
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Database with Enterprise Application

for Mining Astronomical Data Obtained

byMOA

By

Huawei Xu

A thesis submitted in partial fulfillment of the
requirements for the degree of the Master of
Information Science in Computer Science

Massey University at Albany,
Auckland, New Zealand

cyxhw@hotmail.com
February 2007

Abstract

The MOA (Microlensing Observations in Astrophysics) Project is one of a new

generation of modem astronomy endeavours that generates huge volumes of data.

These have enormous scientific data mining potential. However, it is common

for astronomers to deal with millions and even billions of records. The challenge

of how to manage these large data sets is an important case for researchers. A

good database management system is vital for the research. With the modem

observation equipments used, MOA suffers from the growing volume of the data

and a database management solution is needed. This study analyzed the modem

technology for database and enterprise application. After analysing the data

mining requirements of MOA, a prototype data management 'system based on

MVC pattern was developed. Furthermore, the application supports sharing

MOA findings and scientific data on the Internet. It was tested on a 7GB subset

of achieved MOA data set. After testing, it was found that the application could

query data in an efficient time and support data mining.

1

Table of Contents:

1.0 INTRODUCTION/ MOA PROJECT .. 4

1.1 MOA PROJECT AND EQUIPMENTS 5

1.2 D ESCRIPTION OF MOA DATA•...............•........... 9

1.3 CURRENT REPRESENTATION OF MOA DATA•........ 11

1.4 OVERVIEW OF11U~ PROJECT•.. 12

2.0 BACKGROUND ON DATA MANAGEMENT ... 13

2.1 INTRODUCTION OF DATABASE 13

2.1.1 Manual Filing system 13

2.1.2 Traditional File-based systems 14 . .
2.1.3 Database approach 14

2.2 JAVA APPLICATION ..•.. 17

2. 2.1 Java technology 17

2. 2. 2 Java Enterprise Application 17

2. 2.3 Java Enterprise Application Architecture .. 17

2. 2.4 The advantages of J2EE 19

2.2.5 Design Pattern --MVC in J2EE 20

3.0 REVIEWS EXISTING ASTRONOMY DATABASE TECHNOLOGIES

AN.D SOLUTIONS .. 23

3.1 SOME EXISTING ASTRONOMICAL PROJECTS INVOLVING LARGE VOLUMES OF DATA

........ : 23

3.2 POSSIBLE D ATABASE SOLUTION IN TIIE MARKET FOR ASTRONOMY DATABASE. 26

4.0 PROJECT DEVELOPMENT .. 28

4.1 R EQUIREMENTS COLLECTIONS AND ANALYSIS•..........•. ...•. 28

4.1.1 MOA database 28

4.1.2 The web application 31

4.2 APPLICATION ARCHITECTURAL DESIGN•....•............. 32

4.3 D ATABASE DESIGN•.......•••.....•.........•..... 33

4.3.1 Conceptual database design 33

4.3.2 Logical database design 37

4.3.3 Physical database design 49

2

4.4 DATA INGESTION APPLICATION DESIGN .. 52

4.5 ENTERPRISE APPLICATION DESIGN .. 60

4.5.1 Application architecture design .. 60

4.5.2 Servlet Controller design (Controller layer) .. 62

4.5.3 Presentation logic design (View layer) ... 63

4.5.4 Business logic design (Java Bean Model layer) ... 69

4.5.5 Data access design ... 71

4.5.6An example of passing messages among different layers in MVC pattern. 72

4.5. 7 Techniques used in the application ... 76

4.5.8 Maintaining The Application .. 85

5.0 PROJECT DEPLOYMENT ... 87

5.1 DATABASE DEPLOYMENT .. 87

5.1.1 MOA database creating .. 87

5.1.2 Data Loading .. 87

5.2 ENTERPRISE APPLICATION DEPLOYMENT•......................... 88

6.0 PROJECT PERFORMANCE .. 90

6.1 DATABASE PERFORMANCE ANALYSIS ... 90

6.2 DATABASE SUPPORTING SCIENTIFIC DATA MINING .. 91

6.3 ENTERPRISE APPLICATION PERFORMANCE•......................... 94

7.0 CONCLUSION .. 99

8.0 FUTURE WORK ... 100

REFERENCES .. 101

APPENDIX A -- SQL FOR CREATING MOA DATABASE 103

3

1.0 Introduction/ MOA project

On a clear night, light has travelled through space for about millions of
years and then reaches the earth. It quickly disappears but its trace as
photons is captured by astronomical telescope and is recorded as the
digital images. Then astronomers digitize the images and start their
research on the mystical universe.

The combination of modem computer technology, wide-field CCD detectors and

telescope technology have opened up new opportunities for astronomy research. As a

result, astronomical research groups have used these advanced technologies in their

study. For example, as the most capable Infrared imaging survey instrument,

WFCAM is used by the UK Infrared Telescope on Mauna Kea (The Royal

Observatory Edinburgh, 2005). This instrument is built by a cryogenic camera with

four state-of-the-art detectors (four Rockwell 2048x2048 detectors), associated

electronics and computing. Furthermore, its large optics, including a new f/9

secondary and a complete auto guiding system, supports to take perfect photos in a

short time and its software is able to process the real-time pipeline data in time.

At the same time, in order to improve the survey quality, scientists have been built

more and more professional telescopes. For instance, SkyMapper telescope is

dedicated to scanning the night time sky. It is a 1.35m survey telescope with an 8-sq

degree field of view. And it has an integrated 16kx16k mosaic CCD and will be on

operation in 2007. SkyMapper telescope will be able to scan the night time skies

quicker and deeper than before (RSAA, 2006). As a space-based telescope, the

famous Hubble Space Telescope (HST) is 2.4m reflecting telescope in orbit around

the Earth. HST was designed as a long term observatory and the instruments include

three cameras, two spectrographs, and fine guidance sensors (Space Telescope

Science Institute, 2006). Because of HST's location above the Earth's atmosphere, this

science instruments can produce high resolution images of astronomical objects than

the ground-based telescope. In addition, advanced ground-based telescopes also are

commonly used for observation as well. Large Synoptic Survey Telescope (LSST) is

a planned wide-field "survey" reflecting telescope and it will be used in 2013. The

LSST has an unbelievable size-Sm and a wide field view for exposure. Its 3.2

billion-pixel camera can take a 15-second exposure in every 20 seconds. This camera

4

is expected to take over 200,000 pictures (1.28 pet bytes uncompressed) per year

(LSST, 2006). In contrast, Visible and Infrared Survey Telescope (VISTA) will be

available early than LSST; it will be in field in 2007. It will be a 4m class wide field

survey telescope with a near infrared camera containing 67 million 0.34 arcsec pixels

and available broad band filter. VISTA will produce about 315 GB on a typical night

(Emerson, 2006).

However, with the use of new modem equipment, the volume of data is large and is

being accumulated at higher and higher rates. Managing and effectively data mining

the enormous telescope output data is the most technical and difficult part of the

projects. Therefore, astronomers need to discover a suitable database management

system for them.

1.1 MOA Project and Equipments

Microlensing Observations in Astrophysics (MOA) is a joint Japanese/New Zealand

collaboration designed to perform large-scale astronomical photometry to detecting

interesting astrophysical phenomena. MOA is one of a new generation of

astronomical research projects. It started in 1995; it makes "observations and

measurements on dark matter, extra-solar planets and stellar atmospheres using the

gravitational microlensing technique" (MOA, 2006). Between 1998 and 2005, MOA

used a 0.6-metre Boller and Chivens telescope for the observation. Picture 1 shows

the 0.6m telescope with mosaic CCD camera called MOACam2 and it has

4096x6144-pixels. MOACam2 has three 2048x4069-pixel site CCD chips and the

Picture 2 shows one of them. In 2002, MOA received a new 1.8-metre-diameter

telescope from the Ministry of Education, Culture, Science & Technology of Japan. It

is the largest telescope in New Zealand at the moment; Picture 3 shows it. During

2005, the new MOA-II telescope (Picture 4) equipped with new mosaic CCD camera

called MOACam3 (Picture 5) launched was commissioned. The MOACam3 is an

80Mpixels CCD camera, which has ten CCD chips, and each chip is 2048x4096

pixels.

5

Picture 1: The 0.6 m telescope with MOACam2 attached

c;; ;; :: J ==-:·:

Picture 2: One of CCD chip used in MOACam2

6

I ·
1

Picture 3: The new 1.8m MOA-11 telescope

Picture 4: MOACam3 attached to MOA-11 telescope

Picture 5: MOACam3 with 10 CCD chips

7

Obtained Data

Table 1 shows the volume of data MOA obtained among different phases. From Table

1 we can see, there were about 500 GB data obtained by MOA-1 telescope with

MOACaml between 1995 and 1997. In contrast, for the observations that were

carried out by the new MOACam2 from 1997 to 2004, the accumulated data increased

to 3TB. Since 2005 the data volume has increased dramatically. When the MOA-II

telescope with new camera was launched, MOA obtains more than 3TB data each

year. With the growth of the data size, how to manage these data is a challenge for

MOA.

Table 1: Timeline of MOA data

Time Telescope CCD Number of Dimensions of Data
Camera CCD each CCD produced

1995-1997 0.6m MOACaml 9 1000 x 1018 About500GB

1997-2004 0.6m MOACam2 3 2048 x 4096 About 3 TB

2005-now l.8m MOACam3 10 2048 x 4096 3 TB per year

At the moment, MOA uses a set of Python scripts to analyze the data. Roughly, they

use three steps to do the research. Firstly, MOA members transform imaging data into

measurement that records position, fluxes and other information of the observed

objects. During the transformation, the data sizes are reduced and the useful

information is retained. Secondly, MOA stores the measurement into data files so the

objects can be studied. Finally, MOA members extract data knowledge from the data

files based on association rules, this process is called data mining. Therefore, database

system is fundamental facility for astronomy research. Matthew (2002) stated

"Astronomers can use computers programs to find new phenomena,

relationships and useful knowledge about the universe and ultimately

reduce the gap between data captured and analysis".

In short, a good database management system can support researchers take advantages

of the database to perform data mining.

8

1.2 Description of MOA data

In its present operation, the data acquired by MOA are saved in flat files. These data

include three types.

• Imaging data. George (1997) stated "An Image is an optical representation of an

object produced by light rays from the object being refracted or reflected by a

lens or mirror." In short, an image is taken by a telescope for stars or galaxies to

record what they look like at that moment. These imaging data are useful for a

number of research areas, such as detecting asteroids and new earth objects.

Hundreds of thousands of individual images (one example is shown in Figure 1)

have been accumulated by MOA. Images obtained by MOA telescope are output

in Flexible Image Transport System '(FITS) format. FITS fomiat files are able to

show astronomical images in multiple dimensions. Normally, the FITS format

data always comes with "metadata". Metadata is "data about data" and describes

image information. It interprets the basic image data information, such as the

number of dimensions in the image and the image size. Because imaging data is

very important for the research, these should be saved in the database.

Figure 1: Three images from each CCD of MOACam2

• Time series photometry data. These data describe time series intensity

measurement data for each star within the field. In the sky, some stars have

almost constant luminosity; these kinds of stars are known as constant stars. In

contrast, many stars undergo significant variations in brightness over time, and

these are called as variable stars. The study of variable stars is of enormous

interest to astronomers. American Association of Variable Star Observers

(AA VSO) (2006) stated researching on variable stars is important because it

9

provides information about stellar properties, such as mass, radius, luminosity,

temperature, internal and external structure, composition, and evolution. Since

MOA members started observation, they have been tracking about 5 millions

variable stars. Through studying a long-time behavior of these stars, MOA

member can analyze the variable stars behavior. In addHion, the variable stars

come with a wide range of types and classificatrion. For instance, there are

intrinsic variable stars, wherein "variability is caused by physical changes such as

pulsation and eruption"(AA VSO) and extrinsic variable star, wherein "variability

is caused by eclipse of one star by another or by effects of stellar

rotation"(AA VSO). Figure 3 shows an example of just three types of variability.

A light curve is a graph which shows the light intensity of a star over a period.

Based on these light curves, astronomers can calculate light curve period,

amplitude and magnitude. Then astronomers can use this information to schedule

the observation time of the certain stars. Moreover, they can use this information

to investigate astronomy science. Therefore, the database needs to record these

intensity measurement data.

• Calibration data. These data support information on converting object positions

from the images to standard astronomical coordinate systems. MOA uses

astronomical coordinate system in 2000 to record each object 's location. But the

objects ' position is shown as reference position on the captured image. Therefore,

astronomers need to translate the objects position from image 's reference value to

coordinate system value through photometry and instrument. As a result, the

database needs to store both reference position and coordinate position for each

observed object in order to support their study.

10

S­
a 1.5
<:
0 1 .0
~

~ 0.5

Q) 0.0 .<=: ro
Q) -0.5
a:

-1 .0 ..__.___..__..___..___._ _ _._____.____. _ _._____.____. _ _.___.____,'----'

S­
a
<:
'&
~

n b1-red -1-153
1 .0 ..---.----.-- ..----,---..- ..--,.---.-.....----.---.-""'..--,.---,,...----,

P=44.7 d
i

JI! ...

~ 0.0 ·.~ ~ \ f\·' . .J \ :'" . ·y ,_. IV ~ •
=
Q)

.<=:
«i
~

S­
a

,,
- 1 .0 ..__.____.__..___.___._ _ _._____.____. _ _._____.____. _ _._____._____,'----' .

ngb1 -red-1-506 1.2 ..--~---.--~~~-..--,-~-.....----,-~~..--,---,~

P= 187.7 d

<: 0 .8 . ..
'&

~ 0 .4

.~
«! 0 .0

a:;
a:

.. ~"" f;. ~
>. : .;

\ : .
..z

-0.4'---'--'---'---'---'---'---'----'--'---'----'--'----'-~'----'

3000 3200 3400 3600
Julian Day (2450000+)

Figure 2: Light curve examples

(a) Regular pulsating variable star

(b) Semi-regular variable star

(c) Irregular variable star

1.3 Current representation of MOA data

Under the current situations, MOA has no real database management system in place

although they have made some studies. They use a highly specialized collection of

text files and programming scripts to manage the data. However, this is not flexible

and is not extensible. Furthermore, some data saved in the flat text files are repeated

and it is hard to cross-reference data among different text files. With this state of

affairs, it becomes a rather cumbersome operation for any other interested parties to

carry out any data mining investigations.

11

1.4 Overview of this project

Under . current situation, MOA needs a new database with . database management

system to store and effectively manage their data. The database should save

astronomy data, support data mining and can be extended easily in the future. In

addition, in order to query data easily, MOA needs a good interface to manage the

data. The interface can implement users ' query on the database and also deliver the

query results back to the user. Moreover, the interface can link with research tools

such as GNUPWT. For example, the interface can call the application GNUPLOT

with inputting data. So the interface is able to make some of the research operations

become pipeline. Then data mining operations will become easier, thereby improving

the scientific producti~ity of the accumulated data.

This project analyzed the modem technology for database and enterprise application.

Then designed a suitable application for MOA to manage their tremendous growth

data. The prototype supports and benefits astronomical data mining. Due to security

consideration, the main aim of enterprise application is to read astronomical data from

database and to share them on the Internet. Another stand-alone Java program, it is

offline from the Internet, is used for MOA to update and to modify the database (data

ingestion). In addition, MOA likes to have a more powerful website to introduce

their findings and discuss astronomy events with other on the Internet. It is desirable

to have a functional web based interface to the data management system.

12

2.0 Background on data management

2. 1 Introduction of database

Databases play a central position in an information based society. Most of the large

information systems have a database as its main part. The usage of database covers

from small business system such as payroll system to big enterprise system such as

super market checkout system. Kmiec (2002) predicates that over the next decade,

people will become increasingly dependent on the correctness and efficiency of the

database system.

R-0man (1997) describes a -database as a collection of records or information that is

strored in a computer in a systematic way, so that a computer program can consult it

to answer queries. Therefore, the main duty of the database is to store and process

records or pieces of knowledge on computer. And the databases are featured in many

of application domains ranging from data analysis, modelling, security and data

integrity.

2.1.1 Manual Filing system

Manual filing system is an old method for managing data. It offers a way of storing

and controlling data. In manual filing system, data is organised in a particular tree-like

structure through the use of directories. There is no limit on the number of files or

directories that a directory can contain. For example, in the past, when there was no

computer system, university used a dedicated system to save their essential data. They

might save the data in different folders, and then divided the folders into different

categories. In particular, all the personal details including lecturers and students

were in one folder, and all the business records such as receipts and invoice saved in

another folder. When the university staffs wanted to check some information, they

went to the right folder and searched them one by one. Alternatively, they might have

an index system that helped them to find the location. This is what people used to

manage their data.

13

The manual filing system works well when the number of stored items is small. But

with the increase of data size, its performance suffers. In addition, it cannot handle

some situations such as cross-referencing among different data sets. Therefore, this

system is not suitable for the modem data requirements.

2.1.2 Traditional File-based systems

Before the modem database management system was invented, people always used

file-based system to manage data. Thomas and Carolyn (2005) describes a

file-based system is a collection of application programs that perform services for the

end-users such as the production of report. And each program defines and manages its

own data. When the data is ~equested, the particular application will directly search its

own data to find the data. Following the above example, after the university had

computer system, it saved its data in the computer files. And there was an application

called Personal Information to organize all the personal details. Through this

application, the university staffs could add new staffs in the data file; drop staffs from

data files and update staff details. However, in the file-based system, if there were

multiple applications, each would have its own data file. In other words, applications

cannot share data each other. So the university have another application called

business record to manage the university business records. So the file-based system

has big limitations

Limitation of the file-based system

Although the file-based system was a great improvement on the manual filing system,

it still has obvious drawbacks, including separation and isolation of the data,

duplication of the data, program-data dependence and incompatible file format.

2.1.3 Database approach

From above explanation, we can see the file-based database system has weakness. As

a good database system, it should allow data to be shared and controlled between

different applications. And the data should be integrated at any time and can be stored

separately but be modified consistently. Therefore, a database and the database

management system are both important.

14

The database

A database is collection of data. Tho~as and Carolyn (2005) define a database as a

shared collection of logically related data, and a description of this data, designed to

meet the information needs of an organization. From the definition of the database,

we can see all data in database are shared, and can be accessed by different

departments and users simultaneously. As a result, the redundant data are optimal to

be limited.

Furthermore, when data are saved in the database, they are logically related. When

people analyze the organization's activity, they could use entities, attributes and

relationships to express the activities. An entity is any objects in the data processing

that may be related to any other entities. An attribute is a property that describes the

aspect of the object that the system should be recorded. And the relationship is the

association between different entities. When the database represents by above three

categories, we can say the data is logically related.

The database management system

After storing data in a database, people need software to interact between the

application program and the database. This software is called a database management

system (DBMS). Thomas and Carolyn (2005) define a DBMS as a software system

that enables user to define, create, maintain and control the access to database.

Normally, DBMS offers the following facilities:

• Data Definition Language (DDL), such as create, alter and drop command in

SQL: this provides users a means to define the database. This language allows

users to describe and define the entities, attributes and relationships required for

the application, together with any associated integrity and security constraints.

• Data Manipulation Language (DML): it supports to manipulate data in the

database. The language provides a set of operations to support users to retrieve,

insert, delete and update data in a database

• It provides controlled access to the database, such as offering a security and

integrity database system.

15

Advantage and Disadvantages of DBMS

DBMS has brought both advantages and disadvantages on performance of the

database. The advantages include: limits on data redundancy data consistency,

supports for sharing the data, and improvements in data integrity and security. And

the disadvantages include complexity, cost, reduced performances and higher impact

of a failure.

Some types of DBMS

• Hierarchical: this supports hierarchical relationships such as parent-child

structure between data. Data structures were often forced to conform to the

hierarchical model in order to take advantage of the management and

programming aspects of the products.

• Relational: these are widely used. It uses the Structured Query Language (SQL)

to extract and update data and it bases on the rule of normalization to format the

database. The relational mode first entered the database in 1970, when Codd

(1970) published his seminal work, "A relational Model of data for large shared

data banks". The data structure allowed data to be operated in a manner that was

predictable and resistant to error. Therefore, the relational model supports a high

degree of data independence, accuracy and redundancy.

• Object oriented DBMS: This stores data as objects, so it can handle bigger and

complex data structure. It provides consistent, data independent, secure,

controlled and extensible data management services to support the

object-oriented model.

• Object-Relational: This system simply puts an object oriented application front

end on a RDBMS. When applications interface to this type of database, it will

normally interface as though the data is stored as objects.

• Web: it is a general term for applications, which provide a web-based interface

to database. It supports people to administrate the database through the Internet.

The main advantages of Web-DBMS are accessibility, platform independence,

easy-to-use, standardized graphical user interface, and transparent network

access. But the main disadvantages are reliability, security, cost, and scalability.

• Hybrids: it uses many DBMS to handle the complex requirement of the data

system.

16

2.2 Java application

2.2.1 Java technology

Java is a powerful and modem development platform. It has been greatly extended

during the last couple of years. Java is showing its power from stand-alone

applications to web applications, even mobile system.

2.2.2 Java Enterprise Application

An enterprise application is a broad term that can be broken down into several

specifications that together define the whole (Haque and O'Connor, 2002). Typically,
" e ~

the application hosts a server which simultaneously provides services to a large

number of users, typically over a computer network.

Java is an efficient way for the enterprise development and it has lots of advantages.

In particular, Java is portable and can move between platforms. Furthermore, the Java

program, such as Enterprise Java Bean (EJB) can be used by different application

servers. For example, an application with EJB can be deployed in different servers

when the servers support correct deployment environment, such as JBOSS or SUN

application server. The developer Sun Microsystems (2006) said "write once, run

everywhere".

2.2.3 Java Enterprise Application Architecture

With the improvement of Java technologies, enterprise application architectures have

experienced a huge evolution. It starts from centralized mainframe structure to

multi-tier J2EE architecture. After the application functions can be divided into

several tiers, the management of the application becomes easier. For example, Figure

3 is two-tier application architecture and Figure 4 is typical three-tier J2EE

application model for Web-based applications. From the Figures we can see, in the

two-tier application, it does not separate business logic from presentation logic. It is a

client/server architecture, where a request to do some task is sent to the server and the

server responds by performing the task. Therefore, this structure causes several

disadvantages, such as hard to administer and maintain, and too many

17

communications on the network. In contrast, J2EE three-tier architecture separates the

business logic and presentation logic. The client request is sent to the server and the

server in tum sends the request to the database. The database sends back the

information/data required to the server, which in tum sends it to the client. Under this

structure, each tier dedicates to processing either data or application requests, hence a

more manageable system and less contention for resources will occur. Therefore, the

three-tier architecture increases component reusability and can handle more

complicated applications. In addition, it supports distributed deployment.

Client

Presentation

Business
Logic

DB Server

Data

Figure 3: Two-tier Application

Client Web Service Business Logic Database

Web Container EJB Container

Web application

Figure 4: J2EE application Model for Web-based Application

Four different containers build J2EE platform:

• EJB container: it provides a living environment for EJB beans. And EJB are

implemented the business processes and entities.

• Web Container: it supports an environment for JSP and Servlet. The JSP and

Servlet control the presentation logic of the application.

18

• Application-Client Container: it provides an environment for executing J2EE

application clients.

• Applet Container: the environment for Java applets.

2.2.4 The advantages of J2EE

One J2EE advantage is it makes the development process simpler. It simplifies the

control and management of system resources by providing methods to manage

transactions and resource pooling (Kifer, Bernstein and Lewis, 2005). As a result, the

developers' worries become less. For example, under Java Database Connectivity

(JDBC) technology, qevelopers can use automa.tic data polling to handle !he complex

connection between application and database. Furthermore, J2EE simplifies the

procession of development, configuration and deployment of the application. For

instance, it offers consistent environment for developing the application. All in all, on

J2EE, developer's job becomes easier.

Another benefit of J2EE development is that it separates the functionality and

presentation. That is to say through JSP and Servlet technologies, presentation logic

locates in web container layer and business logic resides in EJB layer. Thus,

developers can create application functionalities with EJB, and passing the

computation results to web container. Then, the web container creates the JSPs to

show result to the clients. So the successful separations can isolate the development

activities to different parts. As a result, under J2EE, programmers only focus on

business logic and designers only concern with presentation logic.

Thirdly, J2EE also supports code reuse. For example, the developers can reuse their

EJB. The good reuse ability can enhance understanding and performance of the

application.

In addition, the other advantages of J2EE include developer can use open source tool

to develop J2EE application and J2EE applications can run in a number of different

application servers on many operating systems.

19

In conclusion, a number of J2EE advantages-such as thread safety, incorporation of

other Java libraries, dominant market share, use of design patterns, and awareness of

the different technologies involved-can provide developers with valuable

functionality.

2.2.5 Design Pattern --MVC in J2EE

Model-view-controller (MVC) is a design pattern used in software engineering.

According to Gamma et al (2002) MVC is a way to break applications into three

layers, including model, view, and controller. Under MVC architecture, designers

have separated data (model) from user interface (view), so that changes of the user

interface do not impa~t the data handling, and that the data can be reorganized without

changing the user interface.

At the moment, MVC contains two models, including model 1 and model 2. In the

model 1, the application presentation is shown by Html or Jsp files; JavaBean is used

to retrieve the data. The JSP page alone is responsible for processing the incoming

request and replying back to the client. Also in this model 1, it is page-centric design.

All the business and processing logic can either present in the JSP or may be called

directly from the JSP page. Moreover, under this model, data access is usually done

through Custom tag or java bean call. In contrast, in the MVC model 2, the model

removes the page centric property of MVCl architecture by separating presentation,

control logic and the application state. In addition, there is only one controller in the

model 2. It receives the request from the application and is responsible for answer

each request. Therefore, in the model 1, page and model are tightly coupling; so it is

only working well under simple application. The model 2 is represented by JavaBeans,

business objects and database, so it is able to handle complex application.

The participants and responsibilities of the MVC architecture are shown as follows.

Model: The model represents enterprise data and the business rules that govern access

to and updates of the data. Under J2EE, entity bean can represent the model.

View: The view is the contents of a model. It accesses enterprise data through the

model and specifies how that data should be presented. It is the view's responsibility

to maintain consistency in its presentation when the model changes. In J2EE, the view

20

can be represented by Java Server Pages (JSPs). Alternately, the view code can be

generated by Servlet.

Controller: The controller translates interactions with the view into actions to be

performed by the model. The actions performed by the model include activating

business processes or changing the state of the model. Based on the user interactions

and the outcome of the model actions, the controller responds by selecting an

appropriate view. Normally, under J2EE, the controller can be represented by Servlet.

Figure 5 shows the Model-View-Controller pattern and each layer with

functionalities.

,
View

•
•
•
•

Model
Encapsulates application state
Responds to state queries
Exposes application functionality
Notifies views of changes

State Query State Change

User
Gestures Controller

• Renders the models
• Requests updates from model
• Sends user gesture to

View

~

~ •
•

Defines application behaviour
Maps user actions to model
updates

controller · ·
• Allows controller to select

view

selection •
•

Selects view for response
One for each functionality

Figure 5: MVC architecture and functionalities

In short, MVC architecture brings both advantages and disadvantages for the

applications. Firstly, applications can reuse model components. The separation of

model and view allows multiple views to use the same enterprise model.

Consequently, an enterprise application's model components are easier to implement,

test, and maintain, since all access to the model goes through these components.

Secondly, applications can support new types of clients easily. To support a new type

21

of client, designer only simply writes a view and the controller logic and wires them

into the existing enterprise application. However, MVC will increase design

complexity for the application. This pattern introduces some extra classes due to the

separation of model, view, and controller.

22

3.0 Reviews Existing Astronomy Database

Technologies and Solutions

3. 1 Some Existing Astronomical Projects involving

large volumes of data

In astronomical research it is common to study objects in the time domain. For

instance, in order to detect microlensing events, astronomers may study one star's

activities for several weeks. Therefore, astronomy databases need to record not only

historical data, but also words data. In other word, the database needs to be updated

frequently. In addition, with the use of modem equipments, the volume of generated,

data is much larger than before. Therefore, a good DBMS is essential for the research.

Normally, astronomers hope that their database not only can support survey

operations, storage and analysis the data but also easily communicate with users.

Moreover, the database should be easily extended in the future and as fast as possible

for retrieving results. In addition, during observations, new information may be

generated and need to be saved in the database. Therefore, a good extensibility is

essential for the astronomy database.

There are some of the approaches for saving astronomical data.

1. All data are stored in plain text files, and there is a highly specialized scripting

application used for organization the data. For example, the MOA group uses this

method at the moment. This method supports fast access for a defined set of queries.

However, it is not flexible and is not extensible.

2. Another approach that can be used is to design custom astronomical DBMSs, such

as DIRA (Benacchio, 1992) or Starbase (John, 1996) to manage data set. Starbase

database system can use a simple data file formatting rules and command line data

operators to manage astronomical data. Furthermore, it supports for astronomical data

and queries, and is freely available. However this does not support large database.

And because data is often stored in flat ASCII files, secondary access methods are

usually not provided.

23

3. Relational DBMSs have also been used in the past several years: they are robust

systems, widely used in industry, whose data model is close to the structure of

astronomical catalogues. And it supports a high degree of data independence,

accuracy and redundancy. An example of using RDBMS is shown as follows.

There are two large astronomical surveys in Chile. One is called SuperMacho(SM).

The main aim of SM is to detect and follow microlensing events to study the Large

Magellanic Cloud. Another group is Essence Supernova. It seeks to detect and follow

intermediate to high-redshift supernovae (Chris et al, 2002). During the research, both

groups have to explore a big dataset size, which is from GB to TB in real-time.

In order to fit data requirement& for the research, both of the groups used RDBMS

technology to support time-domain astronomical research. They feel their database is

"fast retrieval information, allowing the development of data mining applications and

take full advantage of the database" (Chris et al, 2002).

However, it has a limited capability on data modelling. With the astronomical object

becoming more complex, it may not model them.

4. Another possible approach is to store astronomical data in Object-Oriented DBMS.

These systems feature a powerful data model, which allows data and operations to be

modelled.

For instance, Wenger, Kinnar, and Jocqueau (2002) tried to use an OODBMS concept

to manage astronomical database SIMBAD. They concluded OODMS can "manage

heterogeneous and complex data, and deal with huge collections"

However, OODBMS does not provide an efficient query-processing engine; such

facility must be implemented on the top of DBMS (Brunner et al, 2003.).

5. Object-relational approach is a new technique for managing dataset. It supports a

user-defined data types and functions to control data. Furthermore, its user-defined

index structure can speed up the operation of the query. In addition, an extensile

optimizer can lead an efficient way to execute the user queries.

24

As a pilot research, Baruffolo and Benacchio (1998) build a model based on

ORDBMS. After several testing, they concluded ORDBMS could model the

astronomical object. And this was possible to extend the database query language

with astronomical functionalities and to formulate queries with astronomical

predicates.

However, Baruffolo and Benacchio cannot prove the performance of the ORDBMS is

better than RDBMS or not. In addition, they found the time for loading data and

building index in the database are extremely long.

In conclusion, each storing methods has both advantages and disadvantages.

Therefore, the ' designers should follow 'the current astronomical data situation and

choose the suitable DBMS.

25

3.2 Possible Database Solution in the market for

Astronomy Database

This part simply states some of the possible database solutions on the current market

and concludes a suitable DBMS solution for MOA group.

(1). Oracle is a market leader. It has a high-performance. Oracle corporation (2006)

said Oracle Database is the most flexible manage enterprise information, develop and

deploy business applications. Under the Oracle Database, user can readily respond to

changing business requirements, so that improving productivity and reducing

downtime. Moreover, it has provided the user-defined data type, which is convenient

for the astronomy object. But it is very expensive.

(2). MS SOL server is made from Microsoft and has a similar features to those in

Oracle, but it only can be used on the Windows. An example of astronomy research is

based on MS SQL is SDSS. Sloan Digital Sky Survey (SDSS) project runs by

Astrophysical Research Consortium (ARC). The main aim of this project is to

create a details multicolour map of the universe. At the moment, they use MS SQL

server to manage their data. SDSS stated the total amount of data in their database is

more than 800GB and the total number of rows exceeds 3.4 billion. It is an expensive

way for managing data. More details about ARC please go the web site:

http://cas.sdss.org/dr4/en/sdss/

(3). DB2 (Informix). It is a product of IBM. It has the similar feature with Oracle and

MS SQL. NASA Extragalactic Database is using this technology now. It offers the

rich functions on searching astronomy data from the database. But it is expensive as

well. More details for NED: http:Unedwww.ipac.caltech.edu/

(4). Sybase is similar to DB2 and it is traditionally used in many astronomical

applications. For example, in Canada, there is a group named The Canadian

Astronomy Data Centre (CADC). One important duty of the CADC is to copy

astronomical data from the Hubble Space Telescope (HST) to a local server. They use

a Sybase database system to save the copied data. More details see:

26

http://cadcwww.dao.nrc.ca/ADASS/adass proc/adass3/papers/crabtreed/crabtreed.ht

ml

(5). MySQL is an open source RDBMS. It is simple, but it does not support customer

data type and lacks of supporting on transactions. Also it does not separate transaction

log; it does not separate rollback log and does not have file duplication. In addition, it

is not extensible and the features are not rich. So it does not suit in complex cases.

John (2000) created a web site named "The astronomy Net". The web site was based

on PHP with MySQL database. The database saves variety of astronomy data

including imaging data and measurement data. The more details please see:

http://www.astronomy.net/about(history.html

(6). PostgreSQL is open source and easily extensible. It has good feature sets and

supports GiST access methods. An example of using PostgreSQL is Sternberg

Astronomical Institute (SAi) web site. The web site saves many kinds of astronomy

data sets and offers diversity searching functions.

More details please see: http://www.sai.msu.su/database.html

All in all, PostgreSQL is the only extensible free open source DBMS solution. It has

powerful set of features well comparable to leading commercial database solutions.

Furthermore, it supports object-relational concepts. It allows to custom data type,

queries and indexed access methods, optimized for specific tasks. In addition, it

supports contribution modules such as pgSphere and pgAstro. PhSphere offers the

capability for dealing with geometrical objects in spherical coordination. And the

module pgAstro is based on phSphere, it provides astronomy-specific functions and

method. Chilingarian et al (2004) stated PostgreSQL appears to be the most

versatile DBMS solution for astronomy and astrophysics. With these considerations

in mind, PostgreSQL was selected as the DBMS in this study.

27

4.0 Project Development

4.1 Requirements collections and analysis

4.1.1 MOA database

This section describes the process of MOA collecting data and the data characters,

because this information is relevant to the database structure. The observation

activities and the obtained data with characters can be shown as follows:

• MOA members divided observation area such as Galaxy Bulge regions and Large

Magellanic Cloud LMC, into many small fields. Then each exposure points to

one small field. The reason for doing this is all the cameras only can provide a

limit resolution on produced images. Therefore, focusing exposure on a small

field can make the captured objects become clearer in the image. Figure 6 shows

how the MOA member divides Galaxies Bulge into small fields for the current

survey. Each numbered rectangle represents the field of view captured in one

exposure from MOACam3.

Figure 6: The division of the galaxy in MOACam3

• The calibration data that are used to convert position on the CCD images to

positions in standard astronomical coordinate systems.

28

• In a particular observation, MOA members choose a telescope with camera to

take images in the sky. The procedure for taking exposures is based on the

camera's CCD construction structure. For example, if the observation uses the

camera MOACaml that has nine CCD chips, in order to make the exposure cover

the entire field, four steps builds the observation. The exposure step can be seen

in Figure 7. The big square on the Figure is the observation field and the exposure

starts from the position Pl. After taking photos, the camera moves to the area P2,

and then it changes to P3, P4.

D D

1

4

G Ex;sure Step Pl ' P2

--~~~ _l _ -~~--_ _!-~

3

D
9 Chips CCD

One Field in the sky

Figure 7: The telescope exposure step in MOACaml in a field.

• The typical information is generated during exposure includes observation

location (area of the sky), observation duration time. Actually, they are part of

imaging metadata. The imaging metadata includes Run number (an identification

for a particular observation), Field number (the location of the sky), CCD (which

CCD on the camera), Colour (the filter of the camera), Camera (which camera is

used), Exposure step in one field and the exposure time.

• A RUN shows a specific sequence of target fields for exposure. Typically, a run

lasts for a few hours.

• The observation produces a large amount of images.

• Occasionally, the telescope takes images out of the intended field. Under this

situation, the captured images should be adjusted through the value Position shift

X and Position shift Y.

• The information extracted from the images includes each star's position - Position

X, Position Y(the star's reference position on the image), RA, DEC (the star' s

position in calibration system), Time intensity value (composite by obtained time,

29

run number and the Flux value), Error (the noise of the intensity value), INDEX

(one star 's identifier in one image) and the Number 1, Number 2, Number 3,

Number 4, Number 5 for recording some other star ' s properties.

• MOA has been tracking about 5 millions stars for more than ten years and each

star has a big number of time intensity values.

• Each star can be identified by composite value, including Field (area of sky),

CCD (camera chip), Colour (camera filter), Camera (camera used) and Index

(index number on the imaging data).

• Each star' has its own properties such as its light curve period, amplitude and

classification. This information is important for MOA to do data mining.

The observing process is shown in Figure 8.

1. MOA staffs decide which telescope and camera will be used in the observation.

2. The camera takes exposure in the sky and produces images with image metadata.

3. The information on the images can be digitized into measurement data.

4. The measurement data and images are saved

5. MOA members do data mining based on these numbers and images. During data

mining process, MOA can find new data knowledge or use existing data

knowledge in the research.

! ' . _, extract

;

/ MOAPtial:rst
Data m in ing knowledge

, - .

J~~-~-- Choose Telescope -,"-::o-\. ,.-------. ··~ ...

MOAStaff .7
.. --" · Valid Installation

Convert to Measurement data

()
... ____ __ ./

Choose Camera

Take Bipos u re Produce Images

Figure 8: The diagram for observation activities

30

Typical Query Transactions

The purpose of the database is to save data and support data mining. Some possible

queries that could be used in data mining operations are listed below.

• Get a particular star's intensity data within a particular period.

• Find one star's neighbour stars.

• Get star according to star's RA and DEC value.

• Retrieve star according to their classification, light curve period properties.

• Know any exposure's details such as start, end time and counting the duration of

the exposure.

• Find an imaging file based on special conditions through image metadata.

• Show any observation field with location value (RA and DEC).

• Count how many stars in one observation field.

• The details of the telescope and CCD cameras.

4.1.2 The web application

The main objective of the web application is to access to the database and to share the

large volume of data with other through the Internet. Moreover, this application is not

only a database management system (DBMS), but also can support data mining such

as using data knowledge to exam data. As a result, users are able to study

astronomical events based on the application. Therefore, the application should have

a good performance on interacting with the database. In addition, the application

should introduce MOA group to other on the Internet, as-a powerful web application

it should have ability to handling hundreds even thousands of users' concurrent

request.

In order to include MOA requirements, after an iterative process, the web applications

features should include:

1. A front end to manage the database.

2. General introduction of MOA

3. Introduction of MOA observing technique: gravitational microlensing

4. Introduction of MOA publications

5. Introduction of MOA' s observation equipments: telescopes and cameras

6. Allowing client register as member and having privileges.

31

7. Accessing to MOA astronomical database and then querying wanted data

8. Support for interactive drawing of light curves for individual stars. And the

pictures are generated by GUNPLOT.

9. Providing members to download astronomical data in a text file from the

database.

10. A discussion board for users to discuss and share their ideas.

4.2 Application Architectural design

From above introduction, we can see the MOA members will manage the database

and the data will be shared on the Internet

Characteristics of MOA database include:

• The database should afford a big volume of datasets.

• The database is able to load new data.

• Once the scientific data are recorded, they won ' t be modified any more.

• There are no complex relationships among datasets at the moment. But in the

future it may have.

• The database should process data quickly because MOA members need to

analyze current data and bring the result to configure their observation.

• The data can be saved in a centralized database.

Characters of the application are:

• It can manage the database.

• It can be treated as a website so it has website features. Some of the requested

features can be shown by static web pages such as the web page of introduction

of MOA project. And others must be shown by dynamic web pages such as

querying date from database.

• Only MOA members can update the database through the application, but other is

able to read astronomical data.

• The web site may face a wide range of visitors.

Based on these characters, the database would be created under PostgreSQL and it

would be modelled by relational model, because the relational model supports a fast

access to data and maximally reduce redundant data. And the enterprise application

32

design followed MVC pattern under J2EE architecture. The reasons includes Java

Bean supports the high abilities on processing data and modelling enterprise activities,

JSP is able to show both static and dynamic contents easily on the web pages and

JDBC easily control the data transformation between the database and the application.

The application would include two independent Java programs. When MOA

members update the database, such as data ingestion and updating, the first

stand-alone program would be used. This program will not share on the Internet.

Another enterprise application would work through the Internet; it is a front end for

user to query data from the database. But this application forbids users to modify the

database. So it ensures hacker cannot attack the database through the Internet.

4.3 Database Design

This part presents an overview of the main approach in the database design. In order

to clarify the meaning of the data and to facilitate communication between activities,

relational data model was used to describe the data, relationships and constraints

between data. The database design is made up by three main phases, including

conceptual, logical and physical design.

4.3.1 Conceptual database design

According to the description of the MOA observation activities, the conceptual data

model for the database was concluded. Thomas and Carolyn (2005) state the

conceptual model is conceptual representations of the database. It points out all

entities with relationships and attributes in the activity and the kind of keys among

entities. The procession is simply divided by three steps.

Stepl: Identify entity

This step defined the main objects which the observation activities are related to and

then clarified the functionalities and role of these objects. Based on observation

process, the entity types can be seen in the Table 2.

33

a e en 1 v [ypes T bl 2 MOA ft t

Entity name Description Occurrence
Telescope General term describes all Each observation only use

telescopes that MOA has one telescope

Camera General term describes all Each camera used to combine
cameras that observation can use with certain telescope.

Exposure It describes MOA's exposure Each exposure has certain
activities. It can show each identifier. And it has different
exposure's details such as shooting rules dependent on
exposure's start and end time, the camera CCD detector.
shooting area. It can produce the
metadata for the image data.

Image It stores the obtained imaging Each exposure produces many
files with imaging metadata. images
Each image shows particular
stars' properties, such as flux
and error value in a certain time

Star General term describes each Each star is an observation
observed star's properties such object in the sky. The star's
as star's type, location, time time intensity values are
intensity value, light curve shown by the image
period and classification. measurement data.

Pointing It describe the situation when This phenomena only
telescope is not exactly points to happens occasionally
granted location in the sky
during exposure

Calibration It describes the exposure's Each field has own calibration
location data.

Step2: Describe the relationship among entities.

This step is used to identify the relationships among entities.

a e ea 10ns 1 T bl 3 R 1 f h. ff DS among en 1 1es
Entity name Multiplicity Relationship Multiplicity Entity name
Telescope 1 Install 1 Camera
Camera 1..1 Take 1..* Exposure
Exposure 1..1 Produce 1..* Image
Image 1..1 Show 1..* Star time intensity value
Exposure 1..1 Meet 0.1 Pointing
Exposure 1..* Look up 1..* Calibration data
Star 1..1 Have O .. * Time intensity value

However, through analyse, it was decided that it was not necessary to save imaging

data in the database. The reasons are shown as follows. Firstly, the high quality

34

imaging data has an extremely big size. Therefore, these large objects will occupy a

large memory in the database. Secondly, the information on the imaging can be

transferred into measurement data. Because the most of data mining methods are

based on these measurements data, saving these relevant data is able to support for

research. Lastly, image operations are time consuming in the database. It spends a

long time for saving image in the database and reading them from database. Therefore,

the designer decided to save the image data in the hard disk as image file and save the

imaging metadata in the database tables. The image metadata contains the

interpretation of image, such as image name, captured telescope and image position in

the sky. Such information plays an important role when searching for and browsing

images. This information is derived from the exposure process and saved in the entity

Exposure. In the fiiture, researcher can create an application to search imaging data

based on imaging metadata from database table and then an new application can be

used to retrieve the matched imaging FITS files from the hard disk. In addition, a new

attribute called time intensity value was created under the entity Star to save the time

intensity value for the each star. The time intensity values are the measurement data

of stars and are derived from the imaging data. Obviously, this attribute has

multi-values.

Step3: Determine attribute and keys

This step is to decide the attributes and primary key for each entity.

Telescope: TeleName (PK}, Length

Camera: Cameraid (PK), step, Naxisl, Naxis2, NumberCCD

Exposure: Run, Colour, Shooting position (Composite by: Field, CCD, Camera,
exposure step) (Composite PK), JDstart, JDend

Pointing: Run (PK), Pos shift X, Pos shift Y, a, b, c, d,

Calibration: Sky Location (Composite by: Field, CCD, Camera) (PK), RA, DEC, Tl,
T2, T3, T4,T5,T6,17,T8

Star: Field, Colour, CCD, Exposure step, Camera, Index (Composite PK), Star

Location (composite by: reference position on the image, position on astronomical

coordinate system (RA and DEC), position shift x, position shifty), Period,

35

Classification, Time Intensity value (composite by Time, Run, Flux, Error, Nl, N2,

N3, N4, NS)

In these entities, composite primary key was used in the table Exposure, Calibration

and Star. A primary key used to identify a particular record in the table. However,

sometimes it requires more than one attribute to uniquely identify a record. Mike

(2004) stated a primary key that made up of more than one attribute is a composite

primary key.

The conceptual model for MOA database is shown by Figure 9. (The entity Star

Property on the Figure 9 is the entity Star). From it we can see the relevent entities,

the entities relatiQDships and the attributes should be involved in the database.

Conceptual Model of MOA database '

Pointing
(ht>m U.O C...O View)

~Run : int (PK)
~os shiftX : loat
~Pos shiftY : ftoat
~ : ftoat
~:ftoat

l ~:ftoat
~~:ftoat

Galibration
(ht>m u.o ea .. View)

~eld : Char(S)(PK)
~era : int(PK)
~Cd : tinyint(PK)
~: Char(15)
~c : Char(1s1
~1 : loat
~:teat
~3 : loat
~4 : teat
~ts teat
~6 teat
~7 teat
~t8 teat

0 .. 1

Siar Property

~fteld : char(6)(PK)
~olour : char(5)(PK)
~ndex : lnt(PK)
~CD : tin~nt(PK)
~ure setp : int(PK)
~am era : int(PK)
~lasslftcation : char(10)
~Period : ftoat

Telescope
~'°'"UH Case v.....,

~Time lntensityvalue(Composite attribute) ~ame(PK)
~Im

Meet

I Look up

~O .. n

1 O .. n

Show

o .. n

Exposure
~rom Use ea .. View)

~ : char(6)(PK)
~teld : Char(S)(PK)
~olour : Char(S)(PK)
~arnera used : int(PK)
~Exposure step : int (PK)
~D:int(PK)
~Dstart : Float
~Dend : Float

Take

Install

1 j

Camera
(ht>m U.. Ca• View)

~eralD : Int (PK)
~Name : char(10}

f--------~tep : smallint

~axls1 : Int
~axls2: int
~NumberCCD : smallint

Figure 9: The conceptual model for MOA database

36

4.3.2 Logical database design

. .
The purpose of this stage is to translate the conceptual data model into a logical data

model. This step is independent from particular DBMS and other physical

considerations. Some methods were used, such as normalization of relations, to

validate the data model. As a result, the model is structurally correct and is able to

support for MOA required transactions.

Step 1: Derive relations for the logical data model

This steps derived the relations from the conceptual model and shown the entities,

relationships and attributes. In the relational data model, the relationships among

entities are represented by·primary key (PK) and foreign key (FK) mechanism. In

order to decide where to place the PK and FK, the model needs to identify the

relationship type (parent and child) among the entities. Then following the

relationship types, the model can post the PK and FK in the proper places.

For instance:

One-to-one binary relationship (Mandatory participation on one side of a 1:1):

The relationship can be classified by parent and child entities. In order to derive this

relationship, the designer can put a copy of the primary key from parent entity into the

child entity. A simple example can be seen in the Figure 10.

Telescope post its PK into Camera to model relationship

1 I l 1

Telescope: (TeleName, Camera: (CameraName, Naxisl,
Length) Naxis2,NumberCCD,TeleName)
Primary key: TeleName PK: CameraName

FK: TeleName reference Telescope

Figure 10: Derive the relationship between entity Telescope and Camera.

Each telescope only picks one camera each time.

One-to-many (l:*) binary relationship:

For each 1:* binary relationship, the entity on the 'one side' of the relationship is

designated as the parent entity and the entity on the 'many side' is designated as the

37

child entity. In order to derive this relationship, the designer can post a copy of the

primary key attribute of the parent entity into the relation representing the child entity

to act as a foreign key. Figure 11 shows an example of this relation.

Put PK into another side
0

I i *

Camera: CameraName(PK), Exposure: Run, Field, Colour, Exposure
Naxisl, Step (composite PK), JD start, JDend,
N axis2,N umberCCD, TeleN ame RA, DEC, Camera(FK)
FK: TeleName reference
Telescope

Figure 11: Derive the relationship between Camera and Exposure

Each Camera can produce from 0 to many exposures and each exposure only can use

one Camera.

Multi-valued attributes

As discussed early, the attribute Star Time Intensity is a multi-valued attribute in the

entity Star. For this kind of relationship, we can create a new relation called Star

Intensity in this case to represent the multi-valued attribute. Then primary key was

posted from the entity Star to the new entity Star Intensity. A simple example can

be seen in the Figure 12.

Put PK into another side

1

I + *
Star: Field, Colour, CCD, Exposure Star Intensity: Field, Colour, CCD,
step, Camera, Index(Composite PK) Exposure step, Camera, Index(FK),
Location, Period, Classification, Time Time(Composite PK by Time and the
Intensity value (composite by Time, FK), Run, Flux, Error, Nl, N2, N3,
Run, Flux, Error, Nl, N2, N3, N4, NS) N4,N5

Figure 12: derive the relationship between Star and Star Intensity

Step 2: Validate the relations using Normalization.

So far, a simple model to describe the observation activities had been concluded.

However, some of the data representation or the relations may not show the activities

accurately. Or the data model has data redundancy or update anomalies. Therefore, a

database design technique known as "normalization" was used to examine the data

model. Normalization uses a series of methods to identify the optimal grouping for the

38

attributes. It produces a set of suitable relations, which supports the data requirements

of the enterprise. The formal definition of the normalization is "a technique for

analyzing relations based on their primary key (or candidate keys) and functional

dependencies" (Thomas & Carolyn, 2005). The process of the normalization can be

divided into several steps.

Unnormalized Form (UNF): a table that contains one or more repeat groups.

First Normal Form (lNF): a relation in which the intersection of each row and column

contains one and only one value.

Second Normal Form (2NF): a relation that is in First Normal Form and every

non-primary-key attribute is fully functionally dependent on the primary key.

Third Normal Form (3NF): a relation that is in First and Secbnd Normal Form and in '

which no non-primary-key attribute is transitively dependent on the primary key.

Based on Normalization technique, the function dependencies were clarified among

tables. Function dependency is an important concept for the normalization. It

describes the relationship between attributes. Once we know the attributes

relationships, we can separate them from the table and reduce the data redundancy.

Figure 13 shows the function dependencies for the table Star and Calibration. And

Figure 14 shows the transformation process of the table Star after normalization.

39

Table Star:

I Field I CCD Index Camera
used

Exposure
Ste

Period Colour I Classification Reference _pos
x

Reference _pos
y

I I I I I t I Partial Dependency

I I I I I

Table Calibration:

Field CCD Exposure
Ste

Camera
Used

I I I I

Primary Key

RA

Primary Key

DEC Other
values

Partial Dependency

Figure 13: Function dependencies of the table Star and Calibration

Shift
x

Shift
y

RA DEC

40

Table Star before normalization:

Star:

Field I Colour I Exposure Step Camera used I CCD I Index I Classification I Period I Position X I Position Y I RA I DEC I Shift X I Shift Y

Table Star after normalization:

Star:

Field Exposure Step I Camera used CCD Index I Classification I Pos X I Pos Y I RA DEC Shift X I Shift Y

Star periodicity

Field I Colour Exposure Step I Camera Used CCD Index Period

Figure 14: The table Star before and after Normalization

41

Step 3: Replace Composite Primary Key with single primary Key. In the table Star,

Star Intensity, Calibration and Star period, there are composite key as primary key

for each table. But composite primary key has drawbacks. Firstly it slows the database

performance considerably, as join operation needs to check all contents of all columns

designated in such a composite key. Secondly, the sequence of the fields concerned

must be identical in all referenced tables.

In order to avoid using composite primary key, a surrogate key was used to instead of

them. The transformation operation applied in the table Star, Star Intensity and

Exposure. Surrogate key is a numeric column and it automatically increases when

new data is inserted. Therefore, it is complete! y unrelated with the data. The Figure 15

shows the relationships and attributes in the table Star and Star Intensity before and

after applying for surrogate key.

42

· - · - · - · - · - · - · - · - · - · -·- · - · - · -·- · - · - · - · -·- · - · -·- · - · -·-·- · - · -·-·-·-·-·-·-·-·-·-·-·-·- · - · - · - · -·- · - · - · -·~

Star
Field <PK><N atural>
Colour<PK><N atural>
CCD<PK><Natural>
CameralD<PK><Natural>
Index <PK><N atural>
Location
Classification
Period

!

I

Star Intensity
Field lndex<PK><FK>
Colour Index<PK><FK>
CCD lndex<PK><FK>
CameraID lndex<PK><FK>
Index lndex<PK><FK>
Time(PK)
Run
Flux,
Error

Original schema

I

I

I

I

I

I

I

I

I

I

--, .. ; . .
I

I

I

I

Star
StarlD<Surrogate>

' Field<PK><Natural>
Colour<PK><Natural>
CCD<PK><N atural>

I CameralD<PK><N atural>
I

I Index <PK><N atural>
I

Location
Classification
Period

Star
StarlD<PK><Surrogate>
Field
Colour
CCD
CameraID
Index
Location
Classification
Period

Star Intensity
StarlD<FK>
Field Index<PK><FK>{ drop}
Colour lndex<PK><FK>{ drop}
CCD Index<PK><FK>{ drop}
CameraID
Index<PK><FK>{ drop}
Index lndex<PK><FK>{ drop}
Time<PK>
Run
Flux,
Error

Transaction period

Star Intensity
StarlD<FK>
StarIST <PK><Surrogate>
Time
Run
Flux,

/
Error

Resulting Schema

Figure 15: Transaction for replacing composite key with surrogate key

I '·- ·- ·- ·- ·- ·- ·- ·-·- ·-·- ·- ·- ·-·-·- ·-·- ·- ·-·- ·- ·- ·-·- ·-·- ·-·-·-·-·-·-·-·-·- ·-·-·-·- ·- ·- ·-·- ·- ·- ·- ·- ·- ·- ·

43

However, after introduced surrogate key in the table, the SOL command for inserting

and updating record in the table becomes harder than before. For example, if people

like to insert one star's time intensity value into the table Star Intensity, first of all

they should retrieve the foreign key Star/D value from the table Star for this star.

Then based on the StarID value, people can insert the new record.

An example is shown below for inserting a record into database before and after the

table applies for sourogate key.

The query for inserting star's time intensity value into the table Star Intensity is:

For example, the star identifier is "Field is 1,ecd is 3, index on the image is 100,

filter is red and cameraID is 5" . ~

Before applied for surrogate key, the SQL is:

Insert into Starlntensity (field, CCD, Colour, index, CameraID, ftux) values

('fieldl', 3,'red', 100, 5, 9879);

After applying for surrogate key, the query becomes:

Firstly, retrieve Star ID value from the table Star:

Select StarlD from star where field='fieldl' and ccd=3 and cameraid=5 and

filter='red' and index=lOO;.

Let's assume from above query, we know the StarlD is 5 for this star in the table

Star.

Secondly, insert date into the table Star Intensity. The query is:

Insert into Starlntensity (StarID, Rux) values (5, 9879);

From above example we can see, after the table applying for surrogate key, the data

ingestion will spend more operations than before. However, the query performance of

join the tables will be faster than before due to simplified join key. Because the main

aim of this database is to support data mining, a good query performance is the most

important point for the database. Therefore surrogate keys were applied in these

tables.

In addition, the column Camera used and Exposure step are together to constraint a

particular exposure in the observation. In order to save space and enhance the

44

performance, these two columns were merged to one column called CameraID.

CameraID included all possible combination among telescope, Exposure Step and

Camera. Table 4 shows how the CameraID value mapping to Exposure step, Camera

and Telescope.

Table 4: The new relationshlps among attributes

CameraID value Camera Exposure step Comprised

telescope

1 MOACam 1 Step 1 0.6m

2 MOACam 1 Step 2 0.6m

3 MOACam 1 Step 3 0.6m

4 MOACam 1 Step 4 0.6m

5 MOACam2 Step 1 0.6m

6 MOACam3 Step 1 1.8 m

Step 4: Check integrity constraints

This step checked integrity constraints from required data, attribute domain

constraints, multiplicity, entity integrity, referential integrity and general constraints

to guarantee the database saves correct data.

Step 5: Consider the Introduction of Controlled Redundancy

Sometimes, introducing redundancy in a controlled manner by relaxing the

normalization rules can improve the performance of the system. A normalized

database prevents functional dependencies in the data so that updating the database is

easy and efficient. However, querying the database might require many joins of tables

to combine information. The more join operations include tables, the longer time will

be spent on procession the query. Therefore, a normalized database might not always

be the best choice. A database with the appropriate amount of denormalization

reduces the number of tables that have to join together, without adding too much

complication to the updating process. This is frequently a good compromise.

In this database model, the table star and star periodicity can be combined together.

So the table calibration was denormalized. Also the date in the table telescope and

45

camera can be saved in one table. The new table was called camera. After converting,

the query for updating and joining the table become easier.

This step completes the logical database design. Figure 16 shows the logical model of

the database and table details can be seen as follows.

(Postscript: The attributes Field, Cameraid, CCD and Index are the star identifier.)

Table name: Star

Table attributes: StarID(PK), Field, Cameraid, CCD, Index Colour, Period,

Classification, RA, DEC, Pos, Pos Shift

Description: The table saves each star's properties.

Attributes Period means the light curve period of this star.

Classification stands the type of this star.

RA, DEC, Pos and Pos Shift describe the stars' location in different scale

system.

In addition, more stars' attributes can be appended here in the future.

Relevant data file: ".par.dat" file

Table name: Starintensity

Table attributes: starlst(PK), starID(FK),time, Indx,run,Flux, Error,

Nl,N2,N3,N4,N5,ExposurelD(FK)

Description: The table stores all stars time intensity measurement data. As a

surrogate key, staristID is the primary key for the table.

StarID is a foreign key and is referenced from the table Star and the

foreign key ExposureID is referenced from the table Exposure

Relevant data file: V arplot file-" .diphot.xml"

Table name: Exposure

Table attributes: ExposureID(PK), CameraID(FK),CCD(FK), Field(FK), Colour,

Run, JDstart, JDend

Description: The table has each exposure details. It saves the metadata of the imaging

data. JDstart and JDend record when a particular exposure starts and

ends. And more imaging metadata can be appended here for description

46

the imaging data details, such as imaging position in the sky and the size

of the image.

CamerID, CCD, Field are foreign keys from the table Calibration

Relevant data file: ".info" file

Table name: Pointing

Table attributes: ExposureID(PK)(FK), Pos Shift X, Pos Shift Y, a, b, c, d

Description: The table stores the particular pointing event data.

ExposureID is a foreign key referenced from the table Exposure.

Attributes Pos Shift X, Pos Shift Y, a, b, c and d are the values

supporting for retrieving the correct star position

Relevant data file: ".match" file

Table name: Camera

Table attributes: CameraID(PK), Name, Step, Naxisl, Naxis2, NumberCCD,

Telescope

Description: The table records camera's information with bound telescope

Table name: Calibration

Table attributes: Field(PK), CCD(PK),CameraID(PK), RA, DEC, tl, t2, t3, t4, t5, t6,

t7, t8

Description: The table is a "look up" table; it saves the calibration data for each field.

It uses composite key including Field, CCD, CameraID as primary key.

Relevant data file: ".par" file

47

Logical Diagram for MCA database ------~,

1

[

-~~ in.t~nslty
PIC StarlntsllD : NUMBER(5, 0)

run : CH.of=l(6)
ftux : FLOAT(B)
error : FLOAT(B)
n1 : FLOAT(O)
n2 : FLOAT(O)
n3 : FLOAT(O)
n4 : FLOAT(O)
n5 : FLOAT(O)
Time : FLOAT

FIC StarlD : NUMBER(5, 0)
FK e>eposurelD : NUPvtBER(5, 0)

•<<PK>> PK_ Star Intensity()
... <<Fl<>> FK_Star Intensity()
•<<FK>> FK_ Star Intensity()

hTl
! CallbraUon

I PkCCD: INT
PK fteld : CHAR(6)

I
Pk CameralO : NU~ER(S, 0)

RA : CHAR(15)
DEC : CHAR(15)
N1 : INT
N2 : 1NT
N3 : INT
N4 : 1NT
N5 : 1NT
NB : INT
N7 : 1NT

--· ·---·· ···-··-··- ·····-~
. NB INT

K>> PK_ CallbrattonO

:__:__L

o .. •

" o .. • '

'
'

'
'

Produce

Star
ioc starlD: NUMBER(s. 0) ..

ClassftcaUon : NUMBER(5, 0)
Period : NUMBER(5, 0)
Aeld : NUMBER(5, 0)
Camerald : NUMBEA(S, 0)
Index: NUMBEA(5, 0)
Colour : NUMBEA(5, 0)
RA: NUMBEA(5, O)
DEC : NUMBEA(5, 0)

frrll
-·-i

i

Pos : NUMBER(5, 0)
Posshlft : NUMBEA(5, 0)

•<<PK>> PK_ StarQ
•<<FK>> FK_ Star()

---1

'
'

1

. _______ ~>eposure ___ ~·
JPK e~osurelD : NUMBEA(5, O) J

I run : CHAR(B)
i colour : CHAR(6)

!- -! ~g:i:d" ,=;cg::c~»
o.:i FIC fteld : CHAR(6) Io .. •

! FM CCD : INT !
I FK CameralD : NU"'1BER(5, 0) !

•<<FK>> FK_ E>eposure()
•<<FK>> FK_ E>eposure()
•<<PK>> PK_ E>eposure()

;

0 .. 1

A-19e~ .--·-······
/

Use

Figure 16: Logical model for MOA database

Pointing

~Ke~osurelD : NUMBEA(5'. O)
Pos shift x: FLOAT(O)
Pos shifty : FLOAT(O)
a : FLOAT(O)
b : FLOAT(O)
c :FLOAT(O)
d : FLOAT(O)

._.<<PK>> PK_ PolntlngQ
•<<Fl<>> FK_ Polntlng()

Camera
PK CameralD : NUMBEA(5, 0)

Camera name : CHPF\(10)
step: NUMBEA(5, O)
Nll>ds1: NUMBEA(5, 0)
Nll>ds2 : NUMBER(5, 0)
NumberCCD : NUMBER(5, 0)
telescopt : FLOAT

•<<PK>> PK_ CameraQ

WJ

48

4.3.3 Physical database design

So far we have concluded the logical database model for the database. Now let's go to

the next step: physical database design. Physical database design is

"The process of producing a description of the implementation of the

database on secondary storage; it describes the base relations, file

organization, indexes, and any associated integrity constraints" (Thomas and

Carolyn, 2005).

The physical database design was divided into four steps.

Step 1: Translate lo.gical data model for target DBMS

This step translated the logical database model into database schema. So the model

can be presented by SQL command under PostgreSQL. The PostgreSQL commands

for creating database can be seen in APPENDIX A.

There are some points that were noticed during the design.

1. Use most suitable type for each attribute. In the model, there are many types to

define each attribute. For example, the attribute Time in the table can be defined

as Character or Float. The attribute Time will be used frequently for calculation

and comparison in the future. Because numerical type can provide noticeably

better performance than character type on these operations, the Time took float as

its type.

2. Never waste database space. Because it will be a big volume of data sets in the

database, the appropriate size is essential for the attributes. For example, if the

content of an attribute is up to 10 characters in the table, this attribute size was

defined as 10. In contrast, if the column is defined as size 20, it means the

database waste space on it. With the data sets becoming bigger and bigger, this

would involves some wastage of database space.

3. Design the integrity constraints for the attributes. Integrity constraints can ensure

that the data is accuracy and consistency in the database. In this model, they were

created according to MOA data meaning and entity relationships. An example of

defining data constraints under PostgreSQL can be shown as follows.

49

Command for referential constraint:

create table disdetails (detailsid serial primary key, id int not null, author char(30)
NOT NULL default", time timestamp, content text, foreign key (id) references
discussion (id) on update cascade on delete cascade);

Command for unique constraint:

create table star (starid serial primary key,field char(6),ccd int,index int,colour
char(5) default 'red',cameraid int,period float default 0, classification char (12),ra
char(15),dec char(15), pos point, posshift point,
unique(field,ccd,index,colour ,cameraid));

Step 2: Design indexes

One of the objectives of the database is to access its data efficiently and effectively. If

the data saving follows the sequence of its future use, the future operation will save

much time. In addition, index is a way to speed up user queries. But it also spends

disk space. Therefore designers only set up indexes when it is really necessary. This

project predicated some popular queries which might be used by the researchers in the

future. Then index was created according to these activities. PostgrSQL supports

several index types such as B-tree, hash and R-tree. B-tree index fits the most

common situations. It can handle equality and range queries on data that can be sorted

into some ordering. (PostgreSQL global development group, 2007). And the Hash

index is able control the simple equality comparison operation.

The location is an important character for stars. When MOA members do the research,

they often select one or a group of stars according to their location or a location range.

Therefore, in order to improve the database performance, a B-tree index was created

for the star location. The PostgreSQL command for creating index is shown below.

Create index locationid on star using btree (RA, DEC);

When MOA members do the data mmmg, they need to research light curves.

Therefore, it is necessary to set the star's identifier and observed time as B-tree index

in the table to enhance the database performance when they query the data.

The PostgreSQL command for creating the index:

50

Create index starid on star using btree (field,CCD,colour,cameraid,index);

Create index timeid on starintensity using btree (time);

Querying light curves is an important operation for astronomy research. So one hash

index called star classification which is relevant to star's classification was created.

And one B-tree index star _period which is related to light curve period in order to

accelerate the database performance.

The SQL command:

Create index star _classification on star using hash (classification);

The SQL command: Create index star _period on star using btree (period);

Step 3: Design Views

A VIEW is a popular technique used in the data management. View is a dynamic

result of one or more relational operations on the base relations to produce another

relation. View is virtual relations but not real exist in the database (Thomas &

Carolyn, 2005). Normally, view can join many tables together and show their data

relations. The advantages of view include data independence, currency, improved

security, and reduced complexity. This project created a view called view_star for

joining each star with its time series intensity data together, because these information

are always used together but among different tables. When the new data is inserted,

the view should be updated.

create view view _star as select
s.field,s.ccd,s.colour,s.cameraid,s.period,s.classification,s.index,i.flux,i.error,i.run,
i.time from star ass, starintensity as I where s.starid=i.starid;

Based on this view, the query for selecting data from these two tables become:
Select *from view _star where +condition;

Step 4: Backup and Recovery design

Backup database is an important phase. Thomas and Carolyn (2005) stated backup is

the process of periodically taking a copy of the database and log file on to offline

storage media. The PostgreSQL command pg_ dump was used to backup the database,

because it can make a copy of the database. Furthermore, pg_ dump can write data to

51

the standard output, so it can perform large database backup. When the database
'

meets equipment failure or disaster, it can recover or retrieve the database based on

the backup files.

PostgreSQL command for backup database using compressed dumps (under shell
with gzip compression program):

pg_dump dbname I gzip > outfile

Command for reload the database through gzip compressed backup files:
Gnuz i p - c backupfilename dbname < infile

In addition, when the database makes major changes to the contents of the table, such

as inserting a big volume data and changing table structure, it is a good idea to run

command ANALYZE. This collects statistics information about the contents of tables.

The query planner can use these statistics information to decide the efficient execution

plans for query. So it can enhance the database performance.

4.4 Data Ingestion application design

After the database structure has been decided, it needs to change the source data

format and then loads them into the database. As mentioned before, due to security

consideration, a Java program has been written to perform data ingestion. The

interface of the program can be seen in the Figure 17. Seven classes have been

developed and each of them provides different functionalities.

==
MOA database loading system

1. Load the star location (. pos) file into the database

2. Load light curve data (. dat) into the database

3. Load calibration data file into the database

4. Load exposure (. info) file into the datbase

5. Load pointing data into the database

6. Load time intensity value (.diphot.xml) file into the database

Type ' enf to EXIT the system

Please choose your operation and press ENTER

===
Enter your choice here :I

Figure 17: The interface of the ingestion application

52

A full source code implementation can be found in the enclosed CD. This section

provides dissection of the classes.

Java Class: Calibration
Functionalities: It reads data from the source file extension with ".par" and then it

loads the data into the table Calibration through bulk loading.
SQL statement:

SQLquery="insert into calibration

(field,cameraid,ccd,cali,nl,n2,n3,n4,n5,n6,n7 ,n8) values ('granted value');

Java Class: Exposure
Functionalities: It reads data from ". info " file and then it loads the data record into

the table Exposure.
SQL statement:

SQLquery ="insert into exposure (run,field,colour,jdstart,jdend,cameraid,CCD)

values (granted value);

Java Class: Starlocation
Functionalities: It reads data from star location source files and then it loads the data

into the table Star. The data ingestion application uses this kind of
source file to initialize each star's record in the table Star.

SQL statement for inserting data:

SQLquery=insert into star (field,CCD,index,cameraid,pos,posshift,ra,dec) values

(granted value);

Java Class: Period

Functionalities: It reads data from star periodicity source files and updates the

relevant star record in the table Star. After the class Starlocation has

initialized each star's record in the table Star, this class is used to

update designated star's period property.

SQL statement for inserting data is composed by two steps:

1. Retrieve the relevant starid value for current star from the table star. (Let's assume

the variable index, field, CCD, and cameraid have held the appropriate value for a

star.)

53

SQLquery="select starid from star where field='ngb"+field+'" and

index="+index+" and ccd="+ccd+" and cameraid="+cameraid;

2. Update this star's information (Let's deem the variable starid has hold the correct

value for this star).

SQLquery="update star set colour="'+colour+'",period="+period+" where

starid="+starid;

Java Class: Pointing
Functionalities: It reads data from the source file with extension ".match" and inserts

the data set into the table Pointing.
SQL statement:

1. Retrieve the relevant e.xposureid for current Pointing event from the table

Exposure.

SQLquery="select exposureid from exposure where run="'+run+'" and

colour="'+colour+"' and field='ngb"+field+'" and ccd="+ccd+" and

cameraid= "+cameraid;

2. This inserts the Pointing dataset into the table based on retrieved exposureid

value.

SQLquery= "insert into pointing (exposureid,shiftx,shifty,a,b,c,d) values

(" +exposureid+", "+shift~+", "+shifty+"," +a+"," +b+", "+c+" ,"+d+")";

Java Class: Starlntensity
Functionalities: This is to read time intensity data for stars and then loads them into

the table Starintensity.
SQL statement:

1. Retrieve relevant starid value from the table star:

SQLquery="select starid from star where field='ngb"+field+'" and ccd="+ccd+"

and index="+index+" and cameraid="+cameraid;

54

2. Insert the data set into the table Starintensity based on retrieved starid

value.

SQI.query= "insert into starintensity (starid, time,run,flux,error ,nl,n2,n3,n4,n5)

values

("+starid+","+time+","'+run+'","+flux+","+error+","+nl+","+n2+","+n3+,","+n4+"

"+nS+")"· ' '

Java Class: GeneralDAO
Functionalities: It is an interface class between Java classes and the database. All

Java classes need to create a GeneralDAO object when they want to
communicate with the database.

Java Class: main.

Functionalities: it is the mam interface of the program. It offers a menu with

accepting inputs for user to loading different kinds of source files into the database.

Format of the Text Based Files and the loading methods

The formats of the text-based files are important because they determine the

development of file reading methods of the data processing Java application.

MOA's telescope outputs the imaging data as FITS format. FITS is a standard

astronomical image format. Plante (1997) stated FITS shows multi-dimensional,

regularly-sampled array of measures images. MOA text files are prepared from the

FITS header, they has particular sequence. For instance, the contents of the

exposure file B144-ngb16-blue-1.info is shown by Figure 18. From this text file, we

can see the exposure had produced imaging metadata. The exposure run number is

B1466, observed field is in ngb16, camera filter is blue, CCD field is 1, start

observing time is 2452134.1213147 and end observation time is 2452134.133623.

The Figure 19 shows a calibration data file contents, it includes RA, DEC and other

specific calibration figures related to the field ngb is 1 and CCD is 1.

55

/export/data/GB/Bl466-ngbl6-blue-l.fit.Z
SIMPLE T I FITS STANDARD
BITPIX 16 I FITS BITS/PIXEL
NAXIS
NAXISl
NAXIS2
BS CALE
BZERO
CCDTEMP
FOCPOS
OBSERVAT=
OBSTEL
LOGITUD
LATITUD
HEIGIIT
JDSTART =
JD END
CCDADDR =
OBJECT
FILTER =

2 I NUMBER OF AXES ·
2047 I NUMBER OF PIX IN !ST AXIS
4095 I NUMBER OF PIX IN 2ND AXIS

l.OOOOOOE+OO I REAL = FILE*BSCALE + BZERO
3.276700E+04 I REAL = FILE*BSCALE + BZERO

-120.0 I Camera temperature deg C
f6.25 I Focus position

Mount John I Observatory
B and C Telescope I Observing telescope

-170.467 I Longitude (Negative means EAST)
-43.983 I Latitude (Negative means South)
1029.0 I Height (metres)

2452134.131470000 I JD of begining of exposure
2452134.133623000 I JD of end of exposure

l I CCD number (address) in the array
ngbl6 I Name of field object
blue I <630nm(blue) or >630(red)

Figure18: Contents of the exposure file: B144-ngb16-blue-1.info

17:47:30.000 //RA
-34:15:00.00 //DEC

l
l

-3376.736539671498 //Special value: A
4126.358992331345 JIB
0.580524809652903 /IC
0.585242628812929 ! ID
0.328410398068884 //E

-0.381173305325939 ; ;Fj

Figure 19: Calibration data file gb-1.par

(The designer appended Comments)

The task of Java application is to follow the file sequence and read the required

information from the text files. Then the application loads the data records into

relevant tables. However, there is a challenge while loading the data records into the

database. As Paul (2005) stated "bulk loading is more efficient than single-row

loading". Therefore, the best way for loading data records is to make the individual

data record becomes a data heap, and then the program loads the data heap into

database. But in this database, the situation is particular. One of astronomy data

feature is its extremely big data size. The Java container- stack container was chosen

to store individual data record. But with bigger and bigger data records saved in the

container, the container was "out of memory". The reason is any kind of containers;

even a Linked-List container has a limited capability on saving data. The big

56

number of astronomical data sets always exceeds the container's capability. Therefore,

the method 'single row loading' was used to loading this kind of data file.

• Single row loading: inserting each data set into database as soon as it reads out

from the data source file. For example, the Intensity value data source file

includes a large size of data records, such as hundreds of thousands of data rows.

Due to container capability reason, no container can afford such a huge data set.

Therefore, each data record was inserted in the database as soon as it reads out

from the data file. In addition, in the Intensity value source file, only some of the

information should be inserted in the database.

exter work3 bondi diff B1767-n bl6-red-l.diff.fit
IB1767 2452367.192286 1 207.189 546. 543 8584. 8 1161. 55 -4. 67408 88. 8633 0 1 0 (Al)

B1767 2452367.192286 4 592. 736 228.419 112659 12625 170.12 984. 242 0 8 0
B1767 2452367.192286 5 637:466 320. 567 1206. 64 910.141 2. 76965 70. 9011 0 8 0
B17672452367.192286 9 795.591 991.942 -242.63 3288.91 -14.2826 250.542 0 9 0
exte work3 bond· diff B1772-ngb16-red-1.diff,fit
B1772 2452373.155399 1 207.189 546.543 30135.2 2242. 7 -18.948 115.304 0 1 0
B1772 2452373.155399 4 592. 736 228. 419 120136 12747. 5 81. 3277 677. 927 0 8 0
B17722452373.155399 5 637.466 320.567 2193.92 1042.43 -3.85267 55.218 0 8 0
/extern/work3/bondi/diff/B1778-ngb16-red-1.diff,fit
B1778 2452377.0849305 1 207.189 546.543 21863.2 1112.91 -11.3533 88.1904 0 1 0
B1778 2452377.0849305 4 592. 736 228.419 79515 11372.4 178.025 912.908 0 8 0
B1778 2452377.0849305 5 637.466 320.567 -2473.01 668.37 4. 79447 53.8243 0 8 0
Bl778 2452377.0849305 9 795.591 991.942 -17227.8 4728.92 -4.56925 380.698 O 9 O

Figure 20: The structure of the source file

(A2)

Figure 20 is a simple example of Intensity value data source file. From it we can

see, this kind of data file describes some stars intensity values among different time.

The stars are in Field 16, CCD 1, observed by red filter and the exposure run

numbers are Bl 767, Bl 772 and Bl 778. In the source file, the first column is the run

number for the exposure. The second column is the exposure time. The 3rd column

is the star's index value in the field 16. The 4th column and 5th column are star's

reference location on the image, but this information is duplicated with the data

source file star location. The 61
h column is the flux value and the 7th column means

error value. From the gth column to 13th column are other measurement values for

star intensity. The row started by the symbol "#" is the metadata for the following

data. This metadata row separates the data into many blocks, and each block of data

shows certain star's flux value at different time.

57

Based on the file sequence, a loop was used to read the useful information and to

avoid loading redundant data in the database. The loop structure can be shown as

follow.

/ffhe author defined one block of data is "the data between the data line starts

by symbol hash", such as block A2 in the Figure 14

While (not end the file){

}

If the cursor is in the first block (Area A2 on the Figure 18){

The program gets current star's starID from the table Star and

then saves this starlD in a container. (The reason for doing this is to

avoid searching of this starID from the table again). Lastly, the

pr-0gram inserts the record into table Starlntensity •

If the cursor is not in the first block and is not metadata{

The program inserts the star's record into the table Starlntensity.

The starID value can get from the container.

• Bulk loading. Some data source files only include a small number of data

record. For example, each exposure (.info) source file only contains one data

records. Therefore a static Vector container was used to record heaps of exposure

data records, and then these bulk of data records were inserted into the database at

one time. This method can reduce time to setting up connection between the

application and the database. An example of code implementation using bulk

inserting is shown below (This example only shows the loop structures instead of

the real Java codes).

58

//Class exposure can read exposure data files and save the data record in the
vector container
Public class exposure {

}

//the static vector container can save bulk of exposure data records
Public static vector<String> allexposure;
//the function can read individual exposure.info file and save the data
//record in the container allexposure
Public void readfileO;
//insert bulks of exposure's data records into the database
Public void loadtoda~baseO;

,,yr,, ,,,

/(fhe class main to call the exposure class object
Public class main {

public static void main(String args[]) { "~
' loop (reading data files from B1466-ngb16-red-1.infohto

B1500-ngb16-red-1.info)
{

}
}

exposure temp; //produce an exposure object
temp.readfileO;//reading the data record and pushing the record

//into the static container

I /insert contains data records into database (bulk loading)
exposure:loadtodatabaseO;

59

4.5 Enterprise application design

4.5.1 Application architecture design

This section deals with the application design. Previously the website requirements

were described. The hierarchy website structure can be shown as follows.

0. MOA welcome page
1. Log in main page

1.1 Log in
1.1.1 Modify member's details

1.2 Register as new member
1.3 Member to retrieve their password when they forget.

2. Gravitational mi~olens,ing introduction
3. MOA publications download
4. MOA observation equipments introduction
5. Astronomy data accessing

5.1 Query data by general option
5.1.1 Fills SQL command based on template query boxes

5.1.1.1 Get query results by table on the web page
5.1.1.2 Get query results in a data file and download it

5.2 Query data by professional option
5.2.1 Finish SQL query by user.

5.2.1.1 Get query results by table on the web page
5.2.1.2 Get query results in a data file and download it

5.3 See stars' light curve by picture based on their time series intensity
measurement value

6.AboutMOA
7. Discussion Board
8. Logout

In order to cover all these requirements and ensure that the application has a good

application has a good architecture for implementation and maintaining, the MVC

pattern was used. A Servlet was used as server-side processing to implement the

controller layer, Java Beans to realize the model layer, and JSPs to fulfil the

presentation layer. Figure 21 shows the application architecture. The message

transformation rules are shown as follows:

1. Clients make a request through HTML forms to the Servlet Controller.

2. The Controller receives the request. Then it instantiates appropriate business

object based on Java bean and calls the object method to perform business tasks.

60

3. The Java bean (model layer) contains business logic. It can receive parameters

from the controller and perform Java bean functions. Finally, a representation of

what will be displayed for the view layer will send back to the Controller by the

Java bean.

4. The Java bean uses Data Access Object (DAO) to communicate with the database

when the business task requires.

5. The Controller receives results from Java Bean and forwards request to the

appropriate JSPs

6. The JSPs receives process results from Java bean and the controller. Then it

formats the "return page" and shows it to the clients.

[______ l _____ _
\tlew Layer

HTM... request
form

\
'

Qontroll.er Layer '
\ / ,,.
'~! .: ·~.:'

, controller

,'

,
,

Model Layer
I - ---

1
., General

··-cs····--'. DA" ···-····:>"' 11.J

!

~-~r {:_,-

~ D/>D
_L interface

C[?_·.···r-·· .;-..

J JDBC

.. ~------'----~---

MOAdatabase

Figure 21: The simple component diagram for the application

In addition the application needs to have two person roles, including general member

and administrator. Administrator has the right to organize the registered members and

to maintain the discussion board. General members have privileges to access MOA

astronomical data, but they only can read this data.

Based on application architecture, the design is divided into four parts, including

distribution requests design (controller layer), presentation logic design (view layer),

business logic design (model layer), and data access object design.

61

4.5.2 Servlet Controller design (Controller layer)

In the MVC structure, the controller is responsible for the coordinating the data flow

between the model and view layer, responding to user requests, and management of

data in models with actions. So if the controller is written properly, it will channel

request data and invoke action calls for any type and number of views. This project

used a Servlet as controller for the application. The definition of the Servlet in XML

deployment descriptor file is shown as follows:

•·•

<?xml version="l.O" encoding="UTF-8" ?>
< !DOCTYPE web-app (View Source for full doctype ...)>

<web-app>
· <servlet>

<servlet-name?'controller</servlet-name>
<servlet-class>mypackage.controller</servlet-class>
</servlet>
<servlet-mapping>

I•·. <servlet-name>controller</servlet-name>
<url-pattern>/controller</url-pattern>
</servlet-mapping>

</web-app>

In order to let the controller know what action to perform and JSPs to display next, it

was decided to put action keys into JSP form as hidden variable indicating to the

controller what to do next. When the doPost method in the controller receives request

from JSPs, a Reflection API was taken to instantiate the Action class (The action class

are used by the controller to perform any sort of action on the user's behalf). For

instance, the controller checks the hidden variable value and decides what action class

will do next. Normally, in the action class, the controller receives the other parameters

from JSPs and populates necessary business objects based on Java bean class. Then,

the controller calls the object method to perform business task. And the object method

will return a JSP view back to the controller. Lastly, the controller forwards the page

to view layer.

62

4.5.3 Presentation logic design (View layer)

. .
This section describes the design of the presentation logic for the application. Haque

and O'Connor (2002) stated the presentation logic is the code that dynamically

generates display elements and programmatically decides what content is displayed to

the user. Therefore, the purpose of the presentation logic design is to show web

contents in a formative way.

In this website, JavaServer Pages (JSPs) were used to implement presentation logic.

As an important J2EE component, JSP is an extension of Java Servlet technology.

Actually, JSP is translated into Servlet source code automatically when it is deployed

on the server. It allows Java code to be embedded in HTML (Dustin, 2001). So, with

JSP, the web developer can use HTML to display static page contents and Java code

to show dynamic page contents. Moreover, because JSP embedded with Java code, it

can take all the advantages, which Java has. However, while JSP technology makes

web page contents become flexible, it also makes pages code become mess. For

example, mixed HTML and Java code cause them significantly less readable and

debugging hard. Therefore, how to combine HTML and Java code is a challenge for

the JSP technology. The JSPs were designed with the following design principles in

mind.

1. Maximally separate HTML from Java code. If HTML and Java code are

separated, the designer can concentrate on one part at different time. For example,

in most of JSPs, HTML codes are put together at the top of the page and java

code was at the bottom of the pages.

2. Place business logic in Java bean. When Java codes are included inside of the

JSPs, they are not accessible by other JSPs. In contrast, Java bean can be used by

all of the JSPs even by other applications in the application. Therefore, in order to

enhance the code reusability, the business logics were put in Java bean.

3. Use include directive. The mechanism supports JSPs includes the content of a

specified file in the JSP. Thus, the include mechanisms can reduce code

redundancy and promote reusability. For example, the text information for the

web title and menu needs to be included in all JSPs. Therefore, a JSP which

63

contained the website title and the menu information was created. And then it was

included in the required JSPs.

4. Use style sheets. Style sheet files enable developers to control the layout of the

web pages. This project used Cascading Style Sheets (CSS) to control font

families, font size and table characteristics. Style sheet allows the developer to

make changes in on location and those changes reflect on all related pages

(Dustin, 2001). As a result, it can increase the maintainability and consistent

appearance to user.

5. Use JSP exception mechanism. Exception's stack trace is important information

for both of developers and users. Therefore, a JSP called errorpage was used to

catch all the exceptions, which are thrown by JSPs.

The JSPs were divided into three types according to their functionality. Firstly, it is

static page and it only contains static content. For example, the web page

Telescope.jsp introduces MOA's observation equipments. It can be shown to clients

directly without change. The second type is "post page". This kind of page includes

HTML forms. It posts request to the Servlet controller and to ask dynamic

information. The last type is "answer page". It receives the display data from the

Servlet controller and shows them in a formative way to clients. The following

description gives details of web pages with their functionalities and types. The whole

implementation of the application can be seen in the enclosed CD.

Page Name: Header.jsp

Page Type: header and static

Functionalities: This page creates a header for web site. And it also includes a menu,

which can link to other JSP pages.

Page Name: Index.html

Page Type: Post

Functionalities: This is an entrance page for the web site. The page contains a form

to allow users to enter their user name and password as login details. This form posts

the input values into the controller to verify the user.

64

Page Name: Index2.jsp

Page Type: Answer

Functionalities: This shows login result. If user has a correct login, it shows welcome

letter. Otherwise, it tells user to login again. If administrator logs in, the page supplies

links to the web pages for maintaining the web site contents.

Page Name: Register.jsp

Page Type: Post

Functionalities: This Page allows a new user to register. User should input their

details such as first name, Email address and student ID. When users submit the

details in the HTML form, the details are posted to the controller. Then the controller

creates a process object based; on Java class registerBean. This new object handles' the

registration process.

Page Name: Modifydetails.jsp

Page Type: Post

Functionalities: This provides users to modify their details.

Page Name: result_register.jsp

Page Type: Answer

Functionalities: The page receives parameters from the controller. And then,

according the parameters value, it displays user' registration and modification process

result.

Page Name: servlet/sendPassword

Page Type: Post

Functionalities: This is written as Servlet, it supports to send users' password to their

email box when users forget their password.

Page Name: Maintain.jsp

Page Type: Post Answer

Functionalities: administrator uses it only. This is used for organization the whole

registered members. If the numbers of members is more than 15, the page shows the

member details in separated pages.

65

Page Name: Data.jsp

Page Type: Static

Functionalities: This is entry page for the astronomy data fetching. It offers two links.

One links is to the page dataGeneral.jsp. It allows user to complete SQL query based

on pre-prepared conditions. Another link is to page dataProf.jsp. User can input SQL

query by own to query data. And then the application will use the produced query to

fetch data from the database.

Page Name: dataGeneral.jsp

Page Type: Post

Functionalities: The page supports user through general operations to query data

from database especially for querying star time intensity values. User can input

conditions in the text boxes to decide SQL query command for fetching data. Then

the page sends the parameters to the controller through HTML form. If the user leaves

the text box empty, it means user does not specify this condition. The specific text

boxes included star identifier, duration of the intensity value, RA, DEC and distance.

Page Name: dataProf.jsp

Page Type: Post

Functionalities: professional users use this page. The users need to input SQL

command by them in order to get image metadata and star time intensity value. The

Java bean will retrieve the data from the database after a general syntax checking for

the input query. But only "select" command is allowed. And then the page delivers

user's query to the controller.

Page Name: viewData.jsp

Page Type: Answer

Functionalities: The page gets data from the controller and shows them within table.

If the number of data is over 25 rows, the page divides the data into several pages.

Page Name: viewFile.jsp

Page Type: Answer

Functionalities: The page supports users to download their astronomy data in a data

file. The downloaded file is produced by Java bean and is saved in the folder

66

"URL:temp_file/student id" on the server, and it will be deleted when the user logs

out. The Java class downbean.java is used for transmit the data file from the server

side to the client side.

Page Name: lightcurve.jsp

Page Type: Post

Functionalities: This allows user to see star's light curve in the pictures according to

time series intensity data. Users need to point out the identifier of the star and

. displaying format, and then the page sends all parameters to the controller. The

controller receives parameters from this page. And then it produces SQL command

for querying data from database. Then the controller produces star's light curve by

picture through an application 'Gnuplot'. Lastly, the page 'showlightcurve.jsp' displays

the picture to the user.

Page Name: showlightcurve.jsp

Page Type: Answer

Functionalities: The page shows stars' light curve by picture. Only logged in user has

right to see star's light curve. Firstly, the page receives parameters from the controller.

The parameters include light curve picture's file name and physical location for the

image file. The page also includes two buttons called 'Next Star' and 'Previous Star' in

the HTML form which can show the next star and previous star' s light curve. The

controller is able to produce star's light curve by picture and save the file on the

server.

Page Name: Addthread.jsp

Page Type: Post

Functionalities: Users can input subject details on the discussion board and the data

is posted into the controller. But only login users are able to post subject.

Page Name: discussion.jsp

Page Type: Answer

Functionalities: This supports a discussion board for users to discuss and to share

their ideas. This page only shows thread subject information and the page

discussiondetails.jsp shows the reply messages for each subject. The page shows all

67

subjects by last-post-time order and there are up to 15 threads in one page. More

threads are shown in separated pages. When normal users come to this page, they can

read subjects on the board. If the administrator comes, he or she can delete any

threads from the discussion board. The deleting operation can be done by the

controller through the Java bean discussionBean.java. The Java bean passes the

operation results back to this page through controller.

Page Name: Replymessage.jsp

Page Type: Post

Functionalities: Users can reply a subject on the discussion board in this page. It will

post message to the controller. But only login users can post messages.

Page Name: discussionDetails.jsp

Page Type: Answer

Functionalities: The page shows the reply messages for a particular subject in the

forum. And only registered users are able to post messages. It can receive parameters

' id ' from the page discussion.jsp which indicates the subject details.

Page Name: Gravite.jsp

Page Type: Static

Functionalities: The page simply describes gravitational microlensing concept and

shows how to use this technology to observe stars. The content in this page is static

and retrieved from MOA Auckland university website.

Page Name: Telescope.jsp

Page Type: Static

Functionalities: The page introduces the new MOA telescope details and provides

some pictures for it. The information on this page is from MOA Auckland university

website.

Page Name: about.jsp

Page Type: Static

Functionalities: This offers a brief introduction of MOA group.

68

Page Name: publication.jsp

Page Type: Static

Functionalities: This shows some of the MOA's publications and supports links to

download these documents. The description of publication is copied from MOA

Auckland university website.

Page Name: ErrorPage.jsp

Page Type: Answer

Functionalities: This is the error page used by all of the JSP pages. It simply displays

any exceptions that are thrown within the JSP pages.

Page Name: Logout.jsp

Page Type: Answer

Functionalities: This page simply ends the current session bean and displays a link

back to the page index.html, so that the other user can log in. Furthermore, it can

delete all the data files which are produced by the user during transaction and leave on

the server.

Page Name: Formating.css

Page Type: Format file

Functionalities: This sets the whole web page style.

4.5.4 Business logic design (Java Bean Model layer)

Now, let's move to business logic design. The purpose of the business logic is to

perform business-related tasks and to communicate with the database. The

business-related tasks in this application include user registration, querying

astronomical data with or without data mining knowledge and organizing the

discussion board. However, this thesis did not mention more details about putting

data mining knowledge in the application. It is a limitation. But the designer might do

further research of data mining knowledge in the Java bean in the future. Under the

MVC, when the controller executes an action method, the action may populate a Java

bean to perform business tasks. Therefore, Java beans are able to instance field, get

69

parameters, store data and contain methods to perform business tasks. In this project,

eight Java beans were created to perform the business tasks.

Table 5 states the designed Java beans with details and functionalities.

Table 5: Java Beans in the application

Bean name Description
userBean.java It is active when users log in and it is inactive when users log

off. Generally it saves user's details, such as user name,
student ID and email address. This information is used by
some web pages. And one important function of userBean is it
can delete the useless files from the server when the users log
off. These useless files are created when users do operation on
the website and left tern on the server side, such as light curve
image files and downloaded data source files.

indexBean.j ava It accepts users' student ID and password as parameters from
the controller. And it can create a data access object based on
class GeneralDAO. The object can connect to database and
check whether users have a correct login or not. If yes, the
object retrieves other properties, including user email address
and user name from the database, and then it returns the login
result to the web pages.

registerBean.java It accepts parameters from the controller and register new
member and then it saves user's information in the database. It
also supports members to modify their details in database.

dataBean.java It is able to handle the operations between users and astronomy
data. The main functions of this bean include building SOL
command based on people's request, fetching data from the
database and saving the fetched data in data files.

discussionBean.j av The bean is used for discussion board. It supports users to add
a new threads and delete thread from the board. In addition, it is

able to get all thread subjects information from the database
and pass the results to JSP for displaying.

disdetailsbean.java It has similar functions with discussionBean.java. It can post
reply, delete replies message and display all replies for a
particular subject in the forum.

imageBean.j ava It is used for producing star's light curve by pictures. Before
calling this bean, the application needs to call the function
dataBean.java.makefile() to produce data source file which
supports the source data on plotting in the application Gnuplot.
This bean can produce a PLT file (it contains pipeline of
Gnu plot commands) and then it runs the file on Gnu plot to
produce the image files. Then the images can be shown by
JSP. The generated images are saved in the folder
URL:temo file\+studentID.

maintainBean.j ava It is used for charging member's information. In particular, it
supports functions for deleting members from the database

70

The General Java Classes for supporting business tasks are shown by Table 6.
T bl 6 G 1 J 1 . l' f a e en era ava c asses m app 1ca ion

Class name Description
generalDAO.java It is used for controlling the interaction between the

database and the application. It not only can produce
SQL query, but also can execute query in the
database. Moreover, it can return the query results.

MailService.java It handles sending emails to users.(this class is not
my own and it is adapted from the J2EE and beyond
book by Art Taylor, 2002)

runningDownloader .j ava It provides download files from server side to client
side.

constants. java It contains a list of integers with names to make
query 's running are more readable.

4.5.5 Data access design

In applications most business logics are related to database systems. Therefore, how

the Java beans communicate with database is an important part of the design. If the

Java beans connect and disconnect with database within an appropriated time, the

application performance will be good. Otherwise, the performance will suffer.

Therefore, Data Access Object (DAO) was used to control the communication

between the application and the database. Roman (1997) said DAO is a component

which provides a common interface between the application and one or more data

storage devices, such as database or file. As a core of J2EE design pattern, the

advantages of DAO are that business objects no longer require knowing the final

destination for the information it manipulates. As a result, the design activities can be

divided into two parts. In part one, the design focuses on realization business logic in

the Java beans, and in part two the design concentrates on how the beans connect with

the database. Figure 22 shows a model that using DAO to connect with database.

Client Web Service Business Logic Database

Web Container

Web application

Figure 22: J2EE application Model using DAO to communicate with Database

71

4.5.6 An example of passing messages among different layers in

MVC pattern

Some simple examples are given that show how the messages go through among

different layers. The example is user login process.

View layer (Post view):

Index.html: This has an HTML form with a submit action pointing to the controller

Servlet. The hidden parameter signal guides the controller what to do next.

<form method="post" action="controller" name="input">
<input type="text" narne="studentID" size="25">
<input type="password" narne="password" size="25">
<input type="hidden" name="signal" value="index">
<td width="82" height="24"><input type="submit" narne="submit"

value="Sign In" onClick="retum validateO"> </td>
</form>

Controller layer

Controller.java: This receives requests from JSPs. Then, the controller calls action

class including Java bean methods based on passed parameters. The Java bean object

will return a JSP to the controller and then the controller redirects the request to this

page.

public class controller extends HttpServlet {
protected void processRequest(HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException {
String signal=(String)(request.getParameter("signal")); //get parameter signal
if(signal.equals("index")){ //the request is from the page index.html

studlD=request.getPararneter("studentID"); //get parameters
passwd=request.getPararneter("password");
indexBean temp=new indexBeanQ; //create an object based on Java bean
temp.setStudentID(studID); //pass parameters to object
temp.setPassword(passwd);
nextpage=temp.checkStudentPassword(request,response);
//call object method and get r,etum page
RequestDispatcher //redirect to the return page
dispatcher=getServletContextQ.getRequestDispatcher(nextpage);
dispatcher .forward(request,response);

} else if (signal.equals("register)){ //for other requests

72

Model layer

indexBean.java: it uses for testing whether users have a correct login or not (business

logic). It creates a DAO object to communicate with the database. Lastly, it returns

redirect pages back to the controller and saves procession results in the variable

request.

public class indexBean extends Object implements
constants,java.io.Serializable { .

puplic StriJ:lg cheqkStudentpassword(HttpServletRequest rc:;qµest,
HttpServlet:Response response) throws Exception {

generalDAO GetData = new generalDAOQ;//create a DAO object
String logiq="";
try{

//get relevant data from database
ResultSet myRpsult • ,

=GetData.runM yQuery(CHECKP ASSWORD,studentID,password);
int numofrows = O;

}

DAO class

while(myResult.nextO){

}

numofrows++;//count how many rows were returned
email= myResult.getString("st_email");//set email address
fir~tName = myResult.getSqing("st_fname");t/set first name
last:t'-.fame = myResult.getString("st_lname");//set last name

if(numofrows == 1) login="true";
else login="false";

}catch(Exception E){//catch the exception
},finally{

GetData. CloseconnectionQ; //close current connection
}

I /set paraipeters for the display JSP
request.setAttribute("login", login);
request.setAttribute("firstName ",firstN ame);
request.setAttribute("lastN ame" ,lastName);
return "/index2.jsp";

Data Access Object (DAO) controls the communication between application and

database. The following codes show the Java bean IndexBean.java matched function

in the class GeneralDAO.java.

73

public class generalDAO implements constants {
public ResultSet runMyQuery(int whichQuery,String SQLextral,String

SQLextra2,String SQLextra3 ,String SQLextra4,String SQLextra5) throws
Exception {

//Depending on whichQuery variable value, the method creates the SQL
statement based on the other passed parameters

if(whichQuery ==CHECKP ASSWORD){
SQLquery ="SELECT st_email,st_password ,st_lname, st_fname FROM

student where st_studid = "'+ SQLextral +""';//create sql statement to find
matching student record

}

SQLquery = SQLquery + " AND st_password =" + SQLextra2;
}
try{

//Loading JDBC Driver and set up connection
Class.forName("org.postgresql.Driver").newlnstanceO;
theConnection =

~ . ;

DriverManager.getConnection("jdbc:postgresql:member", "Terry", "11160
608");
theStatement=theConnection.createStatement(..);
//return the result set to the calling object
return theStatement.executeQuery(SQLquery);

}catch (SQLException E) {
//catch any SQL exceptions and throws them up to

}

The page interactions

The web application interaction is shown on Figure 23.

74

View
Telescope.jsp

lnstruction .jsp

Data.jsp

Servlet/sendPassword

Lightcurve.jsp

dataPro.jsp

data General .jsp

viewFile.jsp

Controller

viewData.jsp

Model
lndexBean.java

Model
registerBean.java

Model
DisdetailsBean.java

Model
DiscussionBean.java

Model
lmageBean.java

Model
dataBean.java

runningDownloader.java

Figure 23: Pages interactions

Mail
Service.java

GeneralDAO.java

Database

75

4.5. 7 Techniques used in the application

1. Pagination in JSP

In websites, it is common to paginate a large number of records which are retrieved

from the database in JSPs. This situation happens in the page viewData.jsp,

discussion.jsp and discussiondetails.jsp. several lines of Java codes were written to

implement pagination. PostgreSQL supports the query feature called offset and limit

clause to help realize pagination. The limit clause is able to limit the number of rows

returned. And offset stands for skipping some of rows before beginning to return rows.

This feature can make the pagination become easier, because SQL command can

query needed rows from the. database and show them on the page. Sample codes are

shown below.

SQL command: select *from table limited 25 offset intPage*25

//intPage is the display page index. The command can query 25 rows from

the table and the row starting from the number intPage*25.

//Jn JSP, the variable page shows which page should be displayed
page=Request.getparametre(page);
ResultSet sqlRst; //the result set sqlRst holding the display data.
//return how many columns in the result set
int numColumn=sqlRst.getMetaDataO.getColumnCountO;

I !The below codes print the column title
for (intj=l;j<=numColumn;j++){

out.print(sqlRs_t.getMetaDataO.getColumnName(j).toUpperCaseO);
}

while (!sqlRst.isAfterLastO){ //print all result set data

}

for (intj=l;j<=numColumn;j++){ //print each row's attribute
out.print(sqlRst.getString(j));

}
sqlRst.nextO;

//below codes are used for changing the page index under HTML
<a href= "discussionjsp ?pages=<%=Page+ 1%> "> next page
//go to next page
<a href= "discussionjsp ?pages=<%=Page-l %> "> Previous page
//go back to previous page

76

In the Java program, a variable called intPageSize was designed to limits how many

rows can be displayed in one page. At the moment, the value of intPageSize is 25, but

it can be changed freely.

However, this method produces more connections between the database and the

interface, because it makes connection with the database in every page. Another

pagination method was used. It is to query the entire datasets from the database and

then paginate them in the JSPs (the dataset as a session bean in the JSPs). But under

this method, the server has to record a big dataset during pagination. Therefore, a

suitable method was chosen based on dataset size. If the dataset has a really big size,

the first method was used to do pagination. In contrast, if the dataset size is not big,

the second method was taken to paginate the data.

2. Passing parameters

Some parameters are transferred from one page to another page. In general, the

website used two methods to complete this.

The first method is to pass parameters from view layer to the controller layer through

HTML form by URL encoding. Sample codes are shown below .

..
<form name= "message " method= "post" action=" controller" >
//this form is used for passing form parameters to the controller
<input type="studentlD" name="studentlD" size="25">
//the parameter studentID with user input value will pass to controller . ,

Retrieve the parameter in controller:

String name=request.getParameter(" studentlD ");

The second way is to pass parameters by HTML code.

discu§siondetailsjsp?id=lO //the parameter has not been encoded, .~o it C:.fl.Il be

seen by client.

Retrieve the parameter:

request.getParameter.("id")

77

In addition, when Java bean used as session scope, it can be used as passing

parameters as well, more details please see the section introduction of Java bean

3. Connection with database

The below codes not only show how the application creates a connection between

PostgreSQL database and the application, but also show how the application runs the

SQL. Consider an active client under PostgreSQL with user name "terry" and the

password is "12345678".

try{

}

Class.for Name(11 org.postgresql.Driver ti).new lnstanceO;
//connect with POSTGreSQL

//LoadingJDBC Driver '
theConnection =

DriverManager~getConnection(11jdbc:postgresql:assl 11
, "Terry ti, ti 1234

5678");
//set up the user name and password for database connection
theStatement=theConnection.createStatementO;
theResult=theStatement.executeQuery(SQLquery);
theResult.closeO; //close the connection and other variables
theStatement.closeO;
theConnection.closeO;

4. Java Beans

Java beans handle the business logic in the application. Some of Java bean

technologies used in the web site are shown below.

The tag is used for declare and initialize the Java bean class in JSPs with page scope

<jsp:useBean id= "userBean" scope= "session" class= "myPackage.userBean"
/>

The tag is used to set the value of all the properties in JSPs

<jsp:setProperty name= "userBean" property="*" />

The codes create a business object based on Java bean.

Create an object based on userBean:
userBean temp=new userBeanO;

Every Java bean object needs to have its scope in JSPs. Scope refers to the lifetime of

the object stays in memory. This web site used page and session Java bean in JSPs.

78

Page scope means the Java bean is created when user starts to use the page and it is

destroyed when user leaves the page. In other words, the Java bean only maintains its

information in the single page. An example of Java bean with page scope is dataBean

on page viewData.jsp, it shows astronomy data from the database. The bean needs to

be destroyed and then released memory when user leaves the page, because the bean's

information is not used for other pages any more. When Java bean's scope is session,

it means the Java Bean will keep active among the pages. Every visitor visiting the

page will have a separate session bean. And the visitor can retrieve session Java

bean's data when they need. However, too many session beans will increase the

server's workload, because the server has to record the session bean's information in

the memory for each client. The website used a Java session bean which is called

userBean to record user's details. Once user logs in, this small bean will be active.

And userBean's information such as user's name and Email is used in most JSPs. The

tag for using the userBean is shown below.

<jsp:useBean id= "userBean 11 scope= "session 11 class= "myPackage.userBean"
/>

The following codes state how to call bean's functions in JSPs.
Calling bean's functions in Java script:

I userBean.setFnameO;

Calling bean's function in HTML code:

· <jsp:getProperty name="userBean 11 property= 11message 11 />

5. Using http protocol to download files

The application need to support users to download the astronomical data files from

the server, so a Java class called runningDownloader.java was created to finish the

task. The simple codes are show below.

79

response.setContentType(11 application Ix-download");
II set the content type of response

response.addHeader("Content-Disposition ", 11attachment;filename= 11 +
filenamedisplay); //add response header

try
{

I/return a Servlet output stream which is suitable for writing binary code
in response. The reason for do this is the Servlet can not encode binary
data.

output = response.getOutputStreamO;
.fis = new FilelnputStream(filenamedownload); I/open the source file
byte[] b = new byte[l 024];

}

inti= O;
while((i =.fis.read(b)) > 0)
fl the lqop for reading from source file and write data to ~ownload file

{
output.write(b, O, i);

}
output.flushO;!/commit the response

6. Discussion board

Figure 24 shows the physical table structure in the database for saving the discussion

board data. From the Figure we can see all subjects are saved in the table discussion

and each row in the table present one subject in the forum The recorded information

includes each subject's title, author, when it was posted and the contents of this

subject. The table disdetails records each subject ' s reply messages and each row

stands one reply message. The foreign key id is used to links subjects and their reply

messages.

CREATE TABLE discussion (
id serial primary key,

);

title char (30) NOT NULL
default'',
author char (20) NOT
NULL default ",
time timestamp,
content text

CREATE TABLE disdetails (
detailsid serial primary key,
id int,
author char (30),
time timestamp,
content text,
foreign key id references discussion

on delete cascade on update cascade
);

Figure 24: The table structure for saving discussion board data

80

The simple queries for retrieving data are shown below.

The query for gets all subjects information which is posted after Sep 20, 2006 and

lists the latest thread on the top.

Select* from discussion where time>'20-09-2006' order by time
"

Retrieving a particular thread from board and appending the latest reply on the top.

For example, the queries for getting the subject's ID=lO and its replay message are:

Select •from discussion where id=l O; . //getting message subj~ct information
Select* from disdetails where id=lO order by time; //getting its'~eplay messages

7. Class Inheritance

In the application, the class constants is a parent class of some classes (Figure 25).

Constants class contains a list of integers with names to make database query more

readable. Therefore, any classes, as long as they have communication with the

database, will be a children class of constants.

The codes for using inheritance are show below.

//Implementation of constants class (parent class):
public constants {

}

int MODIFYUSER=l;
int REGISTERUSER = 2;
int GETPASSWORD = 3;
int RETRIEVEDATA = 4;

//IJeclaration of IndexBean class (Jhltd class)
public class IndexBean extends Object implements
constants j;iva.io.Serializable {}

81

Figure 25: Structure of inheritance relationship

8. Get current path for the application file system
Based on HTTP protocol, the Java code for getting current physical path of the

website is:

String path=request.getRealPath(" ");

//the code is used for finding the current physical path of the web application, but
it doesn't work when the web application is compressed.

9. Show star light curves through Gnuplot

In the website, the web page lightcurve.jsp shows star light curves in pictures. User

can choose any stars within any period to produce light curves. So the light curves

must be produced dynamically. This application used external application, which is

called Gnuplot to produce light curve. Gnuplot is a portable command-line driven

interactive data and function plotting utility (Gnuplot, 2006). It allows users to

visualize mathematical functions and data. Gnu plot supports a plot control file with a .

" .pit" extension and users can put all of their Gnuplot commands in that control file.

In order to dynamically produce light curves, four steps t were used to fulfil this

function.

(1) Producing data source file.

A data source file was created on the server to store user required star time

intensity data. The source file is saved in the folder "url:temp_file"+ studentlD.

It insures each user has a unique folder for saving their files on the server.

82

theResult=GetData.runMyQuery(GETASTRONOMYDATA,SQLque
ry);
//Getting time intensity data ffom the database

File folder= new File(path +"\\temp_ file"+"\\" +studentlD);
if (!folder.existsO)folder.mkdirO; //create folder for tile
tilelabel=studentID;//the source tile name start by userID
filename=filelabel+" .txt";
//change the file name as random number
I /because one user may request several pictures
File myFilePath=new File(folder,filename);
myFilePath.createNewFileO;//create source file
FileWriter resultFile=new FileWriter(myFilePath);
PrintWriter myFile=new PrintWriter(resultFile);

Awhile (theResult.nextO){
tempString=theResult.getString(" time");
intj;

~/:

•for (j=l;j<numColumn;j++){
my File.print(theResult.getString(j)+"

}
}

(2) Producing the controlling file for Gnuplot.

The controlling file includes pipeline of Gnuplot commands. This file sets the

data source file, the output terminals type and format of output pictures. An

example of control file with contents is shown by next.

11 control.pit
set terminal gif small size 640,480
set size 1,1
set xlabel 'time' •
set y.J~bel 'flux'
set output , .·
'MOA_ web _site\build\web\telnp _ file\98765432\3498765432.gir
plot 'MOA_web_site\build\web\temp_file\98765432\98765432.txt'
using 7:10

(3) Executing Gnuplot with control files under Java bean to produce picture.

The syntax for calling an executable program under Java code is shown below.

83

Runtime r=Runtime.getRuntimeO; //create a thread
Process p=null;//initialize the thread
p= r.exec("\\pgnuplot.exe "+path+"\\" +control tile);
//run the GNUPLOT application with control file
int a= p.waitFor();
//the program continues after current thread is finished

(4) Showing the produced pictures to users.

After the image is produced, it is saved on the server, the following codes

showing the image under HTML code.

(The variable image_file_name contains the physical file path and file name of

the light curve).

<.img src= "temp _file/ <%=image _file_ name%> " width= "640"
height=" 480" alt=""> ,

(5) Delete the produced file.

After the picture has shown to user, the picture files should be deleted from

the server.

10. Using DAO to communicate with database

In web application, there are quit a lot of communicates with the database. The Data

Transfer Objects (OTO) called general DAO was created to pass data between users

and the database. The protocol type for creating a DTO and using its function are

shown below.

generalDAO GetData =new generalDAOO; //create a DAO object
try{

}

theResult=GetData.runMyQuery(modifyuser,SQLquery); //DAO
object take responsibility for working with database and return the
query results
GetData.closeconnectionO; //close the connection

11. Using table view instead of real table

View can join many tables together and show their data relations. Therefore, when the

web application queries data, there are advantages for using view instead of the real

table structure. For example, using view can simplify SQL command (users do not

84

need to know the complexity real table structure) and improve security (users cannot

know what the real table structure is). In this web site, the web pages dataProfjsp and

dataGeneral.jsp are used for querying astronomy data from database. The view

view _star helps clients to fetch data.

4.5.8 Maintaining The Application

Maintaining the application is an important stage for the application life. The

application designed a special role which is called administrator for maintaining the

website.

The administrator duties include:

• Administrate the website members

More and more members may register as members. How to manage these

members will be a question for MOA. The application offers particular web pages

for administrator to organize the members, such as deleting and adding members

in database.

• Organize the discussion board

In the discussion board, any member can post threads in the forum. The

administrator has right to delete any threads from the forum.

Figure 26 shows how administrator organizes the discussion board. From the Figure

we can see, when the administrator logs into the web page Discussion.jsp, he or she

has privilege to delete any threads from the forum.

85

CwnnUy Jogged In as : leny Xu llllllll

Ula
2006-10-30

D 16:03 13 6'I
~ 2006-10-29 0 mm ee 16·11·20 828 l!!AI~

C!l!l«!d flll .. ee 2006-10-29 0 15:18:45 328

6ll!lltJm lllUm terry 2006-10-29 0 15:08:33 515
-i!llllnd 2006-10-28

*Hr dd 00:00:32.234 D
L!lll!li

cddidl" dd 2006-10·28 0 00.00.17.171

lll!D ITsd
2006-10-17 0 22".24:18.406

Copyriglll 0 20~ ITsd 2006-10·17 0 lmDI 22:24:11781 MuseyUamnity
2006- 10-26 l Delete I ~ dd 17:25:48 375 0

I of I

Figure 26: Screen shot for Administrator controlling the forum

In addition, as time progresses, new astronomical data will be obtained. In order to

update the database, the application needs to load new data into the database. The

Java application namely MOA_data_ingestion can load new data into database. But

the current application only offers limited functions for controlling the database; it

should be improved in the future. For more details please see the section 4.4.

86

5.0 Project Deployment

5.1 Database deployment

5.1.1 MOA database creating

In this project, two databases were created for storing data. The database MOAdata

stores all the astronomy data and the database Member saves the web site related data,

such as forum data and member details. The two databases were created under

PostgreSQL. The following steps introduce how to initialize database. (Notice this

instruction is working well under PosegreSQL 8.1 with Windows operation system.

For the other systems, it might have slightly different.)

1. Open PostgreSQL command line client
2. Using script file "createdatabase.sql" to create database, tables, indexes and views.

This script file includes SQL commands to set up the database.

To run a script file issue: \i createdatabase.sql
Notice: the command \cd +path used to change the physical working directory.

If the script file is loaded correctly, the PostgreSQL will give positive feedbacks.

After the databases are created, the Java application moa _data_ ingestion will be used

to insert the astronomy data from source files to related tables.

5.1.2 Data Loading

A Java application called moa_data_ingestion was created for loading the data into

the database. The application followed BluePrints format, because it guides an

efficient way on the enterprise application. The Java BluePrints program defines the

application programming model for end-to-end solutions using the Java EE platform

(Sun Microsystems, 2006).

The requirements for running the application:
• JDBC library File: postgresql-8.1-407.jdbc3.jar (under Windows operation

system)

87

• One active client on PostgreSQL:

I
Client name: Terry
Password: 11160608

The user needs to run this application, and to follow the screen instructions to load the

data. Normally the application asks users to input some parameters, such as loading

file name, its location and the file type in order to find source files and the related

tables. The enclosed CD contains some data source files under the folder: CD

disk\data.

5.2 Enterprise application deployment

An enterprise application, namely MOA_web_site was created. And it followed

BluePrints structure as well. The entire application was written under NetBean4.l.

The application was designed to run under Tomcat application server. Moreover, it

also can be run under other application servers. The easiest way for running the

application is to open the application as a project under Netbean and run it use the

bundled Tomcat server.

The requirements and notices for running the application:

1. JDBC library File: postgresql-8.1-407.jdbc3.jar (under Windows operation

system)

2. mail.jar: this JAR file includes library for sending mails under JSP code.

3. activation.jar: This JAR file contains the classes that make up by JavaBeans

Activation Framework.

4. The physical location for saving GNU PLOT

\\gnuplot\\bin\\pgnuplot

5. The application is tested under Microsoft Windows system.

6. All Java classes can be compiled by JDKl.5 or above version.

7. Administrator Password and user name:

The default Administrator ID: 11111111
The default administrator Password: 1234

Figure 27 shows the application physical saving structure.

application is

88

ffi O MOA_data_ingestion

8 d MOA_web_si te

El IQ build

f::l IQ generated

l±l fD classes

Build folder stores application
complied files.

fD sr c The folder temp_ file is used to store
8 IQ web the temporary files, such as light

ffi ft) images /curve picture file.

fD META-INF

ffi fD temp_file

ffi ID WEB-INF

IQ dist Folder dist saves the WAR file for
8 D nbpr o j e ct the application

Cl private

8 e:l src

O con£

B lo java

8 CJ classes

~ myPackage

CJ test

El web

d images

d META-INF

8 fb WEB-INF

10 lib

Src folder saves all the Java beans
and the relevant Java classes for the
business logic

Web folder stores presentation logic
files, such as JSPs.

Figure 27: Physical files structure for saving the web application

89

6.0 Project Performance

6.1 Database performance analysis

The database performance was tested through running one particular query but the

relevant tables with different data size through the application. Normally, with the

growth of the data size among tables, the process time becomes slower. In order to

see how suitable index can improve database performance, the two tests were taken.

The first test had been done when there was no any index among tables. In contrast,

the second test had been done after the index had been created on table starlntensity.

From the test results, we can see the suitable index can enhance operation

performance.

The testing query:

select* from view _star where.index=] andfield='ngb16' and CCD=l and
colour='red' and cameraid=S;

The index: Create index starid on starlntensity (indx);

Table 7: The relevant table size and processing time for the query

TABLE Process Time(ms)
Star (Number of data Starlntensity (Number of NO INDEX Defined
sets in table) rows in the table) INDEX
112 40613 94 92
2344 886819 30219 9052
8086 3106562 36563 10203
9868 3868935 38813 12828
12969 5234201 58344 26875
14464 5920487 69219 17875
16325 6785041 77609 23109
18381 7792231 97391 28281
23494 10507923 112406 32281
28210 11962950 130016 37422
30276 13307268 162547 48265
33877 14818738 220031 50000
39346 17839861 252087 52350

90

With the number of data size growth, the performance for querying data can be seen

in Figure 28 (Testing environment: P4 1.6, 256MB, windows with PostgreSQL).

~ 300 c
8 250
(l)

8 200

~ 150
•.-I

E- 100
Cf)
Cf)
(l)
t.)

0
H

0..,

50

0
0

Performance of DB

-+-Before Set
Index

--- After Set
Index

5000000 1000000 1500000 2000000
0 0 0

Number of rows

Figure 28: The performance of the database

6.2 Database supporting scientific data mining

The main duty of the database is to support astronomy data mining. David (2001)

stated "Data mining is the analysis of observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable

and useful to the data owner". MOA members tried to use obtained data to discover

new astronomy knowledge. The process by computer programs to automatically

extract useful information from a database is called "knowledge discovery".

One important example for data mining is to study star light curves. As we know,

astronomical objects are far away from us, so the best way for studying astronomical

objects is to research star emitted light. Through research on this light, scientists can

understand the objects. A light curve is a graph, which shows the brightness of an

object over a period of time. NASA members (2006) stated studying of the

astronomical objects, which change their brightness over time, such as novae,

supernovas and variable stars, the light curve is a simple but valuable tool to scientists.

Through studying light curves, astronomers can calculate star light curve period. Then

astronomers can schedule the observation time according to star's period. In addition,

the computer program may get the statistic information about the light curves and

91

then the program can automatically clarify stars according to the statistic information.

Therefore, light curve properties for each star are import information for the research.

The database created a table called star to save star's properties. Each row in the table

represents a particular star with properties. The properties include star's identifier, the

period of the star light curve and the classification of the star. If stars new properties,

such as the mean value of the intensity value, are discovered in the future, they can be

easily appended in the table as a new attribute. This information can help MOA to

filter data easily. Through the filtered data, MOA can do statistic on astronomical

object properties. Furthermore, MOA can study the data mining knowledge. The data

mining knowledge can be saved in the Java bean in the application. Under this

situation, after the data is taken out from the database, they can apply for data mining

knowledge to do analyse.

Now some typical queries for picking data from the tables were shown. These queries

can pick data from the database according to MOA research requirements; hence they

can support data mining.

This query can get one star's time intensity data (It can be used to produce light
curve of the star) within a particular time.
For example: Retrieve the light curve in field is 'ngbl ', CCD is 1, index is 3,
cameraid is 5, red filter and intensity value between time<2452026 and
time>2451640.

select* from view _star wherefield='ngbl' and ccd=l and colour='red' and
cameraid=5 and index=3 and time<2452026 and time>2451640;

This SQL query can filter image data according to its metadata.
For example: The exposure identifier is: field is 'ngb16' , Run is 'Bl 756', CCD is
1 and cameraid is 5

select
e.field, e.ccd, e. camera id, e. colour, e. run, e.jdstart, e.jdend,p.shiftx,p.shtfty,p. a,p. b,p. c,
p.d from exposure as e left join pointing asp on e.exposureid=p.exposureid where
e.run='B1756' and e.field='ngb16' and ccd=l and cameraid=5;

92

The query for filtering stars according to light curve period.
For example: Getting all stars which locate at Field 'ngbl' and star's light curves
period<=lOO days and ,period>5day. The results are order by star's index. .

select *from star where field= 'ngb 1' and period <100 and period > 5 order by
index asc;

Find a star's according to its astronomical coordinate system value.
For example: the star position value is RA is 17:58:28.881 and DEC is
-29:41:49.59

select* from star where ra='l 7:58:28.881' and dec='-29:41:49.59';

This operation can get one particular imaging data's measurement data.
For example: The exposure run is 'B1019' and field is '~gbll' and list all stars'
measurement data.

select *from view _star where field= 'ngbl' and run= 'Bl 019';

The operation is used for checking how many stars in a particular fiel.d.
For example: Field is 1, CCD is 1 and cameraid is 5;

select count(*) from star where field= 'ngbl' and ccd=l and cameraid=5;

93

6.3 Enterprise application performance

The application was designed based on MVC. It is able to handle many clients'

requests simultaneously and give the reply within a short time. This interaction

process is illustrated by the screenshots and it is shown by the follows Figures .

MOA TeleSCQpe

Captured data

AboutMOA

Discussion
Board

LQgQljJ

Copyright C 2006
lasseyljniversi ty

. :-~-w Massey University

Welcome

This "ebsi te is used for JOA group for astronomy
research.

Log in

Student
ID:

Password:

[Sien In J

Regi ster as New User

forg ot Your Password?

Cl ick here

Figure 29: Portal page for the web site

,-4l··~ MOA-Microlenslng Observations in Astrophysics

Illa
!iU!illlllDil(

~

!IOATtMw

@ Massey University

Cip!11tfdall Welcome

lll!cwlphpll
This website is used for MOA research.

C~ 0 2006 This iJ the repster P•&•
MasseyUnmrsily

NewUsrr

Please input your detail

StudeotID:

First Name:

Last Name:

F.mail:

Figure 30: The page for new client registration

94

Bia
Please input seeking conditions for fetching MOA astronomy data:

Mmllll!!& Index (such as:5)

l!il£wflfA ~ --·--
Llllllllt Start lime:

CameraID:

Please choose wanted
Copyright C 2006 mult type
MamyUniversity

:&id lime:

17:5B::il.177 --
D EC: .::.29:33:33.62
----·--·,-· ~--
'Distance:

See the Star Light Curve by pictureP1e-•11c•• ..

----------~.---------~--~---

Figure 31: The page for fetching astronomy data under general operation.

(User can get star time intensity value based on star's ID, position and time)

.... --£ l_'~ MOA-Microlensing Observations in Astrophysics

.. ···f·
P!12Se input the qmry command by yoursdf:

u-
li!HllJ2nil There is a table view called viewlighl, you only can use 'select' command

MOA Tt!ncoae

Ci!!!!!DddM j
Al!!Y..MQA .

Dl!!vriul!u!i {0~ d~ta ~· [Submn [

Lmw

Copyrigtll 0 2006
Massey\Jrliwnily

Figure 32: The page for fetching astronomy data under professional operation

(User can filter data dependent on their own SOL query)

95

c . .\i.irnA ro FIELi5 c o10UR cci5riIDExRUN TIME l'Os xros:Y Fi. lix l:RRoR
!l!!!& '5 ngbl6 red B3200245274l.l32i7 107.l89546543 '.ii03.332l08.65

!i!lllill!lllml 5 ngbl6 red 832062452743.152992 .207.1895465431804011642.54
5 ngb l6 red 832112452749.05636 '207 189 54654398(1719 1908.46

~ ~ · ngbl6 red 832152452750 039404 i 'oTl89 5465439240 05 3207.52
MOATe!escopt ~ ngbl6 red . 83259i45V59 l3923 j(li189's46s43ii:l937 1066.Si

Caalureddala 5.. ngbl6 red B3263i452762.245978 207. l89546s43ii4'8(11 1527.i
5 ngbl6 red 832682452765.0595:1. 10fi89 s46.s4Jio3J/J 867394

M!lll.M2A 5 · ngbl6 red 832752452767.200868 11li.189546.54Ji7i34.l 1469.14
DIKwrit• Bud 5 ngbl6 red 83351245m5.048906 '201189 546.54310 194:5 2l5l.05

5 ngbl6 red B3360245m6.10528951ITT.l89 .546.5439760.ll 952.473
l.N!lll 5 ngbl6 red B3368245m7.0293575107.l89546.5439463.89 7797.34

5 ngbl6 red 833812452784.197413 107.189546.543652.981 2192.2
5 ngbl6 red 83390 2452790.1665165.207.189 546.543302S.23 2205.32
:S ngbl6 red 83408i45V94.l75567510J.l89s46.s43lii22 1798
5 ngbl6 . red B34l22452795. lll9965107.l89546.543l328i.6 800.291

Copyrigh!C 2006 5 ngbl6 red 834852452801.089149 207.189546.54324914.7 1615.58
MasseyUniversily 5 .. · ngbl6 red 835172452802 065486 '207.189 546 .. 54326363.9 1218.77

5 ngb 16 red 83530 2452803. 0534835;207.189 546. 543 28320. l 1982.4
'5 .. . ngb l6 red 8360:i245i80696872i loii89's46s4Ji/jj9 l4J4.46
5 ngbl6 red 836042452807.123698 101fa'9"s46s4326190.6 2185.49
5 ngbl6 red 836062452807.281418 107.189546.54326530 1485.2
5 ngbl6 red 836972452826.933l77 '207~l89 546.543-5024.731089.l
5 ngbl6 red 836982452827.004693 107.189 546.543-6504.511564.17
~ ngbl6 red 837022452828.043895 .207.1S9546s43'.25io.711097.03
5 ngbl6 red 837122452830.040602 207.189 546.543-405l.27l933.47
1 .uiJia~

Figure 33: The page showing the fetching data by text table

-~ l .·h;.; MO~-Microlenslng Observations in Astrophysics

~ -4;~"

Cwnnt lonod In as:Paul ?l.1icd 87897536
Bl-.

!ilitblmllfimDlliiii"iil~iiii:l~~ICimiti:~C::.iiac:l
~ B1466 \,gt,16 ~ed 2452134.12809 2452134.130243

MO&.,....... B1467 \,gt,16 red 2452134.13485 2452134.137002
CM!!rtcldl!• B 146B 'ngb 16 red 2452134.141597 2452134.143762

A11!Y.111!!A B 1469 . ~ 16 red 2452134.1511 2452134 153264
Wlmllla B1470 ngb16 red 2452134.157859 24 52134. 160023

I.mil Bl~~ ngbl6 red 2452137.107118 2452137.109271
BJ505 ngb16 red 2452137.110625 2452137.112789
B1506 ngb16 . red 2452137.11537 2452137.117535
B1507 ngb16 red 2452137.118889 2452137.121053
BJ508. ngb16 red 2452137.123461 2452137.125613

Cop'1i8bt O 2006 BJ509 ngb16 red 2452137.851296 2452137.853449

MasseyUniversily BJ5fo~16 red 2452137.921968 2452137.924132
B1511 ngb16 red 2452137.984931 2452137.987095
B1512 ngb16 red 2452138. 058241 2452138.060394
'Bis13 ;;&b 16 red 1 . '2452138121632 2452138.123796
'Bi514 t,gb 16 red 'i 2452139.92721 1 ··· 2452i39 929375

B1515 'ngbl6 red 2452139.994479 2452139.996632
B1516 ngb16 red 2452140.062176 2452140 06434
l\.15.1.'.1 ".'oh 1 ~ !~!.L 1... .. ?4~?140 1,2Q1? .245?.140 .. .1.3.1.285 __ ,,,., ... _

Figure 34: The table showing the imaging metadata information

·····························-·····

96

Please input details for retriving liBlrt curve:
Illa

~ Field{i "] *(Such as: 16) i:_ I . .
1
.

··· RA: 17:58:31.177
MOA Ittescope

CCD [i·--·-::::::;* (Such as 1)
CIP!t1ed da!• Tune specify:

~ Tu. de f5 ' * (S h 1) · lllKmila : --,_ __ _,: uc as: :@No O Yes

Lill!!ll Filter.\~~? - .

Copyrigbl C 2000
MasseyUoivenity

:Camer.m j5 i *
'-----~

DEC: -~29 :38 : 33 .62

Grid

<!> No O Yes

Error Bar:

O Yes 0 No

'
'

'Ratio between X-axis and Y-axis:

... 1 .. ,!

~ olerant error value: '5iiii)

Figure 35: Screen shot of inputting parameters for the light curve

(User can get light curves by pointing out star' s OID
or location, the period and the display picture format.)

star ID ngbl -red- 1- 1

1~

1

1 P•8"ou• St., I

A new search for star light curve ... -Clk ... n

Figure 36: Screen shot of a star light curve

97

CWTent loiied In u :Paul]\fad 87897536
Ill-.

!il.llibllmll

~mil
M0A IW.Cm Nm utkk nk­
c.ttftd 4U Nm

llllllU!lA ~

l!llmdt& Illumt
Ll8llll lAl.ldM:IDll

lllDm
DcwtNllab

NtW•tnMa1m•

HOTWF1£SH

Copynght 0 2006 lh.llaillK
MasseyU<nenity OWuloa

lmlm

nnnrn·rn
1 of3 !!!!!BE

Paul
Paul
Paul
Kamn

Karren
Karren
Karren
Karren
Teny
Teny
Teny
Teny
Teny
qqqqqqqqqq
qqqqqqqqqq

2007-02-23 10 3844 515
2007-02-23 1038.11.859
2007-02-23 10 21 17 093
2007-02-23 JO 2J 08 328
2007-02-23 J020 51 312
2007-02-23 10·20·18 50
2007-02-23 10 19.50 64
2007-02-23 10 1818 453
2007-02-23 J0.17 54 2J8
2007-02-23 10 17 37 781
2007-02-23 JO J7 12 406
2007-02-23 10·16 32 421
2006-J 1-JJ JO 5220 609
2006-J 1-13 04.21 52.953

Figure 37: Screen shot of the discussion board

.... ----£. l.~ MOA-Microlenslng Observations in Astrophysics .

Cwnnt lou•d lo as:Teny Xu 12345635
Blat

!iUlllllllllll

l!IMllllllll Tiiie look here
MQll*K•

C..«t44M Message

8lml.Mll&
81 every one, 1 find a interesting eve nt. a.t •• , ••

Copyrigbt02006 I Submrt I
MasseyU~

Figure 38: Screen shot of posting a subject to the discussion board

98

7 .0 Conclusion

Modem astronomy is gathering more information now than at any other period in the

past. The ability to analyze and to draw conclusions from this large volume of data

will be an ever-constant challenge for astronomers. A good database system based on

modem computer technologies can help astronomers to discover the astronomical

phenomenon. In this project, a database and enterprise application for the MOA group

was created. After clarifying the inter-relationships of the obtained data, this database

can save astronomy data and support for the further analysis activities-data mining.

The enterprise application was designed based on MVC pattern. This is able to

publish MOA's findings, share astronomy data and provide a place for people's

discussion on the Internet, but also supports scientific data mining based on MOA

obtained data. Due to security consideration, such as the Internet hacker, an isolated

application was created for MOA to manage the database such as update and modify

the database. The database was tested on a 7 GB subset of the achieved MOA data set,

which are over 17 million records. Through testing, we can see the application can

quickly retrieve the data and take strengths of the PostgreSQL database system.

Through the whole development of the project, various numbers of technologies have

been studied and practised. The main three technological components of this project

are Java software programming, Java Server Page programming, and PostgreSQL

database language. The application was written by Java. Therefore, it can be used in

any platform. The new . database can afford trillions of the data with variety of

operations. And the application was created based on MVC design pattern; it

separates the web application into three tiers including Model, View and Controller.

Therefore, the web site can be extended and maintained easily.

99

8.0 Future Work

At the point, this prototype was designed for MOA to save their accumulated data

under the current situation. With development of research requirements, part of the

prototype can be improved in the future.

1. In observational data volumes, the data can be saved in a distributed database

with distributed database management system to control.

2. If the obtained data type or data relationship becomes more complex, the data can

be managed by object relational database manage system. The dimensional

model under data warehouse concept can use to model the data, the data will be

easily summarized using OLAP query.

3. The prototype has saved imaging metadata in the database. The searching

imaging data can be operated by SQL using metadata table, which contains

information of FITS (imaging file) header parameters. But after the prototype

retrieves the imaging file name from the table, it needs a suitable application to

get physical imaging file as fast as possible. How these imaging files saving on

the storage (The physical structure) and how to quickly access them are expected

by the future study.

4. At the moment, the database is backuped manually. In the future, this can apply

for PostgreSQL function "on-line backup and point-in-time recovery" to backup

and recovery the data more smartly.

5. The application has three tiers at the moment. It can be separated into more tiers

if it is necessary. And it can use Enterprise Java bean to control the data flow and

business logic between the database and the application.

6. At the moment, the application doesn ' t include any astronomical data mining

knowledge. But it can be added in the future. The basic idea is to save data

mining knowledge in the Java bean. And then the Java bean takes data out from

the database and applies for data mining knowledge, such as an algorithm to

calculate light curve period or statistic star properties. Lastly, the Java bean

returns the process results to the clients.

7. The prototype was tested on a subset of the MOA data. If the entire dataset is

loaded in, the performance should be measured again. It is a limitation of this

project.

100

References
American Association of Variable Star Observers. (2006). Variable stars. Retrieved
on Feb 15, 2007 from: http://www.aavso.org/

Astronomical Institute (SAi). (2007). SA/ Database. Retrieved on Jan 2, 2007 from
http://www.sai.msu.su/database.html

Baruffolo, A., & Benacchio, L. (1998). Object-relational DBMSs for Large
Astronomical Catalogue Management. Astronomical Observatory of Padova, Italy.
Astronomical Data Analysis Software and systems VII. ASP Conference Series, Vol.
145.

Chilingarian, I., Bartunov, 0., Richter, J., & Sigaev, T. (2004). PostgreSQL, the
Suitable DBMS Solution for Astronomy and Astrophysics. Astronomical Data
Analysis Software and System XIII, Vol. 414.

Chris, S. et al. (2002). Real-time time-variability Analysis of GB to TB Datasets:
Experience from SuperMacho and Supernova project at NOAO/CTIO. Survey and
Other telescope technologies and Discoveries, Vol. 4836.

Dennis, R., & Daniel, D. (1994). The archives of Canadian Astronomy Data Centre.
Canadian Astronomy Data Centre. Dominion Astrophysical Observatory . Retrieved
on Nov 1, 2006 from
http://cadcwww.dao.nrc.ca/ADASS/adass proc/adass3/papers/crabtreed/crabtreed.ht
ml

Dustin, M. (2001). JSP best practices. Retrieved on Nov 1, 2006 from
http://www.javaWorld.com

George A. (1997). Exploration of the Universe. Retrieved on Nov 1, 2006 from
http://imagine.gsfc.nasa.gov/docs/science/how 11/images.html

Gnuplot homepage (2006). Retrieved on Jan 8, 2007 from http://www.gnuplot.info/

Haque, I., & O ' Connor, B. (2002). J2ME Enterprise Development. M&T Books New
York, NY 10022.

Huggins, J. (2007). The Astronomy Net. Retrieved on Jan 8, 2007 from:
http://www.astronomy.net/about/history.html

Hiriart, R., & Smith, C. (2003). The SuperMacho+SuperNova Survey Database
Design: Supporting Time Domain Analysis of GB to TB Astronomical Datasets.
Astronomical Data Analysis Software and Systems XII, Vol. 295.

John, R. (1996). Starbase: A User Centred Database for Astronomy. Astronomical
Data Analysis Software and System V, Vol, 101.

Matthew, W. (2002). Digital Dig- Data Mining in Astronomy. Retrieved on Sep 30,
2006 from http://www.astrosociety.org!pu bs/ezine/datamining.html

101

Morrison, J., & Morrison, M. (2003). Guide to ORACLE9i. Senior Vice President,
Publisher.

Nasa/Ipac Extra galactic Database. (2007). Retrieved on Feb 1, 2007 from
http://nedwww.ipac.caltech.edu/

Kifer, M., Bernstein, A., & Lewis. P.(2006). Database Systems: an
application-oriented approach. (2nd ed.). Pearson Education, INC.
Kmiec, M. (2002). Does J2EE live up to expectations? Retrieved on Nov 1, 2006
from
http://news.zdnet.co.uk/software/0,1000000121,2121919,00.htm

MOA. (2006). The MOA Project Web site (Auckland University). Retrieved on Aug
10, 2006 from: http://www.physics.auckland.ac.nz/moa/index.html

Oracle. (2006). Retrieved on Oct 20, 2006 from
http://www.oracle.com/index.html

Paul, D.(2005). Mysql Query Optimization. Retrieved on Nov 8, 2006 from
http://www.informit.com/articles/article.asp?p=377652&seqNum=4&rl=l

PostgreSQl Global Development Group.(2006). PostgreSQL 8.1.0 Documentation.
Retrieved on Jan 20, 2007 from: http://www.postgresql.org/

Roman, S. (1997). Access Database Design & Programming. O'Reilly & Associates,
Inc, CA 95472.

Sloan Digital Sky Survey/ SkyServer(SDSS). (2006). Retrieved on Nov 1, 2006 from
http://cas.sdss.org/dr4/en/sdss/

Sun.(2006). Sun Developer Net word (SDN). Retrieved on Jan 20, 2007 from
http://java.sun.com/

The Filing System. (2006). Retrieved on July 5, 2006 from
http://www.flirble.org/chrisy/vmm386/user-man/user-man 4.html

The Royal Observatory Edinburgh.(2005). Retrieved on July 25, 2006 from:
http://www.roe.ac.uk/

Thomas, C., & Carolyn, B. (2005). Database Systems. A practical approach to design,
implementation and management. (41

h ed.). Pearson Education Limited.

Thomas, P. (1999). HTML: The Complete Reference. (2nd ed.) Brandon A. Nordin.

Wenger, M., Kinnar, F., & Jocqueau, R. (2002). SIMBAD as a Test Bed for two
Object Oriented Database Management Systems: Objectivity/DB and 02.
Astronomical Data Analysis Software and Systems IX, Vol. 247

102

APPENDIX A -- SQL for creating MOA database
create database moadata;
\c moadata;

create table camera (cameraid int not null primary key, name char(lO),step int, naxisl
int, nµ:is2 int, numberccd int, telescope char(5)); .•..
create table calibration (cameraid int not null, field char(6) not null,ccd int not null, ra
char(15),dec char(15),nl float,n2 float,n3 float,n4 float,n5 float,n6 float,n7 float,n8
float, primary key (cameraid,field,ccd), foreign key (cameraid) references camera
(cameraid) on update cascade on delete cascade);

create table exposure (exposureid serial primary key, run char(6), field char(6),
colour char(5), ccd smallint not null,jdstart float, jdend float, cameraid int not null,

foreign key (field,ccd,cameraid) references calibration (field,ccd,cameraid) on update
cascade on delete cascade,unique(run,field,colour,ccd,cameraid));

create table pointing (exposureid int not null references exposure primary key on
update cascade on delete cascade,shiftx float,shifty float,a float, b float,c float,d
float,cameraid int);

create table star (starid serial primary key,field char(6),ccd int,index int,colour char(5)
default 'red',cameraid int,period float default 0, classification char (12),ra char(15),dec
char(15), pos point, posshift point,unique(field,ccd,index,colour,cameraid));

create table starintensity (staristid serial primary key, starid int,time float, run char(6),
flux float, error float, nl float, n2 float, n3 float, n4 float, n5 float,exposureid int,
foreign key (starid) references star (starid), foreign key (exposureid) references
exposure (exposureid));

Create index locationid on star using btree (RA, DEC);
Create index starid on star using btree (field,ccd,colour,cameraid,index);
Create index timeid on starintensity using btree (time);
Create index star_c_id on star using hash (classification);
Create index star_p_id on star using btree (period);

create view view star as select
s.field,s.ccd,s.colour,s.cameraid,s.period,s.classification,s.index,s.ra,s.dec,i.flux,i.error
,i.run,i.time, i.nl,i.n2,i.n3,i.n4,i.n5 from star ass, starintensity as i where
s.starid=i.starid;

create database member;
\c member
create table student (st_studid char(8) NOT NULL default", st_fname char(30)
default NULL, st_lname char(30) default NULL, st_email char(40) default NULL,
st_password int default NULL, PRIMARY KEY (st_studid));

103

create table discussion (id serial primary key, title char(30) NOT NULL default
",author char(20) NOT NULL default ",time timestamp, content text);

create table disdetails (detailsid serial primary key, id int not null, author char(30)
NOT NULL default", time timestamp, content text ,foreign key (id) references
discussion (id) on update cascade on delete cascade);

insert into student values (12345678,'Tester','MOA','test@hotmail.eom',1234); --set
up a normal role for testing •
insert into student values (llllllll,'Administer','MOA','admin@hotmail.com',1111);
--set up Administer role

104

