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Abstract  

Machine learning is playing a vital role in our modern world. Depending 

on whether the data has labels or not, machine learning mainly contains 

three categories, i.e., unsupervised learning, supervised learning, and 

semi-supervised learning. As labels are usually difficult and expensive to 

be obtained, unsupervised learning is more popular, compared to super-

vised learning and semi-supervised learning. Moreover, k-means cluster-

ing is very popular in the domain of unsupervised learning. Hence, this 

thesis focuses on the improvement of previous k-means clustering. 

K-means clustering has been widely applied in real applications due 

to its linear time complexity and ease of implementation. However, k-

means clustering is limited to its applicability due to the issues, such as 

identification of the cluster number k, initialisation of centroids, as well 

as the definition of similarity measurements for evaluating the similarity 

between two data points. Hence, k-means clustering is still a hot research 

topic in unsupervised learning. In this thesis, we propose to improve tra-

ditional k-means clustering by designing two different similarity matrices 

to represent the original data points.  

The first method first constructs a new representation (i.e., an adjacent 

matrix) to replace the original representation of data points, and then runs 

k-means clustering on the resulted adjacent matrix. In this way, our pro-

posed method benefits from the high-order similarity among data points 

to capture the complex structure inherent in data points as well as avoids 

the time-consuming process of eigenvectors decomposition in spectral 

clustering.   

The second method takes into account the weights of the features to 

improve the former method, based on the assumption that different fea-

tures contain different contributions to the construction of the clustering 

models. As a result, it makes the clustering model more robust, compared 

to the first method as well as previous clustering methods. 

Finally, we tested our proposed clustering methods on public UCI da-

tasets. Experimental results showed the clustering results of our proposed 

methods significantly outperformed the comparison methods in terms of 

three evaluation metrics.  

 

Keywords: k-means clustering, similarity measurement, adjacent matrix, 

unsupervised learning.  
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Chapter. 1. Introduction 

1.1 Background 

With the development of information technology, the society generates 

a huge number of data. Normally, it is essential to obtain knowledge from 

the data for serving the society. However, manually mining useful 

knowledge from massive data is usually time-consuming and difficult as 

the number of the data is massive and the structure of the data is complex. 

Machine learning is a good alternative to address this issue as it could 

enable computers automatically obtaining knowledge by exploring the 

structure inherent in the data, and has been becoming increasingly pop-

ular in our real life. More specifically, machine learning usually uses two 

steps to mine knowledge from the data, i.e., the training process and the 

testing process. In the training process, machine learning methods are 

designed to handle the training data for outputting a model, while the 

result model is used to conduct prediction in the testing process. Based 

on different criteria, different machine learning methods satisfy various 

requirements. The popular machine learning methods include anomaly 

detection, dimensionality reduction, clustering, classification, regres-

sion, and so on. Depending on whether the training data is labelled or 

not, existing machine learning methods are typically divided into three 

categories, i.e., unsupervised learning, supervised learning, and semi-su-

pervised learning [1]. We list the category of machine learning methods 

in Fig. 1 and introduce the details as follows.  
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Fig. 1. The category of machine learning methods. 

Unsupervised learning models the underlying structure or distribution 

of the data without the need of labels [2].  It allows to deal with the data 

without knowing its internal relationship, aim at automatically outputting 

the structure/pattern of the data. Unsupervised learning has been applied 

in all kinds of applications, such as motion, image and voice recognition, 

search engine and online security, social media and health care, financial 

and marketing services, and so on. The typical methods of unsupervised 

learning include anomaly detection, dimensionality reduction, cluster-

ing, and so on. 

Supervised learning captures the relationship between input features 

of the data and their corresponding labels  [3]. Here we let X and Y de-

note the data and label matrices, n, d and c denote the matrix dimensions, 

respectively. In the training process, given a feature training matrix 𝐗 ∈

𝐑𝑛×𝑑 where each row represents a sample or a data point, and the corre-

sponding decision matrix 𝐘 ∈ 𝐑𝑛×𝑐, supervised learning tries to learn the 

relationship between X and Y, i.e., Y = f (X). In the testing process, the 
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learnt relationship f (X) can be used to obtain the prediction f (Xt) for the 

testing matrix Xt. The most popular methods of supervised learning in-

clude regression methods (i.e., every element of Y is a continuous value) 

and classification methods (i.e., every element of Y is a discrete value). 

The typical classification methods include linear classifiers, support vec-

tor machine (SVM) [4], quadratic classifiers, kernel estimation, boost-

ing, decision tree [5], neural networks, learning vector quantization, etc. 

The typical regression models include ridge regression, linear regression, 

lasso regression, elastic-net regression, logistic regression, polynomial 

regression and stepwise regression, etc. [6]. 

Semi-supervised learning is a special case that combines the tech-

niques of both unsupervised learning and supervised learning, with a 

large amount of unlabeled data and less labelled data for the training pro-

cess [7]. Supervised learning needs enough labelled data to construct ro-

bust models. However, labels are usually not easy to be collected due to 

all kinds of reasons, such as scare labelled data, time-consuming to ob-

tain labelled data. Therefore, semi-supervised learning is able to improve 

the limitation of supervised learning on limited labelled data by using 

available unlabelled data as well as labelled data. The typical semi-su-

pervised learning algorithms include graph-based methods, generative 

models, self-training, heuristic methods, low-density separation, mixture 

models, co-training and multi-view learning [8], etc. 

In a word, all the three types of machine learning methods have 

widely been applied in real applications. However, since unlabelled data 
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is relatively easy to obtain, thus unsupervised learning has been develop-

ing increasingly rapid and has attracted more interests than the other two 

[9]. Hence, this thesis focuses on unsupervised learning.  

1.2 Unsupervised learning 

In literature, the popular methods of unsupervised learning include 

anomaly detection, dimensionality reduction, clustering, and so on. 

1.2.1  Anomaly detection 

Anomaly detection (also called outlier detection) is to identify rare items, 

behaviors or observations that differ from the majority of the data signif-

icantly [10]. It is usually used to raise suspicions or to find the outliers in 

a dataset. The typical algorithms include density-based techniques, rep-

licator neural networks, fuzzy logic-based techniques, Bayesian net-

works, cluster analysis-based techniques, hidden Markov models 

(HMMs), ensemble techniques [11], etc. 

1.2.2 Dimensionality reduction 

Dimensionality reduction is to reduce the feature number of high-dimen-

sional data. It is a commonly and widely used technique to improve the 

efficiency of machine learning without losing too much accuracy by re-

moving some unimportant features [12]. After conducting dimensional-

ity reduction, machine learning algorithms are able to work on large da-

tasets with high efficiency and effectiveness. The typical algorithms of 

dimensionality reduction include principal component analysis (PCA), 
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kernel PCA, non-negative matrix factorization (NMF), graph-based ker-

nel PCA, generalised discriminant analysis (GDA) and linear discrimi-

nant analysis (LDA) [13], etc.  

1.2.3 Clustering 

Clustering is to divide a set of data points into groups, where similar data 

points are in the same groups and dissimilar data points are in different 

groups [13]. Specifically, clustering computes the similarities of features 

among all of the data points, and then group them together by similari-

ties. Clustering is very useful in some situations, e.g., decision-making, 

image processing and pattern analysing. The typical clustering tech-

niques include partition based algorithms, grid based algorithms, hierar-

chy based algorithms, density based algorithms, graph based algorithms 

and kernel based algorithms, etc. 

Clustering is a vital part of unsupervised learning, and has been ap-

plied in many kinds of applications, such as image compression and seg-

mentation, document classification, Cyber security and fraud proofing, 

and so on. In this thesis, we focus on overcoming the drawbacks of pre-

vious clustering methods.  

1.3 Research motivation 

Among previous clustering algorithms, k-means clustering is a widely 

used algorithm due to its linear time complexity and ease of implemen-

tation. However, k-means clustering is limited to its applicability due to 

the issues, such as identification of the cluster number k, initialisation of 

centroids, as well as the definition of similarity measurements for evalu-

ating the similarity between two data points [14]. In the past years much 
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efforts have been devoted for addressing these issues, such as rule of 

thumb method [15] and gap statistic method [16] for selecting the opti-

mal value of k,  hierarchical centroid selection and simple cluster seeking 

[17] for centroid initialisation, self-paced learning technique [18] and 

multiple feature extraction algorithm [19] for constructing the similarity 

matrix. Another popular clustering algorithm is spectral clustering, 

which uses spectral representation (measuring the relationship among 

data points, as knowns as the high-order relationship [20]) to replace the 

original representation (as known as low-order relationship) via a two-

step strategy, i.e., generation of spectral representation (i.e., similarity 

matrix learning) followed by conducting k-means clustering on the re-

sulting spectral representation. Spectral clustering has also been shown 

to outperform k-means clustering in many kinds of applications, which 

implies that representation learning is very important for k-means clus-

tering [21, 22]. 

Based on the observations above, in this thesis, we focus on investi-

gating an effective similarity matrix for addressing the third limitation of 

k-means clustering, i.e., the construction of an efficient similarity matrix 

[23]. With the help of the efficient similarity matrix, our proposed meth-

ods improved the clustering effectiveness. Specifically, inspired from the 

spectral clustering algorithm, we first design two new representations of 

original features separately, i.e., an adjacent matrix and a weighted adja-

cent matrix, to represent the original data points, and then conduct k-

means clustering on the new representations to output the clustering re-

sults. Comparing with traditional k-means clustering, our methods use 

the high-order similarities instead the original data points. Comparing 
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with spectral clustering, our clustering methods avoid both decomposi-

tion of eigenvectors and dimensionality reduction. Thus, our methods are 

able to not only improve the clustering accuracy but also reduce the com-

putational complexity as well.  

1.4 Summary  

The rest of this thesis is organised as below. In Chapter 2, we conduct a 

comprehensive literature review of the current clustering techniques, and 

then introduce two important clustering algorithms, i.e., k-means cluster-

ing and spectral clustering in Chapter 3. We propose our clustering meth-

ods in Chapter 4, followed by a detailed demonstration. In Chapter 5, we 

conduct experiments on real UCI datasets and results analysis by com-

paring our proposed clustering methods with k-means, k-means++ and 

spectral clustering algorithms, in terms of the evaluation metrics. Finally, 

in Chapter 6, we conclude and summarise our work, followed by some 

future research work. We also attach our referred journals and books, and 

implementing code in the parts of references and appendices, respec-

tively.
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Chapter. 2. Literature Review 

In the literature, clustering algorithms are partitioned into the following 

categories, such as partition based clustering algorithms, hierarchy based 

clustering algorithms, density based clustering algorithms, grid based 

clustering algorithms, kernel based clustering algorithms and graph 

based clustering algorithms. We introduce them in details as bellows. 

2.1 Partition based clustering algorithms 

The basic idea of partition based clustering algorithms is to identify the 

centroids of all data points. Specifically, for a given similarity measure-

ment, the similarity between two data points and a centroid are first cal-

culated, and then the similarity is compared with the predefined thresh-

old. Once meeting the criteria, this data point will be classified into the 

cluster of this centroid. The typical algorithms of partition based cluster-

ing include k-means clustering and its variants, e.g. k-medoids [24] and 

k-means++ [25]. Recently, both balanced k-means [26] and recursive 

partition based k-means [27] dramatically reduce the computational com-

plexity for conducting clustering on massive datasets.  

2.2 Hierarchy based clustering algorithms 

The basic idea of hierarchy based clustering algorithms is to produce a 

sequence of nested partitions, in which a single cluster is created on the 

top of all other singleton clusters and all the data points are included at 

the bottom. In the hierarchy based clustering algorithm, each level in the 
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middle can be deemed as a combination from the lower levels. By this 

means, the hierarchy based clustering algorithms can be graphically 

demonstrated as a tree, which can be produced in two ways, i.e., divisive 

and agglomerative. Divisive method is to start with one all-inclusive 

cluster, and then splits the tree systematically until the similarity among 

data points within a cluster meets the criteria. Agglomerative method 

starts with all data points as a single cluster, and then merges the closest 

cluster pairs. Classic hierarchical clustering algorithms include balanced 

iterative reducing and clustering using hierarchies (BRICH) [28] , clus-

tering using representatives (CURE) [29] and robust clustering using 

links (ROCK) [30] . However, most hierarchical clustering algorithms 

are sensitive to noise, indicating that the clustering result may be affected 

by even few minor outliers [31]. Hence, some enhanced hierarchical 

clustering algorithms, e.g., robust hierarchical k-center clustering [32], 

are developed to address this issue. 

2.3 Density based clustering algorithms 

The most important principle of density based clustering algorithms is 

on the assumption that there should be enough neighbouring data points 

for each data point in a cluster under a designated similarity measure-

ment. In this case, the data point without meeting the threshold will be 

regarded as noise, and will not belong to any cluster. Density based clus-

tering algorithms can be used to partition arbitrary shapes as long as the 

target clusters have different density. Density-based spatial clustering of 

applications with noise (DBSCAN) [33] and ordering points to identify 



Chapter. 2. Literature Review 

Page 10 of 68 

 

the clustering structure (OPTICS) [34] are the conventional representa-

tives of density based clustering algorithms, while influence space 

DBSCAN [35] and DBSCAN based on influence space and detecting of 

border points [36] are their revised versions. Most recently, RNN-

DBSCAN [37] uses the number of reverse nearest neighbours as an esti-

mate of observation density, while k-nearest neighbor DBSCAN [38] 

uses k-nearest neighbour representatives for density based clustering 

without parameters pre-definition. In nutshell, the recent developed den-

sity based clustering algorithms are more efficient and effective than 

conventional DBSCAN and OPTICS algorithms. 

2.4 Graph based clustering algorithms 

The key idea of graph theory based clustering algorithms is to build a 

similarity matrix (i.e., graph) using all training data, and then uses this 

graph to generate a new representation of the original data points to con-

duct clustering. Since the graph based clustering algorithm takes into ac-

count the similarity relationship, i.e., replacing the original data points 

by high-order relationship representation [39] [40]. Hence, the clustering 

process is indeed finding a solution of optimal graph cutting, which is 

able to achieve higher efficiency than other clustering algorithms. How-

ever, graph based clustering algorithms are usually with high computa-

tion complexity (i.e., at least quadratic to the sample size) due to the con-

struction of the high-order relationship representation. Cluster identifi-

cation via connectivity kernels (CLICK) [41] is a classic representative 

of graph based clustering algorithms which aims to find out the minimum 
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weight division of the graph literately. Other graph based clustering al-

gorithms include structural clustering algorithm for networks (SCAN) 

[42], SCAN++ [43], pruned SCAN (pSCAN) [44] and Scalable Density-

Based Graph Clustering (ScaleSCAN) [45]. 

    The most famous and popular graph based clustering algorithm is 

spectral clustering. Due to excellent characteristics of resilience and high 

efficiency, a wide range of spectral clustering variants have been devel-

oped, such as low-rank sparse subspace spectral clustering [46], fast 

large-scale spectral clustering via explicit feature mapping [47], and one-

step multi-view spectral clustering [21]. 

2.5 Grid based clustering algorithms 

Grid based clustering algorithms focus on searching a space surrounding 

the data points and excluding the data point itself only. To do this, a grid 

structure is constructed with a finite number of cells, in which the data 

points will be mapped and partitioned. Specifically, the centroid will be 

identified by computing the density of each cell and sorting the cells by 

different densities. During the whole clustering process, all the calcula-

tions are operated on grid cells and nothing is done with the data points 

themselves. For example, statistical information gird (STING) [48] takes 

advantage of both grid clustering algorithm and parallel computing. Re-

cently, a novel grid based clustering algorithm for hybrid data stream 

(FGCH) [49] is designed for dealing with hybrid data, and another im-

proved grid-based clustering algorithm called DSM in  [50], is a revised 

version of traditional grid-based clustering algorithm that incorporates 

the technique of diagonal grid searching and merging.   
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2.6 Kernel based algorithms 

The key idea of kernel based algorithms is to create a high-dimensional 

feature space, in which the data points with non-linear relationship are 

able to be linearly partitioned. Actually, in order to firstly map non-linear 

data structure to linear space and then apply conventional clustering al-

gorithms, kernel based clustering algorithms are often used with other 

clustering algorithms together. For example, kernel k-means clustering 

combines the kernel based algorithm with k-means clustering algorithm, 

while kernel-based fuzzy c-means clustering [51] combines the conven-

tional fuzzy c-means clustering algorithm with kernel resolution to take 

advantage of  genetic algorithm. Recently, the kernel-based hard cluster-

ing algorithm in [52] and the robust multiple kernel k-means clustering 

[53] have been proven to be able to improve clustering performance sig-

nificantly by using kernel theory. 

2.7 Summary of clustering algorithm 

In this chapter, we discussed some common and widely used algorithms 

of unsupervised learning, i.e., clustering. We discussed their theories, 

implementations, followed by comparing their advantages and disad-

vantages. We also listed their typical applications and representative al-

gorithms, respectively.   



Chapter. 3. Preliminary and Motivation 

Page 13 of 68 

 

Chapter. 3. Preliminary and Motivation 

3.1 Notations 

In this thesis, we denote matrices, vectors, and scalars, respectively, as 

boldface capital letters, boldface lowercase letters, and italic letters. We 

summarize other notations used in this paper in Table 1. 

Table 1. Notations used in this paper 

Variables Description  

X Matrix X 

xi The i-th row of X  

xj The j-th column of X  

xi,j The element of i-th row and j-th column in matrix X 

‖𝐱𝑖−𝐱𝑗‖
𝟐
 The l2 norm of 𝐱𝑖−𝐱𝑗 

 

3.2 K-means clustering  

In the past decades, k-means clustering algorithm and its variants are the 

most popular partitioning algorithms and have been widely using in the 

machine learning fields, e.g., vector quantization, signal processing, data 

mining, and so on. Some revised versions also have emerged in recent 

years with enormous improvements and amendments to address the 

shortcomings of the old versions. K-means clustering algorithm and its 

variants are also combined with other types of clustering algorithms such 

as kernel based clustering algorithms, density based algorithms and 
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graph based clustering algorithms, etc., in order to improve the clustering 

performance and efficiency.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 2. Illustration of k-means clustering algorithm. Dots denote data points 

and crosses denote centroids. (a) Original data points. (b) Randomly initialised 

centroids. (c-f) Process of two clustering iterations. In every iteration, each 

data points are allocated to the closest centroid (the data point is shown as the 

same colour as the centroid to which is allocated), and then each cluster cen-

troid is replaced by the mean of the data points belong to it. 

Generally speaking, k-means clustering is designed to separate a 

group of data points into k clusters where the data points in the same 

cluster have maximal similarity while the data points among different 

clusters have maximal dissimilarity. To do this, k-means clustering 

firstly selects k number of data points at random from the dataset as the 
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centres of each cluster, termed as centroids, and then computes the dis-

tances between every data point and the k centroids, respectively. Sec-

ondly, k-means clustering assigns each data point to the cluster whose 

centroid has the closest distance to this data point to output the initial k 

clusters. Thirdly, k-means clustering calculates the mean value of all the 

data points within each cluster and update centroids for the correspond-

ing cluster. This procedure recurs iteratively until the centroids con-

verges and the no longer change, thus the k cluster labels and centroids 

formed.  

We list the detailed illustration of the implementing process of k-

means clustering algorithm in Fig. 2, and we also list the pseudo code of 

k-means clustering in Table 2 below. 

Table 2. The pseudo code of k-means clustering 

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑;  the cluster number k. 

Output: the cluster indicators of all data points and centroids C. 

1:    Centroid initialisation by randomly selecting k data points; 

2:    do 

3:         Assign data points to the closest centroids to form k clusters; 

4:         Update each centroid by the mean value of data points within 

each cluster; 

5:    until  

6:         Algorithm converges and centroids have no changes. 
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    Actually, the goal of k-means clustering is to achieve the minimal 

sum-squared-error (SSE), which means the minimal total intra-cluster 

variance by a given k. The Eq. (1) below is the definition of SSE. 

                                     SSE = ∑ ∑ ‖𝐱𝑖 − 𝐜𝑗‖
2

2t𝑗

𝑖=1
                                    𝑘

𝑗=1  (1) 

     Where k denotes the number of clusters, t𝑗 denotes the number of data 

points in the j-th cluster, and cj denotes the centroid of the j-th cluster. 

‖𝐱𝑖−𝐜𝒋‖
𝟐

  denotes the l2 norm of 𝐱𝑖−𝐜𝑗. Usually, due to the randomness 

of centroids selection, the clustering result with the minimal SSE may 

achieve a local optimal result, so the initial centroids will put a signifi-

cant influence on the clustering result. Besides, both predicting the actual 

clusters number and defining the similarity measurements are also major 

issues of k-means clustering. We introduce these issues as follows. 

3.3 K-means clustering issues 

As k-means clustering and its variants are easy to implement and the per-

formance is usually acceptable so they are widely used in different fields. 

Under most circumstances, the performance of k-means clustering is rel-

atively good for most global shape clusters with numerical datasets. 

However, there three major problems for k-means clustering as below: 

 How to identify the number of clusters, i.e., the initial value of k? 

 How to identify the optimal initial centroids? 

 How to define the best similarity (or distance) measurements? 

These problems above sometime pose significant influences on the 

clustering results and performance. We introduce those problems and 

their corresponding resolutions in details as bellows. 
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3.3.1 The issue of setting the value of k 

In real applications, the actual number of clusters, i.e., the value of k, is 

always unknown and there is no efficient solution in theory to identify it, 

so a number of literatures are targeting on solving this issue. For exam-

ple, on-demand selection algorithm manually selects the value of k as the 

actual clusters number. Elbow method determines the value of k based 

on the vision of the SSE-k graph, and the gap statistic method can be 

regarded as a revised version of Elbow method. Besides, the rule of 

thumb method designs a simple equation to obtain the value of k. Below 

is a brief introduction of these methods above. 

1) On-demand selection method 

The on-demand selection method manually selects the value of k to run 

k-means clustering. For some datasets whose dimensions are low and 

visible, the value of k can be identified manually by requirements, or by 

the already known groups. For example, people can be partitioned by 

age, gender and citizenship, while shopping stores can be partitioned by 

revenue, type of products, or geographical locations. These attributes are 

always in a limited range and easy to be counted manually. 

2) Rule of thumb method  

In the real world, most datasets have a great number of dimensions so 

the value of k is not able to predict easily. In such circumstances, the rule 

of thumb method is a simple way to identify the value of k. Rule of thumb 

method is suitable to any type of datasets and it designs the following 

equation to obtain the value of k: 
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                                                    𝑘 ≈ √
𝑛

2
                                                    (2) 

Where n is the total number of data points. 

3) Elbow method  

A traditional method to determine the value of k for k-means clustering 

is called as elbow method, which is based on vision of a graph based on 

the relationship between the sum-squared-errors (SSE) and the number 

of clusters. The elbow method determines the value of k based on the 

vision of the SSE-k graph. E.g., we let the number of clusters start from 

k=2 in order to output the SSE, then let the value of k step up by one each 

time and reproduce the new SSE until k reaches the given limit. From the 

initial stage, the value of SSE decreases strikingly and then after some 

point it will keep relatively stable. The value of k at this point will be 

closest to the actual number of the clusters. If we put SSE as Y-axis and 

the value of k as X-axis then we get a graph of the relationship between 

SSE and k, see illustration below: 
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Fig. 3. X-axis: Number of clusters; Y-axis: SSE. The line in graph looks 

like an elbow and one can see the point in red circle indicates the most 

possible actual value of k. 

The graph above looks like an “elbow”, which is also the reason why 

it called elbow method. One drawback of this method is that the “elbow 

point” is not always explicit and sometimes there will be no or more than 

one “elbow point”. In such case, it is very difficult to identify the exact 

elbow point for proper value of k. 

4) Gap statistic method  

The gap statistic method can be regarded as a revised version of elbow 

method, which is to use a statistical procedure to improve the accuracy 

of it. From the research in [54], Gap statistic method is more accurate 

and easier to find the value of k than observing the inflection point by 

sight of eyes in Elbow method. 

3.3.2 The issue of centroid initialisation  

The simplest way of selecting initial centroids is to choose them at ran-

dom. However, the experiment results indicate that the random initiali-

sation of centroids puts a significant effect on the final clustering result, 

and sometime even causes bad or complete wrong partitions. An inap-

propriate initialisation of centroids often leads to converging to a local 

optimum and outputs incorrect clustering results [55]. Fig. 4 below 

shows an example of local optimum and incorrect clustering result that 

caused by random centroids initialisation. Therefore, how to choose the 

proper initial centroids is a very important problem for the k-means clus-

tering algorithm and its variants. 
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(a) (b) (c) 

Fig. 4*. Illustration of random centroid initialisation. (a) A given dataset 

with seven clusters. (b) Randomly initialised centroids. (c) Incorrect clus-

tering result.  

There are several attempts have been done and some effective algo-

rithms have been developed to address this issue and carry out the opti-

mal initial centroids under different circumstances,  for example, the hi-

erarchical centroid selection [56] and simple cluster seeking (SCS) [57]. 

We introduce them briefly as follows. 

1) Hierarchical centroid selection 

The hierarchical centroid selection [56] first runs basic k-means cluster-

ing multiple times with random initialisation so that a group of centroids 

will be produced, then this group of centroids will be regarded as input 

data points to carry out final centriods. To do this, the hierarchical cen-

troid selection algorithm first runs basic k-means clustering multiple 

times with random initialisation and produces multiple groups of cen-

troids, and then uses these groups of centroids as input data points and 

runs k-means clustering on it to output the final centroids. Table 3 below 

is the pseudo code for hierarchical centroid selection. 

* It is noteworthy this graph is downloaded from Internet. 
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      Table 3. The pseudo code of hierarchical centroid selection 

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑, 

            repeat times p, clusters number k; 

Output: k centriods; 

1:  Randomly select k data points as centroids; 

2:   Repeat step 1 for p times and get p groups of centroids, marked 

as Ci={c1,…,ck | i=[1,p]}; 

3:   Calculate the mean value of  Ci, C=mean(Ci), i=[1,p]; 

4:   Run k-means clustering on X with C as initial centroids. 

 

2) Simple cluster seeking (SCS) 

Simple cluster seeking (SCS) [57] selects the first centroid at random and 

marks it as k1, and then finds out the next data point with the maximal 

distance to k1 as the second centroid k2. This process repeats until k cen-

troids are generated. Simple cluster seeking is also the default algorithm 

of centroid selection for k-means function in Matlab software suite. 

3.3.3 The issue of similarity measurement 

The third issue of k-means clustering is how to define the similarity 

measurement between two data points. In other words, a larger distance 

between two data points means smaller similarity. In real applications, 

Euclidean distance and its variants are widely used by k-means clustering 

as similarity measurement, and other similarity measurements including 

cosine similarity, Pearson correlation coefficient, Jaccard similarity co-

efficient and averaged Kullback-Leibler divergence are also used widely.  
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Table 4 below shows the advantages and disadvantages of the com-

mon distance measurements above.  

Table 4. Distance metrics 

Distance 

Metric 
Formula 

Algorithms 

in which it 

is used 

Benefits Drawbacks 
Applica-

tion Area 

Euclidean √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)2 

- Partition 

based algo-
rithms 

- K Modes 

Easy to 

implement 

and 
Test 

- Results are 
greatly in-

fluenced by 

the largest 
value of 

variables 

- Poor per-
formance 

for image 

data, docu-
ment classi-

fication 

- Interval 

data analy-
sis in health 

of psychol-

ogy 

- DNA 

Analysis 

Manhat-

tan 
|(𝑥1 − 𝑥2)| + |(𝑦1 − 𝑦2)| 

Partition 

based 
algorithms 

Easily 

generalized 

to 
higher di-

mensions 

Does not 

work well 
for image 

data, Docu-
ment Classi-

fication 

In Inte-

grated 
Circuits 

Cosine  cos (𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
 

Ontology 

and Graph 

based algo-

rithms 

Handles 
both 

Continuous 

and categor-

ical varia-

bles 

Does not 

work well 

for nominal 

data 

Text  

Mining 

Jaccard  

Coeffi-

cient 
𝑑𝜇(𝐴, 𝐵) =

𝜇(𝐴∆𝐵)

𝜇(𝐴 ∪ 𝐵)
 

Neural  
Network 

Handles 

both 

Continuous 
and categor-

ical varia-

bles 

Does not 

work well 
for nominal 

data 

Document 

classifica-

tion 

3.4 Spectral clustering introduction 

Recently, spectral clustering [58] is becoming increasingly popular. 

Comparing with the traditional k-means clustering, spectral clustering is 

easy to implement and has excellent adaption to multiple types of da-

tasets, as well as good efficiency and performance. Spectral clustering 
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always performs better than k-means clustering in various applications, 

especially for data points in arbitrary shapes rather than global shapes. 

See Fig. 5 below for detailed illustration.  

   

Original data points Spectral clustering k-means clustering 

Fig. 5.  Comparison of k-means and spectral clustering results 

An important difference to k-means clustering is that spectral cluster-

ing pre-processes training data points by replacing low-order relationship 

or original data points with high-order relationship representation [59, 

60]. To implement this, spectral clustering, firstly, constructs a similarity 

matrix W, which contains the similarity relationship between every two 

data points. Then spectral clustering transfers this similarity matrix into 

a sparse adjacent matrix by using a kernel function, which also helps to 

reduce the computational complexity. In the next step, spectral clustering 

computes the matrix Laplacian and decompose the first k eigenvectors. 

Finally, spectral clustering outputs the final clustering result by applying 

k-means clustering on the dimension-reduced matrix that consists of the 

first k eigenvectors. We will discuss the details in theory in the following 

sections. 

In another words, the key idea of spectral clustering is to reformulate 

the problem of clustering into a problem of optimal graph cutting, i.e., 
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finding a solution that makes the sum of weight of edges between differ-

ent groups is minimal and the sum of weight of edges within same cluster 

is maximal. From most former research works, for a given set of data 

points X={ x1,…,xn }∈ R𝑛×𝑑  , if we define wi,j as the similarity between 

any pair of data points xi and xj, a nice approach of producing similarity 

matrix is to construct a undirected graph G = (V, E) as the representative. 

In this graph, vertices (marked as vi) are the representations of the origi-

nal data points (xi) and the edges between them denote the weight 

(marked as ei). If the similarity wi,j between any vertices pair meets some 

predefined criteria then these two vertices are connected (wi,j > 0).  

As a result, above problem is transformed to a problem of optimal 

graph cutting. To solve the graph cutting issues, what we need to solve 

is finding portions of a graph. After this, the weight of edges between 

different groups is as low as possible (which means the data points across 

different groups are maximal dissimilar), while the weight of edges 

within a group is as high as possible (which means the data points within 

the same group are maximal similar). 

3.4.1 Graph notation 

As mentioned in the last paragraph, if we let G = (V, E) be an undirected 

graph, then the vertices matrix are denoted by V= {v1, v2, …, vn} and the 

edges matrix are denoted by E={e1,e2,…,em}, m = n× (n-1)/2. We also 

define the graph G is weighted and the similarity between any two data 

points xi and xj as a non-negative scalar so wi,j ≥0. The similarity matrix 

W of graph G can be obtained as below: 

                               W = (wi,j)         (𝑖, 𝑗 ∈ [1, 𝑛])                            (3) 
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Where wi,j = wj,i because G is undirected, and wi,j = 0 if  two vertices, 

e.g., vi and vj, are not connected. When the similarity measurement is 

Euclidean distance, the similarity matrix is defined as: 

                   𝑤𝑖,𝑗 = √∑(𝑥𝑖,𝑡 − 𝑥𝑗,𝑡)2

𝑑

𝑡=1

     (𝑖, 𝑗 ∈ [1, 𝑛], 𝑡 ∈ [1, 𝑑])           (4) 

Where i and j, respectively, denote the i-th and j-th data point, and t 

denotes the t-th feature of this data point. 

Form the equation (4) above we can see the dimensions number of 

similarity matrix W is n by n, therefore its size will be very huge and the 

computational complexity will be extreme high when the dataset is mas-

sive. To address this problem and improve the efficiency, after the simi-

larity matrix has been produced spectral clustering transfers this similar-

ity matrix into a sparse matrix by using designated algorithms and kernel 

functions. In this thesis, we term this sparse similarity matrix as adjacent 

matrix and mark as A.  

In spectral clustering more than half calculations apply on the adjacent 

matrix A, hence the quality of the adjacent matrix will pose a significant 

influence on both the final clustering result and the processing time. It is 

very important and essential to take into account as many factors of the 

dataset as possible when constructing the adjacent matrix. Besides, one 

should evaluate the adjacent matrix carefully and accurately on a case-

by-case basis. In the past decades, many efforts have been done on con-

structing the similarity graph and adjacent matrix, as a sequence, there 

are various algorithms have been developed. Among these algorithms 
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three are common and widely used, i.e., ε-neighbourhood graph, k-near-

est neighbour graph, and full-connected graph [60]. We introduce them 

in details as follows. 

Firstly, the ε-neighbourhood graph algorithm connects two neigh-

boured vertices (marked as ei,j=1) if the pairwise distance is less than ε, 

and does not connect otherwise (marked as ei,j=0), where ε is a given 

threshold depending on the properties of the datasets. This makes all 

edges of a graph roughly have the same value (i.e., the value of ε) and 

leads to an unweighted graph, because there is no more information of 

the dataset incorporated to the graph during the construction.  

Secondly, the k-nearest neighbour graph algorithm connects vi and vj 

if vj is in the range of k nearest neighbours of vi, which results in a di-

rected graph due to the asymmetry of neighbourhood relationship, so that 

additional effort is required to make the graph symmetric. So far, there 

are two common ways to make the graph as undirected. The first one is 

to disregard the directions of the edges simply, which is usually termed 

as the k-nearest neighbour graph. The second way is to only connect ver-

tices vi and vj if both vi is one of the k-nearest neighbours of vj and vj is 

also among the k-nearest neighbours of vi, which is usually named as 

mutual k-nearest neighbour graph. The edges need to be weighted in both 

cases by the similarity vectors of the adjacent data points after connect-

ing the appropriate vertices. 

Thirdly, the full-connected graph algorithm simply connects all the 

vertices between each other with its similarity scalar, which is computed 

by similarity function. In this case, it is required that the similarity func-

tion itself is able to encode the major local neighbourhood relationships, 
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because the graph is expected to be able to model the local neighbour-

hood relationships. As we mentioned in chapter 2.6, popular kernel func-

tions include fisher kernel, graph kernel, kernel smoother, polynomial 

kernel, Gaussian kernel [61], sigmoid kernel, radial basis function kernel 

(RBF) and string kernel, among these the Gaussian kernel function al-

ready encodes the mainly local neighbourhood relationships so it has 

been using widely. Due to the demonstration above, in this paper, we 

choose the full-connected graph to construct the adjacent matrix to rep-

resent the original data points. Additionally, we choose the Gaussian ker-

nel as the similarity function. 

Moreover, another important matrix involved during the spectral clus-

tering is the degree matrix, which is usually marked as D. The degree 

matrix is defined as a diagonal matrix whose elements are the degree of 

each vertex. As we know, the degree of a vertex can be calculated as: 

                                         𝑑𝑖 = ∑ 𝑎𝑖,𝑗    (𝑖, 𝑗 ∈ [1, 𝑛])                                

𝑛

𝑗=1

(5) 

Where 𝑎𝑖,𝑗 denotes the i-th row and j-th column element of the adja-

cent matrix A. Therefore, the degree matrix D is defined as the following:  

                                D = (di,i)       (𝑖 ∈ [1, 𝑛])                                (6) 

In our second proposed clustering method, we compute the weight of 

features based on the degree matrix above. 

3.4.2 Matrix Laplacian 

The second step of spectral clustering is to produce the Laplacian matrix, 

marked as L. Laplacian matrices are deprived from the spectral graph 
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theory and have multiple variants. In this thesis, we mainly introduce two 

versions of Laplacian matrix:  Unnormalised Laplacian matrix and Nor-

malised Laplacian matrix [60]. 

Then unnormalised Laplacian matrix is defined as: 

                                                  𝐋 = 𝐃 − 𝐀                                                      (7) 

While the normalised Laplacian matrix is defined as: 

                                              𝐋 = 𝐃−
1
2(𝐃 − 𝐀)𝐃−

1
2                                       (8) 

Where D is the degree matrix, which is defined in Eq. (6). 

Finally, spectral clustering conducts dimension reduction by selecting 

k eigenvectors of L to construct matrix U, and then conducts k-means 

clustering on matrix U to output the final clustering result. We list the 

details of spectral clustering in Table 5. 

Table 5.  The pseudo code of spectral clustering  

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑; the cluster number k. 

Output: the cluster indicators of all data points and centroids C.  

1:   Compute the similarity matrix W of X by Eq. (3); 

2:   Compute the matrix Laplacian L by Eq. (8); 

3:   Compute the first smaller k eigenvectors of L, marked as  

E={ e1, …, ek };  

4:   Construct matrix U, where 𝐔 = 𝐄𝐓, U ∈ R𝑛×𝑘; 

5:   Run k-means clustering on U to output the cluster result C. 
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3.5 Summary of k-means clustering and SPCL 

In this chapter, we introduced the k-means clustering and spectral clus-

tering algorithms in details, including the objection functions of k-means 

clustering, implementations, advantages and disadvantages. We also dis-

cussed the common solutions for their shortcomings and the possible im-

provements. In the following chapter, we will introduce our proposed 

clustering methods based on these discussions.  
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Chapter. 4. Proposed Methods 

In the previous chapters, we introduced the fundamental concepts and 

algorithms involved in machine learning areas. We then introduced the 

common and widely used clustering algorithms such as partition based 

clustering, density based clustering, hierarchy based clustering, graph 

based clustering, kernel based clustering and grid based clustering, with 

their implementations and typical representing algorithms briefly. Fur-

thermore, we also discussed the famous and popular clustering algo-

rithms, e.g. k-means clustering and spectral clustering in details, fol-

lowed by their advantages and disadvantages. 

Although spectral clustering algorithm has a number of benefits than 

k-means clustering algorithm, it still incorporates k-means clustering as 

the final step to output the result. So spectral clustering is not able to 

avoid suffering from the limitations of k-means clustering. Furthermore, 

spectral clustering requires a similarity matrix whose dimension is n by 

n. For massive datasets, this similarity matrix is very large and always 

results in extreme high time cost when decomposing the eigenvectors 

and eigenvalues of the matrix Laplacian. Therefore, the computational 

complexity is huge and unacceptable for large datasets. Hence, in this 

thesis, we focus on both improving the clustering accuracy and reducing 

the computational complexity by proposing two novel clustering meth-

ods. These two methods focus on optimising the clustering mechanism 

and constructing efficient similarity matrices. Specially, the first method 

called adjacent matrix based k-means clustering method (AMKM) runs 

k-means clustering on the adjacent matrix directly, while the second 
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method called weighted adjacent matrix based k-means clustering 

method (WAMKM) takes into account the weight of the features. We 

introduce their graphical structures as follows: 

  
Fig. 6. The graphical structures of our proposed methods (left and middle) 

and spectral clustering (SPCL). It is noteworthy that green parts are com-

mon for all three methods. 

 

4.1 AMKM 

In this section, we introduce our first proposed clustering method, i.e., 

adjacent matrix based k-means clustering method (AMKM). The initial 

step in conducing spectral clustering is to construct the similarity matrix 

by transferring the data points into an undirected graph G = (V, E), where 

V={v1,v2,…,vn} denotes the vertices, and E={e1,e2,…,em} (m = n× (n-

1)/2) denotes the edges between vertices. The undirected graph is ab-

stracted and represented by the similarity matrix 𝐖 = (𝑤𝑖,𝑗)𝑖,𝑗=1
𝑛 , where 
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w𝑖,𝑗 ≥ 0 means the similarity between xi and xj under a given distance 

metric. The adjacent matrix A is constructed based on W by the follow-

ing methods. 

When constructing the adjacent matrix the most important problem is 

to model the relationships of local neighbourhood between data points. 

In the past decades, researchers have paid much effort on constructing 

the adjacent matrix, including ε-neighbourhood graph, k-nearest neigh-

bour graph, and fully connected graph [60]. For example, the ε-neigh-

bourhood graph connects two neighboured vertices (i.e., ei,j=1) if the 

pairwise distance is less than a given threshold ε, otherwise, it does not 

connect them (i.e., ei,j = 0). This makes all edges of a graph roughly have 

the same value (i.e., ε) and leads to an unweighted graph. The k-nearest 

neighbour graph connects vi and vj if vj is one of k nearest neighbours of 

vi, which results in a directed graph due to the asymmetry of neighbour-

hood relationship, so that additional effort is required to make the graph 

symmetric. The fully connected graph simply connects all the vertices 

with the similarity scalar between each other. In this paper, we choose to 

construct a fully connected graph, so that the most important step of con-

structing adjacent matrix is to represent the distance between data points 

by an appropriate similarity function. The widely used kernel functions 

include Polynomial kernel, Gaussian kernel [61] and Sigmoid kernel. 

When a Gaussian kernel function is used, the adjacent matrix is defined 

as follows: 

                              𝑎𝑖,𝑗 = 𝑒
−(

‖𝑤𝑖−𝑤𝑗‖
2

2

2∗𝜎2 )
         (𝑖, 𝑗 ∈ [1, 𝑛])                           (9) 
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After this, the next step of the spectral clustering is to compute the 

graph Laplacian, and then outputs the first k eigenvectors, which are used 

as the input of k-means clustering. However, when the dataset is rela-

tively large, the computational complexity is time consuming.  

To address this issue, in our first method AMKM, we directly run k-

means clustering on the adjacent matrix instead of the Laplacian eigen-

vector matrix. By this means, we can avoid both the computation cost of 

the Laplacian matrix and the optimization cost of eigenvalue decompo-

sition. As a result, the computing complexity in AMKM is reduced. This 

makes it possible to run on large datasets. The details of AMKM is 

briefly described in Table 6. 

Table 6. The pseudo code of our proposed AMKM method 

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑;  the cluster number k. 

Output: the cluster indicators of all data points and centroids C. 

1:     Calculate the similarity matrix W of X by Eq. (3); 

2:     Calculate adjacent matrix A by Eq. (9); 

3:     Run k-means clustering on A to output C.  

 

The experiment results show that our AMKM clustering algorithm 

outperforms the comparison clustering algorithms on more than 90% of 

the selected datasets. We illustrate the experiment results of AMKM and 

the comparisons algorithms in chapter 5, followed by analysing the per-

formance differences between different datasets. We implemented our 

clustering algorithm above in Matlab 2019, and we recorded the code in 

Appendix A. 
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4.2 Weighted AMKM 

In the last section, we introduced our improved k-means clustering 

method, i.e. adjacent matrix based k-means clustering method. In gener-

ally, when conducting clustering most algorithms consider the features 

of datasets on an equal-weight basis, which means that each feature is as 

same as important. However, in the real world, it is well known that a 

data point consists of multiple features with different priorities, and it is 

obvious that different features always put different influence on the clus-

tering result. Generally speaking, an important feature always affects 

even more on the clustering result than the unimportant features. Hence, 

this assumption of equal-weight normally affects the clustering results 

seriously since features are not likely to have equal importance in the real 

world applications. For example, we consider a database of adult dog 

species, which consists of four features, i.e., body size, body colour, tail 

shape and tail length. From the perspective of zoology, it is obvious that 

the feature of body size is more important than the feature of body colour. 

Since the body colour is a very common attribute for dogs, and it is very 

likely that dogs are able to have the same colour even they are from dif-

ferent species. Therefore, a white dog and a black dog (the similarity of 

body colour is very low) with the same body size (the similarity of body 

size is very high) are likely belong to the same species, but the inverse is 

not. This means the importance of body size is higher than the im-

portance of body colour, i.e., features have different importance or 

weight [62]. 
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From this perspective, we should give more priority on the feature 

that has more weight when constructing the adjacent matrix. In this chap-

ter, we introduce our second clustering method – weighted adjacent ma-

trix based k-means clustering method (WAMKM), which takes the 

weight of features into account, followed by its implementation in de-

tails. The weight is a term in statistics. In the data science area, weight is 

considered as a factor that is to measure how important a feature or at-

tribute is when comparing with others in the same dataset.  

In our WAMKM, we consider the importance of different features 

and compute the weight of each feature. When doing features extraction 

and constructing the similarity matrix, a common way used is that for 

each data point representation in the adjacent matrix A, each feature is 

represented by a numeric scalar. It has been discussed in the above par-

agraph that different feature always put different influence on the clus-

tering result. Therefore, we calculate the weight of each data point rep-

resentation in the adjacent matrix A and construct a weighted adjacent 

matrix (in this thesis we denote it as Z). Since there is no prior infor-

mation of weights of the data points is given, so in our method we calcu-

late the weight by the percentage of each feature among all features. Spe-

cifically, we first calculate the summation of all data points for each fea-

ture to produce the weight vector d (d= {d1,…,dn }), where dj is the sum-

mation of all elements in the j-th column of A, and then we normalise 

the weight vector by: 

                                𝐡 =
𝑑𝑗 

∑ 𝑑𝑗
𝑛
𝑗=1

           (𝑗 ∈ [1, 𝑛])                                        (10) 



Chapter. 4. Proposed Methods 

Page 36 of 68 

 

Eq. (6) makes the sum of all elements in h be 1, where every element 

hj in the j-th element represents the probability or the contribution of the 

j-th feature to all data points. In this way, we consider the feature im-

portance. Furthermore, we produce the weighted adjacent matrix Z by 

applying the weight vector h on each data point in adjacent matrix A: 

                               𝑧𝑖,𝑗 = 𝑎𝑖,𝑗 × h𝑗           (𝑖, 𝑗 ∈ [1, 𝑛])               (11) 

Finally, after the weighted adjacent matrix Z is produced, we apply k-

means clustering on it in order to output the clustering result, which is 

also the clustering result of the original dataset. The steps of WAMKM 

is briefly described in Table 7. 

Table 7. The pseudo code of our proposed WAMKM method 

Input: data points X={ x1,…,xn ∈ R𝑛×𝑑; the cluster number k. 

Output: the cluster indicators of all data points and centroids C. 

1:     Produce the similarity matrix W of X by Eq. (3); 

2:     Calculate the adjacent matrix A by Eq. (9); 

3:     Calculate the weight vector h by Eq. (10); 

4:     Calculate the weighted adjacent matrix Z by Eq. (11); 

5:     Run k-means clustering on Z to output C. 

 

The experiment results indicate that our WAMKM clustering algo-

rithm performs better than AMKM clustering algorithm on most selected 

datasets, in terms of all the three evaluation metrics. We illustrate the 

experiment results of WAMKM and the comparisons algorithms in chap-

ter 5, followed by our analysis in details. We also implemented the 

WAMKM in Matlab 2019, and we recorded the code in appendix B. 
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4.3 Summary of AMKM and WAMKM 

In this chapter, we introduced our two novel clustering methods, i.e., ad-

jacent based k-means clustering method and weighted adjacent based k-

means clustering method. The first method runs k-means clustering on 

the adjacent matrix directly, while the second method is a revised version 

of the first one, and takes into account the weight of features. Both meth-

ods outperformed the comparison clustering algorithms in terms of all 

the three evaluation metrics in our experiment on the selected datasets. 

 
 



Chapter. 5. Experimental Analysis 

Page 38 of 68 

 

Chapter. 5. Experimental Analysis 

In this thesis, we selected twelve datasets from various sources to evalu-

ate our two methods, comparing with the spectral clustering, k-means 

clustering and k-means++ clustering, in terms of three evaluation metrics 

which are ACC, NMI and Purity. We describe these datasets and evalu-

ation metrics in details as bellows. 

5.1 Datasets 

The selected datasets are from both UCI Machine Learning Repository 

and data mining centre website. These datasets belong to different cate-

gories and have wide range varieties of characteristics, which are able to 

fully evaluate the reliability and effectiveness of our proposed methods. 

We introduce these twelve datasets with their details as below: 

 20news consists of 3970 samples distributed in four classes and each 

sample consists of 8014 features. 

 Binalpha consists of 1404 samples distributed in 36 classes and each 

sample consists of 320 features. 

 Australian Credit Approval consists of 690 credit card applications 

within two classes, each sample consists of 14 attributes. 

 Website Phishing consists of 1353 samples with nine features for 

each. There are three classes which are 548 legitimate websites, 702 

phishing URLs and 103 suspicious URLs. 

 Dexter consists of 300 samples with 20000 features for each. This 

dataset has two classes. 
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 Diabetes is a collection of “Diabetes 130-US hospitals for years 

1999-2008 Data Set” which consists of medical data of clinical care 

at 130 hospitals in US integrated delivery across 10 years. This da-

taset has eight features. 

 Coil20Data consists of 1440 samples distributed in 20 classes and 

each sample has 1024 features. 

 Cardiotocography is a collection of 2126 fetal cardiotocograms sam-

ples and 41 diagnostic features for each sample. This dataset can be 

used either for 10-class or 3-class experiments. In our experiment, 

we select three classes. 

 Spambase consists of two categories, i.e. spam e-mails and non-spam 

e-mails. The spams were from postmasters and individuals marked 

as spam, while non-spam e-mails were from normal personal or work 

addresses. There are 57 features for each example in this dataset. 

 Parkinson speech consists of 1040 samples of voice recording and 

each sample consists of 28 features. Moreover, the features include 

multiple types of sound recordings from male and female persons. 

 Solar flare consists of 1066 samples distributed in six classes and 

each sample consists of 12 features. 

 German credit data consists of 1000 samples distributed in two clas-

ses and each sample consists of 23 features. 

 

We summarise the datasets used with their details in Table 8. 
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Table 8. Summary of the datasets used in this paper 

     Datasets Samples Features Classes 

20news 3970 8014 4 

Binalpha 1404 320 9 

Australian Credit Approval 690 14 2 

Website Phishing  1353 9 3 

Dexter 300 20000 2 

Diabetes 768 8 2 

Coil20Data 1440 1024 20 

Cardiotocography  2126 41 3 

Spambase  4601 57 2 

Parkinson Speech  1040 28 2 

Solar Flare 1066 12 6 

German Credit Data 1000 23 2 

5.2 Comparison algorithm 

In this thesis, we use the clustering algorithms below as comparison al-

gorithms. 

 k-means clustering is the most widely and commonly used clustering 

algorithm, which aims to group the data points as k clusters where 

the data points that belong to a same cluster are as similar as possible 
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and data points in the different clusters are as dissimilar as possible. 

In our implementation, we use the Matlab build-in function, with the 

“distance” parameter set to “Euclidean distance” and the “initial cen-

troid position selection algorithm” parameter set to “cluster”. 

 k-means++ clustering is a revised version of k-means clustering 

which uses a heuristic strategy to find centroids. In some cases, k-

means++ clustering converges faster and achieves a lower sum of 

SSE, compared to standard k-means clustering algorithm.  

 Normalised spectral clustering  (SPCL) [60] is a widely used variant 

of the spectral clustering algorithms. Specifically, it applies k-means 

clustering on the normalised eigenvector matrix by normalizing the 

row sum to have the norm of 1. 

5.3 Evaluation Method 

In our experiment, we use the 10-fold cross validation method [63] to 

evaluate all the algorithms. Specifically, for a given dataset, we first di-

vide it into ten subsets randomly, and then we use nine subsets as input 

to run our clustering methods and use the remaining one subset as ground 

truth to test the clustering results. When comparing the clustering results 

of our methods with the ground truth, an important thing is the data 

space. In spectral clustering, AMKM and WAMKM, the original data 

points have been transformed into a new data space in which the high-

order similarity replaces the low-order similarity. Therefore, when cal-

culating the evaluation metrics the ground truth also required to be trans-



Chapter. 5. Experimental Analysis 

Page 42 of 68 

 

formed into high-order similarity space, respectively. For k-means clus-

tering this is not required since the clustering process is done on the orig-

inal dataset itself.  

5.4 Parameter Setting 

When constructing the adjacent matrix, the adjustable parameter sigma 

(𝜎) plays a vital influence on the performance of kernel function and the 

clustering results, hence it should be tuned carefully at hand [64]. There 

is no universal method in theory explains how to choose 𝜎 for all da-

tasets. However, from former experience we know that the parameter 𝜎 

governs the connectedness between data points and is different for every 

dataset, so it is closely related to the dataset itself. In our experiment, we 

tested a range of values of parameter 𝜎 then selected a model that applies 

for all datasets. Specifically, we tested the parameter 𝜎  in the range 

of 𝜎 ∈ [10−5, . . . 1014] on all datasets, and finally we selected the mean 

value of the similarity matrix W as 𝜎 for evaluation: 

                                              𝜎 = 𝑚𝑒𝑎𝑛(𝐖)                                     (12) 

Where W is the similarity matrix calculated by Eq. (3). 

5.5 Evaluation Measurement 

To fully capture different aspects of the clustering result, we employed 

the following evaluation metrics, such as  accuracy (ACC), normalised 

mutual information (NMI) and purity (PUR) [65]. We report the defini-

tions of the involved evaluation metrics as below. 

Accuracy (ACC) is defined as: 
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                                                 ACC =
𝑁cor

𝑁
                                                  (13) 

Where Ncor denotes the number of data points falling in the correct 

groups. 

 NMI takes into account the tradeoff between quality and clusters 

number [66]. It is defined as: 

                                      NMI = 2
𝑀(𝑋i,𝑋j)

𝐸(𝑋i)+𝐸(,𝑋j)
                                     (14) 

Where M (Xi, Xj) is the mutual information between two variables, 

and E (⋅) denotes the entropy of the variable. 

PUR is used to summarise the percentage of truly classified data points 

in each cluster comparing with the ground truth. It is defined as: 

                                         PUR = ∑
Si

n

k

i=1
𝑃i                                     (15) 

Where k is number of clusters and Si is the number of data points of 

the i-th cluster. Pi denotes the distribution of correctly partitioned data 

points in all clusters [65]. 

5.6 Experiment Result 

Fig. 7a and Fig. 7b show the experiment results of ACC of our proposed 

WAMKM method under different settings of parameter 𝜎 on each da-

taset, and Fig. 8a and Fig. 8b are the results for AMKM.  

Figs. 9-11 show the results of ACC, NMI and PUR in each iteration 

on all 12 datasets, and Fig. 12 summarises the results of Figs. 9-11.  
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(a) 20news (b) Binalpha 

  
(c) Australian Credit Approval (d) Website Phishing 

 
  

(e) Dexter (f) Diabetes 

Fig. 7a. ACC trends of our WAMKM emthod with different 𝝈 values. 
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(g) Coil20Data (h) Cardiotocography 

  
(i) Spambase (j) Parkinson Speech 

  
(k) Solar Flare (l) German Credit Data 

Fig. 7b. ACC trends of our WAMKM emthod with different 𝝈 values. 
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(a) 20news (b) Binalpha 

  
(c) Australian Credit Approval (d) Website Phishing 

   
(e) Dexter (f) Diabetes 

Fig. 8a. ACC trends of AMKM with different 𝝈 values. 
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(g) Coil20Data (h) Cardiotocography 

  

(i) Spambase (j) Parkinson Speech 

  
(k) Solar Flare (l) German Credit Data 

Fig. 8b. ACC trends of AMKM with different 𝝈 values. 
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(a) 20news (b). Binalpha    (c) Australian Credit Approval 

      
      (d) Website Phishing     (e) Dexter        (f) Diabetes 

     
(g) Coil20Data   (h) Cardiotocography (i) Spambase 

      
        (j) Parkinson Speech (k) Solar Flare         (l) German Credit Data 

          Fig. 9. ACC variations of all methods in each iteration of every dataset.  
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  (a) 20news (b) Binalpha    (c) Australian Credit Approval 

     
          (d) Website Phishing    (e) Dexter   (f) Diabetes 

      
    (g) Coil20Data            (h) Cardiotocography (i) Spambase 

      
       (j) Parkinson Speech (k) Solar Flare        (l) German Credit Data 

       Fig. 10. NMI variations of all methods in each iteration of every dataset. 
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           (a) 20news            (b) Binalpha    (c) Australian Credit Approval 

    

          (d) Website Phishing            (e) Dexter               (f) Diabetes 

   
           (g) Coil20Data            (h) Cardiotocography            (i) Spambase 

      
       (j) Parkinson Speech             (k) Solar Flare          (l) German Credit Data 

              Fig. 11.   PUR variations of all methods in each iteration of every dataset. 
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   (a) 20news    (b) Binalpha     (c) Australian Credit Approval 

      
(d) Website Phishing      (e) Dexter   (f) Diabetes 

      
(g) Coil20Data     (h) Cardiotocography  (i) Spambase 

   
(j) Parkinson Speech   (k) Solar Flare  (l) German Credit Data 

Fig. 12. The summarised results of all methods on every dataset. 
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5.7 Result analysis 

Based on our experimental results in Figs. 7-11, we have the following 

observations. 

First, our proposed methods are sensitive to the setting parameter 𝜎, 

which controls the similarity between two data points. For example, the 

ACC results first keep stable while varying the value of 𝜎 from 10-5 to 

100, and then begin increasing gradually until arriving their peaks, i.e., 

1010 for the value of 𝜎 on some datasets, such as 20news, Binalpha, Aus-

tralian Credit Approval, Coil20Data, Parkinson Speech and Solar Flare. 

The ACC results of show the fluctuation trends when 𝜎 is between 100 

and 1010, and then keep stable while the value of 𝜎 is out of such a range, 

on other datasets, such as Website Phishing, Diabetes and Spambase. It 

is noteworthy that the corresponding results of our proposed AMKM 

have the similar trends as in Fig. 8a and Fig. 8b. Moreover, our proposed 

WAMKM method is more sensitive to the value of the parameter 𝜎, 

compared with our proposed AMKM method. In nutshell, the ACC re-

sults on our selected datasets vary while the value of parameter 𝜎 is in 

the range between 10-1 and 1010. The possible reason could be that the 

elements of the adjacent matrix will be all nearly zero when the value of 

parameter 𝜎 is too small or too large. Hence, it is essential to tune the 

value of parameter  𝜎 carefully and accurately. Moreover, to archive the 

best clustering performance, different datasets should use different 

ranges of 𝜎.  

Second, our proposed methods outperformed the comparison methods 

on all datasets, in terms of three clustering evaluation metrics. For exam-

ple, our proposed methods improved on average by 5.51%, 25.99%, and 
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3.85% respectively, compare with spectral clustering, k-means and k-

means++ clustering algorithms, in terms of ACC, NMI and PUR, on all 

datasets. In particular, our method achieved the most improvement by 

17.4% in terms of ACC on dataset Coil20Data, 197.2% in terms of NMI 

on dataset Australian Credit Approval, and 17.9% in terms of PUR on 

dataset 20news. Furthermore, our proposed methods outperformed the 

comparison methods in terms of ACC, NMI, and Purity, respectively, on 

ten datasets, eight datasets, and nine datasets of total twelve datasets.  

The reason is that our proposed methods generated better representa-

tions, compared with the use of spectral representation of SPCL and the 

use of original features in both k-means and k-means ++ clustering. It 

implies that representation learning is very important for clustering anal-

ysis, which was demonstrated in the literature [22] [40]. 

Last but not least, our proposed WAMKM method has no significant 

improvements, compared with our proposed AMKM method, in terms 

of all three evaluation metrics. The possible reason is that the feature 

weight is seriously related to the quality of the similarity matrix, which 

is sensitive to the setting of the parameter 𝜎. However, our proposed 

WAMKM method is more sensitive than our proposed method AMKM, 

in terms of the variations of the parameter 𝜎. 
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Chapter. 6. Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we have proposed two clustering methods to address the 

issues of previous k-means clustering. To achieve this, we first devised 

an adjacent matrix and a weighted adjacent matrix, respectively, fol-

lowed by conducting k-means clustering on the resulted adjacent matrix. 

Finally, we evaluated the clustering results against three comparison 

clustering algorithms, i.e., k-means, k-means++, and normalised spectral 

clustering algorithms, in terms of three evaluation metrics. As a result, 

our proposed clustering methods outperform the comparison algorithms 

in our experiments. 

6.2 Future Work 

However, we found that the experiment results of our proposed methods 

are sensitive to parameter 𝜎, which is used to construct the adjacent ma-

trix. Inappropriate selected parameters always result in bad or complete 

wrong clustering results. This means that our proposed clustering meth-

ods are data-driven and their performance varies on different types of 

datasets. Hence, in our future work, we will extend our research to dy-

namically select suitable parameters and develop a novel algorithm to 

select the best parameter 𝜎 based on the dataset itself, instead of the 

mean value of similarity matrix used in this thesis. 
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Appendices 

We implemented our clustering methods in Matlab 2019a, and we attach 

our implementing code in this part. 

Appendix A. Matlab code for AMKM 

function [ACC, NMI, Purity, ARI,telabel, center] = mySPCL2(Xtr,Xte,gnd,opt) 

%% example clear;clc; opt.sigma = 1:5; opt.k = 10;opt.i = 1; opt.spclType = 2;  
%% [ACC, NMI, Purity, ARI, telabel, center] =  

%% mySPCL2(rand(3000,50),rand(500,50),[ones(300,1);2*ones(200,1)],opt) 

 
%% calculate the similarity matrix 

 

W = EuDist2(Xtr,Xtr); 
 

switch opt.para_tuning 

    % parameter tuning    
    case 1  

        sigma=opt.sigma(opt.para_pos);         

    % no parameter tuning    
    case 0  

        sigma = mean(mean(W)); 

end 
 

 

% calculate the adjacent matrix 
W = exp(-W.^2 ./ (2*sigma^2)); 

% process the test data to match with the training data space  

Xte = EuDist2(Xte,Xtr); 
Xte = exp(-Xte.^2 ./ (2*sigma^2)); 

  

 
for j=1:opt.kmeans_repeat 

    %% run k-means clustering on adjacent matrix directly 

    [~,center] = kmeans(W, opt.k, 'start', 'cluster'); 
    % process the test data to match with the training data space 

    % dist_all denotes distances of all data points in test data to clusters centres; 
    dist_all    = EuDist2(center,Xte); 

    % select the minimum distance to a centre and assign class label to this centre; 

[~,telabel] = min(dist_all);  
telabel          = telabel'; 

 

% align the clustering outcome with ground truth 
res                = bestMap(gnd,telabel); 

 

    %% calculate the temp evaluation metric 
    tmpACC (j) = length(find(gnd==res))/length(gnd); 

    tmpNMI (j)  = nmi(gnd,telabel); 

    tmpARI (j)   = clustereval(gnd,telabel, 'ari') ; 
    tmpPurity(j) = Calculate_purity(gnd,telabel); 

end 
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 %% calculate the evaluation metric 
ACC    = mean(tmpACC); 

NMI    = mean(tmpNMI); 

ARI     = mean(tmpARI) ; 
Purity  = mean(tmpPurity); 

end 

 

Appendix B. Matlab code for WAMKM 

function [ACC, NMI, Purity, ARI,telabel, center] = mySPCL1(Xtr,Xte,gnd,opt) 

%% example clear;clc; opt.sigma = 1:5; opt.k = 10;opt.i = 1; opt.spclType = 2;  
%% [ACC, NMI, Purity, ARI, telabel, center] =  

%% mySPCL1(rand(3000,50),rand(500,50),[ones(300,1);2*ones(200,1)],opt) 

%% calculate the similarity matrix 
W = EuDist2(Xtr,Xtr); 

 

switch opt.para_tuning 
    % parameter tuning    

    case 1  

        sigma=opt.sigma(opt.para_pos);         
    % no parameter tuning    

    case 0  

        sigma = mean(mean(W)); 
end 

% calculate the adjacent matrix 

W    = exp(-W.^2 ./ (2*sigma^2)); 
% calculate degree matrix 

degs = sum(W, 2); 

D    = sparse(1:size(W, 1), 1:size(W, 2), degs); 
  

% calculate weight matrix  

weight=diag(D)/sum(diag(D)); 
ww     = repmat(weight',size(W,1),1); 

W=W.*ww; 

% process the test data to match with the training data space  
Xte = EuDist2(Xte,Xtr); 

Xte = exp(-Xte.^2 ./ (2*sigma^2)); 

Xte = Xte.*repmat(weight',size(Xte,1),1); 
  

for j=1:opt.kmeans_repeat 

    %% run k-means clustering on weighted adjacent matrix directly 
    [~,center] = kmeans(W, opt.k, 'start', 'cluster'); 

    % dist_all denotes distances of all data points in test data to clusters centres; 

    dist_all    = EuDist2(center,Xte); 
    % select the minimum distance to a centre and assign class label to this centre; 

    [~,telabel] = min(dist_all);  

telabel     = telabel'; 
 

% align the clustering outcome with ground truth 

res         = bestMap(gnd,telabel); 

     

    % calculate the temp evaluation metric 

    tmpACC (j)  = length(find(gnd==res))/length(gnd); 
    tmpNMI (j)  = nmi(gnd,telabel); 

    tmpARI (j)  = clustereval(gnd,telabel, 'ari') ; 
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    tmpPurity(j)= Calculate_purity(gnd,telabel); 

     
end 

%% calculate the evaluation metric 

ACC    = mean(tmpACC); 
NMI    = mean(tmpNMI); 

ARI    = mean(tmpARI) ; 

Purity = mean(tmpPurity); 
end 

 

Appendix C. Matlab code for k-means clustering 

function []= Do_K_means_CV(dataset) 
%% example: clear;clc;Do_K_means_CV(12) 

 

%% tidy the output format 
format short;  

%% initialise parameters 

iteration = 10; %repeat times 
fold_k    = 10; % k fold number 

kmeans_repeat = 10; % k-means run times. 

  
  

%% initialise matrix 

ACC=zeros(iteration,fold_k); 
Purity=zeros(iteration,fold_k); 

NMI=zeros(iteration,fold_k); 

ARI=zeros(iteration,fold_k); 
  

%% dataset selection 

switch dataset 

    case 1 

        load 20news_uni_10fold.mat 

    case 2 
        load binalpha_uni_10fold.mat 

    case 3 

        load australian_uni_10fold.mat 
    case 4 

        load Website_Phishing.mat 

    case 5 
        load Contraceptive_Method_Choice.mat 

    case 6 

        load diabetes_uni_10fold.mat 
    case 7 

        load Coil20Data_25_uni_10fold.mat 

    case 8 
        load Cardiotocography.mat 

    case 9 

        load Spambase_10fold.mat 
    case 10 

        load Parkinson_Speech_Dataset_10fold.mat 

   case 11 
        load Solar_Flare_data2.mat 

    case 12 

        load German_Credit_Data.mat 
end 
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for ite = 1:iteration 
  

    tic 

    for i = 1:fold_k 
         

        test  = ind(:,ite) == i; 

        train = ~test; 
        trdata = Data(train,:); 

        tedata = Data(test,:); 

        trgnd = Y(train,:); 
        tegnd = Y(test,:); 

         

        %% data training process 

        for j=1:kmeans_repeat 

            [~,center] = kmeans(trdata, length(unique(trgnd)), 'start', 'cluster'); 

            % dist_all denotes distances of all data points in test data to clusters centres; 
            dist_all    = EuDist2(center,tedata); 

            % testing process 

            % select the minimum distance to a centre and assign class label to this centre; 
            [~,telabel] = min(dist_all);  

            telabel       = telabel'; 

            res    = bestMap(tegnd,telabel); 
            tmpACC (j)   = length(find(tegnd==res))/length(tegnd); 

            tmpNMI (j)   = nmi(tegnd,telabel); 

            tmpARI (j)   = clustereval(tegnd,telabel, 'ari') ; 
            tmpPurity(j) = Calculate_purity(tegnd,telabel); 

             

        end 
         

        ACC (ite,i)   = mean(tmpACC); 

        NMI (ite,i)   = mean(tmpNMI); 
        ARI (ite,i)   = mean(tmpARI) ; 

        Purity(ite,i) = mean(tmpPurity); 

      
    end 

toc 

 
end 

  

currenttime = datestr(now); 
currenttime(currenttime==':')=';'; 

save(['./Results_Kmeans/Result_kmeans-',currenttime,'-',num2str(dataset)],'ACC','NMI','Purity','ARI') 

  
%% for a glance of the results. 

mACC=mean(ACC(:)) 

sACC=std(ACC(:)) 
 



Appendices 

Page 59 of 68 

 

Appendix D.  Matlab code for performance evaluation 

function []= Do_SC_cv(dataset,method,para_tuning) 
%% example: clear;clc;Do_mySC_cv(12,1,0) 

% % change opt.method to choose algorithm 

 
% tidy the output format 

format short;  

  
iteration = 10; % repeat times 

fold_k    = 10; % k fold number 

%% 0-spectral clustering; 1-weighted W; 2-k-means on W; 3-k-means on L 
opt.method=method;  

opt.cvk=5; 
opt.cvind=[]; 

opt.kmeans_repeat=3; 

opt.para_tuning = para_tuning;%%%   para_tuning: 1: tuning, 0: no_tuning 
opt.i=0; 

opt.spclType=2;%% set clustering algorithm, 1=spectral clustering; 2=k-means clustering 

  
%% initialise martix 

ACC=zeros(iteration,fold_k); 

Purity=zeros(iteration,fold_k); 
NMI=zeros(iteration,fold_k); 

ARI=zeros(iteration,fold_k); 

best_para=zeros(iteration,fold_k); 
%% initialise sigma 

opt.sigma = 1:5; 

 
 

switch dataset 

    case 1 
        load 20news_uni_10fold.mat 

    case 2 

        load binalpha_uni_10fold.mat 
    case 3 

        load australian_uni_10fold.mat 

    case 4 
        load Website_Phishing.mat 

    case 5 

        load Contraceptive_Method_Choice.mat 
    case 6 

        load diabetes_uni_10fold.mat 

    case 7 
        load Coil20Data_25_uni_10fold.mat 

    case 8 

        load Cardiotocography.mat 
    case 9 

        load Spambase_10fold.mat 

    case 10 
        load Parkinson_Speech_Dataset_10fold.mat 

    case 11 

        load Solar_Flare_data2.mat 
    case 12 

        load German_Credit_Data.mat 

end 
  

for ite = 1:iteration 



Appendices 

Page 60 of 68 

 

  

    tic 
    for i = 1:fold_k 

         

        test  = ind(:,ite) == i; 
        train = ~test; 

        trdata = Data(train,:); 

        tedata = Data(test,:); 
        trgnd = Y(train,:); 

        tegnd = Y(test,:); 

         
         

        [best_para(ite,i),ACC(ite,i),NMI(ite,i), Purity(ite,i),ARI(ite,i)]... 

            = CV_train_cv1(trdata,trgnd,tedata,tegnd,opt); 

         

    end 

    toc 
end 

  

currenttime = datestr(now); 
currenttime(currenttime==':')=';'; 

save(['./Results/LRSR_v1-',currenttime,'-',num2str(dataset),'-',num2str(method),'-

',num2str(para_tuning)],... 
    'ACC','NMI','Purity','ARI','best_para','method','para_tuning') 

  

%% for a glance of the results. 
mACC=mean(ACC(:)) 

sACC=std(ACC(:)) 

 
function [best_para,ACC,NMI,Purity,ARI] = CV_train_cv1(trdata,trgnd,tedata,tegnd,opt) 

  

switch opt.para_tuning 
    case 0 % no tuning 

        num_cluster = unique(trgnd); 

        opt.nClass=length(num_cluster); 
        opt.k=opt.nClass; 

        best_para=0;      

    case 1 % tuning 
        num_cluster = unique(trgnd); 

        opt.nClass=length(num_cluster); 

        opt.k=opt.nClass; 
         

        temp_pos = []; 

        tempcvind=[]; 
        opt.cvind = zeros(size(trdata,1),1); 

         

        for z = 1:length(num_cluster) 
            temp_pos = find(trgnd == num_cluster(z)); 

            tempcvind = crossvalind('Kfold',length(temp_pos),opt.cvk); 

            opt.cvind(temp_pos) = tempcvind; 
            temp_pos = []; 

            tempcvind=[]; 
        end 

                

        ACC=zeros(length(opt.sigma),opt.cvk); 
        for a=1:length(opt.sigma) 

            opt.para_pos=a; 

            for b = 1:opt.cvk 
                test  = opt.cvind == b; 
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                train = ~test; 

                 
                Xte=trdata(test,:); 

                Xtr=trdata(train,:); 

                Xgnd=trgnd(test); 
                switch opt.method 

                    case 0 

                        ACC(a,b) = spcl(Xtr,Xte,Xgnd,opt); 
                    case 1 

                        ACC(a,b) = mySPCL1(Xtr,Xte,Xgnd,opt); 

                    case 2 
                        ACC(a,b) = mySPCL2(Xtr,Xte,Xgnd,opt); 

                    case 3 

                        ACC(a,b) = mySPCL3(trdata,tedata,trgnd,opt); 

                end 

                 

            end 
        end 

         

        %% best parameter combination 
        [~, ind] = max(ACC(:)); 

        [m,~] = ind2sub(size(ACC),ind); 

        best_para=opt.sigma(m); 
        opt.para_pos = m; 

   

end 
 

switch opt.method 

    case 0 
        [ACC, NMI, Purity, ARI] = spcl(trdata,tedata,tegnd,opt); 

    case 1 

        [ACC, NMI, Purity, ARI] = mySPCL1(trdata,tedata,tegnd,opt); 
    case 2 

        [ACC, NMI, Purity, ARI] = mySPCL2(trdata,tedata,tegnd,opt); 

    case 3 
        [ACC, NMI, Purity, ARI] = mySPCL3(trdata,tedata,trgnd,opt); 

end 
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