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Abstract

Recent research in analytics has assisted policy makers capitalize on their ever-
increasing data repositories and make data-driven predictions to create a vision for
developing strategies to achieve their business targets. This is especially relevant
in educational environments where data mining techniques can be applied to make
predictions around students’ academic performance. This can help educators align
a teaching strategy which encourages and assists students with their learning. Suit-
able pedagogical support can be provided to enhance the overall student learning
experience.

This study is in the educational domain where student-related course data has
been used to extract insights on student performances over the study period. Exten-
sive data collected from an educational tool (Xorro-Q) used in an engineering course
delivery has aided this investigation. Data collected from Xorro-QQ comprised stu-
dent scores from real-time and self-paced activities set by educators over a 12-week
semester period along with students’ final Exam scores and scores from a compulsory
prerequisite course. Popular data mining techniques have been applied to predict
the academic performance of students based on data extracted from Xorro-Q. This is
done by training the classifier using four different algorithms, namely, Naive Bayes,
Logistic regression, K nearest neighbour and Random Forest. Process mining tech-
niques have been applied along with the general features to find out the effectiveness,
such as improvement in accuracy of predictions. The study has further implications
in enhancing value of the role of analytics for predictive modelling by incorporating

process mining features in the training set of data.
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