Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ETHANOL AND ACETALDEHYDE METABOLISM

IN SHEEP

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Biochemistry

> > at

Massey University,

New Zealand.

Jane HENDTLASS

1973

ABSTRACT

-ii-

Ethanol and acetaldehyde metabolism in sheep has been studied in three different types of experiments:in purified enzyme systems, in liver homogenates and in the intact animals. Particular emphasis has been placed on the aldehyde oxidase enzyme from sheep liver, a molybdoflavoprotein with a broad specificity which includes aldehydes, quinines and N^{1} -methyl nicotinamide. This thesis describes a method for preparing an enzyme solution in which sheep liver aldehyde oxidase constitutes 85% of the total protein present. Investigations of its physical and kinetic properties show that the sheep liver enzyme differs from the aldehyde oxidases previously prepared from pig and rabbit livers. In addition, an antibody to sheep liver aldehyde oxidase has been prepared from rabbit serum and has been shown to act as a specific, competitive inhibitor of the enzyme. This has been used to assess the contribution that aldehyde oxidase makes to acetaldehyde oxidation in sheep liver homogenates under several different conditions.

The effects of steroids on ethanol and acetaldehyde metabolism has been investigated, special interest being taken in the effects of progesterone. Progesterone stimulates sheep liver aldehyde oxidase activity <u>in vitro</u> and inhibits sheep liver aldehyde dehydrogenase. Administration of progesterone to castrated sheep <u>in vivo</u> increased the rates of ethanol and acetaldehyde oxidation, and aldehyde oxidase has been identified as a factor in decreasing acetaldehyde concentrations in the homogenates of livers from these animals during the metabolism of exogenous ethanol. Low endogenous ethanol concentrations in peripheral venous blood of sheep are positively correlated with high progesterone levels in sheep due to its experimental administration, and to pregnancy and the oestrus cycle.

Studies of the effects of disulphiram on ethanol and acetaldehyde metabolism have shown that the compound inhibits sheep liver aldehyde oxidase and aldehyde dehydrogenase enzymes <u>in vitro</u>, increases endogenous concentrations of acetaldehyde in peripheral venous blood, and causes acetaldehyde accumulation during ethanol metabolism <u>in vivo</u>. When diazepam dis present together with disulphiram it provides protection from all but one of the effects shown by disulphiram alone. It does not alter the disulphiram inhibition of sheep liver aldehyde dehydrogenase. Amitryptyline is an inhibitor of both aldehyde oxidase and aldehyde dehydrogenase enzymes. It seems to increase the aldehyde oxidase response to disulphiram, and its <u>in vivo</u> administration causes acetaldehyde accumulation in peripheral blood during and in the absence of metabolism of exogenous ethanol.

Investigations into the effects of ethanol on ethanol and acetaldehyde metabolism in sheep have shown that ethanol increases the activity of aldehyde oxidase <u>in vitro</u> and its chronic administration accelerates acetaldehyde oxidation <u>in vivo</u>. A supplementary study of the interrelationships between the relative concentrations of NADH and NAD⁺, and ethanol and acetaldehyde metabolism shows that aldehyde oxidase participation in acetaldehyde oxidation is dependent on the NAD⁺ concentrations, and that acetaldehyde oxidation can account for much of the NADH accumulation that occurs during ethanol metabolism <u>in vivo</u>.

Acetaldehyde oxidation during ethanol metabolism in sheep can be diverted through the aldehyde oxidase catalyzed pathway, avoiding dependence on the NAD⁺-linked aldehyde dehydrogenase enzyme. The results in this thesis have shown that aldehyde oxidase can catalyze up to twothirds of acetaldehyde oxidation in sheep liver when NAD⁺ is limited, and that the pathway is dependent on the endocrine state and the pattern of ethanol consumption of the animal.

-iii-

ACKNOWLEDGEMENTS

The author wishes to thank her supervisors, Prof.R.D.Batt and Dr.R.M.Greenway, for their help and advice throughout the course of this study.

In addition she expresses sincere appreciation of the help, advice and technical assistance rendered by other members of the staff of the Department of Chemistry and Biochemistry, Massey University; in particular, thanks are due to Miss L.Burson who willingly performed many duties outside her usual sphere of work.

The staff of the Animal Physiology Unit, especially Mr.L.Robertson, were generous in giving freely of their time and knowledge in experiments involving live animals.

The author also thanks Mrs.E.Self for typing the manuscript and remaining patient during inevitable delays.

Finally the patience and perseverance of Mr.R.E.Hendtlass must be recognised, for without these this thesis would not have been.

Upon the advice of Prof.R.D.Batt, this thesis is presented in the form of several papers to facilitate its later publication.

LIST OF CONTENTS	LIST	OF,	CONTENTS
------------------	------	-----	----------

×

	Page
Chapter 1 INTRODUCTION	1
METABOLISM OF ACETALDEHYDE	
I) Enzymatic Synthesis of Acetaldehyde in Mammals	1
II) Enzymatic Degradation of Acetaldehyde in Mammals	4
PHARMACOLOGY OF ACETALDEHYDE	8
OUTLINE OF THE WORK PRESENTED IN THIS THESIS	9
Chapter 2 ALDEHYDE OXIDASE	11
METHODS AND MATERIALS	12
I) Enzyme Assays with Various Hydrogen Acceptors	12
II) Other Methods	16
RESULTS	17
I) Enzyme Purification: Sheep Liver Aldehyde Oxidase	17
II) Physical Properties: Sheep Liver Aldehyde Oxidase	20
III) Kinetic Properties:Sheep Liver Aldehyde Oxidase	24
IV) Immunology	32
DISCUSSION	39
Chapter 3 ESTIMATION OF ETHANOL AND ACETALDEHYDE IN	
BIOLOGICAL FLUIDS	40
DETAILS OF THE METHOD	47
Collection of Blood	47
Storage of Blood Samples	50
Estimation of Ethanol, Acetaldehyde and Acetone in	
Blood Samples	50
Infusion of Ethanol or Acetaldehyde into Sheep	54
Liver Homogenate Preparation and Analysis	54
DISCUSSION	57
Chapter 4 EFFECT OF PROGESTERONE ON ETHANOL AND	
ACETALDEHYDE METABOLISM	59
METHODS	59
RESULTS	61
Aldehyde Oxidase and Xanthine Oxidase Activities	
in Sheep Livers	61
Steroid Effect on Sheep Liver Aldehyde Oxidase	61
Steroid Effect on Sheep Liver Aldehyde Dehydrogenase	64

-v-

20

vi-	
	Page
Administration of Progesterone to Sheep	64
Liver Homogenates	70
Oestral Variation in Endogenous Levels of Ethanol	
and Acetaldehyde	73
Endogenous Levels of Ethanol and Acetaldehyde during	
Pregnancy	73
DISCUSSION	76
Chapter 5 EFFECT OF DISULPHIRAM AND OTHER COMPCUNDS ON	
ETHINOL AND ACETALDERYDE METABOLISM	·//7
METHODS	80
RESULTS	81
I) Disulphiram, Diazepam and Amitryptyline	81
i) Effects of Disulphiram, Diazepam and Amitryptyline	
Hydrochloride on Sheep Liver Enzymes <u>in vitro</u>	81
ii) Effects of Disulphiram, Diazepam and Amitryptyline	
Administration in vivo on Endogenous Acetaldehyde,	
Ethanol and Acetone Levels in Peripheral Venous	
Blood of Sheep	83
iii) Effects of Disulphiram, Diazepam and Amitryptyline	
on the Clearance of Exogenous Ethanol from Peripheral	L
Venous Blood of Sheep	88
II) Metronidazole	90
DISCUSSION	93
Chapter 6 OTHER ASPECTS OF ETHANOL AND ACETAIDENYDE	
METABOLISM	98
- METHODS	99
RESULTS	100
I) Effects of Chronic Ingestion of Dilute Ethanol	
Solutions on Ethanol and Acetaldehyde Metabolism	
<u>in vivo</u>	101
i) Voluntary Intake of Dilute Ethanol Solutions	101
ii) Effect of Chronic Ingestion of Ethanol on Basal	
Acetaldehyde, Ethanol and Acetone Levels in	
Peripheral Venous Blood of Sheep	101
iii) Effect of Chronic Consumption of Ethanol on the	
Clearance of Exogenous Acetaldehyde from the	
Peripheral Vencus Blood of Sheep	101

	•	•	
77	-	-	
-v			-
	-	_	

II) Re	lationships between Relative Concentrations of NADH	
and	d NAD ⁺ , and Ethanol and Acetaldehyde Metabolism in	
Sh	eep	104
i)	Metabolism of Exogenous Ethanol in Sheep Liver	
	Homogenates	104
ii)	Changes in the Relative Concentrations of Pyruvate	
	and Lactate in Peripheral Venous Blood of Sheep	
	during Acetaldehyde and Ethanol Metabolism in vivo	107
DISCUSSI	ON	107
Chapter 7	CONCLUSION	110
Appendix I	ALDEHYDE DEHYDROGENASE	113
REFERENCES		119

Page

-viii-

LIST OF FIGURES

			rage
FIGURE	1	Standard Curve for the Determination of Changes	
		in Oxidised Methylene Blue Concentration	15
FIGURE	2	Standard Curve for the Emission Spectrographic	
		Estimation of Molybdenum	15
FIGURE	3	Electrophoresis of a Purified Sheep Liver Aldehyde	
		Oxidase Preparation	21
FIGURE	4	Diagrams to show the Patterns obtained when Sheep	
		Liver Aldehyde Oxidase and Xanthine Oxidase were	
		separated by Gel Electrophoresis and Stained with	
		a Methylene Blue Activity Stain	22
FIGURE	5	Sedimentation Pattern of a Purified Sheep Liver	
		Aldehyde Oxidase Preparation in the Analytical	
		Ultracentrifuge	23
FIGURE	6	Absorption Spectra of Oxidised and Reduced Sheep	
		Liver Aldehyde Oxidase	26
FIGURE	7	Determination of the Optimum pH for Sheep Liver	
		Aldehyde Oxidase Activity using Acetaldehyde as	
		Substrate	27
FIGURE	8	Determination of the Michaelis Constant of Sheep	
		Liver Aldehyde Oxidase for Acetaldehyde as Substrate	30
FIGURE	9	Effect of Various Ethanol Concentrations on the Rate	
		of Oxygen Uptake catalyzed by Sheep Liver Aldehyde	
		Oxidase	34
FIGURE	10	Immunoelectrophoresis of Aldehyde Oxidase Prepar-	
		ations from Ewe and Wether Livers and a Xanthine	
		Oxidase Preparation	36
FIGURE	11	Oxygen Uptake catalyzed by Sheep Liver Aldehyde	
		Oxidase in the presence of Anti-Aldehyde Oxidase	
		X-Globulin or Blank X-Globulin Preparations	38
FIGURE	12	Effect of Varying the χ -Globulin Concentration	
		on the Rate of Oxygen Uptake catalyzed by	
		Sheep Liver Aldehydo Oxidase	38
FIGURE	13	Effect of Anti-Aldehyde Oxidase &-Globulin	
		Preparation on Ethanol and Acetaldehyde Levels	
		in Sheep Liver Homogenates during Metabolism	
		of Exogenous Ethanol	40

	-ix-	Pago
FIGURE 14	Postulated Sequence of Sites of Electron Egress	rage
	and Inhibition of Electron Transport within the	
	Sheep Liver Aldehyde Oxidase Molecule	43
FIGURE 15	Collection of Blood from the Left Jugular Vein	
	of a Sheep	48
FIGURE 16	Typical Variation in Endogenous Acetaldehyde,	
	Ethanol and Acetone Levels in Sheep Blood	
	(Left Jugular) throughout the Day	51
FIGURE 17	Variations in Acetaldehyde and Ethanol Concentrations	
	in a Typical Blood Sample during Storage at 4° C	52
FIGURE 18	Typical Traces of the Gas Chromatographic Separation	
	of Volatile Compounds in Standard Aqueous Solution	
	and in a Sheep Blood Sample	53
FIGURE 19	Calibration Curves for the Gas Chromatographic	
	Estimation of Ethanol, Acetaldehyde and Acetone	
	Concentrations	56
FIGURE 20	Histogram to show the Distribution of Aldehyde	
	Oxidase Activities in the Livers of Individual	
	Sheep	63
FIGURE 21	Effect of varying the Progesterone Concentration	
	on Sheep Liver Aldehyde Oxidase Activity	67
FIGURE 22	Clearance Pattern of Acetaldehyde from the	
	Peripheral Venous Blood of Sheep following its	
	Intravenous Infusion	69
FIGURE 23	Clearance Pattern of Ethanol from the Peripheral	
	Venous Blood of Sheep following its Intravenous	
	Infusion	69
FIGURE 24	Metabolism of Ethanol in Homogenates of Livers	
	from Progesterone-Treated Wethers	72
FIGURE 25	Metabolism of Ethanol in Homogenates of Livers	
	from Progesterone-Treated Wethers in the presence	
	of Anti-Aldehyde Oxidase &-Globulin Preparation	72
FIGURE 26	Comparison of the Variation in Endogenous	
	Acetaldehyde and Ethanol Levels with the Levels	
	of Progesterone in Peripheral Venous Blood of a	
	Non-Pregnant Ewe reported in the literature	74
FIGURE 27	Mean Endogenous Acetaldehyde and Ethanol Levels	
	in the Peripheral Venous Blood of a Ewe during	
	and following Pregnancy	75

	-x-	Deee
FIGURE 28	Absolute Endogenous Acetaldehyde and Ethanol Levels in	rage
	the Peripheral Venous Blood of a Pregnant Ewe for	
	Three Weeks before and after Parturition	75
FIGURE 29	Structures of some Compounds that affect Acetaldehyde	
	and Ethanol Metabolism	78
FIGURE 30	Inhibitor Constant for Disulphiram Effect on Sheep	
	Liver Aldehyde Oxidase	82
FIGURE 31	Graph to show the Effect of Varying Diazepam	
	Concentrations on Disulphiram Inhibition of Sheep	
	Liver Aldehyde Oxidase	82
FIGURE 32	Inhibition of Sheep Liver Aldehyde Oxidase by	
	Amitryptyline Hydrochloride with and without	
	Disulphiram Present	85
FIGURE 33	Effects of Disulphiram, Diazepam and Amitryptyline	
	Hydrochloride Administration in vivo on Endogenous	
	Acetaldehyde, Ethanol and Acetone Levels in	
	Peripheral Venous Blood of Sheep	87
FIGURE 34	Effects of Diazepam and Amitryptyline Hydrochloride	
	Administration in vivo on Endogenous Acetaldehyde,	
	Ethanol and Acetone Levels in Peripheral Venous	
	Blood of Sheep	89
FIGURE 35	Effects of Oral Administration of Disulphiram, and	
	Diazepam and Disulphiram together on in vivo	
	Clearance of Exogenous Ethanol from Peripheral	
	Venous Blood of Sheep	91
FIGURE 36	Effects of Oral Administration of Disulphiram, and	
	Amitryptyline Hydrochloride and Disulphiram together	
	on <u>in vivo</u> Clearance of Exogenous Ethanol from	
	Peripheral Venous Blood of Sheep	92
FIGURE 37	Effects of Oral Administration of Metronidazole	
	on in vivo Clearance of Exogenous Ethanol from	
	Peripheral Venous Blood of Sheep	95
FIGURE 38a	Voluntary Consumption of Dilute Ethanol Solutions	
	by Sheep I	102
FIGURE 38b	Voluntary Consumption of Dilute Ethanol Solutions	
	by Sheep II	102
FIGURE 39	Effect of Chronic Consumption of Dilute Ethanol	
	Solutions on the in vivo Clearance of Exogenous	
	Acetaldehyde from the Peripheral Venous Blood of Sheep	103

		Page
FIGURE 40	Effects of Varying the NAD^+ Concentration on	
	Ethanol and Acetaldehyde Levels in Sheep Liver	
	Homogenates during Metabolism of Exogenous Ethanol	105
FIGURE 41	Effect of Anti-Aldehyde Oxidase 🗸-Globulin	
	Preparation on Ethanol and Acetaldehyde Levels in	
	Sheep Liver Homogenates during Metabolism of	
	Exogenous Ethanol in the presence of Varying	
	NiD ⁺ Concentrations	106
FIGURE 42	Effect of <u>in vivo</u> Metabolism of Exogenous Ethanol	
	or Acetaldehyde on the Relative Concentrations of	
	Lactate and Pyruvate in the Peripheral Venous	
	Blood of Sheep	108
FIGURE 43	Major Pathways for Ethanol Metabolism in the Liver	111

-xi-

-xii-

LIST OF ABBREVIATIONS

a.m.	ante meridian
by vol.	by volume
CoQ	coenzyme Q
D	diffusion constant
\bigtriangleup	change in
DCI	2,6-dichlorophenol indophenol
DM	dry matter
E.C.No.	Enzyme Commission Number
EDTA	ethylenediamine-tetra-acetate
FID	flavin adenine dinucleotide
g	gravity
HC 1	hydrochloric acid
К	degrees Kelvin
K.	inhibitor constant
K	Michaelis constant
	lethal dose for 50% of a population
M	molecular weight
MeB	methylene blue
mmoles	millimoles
mg%	mg/100cm ³
Ν	number of samples
NiD	nicotinamide adenine dinucleotide
N. DH	reduced nicotinamide adenine dinucleotide
N.DP ⁺	nicotinamide adenine dinucleotide phosphate
NI.DPH	reduced nicotinamide adenine dinucleotide
	phosphate
NE	not estimated
OD	optical density
р	relative density
рҲ	probability less than
pH	optimum pH
R	universal gas constant
R	distance travelled relative to the front
RN <i>i</i> .	ribonucleic acid
S	sedimentation coefficient
S	Svedburgs
SD	standard deviation

-xiii-

SEM	standard error of the mean
-S-S-	sulphydryl group
tert.	tertiary
Т	absolute temperature
$\overline{\mathbf{v}}$	partial specific volume
vol.	volume
w/v	weight/volume
v/v	by volume
'zero'	taken at zero time