Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Floral Induction and Development in Myosotidium hortensia and Phormium cookianum

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Plant Biology at Massey University, New Zealand

> John Creighton Harris 2004

Abstract

Little is known of the stimuli needed for flowering in two New Zealand endemic plants, *Myosotidium hortensia* and *Phormium cookianum*. These plants are widely recognised by the horticulture sector and the concerns of this thesis were to aid understanding of floral induction and development in the two species. Environmental stimuli were investigated by growing plants under factorial combinations of daylength and temperature in controlled growth rooms. The two daylengths used, termed long days (LD) and short days (SD), consisted of night / day periods of 8 / 16 h and 16 / 8 h respectively. Two night / day temperature regimes of 4 / 7°C and 18 / 24°C referred to as Cold and Warm respectively, were combined with the daylengths to make four treatments.

Floral induction in both species was unaffected by temperature or daylength, with approximately 50% of the *P. cookianum* flowering under all environmental treatments. *M. hortensia* did not flower. The absence of flowering seen in half of the *P. cookianum* plants was associated with a small size (fewer nodes at the commencement of the environmental treatments). Floral development in those plants that did flower was accelerated in *P. cookianum* by eight weeks growth under Cold compared with Warm treatment. Floral development of *P. cookianum* was further enhanced by four weeks treatment at Cold temperatures followed by transfer for four weeks at Warm temperatures. Vegetative growth was enhanced under Warm temperatures compared with Cold, in both *P. cookianum* and *M. hortensia*.

Hormonal floral stimuli were investigated by application of the gibberellin A₃, followed by growth under Cold SD conditions. The proportion of plants flowering was increased by GA₃ in *P. cookianum*. GA₃-treated *P. cookianum* flowered with fewer nodes as GA₃ concentration increased. In *M. hortensia*, GA₃ application did not cause flowering although stem elongation was increased.

A region of the *P. cookianum FLORICAULA / LEAFY* (*FLO / LFY*) homologue (*PFL*) mRNA was isolated by reverse transcriptase-PCR and sequenced, and shown to share strong sequence identity with other *FLO / LFY*-like genes. *PFL* mRNA expression was compared with levels of actin mRNA using Real Time reverse transcriptase-PCR, performed using a LightCycler and the double stranded DNA binding dye SYBR Green 1. Upregulation of *PFL* mRNA at the meristem occurred over time, and increases coincided with changes in morphology from vegetative to inflorescence development. As predicted, greater *PFL* expression was observed in fans of larger size, these being the fans with greater likelihood of flowering.

Acknowledgements

I am most grateful towards my supervisors Dr. John Clemens and Professor Paula Jameson, you have earned my most heartfelt thanks. You make a great team. Your faith, guidance, encouragement, and smiles helped me achieve all this.

Thanks to my lab colleagues for your patience, advice, and friendship. Jason for watching over me, Alexa and Angie for your help, and Elizabeth and Anu for your smiles. Thanks to the many friends I have made in the Institute, I will always remember.

To my parents Ed and June, you have always listened. I am thankful for your interest and encouragement.

I would like to acknowledge, through a subcontract from Crop & Food Research, the Public Good Science Fund. Also the Institute of Molecular BioSciences for contributions made towards research, conference travels and general living expenses, for which I am grateful.

Table of contents

Abstract			ii
Acknowledge	ements		iv
Table of cont	tents		V
List of figure	es		ix
List of tables			xiv
Chapter 1.			
Introduction			
1.0	Introc	luction	1
1.1	The in	ductive pathways to flowering	1
	1.1.0	Introduction	1
	1.1.1	Photoperiod	2
	1.1.2	Vernalisation	3
	1.1.3	Gibberellic acid	4
1.2	Molec	ular mechanisms behind flowering: the interaction of the	
	genom	e with the environment	6
1.2.0	Introd	luction	6
	1.2.1	The molecular basis of the vernalisation pathway of floral	
		induction	7
	1.2.2	Molecular basis of the photoperiod pathway of floral	
		induction	9
	1.2.3	Molecular basis of the gibberellin pathway of floral	
		induction	9
1.3	LEAF	Y, the floral meristem identity gene	10
	1.3.0	Introduction	10
	1.3.1	Mutant phenotype (<i>lfy</i>)	10
	1.3.2	Expression of LEAFY	11
	1.3.3	Dicotyledonous LEAFY homologues	11
	1.3.4	Monocotyledonous FLO/LFY homologues	12
		1.3.4.1 Oryza sativa FLORICAULA / LEAFY (OSL, RFL)	
		(Kyozuka et al. 1998)	13
		1.3.4.2 Lolium temulentum FLORICAULA / LEAFY	
		(<i>LtLFY</i>) (Gocal et al. 2001)	14

v

		1.3.4.3 Zea mays FLORICAULA / LEAFY (ZFL)	
		(Bomblies et al. 2003)	14
1.4	Specie	es description	15
	1.4.1	Myosotidium hortensia	15
	1.4.2	Phormium cookianum	16
1.5	Floral	I Induction In Related Species	16
1.6	Aims	And Objectives	16

Chapter 2.

Floral Induction and development in *Myosotidium hortensia* and *Phormium* cookianum

2.0	Introd	duction			20
2.1	Mater	rials and meth	nods		21
	2.1.1	Plant materi	al		21
	2.1.2	Photoperiod	and tem	perature treatments	21
	2.1.3	Gibberellin	applicati	ons	23
	2.1.4	Sectioning of	of shoot a	apical meristems	24
	2.1.5	Statistical an	nalyses		25
2.2	Result	ts			26
	2.2.1	Phormium c	ookianu	m	26
		2.2.1.1	Photo	period and temperature experiments	26
		2.2.1	.1.1	Vegetative growth	26
		2.2.1	.1.2	Morphological changes at the	
				meristem	28
		2.2.1	.1.3	Floral induction	31
		2.2.1	.1.4	Floral development	31
		2.2.1	.1.5	Floral induction and vegetative	
				growth	32
		2.2.1	.1.6	Crossover experiment	33
		2.2.1	1.1.7	Outdoor plants	36
		2.2.1.2	Gibbe	erellin experiment	37
		2.2.1.3	Fan s	ize and floral induction	37
	2.2.2	Myosotidiu	m horten	asia	40
		2.2.2.1	Photo	operiod and temperature experiments	40
		2.2.2	2.1.1	Vegetative growth	40

			2.2.2.1	.2	Morphological changes at the	
					meristem	42
		2.2.2.2		Gibber	ellin experiment	42
			2.2.2.2	2.1	Vegetative growth	42
2.4	Discu	ssion				45
Chapter 3.						
Effects of gilt	oberelli	n A3 and	d size/a	ge facto	ors on FLORICAULA / LEAFY	
expression in	h Phorm	nium coo	okianun	n		
3.0	Introd	uction				50
3.1	Mater	rials and	method	ds		51
	3.1.1	PFL is	solation	and sec	luencing	51
		3.1.1.1		RNA e	xtraction	51
		3.1.1.2		Revers	e transcriptase reaction	52
		3.1.1.3		Primer	design	53
		3.1.1.4		PCR re	actions	53
		3.1.1.5		Visuali	sation of PCR products and gel	
				extract	ion	55
		3.1.1.6	l.	Sequer	cing of products	56
		3.1.1.7		Actin a	s a positive control	56
	3.1.2	PFL ex	pressio	on during	g floral induction and organogenesis	
		follow	ing GA	3 applica	ation	56
		3.1.2.1		Experi	mental treatments	56
		3.1.2.2		RNA e	xtraction	57
		3.1.2.3		PFL ar	d actin specific primers	57
		3.1.2.4	•	Deoxy	nuclease treatment of RNA	
				extract	ions and reverse transcriptase	
				reactio	n	57
		3.1.2.5		Real T	me PCR reaction	59
3.2	Result	ts				65
	3.2.1	PFL a	nd actir	n isolatio	on and sequencing	65
	3.2.2	Effect	s of GA	3 on flo	ral induction	66
	3.2.3	Expres	ssion lev	vels of <i>F</i>	PFL during inflorescence	
		develo	pment			66
3.3	Discu	ssion				71

Chapter 4.	
General Discussion	75
References	78
Appendix A: Statistical tests of significance for vegetative and floral growth	
in Myosotidium hortensia and Phormium cookianum	82
Appendix B: Statistical tests for homogeneity and normality of the residuals	
from vegetative growth data (Chapter 2).	89
Appendix C: Alignment of Phormium cookianum sequences with	
homologues	108
Appendix D: Primer sequences used in PCR and Real Time PCR reactions	118

List of figures

Figure 1.1:	A simplified model of the possible interactions between genes and	
	pathways controlling flowering time in Arabidopsis (Perilleux and	
	Bernier 2002).	8
Figure 1.2:	An experimental subject (Myosotidium hortensia)	17
Figure 1.3:	Flowering Myosotidium hortensia (picture sourced from	
	www.liddlewonder.co.nz)	17
Figure 1.4:	An experimental subject (Phormium cookianum)	18
Figure 1.5:	Flowering Phormium cookianum (Experimental subject)	18
Figure 2.1:	Effect of daylength and temperature treatments applied for 56 days	5
	on leaf growth in Phormium cookianum. Plants were transferred to	l.
	a warm greenhouse on Day 56. Refer to Materials and Methods for	r
	treatment specifications.	27
Figure 2.2:	Microscopic study of the shoot apical meristem of P. cookianum	
	plants after four weeks of daylength and temperature treatment.	
	Subjects chosen to display the range in developmental stages, not	
	representative of all meristems under a particular treatment.	
	(A & B) Cold LD grown meristems. (C & D) Cold SD grown	
	meristems.	29
Figure 2.3:	Microscopic study of the shoot apical meristem of P. cookianum	
	plants after eight weeks of daylength and temperature treatment.	
	Subjects chosen to display the range in developmental stages, not	
	representative of all meristems under a particular treatment. (A)	
	Cold LD grown meristem. (B) Cold SD grown meristem. (C)	
	Warm LD grown meristem. (D) Warm SD grown meristems	30
Figure 2.4:	Effect of daylength within Warm temperature treatments applied	
	for 56 days on leaf growth in flowering (F) and non-flowering (NF	⁽)
	plants of Phormium cookianum. Plants were transferred to a warm	
	greenhouse on Day 56. Refer to Materials and Methods for	
	treatment specifications.	34
Figure 2.5:	Effect of daylength within Cold temperature treatments applied for	
	56 days on leaf growth in flowering (F) and non-flowering (NF)	

	plants of Phormium cookianum. Plants were transferred to a warm	ı
	greenhouse on Day 56. Refer to Materials and Methods for	
	treatment specifications.	35
Figure 2.6:	Effect of GA ₃ on the proportion of fans of <i>P. cookianum</i>	
	flowering, and the number of flowers per inflorescence.	38
Figure 2.7:	The influence of node number on floral induction in Phormium	
	cookianum plants grown under the four different environments of	
	the photoperiod and temperature experiment (Section 2.2.1.1.1).	
	See section 2.1.2 Photoperiod and temperature treatments, for	
	conditions of treatment and growth.	39
Figure 2.8:	Effect of daylength and temperature treatments applied for 56 day	S
	on leaf growth in Myosotidium hortensia. Plants were transferred	
	to a warm greenhouse on Day 56. Refer to Materials and Methods	
	for treatment specifications.	41
Figure 2.9:	Microscopic study of the shoot apical meristem of M. hortensia	
	plants after eight weeks of daylength and temperature treatment.	43
Figure 2.10:	Internode elongation of Myosotidium hortensia treated with 100µg	5
	GA ₃ (Extended internodes shown by arrows).	44
Figure 3.1:	Position of primers on the Lolium temulentum mRNA LFY	
	sequence.	54
Figure 3.2:	Melting curve of actin and PFL products generated from genomic	
	DNA contamination of RNA extractions. The peaks represent	
	distinct drops in fluorescence as double stranded DNA products	
	separate (or melt) at particular temperatures (Tm). The peak at	
	83°C represents the Tm of actin primer dimers, 92°C the Tm of pro-	oduct
	generated from RNA using actin specific primers, and	
	93° C the Tm of product generated using cDNA and actin specific	
	primers.	58
Figure 3.3:	Melting curve of PFL and actin primer dimers and PCR products	
	generated from genomic DNA contamination in RNA samples. A))
	Melting peak of PFL primer dimers and PFL and actin product. E	3)
	Melting peak of actin primer dimers and PFL and actin product.	
	Data was acquired at 84°C (vertical line) to avoid primer dimer	
	fluorescence, as dimers melt below this temperature.	60

х

Figure 3.4:	Gel analysis of actin (435 base pairs) and PFL (262 base pairs)	
	products. Top lanes are, lane 1: 1 Kb ⁺ ladder, lanes 2 – 4:	
	calibrator PFL product, lanes 5 – 7: calibrator actin product, lanes	
	8 – 17: examples of paired PFL and actin products of cDNA	
	samples from different RNA extractions. Bottom lanes are, lane	
	1: 1 Kb ⁺ ladder, lanes 2 – 14 examples of pairs of alternating PFL	
	and actin cDNA products.	62
Figure 3.5:	The increase in fluorescence as cDNA products are amplified	
	exponentially used to determine the cycle number where	
	fluorescence rises above background levels. Overlapping	
	fluorescence levels are seen for PFL and actin products generated	
	in triplicate from calibrator cDNA (A), cDNA generated from	
	Time 3, large, GA ₃ -treated RNA samples amplified with actin (B)	
	or PFL (C) specific primers was also performed in triplicate.	63
Figure 3.6:	Efficiency of the Real Time PCR reactions for PFL (A) and actin	
	(B) over a dilution series (CP = crossing point, cycle number)	64
Figure 3.7:	Proportion of plants flowering for fans of different sizes treated	
	with EtOH (A) or GA ₃ / EtOH (B). Refer to materials and methods	5
	for size definitions.	67
Figure 3.8:	Relative expression of PFL in different sized fans treated with	
	EtOH control (A) or GA ₃ /EtOH (B). See section 3.1.2 PFL	
	expression during floral induction and organogenesis upon GA3	
	application for treatment details.	68
Figure 3.9:	A representative vegetative meristem of large untreated-fans at	
	Time 0 and Time 1.	69
Figure 3.10:	Sections of meristematic samples taken at Time 2 from large	
	untreated-fans displaying varying degrees of floral development.	69
Figure 3.11:	Section of meristematic sample of a large untreated-fan, taken at	
	Time 3, displaying advanced inflorescence development.	70
Figure B.1:	Residual plot of P. cookianum vegetative growth data, with the	
	General Linear Model used to account for the observations taking	
	blocking effects into consideration.	92

xi

Figure B.2:	Normal probability plot of P. cookianum vegetative growth data,	
	with the General Linear Model used to account for the	
	observations taking blocking effects into consideration.	92
Figure B.3:	Residual plot of P. cookianum vegetative growth data, with the	
	General Linear Model used to account for the observations not	
	taking into account any effects blocking within the rooms may	
	have had on growth.	93
Figure B.4:	Residual plot of logarithm transformed P. cookianum vegetative	
	growth data, with the General Linear Model used to account for	
	the observations not taking into account any effects blocking	
	within the rooms may have had on growth.	95
Figure B.5:	Normal probability plot of Logarithm transformed P. cookianum	
	vegetative growth data, with the General Linear Model used to	
	account for the observations not taking into account any effects	
	blocking within the rooms may have had on growth.	96
Figure B.6:	Analysis of Square Root transformed P. cookianum vegetative	
	growth data. A) Residual plot. B) Normal Probability plot. C)	
	Levene's test of variance homogeneity. D) Tests of Normality.	98
Figure B.7:	Linear regression model of logarithm transformed P. cookianum	
	vegetative growth data.	99
Figure B.8:	Analysis of Power transformed P. cookianum vegetative growth	
	data. A) Residual plot. B) Normal Probability plot. C) Levene's	
	test of variance homogeneity. D) Tests of Normality.	100
Figure B.9:	Analysis of M. hortensia vegetative growth data. A) Residual plot.	
	B) Normal Probability plot. C) Tests of Normality.	102
Figure B.10:	Residual plot of M. hortensia vegetative growth data, with the	
	General Linear Model used to account for the observations not	
	taking into account any effects blocking within the rooms may	
	have had on growth.	103
Figure B.11:	Analysis of Logarithm transformed M. hortensia vegetative growth	ı
	data. A) Residual plot. B) Normal Probability plot. C) Levene's	
	test of variance homogeneity. D) Tests of Normality.	105

xii

Figure B.12:	Analysis of Square Root transformed M. hortensia vegetative	
	growth data. A) Residual plot. B) Normal Probability plot. C)	
	Levene's test of variance homogeneity. D) Tests of Normality.	106
Figure B.13:	Analysis of Power transformed M. hortensia vegetative growth	
	data. A) Residual plot. B) Normal Probability plot. C) Levene's	
	test of variance homogeneity. D) Tests of Normality.	107
Figure C.1:	Comparison of partial Mitochondrial 26S rRNA homologues	108
Figure C.2:	Partial cDNA comparison of FLO / LFY homologues	110
Figure C.3:	Partial amino acid sequence comparison of FLO / LFY	
	homologues	113
Figure C.4:	Partial cDNA comparison of actin homologues	115
Figure D.1:	Sequences of primers used to isolate PFL cDNA.	118
Figure D.2:	Sequences of primers used to isolate <i>P. cookianum</i> actin cDNA.	118
Figure D.3:	Sequences of PFL and actin specific primers used in Real Time	
	reverse transcriptase-PCR	118

List of tables

Table 2.1:	The effect of GA ₃ applied to <i>P. cookianum</i> and node number on	
	the proportion of plants flowering (Section 2.2.1.2.1). See section	
	2.1.3 Gibberellin applications, for conditions of treatment and	
	growth.	39
Table 3.1:	Expected sizes of amplified PFL fragments (bp) from using	
	different primer pair combinations.	54
Table A.1:	Main plot or 'between subjects' ANOVA	82
Table A.2:	Split plot or 'within subjects' ANOVA	82
Table A.3:	Linear contrasts	82
Table A.4:	Observed and expected frequencies of induction on treatment,	
	Cold temperatures versus Warm	82
Table A.5:	Statistics for Table of treatment by induction, Cold temperatures	
	versus Warm	83
Table A.6:	Observed and expected frequencies of induction on treatment,	
	Short day versus Long day	83
Table A.7:	Statistics for Table of treatment by induction, Short day versus	
	Long day	83
Table A.8:	Observed and expected frequencies of anthesis on temperature	83
Table A.9:	Statistics for table of treatment by anthesis	84
Table A.10:	T Test procedure for the number of flowers per plant under Cold	
	and Warm temperatures	84
Table A.11:	T Test procedure for the node with the first floral branch under	
	Cold and Warm temperatures	84
Table A.12:	T Test procedure for the number of floral axes per plant under	
	Cold and Warm temperatures	85
Table A.13:	T Test procedure for the height of inflorescence bolt under Cold	
	and Warm temperatures	85
Table A.14:	Main plot or 'between subjects' ANOVA	85
Table A.15:	Split plot or 'within subjects' ANOVA	85
Table A.16:	Linear contrasts	85
Table A.17:	T Test procedure for the number of flowers for transferred and	
	Cold grown plants	86

Table A.18:	T Test procedure for the node with the first floral branch for	
	transferred and Cold grown plants	86
Table A.19:	T Test procedure for the number of floral branches for transferred	
	and Cold grown plants	86
Table A.20:	T Test procedure for the height of inflorescence for transferred and	d
	Cold grown plants	86
Table A.21:	Observed and expected frequencies of flowering in P. cookianum	
	on GA ₃ concentration	87
Table A.22:	Statistics for table of GA3 concentration by induction	87
Table A.23:	Completely randomised design ANOVA	87
Table A.24:	Main plot or 'between subjects' ANOVA	87
Table A.25:	Split plot or 'within subjects' ANOVA	88
Table A.26:	Linear contrasts	88
Table B.1:	Tests for Normality performed on P. cookianum vegetative growth	ı
	data residuals.	93
Table B.2:	Levene's Test for homogeneity of P. cookianum vegetative growth	ı
	data variance, with the General Linear Model used to account for	
	the observations not taking into account any effects blocking	
	within the rooms may have had on growth.	93
Table B.3:	Levene's Test for Homogeneity of logarithm transformed P.	
	cookianum vegetative growth data variance, with the General	
	Linear Model used to account for the observations not taking into	
	account any effects blocking within the rooms may have had on	
	growth.	95
Table B.4:	Tests for Normality performed on Logarithm transformed P.	
	cookianum vegetative growth data residuals.	96
Table B.5:	Levene's Test for homogeneity of M. hortensia vegetative growth	
	data variance, with the General Linear Model used to account for	
	the observations not taking into account any effects blocking	
	within the rooms may have had on growth.	103