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Nonlinear waves in disordered chains: Probing the limits of chaos and spreading

J. D. Bodyfelt,1 T. V. Laptyeva,1 Ch. Skokos,1,2,* D. O. Krimer,1,3 and S. Flach1

1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany
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We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves.
We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading
of wave packets [Europhys. Lett. 91, 30001 (2010)] and consider strong disorder, which favors Anderson
localization. We probe the limit of infinite disorder strength and study Fröhlich-Spencer-Wayne models. We find
that the assumption of chaotic wave packet dynamics and its impact on spreading is in accord with all studied
cases. Spreading appears to be asymptotic, without any observable slowing down. We also consider chains with
spatially inhomogeneous nonlinearity, which give further support to our findings and conclusions.
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I. INTRODUCTION

Anderson localization [1] was discovered 50 years ago in
disordered crystals as an accumulation of single-particle elec-
tronic wave functions and can be interpreted as an interference
effect between multiple scatterings of the electron by random
defects of the potential. As a consequence eigenstates are
no longer spatially extended but are exponentially localized.
Anderson localization is a universal phenomenon of wave
physics, unrestricted to quantum mechanics. Experimental
observations were made in noninteracting Bose-Einstein con-
densates (BEC) expanding in random optical potentials [2,3],
light propagation in spatially random nonlinear optical media
[4,5], and microwave cavities filled with randomly distributed
scatterers [6]. Anderson localization is a linear wave effect, i.e.,
it is well established for wave equations which are linear in
the wave amplitude. However, in many cases one is confronted
with a nonlinear response of the wave-carrying medium; for
instance, high light intensities induce a nonlinear response
of the optical medium. Electron-electron and electron-phonon
interactions also result in substantial deviations from Anderson
localization in solids. In experiments of Bose-Einstein conden-
sates the interatomic interactions are always present, although
they can be diminished by either decreasing atomic densities
or by exploiting magnetically tunable Feshbach resonances.

From a mathematical perspective, a linear wave equation
is integrable, with each normal mode evolving independently
in time. A localized wave packet in the presence of Anderson
localization will therefore stay localized as time evolves. Non-
linearity will usually destroy the integrability of a system and
induce mode-mode interactions. It was observed numerically
that wave packets in such nonlinear disordered wave equations
delocalize in time without respecting Anderson localization
limits [7–11]. Thus, there are several intriguing questions
which have attracted much attention during the last few years:
(i) Will Anderson localization be destroyed by arbitrary small
strength of nonlinearity or is there a threshold below which
the localization is restored? (ii) Will wave packet spreading, if
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observed, last forever or will it stop at certain (though probably
very large) time? (iii) Is the shape of the initial wave packet
crucial for the details of spreading? We will mainly address
question (ii) here.

Johansson et al. [12] conjectured that spreading must
eventually stop and dynamics will become close to regular,
assuming that in these limits the Kolmogorov-Arnold-Moser
(KAM) theorem is applicable, i.e., that for small wave density
regular nonergodic phase space structures predominate and the
dynamics develops along KAM tori. Other attempts consist in
a numerical scaling analysis, in order to predict and extend
results beyond computational ability [13]. Analytical studies
perform perturbation theory to higher order by treating the
strength of nonlinearity as a small parameter [14], conflicting
with the explosive growth of secular terms in higher orders
of perturbation theory. This theory states that for the disor-
dered discrete nonlinear Schrödinger model with nonlinearity
strength exceeding a finite threshold, any initial localized wave
packet cannot fully spread to zero amplitudes at infinite time.
In this case, a part of the excitation is self-trapped as a result of
nonlinearity-induced frequency shifts, which tune a localized
excitation out of resonance with its surrounding nonexcited
linear modes. However, even in the case of strong nonlinearity,
subdiffusion of the non-self-trapped part is observed [9].
When strong nonlinearities are avoided numerical studies
showed a rather universal asymptotic subdiffusive spreading of
initial single-site excitations [8,9,15], which is characterized
by a growth of the second moment of the wave packet as
tα , with α < 1 [9,15]. The self-trapping theorem [16] holds
irrespective of the strength of disorder; therefore it is reflecting
the properties of a strongly nonlinear lattice wave equation,
rather than peculiarities of waves propagating in disordered
media. Also the self-trapping theorem crucially depends on
the presence of at least two integrals of motion, and it fails
for most nonlinear wave equations with only one integral of
motion.

In Ref. [9] the observed wave packet spreading was
assumed to be due to an incoherent excitation of the wave
packet exterior, induced by the chaotic dynamics of the
wave packet interior. The number of resonant modes in the
packet was estimated by considering quadruplet and triplet

016205-11539-3755/2011/84(1)/016205(10) ©2011 American Physical Society

http://dx.doi.org/10.1209/0295-5075/91/30001
http://dx.doi.org/10.1103/PhysRevE.84.016205


BODYFELT, LAPTYEVA, SKOKOS, KRIMER, AND FLACH PHYSICAL REVIEW E 84, 016205 (2011)

mode-mode interactions [17]. A generalization to higher di-
mensions D and different nonlinearity powers was performed.
This led to a quantitative prediction for the subdiffusive
wave packet spreading characteristic α [9]. Its validity was
confirmed numerically in [9,15,18]. Recently, it has been pre-
dicted theoretically [19,20] and verified numerically [19] that
a potentially long-lasting strong chaos regime induces faster
(though still subdiffusive) spreading, which is followed by
the asymptotic and slower weak chaos subdiffusive spreading.
Notably, published numerical data did not reveal a further
slowing down of spreading, when starting from the weak chaos
regime.

In this paper we present results of extensive numerical
studies of wave packet spreading in various models of
disordered nonlinear one-dimensional lattices. In particular,
we consider different initial excitations and scan the parameter
space of disorder strength and nonlinearity over a wide region.
The main aim is to test the applicability of previously derived
spreading laws and to search for indications of a continuation
of the weak chaos spreading, or for indications of a slowing
down, as conjectured by others.

II. MODELS

A. Discrete nonlinear Schrödinger and Klein-Gordon chains

In our study we consider various one-dimensional lattice
models. The first one is the disordered discrete nonlinear
Schrödinger equation (DNLS) described by the Hamiltonian
function

HD =
∑

l

εl|ψl|2 + β

2
|ψl|4 − (ψl+1ψ

∗
l + ψ∗

l+1ψl), (1)

in which ψl are complex variables, l are the lattice site indices,
and β � 0 is the nonlinearity strength. The random on-site
energies εl are chosen uniformly from the interval [−W

2 ,W
2 ],

with W denoting the disorder strength. The equations of
motion are generated by ψ̇l = ∂HD/∂(iψ�

l ):

iψ̇l = εlψl + β|ψl|2ψl − ψl+1 − ψl−1. (2)

This set of equations conserves both the energy of Eq. (1) and
the norm S = ∑

l |ψl|2.
The second model we consider is the quartic Klein-Gordon

(KG) lattice, given as

HK =
∑

l

p2
l

2
+ ε̃l

2
u2

l + 1

4
u4

l + 1

2W
(ul+1 − ul)

2, (3)

where ul and pl are, respectively, the generalized coordinates
and momenta on site l, and ε̃l are chosen uniformly from the
interval [ 1

2 , 3
2 ]. The equations of motion are ül = −∂HK/∂ul

and yield

ül = −ε̃lul − u3
l + 1

W
(ul+1 + ul−1 − 2ul). (4)

This set of equations only conserves the energy of Eq. (3).
The scalar measure of energy resulting from Eq. (3) we shall
henceforth label as H . This scalar value H � 0 serves as a
control parameter of nonlinearity, similar to β for the DNLS
case.

For β = 0 and ψl = Al exp(−iλt), Eq. (2) reduces to the
linear eigenvalue problem

λAl = εlAl − Al−1 − Al+1. (5)

The normalized eigenvectors Aν,l (
∑

l A
2
ν,l = 1) are the

corresponding normal modes (NMs), and the eigenvalues
λν are the frequencies of these NMs. The width of the
eigenfrequency spectrum λν in Eq. (5) is 
D = W + 4 with
λν ∈ [−2 − W

2 ,2 + W
2 ]. The coefficient 1/(2W ) in Eq. (3) was

chosen so that the linear parts of the Hamiltonians Eqs. (1) and
(3) would correspond to the same eigenvalue problem. In the
limit H → 0 (in practice by neglecting the nonlinear term
u4

l /4) the KG model of Eq. (3)—with ul = Al exp(iωt)—is
reduced to the same linear eigenvalue problem of Eq. (5), under
the substitutions λ = Wω2 − W − 2 and εl = W (ε̃l − 1). The
width of the squared frequency ω2

ν spectrum is 
K = 1 + 4
W

with ω2
ν ∈ [ 1

2 , 3
2 + 4

W
]. Note that 
D = W
K . As in the case

of DNLS, W determines the disorder strength.
The asymptotic spatial decay of an eigenvector is given

by Aν,l ∼ e−l/ξ (λν ), where ξ (λν) is the localization length. In
the case of weak disorder, W → 0, the localization length
is approximated [17,21] as ξ (λν) � ξ (0) ≈ 100/W 2. The NM
participation number pν = 1/

∑
l A

4
ν,l characterizes the spatial

extend of the NM. An average measure of this extent is the
localization volume V , which is of the order of 3.3ξ (0) ≈
330/W 2 for weak disorder and unity in the limit of strong
disorder, W → ∞ [17]. The average spacing of eigenvalues
of NMs within the range of a localization volume is then
d ≈ 
/V , with 
 being the spectrum width. The two
frequency scales d � 
 determine the packet evolution details
in the presence of nonlinearity.

In order to write the equations of motion of Hamiltonian
(1) in the normal mode space of the system we insert ψl =∑

ν Aν,lφν in (2), with |φν |2 denoting the time-dependent
amplitude of the νth NM. Then, using Eq. (5) and the
orthogonality of NMs the equations of motion (2) read

iφ̇ν = λνφν + β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗
ν1

φν2φν3 (6)

with the overlap integral

Iν,ν1,ν2,ν3 =
∑

l

Aν,lAν1,lAν2,lAν3,l . (7)

The frequency shift of a single-site oscillator induced by
the nonlinearity is δl = β|ψl|2 for the DNLS model. The
squared frequency shift of a single-site oscillator induced
by the nonlinearity for the KG system is δl = (3El)/(2ε̃l),
with El being the energy of the oscillator. Since all NMs are
exponentially localized in space, each effectively couples to a
finite number of neighbor modes. The nonlinear interactions
are thus of finite range; however, the strength of this coupling
is proportional to the norm (energy) density for the DNLS
(KG) model. If the packet spreads far enough, we can
generally define two norm (energy) densities: one in real
space, nl = |ψl|2 (El), and the other in NM space, nν = |φν |2
(Eν). By averaging over realizations, no strong difference is
seen between the two, and therefore we treat them generally
as some characteristic norm (n) or energy (E) density. The
frequency shift due to nonlinearity is then δD ∼ βn for the
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TABLE I. Characteristic quantities of the DNLS (1) and the KG (3) models. The
dependence on the strength of disorder W of both the localization volume V and of the
average spacing d of NM eigenvalues within the range of V is given for the limiting cases of
weak W → 0 and strong disorder W → ∞. Note that n (E) represents a general characteristic
norm (energy) of wave packets of the DNLS (KG) model.

DNLS KG

On-site energies εl ∈ [−W

2 ,W

2

]
ε̃l ∈ [

1
2 , 3

2

]
Spectrum λν ∈ [−2 − W

2 ,2 + W

2

]
ω2

ν ∈ [
1
2 , 3

2 + 4
W

]

Spectrum width 
 
D = W + 4 
K = W + 4

W

Localization volume V

{
W → 0
W → ∞

V = 330

W 2

V ∼ 1

Average spacing d

{
W → 0
W → ∞

dD ∼ W 2

dD ∼ W

dK ∼ W

dK ∼ const.

Nonlinear energy shift δ δD ∼ βn δK ∼ 3

2
E

DNLS model, while the squared frequency shift is δK ∼ 3E/2
for the KG lattice. The basic characteristics of both models are
summarized in Table I.

We order the NMs in space by increasing value of the
center-of-norm coordinate Xν = ∑

l lA
2
ν,l [9,15,18,19]. For

DNLS we follow normalized norm density distributions
zν ≡ |φν |2/

∑
μ |φμ|2, while for KG we follow normalized

energy density distributions zν ≡ Eν/
∑

μ Eμ with Eν =
Ȧ2

ν/2 + ω2
νA

2
ν/2, where Aν is the amplitude of the νth NM

and ω2
ν its squared frequency. We measure the second moment

m2 = ∑
ν(ν − ν̄)2zν (with ν̄ = ∑

ν νzν), which quantifies the
wave packet’s spreading width; the participation number
P = 1/

∑
ν z2

ν , i.e., the number of the strongest excited modes
in zν ; and the compactness index ζ = P 2/m2, which quantifies
the inhomogeneity of a wave packet. Thermalized distributions
have ζ ≈ 3, while ζ 	 3 indicates very inhomogeneous pack-
ets, e.g., sparse (with many holes) or partially self-trapped ones
(see [15] for more details). In addition, following Anderson’s
definition of localization [1], we measure the fraction SV

(HV ) of the wave packet norm (energy) in a localization
volume V around the initially excited state in real space.
For a localized state this fraction asymptotically tends to a
constant nonzero value, while it goes to zero in the case of
delocalization.

B. Fröhlich-Spencer-Wayne chain

In the limit of strong disorder (W → ∞) the DNLS
and KG models suffer from increasing computational times
needed to observe any nontrivial dynamics. This is because
the eigenvectors tend to single-site profiles; i.e., the overlap
integrals become very small. Fröhlich, Spencer, and Wayne
(FSW) suggested considering a modified Hamiltonian, which
operates directly in normal mode space for the strong
disorder limit, but considers artificial rescaled anharmonic

interactions between neighboring NMs in order to rescale
time [22]:

H =
∑

ν

p2
ν

2
+ εν

2
u2

ν + 1

4
(uν+1 − uν)4, (8)

where the NMs are equivalent to the single-site oscillators.
The NM eigenvalues εν are considered to be uncorrelated,
also for nearest neighbors. This is different from the DNLS
and KG models. Also the FSW chain has only pair interactions
between NMs (sites). Note also that the nonlinear part of the
FSW Hamiltonian is invariant under any shift uν → uν + a,
as opposed to the KG model.

C. Models with spatially inhomogeneous nonlinearity

We also consider two variants of DNLS and KG models
with spatially inhomogeneous nonlinearity. The first type of
lattice is composed of linear coupled oscillators except for a
central region of length L where nonlinearities are present.
We refer to this type as the LNL (linear-nonlinear-linear)
model. The second type is called NLN (nonlinear-linear-
nonlinear) and is the exact counterpart of the previous one,
since the linear part of the lattice is located at the central
L sites.

III. WAVE PACKET EVOLUTION

A. Theoretical predictions

1. DNLS and KG

The evolution of wave packets in nonlinear disordered
chains can be expected to be self-trapped for strong nonlin-
earities, or show no self-trapping for weaker nonlinearities.
The existence of the self-trapping regime was theoretically
predicted for the DNLS model in [16] (see also [15] for
more details). According to the theorem stated in [16], for
large enough nonlinearities (δD > 
D) single-site excitations
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cannot uniformly spread over the entire lattice. Consequently,
a part of the wave packet will remain localized, although the
theorem does not prove that the location of this inhomogeneity
is constant in time.

If the nonlinear shift δ moves the frequencies of some of the
initially excited oscillators out of the linear spectrum, it tunes
them out of resonance and part of the wave packet will be self-
trapped. In our study we consider initial “block” wave packets,
where L central oscillators of the lattice are excited having
the same norm (energy). Since we consider many random
disorder realizations (of the order of a few hundred) we expect
that, on average, the linear frequencies of the initially excited
lattice sites εl (ε̃l) cover the whole range of permitted values
[−W

2 ,W
2 ] ([ 1

2 , 3
2 ]). Thus, some of these frequencies are tuned

out of resonance if δD � 2 (δK � 1/W ). These conditions for
the possible appearance of self-trapping are less strict than
the theoretically defined ones [15,16] and are, in general, in
good agreement with numerical simulations. In particular, the
self-trapping regime was numerically observed for single-site
excitations [9,15,18] and for extended excitations [19], both
for the DNLS and the KG models, despite the fact that the KG
system conserves only the total energy H , and the self-trapping
theorem cannot be applied there.

When self-trapping is avoided for δD < 2 (δK � 1/W ), two
different spreading regimes were predicted, having different
dynamical characteristics: an asymptotic weak chaos regime
and a potential intermediate strong chaos one [20]. Numerical
verifications of the existence of these two regimes were
presented in [18,19]. In the weak chaos regime, for L � V

and δ < d most of the NMs are weakly interacting with each
other. Then the subdiffusive spreading of the wave packet
is characterized by m2 ∼ t1/3. If the nonlinearity is weak
enough to avoid self-trapping, yet strong enough to ensure
δ > d, the strong chaos regime is realized. Wave packets in
this regime initially spread faster than in the case of weak
chaos, with m2 ∼ t1/2. Since the norm density drops with
further spreading, δ is dropping in time as well, and eventually
the wave packet enters the weak chaos regime, where its
evolution is characterized by slower spreading with m2 ∼ t1/3.
The wave packet evolution in both the weak and the strong
chaos spreading regimes is also expected to be characterized
by an increase of the participation number as P ∼ tα/2 when
m2 ∼ tα .

Let as now discuss the spreading of wave packets when
L < V . The packet will initially spread over the localization
volume V during a time interval τin ∼ 2π/d, even in the
absence of nonlinearities [19,20]. The initial average norm
(energy) density nin (Ein) of the wave packet is then lowered
to n(τin) ≈ ninL/V [E(τin) ≈ EinL/V ]. The further spreading
of the wave packet in the presence of nonlinearities is then
determined by these reduced densities. Note that for single-
site excitations (L = 1), the strong chaos regime therefore
completely disappears and the wave packet evolves either in
the weak chaos or in the self-trapping regime [8,9,15,23].

2. FSW chain

There are no existing theoretical predictions for wave
packet dynamics in the FSW chain. The FSW case can
be considered as a strong disorder limit of the KG model,

emulating the dynamics of the latter in NM space. However,
in the KG and DNLS case, triplet interactions between NMs
are present and necessary in order to allow for finite (though
small) resonance probabilities for small (but finite) energy and
norm densities [17,20]. Pair interactions will cease to produce
NM resonances for sufficiently small densities due to level
repulsion within one localization volume [15,17,20]. The FSW
chain keeps only pair interactions. At the same time, level
repulsion between neighboring (interacting) NMs is absent in
the FSW case. Therefore, a theoretical analysis similar to the
DNLS and KG case [20] appears to be possible. Its details
will be considered in a future publication. The width of the
linear spectrum is 
FSW = 1. The average spacing of nearest
neighbor eigenvalues is dFSW ∼ 
FSW. Therefore, we expect
that only the asymptotic regime of weak chaos and the regime
of self-trapping can be expected.

3. LNL and NLN chains

The LNL chain can be expected to start in a chaotic wave
packet spreading regime as long as the wave packet is confined
mainly to the finite-size N (nonlinear) part. However, the more
the wave packet spreads, the more it extends into the infinitely
extended L (linear) parts. Resonances and chaos are therefore
confined to the finite N part. Since distant NMs in the L part
are exponentially weakly interacting with the chaotic NMs in
the N part, their excitation—if present—will take times which
increase exponentially with growing distance. Therefore, the
wave packet will spread (if at all) slower than any power law.
Thus, the LNL model is the only model we consider here,
where almost trivial slowing down of spreading is expected.

Recently, the dynamics of a similar system was theoret-
ically investigated in [24], where a disordered subsystem
of coupled anharmonic oscillators, linearly coupled to an
infinite harmonic system, was considered. In this work the
conditions which permit the persistence of the discrete breather
of the isolated anharmonic system for small but nonvanishing
couplings to the harmonic lattice were derived, and cases
characterized by energy transfer to the harmonic system were
also discussed.

The NLN chain is expected to behave differently. As long
as the wave packet is confined mainly to the L region, the
dynamics is regular, and no spreading should occur. For large
enough time, some part of the packet will leak out into the N
regions. Therefore, spreading of the wave packet should finally
occur.

B. Numerical results

1. Methods

We consider compact DNLS wave packets at t = 0 span-
ning a width L centered in the lattice, such that within L there
is a constant initial norm of nin = 1 and a random phase at
each site, while outside the width L the norm density is zero.
In the KG case, we excite each site in the width L with the
same energy, E = H/L, i.e., initial momenta of pl = ±√

2E

with randomly assigned signs.
We use symplectic integration schemes of the SABA family

of integrators [15,25,26] for the integration of Eqs. (2) and
(4). The particular symplectic scheme used for the DNLS
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FIG. 1. (Color online) DNLS, W = 4: Evolution of (a) 〈log10 m2(t)〉, (b) 〈log10 P (t)〉, (c) 〈ζ (t)〉, (d) finite-difference derivative αm(t) for
the smoothed m2 data of panel (a), (e) finite-difference derivative αP (t) for the smoothed P data of panel (b), and (f) 〈SV (t)〉 for the spreading
of wave packets with initial width L = 21 and β = 0.012, 0.04, 0.18, 0.72, 3.6, 8.4 [(bl) black; (m) magenta; (r) red; (b) blue; (g) green; (br)
brown]. In panels (a), (b), (d), and (e) straight lines correspond to theoretically predicted power laws m2 ∼ tα , P ∼ tα/2 with α = 1/3 (dashed
lines) and α = 1/2 (dash-dotted lines). Error bars in panels (a) and (b) denote representative one-standard-deviation errors.

model is described in the Appendix. The number of lattice
sites, N, and the integration time step τ varied between
N = 1000 to N = 2000 and τ = 0.01 to τ = 0.1, in order
to exclude finite-size effects in the wave packet evolution,
and in order to reach long integration times up to 107–109

time units with feasible CPU times. In all our simulations, the
relative energy and norm errors are kept smaller than 10−3. For
each parameter set we averaged our data over 1000 different
disorder realizations, unless otherwise stated, and denote this
by 〈. . .〉. In particular, we compute m2 and P , and we smooth
〈log10 m2〉 and 〈log10 P 〉 with a locally weighted regression
algorithm [27], and then apply a central finite difference to
calculate the local derivatives

αm = d〈log10 m2〉
d log10 t

, αP = d〈log10 P 〉
d log10 t

. (9)

2. Weak disorder

In this section we considerably extend the reports on
the observation of weak chaos, strong chaos, the crossover
between both and the self-trapping regime in Ref. [19]. In
Fig. 1 we show results for the DNLS model with W = 4
and L = V = 21, for six different values of the nonlinearity
strength β. The time evolution of 〈log10 m2(t)〉 and 〈log10 P (t)〉
is plotted in Figs. 1(a) and 1(b), respectively. The evolution of
the compactness index 〈ζ (t)〉 is shown in Fig. 1(c). In Figs.
1(d) and 1(e) we plot the time dependence of the numerically
computed derivatives αm(t) and αP (t) (9) obtained from the
smoothed curves of Figs. 1(a) and 1(b), respectively. Finally,
in Fig. 1(f) the values of 〈SV (t)〉 are plotted.

The weak chaos dynamics is observed in Fig. 1 for β =
0.012 (black curves) and β = 0.04 (magenta curves). Initially,
the wave packets remain localized and all quantities of Fig. 1
are constant with αm, αP being practically zero. After some
detrapping time td the wave packets start to subdiffusively
spread with m2 ∼ t1/3 and P ∼ t1/6 [Figs. 1(a), 1(b), 1(d), and
1(e)]. In addition, the compactness index 〈ζ 〉 ≈ 3 [Fig. 1(c)],
indicating that wave packets are well thermalized inside. The
tendency toward complete delocalization of wave packets is
clearly depicted in the evolution of the averaged norm fraction
〈SV 〉, which remains at the L = 21 initially excited sites
[Fig. 1(f)]. After the detrapping time td 〈SV 〉 decreases
continuously up to the final integration time t = 107.

By increasing the value to β = 0.18, the initial spreading
dynamics enters the crossover between weak and strong chaos,
and a faster spreading is observed. Spreading sets in earlier, the
compactness index again indicates thermalized wave packets,
and the local derivatives αm and αP increase up to 0.4 and 0.2,
respectively, with a possibly very slow decrease at even larger
times. 〈SV 〉 again continuously decreases to zero, indicating
complete delocalization.

For β = 0.72, we fully enter the strong chaos regime. Most
importantly we observe a saturation of the local exponent αm

around the theoretical value 1/2, with a subsequent decay,
again as predicted by theory [20] and first observed in [19].

Finally, for β = 3.6 and β = 8.4 (green and brown curves,
respectively, in Fig. 1) the dynamics enters the self-trapping
regime. We observe that a part of a wave packet remains
localized, while the remainder spreads. The spreading portion
results in a continuous increase of m2 [Fig. 1(a)], which ini-
tially is characterized by large values of αm > 1/2 [Fig. 1(d)].
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FIG. 2. (Color online) DNLS, W = 4: Time evolution of average norm density distributions 〈zl〉 in real space for (a) β = 0.04, (b) β = 0.72,

and (c) β = 3.6. The color scales shown on top of panels (a)–(c) are used for coloring each lattice site according to its log10〈zl〉 value.

For larger time αm decreases below 1/2. The evolution appears
to be rather complex and is not captured by the theoretical
considerations in [20]. The large values of αm may be due to
temporal trapping and detrapping processes in this strongly
nonequilibrium dynamics of the wave packet, with a final
trapped packet fraction remaining. Therefore, we observe that
〈log10 P 〉 starts to level off [Fig. 1(b)], αP tends to very small
values [Fig. 1(e)], and 〈ζ 〉 tends to zero [Fig. 1(c)]. In Fig. 1(f),
we observe that the values of 〈SV 〉 saturate to higher values
for β = 8.4.

For these typical cases of weak chaos (β = 0.04), strong
chaos (β = 0.72), and self-trapping (β = 3.6) we present in
Figs. 2(a)–2(c) the time evolution of the averaged norm density
distributions 〈zl〉 in real space. All simulations presented in
Fig. 2 started from the same initial profile with size L = V ;
therefore the width of the localization volume set by the linear
case is the width of the distributions at the shortest times in the
plots. In the weak chaos regime [Fig. 2(a)], the wave packets
remain close to their initial configuration for some times, as the
high 〈zl〉 values in the region of the initial excitation indicate,
followed by delocalization at larger times. Thus, at t = 107

the averaged wave packet has spread to about 100 sites with
〈zl〉 > 10−5. Therefore, the wave packet spreads continuously
over distances which are an order of magnitude larger than
the limits set by the linear theory and destroy Anderson
localization. In the case of strong chaos [Fig. 2(b)], spreading
is even faster, leading to more extended profiles at t = 107:
there are about 400 sites with 〈zl〉 > 10−5. In the self-trapping
regime [Fig. 2(c)], the spreading part of the wave packet covers
700 sites, with another clearly visible part staying self-trapped
at the initial excitation region. The curved fronts in the density
plots in Fig. 2 follow from the theoretical prediction m2 ∼ tα ,
which leads to a packet width N ∼ √

m2 and N ∼ e(α log10 t)/2.
For the KG model (3) with W = 4 we present in Fig. 3

similar results to the ones for the DNLS model. For small
values of the initial energy density E = 0.01, the charac-
teristics of the weak chaos regime are observed: m2 ∼ t1/3

[black curve in Fig. 3(a)] after a detrapping time td ≈ 105,

wave packets remain compact as they spread since 〈ζ 〉 ≈ 3
[Fig. 3(b)], and the fraction 〈HV 〉 of the energy of the initially
L = 21 excited sites decreases [Fig. 3(d)]. For E = 0.04
we enter the crossover region between the weak and the
strong chaos regimes, with characteristics similar to the DNLS
case. For E = 0.2 (red curves in Fig. 3) we observe the
typical behavior of the strong chaos scenario: spreading is
characterized by a saturated αm ≈ 1/2 [Fig. 3(c)] for about
two decades (log10 t ≈ 3.5–5.5), followed by a crossover to
the weak chaos dynamics with αm decreasing. Getting closer
to the self-trapping regime for E = 0.75 (blue curves in Fig. 3),
or being deep inside it for E = 3 (green curves in Fig. 3) the
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FIG. 3. (Color online) KG, W = 4: Evolution of (a) 〈log10 m2(t)〉,
(b) 〈ζ (t)〉, (c) αm(t), and (d) 〈HV (t)〉 vs log10 t for the spreading
of initially compact wave packets of width L = 21 with E =
0.01, 0.04, 0.2, 0.75, 3 [(bl) black; (m) magenta; (r) red; (b) blue;
(g) green]. In panels (a) and (c) straight lines correspond to the
theoretically predicted power laws m2 ∼ tα with α = 1/3 (dashed
lines) and α = 1/2 (dotted lines). Error bars in panel (a) denote
representative one-standard-deviation errors.
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characteristics of the self-trapping behavior appear, since 〈ζ 〉
decreases [Fig. 3(b)], and 〈HV 〉 tends to stabilize to nonzero
small values [Fig. 3(d)]. Similar to the β = 3.6 and β = 8.4
cases of the DNLS model, the evolution of m2 [Fig. 3(a)]
shows an initial phase of fast growth with αm > 1/2 [Fig. 3(c)]
followed by a lowering in the values of αm.

Our numerical results are in accord with the predictions of
weak and strong chaos regimes, as well as of the crossover
from strong to weak chaos. Self-trapping is observed as well,
with less understood strongly nonequilibrium dynamics of the
trapped and spreading packet parts. We vehemently stress
that in all our simulations we never observed any evidence
of a wave packet transition from the weak chaos regime,
characterized by αm = 1/3, to a subsequent slowing down
of spreading, which would lead to αm < 1/3.

3. Strong disorder

To search for potential deviations from the predicted
spreading laws, we turn to large values of W for the DNLS
system. In all our simulations we had L � V . In particular,
we set L = 10 and considered the cases with W = 15 and
W = 40. For large values of W we expect only the weak
chaos and the self-trapping dynamical regimes to be observed
[19]. For each value of W three different values of β were
considered, one being in the weak chaos regime and the other
two in the self-trapping regime. In particular, we considered
β = 0.5, β = 9, and β = 30 for W = 15 and β = 1, β = 25,

and β = 100 for W = 40. The obtained results are shown in
Fig. 4 for W = 15 and in Fig. 5 for W = 40.

For large W , the localization volume V decreases drasti-
cally, so that eventually the overlap integrals become small as
well. Therefore, the values of β at which spreading becomes
visible will increase. In the weak chaos spreading regime
the detrapping time td becomes large and we start observing
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FIG. 4. (Color online) DNLS, W = 15: Evolution of (a)
〈log10 m2(t)〉, (b) 〈ζ (t)〉, (c) αm(t), and (d) 〈SL(t)〉 vs log10 t for the
spreading of initially compact wave packets of width L = 10 with
β = 0.5, 9, 30 [(m) magenta; (g) green; (br) brown]. Mean values are
averaged quantities over 100 disorder realizations. In panels (a) and
(c) straight lines correspond to theoretically predicted weak chaos
behavior m2 ∼ t1/3.

spreading after long time intervals. For W = 15 and β = 0.5
we find td ≈ 103 [Fig. 4(a)]. The local derivative αm increases
from zero, showing a tendency to approach the theoretically
predicted value α = 1/3 [Fig. 4(c)], and both 〈ζ 〉 [Fig. 4(b)]
and 〈SL〉 [Fig. 4(d)] start to decrease. We note that since V ∼ 1
for large W , we measure the time evolution of the fraction SL(t)
of the norm density of the L = 10 initially excited sites.

The detrapping time td increases as W increases. This is
seen from the results for W = 40, β = 1 (magenta curves in
Fig. 5). In this case, we have to wait at least up to td = 105

in order to get some evidence that spreading starts, since after
that time 〈log10 m2〉 starts to slightly grow [Fig. 5(a)], while 〈ζ 〉
[Fig. 5(b)] and 〈SL〉 [Fig. 5(d)] start to decrease. This increase
of td happens despite the fact that the nonlinearity strength β

also increased by a factor of 2 as compared to the W = 15
case. Nevertheless, even in this case of large W = 40 we are
able to numerically observe the onset of spreading in the weak
chaos regime. Increasing W to even higher values pushes td
to values larger than the final integration time t = 107 used in
our simulations.

With increasing β we observe self-trapping, but a part of
the wave packet spreads and m2 increases [green and brown
curves in Figs. 4(a) and 5(a)]. The average compactness index
〈ζ 〉 decreases, which is a clear indication that a part of the wave
packet remains localized, and reaches smaller final values for
larger β [Figs. 4(b) and 5(b)]. The self-trapping of the wave
packets is also clearly seen from the evolution of 〈SL〉. In
Fig. 4(d) we see that for W = 15, β = 9 (green curve) and
β = 30 (brown curve) 〈SL〉 decreases due to the spreading
of a part of wave packets, while, finally, it shows a tendency
to level off to a positive value, indicating that part of the
wave packets remains localized. Similar behaviors of 〈SL〉 are
observed in Fig. 5(d) for the W = 40 case with β = 25 (green
curve) and β = 100 (brown curve), although the plateauing of
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FIG. 5. (Color online) DNLS, W = 40: Evolution of (a)
〈log10 m2(t)〉, (b) 〈ζ (t)〉, (c) αm(t), and (d) 〈SL(t)〉 vs log10 t for the
spreading of initially compact wave packets of width L = 10 with
β = 1, 25, 100 [(m) magenta; (g) green; (br) brown]. Mean values are
averaged quantities over 100 disorder realizations. In panels (a) and
(c) straight lines correspond to theoretically predicted weak chaos
behavior m2 ∼ t1/3.
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initially compact wave packets of width L = 21 with E = 0.05.

〈SL〉 is not as clear as in Fig. 4(d). The numerically computed
exponents αm exhibit the typical behavior of self-trapping seen
in Fig. 1(d). For W = 15 they increase, reaching values larger
than 1/3, and afterward decrease toward αm = 1/3 [Fig. 4(c)].
For W = 40 a similar behavior is observed for β = 100, while
for β = 25 αm seems to approach the theoretically predicted
value 1/3 from below.

Therefore, even for strong disorder, the dynamics of wave
packets evolves according to the theoretical predictions. Most
importantly, we do not observe a slowing down of the wave
packet below the limits set by the weak chaos regime.

4. FSW model

To further probe a possible slowing down of wave packet
spreading beyond the limits of weak chaos, we turn to the
FSW model (8). In Fig. 6 we present results with initial
compact wave packets of width L = 21, with energy density
E = 0.05, similarly to the KG model (3). We observe that
also for this model subdiffusive spreading occurs, because the
second moment and the participation number [red and blue
curves, respectively, in Fig. 6(a)] increase continuously, and
the corresponding exponents αm and αP [Fig. 6(c)] tend to
eventual constant nonzero values. The fraction 〈HL〉 of energy
remaining in the L = 21 initially excited sites [Fig. 6(d)]
decreases as time increases, indicating the delocalization of
the wave packets. The compactness index [Fig. 6(b)] has a
different behavior with respect to what we have seen in the
rest of our simulations, as it decreases slowly up to t ≈ 107,
with a subsequent increase. Therefore, the wave packet is
highly inhomogeneous for almost all the integration time,
violating the assumptions which are used in the theoretical
considerations of weak chaos [20]. The observed subdiffusive
spreading may still not be in its final asymptotic range. Still,
we again do not see any signature of a slowing down of this
subdiffusive process, as was reported in [28] where a similar
model was considered. Clearly the FSW model calls for a
thorough and independent study.
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spreading of initially compact wave packets of width L = 21 with W = 4 and E = 0.02 in the KG [(m) magenta curves], the NLN KG [(g)
green curves] and the LNL KG [(r) red curves] models. In panels (a), (b), (d), and (e) straight lines correspond to theoretically predicted power
laws m2 ∼ t1/3, P ∼ t1/6 of the weak chaos regime. Error bars in panels (a) and (b) denote representative one-standard-deviation errors.
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5. LNL and NLN models

In Fig. 7 we present results for the KG, LNL, and NLN
models for W = 4, L = 21, and E = 0.02. For comparison we
also include the results for the KG model (3) (magenta curves)
with E = 0.02, for which subdiffusive spreading in the weak
chaos regime is observed. The NLN KG model (green curves
in Fig. 7) exhibits a similar behavior, since both the second
moment [Fig. 7(a)] and the participation number [Fig. 7(b)]
start to grow after some detrapping time td ≈ 105. This time
is larger than the detrapping time of the KG model (td ≈ 104),
because a wave packet in the NLN KG model initially evolves
in an almost linear system and only after some large time,
when it has spread significantly to the nonlinear part of the
lattice, does spreading takes on characteristics of the purely
nonlinear model.

On the other hand the evolution of all quantities of Fig. 7
for the LNL KG system (red curves) follows the KG model
until t ≈ 104, because initially the wave packets evolve in the
same nonlinear system. Later on the wave packet enters the L
(linear) parts of the system. Thus, spreading starts to retard, and
both 〈log10 m2(t)〉 [Fig. 7(a)] and 〈log10 P (t)〉 [Fig. 7(b)] show
a characteristic slowing down in the exponents αm [Fig. 7(d)]
and αP [Fig. 7(e)]. In addition, 〈SV 〉 [Fig. 7(f)] saturates at
finite nonzero values, indicating that wave packets tend to
localize again. For all three KG models, the values of 〈ζ 〉
[Fig. 7(c)] show that wave packets do not become sparse and
inhomogeneous in the course of time. We obtained similar
results for the LNL and NLN DNLS models for W = 4, L =
21, and β = 0.04.

Thus, spreading is also observed for the LNL and NLN
models, and only in the case of the LNL models have we
observed a slowing down of the spreading, as expected.

IV. SUMMARY AND CONCLUSIONS

We considered several models of disordered nonlinear
one-dimensional lattices and performed extensive numerical
simulations of norm (energy) propagations. Since we focused
on the dynamical spreading of fronts, we prepared initial block
wave packet profiles, having widths equal to or larger than the
average localization volume defined by the linear problem. We
would expect similar behaviors for initial Gaussian profiles
(although calculations were not performed), again where the
width (for Gaussians, say the standard deviation) is on par with
the average localization volume.

We carefully studied statistical properties of the dynamics,
by varying the values of disorder and nonlinearity strengths
over a wide interval, and by averaging results over many
disorder realizations. Our results agree quite well with our
theoretical expectations for the existence of the weak and
strong chaos regimes.

The main outcome of our study is that in the presence
of nonlinearities we always observe subdiffusive spreading, so
that the second moment grows initially as m2 ∼ tα with α < 1,
showing signs of a crossover to the asymptotic m2 ∼ t1/3 law
at larger times. Remarkably, subdiffusive spreading is also
observed for large disorder strengths, when the localization
volume (which defines the number of interacting partner
modes) tends to one. Fröhlich-Spencer-Wayne models, which

take the disorder strength to its infinite limits, are also
showing subdiffusive growth. Most remarkably, in none of
our studies (except the artificial LNL case) did we encounter a
slowing down of spreading beyond the limits set by the weak
chaos predictions. Therefore, our numerical data support the
conjecture that the wave packets, once they spread, will do so
up to infinite times in a subdiffusive way, bypassing Anderson
localization of the linear wave equations.

The only cases where spreading shows a tendency to stop
are the LNL models, for which nonlinearities are absent
everywhere except inside a finite-size central region where the
initial wave packet is launched. In these models, when wave
packets have spread substantially, their chaotic component
in the central region of the lattice becomes weak, and
distant normal modes in the linear parts of the system are
exponentially weakly coupled to the central nonlinear region.

When the nonlinearity strength tends to smaller values,
waiting (detrapping) times for wave packet spreading of
compact initial excitations increase beyond the detection
capabilities of our computational tools. The corresponding
question of whether a KAM regime can be entered at finite
nonlinearity strength was addressed in [12] and is analyzed in
detail in a forthcoming work [29].
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APPENDIX: SYMPLECTIC INTEGRATION
OF THE DNLS EQUATIONS

We discuss a novel method which we designed to integrate
the DNLS equations locally, which we shall call the ‘PQ’
method. Previously used methods employ a transformation of
the wave function from real into Fourier space and back, at
each integration step. These transformations induce small but
observable corrections in the tails of the wave packet, which
slowly but steadily grow in time. In such a case we will have
to stop the integration once this noisy background reaches
a substantial level. The PQ method avoids the generation
of this background by simply not performing the Fourier
transformation. Instead the PQ method integrates the DNLS
equations in real space.

The canonical transformation

ψl = 1√
2

(ql + ipl) (A1)

of the complex variable ψl in Eq. (1) transforms (1) into

HD=
∑

l

εl

2

(
q2

l +p2
l

)+β

8

(
q2

l +p2
l

)2−(ql+1ql+pl+1pl), (A2)

where ql and pl are generalized coordinates and momenta,
respectively.

If a Hamiltonian function can be split into two integrable
parts, then a symplectic integration scheme can be used for the
integration of its equations of motion. One possible splitting
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of the DNLS Hamiltonian (A2) into two separate Hamiltonian
functions A and B is

A =
∑

l

εl

2

(
q2

l + p2
l

) + β

8

(
q2

l + p2
l

)2
,

(A3)
B = −

∑
l

(ql+1ql + pl+1pl).

Hamiltonian A is integrable and the operator eτLA which
propagates the set of initial conditions (ql,pl) at time t to
their final values (q ′

l ,p
′
l) at time t + τ is

eτLA :

{
q ′

l = ql cos(αlτ ) + pl sin(αlτ ),

p′
l = pl cos(αlτ ) − ql sin(αlτ ),

(A4)

with αl = εl + β(q2
l + p2

l )/2. Hamiltonian B of Eq. (A3) is
not integrable, and thus the operator eτLB cannot be written
explicitly. If we consider B as a separate Hamiltonian function
and again split it as B = P + Q, the component parts

P = −
∑

l

pl+1pl, Q = −
∑

l

ql+1ql (A5)

are integrable, under the corresponding operators

eτLP :

{
p′

l = pl,

q ′
l = ql − (pl−1 + pl+1)τ

(A6)

and

eτLQ :

{
q ′

l = ql,

p′
l = pl + (ql−1 + ql+1)τ.

(A7)

This technique of splitting the Hamiltonian into multiple
parts has been used in different applications of symplectic
integrators (see, for example [30]).

In our simulations we successively apply the SBAB2

symplectic integrator [15,25,26] twice: first for the split
(HD = A + B) of the DNLS Hamiltonian Eq. (A2) and
second for the split B = P + Q in Eq. (A3). The so-
lution for the equations of motion from the Hamilto-
nian Eq. (A2) is thus approximated by the application
of 13 simple operators on an initial condition (ql,pl),
since

eτHD = eτ (A+B) ≈ ed1τLAec2τLB ed2τLAec2τLB ed1τLA

≈ ed1τLAed1c2τLP ec2
2τLQec2d2τLP ec2

2τLQed1c2τLP ed2τLA

×ed1c2τLP ec2
2τLQec2d2τLP ec2

2τLQed1c2τLP ed1τLA,

(A8)

with the SBAB2 coefficients [25] of d1 = 1/6, d2 = 2/3, and
c2 = 1/2.
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