble burstingg) Fibrous sharde) Fluidal-shaped glass with ellipsoidal vesicles hgvihick walls;f)
fused-shaped pyroclast wigmooth,“melted” surfacesp) Platy, poorly vesicular glass$y) Poorly vesicular
clast with flattened vesicles having over-thickeallgy i) Blocky shaped, non vesicular sharflsConchoidal
fractures on glass surfacéd;Lithic aggregates, probably recycled from the wealis/floor;1) Dark grey, fresh
andesitesm) Pale grey, fresh andesiteg;Partially altered, vesicular lavas) Hydrothermally altered volcanic
ranging from aphanitic to porphyritip) Altered accidental white sedimentary clast..ccccc.....ccceevvnneee 129

Figure 5.9 Juvenile ash morphological types identified witthie 3¢ size fraction of the eruptive units selected
for this study. Observations were carried on withFRl Quanta 200 Environmental Scanning Electron
Microscope (SEM) on gold coated ash particles at\20The relative proportions within this size ftian over
time are shown to the right. Calibrated radiocarbges correspond to interbedded rhyolitic tephsasported
by Froggatt and Lowe (1990), Newnham et al. (20@8Y Lowe et al. (2008). For the complete stragigya
refer to Chapter 3, Appendices A and J.1. Eq.>0 ¢:. equivalent very coarse ash and lapilli-sized ueadt
117/ 0L 130

Figure 5.10 Relative proportions of non juvenile lithic clasgpes normalized over total lithic content as 4ol.
Units and subunits are shown in stratigraphic ofden basga) to top(€)........ccovveeiiiiiiiii s 131

Figure 5.11 Total alkalis vs. silica (TAS) diagram (Le Basagt 1986) showing the bulk and glass composition
of juvenile clasts within the Mgt unit as well atags inclusions trapped within pyroxene crystalee T
variability of groundmass glass composition withive L-Mgt is related to the heterogeneous textires
crystal content), whereas the homogeneous, maca-ith glass composition of the U-Mgt reflects thigher
crystal content of predominantly microvesicular PEBICIastS...........oovveiie i 134

Figure 5.12 Detail of the Shawcroft Eruptive Unit deposits anfkrred eruptive phases. Note the contrasting
grain sizes among fallout beds @ b, andd, indicating varying eruptive styles between phadeseral
variations with distance include proximal parakeldding &), massive facies at medial and distal locations
along the dispersal axi® @ndc), and proximal pyroclastic surge deposits intedsetwithin the fallout beds
(d) showing impact sags (arrow th), low-angle cross laminations and accretionarylllapd,). Grain-size
distribution diagrams for the main eruptive phaaes shown, with the corresponding cumulative ciamd
statistic parameters as calculated with SFT SOBWAL...........ccooie it i e 138

Figure 5.13 Pumice fabrics identified at the same stratigrajgwel within the Shawcroft lapilli ag) the base
andb) top of the deposit. Three main textural end-memlaee shown, varying frone-d) foamy to expanded
clasts with subspherical vesicles between 100 &3d.61 in diameter, having smooth vesicle outlines drid t
walls. Different degrees of coalescence are ilaistt: double-direction arrows point out apertur@dlts and
interconnection paths-f) finely vesicular, glomerocrystic, microvesiculdasts with some irregular vesicles
(contorted arrow) and higher microlite content tltarg-h) crystal-rich, porphyritic, dense end-member with
highly irregular and distorted micro-vesicles abdirdant microlites..............ccocovviiie i i, 140

Figure 5.14 Back-scatter electron images (BSE) of pumice sampf the Shawcroft lapilli at three different
magnifications:a-c) Microvesicular with subspherical vesicles showihigk walls and irregular, occasionally
sharp edges (white arrows @& b). The groundmass glass contains feldspar and pyexnicrolitegc). d-f)
Dense end-member with highly distorted vesiclesaghg thick walls and relatively higher phenocrystsd
paT el o] 11T oo] a1 =] o | PPN 141

Figure 5.15 a-b) Plagioclase phenocrysts within the Shawcroft lapilowing: a) the complex glomerophyric
texture of largest sized PI, where the core haswed texture, glass inclusions, and a subroundgéhe; this
core is mantled by a subhedral crystal with odcitha zoning;b) border resorption indicated by the rounded
outline of the phenocryst, which also has comptagrgrowths and twinsg;) Example of a cracked Pl where
individual fragments are pulled apadte) Mafic cumulates consisting of subhedral to anhHe@m and Opx,
with interstitial Pl and rare Mf) Rounded clinopyroxene with local embayments intiticaresorptiong-i) Non
juvenile, entrapped lithics distinguished by a casting texture and sharp outline, varying fromesiigs(g-h)

to MIiCrophaneritic dIOMEE). ... ...ttt e et e ret e e e eemmee e ea e eenenenas 142

Figure 5.16 a) Main pumice textures identified within the Shawtrefuptive unit, as seen under binocular
microscopep) Foamy, highly vesicular particles with subsphdnasicles;c) Expandedd) Fluidal; €) Fluidal
glass with ellipsoidal vesicles having thick wadlsd smooth surfacef); Pelée’s tearg) Poorly vesicular glass;
h) Poorly vesicular clast with flattened altered, sybke surfacej) Blocky shaped, poorly to non vesicular
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shardsj) Glass shard derived from bubble burstikjfluidal shard with tube-like vesicleB; Fluidal, bulbous
surface with unburst vesicléarrow); m) Step-fractured glass surface with conchoidal nas, grooves, and
“V"-shaped pits (arrows);n) Typical lithic lapilli; o) Altered, rounded, recycled pumice from the vent
walls/floor; p) Dark grey andesites}) Pale grey, fresh andesite¥;brown, fresh PI+Cpx, hypohyaline andesite
(note that they are not necessarily accidentatbuld also derived from the degassed magma atabe bf the
conduit; however it contributes to the low-temperatmaterial of the erupting mixtureg; Brown, vesicular
lava;t) Altered accidental white (Rhyolitic?) pumiag; Hydrothermally altered lavas ranging from aphartii
porphyritic in texture, and) microphaneritic lava ClastS..........cccoviii i e e 143

Figure 5.17 Total alkalis vs. silica (TAS) diagram (Le Basagt 1986) showing the bulk and glass composition
of juvenile pumice clasts within the Sw lapilli. @lhomogeneity in pumice textures relative to Mghgkes is
also reflected by a single cluster of groundmassglcompositions. Glass inclusions are consistentye
silicic than groundmass glass (dacitic t0 rhyolitiC.........c.ooeei i e 145

Figure 5.18 a) Detail of the stratigraphic sections comprising @r@iamatua (Oru) and Akurangi (Ak) eruptive
units, including the inferred eruptive phases @etils inChapter 3); b) Note the stratified (shower-bedded)
nature of these units, with multiple parallel bedstrasting in grain-sizes) Grain-size distribution histograms
for the main eruptive phases within Oru are showith the corresponding cumulative curve and siatibt
parameters as calculated with SFT software. Reatstsypical of pyroclastic fall deposits, althoudle M-Oru
shows transitions to matrix-supported depositsh witlymodal distributions consistent with the acalation
Of PYrocClastic fIOWSE). ... ... e e e e e 149

Figure 5.19 a) Macrotextural variations within the same stratignagevel of the Oruamatua Tephtd.Dense,
microfluidal textural end-member, usually pale, yish brown in colour. Note the alignment of eloraght
vesicles. Some vesicles are highly distorted onshiorupt termination (arrows), which is in part daghe high
microlite content €). Different degrees of vesicle deformation canttaeed, from:d) Localized shear bands
evident at higher magnitudes, with sigmoid-like atigtorted vesicles (arrows), contrasting to neayhiy
spherical vesicles. Note the sharp edges of somiheofvesicles dictated by the neighboring crys{atsl
arrows); toe) extremely flattened and refolded vesicles wittegular outlines;f) Banded microvesicular
texture, common in the U-Oru. Note the differenedween the dark brown and the pale brown bandseind
crossed nicolsg) the bands are distinguished by the microliteeont...............cocoe i, 151

Figure 5.20 Backscattered electron images of the main coimigasiextures within the Oruamatua unit,
including a€) microfibrous, coarsely porphyritic clasts with dspars phenocrysts showing micro jig-saw
structureqa), and elongated vesicles, some with pinched effjeand thin vesicle wall&); d-f) dense textures
are coarsely porphyriti@d), vesicles are extremely distorted, showing pinobggiegb) and very thick walls in

a microlite-rich glass groundmMaly. ........ou oo e e e e 152

Figure 5.21 a) typical lithic (L) and juvenile (P) Oru lapilli inhe field. Note that lithic clasts are commonly
entrapped within pumice clasts (arrow); Euhedral to anhedral plagioclase phenocrysts shiawks oriented
both parallel and perpendicular to the longest,axith individual fragments pulled apart a few naoics (see
arrows); ¢) Euhedral orthopyroxene with twiningl) Euhedral PIl-Glomerocrysts with a few anhedral
Orthopyroxene microcrystg) Glomerophyric 2-Px+PI texturd) Metasedimentary clast embedded in a dense
0] = T P 152

Figure 5.22 Main ash components identified within the Oruamaltirt, under a binocular microscopa)
highly vesicular particledy) microfibrous particles with different colours digedifferent microlite content and
degree of oxidationg) grey, microvesicular to dense particles with shedgesd) crystal-rich, dense, coarse-
grained porphyritic (glomerophyric) particles. Aplarticles within the 3p fraction under SEM includeg)
Foamy to expanded, highly vesicular pumice shattl siibspherical vesiclef); Fibrous shardg) scoreaceous
particle having distorted vesicles with thick waly Typical mossy-like end-member, poorly vesiculad avith
occasional melted surfaces. Shards derived fromdlbuball rupture includei-j) tube-like;k) Pelée-like, and)
blocky-shaped shards. In detaih) shows the flattened vesicles having over-thickemedls within g.
Conchoidal fractures are common (arrows iando) as well as stepped surfad@. Accidental clasts include:
q) fresh, dark and pale grey andesitgsPartially altered dense and vesicular andesges{ydrothermally
altered volcanic ranging from aphanitic to porptigrilavas; t) Altered accidental white sedimentary
03 = TS £ R 154

Figure 5.23 Total alkalis vs. silica (TAS) diagram (Le Basagt 1986) showing the bulk and glass composition
of juvenile pumice clasts within the Oru unit asliveess the glass inclusions in pyroxene crystalsteNbat the
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high groundmass glass silica contents are consiatiém more crystal-rich textures relative to earleruptive
units, as well as glass inclusions being more maAo groundmass glass.........c.ocoveeveiieieeeiieenennns 156
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imparted by differences in glass colour, vesiclgstal sizes and content. Note the irregular boundad the
predominance of feldspar as pheno and microcrgstasionally showing jigsaw microstructure............. 116

Figure 5.26 a) Typical microlite-rich, porphyritic, microvesiculatexture of the L-Okp, with feldspars
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Figure 5.27 Photomicrographa-b) showing a broken Plagioclase crystals, illustratiogv the cracks served as
vesiculation sites and formation of glass fibied) Common glomerophyric texture with 2Px, interstigthand

Mt. e-f) Microphaneritic lithic clast entrapped in the gndmass glass, where individual components are seen
under crossed-nicold)( Note that the border is broken and individuadigs look detached from the main
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Figure 5.28 a-d) Main pumice clasts classes identified within theu@dkta-Pourahu eruptive Unit, as seen under
a binocular microscope) Microvesicular pumice with subspherical vesicleksfibrous, microlite-rich pumice
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Figure 5.29 Total alkalis vs. silica (TAS) diagram (Le Basagt 1986) showing the bulk and glass composition
of juvenile pumice clasts within the Okp unit. Nakee large compositional span within the same wamt the
high glass groundmass silica content consistertt wibre crystal-rich textures relative to previouaptive
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Figure 6.1 Porosity and density frequency distributions withaipilli of the Mangatoetoenui unit. The individual
parameters were obtained from measurements) dulk sample volume and envelop densly;Connected +
Isolated porosities relative to the bulk sampleunwé;c) Skeletal densityl) Solid density determined in milled
samples;e) Comparative plots of individual parameters agamdk porosity. Black histograms illustrate all
data (n= 69), while red shows that of L-Mgt andg@lthe U-Mgt...........ccoooiiiiii i s 177

Figure 6.2 Reconstructed X-ray images as orthoslices and reddaibvolumes of three lapilli samples from
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Figure 6.6 Reconstructed X-ray images as orthoslices andereddsubvolumes of two different texturesd)
Porphyritic, microvesicular pumice clase-lf) Porphyritic, microlite-rich, dense clast; notee thresence of
micro jigsaw feldspars (arrow iy g); a-d are synchrotron images (1 pixel = 481, ande-h are computed
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glass films crossing cracked feldspdjsafd the alignment of small vesicles and micrasrys); Typically, all
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Skq Graphic asymmetry

Mz Mean

g Inclusive standard deviation

S Inclusive graphic asymmetry

K Kurtosis

g

Density and porosity parameters
Shuk Bulk density [gen?]
Seke Skeletal density [gm’]
B Solid density [genm?]
Opui Bulk porosity [vol.%]

Peonr Connected porosity [vol.%]
Giso Isolated porosity [vol.%]
Textural parameters
N, Vesicle number density [cfih
nv vesicle number density per size class fgm
Ny Mafic crystals number density [¢th
VVD Vesicle volume distribution

CVVD Cumulative vesicle volume distribution
VSD Vesicle size distribution

CVSD Cumulative vesicle size distribution
CVD Mafic crystals volume distribution

CCVD Mafic crystals Cumulative volume distribution

CSD Mafic crystals size distribution
CCsD Mafic crystals Cumulative size distribution

Mt Magnetite
PI Plagioclase
Px Pyroxene
Cpx Clinopyroxene
Opx Orthopyroxene
Mt Magnetite
Ox Oxides
Gx Glomerocryst
Others
€ Molar absorptivity coefficient [Liters/(mol x cf)]
LOI Water from loss on ignition
AP Decompression rate
APs¢ Supersaturation pressure
Pc Closure pressure
GT Growth rate in a given timescale
ny Number of initial nuclei
L Dominant diameter
Ves Vesicle

Qz-Ab-Or  Quartz-Albite-Orthoclase

Techniques and equipment

SEM Scaning Electron Microscope
BSE Back-scatter electron image
u-CT X-ray microtomography

FTIR Fourier Transform infra-red
EMPA Electron Microprobe

XRF X-ray fluorescence spectrometry

LA-ICP-MS  Laser Ablation Inductively Coupled
Mass Spectrometry

Institutions
LBNL Lawrence Berkeley National
Laboratory at Berkeley (CA, USA)
ISTO Institut des Sciencesal&drre d’Orléans

I'Université d’Orléans (France)
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