
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

RESEARCH ON

ADJACENT MATRIX FOR

K-MEANS CLUSTERING

A thesis presented for the degree of

Master of Computer Science

In

School of Natural and Computational Sciences

At Massey University, Auckland

New Zealand

By

Jukai Zhou (z.jukai@massey.ac.nz)

June 2019

Research on adjacent matrix for k-means clustering

 i

Acknowledgement

Firstly, I would express my genuine gratitude to my supervi-

sor Prof. Sean Zhu for his continuous support during the en-

tire duration of my study and research of this Master degree.

His immense knowledge, patience and enthusiasm helped me

across all the aspects of my research and study, as well as he

guided me throughout my thesis for the numerous consulta-

tions of presentation and layout.

Besides my supervisor, I would like to say thanks to my

manager and my colleagues as well as the head of school, for

their full understanding and support, in both workload ar-

rangement and funding of finance. I would also like to ex-

pand my gratitude to all people who have helped me in com-

posing this thesis directly and indirectly.

Last but not the least, I would like to say thanks to my

parents and my family for their full supporting me in study-

ing this Master qualification. Without their encouragements,

it is not possible to accomplish my study in time.

Research on adjacent matrix for k-means clustering

 ii

Abstract

Machine learning is playing a vital role in our modern world. Depending

on whether the data has labels or not, machine learning mainly contains

three categories, i.e., unsupervised learning, supervised learning, and

semi-supervised learning. As labels are usually difficult and expensive to

be obtained, unsupervised learning is more popular, compared to super-

vised learning and semi-supervised learning. Moreover, k-means cluster-

ing is very popular in the domain of unsupervised learning. Hence, this

thesis focuses on the improvement of previous k-means clustering.

K-means clustering has been widely applied in real applications due

to its linear time complexity and ease of implementation. However, k-

means clustering is limited to its applicability due to the issues, such as

identification of the cluster number k, initialisation of centroids, as well

as the definition of similarity measurements for evaluating the similarity

between two data points. Hence, k-means clustering is still a hot research

topic in unsupervised learning. In this thesis, we propose to improve tra-

ditional k-means clustering by designing two different similarity matrices

to represent the original data points.

The first method first constructs a new representation (i.e., an adjacent

matrix) to replace the original representation of data points, and then runs

k-means clustering on the resulted adjacent matrix. In this way, our pro-

posed method benefits from the high-order similarity among data points

to capture the complex structure inherent in data points as well as avoids

the time-consuming process of eigenvectors decomposition in spectral

clustering.

The second method takes into account the weights of the features to

improve the former method, based on the assumption that different fea-

tures contain different contributions to the construction of the clustering

models. As a result, it makes the clustering model more robust, compared

to the first method as well as previous clustering methods.

Finally, we tested our proposed clustering methods on public UCI da-

tasets. Experimental results showed the clustering results of our proposed

methods significantly outperformed the comparison methods in terms of

three evaluation metrics.

Keywords: k-means clustering, similarity measurement, adjacent matrix,

unsupervised learning.

Research on adjacent matrix for k-means clustering

 iii

Table of Contents

Acknowledgement ... i

Abstract ... ii

Chapter. 1. Introduction... 1

1.1 Background ... 1

1.2 Unsupervised learning .. 4

1.3 Research motivation.. 5

1.4 Summary ... 7

Chapter. 2. Literature Review ... 8

2.1 Partition based clustering algorithms .. 8

2.2 Hierarchy based clustering algorithms .. 8

2.3 Density based clustering algorithms ... 9

2.4 Graph based clustering algorithms .. 10

2.5 Grid based clustering algorithms .. 11

2.6 Kernel based algorithms ... 12

2.7 Summary of clustering algorithm ... 12

Chapter. 3. Preliminary and Motivation .. 13

3.1 Notations ... 13

3.2 K-means clustering ... 13

3.3 K-means clustering issues ... 16

3.4 Spectral clustering introduction .. 22

3.5 Summary of k-means clustering and SPCL .. 29

Chapter. 4. Proposed Methods .. 30

4.1 AMKM ... 31

4.2 Weighted AMKM ... 34

4.3 Summary of AMKM and WAMKM .. 37

Chapter. 5. Experimental Analysis .. 38

5.1 Datasets ... 38

5.2 Comparison algorithm .. 40

5.3 Evaluation Method .. 41

Research on adjacent matrix for k-means clustering

 iv

5.4 Parameter Setting .. 42

5.5 Evaluation Measurement .. 42

5.6 Experiment Result ... 43

5.7 Result analysis .. 52

Chapter. 6. Conclusion and Future Work 54

6.1 Conclusion .. 54

6.2 Future Work .. 54

Appendices ... 55

Appendix A. Matlab code for AMKM .. 55

Appendix B. Matlab code for WAMKM .. 56

Appendix C. Matlab code for k-means clustering ... 57

Appendix D. Matlab code for performance evaluation 59

References .. 62

Chapter. 1. Introduction

Page 1 of 68

Chapter. 1. Introduction

1.1 Background

With the development of information technology, the society generates

a huge number of data. Normally, it is essential to obtain knowledge from

the data for serving the society. However, manually mining useful

knowledge from massive data is usually time-consuming and difficult as

the number of the data is massive and the structure of the data is complex.

Machine learning is a good alternative to address this issue as it could

enable computers automatically obtaining knowledge by exploring the

structure inherent in the data, and has been becoming increasingly pop-

ular in our real life. More specifically, machine learning usually uses two

steps to mine knowledge from the data, i.e., the training process and the

testing process. In the training process, machine learning methods are

designed to handle the training data for outputting a model, while the

result model is used to conduct prediction in the testing process. Based

on different criteria, different machine learning methods satisfy various

requirements. The popular machine learning methods include anomaly

detection, dimensionality reduction, clustering, classification, regres-

sion, and so on. Depending on whether the training data is labelled or

not, existing machine learning methods are typically divided into three

categories, i.e., unsupervised learning, supervised learning, and semi-su-

pervised learning [1]. We list the category of machine learning methods

in Fig. 1 and introduce the details as follows.

Chapter. 1. Introduction

Page 2 of 68

Fig. 1. The category of machine learning methods.

Unsupervised learning models the underlying structure or distribution

of the data without the need of labels [2]. It allows to deal with the data

without knowing its internal relationship, aim at automatically outputting

the structure/pattern of the data. Unsupervised learning has been applied

in all kinds of applications, such as motion, image and voice recognition,

search engine and online security, social media and health care, financial

and marketing services, and so on. The typical methods of unsupervised

learning include anomaly detection, dimensionality reduction, cluster-

ing, and so on.

Supervised learning captures the relationship between input features

of the data and their corresponding labels [3]. Here we let X and Y de-

note the data and label matrices, n, d and c denote the matrix dimensions,

respectively. In the training process, given a feature training matrix 𝐗 ∈

𝐑𝑛×𝑑 where each row represents a sample or a data point, and the corre-

sponding decision matrix 𝐘 ∈ 𝐑𝑛×𝑐, supervised learning tries to learn the

relationship between X and Y, i.e., Y = f (X). In the testing process, the

Chapter. 1. Introduction

Page 3 of 68

learnt relationship f (X) can be used to obtain the prediction f (Xt) for the

testing matrix Xt. The most popular methods of supervised learning in-

clude regression methods (i.e., every element of Y is a continuous value)

and classification methods (i.e., every element of Y is a discrete value).

The typical classification methods include linear classifiers, support vec-

tor machine (SVM) [4], quadratic classifiers, kernel estimation, boost-

ing, decision tree [5], neural networks, learning vector quantization, etc.

The typical regression models include ridge regression, linear regression,

lasso regression, elastic-net regression, logistic regression, polynomial

regression and stepwise regression, etc. [6].

Semi-supervised learning is a special case that combines the tech-

niques of both unsupervised learning and supervised learning, with a

large amount of unlabeled data and less labelled data for the training pro-

cess [7]. Supervised learning needs enough labelled data to construct ro-

bust models. However, labels are usually not easy to be collected due to

all kinds of reasons, such as scare labelled data, time-consuming to ob-

tain labelled data. Therefore, semi-supervised learning is able to improve

the limitation of supervised learning on limited labelled data by using

available unlabelled data as well as labelled data. The typical semi-su-

pervised learning algorithms include graph-based methods, generative

models, self-training, heuristic methods, low-density separation, mixture

models, co-training and multi-view learning [8], etc.

In a word, all the three types of machine learning methods have

widely been applied in real applications. However, since unlabelled data

Chapter. 1. Introduction

Page 4 of 68

is relatively easy to obtain, thus unsupervised learning has been develop-

ing increasingly rapid and has attracted more interests than the other two

[9]. Hence, this thesis focuses on unsupervised learning.

1.2 Unsupervised learning

In literature, the popular methods of unsupervised learning include

anomaly detection, dimensionality reduction, clustering, and so on.

1.2.1 Anomaly detection

Anomaly detection (also called outlier detection) is to identify rare items,

behaviors or observations that differ from the majority of the data signif-

icantly [10]. It is usually used to raise suspicions or to find the outliers in

a dataset. The typical algorithms include density-based techniques, rep-

licator neural networks, fuzzy logic-based techniques, Bayesian net-

works, cluster analysis-based techniques, hidden Markov models

(HMMs), ensemble techniques [11], etc.

1.2.2 Dimensionality reduction

Dimensionality reduction is to reduce the feature number of high-dimen-

sional data. It is a commonly and widely used technique to improve the

efficiency of machine learning without losing too much accuracy by re-

moving some unimportant features [12]. After conducting dimensional-

ity reduction, machine learning algorithms are able to work on large da-

tasets with high efficiency and effectiveness. The typical algorithms of

dimensionality reduction include principal component analysis (PCA),

Chapter. 1. Introduction

Page 5 of 68

kernel PCA, non-negative matrix factorization (NMF), graph-based ker-

nel PCA, generalised discriminant analysis (GDA) and linear discrimi-

nant analysis (LDA) [13], etc.

1.2.3 Clustering

Clustering is to divide a set of data points into groups, where similar data

points are in the same groups and dissimilar data points are in different

groups [13]. Specifically, clustering computes the similarities of features

among all of the data points, and then group them together by similari-

ties. Clustering is very useful in some situations, e.g., decision-making,

image processing and pattern analysing. The typical clustering tech-

niques include partition based algorithms, grid based algorithms, hierar-

chy based algorithms, density based algorithms, graph based algorithms

and kernel based algorithms, etc.

Clustering is a vital part of unsupervised learning, and has been ap-

plied in many kinds of applications, such as image compression and seg-

mentation, document classification, Cyber security and fraud proofing,

and so on. In this thesis, we focus on overcoming the drawbacks of pre-

vious clustering methods.

1.3 Research motivation

Among previous clustering algorithms, k-means clustering is a widely

used algorithm due to its linear time complexity and ease of implemen-

tation. However, k-means clustering is limited to its applicability due to

the issues, such as identification of the cluster number k, initialisation of

centroids, as well as the definition of similarity measurements for evalu-

ating the similarity between two data points [14]. In the past years much

Chapter. 1. Introduction

Page 6 of 68

efforts have been devoted for addressing these issues, such as rule of

thumb method [15] and gap statistic method [16] for selecting the opti-

mal value of k, hierarchical centroid selection and simple cluster seeking

[17] for centroid initialisation, self-paced learning technique [18] and

multiple feature extraction algorithm [19] for constructing the similarity

matrix. Another popular clustering algorithm is spectral clustering,

which uses spectral representation (measuring the relationship among

data points, as knowns as the high-order relationship [20]) to replace the

original representation (as known as low-order relationship) via a two-

step strategy, i.e., generation of spectral representation (i.e., similarity

matrix learning) followed by conducting k-means clustering on the re-

sulting spectral representation. Spectral clustering has also been shown

to outperform k-means clustering in many kinds of applications, which

implies that representation learning is very important for k-means clus-

tering [21, 22].

Based on the observations above, in this thesis, we focus on investi-

gating an effective similarity matrix for addressing the third limitation of

k-means clustering, i.e., the construction of an efficient similarity matrix

[23]. With the help of the efficient similarity matrix, our proposed meth-

ods improved the clustering effectiveness. Specifically, inspired from the

spectral clustering algorithm, we first design two new representations of

original features separately, i.e., an adjacent matrix and a weighted adja-

cent matrix, to represent the original data points, and then conduct k-

means clustering on the new representations to output the clustering re-

sults. Comparing with traditional k-means clustering, our methods use

the high-order similarities instead the original data points. Comparing

Chapter. 1. Introduction

Page 7 of 68

with spectral clustering, our clustering methods avoid both decomposi-

tion of eigenvectors and dimensionality reduction. Thus, our methods are

able to not only improve the clustering accuracy but also reduce the com-

putational complexity as well.

1.4 Summary

The rest of this thesis is organised as below. In Chapter 2, we conduct a

comprehensive literature review of the current clustering techniques, and

then introduce two important clustering algorithms, i.e., k-means cluster-

ing and spectral clustering in Chapter 3. We propose our clustering meth-

ods in Chapter 4, followed by a detailed demonstration. In Chapter 5, we

conduct experiments on real UCI datasets and results analysis by com-

paring our proposed clustering methods with k-means, k-means++ and

spectral clustering algorithms, in terms of the evaluation metrics. Finally,

in Chapter 6, we conclude and summarise our work, followed by some

future research work. We also attach our referred journals and books, and

implementing code in the parts of references and appendices, respec-

tively.

Chapter. 2. Literature Review

Page 8 of 68

Chapter. 2. Literature Review

In the literature, clustering algorithms are partitioned into the following

categories, such as partition based clustering algorithms, hierarchy based

clustering algorithms, density based clustering algorithms, grid based

clustering algorithms, kernel based clustering algorithms and graph

based clustering algorithms. We introduce them in details as bellows.

2.1 Partition based clustering algorithms

The basic idea of partition based clustering algorithms is to identify the

centroids of all data points. Specifically, for a given similarity measure-

ment, the similarity between two data points and a centroid are first cal-

culated, and then the similarity is compared with the predefined thresh-

old. Once meeting the criteria, this data point will be classified into the

cluster of this centroid. The typical algorithms of partition based cluster-

ing include k-means clustering and its variants, e.g. k-medoids [24] and

k-means++ [25]. Recently, both balanced k-means [26] and recursive

partition based k-means [27] dramatically reduce the computational com-

plexity for conducting clustering on massive datasets.

2.2 Hierarchy based clustering algorithms

The basic idea of hierarchy based clustering algorithms is to produce a

sequence of nested partitions, in which a single cluster is created on the

top of all other singleton clusters and all the data points are included at

the bottom. In the hierarchy based clustering algorithm, each level in the

Chapter. 2. Literature Review

Page 9 of 68

middle can be deemed as a combination from the lower levels. By this

means, the hierarchy based clustering algorithms can be graphically

demonstrated as a tree, which can be produced in two ways, i.e., divisive

and agglomerative. Divisive method is to start with one all-inclusive

cluster, and then splits the tree systematically until the similarity among

data points within a cluster meets the criteria. Agglomerative method

starts with all data points as a single cluster, and then merges the closest

cluster pairs. Classic hierarchical clustering algorithms include balanced

iterative reducing and clustering using hierarchies (BRICH) [28] , clus-

tering using representatives (CURE) [29] and robust clustering using

links (ROCK) [30] . However, most hierarchical clustering algorithms

are sensitive to noise, indicating that the clustering result may be affected

by even few minor outliers [31]. Hence, some enhanced hierarchical

clustering algorithms, e.g., robust hierarchical k-center clustering [32],

are developed to address this issue.

2.3 Density based clustering algorithms

The most important principle of density based clustering algorithms is

on the assumption that there should be enough neighbouring data points

for each data point in a cluster under a designated similarity measure-

ment. In this case, the data point without meeting the threshold will be

regarded as noise, and will not belong to any cluster. Density based clus-

tering algorithms can be used to partition arbitrary shapes as long as the

target clusters have different density. Density-based spatial clustering of

applications with noise (DBSCAN) [33] and ordering points to identify

Chapter. 2. Literature Review

Page 10 of 68

the clustering structure (OPTICS) [34] are the conventional representa-

tives of density based clustering algorithms, while influence space

DBSCAN [35] and DBSCAN based on influence space and detecting of

border points [36] are their revised versions. Most recently, RNN-

DBSCAN [37] uses the number of reverse nearest neighbours as an esti-

mate of observation density, while k-nearest neighbor DBSCAN [38]

uses k-nearest neighbour representatives for density based clustering

without parameters pre-definition. In nutshell, the recent developed den-

sity based clustering algorithms are more efficient and effective than

conventional DBSCAN and OPTICS algorithms.

2.4 Graph based clustering algorithms

The key idea of graph theory based clustering algorithms is to build a

similarity matrix (i.e., graph) using all training data, and then uses this

graph to generate a new representation of the original data points to con-

duct clustering. Since the graph based clustering algorithm takes into ac-

count the similarity relationship, i.e., replacing the original data points

by high-order relationship representation [39] [40]. Hence, the clustering

process is indeed finding a solution of optimal graph cutting, which is

able to achieve higher efficiency than other clustering algorithms. How-

ever, graph based clustering algorithms are usually with high computa-

tion complexity (i.e., at least quadratic to the sample size) due to the con-

struction of the high-order relationship representation. Cluster identifi-

cation via connectivity kernels (CLICK) [41] is a classic representative

of graph based clustering algorithms which aims to find out the minimum

Chapter. 2. Literature Review

Page 11 of 68

weight division of the graph literately. Other graph based clustering al-

gorithms include structural clustering algorithm for networks (SCAN)

[42], SCAN++ [43], pruned SCAN (pSCAN) [44] and Scalable Density-

Based Graph Clustering (ScaleSCAN) [45].

 The most famous and popular graph based clustering algorithm is

spectral clustering. Due to excellent characteristics of resilience and high

efficiency, a wide range of spectral clustering variants have been devel-

oped, such as low-rank sparse subspace spectral clustering [46], fast

large-scale spectral clustering via explicit feature mapping [47], and one-

step multi-view spectral clustering [21].

2.5 Grid based clustering algorithms

Grid based clustering algorithms focus on searching a space surrounding

the data points and excluding the data point itself only. To do this, a grid

structure is constructed with a finite number of cells, in which the data

points will be mapped and partitioned. Specifically, the centroid will be

identified by computing the density of each cell and sorting the cells by

different densities. During the whole clustering process, all the calcula-

tions are operated on grid cells and nothing is done with the data points

themselves. For example, statistical information gird (STING) [48] takes

advantage of both grid clustering algorithm and parallel computing. Re-

cently, a novel grid based clustering algorithm for hybrid data stream

(FGCH) [49] is designed for dealing with hybrid data, and another im-

proved grid-based clustering algorithm called DSM in [50], is a revised

version of traditional grid-based clustering algorithm that incorporates

the technique of diagonal grid searching and merging.

Chapter. 2. Literature Review

Page 12 of 68

2.6 Kernel based algorithms

The key idea of kernel based algorithms is to create a high-dimensional

feature space, in which the data points with non-linear relationship are

able to be linearly partitioned. Actually, in order to firstly map non-linear

data structure to linear space and then apply conventional clustering al-

gorithms, kernel based clustering algorithms are often used with other

clustering algorithms together. For example, kernel k-means clustering

combines the kernel based algorithm with k-means clustering algorithm,

while kernel-based fuzzy c-means clustering [51] combines the conven-

tional fuzzy c-means clustering algorithm with kernel resolution to take

advantage of genetic algorithm. Recently, the kernel-based hard cluster-

ing algorithm in [52] and the robust multiple kernel k-means clustering

[53] have been proven to be able to improve clustering performance sig-

nificantly by using kernel theory.

2.7 Summary of clustering algorithm

In this chapter, we discussed some common and widely used algorithms

of unsupervised learning, i.e., clustering. We discussed their theories,

implementations, followed by comparing their advantages and disad-

vantages. We also listed their typical applications and representative al-

gorithms, respectively.

Chapter. 3. Preliminary and Motivation

Page 13 of 68

Chapter. 3. Preliminary and Motivation

3.1 Notations

In this thesis, we denote matrices, vectors, and scalars, respectively, as

boldface capital letters, boldface lowercase letters, and italic letters. We

summarize other notations used in this paper in Table 1.

Table 1. Notations used in this paper

Variables Description

X Matrix X

xi The i-th row of X

xj The j-th column of X

xi,j The element of i-th row and j-th column in matrix X

‖𝐱𝑖−𝐱𝑗‖
𝟐
 The l2 norm of 𝐱𝑖−𝐱𝑗

3.2 K-means clustering

In the past decades, k-means clustering algorithm and its variants are the

most popular partitioning algorithms and have been widely using in the

machine learning fields, e.g., vector quantization, signal processing, data

mining, and so on. Some revised versions also have emerged in recent

years with enormous improvements and amendments to address the

shortcomings of the old versions. K-means clustering algorithm and its

variants are also combined with other types of clustering algorithms such

as kernel based clustering algorithms, density based algorithms and

Chapter. 3. Preliminary and Motivation

Page 14 of 68

graph based clustering algorithms, etc., in order to improve the clustering

performance and efficiency.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of k-means clustering algorithm. Dots denote data points

and crosses denote centroids. (a) Original data points. (b) Randomly initialised

centroids. (c-f) Process of two clustering iterations. In every iteration, each

data points are allocated to the closest centroid (the data point is shown as the

same colour as the centroid to which is allocated), and then each cluster cen-

troid is replaced by the mean of the data points belong to it.

Generally speaking, k-means clustering is designed to separate a

group of data points into k clusters where the data points in the same

cluster have maximal similarity while the data points among different

clusters have maximal dissimilarity. To do this, k-means clustering

firstly selects k number of data points at random from the dataset as the

Chapter. 3. Preliminary and Motivation

Page 15 of 68

centres of each cluster, termed as centroids, and then computes the dis-

tances between every data point and the k centroids, respectively. Sec-

ondly, k-means clustering assigns each data point to the cluster whose

centroid has the closest distance to this data point to output the initial k

clusters. Thirdly, k-means clustering calculates the mean value of all the

data points within each cluster and update centroids for the correspond-

ing cluster. This procedure recurs iteratively until the centroids con-

verges and the no longer change, thus the k cluster labels and centroids

formed.

We list the detailed illustration of the implementing process of k-

means clustering algorithm in Fig. 2, and we also list the pseudo code of

k-means clustering in Table 2 below.

Table 2. The pseudo code of k-means clustering

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑; the cluster number k.

Output: the cluster indicators of all data points and centroids C.

1: Centroid initialisation by randomly selecting k data points;

2: do

3: Assign data points to the closest centroids to form k clusters;

4: Update each centroid by the mean value of data points within

each cluster;

5: until

6: Algorithm converges and centroids have no changes.

Chapter. 3. Preliminary and Motivation

Page 16 of 68

 Actually, the goal of k-means clustering is to achieve the minimal

sum-squared-error (SSE), which means the minimal total intra-cluster

variance by a given k. The Eq. (1) below is the definition of SSE.

 SSE = ∑ ∑ ‖𝐱𝑖 − 𝐜𝑗‖
2

2t𝑗

𝑖=1
 𝑘

𝑗=1 (1)

 Where k denotes the number of clusters, t𝑗 denotes the number of data

points in the j-th cluster, and cj denotes the centroid of the j-th cluster.

‖𝐱𝑖−𝐜𝒋‖
𝟐

 denotes the l2 norm of 𝐱𝑖−𝐜𝑗. Usually, due to the randomness

of centroids selection, the clustering result with the minimal SSE may

achieve a local optimal result, so the initial centroids will put a signifi-

cant influence on the clustering result. Besides, both predicting the actual

clusters number and defining the similarity measurements are also major

issues of k-means clustering. We introduce these issues as follows.

3.3 K-means clustering issues

As k-means clustering and its variants are easy to implement and the per-

formance is usually acceptable so they are widely used in different fields.

Under most circumstances, the performance of k-means clustering is rel-

atively good for most global shape clusters with numerical datasets.

However, there three major problems for k-means clustering as below:

 How to identify the number of clusters, i.e., the initial value of k?

 How to identify the optimal initial centroids?

 How to define the best similarity (or distance) measurements?

These problems above sometime pose significant influences on the

clustering results and performance. We introduce those problems and

their corresponding resolutions in details as bellows.

Chapter. 3. Preliminary and Motivation

Page 17 of 68

3.3.1 The issue of setting the value of k

In real applications, the actual number of clusters, i.e., the value of k, is

always unknown and there is no efficient solution in theory to identify it,

so a number of literatures are targeting on solving this issue. For exam-

ple, on-demand selection algorithm manually selects the value of k as the

actual clusters number. Elbow method determines the value of k based

on the vision of the SSE-k graph, and the gap statistic method can be

regarded as a revised version of Elbow method. Besides, the rule of

thumb method designs a simple equation to obtain the value of k. Below

is a brief introduction of these methods above.

1) On-demand selection method

The on-demand selection method manually selects the value of k to run

k-means clustering. For some datasets whose dimensions are low and

visible, the value of k can be identified manually by requirements, or by

the already known groups. For example, people can be partitioned by

age, gender and citizenship, while shopping stores can be partitioned by

revenue, type of products, or geographical locations. These attributes are

always in a limited range and easy to be counted manually.

2) Rule of thumb method

In the real world, most datasets have a great number of dimensions so

the value of k is not able to predict easily. In such circumstances, the rule

of thumb method is a simple way to identify the value of k. Rule of thumb

method is suitable to any type of datasets and it designs the following

equation to obtain the value of k:

Chapter. 3. Preliminary and Motivation

Page 18 of 68

 𝑘 ≈ √
𝑛

2
 (2)

Where n is the total number of data points.

3) Elbow method

A traditional method to determine the value of k for k-means clustering

is called as elbow method, which is based on vision of a graph based on

the relationship between the sum-squared-errors (SSE) and the number

of clusters. The elbow method determines the value of k based on the

vision of the SSE-k graph. E.g., we let the number of clusters start from

k=2 in order to output the SSE, then let the value of k step up by one each

time and reproduce the new SSE until k reaches the given limit. From the

initial stage, the value of SSE decreases strikingly and then after some

point it will keep relatively stable. The value of k at this point will be

closest to the actual number of the clusters. If we put SSE as Y-axis and

the value of k as X-axis then we get a graph of the relationship between

SSE and k, see illustration below:

Chapter. 3. Preliminary and Motivation

Page 19 of 68

Fig. 3. X-axis: Number of clusters; Y-axis: SSE. The line in graph looks

like an elbow and one can see the point in red circle indicates the most

possible actual value of k.

The graph above looks like an “elbow”, which is also the reason why

it called elbow method. One drawback of this method is that the “elbow

point” is not always explicit and sometimes there will be no or more than

one “elbow point”. In such case, it is very difficult to identify the exact

elbow point for proper value of k.

4) Gap statistic method

The gap statistic method can be regarded as a revised version of elbow

method, which is to use a statistical procedure to improve the accuracy

of it. From the research in [54], Gap statistic method is more accurate

and easier to find the value of k than observing the inflection point by

sight of eyes in Elbow method.

3.3.2 The issue of centroid initialisation

The simplest way of selecting initial centroids is to choose them at ran-

dom. However, the experiment results indicate that the random initiali-

sation of centroids puts a significant effect on the final clustering result,

and sometime even causes bad or complete wrong partitions. An inap-

propriate initialisation of centroids often leads to converging to a local

optimum and outputs incorrect clustering results [55]. Fig. 4 below

shows an example of local optimum and incorrect clustering result that

caused by random centroids initialisation. Therefore, how to choose the

proper initial centroids is a very important problem for the k-means clus-

tering algorithm and its variants.

Chapter. 3. Preliminary and Motivation

Page 20 of 68

(a) (b) (c)

Fig. 4*. Illustration of random centroid initialisation. (a) A given dataset

with seven clusters. (b) Randomly initialised centroids. (c) Incorrect clus-

tering result.

There are several attempts have been done and some effective algo-

rithms have been developed to address this issue and carry out the opti-

mal initial centroids under different circumstances, for example, the hi-

erarchical centroid selection [56] and simple cluster seeking (SCS) [57].

We introduce them briefly as follows.

1) Hierarchical centroid selection

The hierarchical centroid selection [56] first runs basic k-means cluster-

ing multiple times with random initialisation so that a group of centroids

will be produced, then this group of centroids will be regarded as input

data points to carry out final centriods. To do this, the hierarchical cen-

troid selection algorithm first runs basic k-means clustering multiple

times with random initialisation and produces multiple groups of cen-

troids, and then uses these groups of centroids as input data points and

runs k-means clustering on it to output the final centroids. Table 3 below

is the pseudo code for hierarchical centroid selection.

* It is noteworthy this graph is downloaded from Internet.

Chapter. 3. Preliminary and Motivation

Page 21 of 68

 Table 3. The pseudo code of hierarchical centroid selection

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑,

 repeat times p, clusters number k;

Output: k centriods;

1: Randomly select k data points as centroids;

2: Repeat step 1 for p times and get p groups of centroids, marked

as Ci={c1,…,ck | i=[1,p]};

3: Calculate the mean value of Ci, C=mean(Ci), i=[1,p];

4: Run k-means clustering on X with C as initial centroids.

2) Simple cluster seeking (SCS)

Simple cluster seeking (SCS) [57] selects the first centroid at random and

marks it as k1, and then finds out the next data point with the maximal

distance to k1 as the second centroid k2. This process repeats until k cen-

troids are generated. Simple cluster seeking is also the default algorithm

of centroid selection for k-means function in Matlab software suite.

3.3.3 The issue of similarity measurement

The third issue of k-means clustering is how to define the similarity

measurement between two data points. In other words, a larger distance

between two data points means smaller similarity. In real applications,

Euclidean distance and its variants are widely used by k-means clustering

as similarity measurement, and other similarity measurements including

cosine similarity, Pearson correlation coefficient, Jaccard similarity co-

efficient and averaged Kullback-Leibler divergence are also used widely.

Chapter. 3. Preliminary and Motivation

Page 22 of 68

Table 4 below shows the advantages and disadvantages of the com-

mon distance measurements above.

Table 4. Distance metrics

Distance

Metric
Formula

Algorithms

in which it

is used

Benefits Drawbacks
Applica-

tion Area

Euclidean √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)2

- Partition

based algo-
rithms

- K Modes

Easy to

implement

and
Test

- Results are
greatly in-

fluenced by

the largest
value of

variables

- Poor per-
formance

for image

data, docu-
ment classi-

fication

- Interval

data analy-
sis in health

of psychol-

ogy

- DNA

Analysis

Manhat-

tan
|(𝑥1 − 𝑥2)| + |(𝑦1 − 𝑦2)|

Partition

based
algorithms

Easily

generalized

to
higher di-

mensions

Does not

work well
for image

data, Docu-
ment Classi-

fication

In Inte-

grated
Circuits

Cosine cos (𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖

Ontology

and Graph

based algo-

rithms

Handles
both

Continuous

and categor-

ical varia-

bles

Does not

work well

for nominal

data

Text

Mining

Jaccard

Coeffi-

cient
𝑑𝜇(𝐴, 𝐵) =

𝜇(𝐴∆𝐵)

𝜇(𝐴 ∪ 𝐵)

Neural
Network

Handles

both

Continuous
and categor-

ical varia-

bles

Does not

work well
for nominal

data

Document

classifica-

tion

3.4 Spectral clustering introduction

Recently, spectral clustering [58] is becoming increasingly popular.

Comparing with the traditional k-means clustering, spectral clustering is

easy to implement and has excellent adaption to multiple types of da-

tasets, as well as good efficiency and performance. Spectral clustering

Chapter. 3. Preliminary and Motivation

Page 23 of 68

always performs better than k-means clustering in various applications,

especially for data points in arbitrary shapes rather than global shapes.

See Fig. 5 below for detailed illustration.

Original data points Spectral clustering k-means clustering

Fig. 5. Comparison of k-means and spectral clustering results

An important difference to k-means clustering is that spectral cluster-

ing pre-processes training data points by replacing low-order relationship

or original data points with high-order relationship representation [59,

60]. To implement this, spectral clustering, firstly, constructs a similarity

matrix W, which contains the similarity relationship between every two

data points. Then spectral clustering transfers this similarity matrix into

a sparse adjacent matrix by using a kernel function, which also helps to

reduce the computational complexity. In the next step, spectral clustering

computes the matrix Laplacian and decompose the first k eigenvectors.

Finally, spectral clustering outputs the final clustering result by applying

k-means clustering on the dimension-reduced matrix that consists of the

first k eigenvectors. We will discuss the details in theory in the following

sections.

In another words, the key idea of spectral clustering is to reformulate

the problem of clustering into a problem of optimal graph cutting, i.e.,

Chapter. 3. Preliminary and Motivation

Page 24 of 68

finding a solution that makes the sum of weight of edges between differ-

ent groups is minimal and the sum of weight of edges within same cluster

is maximal. From most former research works, for a given set of data

points X={ x1,…,xn }∈ R𝑛×𝑑 , if we define wi,j as the similarity between

any pair of data points xi and xj, a nice approach of producing similarity

matrix is to construct a undirected graph G = (V, E) as the representative.

In this graph, vertices (marked as vi) are the representations of the origi-

nal data points (xi) and the edges between them denote the weight

(marked as ei). If the similarity wi,j between any vertices pair meets some

predefined criteria then these two vertices are connected (wi,j > 0).

As a result, above problem is transformed to a problem of optimal

graph cutting. To solve the graph cutting issues, what we need to solve

is finding portions of a graph. After this, the weight of edges between

different groups is as low as possible (which means the data points across

different groups are maximal dissimilar), while the weight of edges

within a group is as high as possible (which means the data points within

the same group are maximal similar).

3.4.1 Graph notation

As mentioned in the last paragraph, if we let G = (V, E) be an undirected

graph, then the vertices matrix are denoted by V= {v1, v2, …, vn} and the

edges matrix are denoted by E={e1,e2,…,em}, m = n× (n-1)/2. We also

define the graph G is weighted and the similarity between any two data

points xi and xj as a non-negative scalar so wi,j ≥0. The similarity matrix

W of graph G can be obtained as below:

 W = (wi,j) (𝑖, 𝑗 ∈ [1, 𝑛]) (3)

Chapter. 3. Preliminary and Motivation

Page 25 of 68

Where wi,j = wj,i because G is undirected, and wi,j = 0 if two vertices,

e.g., vi and vj, are not connected. When the similarity measurement is

Euclidean distance, the similarity matrix is defined as:

 𝑤𝑖,𝑗 = √∑(𝑥𝑖,𝑡 − 𝑥𝑗,𝑡)2

𝑑

𝑡=1

 (𝑖, 𝑗 ∈ [1, 𝑛], 𝑡 ∈ [1, 𝑑]) (4)

Where i and j, respectively, denote the i-th and j-th data point, and t

denotes the t-th feature of this data point.

Form the equation (4) above we can see the dimensions number of

similarity matrix W is n by n, therefore its size will be very huge and the

computational complexity will be extreme high when the dataset is mas-

sive. To address this problem and improve the efficiency, after the simi-

larity matrix has been produced spectral clustering transfers this similar-

ity matrix into a sparse matrix by using designated algorithms and kernel

functions. In this thesis, we term this sparse similarity matrix as adjacent

matrix and mark as A.

In spectral clustering more than half calculations apply on the adjacent

matrix A, hence the quality of the adjacent matrix will pose a significant

influence on both the final clustering result and the processing time. It is

very important and essential to take into account as many factors of the

dataset as possible when constructing the adjacent matrix. Besides, one

should evaluate the adjacent matrix carefully and accurately on a case-

by-case basis. In the past decades, many efforts have been done on con-

structing the similarity graph and adjacent matrix, as a sequence, there

are various algorithms have been developed. Among these algorithms

Chapter. 3. Preliminary and Motivation

Page 26 of 68

three are common and widely used, i.e., ε-neighbourhood graph, k-near-

est neighbour graph, and full-connected graph [60]. We introduce them

in details as follows.

Firstly, the ε-neighbourhood graph algorithm connects two neigh-

boured vertices (marked as ei,j=1) if the pairwise distance is less than ε,

and does not connect otherwise (marked as ei,j=0), where ε is a given

threshold depending on the properties of the datasets. This makes all

edges of a graph roughly have the same value (i.e., the value of ε) and

leads to an unweighted graph, because there is no more information of

the dataset incorporated to the graph during the construction.

Secondly, the k-nearest neighbour graph algorithm connects vi and vj

if vj is in the range of k nearest neighbours of vi, which results in a di-

rected graph due to the asymmetry of neighbourhood relationship, so that

additional effort is required to make the graph symmetric. So far, there

are two common ways to make the graph as undirected. The first one is

to disregard the directions of the edges simply, which is usually termed

as the k-nearest neighbour graph. The second way is to only connect ver-

tices vi and vj if both vi is one of the k-nearest neighbours of vj and vj is

also among the k-nearest neighbours of vi, which is usually named as

mutual k-nearest neighbour graph. The edges need to be weighted in both

cases by the similarity vectors of the adjacent data points after connect-

ing the appropriate vertices.

Thirdly, the full-connected graph algorithm simply connects all the

vertices between each other with its similarity scalar, which is computed

by similarity function. In this case, it is required that the similarity func-

tion itself is able to encode the major local neighbourhood relationships,

Chapter. 3. Preliminary and Motivation

Page 27 of 68

because the graph is expected to be able to model the local neighbour-

hood relationships. As we mentioned in chapter 2.6, popular kernel func-

tions include fisher kernel, graph kernel, kernel smoother, polynomial

kernel, Gaussian kernel [61], sigmoid kernel, radial basis function kernel

(RBF) and string kernel, among these the Gaussian kernel function al-

ready encodes the mainly local neighbourhood relationships so it has

been using widely. Due to the demonstration above, in this paper, we

choose the full-connected graph to construct the adjacent matrix to rep-

resent the original data points. Additionally, we choose the Gaussian ker-

nel as the similarity function.

Moreover, another important matrix involved during the spectral clus-

tering is the degree matrix, which is usually marked as D. The degree

matrix is defined as a diagonal matrix whose elements are the degree of

each vertex. As we know, the degree of a vertex can be calculated as:

 𝑑𝑖 = ∑ 𝑎𝑖,𝑗 (𝑖, 𝑗 ∈ [1, 𝑛])

𝑛

𝑗=1

(5)

Where 𝑎𝑖,𝑗 denotes the i-th row and j-th column element of the adja-

cent matrix A. Therefore, the degree matrix D is defined as the following:

 D = (di,i) (𝑖 ∈ [1, 𝑛]) (6)

In our second proposed clustering method, we compute the weight of

features based on the degree matrix above.

3.4.2 Matrix Laplacian

The second step of spectral clustering is to produce the Laplacian matrix,

marked as L. Laplacian matrices are deprived from the spectral graph

Chapter. 3. Preliminary and Motivation

Page 28 of 68

theory and have multiple variants. In this thesis, we mainly introduce two

versions of Laplacian matrix: Unnormalised Laplacian matrix and Nor-

malised Laplacian matrix [60].

Then unnormalised Laplacian matrix is defined as:

 𝐋 = 𝐃 − 𝐀 (7)

While the normalised Laplacian matrix is defined as:

 𝐋 = 𝐃−
1
2(𝐃 − 𝐀)𝐃−

1
2 (8)

Where D is the degree matrix, which is defined in Eq. (6).

Finally, spectral clustering conducts dimension reduction by selecting

k eigenvectors of L to construct matrix U, and then conducts k-means

clustering on matrix U to output the final clustering result. We list the

details of spectral clustering in Table 5.

Table 5. The pseudo code of spectral clustering

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑; the cluster number k.

Output: the cluster indicators of all data points and centroids C.

1: Compute the similarity matrix W of X by Eq. (3);

2: Compute the matrix Laplacian L by Eq. (8);

3: Compute the first smaller k eigenvectors of L, marked as

E={ e1, …, ek };

4: Construct matrix U, where 𝐔 = 𝐄𝐓, U ∈ R𝑛×𝑘;

5: Run k-means clustering on U to output the cluster result C.

Chapter. 3. Preliminary and Motivation

Page 29 of 68

3.5 Summary of k-means clustering and SPCL

In this chapter, we introduced the k-means clustering and spectral clus-

tering algorithms in details, including the objection functions of k-means

clustering, implementations, advantages and disadvantages. We also dis-

cussed the common solutions for their shortcomings and the possible im-

provements. In the following chapter, we will introduce our proposed

clustering methods based on these discussions.

Chapter. 4. Proposed Methods

Page 30 of 68

Chapter. 4. Proposed Methods

In the previous chapters, we introduced the fundamental concepts and

algorithms involved in machine learning areas. We then introduced the

common and widely used clustering algorithms such as partition based

clustering, density based clustering, hierarchy based clustering, graph

based clustering, kernel based clustering and grid based clustering, with

their implementations and typical representing algorithms briefly. Fur-

thermore, we also discussed the famous and popular clustering algo-

rithms, e.g. k-means clustering and spectral clustering in details, fol-

lowed by their advantages and disadvantages.

Although spectral clustering algorithm has a number of benefits than

k-means clustering algorithm, it still incorporates k-means clustering as

the final step to output the result. So spectral clustering is not able to

avoid suffering from the limitations of k-means clustering. Furthermore,

spectral clustering requires a similarity matrix whose dimension is n by

n. For massive datasets, this similarity matrix is very large and always

results in extreme high time cost when decomposing the eigenvectors

and eigenvalues of the matrix Laplacian. Therefore, the computational

complexity is huge and unacceptable for large datasets. Hence, in this

thesis, we focus on both improving the clustering accuracy and reducing

the computational complexity by proposing two novel clustering meth-

ods. These two methods focus on optimising the clustering mechanism

and constructing efficient similarity matrices. Specially, the first method

called adjacent matrix based k-means clustering method (AMKM) runs

k-means clustering on the adjacent matrix directly, while the second

Chapter. 4. Proposed Methods

Page 31 of 68

method called weighted adjacent matrix based k-means clustering

method (WAMKM) takes into account the weight of the features. We

introduce their graphical structures as follows:

Fig. 6. The graphical structures of our proposed methods (left and middle)

and spectral clustering (SPCL). It is noteworthy that green parts are com-

mon for all three methods.

4.1 AMKM

In this section, we introduce our first proposed clustering method, i.e.,

adjacent matrix based k-means clustering method (AMKM). The initial

step in conducing spectral clustering is to construct the similarity matrix

by transferring the data points into an undirected graph G = (V, E), where

V={v1,v2,…,vn} denotes the vertices, and E={e1,e2,…,em} (m = n× (n-

1)/2) denotes the edges between vertices. The undirected graph is ab-

stracted and represented by the similarity matrix 𝐖 = (𝑤𝑖,𝑗)𝑖,𝑗=1
𝑛 , where

Chapter. 4. Proposed Methods

Page 32 of 68

w𝑖,𝑗 ≥ 0 means the similarity between xi and xj under a given distance

metric. The adjacent matrix A is constructed based on W by the follow-

ing methods.

When constructing the adjacent matrix the most important problem is

to model the relationships of local neighbourhood between data points.

In the past decades, researchers have paid much effort on constructing

the adjacent matrix, including ε-neighbourhood graph, k-nearest neigh-

bour graph, and fully connected graph [60]. For example, the ε-neigh-

bourhood graph connects two neighboured vertices (i.e., ei,j=1) if the

pairwise distance is less than a given threshold ε, otherwise, it does not

connect them (i.e., ei,j = 0). This makes all edges of a graph roughly have

the same value (i.e., ε) and leads to an unweighted graph. The k-nearest

neighbour graph connects vi and vj if vj is one of k nearest neighbours of

vi, which results in a directed graph due to the asymmetry of neighbour-

hood relationship, so that additional effort is required to make the graph

symmetric. The fully connected graph simply connects all the vertices

with the similarity scalar between each other. In this paper, we choose to

construct a fully connected graph, so that the most important step of con-

structing adjacent matrix is to represent the distance between data points

by an appropriate similarity function. The widely used kernel functions

include Polynomial kernel, Gaussian kernel [61] and Sigmoid kernel.

When a Gaussian kernel function is used, the adjacent matrix is defined

as follows:

 𝑎𝑖,𝑗 = 𝑒
−(

‖𝑤𝑖−𝑤𝑗‖
2

2

2∗𝜎2)
 (𝑖, 𝑗 ∈ [1, 𝑛]) (9)

Chapter. 4. Proposed Methods

Page 33 of 68

After this, the next step of the spectral clustering is to compute the

graph Laplacian, and then outputs the first k eigenvectors, which are used

as the input of k-means clustering. However, when the dataset is rela-

tively large, the computational complexity is time consuming.

To address this issue, in our first method AMKM, we directly run k-

means clustering on the adjacent matrix instead of the Laplacian eigen-

vector matrix. By this means, we can avoid both the computation cost of

the Laplacian matrix and the optimization cost of eigenvalue decompo-

sition. As a result, the computing complexity in AMKM is reduced. This

makes it possible to run on large datasets. The details of AMKM is

briefly described in Table 6.

Table 6. The pseudo code of our proposed AMKM method

Input: data points X={ x1,…,xn }∈ R𝑛×𝑑; the cluster number k.

Output: the cluster indicators of all data points and centroids C.

1: Calculate the similarity matrix W of X by Eq. (3);

2: Calculate adjacent matrix A by Eq. (9);

3: Run k-means clustering on A to output C.

The experiment results show that our AMKM clustering algorithm

outperforms the comparison clustering algorithms on more than 90% of

the selected datasets. We illustrate the experiment results of AMKM and

the comparisons algorithms in chapter 5, followed by analysing the per-

formance differences between different datasets. We implemented our

clustering algorithm above in Matlab 2019, and we recorded the code in

Appendix A.

Chapter. 4. Proposed Methods

Page 34 of 68

4.2 Weighted AMKM

In the last section, we introduced our improved k-means clustering

method, i.e. adjacent matrix based k-means clustering method. In gener-

ally, when conducting clustering most algorithms consider the features

of datasets on an equal-weight basis, which means that each feature is as

same as important. However, in the real world, it is well known that a

data point consists of multiple features with different priorities, and it is

obvious that different features always put different influence on the clus-

tering result. Generally speaking, an important feature always affects

even more on the clustering result than the unimportant features. Hence,

this assumption of equal-weight normally affects the clustering results

seriously since features are not likely to have equal importance in the real

world applications. For example, we consider a database of adult dog

species, which consists of four features, i.e., body size, body colour, tail

shape and tail length. From the perspective of zoology, it is obvious that

the feature of body size is more important than the feature of body colour.

Since the body colour is a very common attribute for dogs, and it is very

likely that dogs are able to have the same colour even they are from dif-

ferent species. Therefore, a white dog and a black dog (the similarity of

body colour is very low) with the same body size (the similarity of body

size is very high) are likely belong to the same species, but the inverse is

not. This means the importance of body size is higher than the im-

portance of body colour, i.e., features have different importance or

weight [62].

Chapter. 4. Proposed Methods

Page 35 of 68

From this perspective, we should give more priority on the feature

that has more weight when constructing the adjacent matrix. In this chap-

ter, we introduce our second clustering method – weighted adjacent ma-

trix based k-means clustering method (WAMKM), which takes the

weight of features into account, followed by its implementation in de-

tails. The weight is a term in statistics. In the data science area, weight is

considered as a factor that is to measure how important a feature or at-

tribute is when comparing with others in the same dataset.

In our WAMKM, we consider the importance of different features

and compute the weight of each feature. When doing features extraction

and constructing the similarity matrix, a common way used is that for

each data point representation in the adjacent matrix A, each feature is

represented by a numeric scalar. It has been discussed in the above par-

agraph that different feature always put different influence on the clus-

tering result. Therefore, we calculate the weight of each data point rep-

resentation in the adjacent matrix A and construct a weighted adjacent

matrix (in this thesis we denote it as Z). Since there is no prior infor-

mation of weights of the data points is given, so in our method we calcu-

late the weight by the percentage of each feature among all features. Spe-

cifically, we first calculate the summation of all data points for each fea-

ture to produce the weight vector d (d= {d1,…,dn }), where dj is the sum-

mation of all elements in the j-th column of A, and then we normalise

the weight vector by:

 𝐡 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

 (𝑗 ∈ [1, 𝑛]) (10)

Chapter. 4. Proposed Methods

Page 36 of 68

Eq. (6) makes the sum of all elements in h be 1, where every element

hj in the j-th element represents the probability or the contribution of the

j-th feature to all data points. In this way, we consider the feature im-

portance. Furthermore, we produce the weighted adjacent matrix Z by

applying the weight vector h on each data point in adjacent matrix A:

 𝑧𝑖,𝑗 = 𝑎𝑖,𝑗 × h𝑗 (𝑖, 𝑗 ∈ [1, 𝑛]) (11)

Finally, after the weighted adjacent matrix Z is produced, we apply k-

means clustering on it in order to output the clustering result, which is

also the clustering result of the original dataset. The steps of WAMKM

is briefly described in Table 7.

Table 7. The pseudo code of our proposed WAMKM method

Input: data points X={ x1,…,xn ∈ R𝑛×𝑑; the cluster number k.

Output: the cluster indicators of all data points and centroids C.

1: Produce the similarity matrix W of X by Eq. (3);

2: Calculate the adjacent matrix A by Eq. (9);

3: Calculate the weight vector h by Eq. (10);

4: Calculate the weighted adjacent matrix Z by Eq. (11);

5: Run k-means clustering on Z to output C.

The experiment results indicate that our WAMKM clustering algo-

rithm performs better than AMKM clustering algorithm on most selected

datasets, in terms of all the three evaluation metrics. We illustrate the

experiment results of WAMKM and the comparisons algorithms in chap-

ter 5, followed by our analysis in details. We also implemented the

WAMKM in Matlab 2019, and we recorded the code in appendix B.

Chapter. 4. Proposed Methods

Page 37 of 68

4.3 Summary of AMKM and WAMKM

In this chapter, we introduced our two novel clustering methods, i.e., ad-

jacent based k-means clustering method and weighted adjacent based k-

means clustering method. The first method runs k-means clustering on

the adjacent matrix directly, while the second method is a revised version

of the first one, and takes into account the weight of features. Both meth-

ods outperformed the comparison clustering algorithms in terms of all

the three evaluation metrics in our experiment on the selected datasets.

Chapter. 5. Experimental Analysis

Page 38 of 68

Chapter. 5. Experimental Analysis

In this thesis, we selected twelve datasets from various sources to evalu-

ate our two methods, comparing with the spectral clustering, k-means

clustering and k-means++ clustering, in terms of three evaluation metrics

which are ACC, NMI and Purity. We describe these datasets and evalu-

ation metrics in details as bellows.

5.1 Datasets

The selected datasets are from both UCI Machine Learning Repository

and data mining centre website. These datasets belong to different cate-

gories and have wide range varieties of characteristics, which are able to

fully evaluate the reliability and effectiveness of our proposed methods.

We introduce these twelve datasets with their details as below:

 20news consists of 3970 samples distributed in four classes and each

sample consists of 8014 features.

 Binalpha consists of 1404 samples distributed in 36 classes and each

sample consists of 320 features.

 Australian Credit Approval consists of 690 credit card applications

within two classes, each sample consists of 14 attributes.

 Website Phishing consists of 1353 samples with nine features for

each. There are three classes which are 548 legitimate websites, 702

phishing URLs and 103 suspicious URLs.

 Dexter consists of 300 samples with 20000 features for each. This

dataset has two classes.

Chapter. 5. Experimental Analysis

Page 39 of 68

 Diabetes is a collection of “Diabetes 130-US hospitals for years

1999-2008 Data Set” which consists of medical data of clinical care

at 130 hospitals in US integrated delivery across 10 years. This da-

taset has eight features.

 Coil20Data consists of 1440 samples distributed in 20 classes and

each sample has 1024 features.

 Cardiotocography is a collection of 2126 fetal cardiotocograms sam-

ples and 41 diagnostic features for each sample. This dataset can be

used either for 10-class or 3-class experiments. In our experiment,

we select three classes.

 Spambase consists of two categories, i.e. spam e-mails and non-spam

e-mails. The spams were from postmasters and individuals marked

as spam, while non-spam e-mails were from normal personal or work

addresses. There are 57 features for each example in this dataset.

 Parkinson speech consists of 1040 samples of voice recording and

each sample consists of 28 features. Moreover, the features include

multiple types of sound recordings from male and female persons.

 Solar flare consists of 1066 samples distributed in six classes and

each sample consists of 12 features.

 German credit data consists of 1000 samples distributed in two clas-

ses and each sample consists of 23 features.

We summarise the datasets used with their details in Table 8.

Chapter. 5. Experimental Analysis

Page 40 of 68

Table 8. Summary of the datasets used in this paper

 Datasets Samples Features Classes

20news 3970 8014 4

Binalpha 1404 320 9

Australian Credit Approval 690 14 2

Website Phishing 1353 9 3

Dexter 300 20000 2

Diabetes 768 8 2

Coil20Data 1440 1024 20

Cardiotocography 2126 41 3

Spambase 4601 57 2

Parkinson Speech 1040 28 2

Solar Flare 1066 12 6

German Credit Data 1000 23 2

5.2 Comparison algorithm

In this thesis, we use the clustering algorithms below as comparison al-

gorithms.

 k-means clustering is the most widely and commonly used clustering

algorithm, which aims to group the data points as k clusters where

the data points that belong to a same cluster are as similar as possible

Chapter. 5. Experimental Analysis

Page 41 of 68

and data points in the different clusters are as dissimilar as possible.

In our implementation, we use the Matlab build-in function, with the

“distance” parameter set to “Euclidean distance” and the “initial cen-

troid position selection algorithm” parameter set to “cluster”.

 k-means++ clustering is a revised version of k-means clustering

which uses a heuristic strategy to find centroids. In some cases, k-

means++ clustering converges faster and achieves a lower sum of

SSE, compared to standard k-means clustering algorithm.

 Normalised spectral clustering (SPCL) [60] is a widely used variant

of the spectral clustering algorithms. Specifically, it applies k-means

clustering on the normalised eigenvector matrix by normalizing the

row sum to have the norm of 1.

5.3 Evaluation Method

In our experiment, we use the 10-fold cross validation method [63] to

evaluate all the algorithms. Specifically, for a given dataset, we first di-

vide it into ten subsets randomly, and then we use nine subsets as input

to run our clustering methods and use the remaining one subset as ground

truth to test the clustering results. When comparing the clustering results

of our methods with the ground truth, an important thing is the data

space. In spectral clustering, AMKM and WAMKM, the original data

points have been transformed into a new data space in which the high-

order similarity replaces the low-order similarity. Therefore, when cal-

culating the evaluation metrics the ground truth also required to be trans-

Chapter. 5. Experimental Analysis

Page 42 of 68

formed into high-order similarity space, respectively. For k-means clus-

tering this is not required since the clustering process is done on the orig-

inal dataset itself.

5.4 Parameter Setting

When constructing the adjacent matrix, the adjustable parameter sigma

(𝜎) plays a vital influence on the performance of kernel function and the

clustering results, hence it should be tuned carefully at hand [64]. There

is no universal method in theory explains how to choose 𝜎 for all da-

tasets. However, from former experience we know that the parameter 𝜎

governs the connectedness between data points and is different for every

dataset, so it is closely related to the dataset itself. In our experiment, we

tested a range of values of parameter 𝜎 then selected a model that applies

for all datasets. Specifically, we tested the parameter 𝜎 in the range

of 𝜎 ∈ [10−5, . . . 1014] on all datasets, and finally we selected the mean

value of the similarity matrix W as 𝜎 for evaluation:

 𝜎 = 𝑚𝑒𝑎𝑛(𝐖) (12)

Where W is the similarity matrix calculated by Eq. (3).

5.5 Evaluation Measurement

To fully capture different aspects of the clustering result, we employed

the following evaluation metrics, such as accuracy (ACC), normalised

mutual information (NMI) and purity (PUR) [65]. We report the defini-

tions of the involved evaluation metrics as below.

Accuracy (ACC) is defined as:

Chapter. 5. Experimental Analysis

Page 43 of 68

 ACC =
𝑁cor

𝑁
 (13)

Where Ncor denotes the number of data points falling in the correct

groups.

 NMI takes into account the tradeoff between quality and clusters

number [66]. It is defined as:

 NMI = 2
𝑀(𝑋i,𝑋j)

𝐸(𝑋i)+𝐸(,𝑋j)
 (14)

Where M (Xi, Xj) is the mutual information between two variables,

and E (⋅) denotes the entropy of the variable.

PUR is used to summarise the percentage of truly classified data points

in each cluster comparing with the ground truth. It is defined as:

 PUR = ∑
Si

n

k

i=1
𝑃i (15)

Where k is number of clusters and Si is the number of data points of

the i-th cluster. Pi denotes the distribution of correctly partitioned data

points in all clusters [65].

5.6 Experiment Result

Fig. 7a and Fig. 7b show the experiment results of ACC of our proposed

WAMKM method under different settings of parameter 𝜎 on each da-

taset, and Fig. 8a and Fig. 8b are the results for AMKM.

Figs. 9-11 show the results of ACC, NMI and PUR in each iteration

on all 12 datasets, and Fig. 12 summarises the results of Figs. 9-11.

Chapter. 5. Experimental Analysis

Page 44 of 68

(a) 20news (b) Binalpha

(c) Australian Credit Approval (d) Website Phishing

(e) Dexter (f) Diabetes

Fig. 7a. ACC trends of our WAMKM emthod with different 𝝈 values.

Chapter. 5. Experimental Analysis

Page 45 of 68

(g) Coil20Data (h) Cardiotocography

(i) Spambase (j) Parkinson Speech

(k) Solar Flare (l) German Credit Data

Fig. 7b. ACC trends of our WAMKM emthod with different 𝝈 values.

Chapter. 5. Experimental Analysis

Page 46 of 68

(a) 20news (b) Binalpha

(c) Australian Credit Approval (d) Website Phishing

(e) Dexter (f) Diabetes

Fig. 8a. ACC trends of AMKM with different 𝝈 values.

Chapter. 5. Experimental Analysis

Page 47 of 68

(g) Coil20Data (h) Cardiotocography

(i) Spambase (j) Parkinson Speech

(k) Solar Flare (l) German Credit Data

Fig. 8b. ACC trends of AMKM with different 𝝈 values.

Chapter. 5. Experimental Analysis

Page 48 of 68

(a) 20news (b). Binalpha (c) Australian Credit Approval

 (d) Website Phishing (e) Dexter (f) Diabetes

(g) Coil20Data (h) Cardiotocography (i) Spambase

 (j) Parkinson Speech (k) Solar Flare (l) German Credit Data

 Fig. 9. ACC variations of all methods in each iteration of every dataset.

Chapter. 5. Experimental Analysis

Page 49 of 68

 (a) 20news (b) Binalpha (c) Australian Credit Approval

 (d) Website Phishing (e) Dexter (f) Diabetes

 (g) Coil20Data (h) Cardiotocography (i) Spambase

 (j) Parkinson Speech (k) Solar Flare (l) German Credit Data

 Fig. 10. NMI variations of all methods in each iteration of every dataset.

Chapter. 5. Experimental Analysis

Page 50 of 68

 (a) 20news (b) Binalpha (c) Australian Credit Approval

 (d) Website Phishing (e) Dexter (f) Diabetes

 (g) Coil20Data (h) Cardiotocography (i) Spambase

 (j) Parkinson Speech (k) Solar Flare (l) German Credit Data

 Fig. 11. PUR variations of all methods in each iteration of every dataset.

Chapter. 5. Experimental Analysis

Page 51 of 68

 (a) 20news (b) Binalpha (c) Australian Credit Approval

(d) Website Phishing (e) Dexter (f) Diabetes

(g) Coil20Data (h) Cardiotocography (i) Spambase

(j) Parkinson Speech (k) Solar Flare (l) German Credit Data

Fig. 12. The summarised results of all methods on every dataset.

Chapter. 5. Experimental Analysis

Page 52 of 68

5.7 Result analysis

Based on our experimental results in Figs. 7-11, we have the following

observations.

First, our proposed methods are sensitive to the setting parameter 𝜎,

which controls the similarity between two data points. For example, the

ACC results first keep stable while varying the value of 𝜎 from 10-5 to

100, and then begin increasing gradually until arriving their peaks, i.e.,

1010 for the value of 𝜎 on some datasets, such as 20news, Binalpha, Aus-

tralian Credit Approval, Coil20Data, Parkinson Speech and Solar Flare.

The ACC results of show the fluctuation trends when 𝜎 is between 100

and 1010, and then keep stable while the value of 𝜎 is out of such a range,

on other datasets, such as Website Phishing, Diabetes and Spambase. It

is noteworthy that the corresponding results of our proposed AMKM

have the similar trends as in Fig. 8a and Fig. 8b. Moreover, our proposed

WAMKM method is more sensitive to the value of the parameter 𝜎,

compared with our proposed AMKM method. In nutshell, the ACC re-

sults on our selected datasets vary while the value of parameter 𝜎 is in

the range between 10-1 and 1010. The possible reason could be that the

elements of the adjacent matrix will be all nearly zero when the value of

parameter 𝜎 is too small or too large. Hence, it is essential to tune the

value of parameter 𝜎 carefully and accurately. Moreover, to archive the

best clustering performance, different datasets should use different

ranges of 𝜎.

Second, our proposed methods outperformed the comparison methods

on all datasets, in terms of three clustering evaluation metrics. For exam-

ple, our proposed methods improved on average by 5.51%, 25.99%, and

Chapter. 5. Experimental Analysis

Page 53 of 68

3.85% respectively, compare with spectral clustering, k-means and k-

means++ clustering algorithms, in terms of ACC, NMI and PUR, on all

datasets. In particular, our method achieved the most improvement by

17.4% in terms of ACC on dataset Coil20Data, 197.2% in terms of NMI

on dataset Australian Credit Approval, and 17.9% in terms of PUR on

dataset 20news. Furthermore, our proposed methods outperformed the

comparison methods in terms of ACC, NMI, and Purity, respectively, on

ten datasets, eight datasets, and nine datasets of total twelve datasets.

The reason is that our proposed methods generated better representa-

tions, compared with the use of spectral representation of SPCL and the

use of original features in both k-means and k-means ++ clustering. It

implies that representation learning is very important for clustering anal-

ysis, which was demonstrated in the literature [22] [40].

Last but not least, our proposed WAMKM method has no significant

improvements, compared with our proposed AMKM method, in terms

of all three evaluation metrics. The possible reason is that the feature

weight is seriously related to the quality of the similarity matrix, which

is sensitive to the setting of the parameter 𝜎. However, our proposed

WAMKM method is more sensitive than our proposed method AMKM,

in terms of the variations of the parameter 𝜎.

Chapter. 6. Conclusion and Future Work

Page 54 of 68

Chapter. 6. Conclusion and Future Work

6.1 Conclusion

In this thesis, we have proposed two clustering methods to address the

issues of previous k-means clustering. To achieve this, we first devised

an adjacent matrix and a weighted adjacent matrix, respectively, fol-

lowed by conducting k-means clustering on the resulted adjacent matrix.

Finally, we evaluated the clustering results against three comparison

clustering algorithms, i.e., k-means, k-means++, and normalised spectral

clustering algorithms, in terms of three evaluation metrics. As a result,

our proposed clustering methods outperform the comparison algorithms

in our experiments.

6.2 Future Work

However, we found that the experiment results of our proposed methods

are sensitive to parameter 𝜎, which is used to construct the adjacent ma-

trix. Inappropriate selected parameters always result in bad or complete

wrong clustering results. This means that our proposed clustering meth-

ods are data-driven and their performance varies on different types of

datasets. Hence, in our future work, we will extend our research to dy-

namically select suitable parameters and develop a novel algorithm to

select the best parameter 𝜎 based on the dataset itself, instead of the

mean value of similarity matrix used in this thesis.

Appendices

Page 55 of 68

Appendices

We implemented our clustering methods in Matlab 2019a, and we attach

our implementing code in this part.

Appendix A. Matlab code for AMKM

function [ACC, NMI, Purity, ARI,telabel, center] = mySPCL2(Xtr,Xte,gnd,opt)

%% example clear;clc; opt.sigma = 1:5; opt.k = 10;opt.i = 1; opt.spclType = 2;
%% [ACC, NMI, Purity, ARI, telabel, center] =

%% mySPCL2(rand(3000,50),rand(500,50),[ones(300,1);2*ones(200,1)],opt)

%% calculate the similarity matrix

W = EuDist2(Xtr,Xtr);

switch opt.para_tuning

 % parameter tuning
 case 1

 sigma=opt.sigma(opt.para_pos);

 % no parameter tuning
 case 0

 sigma = mean(mean(W));

end

% calculate the adjacent matrix
W = exp(-W.^2 ./ (2*sigma^2));

% process the test data to match with the training data space

Xte = EuDist2(Xte,Xtr);
Xte = exp(-Xte.^2 ./ (2*sigma^2));

for j=1:opt.kmeans_repeat

 %% run k-means clustering on adjacent matrix directly

 [~,center] = kmeans(W, opt.k, 'start', 'cluster');
 % process the test data to match with the training data space

 % dist_all denotes distances of all data points in test data to clusters centres;
 dist_all = EuDist2(center,Xte);

 % select the minimum distance to a centre and assign class label to this centre;

[~,telabel] = min(dist_all);
telabel = telabel';

% align the clustering outcome with ground truth
res = bestMap(gnd,telabel);

 %% calculate the temp evaluation metric
 tmpACC (j) = length(find(gnd==res))/length(gnd);

 tmpNMI (j) = nmi(gnd,telabel);

 tmpARI (j) = clustereval(gnd,telabel, 'ari') ;
 tmpPurity(j) = Calculate_purity(gnd,telabel);

end

Appendices

Page 56 of 68

 %% calculate the evaluation metric
ACC = mean(tmpACC);

NMI = mean(tmpNMI);

ARI = mean(tmpARI) ;
Purity = mean(tmpPurity);

end

Appendix B. Matlab code for WAMKM

function [ACC, NMI, Purity, ARI,telabel, center] = mySPCL1(Xtr,Xte,gnd,opt)

%% example clear;clc; opt.sigma = 1:5; opt.k = 10;opt.i = 1; opt.spclType = 2;
%% [ACC, NMI, Purity, ARI, telabel, center] =

%% mySPCL1(rand(3000,50),rand(500,50),[ones(300,1);2*ones(200,1)],opt)

%% calculate the similarity matrix
W = EuDist2(Xtr,Xtr);

switch opt.para_tuning
 % parameter tuning

 case 1

 sigma=opt.sigma(opt.para_pos);
 % no parameter tuning

 case 0

 sigma = mean(mean(W));
end

% calculate the adjacent matrix

W = exp(-W.^2 ./ (2*sigma^2));
% calculate degree matrix

degs = sum(W, 2);

D = sparse(1:size(W, 1), 1:size(W, 2), degs);

% calculate weight matrix

weight=diag(D)/sum(diag(D));
ww = repmat(weight',size(W,1),1);

W=W.*ww;

% process the test data to match with the training data space
Xte = EuDist2(Xte,Xtr);

Xte = exp(-Xte.^2 ./ (2*sigma^2));

Xte = Xte.*repmat(weight',size(Xte,1),1);

for j=1:opt.kmeans_repeat

 %% run k-means clustering on weighted adjacent matrix directly
 [~,center] = kmeans(W, opt.k, 'start', 'cluster');

 % dist_all denotes distances of all data points in test data to clusters centres;

 dist_all = EuDist2(center,Xte);
 % select the minimum distance to a centre and assign class label to this centre;

 [~,telabel] = min(dist_all);

telabel = telabel';

% align the clustering outcome with ground truth

res = bestMap(gnd,telabel);

 % calculate the temp evaluation metric

 tmpACC (j) = length(find(gnd==res))/length(gnd);
 tmpNMI (j) = nmi(gnd,telabel);

 tmpARI (j) = clustereval(gnd,telabel, 'ari') ;

Appendices

Page 57 of 68

 tmpPurity(j)= Calculate_purity(gnd,telabel);

end

%% calculate the evaluation metric

ACC = mean(tmpACC);
NMI = mean(tmpNMI);

ARI = mean(tmpARI) ;

Purity = mean(tmpPurity);
end

Appendix C. Matlab code for k-means clustering

function []= Do_K_means_CV(dataset)
%% example: clear;clc;Do_K_means_CV(12)

%% tidy the output format
format short;

%% initialise parameters

iteration = 10; %repeat times
fold_k = 10; % k fold number

kmeans_repeat = 10; % k-means run times.

%% initialise matrix

ACC=zeros(iteration,fold_k);
Purity=zeros(iteration,fold_k);

NMI=zeros(iteration,fold_k);

ARI=zeros(iteration,fold_k);

%% dataset selection

switch dataset

 case 1

 load 20news_uni_10fold.mat

 case 2
 load binalpha_uni_10fold.mat

 case 3

 load australian_uni_10fold.mat
 case 4

 load Website_Phishing.mat

 case 5
 load Contraceptive_Method_Choice.mat

 case 6

 load diabetes_uni_10fold.mat
 case 7

 load Coil20Data_25_uni_10fold.mat

 case 8
 load Cardiotocography.mat

 case 9

 load Spambase_10fold.mat
 case 10

 load Parkinson_Speech_Dataset_10fold.mat

 case 11
 load Solar_Flare_data2.mat

 case 12

 load German_Credit_Data.mat
end

Appendices

Page 58 of 68

for ite = 1:iteration

 tic

 for i = 1:fold_k

 test = ind(:,ite) == i;

 train = ~test;
 trdata = Data(train,:);

 tedata = Data(test,:);

 trgnd = Y(train,:);
 tegnd = Y(test,:);

 %% data training process

 for j=1:kmeans_repeat

 [~,center] = kmeans(trdata, length(unique(trgnd)), 'start', 'cluster');

 % dist_all denotes distances of all data points in test data to clusters centres;
 dist_all = EuDist2(center,tedata);

 % testing process

 % select the minimum distance to a centre and assign class label to this centre;
 [~,telabel] = min(dist_all);

 telabel = telabel';

 res = bestMap(tegnd,telabel);
 tmpACC (j) = length(find(tegnd==res))/length(tegnd);

 tmpNMI (j) = nmi(tegnd,telabel);

 tmpARI (j) = clustereval(tegnd,telabel, 'ari') ;
 tmpPurity(j) = Calculate_purity(tegnd,telabel);

 end

 ACC (ite,i) = mean(tmpACC);

 NMI (ite,i) = mean(tmpNMI);
 ARI (ite,i) = mean(tmpARI) ;

 Purity(ite,i) = mean(tmpPurity);

 end

toc

end

currenttime = datestr(now);
currenttime(currenttime==':')=';';

save(['./Results_Kmeans/Result_kmeans-',currenttime,'-',num2str(dataset)],'ACC','NMI','Purity','ARI')

%% for a glance of the results.

mACC=mean(ACC(:))

sACC=std(ACC(:))

Appendices

Page 59 of 68

Appendix D. Matlab code for performance evaluation

function []= Do_SC_cv(dataset,method,para_tuning)
%% example: clear;clc;Do_mySC_cv(12,1,0)

% % change opt.method to choose algorithm

% tidy the output format

format short;

iteration = 10; % repeat times

fold_k = 10; % k fold number

%% 0-spectral clustering; 1-weighted W; 2-k-means on W; 3-k-means on L
opt.method=method;

opt.cvk=5;
opt.cvind=[];

opt.kmeans_repeat=3;

opt.para_tuning = para_tuning;%%% para_tuning: 1: tuning, 0: no_tuning
opt.i=0;

opt.spclType=2;%% set clustering algorithm, 1=spectral clustering; 2=k-means clustering

%% initialise martix

ACC=zeros(iteration,fold_k);

Purity=zeros(iteration,fold_k);
NMI=zeros(iteration,fold_k);

ARI=zeros(iteration,fold_k);

best_para=zeros(iteration,fold_k);
%% initialise sigma

opt.sigma = 1:5;

switch dataset

 case 1
 load 20news_uni_10fold.mat

 case 2

 load binalpha_uni_10fold.mat
 case 3

 load australian_uni_10fold.mat

 case 4
 load Website_Phishing.mat

 case 5

 load Contraceptive_Method_Choice.mat
 case 6

 load diabetes_uni_10fold.mat

 case 7
 load Coil20Data_25_uni_10fold.mat

 case 8

 load Cardiotocography.mat
 case 9

 load Spambase_10fold.mat

 case 10
 load Parkinson_Speech_Dataset_10fold.mat

 case 11

 load Solar_Flare_data2.mat
 case 12

 load German_Credit_Data.mat

end

for ite = 1:iteration

Appendices

Page 60 of 68

 tic
 for i = 1:fold_k

 test = ind(:,ite) == i;
 train = ~test;

 trdata = Data(train,:);

 tedata = Data(test,:);
 trgnd = Y(train,:);

 tegnd = Y(test,:);

 [best_para(ite,i),ACC(ite,i),NMI(ite,i), Purity(ite,i),ARI(ite,i)]...

 = CV_train_cv1(trdata,trgnd,tedata,tegnd,opt);

 end

 toc
end

currenttime = datestr(now);
currenttime(currenttime==':')=';';

save(['./Results/LRSR_v1-',currenttime,'-',num2str(dataset),'-',num2str(method),'-

',num2str(para_tuning)],...
 'ACC','NMI','Purity','ARI','best_para','method','para_tuning')

%% for a glance of the results.
mACC=mean(ACC(:))

sACC=std(ACC(:))

function [best_para,ACC,NMI,Purity,ARI] = CV_train_cv1(trdata,trgnd,tedata,tegnd,opt)

switch opt.para_tuning
 case 0 % no tuning

 num_cluster = unique(trgnd);

 opt.nClass=length(num_cluster);
 opt.k=opt.nClass;

 best_para=0;

 case 1 % tuning
 num_cluster = unique(trgnd);

 opt.nClass=length(num_cluster);

 opt.k=opt.nClass;

 temp_pos = [];

 tempcvind=[];
 opt.cvind = zeros(size(trdata,1),1);

 for z = 1:length(num_cluster)
 temp_pos = find(trgnd == num_cluster(z));

 tempcvind = crossvalind('Kfold',length(temp_pos),opt.cvk);

 opt.cvind(temp_pos) = tempcvind;
 temp_pos = [];

 tempcvind=[];
 end

 ACC=zeros(length(opt.sigma),opt.cvk);
 for a=1:length(opt.sigma)

 opt.para_pos=a;

 for b = 1:opt.cvk
 test = opt.cvind == b;

Appendices

Page 61 of 68

 train = ~test;

 Xte=trdata(test,:);

 Xtr=trdata(train,:);

 Xgnd=trgnd(test);
 switch opt.method

 case 0

 ACC(a,b) = spcl(Xtr,Xte,Xgnd,opt);
 case 1

 ACC(a,b) = mySPCL1(Xtr,Xte,Xgnd,opt);

 case 2
 ACC(a,b) = mySPCL2(Xtr,Xte,Xgnd,opt);

 case 3

 ACC(a,b) = mySPCL3(trdata,tedata,trgnd,opt);

 end

 end
 end

 %% best parameter combination
 [~, ind] = max(ACC(:));

 [m,~] = ind2sub(size(ACC),ind);

 best_para=opt.sigma(m);
 opt.para_pos = m;

end

switch opt.method

 case 0
 [ACC, NMI, Purity, ARI] = spcl(trdata,tedata,tegnd,opt);

 case 1

 [ACC, NMI, Purity, ARI] = mySPCL1(trdata,tedata,tegnd,opt);
 case 2

 [ACC, NMI, Purity, ARI] = mySPCL2(trdata,tedata,tegnd,opt);

 case 3
 [ACC, NMI, Purity, ARI] = mySPCL3(trdata,tedata,trgnd,opt);

end

References

Page 62 of 68

References

1. Jordan, M.I. and T.M. Mitchell, Machine learning: Trends, perspectives, and

prospects. Science, 2015. 349(6245): p. 255-260.

2. Hastie, T., R. Tibshirani, and J. Friedman, Unsupervised Learning, in The Elements of

Statistical Learning: Data Mining, Inference, and Prediction, T. Hastie, R. Tibshirani,

and J. Friedman, Editors. 2009, Springer New York: New York, NY. p. 485-585.

3. Liu, Q. and Y. Wu, Supervised learning. Encyclopedia of the Sciences of Learning,

2012: p. 3243-3245.

4. Xue, H., Q. Yang, and S. Chen, SVM: Support vector machines. 2009: Chapman &

Hall/CRC: London, UK.

5. Safavian, S.R. and D. Landgrebe, A survey of decision tree classifier methodology.

IEEE transactions on systems, man, and cybernetics, 1991. 21(3): p. 660-674.

6. Ogutu, J.O., T. Schulz-Streeck, and H.-P. Piepho, Genomic selection using regularized

linear regression models: ridge regression, lasso, elastic net and their extensions, in

BMC. 2012. p. 34-41.

7. Chapelle, O., B. Scholkopf, and E. A. Zien, Semi-Supervised Learning (Chapelle, O.

et al., Eds.; 2006) [Book reviews]. IEEE Transactions on Neural Networks, 2009.

20(3): p. 542-542.

8. Prakash, V.J. and D.L. Nithya A survey on semi-supervised learning techniques. arXiv

preprint arXiv:1402.4645, 2014. DOI: 10.14445/22312803/IJCTT-V8P105.

9. Zhu, X. and A.B. Goldberg, Introduction to semi-supervised learning. Synthesis

lectures on artificial intelligence and machine learning, 2009. 3(1): p. 1-130.

10. Cong, Y., J. Yuan, and J. Liu, Sparse reconstruction cost for abnormal event detection,

in CVPR. 2011. p. 3449-3456.

11. Mehran, R., A. Oyama, and M. Shah, Abnormal crowd behavior detection using social

force model, in CVPR. 2009, IEEE. p. 935-942.

12. Belkin, M. and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data

representation. Neural computation, 2003. 15(6): p. 1373-1396.

13. Dash, M., H. Liu, and J. Yao, Dimensionality reduction of unsupervised data, in

Proceedings Ninth IEEE International Conference on Tools with Artificial

Intelligence. 1997, IEEE. p. 532-539.

14. Lei, C. and X. Zhu, Unsupervised feature selection via local structure learning and

sparse learning. Multimedia Tools and Applications, 2018. 77(22): p. 29605-29622.

15. Kodinariya, T.M. and P.R. Makwana, Review on determining number of Cluster in K-

Means Clustering. International Journal, 2013. 1(6): p. 90-95.

16. Tibshirani, R., G. Walther, and T. Hastie, Estimating the number of clusters in a data

set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 06 January 2002. 63(2): p. 411-423.

17. Kodinariya, T.M. and P.R. Makwana, Review on determining number of Cluster in K-

Means Clustering. International Journal of Advance Research in Computer Science

and Management Studies, 2013. 1(6): p. 90-95.

18. Zheng, W., et al. Unsupervised feature selection by self-paced learning regularization.

Pattern Recognition Letters, 2018. DOI: 10.1016/j.patrec.2018.06.029.

19. Abe, S., Feature Selection and Extraction, in Support Vector Machines for Pattern

Classification [Book]. 2010, Springer London. p. 331-341.

20. Zhu, X., et al., Graph PCA hashing for similarity search. IEEE Transactions on

Multimedia, 11 May 2017. 19(9): p. 2033-2044.

References

Page 63 of 68

21. Zhu, X., et al. One-step Multi-view Spectral Clustering. IEEE Transactions on

Knowledge and Data Engineering, 2018. DOI: 10.1109/TKDE.2018.2873378.

22. Zhang, S. Cost-Sensitive KNN Classification. Neurocomputing, 2019. DOI:

10.1016/j.neucom.2018.11.101.

23. Zhu, X., X. Li, and S. Zhang, Block-row sparse multiview multilabel learning for image

classification. IEEE transactions on cybernetics, 2015. 46(2): p. 450-461.

24. Arora, P. and S. Varshney, Analysis of k-means and k-medoids algorithm for big data.

Procedia Computer Science, 2016. 78: p. 507-512.

25. Bachem, O., et al., Approximate K-Means++ in Sublinear Time, in AAAI. 2016:

Phoenix, Arizona USA. p. 1459-1467.

26. Malinen, M.I. and P. Fränti, Balanced K-Means for Clustering, in S+SSPR. 2014:

Berlin, Heidelberg. p. 32-41.

27. Capó, M., A. Pérez, and J.A. Lozano, An efficient approximation to the K-means

clustering for massive data. Knowledge-Based Systems, 2017. 117: p. 56-69.

28. Birch, Z.T., BIRCH: an efficient data clustering method for very large databases, in

SIGMOD, R.R. T. Zhang, M. Livny, Editor. 1996: New York. p. 103-114.

29. Guha, S., R. Rastogi, and K. Shim, CURE: an efficient clustering algorithm for large

databases, in SIGMOD. 1998, ACM: Seattle, Washington, USA. p. 73-84.

30. Guha, S., Rastogi, R., & Shim, K., ROCK: A robust clustering algorithm for

categorical attributes. Information Systems, 2000. 25(5): p. 345-366.

31. Murtagh, F. and P. Contreras, Algorithms for hierarchical clustering: an overview.

Wiley Data Mining and Knowledge Discovery, 2012. 2(1): p. 86-97.

32. Lattanzi, S., et al., Robust Hierarchical k-Center Clustering, in ITCS. 2015, ACM:

Rehovot, Israel. p. 211-218.

33. Gan, J. and Y. Tao, DBSCAN revisited: mis-claim, un-fixability, and approximation,

in SIGMOD. 2015: Melbourne. p. 519-530.

34. Deng, Z., et al., A scalable and fast OPTICS for clustering trajectory big data. Cluster

Computing, 2015. 18(2): p. 549-562.

35. Cassisi, C., et al., Enhancing density-based clustering: Parameter reduction and

outlier detection. Information Systems, 2013. 38(3): p. 317-330.

36. Lv, Y., et al., An efficient and scalable density-based clustering algorithm for datasets

with complex structures. Neurocomputing, 2016. 171: p. 9-22.

37. Bryant, A. and K. Cios, RNN-DBSCAN: A Density-Based Clustering Algorithm Using

Reverse Nearest Neighbor Density Estimates. IEEE Transactions on Knowledge and

Data Engineering, 2018. 30(6): p. 1109-1121.

38. Sharma, A. and A. Sharma, KNN-DBSCAN: Using k-nearest neighbor information for

parameter-free density based clustering, in ICICICT. 2017: Kannur, India. p. 787-792.

39. Zheng, W., et al., Dynamic graph learning for spectral feature selection. Multimedia

Tools and Applications, 2017. 77(22): p. 29739-29755.

40. Zhang, S. Multiple-scale cost sensitive decision tree learning. World Wide Web, 2018.

21, 1787-1800 DOI: 10.1007/s11280-018-0619-5.

41. Xu, D. and Y. Tian, A comprehensive survey of clustering algorithms. Annals of Data

Science, 2015. 2(2): p. 165-193.

42. Xu, X., et al., Scan: a structural clustering algorithm for networks, in KDD. 2007,

ACM: San Jose, CA. p. 824-833.

43. Shiokawa, H., Y. Fujiwara, and M. Onizuka, SCAN++: efficient algorithm for finding

clusters, hubs and outliers on large-scale graphs. Proceedings of the VLDB

Endowment, 2015. 8(11): p. 1178-1189.

44. Chang, L., et al., Fast and Exact Structural Graph Clustering. IEEE Transactions on

Knowledge and Data Engineering, 2017. 29(2): p. 387-401.

45. Shiokawa, H., T. Takahashi, and H. Kitagawa, ScaleSCAN: Scalable Density-Based

Graph Clustering, in DEXA. 2018: Cham. p. 18-34.

References

Page 64 of 68

46. Zhu, X., et al. Low-rank Sparse Subspace for Spectral Clustering. IEEE Transactions

on Knowledge and Data Engineering, 2018. DOI: 10.1109/TKDE.2018.2858782.

47. He, L., et al., Fast Large-Scale Spectral Clustering via Explicit Feature Mapping.

IEEE Transactions on Cybernetics, 2018. 49(3): p. 1058-1071.

48. STING, W.W.Y.J.M.R., A Statistical Information Grid Approach to Spatial Data

Mining, in VLDB. 1997: Athens, Greece. p. 186-195.

49. Chen, J., et al., FGCH: a fast and grid based clustering algorithm for hybrid data

stream. Applied Intelligence, 2018. 49(4): p. 1228–1244.

50. Liu, F., C. Ye, and E. Zhu Accurate Grid-based Clustering Algorithm with Diagonal

Grid Searching and Merging. in ICAMMT, 2017. DOI: 10.1088/1757-

899X/242/1/012123.

51. Ding, Y. and X. Fu, Kernel-based fuzzy c-means clustering algorithm based on genetic

algorithm. Neurocomputing, 2016. 188: p. 233-238.

52. Ferreira, M.R.P., F.d.A.T. de Carvalho, and E.C. Simões, Kernel-based hard clustering

methods with kernelization of the metric and automatic weighting of the variables.

Pattern Recognition, 2016. 51: p. 310-321.

53. Du, L., et al., Robust Multiple Kernel K-means Using L21-Norm, in IJCAI. 2015:

Buenos Aires, Argentina. p. 3476-3482.

54. Tibshirani, R., G. Walther, and T. Hastie, Estimating the number of clusters in a data

set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 2001. 63(2): p. 411-423.

55. Jothi, R., S.K. Mohanty, and A. Ojha DK-means: a deterministic K-means clustering

algorithm for gene expression analysis. Pattern Analysis and Applications, 2017. DOI:

10.1007/s10044-017-0673-0.

56. Zahra, S., et al., Novel centroid selection approaches for KMeans-clustering based

recommender systems. Information sciences, 2015. 320: p. 156-189.

57. Pavan, K.K., A.D. Rao, and G. Sridhar, Single pass seed selection algorithm for k-

means. Computer Science 2010. 6(1): p. 60-66.

58. Tremblay, N., et al., Compressive spectral clustering, in ICML. 2016: New York. p.

1002-1011.

59. Ng, A.Y., M.I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an

algorithm, in NIPS. 2002. p. 849-856.

60. Von Luxburg, U., A tutorial on spectral clustering. Statistics and computing, 2007.

17(4): p. 395-416.

61. Jayasumana, S., et al., Kernel methods on Riemannian manifolds with Gaussian RBF

kernels. IEEE transactions on pattern analysis and machine intelligence, 2015. 37(12):

p. 2464-2477.

62. Gebru, I.D., et al., EM algorithms for weighted-data clustering with application to

audio-visual scene analysis. IEEE transactions on pattern analysis and machine

intelligence, 2016. 38(12): p. 2402-2415.

63. Zhu, X., H.-I. Suk, and D. Shen, Low-rank dimensionality reduction for multi-modality

neurodegenerative disease identification. World Wide Web, 2019. 22(2): p. 907–925.

64. Souza, C.R., Kernel functions for machine learning applications. Creative Commons

Attribution-Noncommercial-Share Alike, 2010. 3: p. 29-41.

65. Du, T., et al., Spectral clustering algorithm combining local covariance matrix with

normalization. Neural Computing and Applications, 2018: p. 1-8.

66. Domeniconi, C. and M. Al-Razgan, Weighted cluster ensembles: Methods and

analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 2009. 2(4):

p. 17-57.

