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Mt. Ruapehu is Te Whare Toka o Paerangi (The House of Stone of Paerangi, Ngāti Rangi ancestor), Matua te 
Mana (The Powerful One; “Mana” means prestige and enduring, spiritual power) in Ngāti Rangi maori 

culture. The Waikato-iti stream, in the Rangipō Desert, is Te Onetapu (sacred place) where Ngāti Rangi people 
rise their “karakia” to the volcano, their ancestor.  
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Dedicated to the Ngāti Rangi Iwi on behalf of all the indigenous communities living around active 
volcanoes in the world, who constantly teach us about the unfolding of life, the dynamic 

interdependence between people and the environment, and how to integrate all sources of knowledge 
to consciously and truly build sustainable communities 

 

He Ruruku: Mai ara rā! 

 

Mai ara rā!  Mai ara rā! 
Mai ara rā te Tupua! 

Mai ara rā te Tawhito! 
 

Tēnei au 
Tēnei au te rangahau ana, ki te ao, ki te pō 

Kia Ranginui e tū iho nei, 
Kia Papatuānuku e takoto ake nei. 

 
Mai ara rā, mai whea ra tōku ahunga mai? 
Tāhuri whakataumaha, huri whakamāmā 

E te Kāhui Maunga ko wai ra koe? 
 

Inā, Matua Te Mana te aunahi pīataata mātahi 
Pikimai Rawea te kai-kukume ake matua whenua rō wai 

 
Te rongo nei ia hīhī, 

Te rongo nei ia hāhā me huka tātairango. 
Tina, tina toko te manawa ora, he manawa ora! 

 
Ko te Roi-a-Rangi mo Rua-te-Tipua 

Ko te Roi-a-Rangi nō Nukuhau e 
Te pātukituki ka tū whakahirahira Kāhui Maunga mā. 

 
Ko toka pokohiwi ka hora maru tapu, e Ngā Turi-o-Murimotu 

Te ahi kā o Paerangi i te Whare Toka 
Te puta mai te Kāhui-o-Rangi, te Kāhui-a-Rua 

Tōna hekenga mai i Te Wai-ā-Moe ki Paretetaitonga 
Ko te ara hekenga, ko te ara hokinga mo ngā uri kōtuku 

Ka tuku, ka tuku atu i ngā hau kaha ia Parakakariki, ia Mouwhakaarahia 
 

Hei tohu, hei whakaatu ki te ao! 
Whiti, whano, hara mai te toki! 

Haumia!  Hui e! 
Taiki e!1 

 

                                                           
1 Karakia (i.e. prayer) offered by Ngati Rangi Iwi to Mt. Ruapehu, their ancestor. Provided by Che Wilson, 
Ohakune 2011, Aotearoa. 
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ABSTRACT 

A new detailed stratigraphy was developed for a sequence of pyroclastic deposits including 
the largest known eruptions associated with Mt. Ruapehu, deposited in the period ~27-10 ka 
BP cal. From the largest Plinian eruption deposits in this sequence, subtle lithofacies 
variations within componentry, pumice textures and sedimentary features were used to 
identify a systematic change in eruptive conditions over time. Early eruptions involved steady 
eruption columns, while younger eruptions involved unsteady, collapsing columns.  Isopach 
and Isopleth (pumice and lithic) mapping of most widespread and distinctive units show that 
the largest explosive eruptions known from this volcano attained peak column heights 
between 22 and 37 km, with mass discharge rates reaching 107-108 kg/s. 

To characterise the conditions controlling the style of Plinian eruptions at this andesitic 
volcano, and to explain the systematic variation in column stability over time, five key units 
were sampled in detail, exemplifying the major contrasting lithofacies. The sampled tephras 
underwent grain-size analysis, along with quantification of componentry, porosimetry and 
density on particles of a range of size classes, as well as 2D and 3D microtextural analyses of 
juvenile pumice clasts to define vesicularity and crystallinity. In addition, physiochemical 
factors such as melt-evolution and volatile-contents were determined by analysing bulk 
pumice, glass-inclusions and residual glasses with electron microprobe and FTIR-
spectroscopy.  

Bulk compositions of these tephras vary from basaltic-andesite to andesite (56-62 wt.%, 
SiO2), and had minimum pre-eruptive H2O contents of 4-5 wt.%. The evolution of eruption 
behaviour over time was not correlated to any progressive change in bulk geochemical 
properties, but instead resulted from variations in physical processes within the conduit. 
Ascending magmas experienced heterogeneous bubble nucleation, and later-erupted units 
showed increasing degrees of rheological heterogeneities developed across the conduit. 
Differences between units were due to changes in the magma decompression rates, the degree 
of bubble-crystal-melt interactions and bubble shearing, as well as the composition of the 
residual melt. Conditions that led to the most variable physical states of the magma reaching 
the fragmentation level resulted in the highest variability in pumice textures, the greatest 
range in styles of fragmentation, and the most unstable eruption columns.   

A new model describing the pre-eruptive magma storage region, conduit processes, magma 
fragmentation, and pyroclastic dispersal during Plinian eruptions at Mt. Ruapehu is proposed. 
This hypothesises that eruption column unsteadiness and collapse occurs when magma shear 
reaches extreme levels along the conduit under conditions of low isolated porosity (<3 
vol.%). This situation also generates the worst-case hazard scenarios expected for Ruapehu, 
eruptions, where Plinian columns of over 30 km may produce widespread tephra fall, as well 
as partially collapse to generate pyroclastic density currents of over 15 km runout. 
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Abbreviation Meaning
Locations and Stratigraphic Units
Fm. Formation
TVZ Taupo Volcanic Zone
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CL Crater Lake Density and porosity parameters

Rhyolitic tephras (Okatania Caldera): δbulk Bulk density [g·cm-3]

Ok Okareka Tephra δskel Skeletal density  [g·cm-3]

Rw Rerewhakaaitu Tephra δsol Solid density  [g·cm-3]

Wh Waiohau tephra ϕbulk Bulk porosity [vol.%]

Mt. Ruapehu andesitic tephras: ϕconn Connected porosity [vol.%]

HP Hokey Pokey Eruptive Unit ϕiso Isolated porosity [vol.%]
Mgt Mangatoetoenui Eruptive Unit Textural parameters

Sw Shawcroft Eruptive Unit Nv Vesicle number density [cm-3]

Oru Oruamatua Eruptive Unit nv vesicle number density per size class [cm-3]

Ak Akurangi Eruptive Unit Nx Mafic crystals number density [cm-3]
Okp-Ph Okupata-Pourahu Eruptive Unit VVD Vesicle volume distribution
L- Lower CVVD Cumulative vesicle volume distribution
M- Middle VSD Vesicle size distribution
U- Upper CVSD Cumulative vesicle size distribution
Mt. Tongariro andesitic tephras: CVD Mafic crystals volume distribution
Pk Pahoka Tephra CCVD Mafic crystals Cumulative volume distribution
Rt Rotoaira lapilli CSD Mafic crystals size distribution
LA Lithofacies Association CCSD Mafic crystals Cumulative size distribution

Mt Magnetite
PDC Pyroclastic density current Pl Plagioclase
cal yr BP Calibrated years before present Px Pyroxene
ka BP cal. kilo-annum before present (calibrated) Cpx Clinopyroxene
Eruption parameters Opx Orthopyroxene

V Tephra volume [km3] Mt Magnetite

Vp Proximal tephra volume [km3] Ox Oxides

Vt Total tephra volume [km3] Gx Glomerocryst
T Deposit thickness [cm] Others

T0 Extrapolated thickness at the vent [cm] ε Molar absorptivity coefficient [Liters/(mol x cm-2)]

A Area [km2] LOI Water from loss on ignition 
Aip Break-in-slope distance [km] ∆P Decompression rate

k slope ∆PSS Supersaturation pressure
Hb Eruption column neutral buoyancy level [km] Pc Closure pressure

Ht Eruption column total height [km] GT Growth rate in a given timescale

bc Clast half-distance no Number of initial nuclei

bt Thickness half-distance L Dominant diameter
D Fragmentation Index of Walker (1973) Ves Vesicle

Q Volume discharge rate [m3/s] Qz-Ab-Or Quartz-Albite-Orthoclase
MDR Mass discharge rate [kg/s]
M Eruption magnitude
Sh Shape factor
Grain-size parameters
M Mode
Md Median

σG Graphic standard deviation

SKg Graphic asymmetry
Mz Mean

σi Inclusive standard deviation

Ski Inclusive graphic asymmetry

Kg Kurtosis

Techniques and equipment Institutions
SEM Scaning Electron Microscope LBNL Lawrence Berkeley National 
BSE Back-scatter electron image Laboratory at Berkeley (CA, USA)
µ-CT X-ray microtomography ISTO Institut des Sciences de la Terre d’Orléans
FTIR Fourier Transform infra-red l’Université d’Orléans (France)

EMPA Electron Microprobe
XRF X-ray fluorescence spectrometry
LA-ICP-MS Laser Ablation Inductively Coupled 

Mass Spectrometry


