
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



Floral Induction and Development in 
Myosotidium hortensia and 

Phormium cookianum 

A thesis presented in partial fulfilment of the requirements for the degree of 
Master of Science in Plant Biology 
at Massey University, New Zealand 

John Creighton Harris 
2004 



Abstract 

Little is known of the stimuli needed for flowering in two New Zealand endemic 

plants, Myosotidium hortensia and Phormium cookianum. These plants are widely 

recognised by the horticulture sector and the concerns of this thesis were to aid 

understanding of floral induction and development in the two species. Environmental 

stimuli were investigated by growing plants under factorial combinations of daylength 

and temperature in controlled growth rooms. The two daylengths used, termed long 

days (LD) and short days (SD), consisted of night/ day periods of 8 / 16 h and 16 / 8 

h respectively. Two night/ day temperature regimes of 4 / 7°C and 18 / 24°C referred 

to as Cold and Warm respectively, were combined with the daylengths to make four 

treatments. 

Floral induction in both species was unaffected by temperature or daylength, with 

approximately 50% of the P. cookianum flowering under all environmental 

treatments . M. hortensia did not flower. The absence of flowering seen in half of the 

P. cookianum plants was associated with a small size (fewer nodes at the 

commencement of the environmental treatments). Floral development in those plants 

that did flower was accelerated in P. cookianum by eight weeks growth under Cold 

compared with Warm treatment. Floral development of P. cookianum was further 

enhanced by four weeks treatment at Cold temperatures followed by transfer for four 

weeks at Warm temperatures. Vegetative growth was enhanced under Warm 

temperatures compared with Cold, in both P. cookianum and M. hortensia. 

Hormonal floral stimuli were investigated by application of the gibberellin A3, 

followed by growth under Cold SD conditions. The proportion of plants flowering 

was increased by GA3 in P. cookianum. GA3-treated P. cookianum flowered with 

fewer nodes as GA3 concentration increased. In M. hortensia, GA3 application did not 

cause flowering although stem elongation was increased. 

A region of the P. cookianum FLORICAUI.A I LEAFY (FLO I LFY) homologue 

(PFL) mRNA was isolated by reverse transcriptase-PCR and sequenced, and shown to 

share strong sequence identity with other FLO I LFY-like genes. PFL mRNA 
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expression was compared with levels of actin mRNA using Real Time reverse 

transcriptase-PCR, performed using a LightCycler and the double stranded DNA 

binding dye SYBR Green 1. Upregulation of PFL mRNA at the meristem occurred 

over time, and increases coincided with changes in morphology from vegetative to 

inflorescence development. As predicted, greater PFL expression was observed in 

fans of larger size, these being the fans with greater likelihood of flowering. 
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