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ABSTRACT 

Modelling of the economy has become increasingly important over the years. It serves 

two main purposes. It enables forecasts and it can be used for the evaluation of various 

economic policies. Economic models come with various degrees of size and statistical 

complexity. Models can be of a qualitative or of a quantitative nature. The soundness of 

the statistical techniques that are used for quantitative models is critical. In recent years a 

number of such techniques have been developed. This thesis will evaluate some on 

existing economic New Zealand time series. 

Inflation plays a main role in everyday life and it has been of major ongoing concern to 

the New Zealand governments in recent times. These governments have instructed the 

Reserve Bank of New Zealand (RBNZ) to set monetary policies to ensure certain targets 

are met. The RBNZ achieves this to a large degree by setting the Official Cash Rate 

which is the major determinant of the interest rates that are used by the banks. 

This thesis will consider some theoretical aspects of time series analysis. In particular the 

Dickey-Fuller tests and cointegration analysis are considered. Also some theoretical 

aspects of inflation are considered. Examples are given of aspects of New Zealand life 

other than the interest rates that may also affect the current inflation rates. 

The time series that were analysed could be categorised as inflation indices, monetary 

aggregates, interest rates and gross domestic product. The thesis attempted to evaluate the 

time series in such a manner that there was little room for an analyst's bias. This was 

mainly achieved by developing a standardised approach to the analysis of these series. A 

number of interactions between the time series were evaluated and some were identified 

as being suitable for further research with the ultimate aim of developing a small model 

of the New Zealand economy. Another aim was to evaluate some aspects of economic 

policy where possible given the small number of time series that were used. Granger 
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Causality tests seemed to show the effect of economic policy, where the interest rates 

affect the inflation rates. However, this was not further supported by cointegration 

analyses. There are various possible explanations for this. It was surmised that the 

standardised way of analysis may not have identified this relationship where it existed. 

The analyses showed that at times the results of the statistical tests were inconsistent. 

This applied to the Dickey-Fuller tests as well as the cointegration analyses. In some 

cases unit root models with significant coefficients for the deterministic components were 

identified. Further analysis would show that the deterministic components were not 

significant after all. However, the resulting models without these components did not 

have a unit root. The cointegration analyses invariably showed a number of Vector Error 

Correction Models with significant cointegration equations. Since their economic 

implications would be quite different at times there was a reason for concern. 

In conclusion there are some worrying problems when the methodology is used for 

existing short New Zealand data series. However, at times some plausible results were 

shown as well. Suggestions for further research were made . 
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CHAPTER! 

GENERAL INTRODUCTION 

1.1 The importance of inflation 

"Inflation is the one form of taxation that can be imposed without legislation" 
(Quote from Milton Friedman) 

Inflation is the increase of price levels. It can be measured for a multitude of baskets of goods 
and services. Examples of inflation measures are the commonly used Consumer Price Index 
(CPI) and the Producers Price Index (PPI). Inflation means that the basket of goods and 
services becomes more expensive w'1en expressed in nominal dollars as time goes by. 
Nominal dollars are dollars used currently, without any inflation adjustment. 

There is a perception that inflation is bad. Since inflation will generally not be the same for all 
goods and services, the relative prices for the different goods and services may change. This 
may be a beneficial process from a resource allocation perspective. It is not surprising that 
people will regard inflation as negative if they pay more for their goods and services and they 
are on fixed incomes. From a rational perspective, this negative perception should not be the 
case if their income increases at a level that compensates for inflation, ie if their purchasing 
power is maintained. Successive New Zealand governments have arguably made considerable 
attempts to keep inflation within certain bounds but their objective has not been a zero rate of 
inflation. 

Inflation can lead to a redistribution of income and wealth. Interest rates are of particular 
relevance. A lender will be worse off and a borrower will benefit if interest rates do not 
include sufficient compensation for inflation. The use of tax brackets where higher tax rates 
apply if income exceeds certain nominal levels are a clear reason why inflation is perceived as 
a negative event. 

Even if there is compensation for inflation, there may still be a negative perception since 
inflation will create uncertainty regarding the purchasing power of incomes and investments 
or debt. This is especially the case for high levels of inflation and there can be little doubt that 
high inflation is undesirable. What precisely determines the optimal level of inflation is not a 
trivial question. 

1.2 Current issues in New Zealand 

In the 1980's New Zealand experienced high inflation rates. Since then various governments 
have been committed to reduce the inflation rates to lower levels and to keep it at these levels. 
The interest rates that currently (February 2004) exist seem to be considered low if one 



considers the flourishing market for houses and mortgages. Similarly they are beneficial for 
those who wish to borrow for investment in plant and equipment. 

The Reserve Bank of New Zealand (RBNZ) sets the Official Cash Rate (OCR) which 
determines the interest rates charged by banks to their customers. The main criterion of the 
RBNZ is to ensure that the CPI remains within certain bounds as agreed to with government. 
If the RBNZ believes that the CPI will become too high it will increase the OCR thereby 
reducing demand. If, on the other hand, it believes the CPI will become too low it will lower 
the OCR. Currently (2004) the RBNZ believes the housing market is overheating and is 
putting too much pressure on the inflation rates. Consequently there is an incentive for the 
RBNZ to increase the OCR. 

The combination of interest rates and expected inflation are important factors for establishing 
the exchange rates. An increase of the exchange rate will be detrimental to exporters and 
beneficial to importers. At the time of writing (2004) the US dollar has depreciated 
considerably in recent months in value against many currencies including the NZ dollar. 
Much of the international trade is carried out with US dollars and consequently many 
exporters would like to see a decrease in the OCR. 

The two conflicting pressures described above results in the RBNZ's unenviable position. 
Whatever its decision, there is likely to be severe criticism. It raises the question whether the 
reliance on one tool only (the OCR) to deal with multiple objectives is too limited. 

1.3 The use of statistical techniques to analyse inflation 

The analysis of historic data seems a prerequisite for making rational decisions. In this case 
statistical techniques will be used to analyse inflation rates and other variables that may 
influence inflation. These variables include monetary aggregates, interest rates and the Gross 
Domestic Product. Without a doubt there are other factors that affect inflation as well. 
Examples are the exchange rate and unemployment. However a full analysis of all possible 
factors that affect inflation is beyond the scope of this thesis. 

Time series analysis will be used to analyse the datasets. Initially analyses will be carried out 
at the univariate level and they will be followed by multivariate analyses to evaluate possible 
interactions. 

An important aspect of time series analyses is whether they are stationary or not. A full 
explanation will follow in a later chapter but crudely speaking lack of stationarity means that 
the mean and variance of the series vary over time. In the late 1970's techniques were 
developed to evaluate this aspect. Since the late 1980' s a m1mber of techniques have been 
developed to analyse the interaction of time series that are not necessarily stationary. 

The explanation in some publications of a number of the currently used time series techniques 
is not always clear and what appear to be mistakes may at times be detected. These mistakes 
may be 'typographical ' but they may also be the result of a theory that sometimes appears 
confusing (at least to the author of this thesis). The time series that are commonly used in the 
area of econometrics are generally of short duration. This combined with the small power of 
some of the tests, results in difficulties when attempting to analyse these series. Like other 
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statistical tests, the tests discussed in this thesis require assumptions of a statistical nature 
before they can be used. In addition diagnostic checking is required to ensure that the results 
are valid. Therefore there are a number of issues that need to be addressed before one can 
confidently draw conclusions regarding economic time series that are valid from a statistical 
perspective. This thesis attempts to describe in a clear and consistent way some of these issues 
and will analyse some time series taking these limitations into account. It does not claim to be 
able to give a definitive conclusion on what is wrong and what is right. 

The findings of the analyses will depend heavily on the assumptions made. Where possible 
these assumptions will be explicit. An issue arises where the data are collected under certain 
policy regimes. If these regimes change, the findings of the analyses may no longer be 
applicable. In a sense the existing policies, where not clearly described as variables, are 
implicit assumptions. This means that one has to be careful when generalising results. 

Once the analyses have been performed the results can be used for developing models. The 
two main purposes of these are policy analysis and forecasting. Policy analysis allows the 
evaluation of 'what-if' scenarios while forecasting attempts to predict what the future will 
bring. It has been claimed that generally a model can only be used for either of these two 
purposes but not for both at the same time. 

1.4 The structure of this thesis 

The key questions in relation to inflation are: 

• What causes inflation? 
• What is the appropriate level of inflation? 
• How can the appropriate level of inflation be achieved on an ongoing basis? 

In order to answer the last question one should, at least, attempt to answer the first question. 
The main purpose of this thesis is to find an answer to the first question. There are no 
guarantees that the approach taken will provide the answers, if only because other factors that 
might drive inflation are not analysed in this thesis. However, it is maintained that the 
approach taken is a minimum requirement to deal with questions relating to inflation. 

The key research questions for this thesis fall in two categories: They are the statistical ones 
and the economic ones. 
Various economic models exist. The key economical research questions are: 
1 Can equations be found that could serve as a backbone for a small model of the New 

Zealand economy for the period in question? 
2 Can economic and monetary policy be seen reflected in the data sets ( eg do interest 

rates rise as inflation rises)? More importantly perhaps is the question whether 
economic or monetary policies are successful. 

- Tliestatistical techniques discussed in this thesis are used widely. The key statistical research 
questions are: 

1 How well do standard cointegration techniques work under practical conditions? 
Policy changes that may affect relationships and trends of time series occur relatively 
frequently in practice. Consequently it will often be more appropriate to evaluate short 

3 



time series rather than long ones. New Zealand series of approximately ten years are 
used to evaluate this issue. 

2 Can an automated approach involving the examination of a large number of possible 
models produce sensible results? Sensible can be interpreted as meaning that the 
results of the various models should not contradict each other. In addition the final 
result of a model, ie a group of equations, should preferably cover the area of interest 
in a coherent manner 

Sometimes data analysis is performed and only a limited number of the possible models will 
be displayed. This thesis attempts to demonstrate the large number of options that might be 
possible at times. The drawback of the selective approach of only showing a limited number 
of models is that they may be heavily influenced by the analyst ' s economic views. Alternative 
equally plausible models may be ignored unintentionally; the analyst just did not test for it. 
Therefore different views of economic theory might lead to different admissible models 
according to some commonly used statistical techniques. 

The analysis will be performed in the New Zealand context. The emphasis of the thesis will 
be on the use of certain statistical techniques when analysing economic time series. Although 
economic theory will be considered the focus will mainly be on the use and limitations of 
these statistical techniques. This is because it will provide insights into the validity of 
conclusions when statistical techniques are evaluated in-depth. 

Figure 1.1 Schematic overview of factors affecting inflation that are evaluated in this thesis 

Imported 
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OCR 

Interest Rates 

Inflation 
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The following two chapters will discuss theoretical aspects of time series analysis (Chapter 2) 
and of inflation (Chapter 3). Chapter 4 will analyse inflation time series. Chapter 5, 6 and 7 
will evaluate monetary aggregates, interest rates and GDP respectively. This will first be at a 
univariate level followed by multivariate techniques. Figure 1.1 provides an overview of the 
interaction of these variables. 

Currently the understanding of inflation in New Zealand relies heavily on this country having 
its own currency, the New Zealand dollar. International communications are continually 
improving and differences between countries are becoming increasingly smaller. If currency 
substitution (ie the use of other currencies for trade within New Zealand) became a commonly 
accepted practice, the dynamics of inflation might change. A final chapter is dedicated to 
currency substitution and various ramifications for the New Zealand economy. 
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CHAPTER2 

STATISTICAL METHODS OF TIME SERIES ANALYSIS 

2.1 Introduction 

Economic and financial time series are to a large degree a reflection of a multitude of events 
that occur prior to and during the time when the observations are made and anticipated events 
may affect them too. These series may have been influenced by some variables that did not 
change during the period in question but they may have been very important nevertheless (eg 
certain fiscal policies). If measurements are taken in later periods when these variables have 
changed, the resulting time series can be quite different from what would have been forecast. 
This is because the effect of these other variables would not have been accounted for. These 
changes are called structural breaks. Lack of knowledge of important variables (and their 
interaction) can make the generalisation of findings of econometric research problematic. 

Another form of generalisation, extrapolation beyond the data range that was actually 
measured can also lead to incorrect conclusions. 

Despite these issues, an analysis of currently available and apparently relevant data will still 
be useful since it may alert to economic aspects that should be considered when setting 
monetary and/or fiscal policy. The time series that will be used for investigating inflation in 
New Zealand will be relatively short. The longest ones started in March 1988 and the shortest 
ones in the first quarter of 1994. The datasets used in this thesis have been downloaded from 
the website of the Reserve Bank of New Zealand. 

A number of aggregates that are described in this thesis are actually amalgams of other 
aggregates. For instance M3 contains M2 and some other variables. Consequently, virtually 
by definition, a relationship must exist between these variables unless one variable is much 
smaller than the other variable. In order to separate out such inclusions, at times the 
differences between the aggregates were used in this analysis. This has been denoted by "R" 
for "reduced" below. In the case of M3, M2 was subtracted from the M3 residents and not 
from non-residents since non-residents are not likely to have much money invested in M2 or 
Ml. 

The analyses of the time series will be performed with EViews 3.1 Student Version 
(Quantitative Micro Software, LLC, Irvine CA). 

2.2 Linear stochastic models 

A time series can be analysed in isolation (univariate analysis) or in relation to other time 
series (multivariate analysis). Univariate analyses are valuable for understanding the 
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behaviour of a time series before progressing any further. Multivariate analyses serve to 
include aspects that are deemed to be important and should provide a better understanding of 
economic events. 

The analyses below will make extensive use of difference equations. Instead of using the 
actual observation for the analysis, the increase or decrease in value since the previous 
observation will be used. The first difference is: 

~Yi = f (t)- f (t -1) = Yi - Y1-1 (2.1) 

Similarly a second difference can be constructed as: 

An important aspect of the analysis of any time series is to establish whether or not it is 
stationary. This means whether the mean and variance do not change over time. Viewing a 
graph is important for acquiring an appreciation of stationarity but formal tests are required to 
refute a hypothesis or not. These formal tests will be discussed at a later stage. 

If the mean changes over time the time series is said to have a trend. It was commonly 
accepted in the past that it was desirable to remove trends for analysis purposes but it has 
recently been shown that this is not always required or desirable (see below). It is also 
possible that the variance changes over time. Transformation of the data set ( eg logarithmic 
transformation, square root transformation) can be performed to make the series stationary. 

The values of a time series may be correlated to previous values. In that case an 
autoregressive (AR) process may exist. 

where&, is the error term. 

This is a AR(l) only. More generally the following equation applies: 

(2.3) 

(2.4) 

Another possibility is a time series that is a function of a number of error terms in the past. 
In that case a moving average (MA) process exists. 

(2.5) 

where x, are the observations, /3; are the coefficients of the errors at various lags and £ 1 is the 

error term. 

The two approaches above can be combined resulting in an autoregressive moving average 
model (ARMA model). This model would combine correlations with past values of 
observations and it would continue to have the error terms (up to i = q) of past observations. 
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Three distinctive components to a linear stochastic equation can be identified (Enders 1995, p. 
166): 

y1 = trend + seasonal component + irregular component 

Frequently a sustained upward trend can be distinguished in time series (eg GNP). These 
trends have been modelled with a simple linear time trend: 

(2.6) 

where a0 is a constant, t is a trend and &
1 

is the error term. 

A deterministic trend indicates that the series changes in a constant and highly predictable 
fashion. The effect of any shocks on the series would disappear quickly. Another type of trend 
is a stochastic trend. There is a (stationary) irregular component. The effect of this component 
does not disappear over time. 

An example of a model with a stochastic trend is the Random Walk model: 

I 

Y1 =Yo+'\'&; 
f.:t 

(2.7) 

or equivalently 

(2.8) 

where y I is the observation and & 1 is the error term. 

The shock constituted by&; has a permanent effect on the time series y
1

• The variance depends 

on the time: 

Var(yi) = ta 2 (2.9) 

where y
1 

is the observation, t is the number of periods and &
1 

is the error term 

The variance is increasing over time and therefore the time series is not stationary. As a result 
of all these factors the time series wanders and does not show any tendency to arrive at some 
long-run equilibrium position. A visual inspection of such a time series may give the 
impression of a deterministic trend (also depending on the length of the time series). The 
autocorrelation function (ACF) cannot be used to distinguish these time series from a unit root 
process. The ACF is a function that describes the linear correlation between the points of a 
data series with various lags (1, 2, ... , n). 

The random walk model can be extended by including a drift component: 

(2.10) 

where y 1 is the observation, a 0 is a constant that forms the drift component and &
1 

is the error 

term. 
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If the initial condition (Yo) is known, then the general solution becomes: 

(2.11) 

where y 1 is the observation, a0 is a constant, t is the number of periods and &
1 

is the error 

term. 

This model now has two nonstationary components. They are the linear deterministic trend 
( aof) and the stochastic trend created by&; . 

The random walk model can be modified by including a noise model. The time series y
1 
has 

become the sum of a stochastic trend and a white-noise component. This model is shown as: 

(2.12) 

where µ, = µ1 _ 1 + &
1

, the observations with the error term &, that will remain in the time 

series and 17
1 
is a second error term. 

The essence of this model is that {17
1

} is a white noise process that only applies to time t, its 

effect is temporary only. This means that £(&, 17
1

) = 0 

If the initial condition µ 0 is known, then y
1 
can be expressed as: 

(2.13) 

Enders demonstrates how the above models can be combined into more detailed models (p. 
173). He describes a general trend plus irregular model as: 

I 

Y, = µ 0 + a 0t + ~ &; + A(L)71 1 (2.14) 

where y 1 is the observation, a0 is the coefficient of the trend, t is the trend term, &, and 17
1 
are 

error terms and A(L) is a polynomial in the lag operator L. 

The selection of A(L) is important and wil be addressed in later sections. The random walk 
plus drift process has now been augmented with the stationary noise process A(L )11

1 
• 

The local linear trend model is defined by Enders (p. 174) as being based on three mutually 
uncorrelated white-noise processes { &, } , {171 } and { 8,}. 

The model is: 

µ, = µ,_1 + a, + &, 

a,= a1_ 1 + 81 (2.15) 
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This model has a stochastic trend term µ
1

• The other models discussed above are all special 

cases of this model. 

2.3 Unit root processes 

Many financial and economic time series are not (covariance) stationary. This is because their 
mean and variance vary over time. Regression analyses on such series are likely to lead to 
spurious results. There are various ways to make these time series stationary. They can be 
transformed by using the logarithm, square root or ya Box-Cox family if the variance over 
time is not constant. There are two detrending techniques: differencing and removing the 
linear trend ( called detrending). Which of these techniques should be used will depend on the 
actual time series, ie whether the series is difference stationary or trend stationary. 

The evaluation of the existence of a unit root is done by viewing the graph and the ACF 
function. Formal test that are commonly used are the (Augmented) Dickey Fuller test and the 
Phillips-Perron unit root test. This thesis will use the Dickey-Fuller test extensively and the 
details are discussed in 2.4. 

The test for stationarity is based on testing whether a 1 = 1 (unit root) in the equation 

(2.16) 

Therefore the null hypothesis is that a1 = 1 and that the equation is non-stationary. If the p­

value p < 0.1, the series is deemed stationary. Because of the possible non-stationarity of the 
variables, the t-test cannot be applied to a1 = 1 and the equation is re-written as: 

(2.17) 

where y = a1 -1 

The equivalent hypothesis has now become: 

H O : y = 0 against H 1 : y -< o 

This is a one-sided test and rejection of H O occurs when t-values are in the left hand tail of 

the Dickey-Fuller distribution. Rejection of the null hypothesis is interpreted to mean that the 
series is stationary and does not have a unit root. The critical percentage of 10% is commonly 
used. The standard t-distribution does not apply in this situation. 

There may be a constant term and it is recommended to include a constant term in the DF test 
unless there are reasons to the contrary. The equation if the mean for the y1 series is not zero is 

(2.18) 
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where a0 is the constant term. 

There is a random walk process if both y = 0 and a0 = 0 . However, if y = 0 and a0 ~ 0, a 

random walk with drift exists. In essence this means that the new observation includes the 
value of the previous one and in addition the stochastic term ( &

1
) is added. At each point in 

time the deterministic component a0 is added. Since this term is added at each observation it is 
cumulative over time. The impression one acquires by viewing the graph is that the time 
series drifts in a certain direction, with decreases and increases to this drift as determined by 
the stochastic term. 

A deterministic linear trend in ~y
1 

may exist in which case the equation becomes: 

(2.19) 

where azt is the deterministic linear trend. 

In the situation where y = 0 (unit root) but a0 ~ 0 and a2t ~ 0 a random walk with drift of a0 , 

a zl exists and this is a quadratic deterministic trend. 

The whole meaning of the intercept and trend terms in the equations depends crucially on 
whether y is zero (unit root) or not. If y is zero (unit root), the intercept (a0) represents a 

linear trend term in the series, and the ' linear ' trend term (a2) a quadratic trend. If not a unit 
root, the intercept (a0) represents a non-zero mean and the trend term (a2) a linear trend. In the 
case of unit root the differenced series will be stationary. Figures 2.1 - 2.1 2 are simulations 
that illustrate these points. 

The proof of the above statement is as follows: 

~Yi = Y.Y1-1 + ao + a2t + &1 

If y = 0 and the stochastic component &, is ignored. So, 

~Y, = ao + azl 

Yi - Y1-1 = Y1-1 + ao + ail 

Yi = Y,-1 + ao + a2t 

If a 2 = 0, at each subsequent point in time ao is added. If y O is given: 

Y1+p = Y1 + pxao 

and therefore a linear trend exists p x a0 • 

Now if the term a2 is included in the equation: 

Y1 +1 = Yo + (ao) + (a2) 

Y,+2 = Yo +(2xa0 )+ (a 2 +2xa 2 ) 

Yi+p =y0 +(pxa0 )+((1+2+ ... +p)xai) 

where the last term of the equation is quadratic. 

Now if y -< 0, y O is given, a2 =0, and the term & 1 is ignored. 

Y1+1 = (1 + Y)Yo + (ao) 
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Make y = -0.5 for ease of understanding without loss of generality 

Y,+1 = (0.5)Yo + (ao) 

Yc+p = (0.5)P Yo + (a 0 ) 

where the first term on the RHS approaches O as p increases in time. 

Now if a2 is included in the previous equation the following equation eventuates. 

Y,+p = (0.5)P Yo + (ao) + p x a2 

which is a linear trend. 

The graphs below have been simulated in @RISK 4.0.5 (Palisade Corporation, Newfield, 
NY) to illustrate the points made above. 

The settings chosen in the various graphs were ao = 2, a1 = 0.6 or a1 = l(unit root) and a2 = 5. 
Figures 2.1 - 2.6 are models that do not have a unit root. 

Figure 2.1 Time series with no drift (ao = 0) and no trend (a2 = 0), a1 = 0.6 
yt(NDNT) 

3 +---,------;----------< 
2 _.,.........,..,___ ___ ~ llt-+-+----+--

1 r-lHHttlt-r.-t--t--ftl-:-r---:-lt.:tt-/11~'-t111brtt-:r-r-----alr;Hit-t-j 

0 -JlAnt:f!l,+r,,.;++¥1~/H!..i~~-!,l,f,...yii.;ill+lffl\H,,H+Mi~-,! 
-1 f-lPQHJ.4J;a-'-1W--1'11G-1~:.t!~~~~:lf!llli~~w.1 
-2 +-t--+--+--- ~...,__ ___ -'-'lf-_,___ ._,, 
-3 - ~-------- --+------; 
-4 ~---·---·------·--------··-· · -·--------- ··------~ 

Figure 2.2 Differenced time series with no drift (a0 = 0) and no trend (a2 = 0), a1 = 0.6 

3 ··--·· ........ ·-·····-·········-····---···--··--···-··--·--··-···-···-······· ··········-·-·-·-·····-········-····--·--·-·-······· 

Figure 2.3 Time series with drift (a0 = 2), no trend (a2 = 0) and a1 = 0.6 

12 



Figure 2.4 Differenced time series with drift (ao = 2), no trend (a2 = 0) and a1 = 0.6 
o,,t(d) 

-2 .._.._--+l+--~..,_.__,_._<-'---+-+---- -+--H---~-
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Figure 2.5 Time series with drift (a0 = 2), trend (a2 = 5) and a1 = 0.6 
~-------------~ 

yt(d&t) 

1 16 31 46 151 76 91 106 121 136 151 166 181 196 21 1 225 241256271 286 

Figure 2.6 Differenced time series with drift (a0 = 2), trend (a2 = 5) and a1 = 0.6 

1&.oo +----- - --- - ----I 
,soo; . ~ _ __ O,tlo&tJ --

: :f ~ rf'IJ·•~~/!!'i>· 
400 - ------------
2001--- - ----------
000'--------------

I 16 31 <!6 6 1 76 Ill 106 '21 136 151 166 181 •96 2, 1 226 24 1 256 27" 286 

The unit root versions of the above models are displayed in Figures 2.7 - 2.12. 

Figure 2.7 Time series with no drift (a0 = 0) and no trend (a2 = 0), a1 = 1 
yt(i'ONT") 

25 

1 20 39 SB 77 96 115 134 153 172 191 210 229 24B 267 2B6 

Figure 2.8 Differenced time series with no drift (a0 = 0) and no trend (a2 = 0) a1 = 1 
0,t(NCWI) 
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Figure 2.9 Time series with drift (a0 = 2), no trend (a2 = 0) and a1 = 1 

Figure 2.10 Differenced time series with drift (a0 = 2), no trend (a2 = 0) and a1 = 1 

-2 ·--·-----·--- ·-··-··········----·--··--------·······----··· .. ··-··-· .. ·-···-·------··----···· ____ , ..................... .. 

Figure 2.11 Time series with drift (ao = 2), trend (a2 = 5) and a1 = 1 
yt(d&t) 

1 11 33 49 65 a, 91 113 129 us 161 ,n ,r.a 209 225 2,1 257 273 2es 

Figure 2.12 Time series with drift (a0 = 2), trend (a2 = 5) and a1 = 1 

0/t(d&t) 

1 18 31 46 11 76 91 106 121 136 151 1&6 Hl l 1Wi 211 22& 24 1 2511 271 286 

The above figures show the difficulty of an "a priori" model selection followed by rejection 
of the null hypothesis or not. As an example if figure 2.5, 2.9 or 2.12 were assessed by 
viewing, which analyst would be able to select the appropriate model? 
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2.4 Univariate Model identification 

Three models 

The discussion in Section 2.3 and the simulations have demonstrated the difficulties of model 
selection that is based on viewing figures of time series. A structured approach is 
recommended because a number of decisions have to be made in sequence, with each decision 
affecting subsequent analysis. Chapters 4 to 7 will investigate whether any of the three 
models that are listed below are appropriate for the time series under investigation. 

The three models that have been used are alternative formulations of the Dickey Fuller 
equations to test for a unit root. In addition, these models also test whether the deterministic 
components are significant or not. The first model (Model 1) is the most unrestricted model 
and it includes both a0 and a2 as well as y . In the case of Model 2 a2 has been deleted. The 

restricted form of Model 2 (Model 2R) also does not have y included. Finally Model 3 lacks a0 

as well and its restricted form again does not include y. The t-tests and F-tests that have been 

used are described in Dickey and Fuller (1981). 

Model 1 
p 

~Y1 = ao + aif + r.Y1-1 + )' /3 ;~Y1-i-1 + c1 
~ 

(2.20) 

Model 2 
p 

~Y1 = ao + r.Y1-1 + ~ /3 ;~Y1-i-1 + c1 , __ (2.21) 

Model 2R 
p 

~Y, = ao + )' /3 ;~Y1-i-1 + c1 
~ 

(2.22) 

Model 3 
p 

~Y, = r.Y,-1 + )' /3;~Y1 -i-1 + c, 
~ 

(2.23) 

Model 3R 

p 

~Y, = )' /3;~Y,-;-1 + c, 
~ 

(2.24) 
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The restricted models are denoted by "R" where the restriction is that y = 0 . 

The first step to investigate whether or not a model is appropriate is to inspect the graphs of 
the time series with the raw or transformed observations and in a differenced format. Figures 
2.1 - 2.12 have shown simulations of the types of graphs that can be expected. A visual 
inspection of the graph to ascertain what model to choose can also be problematic for other 
reasons (it pre-judges the issue). 

In all three models above y = 0 is to be evaluated. However ao and a2 have different 

interpretations which depend on the model chosen. This issue was discussed in the previous 
section. 

In the case of Model 1 if y = 0, then Ye will have a deterministic quadratic trend. !1y
1 

will 

show a linear trend. However, if y -< 0, then Ye will show a linear trend while !1y
1 

will be 

stationary with a non-zero mean. 

In the case of Model 2 if y = 0 , then Ye will display a drift (ie a linear deterministic trend). At 

each subsequent point in time ( y
1 
), the value of a0 has been added to the value of the previous 

time point ( y
1

_ 1 ). Depending on the value of a0, the drift may look like a linear trend in the 

graph. 11y, will be a stationary series. However, if y -< 0, then both y 1 and /1y1 will be 

stationary. The mean will be determined by a0• 

In the case of Model 3 if y = 0, then y1 is a random walk without drift. !1y1 will be a 

stationary series. However, if y -< 0, then both y1 and !1y1 will be stationary with a zero 

mean. Table 2.1 summarises these impressions. 

Table 2.1 Summary of impressions of the graphs relating to the three models 
Equation r Yi 11y, 

Model 1 r =O Quadratic trend Linear trend 
Model 1 r-< o Linear trend Stationary series, 

Non-zero mean 
Model 2 r = o Drift (Can look like linear trend, Stationary series, 

depends on value of ao) non-zero mean 
Model 2 r-< o Stationary series, non-zero mean Stationary series, 

zero mean 
Model 3 y=O Random walk Stationary series, 

zero mean 
Model 3 r-< o Stationary series Stationary series, 

zero mean 

Statistical tests for univariate time series 

As mentioned above, inspection of graphs may at times be inadequate and it is preferable to 
use formal tests in a structured manner to decide on the appropriate model for a time series, in 
particular whether they are trend and/or difference stationary. This becomes even more 
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important where several time series are to be evaluated in relation to each other by using 
multivariate tests such as V AR or cointegration tests. 

The tests that are used can be categorised as t-tests and F-tests. The t- and the F-statistics do 
not follow the respective standard distributions. Dickey and Fuller carried out a number of 
simulations to investigate the distributions and the results can be seen in Dickey and Fuller 
(1979, 1981). 

The null hypothesis of unit root is rejected if the t-value for y is less than the value in the 

appropriate DF table. This is interpreted as meaning that the series is stationary. 

Instead of testing y only for unit root, Dickey and Fuller extended their approach by 

providing F-statistics for testing joint hypotheses on coefficients of the differenced series. 
These simultaneous tests are intended to evaluate whether any of the explanatory variables is 
zero or not. 

Table 2.2 Summary of the Dickey-Fuller tests (from Enders (1995, p. 223) 
Critical values for Confidence 

Intervals 
Model Hypothesis Test Statistic 95 % 99 % 
1 y = 0 

T r - 3.45 - 4.04 

a0 = 0 given y = 0 T ar 
3.11 3.78 

a 2 = 0 given y = 0 
T /Jr 2.79 3.53 

y = a 2 = 0 </)3 6.49 8.73 

a0 = y = a2 = 0 <P2 4.88 6.50 

2 y = 0 T µ -2.89 -3.51 

a0 = 0 given y = 0 T aµ 
2.54 3.22 

a0 = y = 0 <Pi 4.71 6.70 

3 y = 0 T -1.95 -2.60 

</J1 is provided to test whether or not both coefficients a0 and y in Model 2 are significant or 

not. This may seem a partial repeat of the conclusions reached by the test statisticT . If T is 
µ µ 

greater than the critical value (eg-2.89, 5% significance) then the conclusion is not 
significant and a unit root process is assumed. 

If </J1 is smaller than the critical value ( eg 4. 71, 5% significance), then the null hypothesis that 

both coefficients are zero is accepted. This would confirm the unit root part of the hypothesis. 
However, this would also reject the hypothesis that the drift term is significant. The results of 
this test could be difficult to interpret if the result is significant. While it might suggest the 
drift is significant it also suggest the process is not unit root. (Note again that the meaning of 
a0 depends on whether y is zero). 

The T statistic is designed to overcome the ambivalence that may result from the </J1 statistic. 
aµ 

Now the unit root process is taken as given. Although the null hypothesis is that a0 = 0 (ie the 
drift is not significant), the equation is such that drift is expected in the unit root process and 
consequently there is an expectation that the null hypothesis will be rejected. 
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Two F-statistics, </>2 and </J3 can be used for Model 1. One can test whether any of all 

coefficients is zero or whether any of two variables ( r or a2) are zero. 

The </J; statistics are calculated as follows (Enders, 1995, p.222): 

</J. = [RSS (restricted)- RSS(unrestricted )]! r 
1 

RSS (unrestricted )!(T - k) 

where r = number of restrictions 
T = number of usable observations 
k = number of parameters estimated in the unrestricted model 

The criterion for rejecting ther (other than r 1 ) and </J statistics is p < 0.05. The criterion for 

rejecting a unit root is p < 0.1, although lower values are considered too. The rationale for this 
is based on (Gujarati, p. 819). He comments that "most tests of the DF type have a low power; 
they tend to accept the null of unit root more frequently than is warranted." Given this 
problem it seemed reasonable to reject the unit root more frequently by making the cut-off 0.1 
rather than 0.05. However, the result 0.1 > p > 0.05 would at times be considered weak 
support for unit root. 

Lags in DF Models 

The various equations may have errors that are autocorrelated. This has already been 
p 

addressed above by the inclusion of lags ( k /3/iy1_;+i ) and it will be discussed here. The 

critical values of the Dickey-Fuller tests are only affected slightly by this approach since it 
reduces the length of the series. 

The approach that has been taken in this thesis for identifying the correct number of lags in 
the model is as follows. As a first step two lagged differences are included and the t-statistics 
are evaluated. If the t-value is not significant the model will be re-run with 1 lagged difference 
only. If this value is not significant the model will be re-run without this lagged difference. As 
previously discussed, such models make the calculation of </J; statistics impossible. 

Once a model has been preliminarily selected, the ACF of the resulting error series will be 
evaluated and its Ljung-Box Q statistics. Ideally autocorrelation should no longer be evident. 

If the model with the second lagged difference was significant and autocorrelation in the error 
terms was still evident, then the model was re-run with three lagged differences. 

From an analysis perspective the number of lagged values of ~y
1 
has several important 

aspects. It is necessary for the F-tests, which need nested models, to have the same number of 
lags in each model. Various strategies can be considered. All five models are checked and the 
maximum number of lags across all five is used. An alternative approach is to determine the 
number of lags of one model ( eg Model 1 or Model 3R) and use this for the other models as 
well. 
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In some instances a situation may arise where the second or third autocorrelated term is 
significant but not the first or second terms. In such situations the non-significant terms are 
left in the model. 

During the multivariate analysis the number of autocorrelated terms will become relevant too. 
Again their numbers should be similar for all equations that are used. 

Since it is important to avoid autocorrelation in the error terms, the thesis will usually use the 
highest number of differenced lags as required to minimise autocorrelation. 

Log transformation 

The time series that are analysed in this thesis are usually the natural logarithm of the original 
data series. When evaluating inflation, it is not the actual price level that usually matters but 
rather the change in price level. A log transform means that the first difference is measuring 
proportional changes in CPI, rather than absolute changes. Consequently the use of natural 
logarithms seems more appropriate when comparing the observations at different points in 
time than comparing the raw data. However in one instance (CPI) the raw data series was 
analysed in addition to the log transformed series to evaluate how the log transformation 
affected the analysis. Also in the case of the interest rates, the original time series will not be 
log transformed. 

Seasonal adjustment 

Some time series of the monetary aggregates displayed seasonality. Various techniques are 
available to deal with this issue. Two classes of seasonal adjustment are possible in EViews: 
multiplicative and additive. Since the time series that are analysed have been generally been 
log transformed, additive seasonal adjustment will be used in this thesis. 

EViews uses the difference from moving average approach. The moving average of the 
quarterly series to be filtered (Yt) are calculated as: 

Xt = (0.5 Yt+2 + Y1+1 + Yt + Yt-1 + 0.5 Y1-2) I 4 

The difference d1 = y1 - x1 is calculated. The quarterly seasonal index iq for quarter q is the 
average of d1 using observations for quarter q only. The seasonal indices are then adjusted so 

they add up to zero. This is brought about by setting s j = i j - i, where i is the average of all 

seasonal indices. EViews then computes the seasonally adjusted series by subtracting the 
seasonal factors Sj from Ye· 

CPI Adjustment 

As the price level (eg CPI) increases, the value of the monetary aggregates per unit will 
decrease. This thesis has considered the use of monetary aggregates that have been adjusted or 
not for inflation. The adjustment was performed by multiplying the value of the monetary 
aggregate by 1000/CPI current at the time. Next the value was log transformed. Adjusted 
monetary aggregates are denoted by "A". The adjustment consisted of multiplying by 
1000/CPI, in which case LOG MIA = LOG Ml - LOGCPI + log(lOOO). This should mean that 
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any cointegration (see below) involving LOGMl can be turned into one involving LOGMlA 
algebraically. It was expected that the analyses were going to be very similar. 

2.5 Structural breaks 

Structural breaks can affect unit root tests. Examples are changes in government policies that 
were discussed in the general introduction. During the various periods the variable in question 
may be stationary at each side of the structural break. Over the entire period the equations will 
be such that a bias of the Dickey-Fuller test towards non-rejection of the unit root exists. 
Another situation that can also exist is a unit root process with one or several structural 
breaks. 

Chapter 4 will use the Chow test to evaluate the existence of structural breaks. 

This test assumes previous knowledge of the breakpoints. This would usually be acquired 
from inspecting graphs or from previous knowledge for instance policy changes. The 
selection of the largest change in a graph ( eg of ~y, ) would to a certain extent compromise 

the validity of the test. This issue is similar to the selection of the most appropriate model that 
was discussed in one of the previous sections. In that instance it was decided to compute a 
number of models and select the most appropriate one. In this case it is decided to use the 
more subjective approach of assessing a graph, but keeping the reservations that are outlined 
above in mind. 

Enders (p. 246) describes another approach that has been proposed by Perron. This approach 
is briefly described below but will not be pursued here. 

where DP is the pulse dummy variable such that DP = l if t = r + 1 and O otherwise 

DL is the dummy variable such that DL =lift< rand O otherwise 

20 



2.6 Vector Autoregression (V AR) models 

Interpretation of the various time series can be carried out in isolation, for instance by viewing 
their graphs and performing ARIMA analysis without considering the impact on these time 
series of other variables. Although viewing graphs is crucial to provide some insights in 
developments over time, it will only have limited explanatory power especially with regard to 
other economic factors. 

In any case, variables will influence each other. The V AR methodology is of particular value 
to deal with such situations especially because it allows the concurrent evaluation of multiple 
outputs. 

The fundamental equation on which this approach is based is: 

(2.25) 

where y I are the current observations, µ is a vector of fixed means, <I> is a matrix with 

weighting coefficients and E1 are the error terms (also called shocks or innovations) . 

The errors have a covariance matrix: 

Exogenous variables can be added to this equation in which case it becomes 

(2 .26) 

An advantage of these V ARs is that restrictions of economic models can be incorporated 
resulting in structural V ARs (Enders, pp. 270 and 320). 

The above equation is written out below as for a bivariate system in order to facilitate the 
explanations of innovation accounting. They are based on Enders pp 294-295 . 

Yr = blO -b122 r + Y11Yr-l + Y12 2 r-1 + 8 y,r 

z r =b20 -b21Yr +r21Yr-l +Y 22 2 r- l +sz,r 

(2.27) 

(2 .28) 

The assumptions are that Y r and zr are stationary, the innovations are white-noise 

disturbances with standard deviations a Y and a z and that the disturbances are uncorrelated to 

each other. 

In the above equations s y,, and & z, , are pure innovations in y 1 and zr respectively. However 

s 
I 
can have an indirect contemporaneous effect on y

1 
through b21 and a lagged effect y , 

through Y 21 • 
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Equations (2.27) and (2.28) which are not reduced equations can be transformed as follows 

[ 
1 b12 ][y'] = [b1ol + [Y11 Y12 ][Y1-1] + [

6
y,1] 

b21 1 z1 bw Y21 Y 22 z,_1 6 z.1 

(2.29) 

Premultiplication by [ 
1 

b21 

-1 

b;'] results in the following equations 

(2.30) 

z, = a 20 + a21Y1-1 + a22Z1-1 + e21 (2.31) 
These latter two equations are the V AR in the standard form. 

The sections on innovation accounting will further discuss the latest error terms. It should be 
understood that e1, and e21 are composites of the pure innovations s y ,, and s z,i • 

el, = (s y ,t - b12s z ,t )1(1- b12b21) 

e2, = (s z ,t - bl2 s y ,t )1(1- b12h21 ) 

(2.32) 

(2.33) 

It follows from the above that e1., and e2,, may well be correlated. 

The V AR in standard form has fewer parameters than the structural VAR. As a consequence 
when the V AR is estimated it is not possible to estimate both b12 and b21. This means that 
the innovation series cannot be recovered from the V AR errors, unless some extra assumption 
is made, eg bl2 = 0 or b21 = O.Both of these correspond to assuming that one innovation does 
not affect the other series contemporaneously. More generally, for any number of series, a 
Choleski decomposition can be used to diagonalise the covariance matrix of the V AR errors 
and recover the innovation series. This corresponds to an ordering of the variables such that 
the innovation in one variable is assumed to have no contemporaneous effect on variables 
higher in the order. Different orderings will lead to different interpretations of the effect of 
further innovations. See the section on Impulse Response Functions below. 

Several information criteria can be used to establish the 'best' VAR model. This thesis will 
use the criteria described in EViews. These criteria consider the goodness-of-fit and attempt 
to maintain a parsimonious model. The information criteria are: 

Akaike Info Criterion (AIC) 
Schwarz Criterion (SC) 

- 2£/ T + 2n l T 
-2£ IT+ nlogT IT 

where n = k(d + pk) is the total number of estimated parameters in the V AR and 

T the number of usable observations. 

The log-likelihood is computed by EViews assuming a multivariate normal distribution 

(2.34) 

where 
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is the determinant of the residual covariance. 

For each of these criteria, the 'best' model has the smallest value for the information criterion. 

Various aspects of VARs that are of interest have been described above. It should be noted 
that some may be applicable to other types of equations as well such as Vector Error 
Correction Models. 

2.7 Granger Causality 

Granger Causality is considered to exist if lagged values of one variable (xr) improve the 
autoregressive forecast of another variable (yr). It is considered to be prerequisite before 
cointegration analysis is performed which will be described in one of the following sections. 

The sum of squared residuals (RSSuR) from the unrestricted regression is calculated. 

(2.35) 

In the above equation k is the number of lags that is required to remove the serial correlation. 
Also the sum of squared residuals (RSSR) from the restricted regression is calculated. 

(2.36) 

Next S is calculated. 

S = ((RRSR - RSS uR) I k) / (RSSuR / (T- 3k- 1)) 

where T is the sample size and k is the number of lags required for independent residuals. 

The null hypothesis is: 

The decision rule is based on the F statistic value F (0.05, k, T - 3k- 1) 

Since the null hypothesis maintains no Granger Causality, p < 0.05 is considered to mean that 
Granger Causality existed. 

Various assumptions are required to be made. The variable should be stationary. It is assumed 
that the error terms in the causality tests are uncorrelated. No attempts will be made in the 
various chapters to correct for this. The justification is that the Granger Causality will be used 
as an exploratory test and its bias towards proving causality where none exists will be 
considered when the final models are developed. 

Gujarati (p. 698) mentions that "the direction of causality may depend critically on the 
number of lagged terms included." In his example 17.13 he showed how the direction of 
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causality was evaluated for various numbers of lags. Table 6.6 is an example how Granger 
Causality is evaluated in this thesis. Each combination of time series will be evaluated in both 
directions for Granger Causality and this will be applied for 8 lags. The results will be 
compared with the results of the cointegration analyses. 

2.8 Cointegration and Vector Error Correction Models 

Cointegration is said to exist if a linear combination of two or more non-stationary series 
results in a stationary series. In principle this can be seen as the application of matrix algebra 
and Vector Autoregression (V AR) 

VAR 

The following V AR of order p applies. The vector y I contains a number of unit root 

processes and the intention is to test whether or not some of them are cointegrated. 

(2.37) 

where Yt is a k-vector of non-stationary I(l) variables, Xt is ad vector of exogenous 
deterministic variables, and t 1 is a vector of innovations. 

Two ( or more) variables may have unit roots yet they may move in a correlated manner over 
time. They may have a long-run relationship. 

If they are cointegrated then a linear combination is stationary, so p'y 1 = v I where P is the 

"cointegrating vector". If there are more than two series, there may be more than one 
cointegrating vector, so if stacked they give a matrix which premultiplies p'y 1 = v I to give 

a vector of stationary series. 

Such situations can be important from a financial or economic perspective. In principle the 
above can be tested by three Dickey Fuller tests. This is Engle-Granger Two-Step procedure 
where two series y11 and y21 exist (Engle and Granger, 1987). Both are tested for unit root. 
One is regressed on the other and /3 is estimated. The residual of this regression ( v, ) is tested 

for unit root. 
When v, is tested the constant term in the Dickey Fuller equation must always be included. 

This procedure has been criticised because /3 may be biased. Another major drawback is that 

it can be used for two time series only. 
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Matrix Algebra 

The method developed by Johansen (1990, 1991) as an alternative has become widely used in 
recent years. It has an unrestricted and a restricted format. The approach by Johansen is based 
on eigenvalue analysis of an appropriate matrix. 

Let A be an (n x n) square matrix with elements % and y an (n x 1) vector. 

Then scalar A is the eigenvalue of A if: 

Ay = ),y, or 

Ay-Ay = 0 (2.38) 

This can be redefined with an (n x n) identity matrix I as: 

(A-}cl)y = 0 (2.39) 

If the values of y are not 0, then the rows of (A - }.I) must be linearly independent. 

Therefore the determinant must be zero, ie IA - AIi = 0. This equation is the characteristic 

equation of a square matrix (ie determinant= 0) and can be used for finding the eigenvalues. 

The characteristic equation is an nth order polynomial of A. It can be expressed as: 

An + b A11
-I + b ~ n-l + · · · + b A + b = 0 

I 2 c 11-l 11 (2.40) 

This shows that an (11 x n)matrix will have n eigenvalues that could be repeating or complex. 

The rank of a square (n x n)matrix A is the number of independent rows or columns in the 

matrix. The matrix A is of full rank if rank (A) = n. 
Therefore the rank of A equals its number of non-zero eigenvalues. 

This situation is analogous to the DF test described in Section 2.3. The original ARl model 
tested a1 = 1. This was changed to testing y = a1 -1 = 0. Similarly in the cointegration test 

according to Johansen the V AR is set up in such a way that each non-zero eigenvalue of the 
matrix being tested corresponds to a cointegrating relationship. This is the reason for the 
interest in the rank of a matrix. 

Johansen methodology of cointegration 

The above analysis of the rank of a matrix and the eigenvalues is used in the Johansen 
procedure. 

The time series are described as: 

(2.41) 
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This can be expressed in differenced format as: 

Ayt = (Al -l)Yt-1 +Et 

= flyt-1 + Et 
(2.42) 

Now the rank of II equals the number of eigenvalues that are not zero (and these correspond 
to cointegrating relationships between the components of y 1 • These eigenvalues are ordered 

so that ;l., > A2 > · · · > An. The Johansen procedures test the number of eigenvalues that are 

statistically different from zero. 

As with the DF test, we may want to add lagged values ofy I to remove autocorrelation. In the 

section on VAR the following equation was discussed: 

(2.43) 

The term Bxt is exogenous and can be left out of the rest of the explanation without any loss 

when generalising the conclusions. 

The differenced form of the above equation is: 

Adding and subtracting (A1 - l)y 1_2 to the above equation results in: 

Ayt =(A1 -l)Ay1-1 +(A2 +A1 -l)Y1-2 +(A3 +A2 +A1 -l)Yt-3 +· ·· +ApYt-p +Et 

(2.45) 

This procedure can be continued and the following equation will eventuate: 

p-1 
Ay t = \' IIiAy t-i + Ily t-p + Et 

f-f 
(2.46) 

where 

(2.47) 

The above equation is in effect a multivariate form of the Dickey-Fuller test. As in the 
Dickey-Fuller test the component 1r plays a critical role. It should be noted that where the 
Dickey-Fuller test uses n as a coefficient for y1_1 , the Johansen procedure as described here 

relates II toy t-p, which just corresponds to a re-arrangement of the augmented DF equation. 

EViews on the other hand uses the matrix coefficient of y t-i, which is closer to the usual 

univariate DF procedure. 
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The number of independent cointegrating vectors is determined by evaluating the rank of the 
coefficient matrix II. 

If the coefficient matrix II has reduced rank r < k, then there exist k x r matrices a. and p 
each with rank r such that II= a.pt and pt y t is stationary. The number of cointegrating 

relations (the cointegrating rank) is r and each column of p is the cointegrating vector. 

Estimates of the cointegrating vectors are given by each of the columns of the p matrix. 

Normalisation is required for the cointegrating vectors to be identified and EViews solves this 
for the first r variables in the Yt vector as a function of the remaining k-r variables. 

Similar to the Dickey Fuller tests deterministic trend assumptions must be made. The LR test 

statistic for the reduced rank has an asymptotic distribution. It does not have the usual x 2 

distribution and it depends on assumptions regarding the deterministic trends of the series and 
the cointegrating equations. 

The following options are used by EViews and they are based on Johansen (1995). The term 
Bxt has been deleted from the left hand side as discussed above. 

1 Series y have no deterministic trends and the cointegrating equations do not have 
intercepts: 

Ily 1-1 = apt Y 1- 1 (2.48) 

2 Series y have no deterministic trends and the cointegrating equations have intercepts: 

Hi • (r): Ily 1- 1 = a.(pt Y 1-1 +Po) (2.49) 

3 Series y have linear trends but the cointegrating equations have only intercepts: 

IIy 1-1 = a(pt Y t-1 + Po) + a 1- 'Yo (2.50) 

Here the constant in the VAR cannot be absorbed into the cointegrating equations because it 
is not in the column space of a. To make the model identifiable, the constant in the 
cointegrating equations could be omitted. Alternatively, the constant in the VAR can be split 
into one component of the form a.p0 and another, here denoted a 1- y O, which is 

perpendicular to the columns of a.. 

4 Both series y and the cointegrating equations have linear trends 

H*(r): (2.51) 

5 Series y have quadratic trends and the cointegrating equations have linear trends 

H(r): (2.52) 
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where a J_ is the (non-unique) k x ( k - r) matrix such that a' a J_= 0 and rank 

(fa la J_l) =k 

These five cases are nested from the most restrictive to the least restrictive, given any 
particular cointegrating rank r. 

• • H2(r) C H1 (r) C H1(r) C H (r) C H(r) 

EViews mentions that options 1 and 5 are rarely used in practice. It recommends option 2 if 
none of the series appears to have a trend. If there are trends, case 3 is recommended if all 
trends are stochastic and 4 if some of the series have a deterministic trend. 

EViews presents the eigenvalues and the Likelihood Ratio (LR) test statistic. Johansen's 
method estimates II in an unrestricted form and this is then it is tested whether the 
restrictions implied by the reduced rank of II can be rejected. 

The trace statistic (QT) is calculated as 

k 

Q, = -T 21og(l-A;) 
i-r+ I 

for r = 0, 1, ... , k-1 where A; is the ith largest eigenvalue. The trace statistic tests H1cr) against 

Hick)· This statistic tests the null hypothesis that the number of cointegrating vectors is less 
than or equal to r against a general alternative. 

Johansen suggest a second LR statistic, the maximum eigenvalue statistic. It is calculated 
from the trace statistic as 

Qmax = -T log(l - A, +1 ) = Q, - Q,+1 

This statistic tests Hi(r) against H 1cr+l) or alternatively worded that the number of cointegrating 
vectors is r against the alternative of r + 1 cointegrating vectors. 

If the 5 percent critical value is applied then the following applies. The hypothesis of no 
cointegration is rejected if the Trace statistic is more than the 5 % Critical Value for the 
"None" test and if the Max-Eigen statistic is more than its 5 % Critical Value. 
Enders makes the point that these two statistics may result in conflicting results (p. 393). 

After normalisation of the of the first r series in the Yt series by EViews the normalised 
cointegrating equation with the normalised cointegrating coefficients is given. This equation 
is the long-term relationship (J3) between the cointegrated variables. Also the adjustment 

coefficients (a) are given which show how the variables react to departures from the long­

term equilibrium. 
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2.9 Vector Error Correction Model selection 

The intention of the cointegration test is to determine whether series are co integrated and then 
to establish the Vector Error Correction Model (VECM). 

The VECM is defined as: 

where 

y - a - ~x is the cointegrating equation and y 2 Ay 1_1 + y 3Ay 1_2 + y 4Ax 1_1 + y 5 Ax 1_2 is the lag 

part. 

If cointegration exists between two time series, then one would expect the adjustment factors 
in y 1 to be of opposite sign. If one of them is not significant, then this expectation would not 

apply. In addition one would expect a negative adjustment factor in the equation for the 
variable on which the CE was normalized (ie the variable whose CE coefficient is set to 1). 

The following chapters will evaluate the appropriate time series in a systematic manner as 
made possible by EViews. Deliberately no attempt is made to make assumptions a priori 
about the deterministic components in the VECM, the number of lags in the differenced series 
or the results of he Granger Causality tests. The purpose is to evaluate the results of the tests 
as applied systematically to the data series and then analyse whether the various tests (eg unit 
root, Granger Causality and Cointegration) are consistent in their results. 

As a first step EViews provides the following options (Table 2.3): 

Table 2.3 Johansen Cointegration test. Cointegration Equation and VAR specification as enab led by EViews 

Tests assumes no deterministic trend in data: 
Option 1 No intercept or trend in CE or test V AR 
Option 2 In tercept (no trend) in CE - no intercept in VAR 

Test allows fo r li near deterministic trend in data: 
Option 3 Intercept (no trend) in CE and test V AR 
Option 4 Intercept and trend in CE - no trend in VAR 

Test allows for quadratic deterministic trend in data: 
Option 5 Intercept and trend in CE - linear trend in V AR 

Summary: 
Option 6 Summarise all 5 sets of assumptions 

The CE and data trend assumptions apply to levels. EViews calls the lag part of the VECM 
the V AR and estimates the tests V AR in differenced form. It is possible in EViews to include 
exogenous series in the V AR but this option will not be used in this thesis. 

The cointegration analyses below will consistently use Option 6 for initial analysis of the data 
sets. It will be done over a total of eight lags. The data will be displayed as shown in the table 
2.4. 
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Table 2.4 is a copy of table 6.7. It is displayed here to explain the way these tables are set up 
throughout the thesis. The left-hand column shows the number of lags included in the model 
and the number of resulting observations that can be used. 

The remaining columns contain cells that show the results for the various combinations of 
Options 1 to 5 as explained above and the number of lags. 

Table 2.4 Cointegration analysis of CD and SMD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 0 1 1 2 2 
39 obser- 1.775330 1.809640 
vations 2.159229 2.236194 
Lag 1 to 2 0 0 0 1 2 
38 obser- 1.471763 
vations 2.118179 
Lag 1 to 3 0 0 0 1 2 
37 obser- 1.417689 
vations 2.244917 
Lag 1 to 4 0 0 0 1 2 
36 obser- 1.242105 
vations 2.253798 
Lag 1 to 5 0 0 0 1 2 
35 obser- 1.173019 
vations 2.372859 
Lag 1 to 6 0 0 0 1 2 
34 obser- 1.016164 
vations 2.407846 
Lag 1 to 7 1 1 0 1 2 
33 obser- 1.533997 1.546635 0.617478 
vations 2.985156 3.043142 2.204683 
Lag 1 to 8 1 1 1 2 2 
32 obser- 1.232091 0.932344 0.807655 
vations 2.881044 2.627101 2.548216 
Note: Period covered 1994:1 - 2004:1. 

Each cell contains 3 numbers. The first number is the number of cointegrating equations. The 
number O means there were no cointegrating equations and no further information is 
displayed in these cells. V AR analyses could be applied to the first differences of the data. 
The number 2 in this instance where there were 2 time series means none of the series had 
unit root and a V AR could be specified in terms of the levels of these series. No further 
information is displayed in these cells. If there are 3 or more time series the number 3 or 
whatever respective number would have this meaning. If there are less cointegrating 
equations than the number of analysed series, but more then 0, then more details are 
displayed. The second number is the Akaike Information Criterion and the last number is the 
Schwarz Criterion. The lowest AIC and SC (ie the 'best' models) are displayed in bold. 

In order to interpret the results y I of (2.53) has to be normalised. No standard error is 

therefore given. EViews provides the standard errors and t statistics for the adjustment factors 
and the lagged ( differenced) time series. Table 2.5 shows the variables for which the standard 
error is provided in EViews. 

30 



Table 2.5 Standard error and t statistic provided in EViews 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Data trend 

Constant Yes Yes Yes 
Trend Yes 

CE 
Constant Yes No No No 
Trend Yes No 

The information criteria have been discussed above. During the analyses that follow it 
appeared that the SC consistently suggested more parsimonious models than the AIC. For this 
reason the model with the lowest SC usually was further analysed and not the model with the 
lowest AIC. Both information criteria depend on the number of usable observations. 
Consequently the use of the SC for choosing between models with different lags will 
introduce some bias. 

Next the VECM will be computed with EViews with the appropriate options and lags as 
established above. The results will be displayed in matrix format and any significant 
coefficients will be displayed in bold typeface. It should be noted that the cointegrating 
equation has been normalised on the first time series in this equation and consequently this 
could be considered significant too. The eigenvalues and unnormalised cointegration 
coefficients are available in EViews but they will not be displayed in this thesis. 

The residuals of the VECMs will be evaluated to establish whether they meet the assumptions 
of the linear model. The tests include the Jarque-Bera tests, inspection of the graphs of the 
residuals, the ACF and Q statistics, the correlation coefficient and the cross correlogram. 

2.10 Impulse Response Functions 

The impulse response function evaluates how a shock of an innovation affects the values of 
the endogenous variables. The following expose is based on Enders (pp. 305 - 310). The 
computations in the thesis are performed in EViews. When interpreting the discussion by 
Enders and the results of EViews, it should be noted that where Enders mentions a shock of 
one unit, EViews refers to a shock of one standard deviation. 

As an example take two equations: 

(2.54) 

This can be rewritten, by successive substitution, in the 'moving average' form as: 
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a22 e 2,,-i 
(2.55) 

The error terms e1,,_; and e2,1_; can be written in terms of the original error terms {t1,, }and 

{t 2,1 } as described in section 2.6. 

The moving average form of the above equation then becomes: 

(2.56) 

The four <p terms in the above equation are impact multipliers. 

A shock of one standard deviation of s 11 will affect the current value of y11 • It will not affect 
' ' 

the current value of y 2 ,. However there will be an effect on the future values of y 2 since it is 

influenced by the lagged values of y1 • 

If the error terms are correlated a problem arises since it is not known what proportion of the 
shock is to be attributed to what error. EViews uses the Choleski decomposition which 
orthogonalises the errors. As a result the covariance matrix of the resulting innovations is 
diagonal. This method is arbitrary since the sequence of the equations can have a severe 
impact on the attribution of the results. 

If the error terms e1 , and e?, are correlated then the order in which the time series are entered 
' -, 

for the computation will affect the impulse response function. Note that in section 2.6 the 
comment was made that they usually are and this followed from the way they were derived. 
Enders suggests that the correlation coefficient is significant if IP12 I >- 0.2. When two time 

series are analysed in this thesis, both ordering sequences will be analysed. If more than 2 
time series, 2 or more different orders will be used. 

2.11 Variance Decomposition 

The errors of a model can be considered in terms of a Vector Moving Average (VMA) rather 
than a V AR model. Over a period n the following equation applies: 

co 

Y, +n = µ + "\' </J;s ,+n-i 
~ 

(2.57) 

The forecast error after period n becomes 

n-1 

Y, +n - E, Y, +n = "\' </J;s1+11-i 
~ 

(2.58) 
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As discussed for the impulse response function, in the multivariate case the errors of the 
variables will influence each other. The Variance Decomposition establishes what proportion 
of the movements is a series are brought about by its own shocks and what by other shocks 
(Enders, p. 311). 

Now two time series {y}and {z}are given as discussed in section 2.6 (VAR). 

The n-step ahead forecast error of {y} is: 

Y1 +n - E1Y1 +11 = <P1 1 (O)t: y,1+11 + <P11 (l)t: y ,t-n-1 + ... + </J;; (n -1)& y ,t+I 

+ <Pr2 (O)t: z,1+n + <P12 (l)t: z.1+n-1 + · · · + <P1 2 (n -1)& =,1+1 

The variance of the n-step ahead forecast error of the above equation is: 

a-y(n)2 =a-: l<P11(0) 2 +</J11(1)2 + .. ·+ </J1 ,(n-l) 2 J+ 

a-: [<P12 (0) 2 + <P12 (1) 2 + .. · + <P,2 (n -1) 2
] 

(2.59) 

(2.60) 

This n-step ahead forecast error of a- Y (n) 2 can be decomposed in terms of the original shocks. 

For {c: y ,i }the proportion is: 

a-: l<P11C0)
2 

+</J11Cl)
2 

+ .. ·+</J11Cn-1)
2 
J 

a- y(n) 2 

and for {c: z ,i }it is: 

a- ; l<P12 (0) 2 + <P,2 (1)2 + ... + <P12 (n - 1)2 J 

a-Y(n) 2 

(2.61) 

(2.62) 

The problem that constitutes due to the ordering as described in the previous section also 
exists for Variance Decomposition. In this case to the Choleski decomposition is used. Also 
similarly various ordering are used during the analysis to establish the impact of the ordering. 

The interpretation of a variance decomposition graph is that it shows the percentage of the 
forecast error variance of a time series at the various time periods that is caused by its own 
shocks or by the shocks of the other time series. 

2.12 Concluding comments 

A number of statistical techniques have been discussed above that will be applied to economic 
time series relating to inflation. At first sight these techniques seem very suitable to explore 
these time series to arrive at a model that describes some important variables that affect 
inflation. Inevitably a number of variables cannot be explored for practical reasons. A perfect 
model would not be possible, since some variables will always be missing. 
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However the reservations about the suitability go beyond some of the practical concerns. 
Some of these concerns will be further discussed after the analyses have been performed. It 
seems appropriate to discuss some now, so that the reader is prepared for a number of the 
issues that arise during the analysis. 

The time series usually covered a period of approximately 10 years where the years were 
divided in quarters. From a statistical perspective this appeared to be a short period. From an 
economic perspective it could be argued that time series covering such a period without any 
major policy changes is probably as good as one can reasonably expect. If so one must 
wonder whether analysis based on a small number of variables, rather than a large number 
and extrapolating these a few periods out may be the only feasible alternative. 

The Dickey-Fuller tests have evolved somewhat since they were originally developed. This 
was to correct some violations of statistical assumptions. The result is a test that required test 
statistics based on simulations. Several other tests have been developed since ( eg the Phillips­
Perron tests). Nevertheless the DF tests are still widely used. If anything, the history of these 
tests shows the difficulty of the problem. If straightforward, one would have expected a 
standardised and widely accepted methodology to have been developed by now. 

A similar comment can be made about the Johansen methodology. These tests replaced the 
Engle-Granger approach to cointegration. However since the Johansen test is an extended 
form of the DF methodology, similar comments can be made. 

This thesis is about applied statistics and concentrates on the application of these tests to a 
number of economic time series. It attempts to use a standardised method for evaluating these 
series. Although one might get the impression that this is similar to ' data dredging' there are 
some important differences between these two methods. The standardised approach evaluates 
various options and establishes how the results differ as different assumptions are made. 
Usually there are no preconceived ideas, not even based on inspecting graphs. Data dredging 
on the other hand may be a matter of going through the available information until the 
preconceived ideas are 'proven ' . The standardised method that is used shows the risks of data 
dredging. If a sufficient number of options are tested, there is frequently one option that will 
support the theory that is proposed by an author. One the other hand there is often little 
guidance available, either from the data or from theoretical considerations, on which option to 
choose. 

The following chapters will at times show that inadmissible results eventuated. For instance 
the section on the DF tests showed various models as options. Sometimes it turned out that 
one of these models should be chosen, but further testing showed that some of its variables 
were not significant when they should be according to the model specification that was used. 
However, the resulting model that excluded these variables would appear to be inadmissible. 

As is common with most if not all statistical tests, some assumptions must be valid for the 
tests to be reliable. In this case the theory of linear model was important. Consequently a 
number of diagnostic tests were performed to evaluate whether the assumptions were valid. 
Inevitably a degree of subjectivity applies to decide whether the assumptions are met. Even 
worse perhaps is probably that some of the assumptions at times may not have held. Again a 
subjective judgement is required at times to decide whether to proceed or deem the test 
inappropriate for the issue that is investigated. 
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CHAPTER3 

ECONOMIC ASPECTS OF INFLATION 

3.1 Recent history of inflation in New Zealand 

The CPI in the period 1955-1965 was generally below 5%. However since the early 1960s 
inflation started to increase and in 1975 it exceeded 10%. Since then until 1988 it was 
generally above 10%. Exceptions were 1984 and 1985 when the CPI was lower due to wage 
and price freezes in previous years. In 1986 the GST was introduced and the GST rate was 
increased in 1989. Both events coincided with increases of inflation. 

The history above illustrates the need that existed to manage inflation in a consistent and 
effective manner. In 1989 the Reserve Bank of New Zealand Act was promulgated in 
response to this need. This Act provides a large degree of autonomy for the Reserve Bank of 
New Zealand (RBNZ). The degree of independence of the RBNZ of influences by 
government will ensure that no decisions are made that would jeopardise inflation targets as a 
trade-off for short-term political gain. One of the main tasks of the RBNZ was to ensure low 
levels of inflation and the policies put in place to achieve this are called "Inflation targeting". 
It intends to achieve low stable inflation as the main long-run goal for monetary policies. The 
main pillars of this policy are communication to the public, transparency of its actions and 
credibility of its intentions. 

Initially the objective was to achieve inflation that fell in the region of O to 3 percent. This 
was set out in the Policy Trade Agreements (PT As) as agreed to between the Minister of 
Finance and the Governor of the Reserve bank. In 1999 this was changed from 2 to 3 percent. 
The government can change the targets if it considers this necessary but checks are in place to 
ensure that this does not occur for political expediency. 

3.2 Inflation Theories 

A number of theories exist that attempt to explain the causes of inflation. At times these 
theories may be complementary to each rather than mutually exclusive. For instance the 
combination of knowledge of interest rates and of monetary aggregates might better explain 
inflation rates than either of them in isolation. 

Sometimes inflation theories might considerably overlap each other and the way a theory is 
described may reflect the author's view of the world rather than a real difference. For instance 
a theory can advocate the importance of interest rates. Increasing interest rates will reduce 
investment thereby causing unemployment, followed by a reduction in inflation. 
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The classification of inflation that is used in this chapter is based on the data sets that will be 
analysed. It is not intended to be comprehensive. Rather it intends to provide the context in 
which the econometric analysis of the data sets should be considered. No preconceived views 
regarding their economic importance should be read into the sequence of analysis. 
Furthermore, any final conclusions from the econometric analysis should be considered with 
caution. This is because of issues related to the statistical techniques used, the relative 
shortness of the time series and the data collection processes. It cannot be expected that the 
time series analyses will provide the definitive answer to the perennial question "What causes 
inflation?". In addition to the factors listed above, the political and social circumstances of a 
country are important. They are likely to heavily affect the impact of the various variables that 
will be analysed. Consequently it was deemed appropriate to discuss in section 3.3 some of 
the issues that in the recent past occurred in New Zealand and that may very well have a 
severe influence on the current inflation rate. 

Imported inflation 

An increase in the cost of goods and services imported into a country is likely to influence the 
inflation rate of the importing country. Importers may for some time absorb the increased cost 
(as expressed in NZ dollars) but they may ultimately be forced to pass on the costs to the 
buyers of their products. Increased inflation eventuates. The most important good is arguably 
oil. An increased ( or decreased) cost will not only affect the direct users of petrol but also 
those who use it for manufacturing goods produced from oil and the cost of transporting 
goods will increase as well. 

The cost of imported goods also works through a different channel. The cost of transport and 
insurance make an imported good more costly than a domestically produced good, ceteris 
paribus. If the prices of domestically produced goods rise faster than those of imported goods, 
then domestic buyers are likely to increasingly switch to the imported goods. This will have a 
dampening effect on inflation. 

This thesis will not evaluate imported inflation in detail. However in Chapter 4 it will discuss 
the relationship between tractable and non-tradable inflation as defined by the RBNZ. 

Quantity Theory of Money 

"Virtually every quantity theorist has recognised that changes in the quantity of money that 
correspond to changes in the volumes of trade or of the output have no tendency to produce 
changes in prices." (Milton Friedman quoted in Dornbusch and Fisher p. 372). 

The quantity theory of money links the monetary aggregates to inflation. In its most extreme 
form it states that the price level is fully determined by the increase in the stock of money. 
This strict interpretation is not commonly accepted any longer. 

In Chapter 5 and 7 this thesis will analyse Ml, M2 and M3R as defined by the RBNZ. Since 
M2 includes Ml and M3R includes M2, the increases from Ml to M2 and from M2 to M3 
will be analysed. The data provided by the RBNZ are not inflation adjusted. Some analyses 
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were performed with unadjusted log transformed time series and while other ones were CPI 
adjusted first before log transformation. 

It should be appreciated there are difficulties measuring money (Collins et al., 1999). The 
same would no doubt apply to some of the other time series that have been used and this 
should again serve as a warning to interpret the results of econometric analysis with caution. 

Output gap and interest rates 

The thinking about maintaining low inflation rates in New Zealand has been dominated in 
recent times by the philosophy of inflation targeting. This philosophy is based on the belief 
that when demand exceeds production too much, inflationary pressures become too high. The 
excess demand is measured by the output gap. A reduction in demand is brought about by the 
banks increasing their interest rates. The main tool used by the RBNZ to bring this about is 
using the Official Cash Rate (OCR). The RBNZ pays financial institutions an interest rate that 
is 0.25 percent below the OCR and charges them interest at 0.25 percent above the OCR. 
Consequently the short-term loans and borrowing by the banks to the public will be 'in a 
range that is closely associated with the OCR. 

In Chapter 6 this thesis will analyse the relationship between Gross Domestic Product and the 
interest rates. 

3.3 Some factors currently affecting inflation in New Zealand 

A number of specific events in recent years are affecting the inflation rates in New Zealand. 
To some degree these factors may affect inflation through mechanisms as explained by the 
theories discussed above. 

The issues listed below are just a selection of tentative factors and to investigate their effects 
in detail is outside the scope of this thesis. In some cases redistribution of wealth has 
occurred. Two main categories of variables that affect inflation are identified below. The first 
category includes factors that affect discretionary spending. Discretionary spending is defined 
here as the amount of money that remains available at the discretion of the holders for buying 
goods and services after payments of taxes, goods and services that "must" be made. The 
word "must" applies where either the payments are imposed or the holders are committed to 
them based on their decisions in the past. The second group of variables relate to the 
importance of the output gap. 

• The Employment Contacts Act (1991) 

The Employment Contracts Act (1991) reduced the ability of the lower paid workers to 
maintain or increase their purchasing power. Consequently the ownership of money resulting 
from the increase of the monetary aggregates may not have been evenly distributed over the 
population. It could be argued that the 'bidding' process for a number of goods might not 
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have occurred to any significant degree since the lower and middle socio-economic groups of 
New Zealand society at times benefited little from the economic reforms. 

The average hourly earnings might be used as a proxy for some of the effects of the ECA. 
However, it might be more appropriate to use an index that covers the bottom 80 percent of 
earners of society. 

• Abolishment of import licensing and tariffs 

The abolishment of import licensing and tariffs for many goods has made it easier to import 
goods from overseas. Therefore if the demand for certain goods increases, there would not 
necessarily be an increased pressure on production facilities and the output gap would not 
necessarily widen. Rather goods could be imported. This process has gone one step further 
because these imports are frequently from low cost countries. An example of this would be 
the imports of cheap clothes and second-hand automobiles. 

• Black market economy 

There is a wide range of activities that are not reflected in the 'official economy'. They range 
from tradesmen being paid 'under the table' to income from criminal activities. These 
activities are commonly paid for with notes and changes in patterns of these activities may 
influence the effect of Ml on inflation. 

• Housing 

The price of houses has increased considerably in recent years. This may have absorbed a 
large proportion of increase of the monetary aggregates . The increase in house prices has been 
of concern to the Governor of the Reserve Bank because of its inflationary effects. 

However it should also be considered that people with (large) mortgages will have Jess 
discretionary money because of repayment obligations. Consequently Jess money will be 
available to fuel inflation by purchasing other goods and services. 

• Household indebtedness 

Current household debt levels in New Zealand are high. The debt levels could be interpreted 
in various ways. Initial indebtedness might increase inflation since more money is available 
for spending. However, once debt needs to be repaid this may slow down inflation due to 
reduced discretionary money being available. 

• Virtual monopolies, compliance costs and tax drag 

There are a number of virtual monopolies such as utilities and city /district councils. 
Consumers do not have an option but to pay the charges or taxes (rates, assessment and 
compliance costs, etc.) imposed by these organisations. This leads to a reduction in money 
available for discretionary spending. Although to some degree these increases will be 
reflected in the CPI, it also means that the output gap does not come under pressure since the 
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discretionary spending is reduced. The way in which these organisations spend their money 
will determine their effect on inflation. This example illustrates how the various pathways that 
may lead to increases in inflation. 

Similarly as some compensation for inflation occurs, this compensation may be partially 
taxed away if people fall into a higher tax bracket. 

• Student loans 

The repayment of loans to an extent that did not exist in the past is likely to affect the 
discretionary income of some socio-economic groups. 

The issues raised above may have had some impact on the low levels of inflation in recent 
times. There are only a small number of quarterly observations available and there are many 
variables that may, to a smaller or larger degree, influence inflation. The list of examples 
above is not comprehensive but serves to show that there are many specific factors as part of 
or in addition to the interest rates and monetary aggregates that may have contributed to the 
low inflation rates in recent times. 
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CHAPTER4 

TIME SERIES ANALYSES OF INFLATION 

Introduction 

· This chapter will analyse various time series of inflation in New Zealand. Below the 
abbreviations are described and the way in which various aspects of the analyses have been 
denoted. 

LOGCPI 
CPI 
LOGCPIX 
LOGNT 
LOGT 
LOGLC 
LOGHE 

Natural logarithm of the CPI 
Consumer Price Index 
Natural logarithm of the CPI excluding credit services 
Natural logarithm of CPI Non-Tractable Inflation 
Natural logarithm of CPI Tradable Inflation 
Natural logarithm of Labour Cost Inputs 
Natural logarithm of Average Hourly Earnings 

The univariate and multivariate analyses will be carried out as explained in Chapter 3. The 
rand <P statistics are as described by Dickey and Fuller (1981). The coefficient of the 

constant term is denoted as a0 and that of the linear trend term is described as a2 . The standard 
errors are put in parentheses below each equation. The terms 6.Y,_; were used in the models if 

they were significant. In some instances a term may have been included if not significant, if 
the higher order term(s) was (were) significant (See Chapter 2 for details) . Note that critical 
values for tests are based on n = 50 as this is the closest tabulated value in Dickey and Fuller 
(1981) . Since our sample sizes are slightly larger the test will be slightly conservative. The 
data consists of quarterly values . This is reflected in the notation used (eg 1991:4 is the fourth 
quarter of 1991). In subsequent chapters cointegration tests will be performed with LOGCPI. 
The time series used in the subsequent chapters will be shorter than the time series used in the 
OF tests of this chapter. 

LOGCPI 

This section analyses the time series that consists of the natural logarithm of the Statistics 
New Zealand All Groups Consumer Price Index (LOGCPI). The data are derived through the 
RBNZ from Statistics New Zealand. The base was June 1999 = 1000. From September 1999 
this index excludes interest charges and section prices. It is always unfortunate if changes 
have occurred to the collection of a data series. A breakpoint test will be performed to see 
whether a breakpoint at this point in time can be demonstrated. The time series has an upward 
trend (Figure 4.1). The variance seems to be constant. The ACF dies down slowly. The 
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differenced series shows one large peak early in the series. After a subsequent decline the 
series seems more or less stationary with considerable variation. 
The time series covers the period from 1988:1 to 2003:2. 

Figure 4.1 Time series and differenced time series of LOGCPI 
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DF Models of LOGCPI 

The time series of LOGCPI was tested for stationarity in (4.1) to (4.5) by using the Dickey­
Fuller equations as outlined in Chapter 2. 

Modell 
MOGCPI 1 = 0.7392 + 0.0005t - 0.1096LOGCPI,_1 + 0.3522/1LOGCPI

1
_1 + c, 

(0.2185) (0.0002) (0.0326) (0.1129) ( 4.1) 

Model2 
MOGCPI1 = 0.1302- O.Ol85LOGCPI

1
_ 1 + 0.368311LOGCPI

1
_ 1 + &, ( 4.2) 

(0.0531) (0.0071) (0.1197) 

Model 2R 
MOGCPI 1 = 0.0032 + 0.46l4/1LOGCPI

1
_1 + c, ( 4.3) 

(0.001) (0.1177) 

Model3 
MOGCPI

1 
= 0.0005LOGCPI

1
_ 1 + 0.4673/1LOGCPI

1
_ 1 + c, (4.4) 

(0.0002) (0.1174) 

Model 3R 
MOGCP/1 = 0.7303/1LOGCPI

1
_ 1 + &

1 (4.5) 

(0.0876) 

The RSS and the information criteria of (4.1) to (4.5) are shown in Table 4.1. 
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Table 4.1 RSS and information criteria of Dickey-Fuller models of LOGCPI 
RSS AIC SC 

Model 1 0.00133 -7.7483 -7.6087 
Model 2 0.0015 -7.645 -7.5403 
Model 2R 0.0017 
Model 3 0.0017 -7.5780 -7.5082 
Model 3R 0.001963 

Adj. R2 

0.3399 
0.2566 

0.1922 

The various statistics of the DF models ( 4.1) to ( 4.5) are displayed in Table 4.2. 

Table 4.2 Summary of the Dickey-Fuller tests of LOGCPI 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 

T , 
-3.36 -3.48 (0.05) y =O 

-3.17 (0.1) 

T ar 
3.38 3.14 (0.05, 50) a0 = 0 given y = 0 

3.47 (0.025, 50) 

T f)r 
2.86 2.81 (0.05, 50) a2 = 0 given y = 0 

3.18 (0.025, 50) 

<P2 8.95 7.02 (0.01 , 50) a0 = y = a2 = 0 

</)3 7.32 6.73 (0.05, 50) y = a2 = 0 
7.81 (0.025, 50) 

2 
T µ 

-2.39 -2.59 (0 .1 ) y =O 

T aµ 
2.45 2.18 (0.1, 50) a0 = 0 given y = 0 

<P1 8.28 7.06 (0.01, 50) a0 = y = 0 

3 r 3. 12 -1.62 (0 .1) y =O 
# n listed if p-value for precise sample size of time series not known 

Model 2 has a unit root. Model 1 suggests unit root (p > 0.05). However the evidence is not 
strong. Model 3 does not have a unit root. 

Modell 
The ACF of equation (4.1) does not show significant lags (28 lags included). There are no 
significant Q statistics. 

Both deterministic components ( T statistics) of Model 1 are significant (p < 0.05) if the 
hypothesis of unit root is accepted. Here too the evidence is not strong. 

There are 60 usable observations (T = 60) and 4 parameters in the unrestricted model (k = 4) 
of </J2 (3 restrictions) and </J3 (2 restrictions). 

The unrestricted and restricted equations for </J 2 (4.1) are and (4.5) respectively. 

The null hypothesis is rejected. This can be interpreted as meaning that if the process is unit 
root, than ao and/or a2 are significant which supports the conclusion based on the Ta, and 

r /Jr statistics. 
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The unrestricted equation and restricted equations for </)3 are (4.1) and (4.3) respectively. 

Hence it is possible to reject the null hypothesis (p < 0.05) but it should be considered that the 
evidence is not strong. This can be interpreted as meaning that if the process has a unit root, 
then a2 is significant. 

Figures 4.1 and 4.2 show that structural breaks could have occurred. If so this would have 
made the inclusion of deterministic components in the differenced equations more likely. One 
point in Figure 4.2 stands out (1989:3) and it will be further investigated with the Chow test. 

The Chow Breakpoint Test was performed on Model 1 (4.1) and the results are shown in 
Table 4.3 

Table 4.3 Chow Breakpoint Test of DF Model 1 of LOGCPI 

1989:3 
F - statistic 
Log Likelihood ratio 
1999:3 
F - statistic 
Log Likelihood ratio 

Value 

2.99 
12.41 

0.81 
3.66 

Probability 

0.03 
0.01 

0.52 
0.45 

There is evidence for a breakpoint at 1989:3. This may impact on some of the conclusions of 
Model 1. Note though that the choice of possible breakpoint was determined by examining 
the data, and this to some extent compromises the validity of the test. No breakpoint could be 
detected at 1999:3 when the section prices and interest rates were no longer included. 

The conclusion from analysing Model 1 is that the hypothesis of a unit root in the time series 
LOGCPI is not rejected. The DF model has a constant and a deterministic trend. Figure 4.2 
supports a constant. The deterministic trend may be caused by the large peak and as such 
should be interpreted with caution. The DF model infers a quadratic trend in the 
undifferenced time series, or equivalently a deterministic linear trend in the rate of inflation. 
Figures 4.1 and 4.2 do not seem to fully support this impression. 

Modef 2 

This model suggests a unit root (p > 0.1). The ACF of equation (4.2) does not show 
significant lags (28 lags included). There are no significant Q statistics. 

The constant (ao) is significant at the 5% significance level. 

The unrestricted and the restricted equations for </)1 are ( 4.2) and (5 .5) respectively. There are 

60 usable observations (T=60) and 3 parameters (k=3) in the unrestricted model. There are 2 
restrictions. 

This null hypothesis ( a0 = y = 0) is rejected. Therefore the constant term ( a0) is significant if 

the process is unit root. The Chow Breakpoint Tests failed to demonstrate a significant 
breakpoint (Table 4.4). 
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Table 4.4 Chow Breakpoint Test of DF Model 2 of LOGCPI 

1989:3 
F - statistic 
Log Likelihood ratio 
1999:3 
F - statistic 
Log Likelihood ratio 

Value 

0.06 
0.21 

2.08 
6.56 

Probability 

0.98 
0.98 

0.11 
0.09 

In view of these results it would appear that Model 2 is indeed preferable. It is assumed that 
the exclusion of interest rates and section prices from this index since 1999:3 is of a minor 
nature. 

These results are interpreted to mean that the process has a unit root with a constant in the DF 
equation. This implies that the inflation rate (rate of change of the CPI) fluctuates randomly 
around a constant level. 

Selection of LOGCPI DF model 

The process seems unit root but only if deterministic components are included. Based on the 
information criteria, Model 1 would be favoured . However, the extreme values, early in the 
time series may have caused this situation. The Chow Breakpoint test also supports that view. 

Since Model 2 is not rejected and more plausible from an economic perspective itwould 
appear to be the preferred model. 

A number of simulations were performed using the chosen model (ie unit root and a0 = 
0.13)(Figure 4.2). No autocorrelated terms !1y

1
_; were used during these simulations since the 

error terms were not correlated anyway. Some graphs are shown below for illustrative 
purposes. 

Figure 4.2 Simulated graphs of ( 4.2) 

The conclusion is that the inflation rate (rate of change of CPI) fluctuates randomly around a 
constant level, while the actual price level increases over time in a more or less constant 
manner. It should be noted that the model allows for declines of a magnitude that the actual 
data set (LOGCPI) did not display. 
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CPI 

This section analyses the time series of the Consumer Price Index (CPI). This index is 
described in the previous section. The time series covers the period from 1988:1 to 2003:2. 

This is the same series as the one that was analysed in the previous section. The difference is 
that this series was not log transformed. The intention is to see whether the conversion might 
have lead to different conclusions. See Chapter 2 for further comments on log transformation. 
The time series CPI has an upward trend (Figure 4.4). The variance does not appear to 
increase over time. The ACF decays slowly over time. Figure 4.4 shows one large peak 
around 1989:3. After that peak a considerable decline occurs. The rest of the series displays 
considerable variation. 

Figure 4.3 Time series and differenced time series of CPI 
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The time series of CPI was tested for stationarity in (4.6) to (4.10) by using the Dickey-Fuller 
equations as outlined in Chapter 2. 

Modell 
!lCPI, = 99.2211 + 0.5276t -0.1184CPI,_1 + 0.3789/lCP(_I + &, (4.6) 

(30.3589) (0.1869) (0.0380) (0.1145) 

Model 2 
!lCP/

1 
= 15.6869- 0.0129CPI

1
_ 1 + 0.3708!!.CPI,_1 + &

1 (4.7) 

(7.1452) (0.0073) (0.1212) 

Model 2R 
!lCPI

1 
= 3.2077 + 0.4128!!.CPI

1
_1 (4.8) 

(0.9228) (0.121) 

Model3 
!lCPI, = 0.0031CPil-1 + 0.4472!!.CPI,_1 + &I (4.9) 

(0.0001) (0.1199) 
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Model 3R 
!1CPI

1 
= 0.723511CPI,_1 + c 1 

(4.10) 

(0.0889) 

The RSS and various information criteria of (4.6) to (4.10) are displayed in Table 4.5. Model 
1 seems the preferred model if the decision were based on the information criteria. 

Table 4.5 RSS and information criteria of Dickey-Fuller models of CPI 
RSS AIC SC 

Model 1 1118.15 5.8963 6.0359 
Model 2 1277.17 5.9959 6.1007 
Model 2R 1346.635 
Model 3 1385.168 6.0438 6.1136 
Model 3R 1627.173 

Adj . R2 

0.2714 
0.1824 

0.1286 

The various rand ~ statistics of (4.6) to (4.10) are shown in table 4.6. Both Model 1 and 

Model 2 have a unit root but Model 3 does not have a unit root. 

Table 4.6 Summary of the Dickey-Fuller tests of CPI 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 

!T 
-3.11 -3.17 (0.1) y=O 

!aT 
3.27 3.14 (0.05, 50) a0 = 0 given y = 0 

3.47 (O.G25, 50) 

r /fr 
2.82 2.81 (0.05, 50) a2 = 0 given y = 0 

3.18 (0.025, 50) 

~2 
8.50 7.02 (0.01 , 50) a0 = y = a2 = 0 

~ 3 
5.72 5.61 (0.1, 50) r = az = 0 

6.73 (0.05, 50) 

2 r µ -1.76 -2.59 (0.1) y=O 

Taµ 
2.20 2.18 (0.1, 50) a0 = 0 given y = 0 

~I 
7.81 7.06 (0.01, 50) a0 = y = 0 

3 T 
3.18 -1.62 (0.1) y =0 

n listed if p-value for precise sample size of time series not known 

Model] 

The model suggests unit root (p > 0.1 ). The ACF of equation ( 4.6) does not show significant 
lags (28 lags included). There are no significant Q statistics. 

Both deterministic components ( r aT and r /Jr) are significant (p < 0.05) if the hypothesis of 

unit root is accepted. Again the evidence is not strong. 
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The unrestricted and the restricted equations for ~2 are (4.6) and (4.10) respectively. For </)
3 

these equations are (6.1) and (6.3). There are 60 usable observations (T=60) and 4 parameters 
(k=4) in the unrestricted models of </)2 and ~3 • There are 3 restrictions in </)

2 
and 2 in</)

3
• 

The null hypothesis for </)2 is rejected . This can be interpreted as meaning that if the process is 

unit root, than ao and/or a2 are significant which supports the conclusion based on the r ar and 

r /h statistics. 

It is questionable whether the null hypothesis for ~3 should be rejected. It is possible that a2 is 
zero. 

Figure 4.3 shows that a structural break could have occurred. If so this would have made the 
inclusion of deterministic components in the differenced equations more likely. One point 
stands out and they will be further investigated with the Chow Breakpoint Test. The Chow 
Breakpoint Test was performed 1989:3 (Table 4.7). A breakpoint was not demonstrated with 
this test. 

Table 4.7 Chow Breakpoint Test of OF Model 1 of CPI at 1989:3 

F - statistic 
Log Likelihood ratio 

Model2 

Value 
1.658489 
7.204219 

Probability 
0.173736 
0.125482 

This model suggests a unit root (p > 0.1). The ACF of this equation does not show significant 
lags (28 lags included). There are no significant Q statistics. 

The constant (a0) is significant at the 10% but not at the 5% significance level. Therefore the 
evidence is not strong. 

The unrestricted and the restricted equations for ~1 are ( 4. 7) and ( 4.10) respectively. There are 

60 usable observations (T=60) and 3 parameters (k=3) in the unrestricted model. There are 2 
restrictions .. 

The null hypothesis ( a0 = y = 0) is rejected. Therefore the constant term is significant if the 

process is unit root. The r aµ and the </)1 statistics are not in good agreement. 

The Chow Breakpoint Test was performed on Model 2 (Table 4.8). A breakpoint was not 
demonstrated with this test. 

Table 4.8 Chow Breakpoint Test of OF Model 2 of CPI at 1989:3 

F - statistic 
Log Likelihood ratio 

Value 
0.05 
0.16 

Probability 
0.99 
0.98 
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Selection of CPI DF model 

The process seems to have a unit root but deterministic components should be included. Both 
Model 1 and Model 2 have statistics that could be interpreted as rejecting either model. Based 
on the information criteria, Model 1 seemed the best model. However, ~3 did not provide 

strong support for a2 being significant. 

Similar to the analysis of the LOGCPI models, the extreme value at 1989:3 is of concern. 
Chow Breakpoint tests were carried out and the hypothesis of no breakpoint at the most 
probable time was accepted. 

The selection of Model 1 means that the time series CPI has a deterministic quadratic trend. 
This is not very plausible from an economic perspective. Also Figure 4.3 does not provide 
much support for this model. In the case of this time series, further use for cointegration 
analysis is not intended since log transformed series seem more appropriate. It is of interest to 
note that the model for CPI differs from the one selected for LOGCPJ. 

49 



LOGCPIX 

This section analyses the natural logarithm of the Statistics New Zealand All Groups 
Consumer Price Index excluding the Credit Services Group. From September 1999, the credit 
services group excludes interest rates. The time series covers the period 1988:1 to 2003:2. The 
series has an upward trend (Figure 4.4). The variance seems to be constant. The ACF dies 
down slowly. The time series DLOGCPIX show a large peak at 1989:3. 

Figure 4.4 Time series and differenced time series of LOGCPIX 
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The standard approach as outlined in Chapter 2 for establishing the number of lags was 
followed. In the equations below three lags were necessary for carrying out the tests with the 
restricted models. Once the most appropriate model has been identified given the standardised 
approach, a further analysis will be performed to see whether some further improvements can 
be made to this model. This may influence the final conclusion which it the preferred model. 

Model 1: 
MOGCP/Xt = 1.1194 + 0.0008t -0.1669LOGCPIX1_ 1 + 0.0888MOGCP/Xt_1 -

(0.2430) (0.0002) (0.0364) (0.1153) 

0.3669MOGCP/Xt_1 + 0.2812MOGCPICXt_3 + et (4.11) 

(0.1154) (0.1125 

Model2 
MOGCP!Xt = 0.1053- 0.0149LOGCP/Xt-i + 0.1889MOGCP/Xt_1 + 0.0057 MOGCP/Xt-z 

(0.0540) (0.0078) (0.1298) (0.1322) 

+ 0.2866MOGCPIX
1

_ 3 + et 

(0.1294) 

(4.12) 
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Model 2R 
M.OGCPIX

1 
= 0.0019 + 0.2536M.OGCPIX

1
_ 1 + 0.0579M.OGCPIX1_ 2 + 

Model 3 

(0.0012) (0.1284) (0.1326) 

0.3493M.OGCPIX,_3 + £ 1 

(0.1282) 

(4.13) 

M.OGCP!X, = 0.0003LOGCP!X
1

_1 + 0.2566M.OGCPIX
1

_ 1 + 0.0605M.OGCPIX
1

_ 2 

Model 3R 

(0.0002) (0.1283) (0.1326) 

+ 0.3524MOGCP!X,_3 + £ 1 

(0.1281) 

(4.14) 

M.OGCP!X
1 

= 0.3255MOGCPIX,_1 + O.l225M.OGCPIX
1

_ 2 + 0.4238MOGCPIX,_3 + £
1 

(0.1221) (0.1281) (0.1213) ( 4.15) 

The RSS and various information criteria that apply to LOGCP!X are displayed in Table 4.9. 
Model 1 would appear to be the best model 

Table 4.9 RSS and information criteria of Dickey-Fuller models of LOGCPIX 
RSS AlC SC 

Model 1 (4.11) 0.0009 -8.0717 -7.8586 
Model 2 (4.12) 0.001162 -7.8076 -6.6300 
Model 2R (4.13) 0.0012 
Model 3 (4 .1 4) 0.0012 -7.7726 -7.6305 
Model 3R (4.15) 0.001302 

Adj. R2 

0.4453 
0.2664 

0.2282 

The various r and ~ statistics of (4.11) to (4.15) are displayed in table 4.10). Neither Model 
1 nor Model 3 support a unit root. 

Table 4.10 Summar of the Dicke -Fuller tests of LOGCPJX 
Model Test Value Critical Value (p-value, n Hypothesis 

Statistic 
1 r, -4.59 -4.12 (0.01) r =O 
2 rµ -1.92 -2.59 (0 .1) r=O 

raµ 
1.95 2.18 (0.1, 50) ao = 0 given y = 0 

2.56 (0.05, 50) 

~1 
3.19 3.94 (0.1, 50) ao = r = 0 

3 r 1.56 -1.62 (0.1) r =O 
n listed if p-value for precise sample size of time series not known 
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Mode/2 

The ACF of equation (4.12) does not show significant lags (28 lags included). There are no 
significant Q statistics. 

The constant (ao) is significant at the 10% but not at the 5% significance level and therefore 
the evidence is not strong. 

The unrestricted and the restricted equation for ~1 are (4.12) and (4.15) respectively There are 
58 usable observations (T = 58) and 5 parameters (k = 5) in the unrestricted models. There are 
2 restrictions. The null hypothesis of unit root and a0 = 0 is not rejected. If the process is unit 
root, then the term a0 is not significant. 

Selection of LOGCPIX DF Model 

Model 1 and Model 3 reject the unit root hypothesis. Model 2 accepted unit root but also 
considered a0 not being different from zero. This would in effect result in Model 3 being unit 
root but this was rejected. Consequently the results are ambiguous. 

Since unit root is essential for the proposed course of action with multivariate analysis Model 
2 is selected. A further analysis was carried out with model 2 but with fewer lags. 

Model 2 with 2 lags had an ADF statistic -2.6916 (critical value -2.9109, p =0.05). Both 
coefficients of the lagged terms are not significant (p > 0.10). 
Model 2 with 1 lag had an ADF statistic-3.0705 (critical value -3.5417, p = 0.01; critical 
value -2.9101, p = 0.05). The p- value of the coefficient of lagged term is 0.0601. 
Model 2 with no lags did not have a unit root (p, 0.01). Consequently Model 2 with 1 lag 
seems the best model available. Its test statistics for a 0 is r aµ = 3.1543 with critical value 2.89 

for n = 50 and p = 0.025. The ACF at lag 3 is significant or close to significance but the other 
lags are not significant. There are no significant Q statistics. 

The limits of Model 2 with 1 lag are to be noted. The process is not convincingly unit root. 
However it is similar to the model selected for LOGCPI which is a positive point. V AR may 
be considered if deemed appropriate given other time series under investigation. As a 
concluding comment it could be considered that the analysis process of time series using the 
commonly used Dickey Fuller approach is far from perfect. 
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LOGCPINT 

This section analyses the time series that consist of natural logarithm of the CPI Non­
tradables Inflation. This is a time series that is created by the RBNZ and it includes all the 
goods and services in the CPI that are not exposed to foreign competition such as government 
charges. Interest rates are excluded. The time series covers the period from 1988:4 to 2003:2. 
This time series will be denoted as LOGCPINT or LOGNT in this section. The undifferenced 
series has an upward trend (Figure 4.5). There do not appear to be structural breaks. The ACF 
dies down slowly. The differenced series seems to indicate an initial decrease followed by a 
more constant pattern. 

Figure 4.5 Time series and differenced time series of LOGNT 
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In all three models the augmented term MOGNT
1

_ 3 was significant or it was close to 

significance with the terms MOGNT
1

_ 1 and MOGNT,_2 not being significant. This situation is 

very similar to LOGCPIX. 

Model 1 
MOGNT, = 0.5182 + 0.0005t-0.0782LOGNT,_1 + 

(0.2352) (0.0003) (0.035778) 

O.ll89MOGNT,_1 + O.ll9011LOGNT,_2 + 0.2414MOGNT,_3 + &, 

(0.1119) (0.1096) (0.1111) (4.16) 

Model 2 
MOGNT, = 0.0379 - 0.0050LOGNT,_1 + O.l509MOGNT,_1 + 

(0.0456) (0.0066) (0.1145) 

O.ll89MOGNT,_2 + 0.22l011LOGNT,_3 + &, (4.17) 

(0.1131) (0.1143) 
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Model 2R 
MOGNT

1 
= 0.0031+ 0.1745!1LOGNT

1
_ 1 + 0.1425MOGNT1_ 2 + 0.2471MOGNT1_ 3 + &1 (4.18) 

(0.0013) (0.1098) (0.1084) (0.1086) 

Model3 
MOGNJ: = 0.0004LOGNT1_1 + O.l 775MOGNJ:_1 + 0.1455!1LOGNT1_ 2 + 

Model 3R 

(0.0004) (0.1096) (0.1455) 

0.2503MOGNT1_ 3 + &
1 

(0.1084) 

( 4.19) 

MOGNJ: = 0.2672!1LOGNT
1
_ 1 + 0.2403!1LOGNT

1
_ 2 + 0.3398MOGNT1_ 3 + &1 

(4.20) 

(0.1080) (0.1056) (0.1067) 

The RSS and various information criteria of LOGNT are shown in Table 4.11. The various 
criteria are indicating different optimal models. 

Table 4.11 RSS and information criteria of Dickey-Fuller models of LOGNT 

Model 1 (4.16) 
Model 2 (4.17) 
Model 2R ( 4.18) 
Model 3 (4.19) 
Model 3R ( 4.20) 

~S AfC ~ 

0.000994 -7.8654 -7.6464 
0.001081 -7.8172 -7.6347 
0.001094 
0.001096 
0.001224 

-7.8399 -7.6939 

Adj. R2 

0.2676 
0.2190 

0.2237 

The r and the <p statistics of (4.16) to (4.20) are shown in Table 4.12. Both Model 1 and 
Model 2 have a unit root (p > 0.1) but Model 3 does not. 

Table 4.12 Summary of the Dickey-Fuller tests of LOGNT 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 r, -2.19 -3.17 (0.1) r =O 

r a, 
2.20 2.75 (0.1, 50) a0 = 0 given y = 0 

r /Jr 
2.08 2.38 (0.1 , 50) a2 = 0 given r = 0 

</J2 3.78 4.31 (0.1, 50) ao = r = a2 = 0 

lp3 2.14 5.61 (0.1, 50) r = a2 = 0 
2 rµ -0.76 -2.59 (0.1) y=O 

r aµ 
0.83 2.18 (0.1, 50) ao = 0 given y = 0 

</J1 
3.31 3.94 (0.1 , 50) ao = r = 0 

3 r 2.44 r >- o r =O 
n listed if p-value for precise sample size of time series not known 
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Model 1 

The ACF of (4.16) does not show significant lags (24 lags included). There are no significant 
Q statistics. 

Both deterministic components ( r a r and r /Jr) are not significant (p > 0.1) if the hypothesis of 

unit root is accepted. 

The unrestricted and the restricted equation for </J 2 are ( 4.16) and ( 4.20) respectively. For </)3 

these equations are (4.21) and (4.23). There are 55 usable observations (T = 55) and 6 
parameters (k = 6) in the unrestricted models of <p2 and <p3 • There are 3 restrictions in </J2 and 

2 in </J3 • 

The null hypothesis that a 0 = y = a 2 = 0 is not rejected. If the process is unit root, then both 

ao and a2 are not significantly different from O which is in line with the r ar and r /Jr statistics. 

Also the null hypothesis that y = a 2 = 0 is not rejected. This means that the process is unit 

root and a2 is 0. 

Although Model 1 has a unit root, a further analysis of the r and the <P statistics has shown 

they are not significantly different from 0. Therefore Model 1 is not an adequate model. 

Model2 

The ACF of equation ( 4.17) does not have significant lags (24 lags included). There are no 
significant Q statistics. 

The constant a0 of Model 2 is not significant at the 10% level. 

The unrestricted and the restricted equation for </J1 are (4.17) and (4.20) respectively There are 

55 usable observations (T = 55) and 5 parameters (k = 5) in the unrestricted models. There are 
2 restrictions. The null hypothesis of unit root and a0 = 0 is not rejected. Both r ar and the 

<p1 statistics agree that a0 is not significant. 

Comments on unit root model selection at this stage 

At this stage no satisfactory unit root model has been found. Other models with fewer 
augmented terms are evaluated in Table 4.13. 
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Table 4.13 Summar of additional Dicke -Fuller tests of LOGNT 
Model Test Value Critical Value (p-value, n Hypothesis 
& Statistic 

1(2) rr -3.70 -4.13 (0.01) r =O 
-3.49 (0.05) 

1(2) NC -7.63 

1(1) rr -3.12 -3.17 (0.1) r =0 
1(1) N C -7.57 

1(1) rar 3.16 3.14 (0.05, 50) a0 = 0 given y = 0 
3.47 (0.025, 50) 

1(1) r /fr 2.61 2.81 (0.05, 50) a2 = 0 given r = 0 
2.38 (0.1, 50) 

1(0) rr -3.25 -3.49 (0.05) r =0 
-3.17 (0.1) 

1(0) NC -7.59 

1(0) rar 3.32 3.14 (0.05, 50) a0 = 0 given y = 0 
3.47 (0.025, 50) 

1(0) r r1r 
2.57 2.38 (0.1, 50) a2 = 0 given r = 0 

2.81 (0.05, 50) 
2 (2) r µ -2.34 -2.59 (0.1) r =O 

2(2) NC -7.49 

2(2) r aµ 2.42 2.18 (0.1 , 50) a0 = 0 given r = 0 
2.56 (0.05, 50) 

2(1) r µ -2.85 -2.91 (0.05) r =O 
-2.59 (0.1) 

2(1) NC -7.49 

2(0) rµ -4.00 -3.55 (0.01) r =O 
3 r For all lags: y > 0 r =0 

n listed if p-value for precise sample size of time series not known 
(&)Lagged differences 

For selection of the best unit root model, the ADF statistic is evaluated first. Only Model 1(1) 
and Model 2(2) appeared to have a clear unit root (p > 0.1). Both these Models had 
a r statistic that was not significant at p < 0.05. 

All three Models 1 had residuals that were significant or close to significance at lag 3. Model 
2(2) did not have significant lags in the ACF nor were its Q statistics significant. 

Again no model eventuated that was acceptable in all regards. 

The intercept only model with two lagged differences seemed preferable as there was strong 
evidence for unit root and there was no autocorrelation left in the residuals. The evidence 
supporting ao being significant was weak. However, there will be a need for consistency of 
lags for the cointegration tests that will follow. The model with the intercept only and 1 lag 
was acceptable since it had arguably unit root, a significant ao and acceptable Q statistics. 

The conclusion is that the inflation rate for the CPI of non-tradable inflation fluctuates 
randomly around a constant level, while the actual CPINT increases over time in a more or 
less constant manner. 
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LOGCPJT 

This section analyses the natural logarithm of the Consumer Price Index of Tractable Inflation 
( denoted as LOGCPIT or LOGT). This series is calculated by the RBNZ and consists of all 
goods and services in the CPI that are imported or that are in competition with foreign goods 
either in the domestic or the foreign markets. LOGCPIT is a quarterly series that starts in 
1988:4 and finishes in 2003:2. The time series has an upward trend but this trend differs 
considerably from the CPI and CPIX trends (Figure 4.6). There may have been one or more 
structural breaks but the graph is not clear in this regard. The ACF decays slowly over time. 
The differenced series shows a large peak at 1989:3. 

Figure 4.6 Time series and differenced time series of LOGCPJT 
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The time series LOGCPIT was tested for stationarity in ( 4.21) to ( 4.25) by using the Dickey­
Fuller equations as outlined in Chapter 2. 

Model 1 
MOGCPIT, = 0.9775 + 0.0004t -0.1436LOGCPIT,_1 + 0.3315MOGCPIT1_ 1 + s, 

(0.2825) (0.0002) (0.0417) (0.1191) (4.21) 

Model 2 
MOGCPIT, = 0.2234 -0.032LOGCPIT,_1 + 0.3314MOGCPIT,_1 + s, 

(0.0960) (0.1392) (0.1265) (4.22) 

Model 2R 
MOGCPIT = 0.0028 + 0.39211:c.LOGCPIT,_1 + s, (4.23) 

(0.0011) (0.1285) 

Model 3 
MOGCPIT, = 0.0004LOGCPIT,_1 + 0.3947MOGCPIT1-1 + s, 

(0.0002) (0.1285) (4.24) 
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Model 3R 
MOGCPIT1 = 0.5840MOGCPIT1_ 1 + s, (4.25) 

(0.1085) 

The RSS and information criteria of (4.21) to (4.25) are displayed in Table 4.14. Model 1 has 
the best information criteria. 

Table 4. 14 RSS and information criteria of Dickey-Fuller models of LOGCPIT 
RSS AIC SC 

Model 1 (4.21) 0.0019 -7.3119 -7.1685 
Model 2 ( 4.22) 0.0022 -7.2074 -7.0998 
Model 2R ( 4.23) 0.0024444 
Model 3 (4.24) 0.0024 -7.1469 -7.0752 
Model 3R ( 4.25) 0.0027727 

Adj. R2 

0.2841 
0.1921 

0.1429 

The various rand </> statistics of Models 1 to 3 are displayed in Table 4.15. There is weak 
evidence against unit root in Model 1. Model 2 has a unit root and Model 3 does not have a 
unit root. 

Table 4.15 Summary of the Dickey-Fuller tests of LOGCPIT 
Model Test Value Critical Value (p-value, nn) Hypothesis 

Statistic 
1 

'r 
-3.44 -3.49 (0.05) r =O 

-3.17 (0.1) 

'ar 
3.46 3.14 (0.05, 50) ao = 0 given y = 0 

3.47 (0.025, 50) 

r /Jr 
2.82 2.81 (0.05, 50) a2 = 0 given r = 0 

</>2 
7.64 7.02 (0.01, 50) ao = r = a2 = 0 

</>3 
6.96 6.73 (0.05, 50) r = a2 = 0 

7.81 (0.025, 50) 

2 
'µ 

-2.30 -2.59 (0.1) r =O 

'aµ 
2.33 2.18 (0.1, 50) a0 = 0 given y = 0 

2.56 (0.05, 50) 

<Pi 
6.50 5.80 (0.025, 50) ao = r = 0 

7.06 (0.01, 50) 

3 r 2.50 r >- o r =O 

n listed if p-value for precise sample size of time series not known 

Model I 

The ACF of equation (4.21) does not display any significant lags (24 lags included). There are 
no significant Q statistics. 

Both deterministic components ( r ar and r /Jr) are significant at p < 0.05 but not at p < 0.025 if 

the hypothesis of unit root is accepted. Here too the evidence is not strong. 
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The unrestricted and the restricted equation for <p2 are ( 4.21) and ( 4.25) respectively. For <p3 

these equations are ( 4.21) and ( 4.23). There are 57 usable observations (T = 57) and 4 
parameters (k = 4) in the unrestricted models of <p2 and </J3 . There are 3 restrictions in <p2 and 

2 in </J3 • If Model 1 is unit root, then one or both deterministic components are significant. 

Hence it is possible to reject the null hypothesis. This can be interpreted as meaning that if the 
process is unit root, then a0 and/or a2 are significant which supports the conclusion based on 
the r ar and the r /Jr statistics. 

If Model 1 is unit root, then a2 is significant at p < 0.05 but the evidence is not strong. 

Figure 4.6 suggested various breakpoints. The Chow Breakpoint test could not be performed 
on the first suspected breakpoint because the time series before that point was to short. Instead 
1990: 2 was chosen. Both at 1990:2 and 2000:3 breakpoints were identified (Table 4.16). The 
existence of these breakpoints is likely to have created a bias toward acceptance of this unit 
root model (Model 1). 

Table 4.16 Chow Breakpoint tests of DF Model lof LOGCPIT 

Breakpoint 1990:2 
F-statistic 
Log likelihood ra tio 
Breakpoint 2000:3 
F-statistic 
Log likelihood ratio 

Mode/2 

Value 

5.3211 
20.5619 

9.2683 
32.1126 

Probabili ty 

0 .0012 
0.00038 

0.000012 
0.000002 

The ACF of the residuals of Model 2 is not significant at any lag up to 28. 

The evidence that the deterministic component a0 is significant is weak. 

The unrestricted and the restricted equation for <p1 are (4.22) and (4.25) respectively There are 

57 usable observations (T = 57) and 3 parameters (k = 3) in the unrestricted models There are 
2 restrictions. If LOGCPIT is unit root then a0 is significant (p < 0.025). 

Based on the concerns of structural beaks as suggested by Figure 4.6 Chow Breakpoint Tests 
were performed. Again two breakpoints were identified (Table 4.17). 

Table 4.17 Chow Breakpoint test of DF Model 2 of LOGCPIT 
Value Probability 

Breakpoint 1990:1 
F-statistic 9.6854 0.000036 
Log likelihood ratio 25.7015 0.00011 
Breakpoint 2000:3 
F-statistic 9.4428 0.000046 
Log likelihood ratio 25.1809 0.000014 
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Comparison of LOGCPIT models 

Both Model 1 and 2 were acceptable if only the ADF, r and <p statistics were considered. 

However, the Chow Breakpoint Tests indicated the existence of breakpoint as suggested by 
the Figure 4.6. Later in this chapter it will be investigated whether a cointegration 
relationships exists with LOGCPJNT. Unless other series had similar breakpoints a 
cointegrating relationship could not exist. 

Model 1 would suggest that LOGCPIT has a quadratic trend. Its differenced version would 
suggest that it increases with a linear trend. This is hard to accept this from an economic 
perspective unless it covers a very short period. 

Model 2 would suggest that the rate of change of LOGCPIT fluctuates randomly around a 
constant level, while the actual price level increases over time in a more or less constant 
manner. 
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LOGLC 

This section analyses the time series that consists of the natural logarithm of the Labour Cost. 
The time series covers the period 1992:4 to 2003:2. It is shorter than the other inflation time 
series that have been analysed. The undifferenced series has an upward trend (Figure 4.7). 
The variance seems to be constant. The ACF dies down slowly. The differenced series shows 
an increase over time. There may have been a structural break around 1996:2. 

Figure 4. 7 Time series and differenced time series of LOGLC 
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The time series LOGLC was tested for stationarity in (4.26) to (4.30) by using the Dickey­
Fuller equations as outlined in Chapter 2. 

Model 1 
MOGLCI = 1.3422 + 0.0009t - 0.2011LOGLC,_1 + 0.0647 MOGLC ,_, + 

Model 2 

(0.4132) (0.0003) (0.0620) (0.1382) 

0.4067 MOGLC,_2 + &
1 

(0.1387) 

(4.26) 

MOGLC 1 = -0.0358 + 0.00056LOGLC
1

_1 + 0.0518MOGLC1_ 1 + 0.3808MOGLC1_ 2 + &
1 

(0.0318) (0.0047) (0.1565) (0.1568) ( 4.27) 

Model 2R 
MOGLC, = 0.0020 + O.ll80MOGLCt-1 + 0.4443MOGLCl-2 + &I (4.28) 

(0.0008) (0.1470) (0.1482) 
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Mode13 
MOGLC, = 0.0003LOGLC,_1 + 0.1119MOGLC1_ 1 + 0.4384MOGLC1_ 2 + &, 

(0.0001) (0.1475) (0.1487) ( 4.29) 

Model 3R 
MOGLC, = 0.3305MOGLC

1
_ 1 + 0.6568MOGLC1_ 2 + s, (4.30) 

(0.1237) (0.1254) 

The RSS and various information criteria of ( 4.26) to ( 4.30) are shown in Table 4.18. Based 
on any of the three information criteria Model 1 would appear to be the best one. 

Table 4.18 RSS and information criteria of Dickey-Fuller models of LOGLC 
RSS AIC SC 

Model 1 ( 4.26) 0.0000479 -10.5480 -10.3369 
Model 2 ( 4.27) 0.0000631 -10.321 -10.1521 
Model 2R ( 4.28) 0.0000656 
Model 3 ( 4.29) 0.0000654 -10.3366 -10.2099 
Model 3R (4.30) 0.0000757 

Adj. R2 

0.3762 
0.2000 

0.1943 

The various rand </> statistics of (4.26) to (4.30) are shown in Table 4.19. Both Model 2 and 
Model 3 do not have a unit root. 

Table 4.19 Summary of the Dickey-Fuller tests of LOGLC 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 r, -3.24 -3.52 (0.05) y =O 

-3.19 (0.1) 

r a, 3.25 3.14 (0.05, 50) a0 = 0 given y = 0 
3.47 (0.025, 50) 

r /3, 
3.34 3.18 (0.025, 50) a2 = 0 given y = 0 

3.60 (0.01, 50) 

</>2 
6.77 6.75 (0.025, 25) a0 = y = a2 = 0 

5.94 (0.025, 50) 

</>3 
6.47 5.91 (0.1, 25) y = a2 = 0 

7.24 (0.05, 25) 

5.61 (0.1, 50) 

6.73 (0.05, 50) 

2 •µ 1.18 y >- 0 y=O 

3 r 2.42 y >- 0 y=O 

# n listed if p-value for precise sample size of time series not known 
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Model 1 

The ACF equation ( 4.26) does not show significant lags up to and including lag 28. However, 
there are a number of significant (p < 0.05) Q statistics (Lag 14, 17, 18 and 19). 

The model suggests there is weak evidence against the unit root (p > 0.05). 

Both deterministic components ( r 
0

, and r /Jr ) are significant (p < 0.05), if the hypothesis of 

unit root is accepted. 

The unrestricted and the restricted equation for </J2 are (4.26) and (4 .30) respectively. For </J
3 

these equations are ( 4 .26) and ( 4.28). There are 40 usable observations (T = 40) and 5 
parameters (k = 5) in the unrestricted models of </J2 and </J3 • There are 3 restrictions in <p

2 
and 

2 in </J3 • 

The null hypothesis can be rejected. This can be interpreted as meaning that if LOGLC is unit 
root, then ao and/or a2 are significant which supports the conclusion based on the r ar and 

r statistics. ~· 
There is weak support that LOGLC is unit root and that a2 is significant. 

Based on Figure 4.12 there was some concern that that structural change might have occurred 
around 1996:2. The Chow Breakpoint test does not suggest evidence for a breakpoint around 
1996:2 (Table 4.20). 

Table 4.20 Chow Breakpoint Tests of OF Model 1 of LOGLC 
Value 

F-statistic 1.3662 
Loo likelihood ratio 8.2058 

Selection of the appropriate LOGLC Model 

Probability 
0 .2647 
0.1453 

Model 1 is the only model that was not rejected. The differenced equation has two 
deterministic components. Consequently the original (undifferenced) equation is quadratic. 
This means that the natural log of the labour cost increases in an explosive manner. This is not 
particularly plausible from an economic perspective. However, one has to consider that the 
time series is short and the test may have been affected by breakpoint as well. However, the 
Chow test did not suggest a breakpoint in the quarter that was considered the most likely one 
based on visual inspection of Figure 4.12. Inspection of Figure 4.11 would suggest a linear 
rather than a quadratic process. 

63 



LOGHE 

This section analyses the time series that consists of the natural logarithm of the Hourly 
Earnings. The time series covers the period 1988:1 to 2003:2. Figure 4.8 shows a time series 
with an upward trend. The variance seems to be constant. The ACF dies down slowly. The 
mean of the differenced series appears stationary but the variance seems to vary somewhat, 
with more variation in the beginning and at the end of the time series. 

Figure 4.8 Time series and differenced time series of LOGHE 
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The time series LOG HE was tested for stationarity in ( 4.31) to ( 4.35) by using the Dickey­
Fuller equations as outlined in Chapter 2. The various DF models had augmented terms that 
were not significant at lag 1 but they were significant at lag 2. 

Model 1 
l:lLOGHE, = 0.2881 + 0.0007t - O.llOOLOGHEt-1 -0.0784UOGHE,_1 + 

Model 2 

(0.1347) (0.0003) (0.0526) (0.1245) 

0.23441:lLOGHE,_2 + s, 

(0.1129) (4.31) 

MOGHE, = 0.0204-0.0053LOGHE,_1 -0.10331:lLOGHE,_1 + 0.2444MOGHE1_ 2 

(0.0210) (0.0075) (0.1272) (0.1159) 

+ s, (4.32) 

Model 2R 
MOGHE, = 0.0058 - 0.09041:lLOGHE,_1 + 0.26251:lLOGHE,_2 + s1 

(0.0015) (0.1253) (0.1125) ( 4.33) 
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Model 3 
UOGHE, = 0.0020LOGHE,_1 -0.0804UOGHEt-1 + 0.2737 UOGHE,_ 2 + c, 

(0.0005) (0.125) (0.1119) (4.34) 

Model 3R 
UOGHE, = 0.2018UOGHE,_1 + 0.5157 UOGHE,_ 2 + c, 

(0.1117) (0.1022) (4.35) 

The RSS and information criteria of (4.31) to (4.35) are shown in Table 4.21. 

Table 4.21 RSS and information criteria of Dickey-Fuller models of LOCHE 

Model 1 (4.31) 
Model 2 ( 4.32) 
Model 2R (4.33) 
Model 3 (4.34) 
Model 3R (4.35) 

RSS AIC SC 
0.0019 -7.3392 -7.1632 
0.0020 -7.3010 -7.1601 
0.00201 
0.002071 
0.002604 

-7.3179 -7.2122 

Adj. R2 

0.1042 
0.0547 

0.0556 

Model 3 is the best model according to the SC. The small Adj . R2 values show that none of 
the models is particularly good. The various r and </J statistics of the DF models are shown 

in Table 4.22. 

Table 4.22 Summary of the Dickey-Fuller tests of LOCHE 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 r r -2 .09 -3 .17 (0.1) y=O 

r ar 
2.14 2.75 (0.1 , 50) a0 = 0 given y = 0 

r {Jr 2.01 2.38 (0.1, 50) a2 = 0 given y = 0 

<P2 6.87 5.94 (0.025, 50) a0 = y = a 2 = 0 

7.02 (0.01, 50) 

<µ3 2.32 1.37 (0.9, 50) y =a? = 0 
5.61 (50, 0.1) 

2 rµ -0.70 -2.59 (0.1) y =O 

r aµ 
0.97 2.18 (0.1, 50) a0 = 0 given y = 0 

<P1 7.81 7.06 (0.01, 50) a0 = y = 0 

3 r 3.80 y >- 0 y =0 

n listed if p-value for precise sample size of time series not known The time series has > 50 observations. 

Both Model 1 and Model 2 have a unit root (p > 0.1) but Model 3 does not. 
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Model] 

The ACF of (4.31) does not display any significant values up to and including lag 28. There 
are no significant Q statistics. 

Both deterministic components ( r a'!" and r /Jr) are not significant (p > 0.1 ). 

The unrestricted and the restricted equation for 12 are (4.31) and (4.35) respectively. For 13 

these equations are (4.33) and (4.31). There are 59 usable observations (T = 59) and 4 
parameters (k = 4) in the unrestricted models of 12 and 13 • There are 3 restrictions in 12 and 

2 in </J3 • 

Hence at p < 0.025 the null hypothesis is rejected that there is a unit root and both a0 and a2 

are 0. However this is not the case at p < 0.01. 

If one considers the test statistic13 , the null hypothesis is not rejected that there is a unit root 

and a2 equals 0. 

Mode/2 

The ACF of the residuals of ( 4.32) is not significant at any lag up to 28. There are no 
significant Q statistics. 

The constant ( a0) is not significant at the 10% significance level based on r aµ • 

The unrestricted and the restricted equation for 11 are ( 4.32) and ( 4.35) respectively There are 
59 usable observations (T = 59) and 3 parameters (k = 3) in the unrestricted models There are 
2 restrictions. The null hypothesis that a0 = y = 0 is rejected. Therefore the constant term (ao) 

is significant if the process is unit root. This finding is not in line with the r aµ statistic. 

The differenced series showed a peak at 1989:4. There may have been a breakpoint and this is 
assessed with the Chow Breakpoint test for that point in time. The tests does not suggest a 
breakpoint in 1989:4 (Table 4.23) 

Table 4.23 Chow Breakpoint test of DF Model 2 of LOCHE at 1989:4 

F-statistic 
Log likelihood ratio 

Value 
0.4664 
2.1198 

Selection of LOGHE DF Model 

Probability 
0.7600 
0.7137 

Model 2 with two lags seems the most appropriate model although the result of the 
r aµ statistic is of concern. A further analysis was performed on Model 2 with fewer lags 
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Model 2 with 1 lag had ADF -1.4045 (critical value -2.5923, p = 0.1). The lagged term 
DLOGHE,_1 of this model was not significant (p = 0.7635). 

Model 2 with no lags had ADF -2.2521 (critical value -2.2919, p = 0.1). None of lagged 
values in the ACF and of the Q statistics were significant. 
raµ = 1.7465, for n = 50 and p = 0.1 the critical value is 2.17. The preferred choice is still 

Model 2 with 2 lags, although the r aµ remains of concern. 

The conclusion is that the inflation rate of the differenced hourly earnings fluctuates around a 
constant level while the actual hourly earnings increase over time in a more or less constant 
manner. 

In should be kept in mind that the focus of this section is to find unit root so that for instance 
Model 3 was rejected. Possibly V AR analysis could be attempted on other similar inflation 
time series. 
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Summary of Dickey-Fuller Tests 

A number of DF tests have been performed. They were intended to analyse the various time 
series at a univariate level. In addition it was to evaluate whether they could be used for 
cointegration tests. Table 4.24 summarises the findings. Since a number of these inflation 
indices are in a sense part of the CPI, no attempt will be made to establish cointegrating 
relationships between them. In the case of LOGCPIT and LOGCPINT this situation is 
different. They make up the CPI together but are different aspects of inflation. 

Table 4.24 
Variable 
LOGCPI 
CPI 
LOGCPIX 
LOGCPINT 
LOGCPIT 
LOGLC 
LOCHE 

Summary of DF models of inflation indices 
Model 
2 
1 
2 
2 
2 
1 
2 

Lag(s) 
1 
1 
1 
1 
1 
2 
2 

The data are usually best described by a Model 2. As explained previously, the time series 
CPI will not be used for cointegration analysis. 

The time series LOGLC appears different from the others. An attempt to fit it to a Model 2 
Lagl was unsuccessful since the coefficient of LOGLC_1 was positive resulting in a rejection 
of unit root. 

The best model for variable LOGHE had two lags. The Model 2 version with 1 lag was re­
evaluated. The ACF appeared to show significant values at lags 2 and 4. The Q statistics were 
significant at many lags. 

It is of interest to note that both LOGLC and LOG HE are labour cost related variables and 
these time series appear to show a pattern that is different from the other time series that were 
evaluated in this chapter. 
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Granger Causality of tradable and non-tradable inflation 

The various inflation indices that were analysed above all related to each other in various 
ways. A point of research in this thesis is to identify factors that drive inflation. 

The p values for Granger Causality tests for LOGCPIT and LOGCPINT are displayed in 
Table 4.25. The null hypothesis tested in Table 4.25 is that the left hand column (eg 
LOGCPIT) does not Granger Cause the second column from the left (egLOGCPINT). The 
next row of data in this table calculates Granger Causality in the opposite direction ( eg does 
LOGCPJNT Granger Cause LOGCPIT?). EViews calculates these regressions as follows: 
LOGCPIT, = a 0 + a 1LOGCPIT,_1 + .. . + a,LOGCPIT,_, + /31LOGCPINT,_1 + ... + /31LOGCPINT1_ , 

LOGCPINT, = a 0 + a 1LOGCPINT,_1 + ... + a,LOGCPINT,_, + /3 1LOGCPIT1_1 + .. . + f31LOGCPIT1_, 

It reports F-statistics are the Wald statistics for the joint hypotheses: /31 = · · · = /3, = 0 

Table 4.25 P values of Granger Causality analysis of tractable and non-tractable inflation. 

LOGCPIT 
LOGCPINT 

LOGCP!NT 
LOGCPIT 

1 
0.68 
0.67 

ote : Period covered Period 1988:l 2003:2 

2 
0.90 
0.43 

3 
0.84 
0.57 

4 
0.19 
0.65 

Lags 
5 
0.29 
0.23 

6 
0.13 
0.28 

7 
0.10 
0.25 

8 
0.11 
0.07 

Table 4.25 does not support the hypothesis that non-tradable inflation and tradable inflation 
Granger Cause each other. 

Cointegration analysis of tradable and non-tradable inflation 

Although the Granger Causality tests did not suggest a relationship between tradable and non­
tradable inflation, it was still decided to perform a cointegration analysis. This was done to 
evaluate how these tests performed from a statistical perspective. Figure 4.9 shows that both 
time series have an upward trend. The slope of LOGCPINT is steeper than that of LOGCPIT. 
The differenced series show that both time series initially decline and then become stationary. 

Figure 4.9 Time series and differenced time series of LOGCPIT and LOGCPINT 
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Table 4. 26 below analyses the VECMs of tradable and non-tradable inflation. The setup of 
the table is explained in section 2.9. Briefly there are five options for the VECM (relating to 
deterministic components in the Cointegrating Equation and the V AR component) and 8 lags. 
The resulting cells contain from top to bottom the number of cointegrating equations, AIC 
and the SC in this order. 

Table 4.26 Cointegration analysis of LOGCPINT and LOGCPIT 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1, 1 1 0 1 1 
57 obser- -14.61782 -14.60181 -14.98213 -14.97042 
vations -14.33108 -14.27922 -14.58786 -14.54031 
Lag 1 to 2 1 0 0 1 2 
56 obser- -14.54489 -15.33927 
vations -14.11088 -14.79676 
Lag 1 to 3 0 0 0 0 2 
55 observations 
Lag 1 to 4 0 0 0 0 2 
54 observations 
Lag 1 to 5 0 0 0 0 2 
53 observations 
Lag 1 to 6 1 1 0 0 2 
52 obser-vations -15.11137 -15.09834 

-14.06070 -14.01015 
Lag 1 to 7 1 2 1 0 2 
51 obser-vations -1 4.96823 -15.21116 

-13.75611 -13.92327 
Lag 1 to 8 1 2 0 0 0 
50 obser-vations -15.06838 

-13 .69172 
Note: Period covered 1988:4 2003:2 

Although no relationship was suggested by Granger Causality, the cointegration tests did 
suggest that several were possible. Both the SC and the AIC selected Option 4 with 2 lags. 

VECM of LOGCPINT and LOGCPIT 

The best VECM according to Table 4.26 is: 

1 = [LOGCPJNT1 1 + 0.6608LOGCPIJ: 1 - 0.0093t -11.0523] 
[
MOGCPINT l [- 0.2125] 
MOGCPIT

1 
- 0.2300 - -

[ 
0.1547 -0.1200] [!1LOGCPINT1_ 1 l + [ 0.2324 - 0.2489] [MOGCPINT1_ 2 l 

- 0.1135 0.0687 MOGCPIJ:_ 1 - 0.0038 - 0.0867 MOGCPIJ:_ 2 

+ [0.0073] + [S LOGCPINT ,t l 
0.0056 S LOGCPIT ,t 

(4.36) 
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where the significant coefficients are in bold. 

Both adjustment factors are significant, indicating that the correction is performed by both 
time series. Both time series react with a negative adjustment to a departure of the long-term 
equilibrium. It is rather unusual to have two adjustment factors with the same sign. It means 
that the combination of the two series has a linear trend. Consequently if either of the two 
series was too high in the previous period relative to the trend, they both compensate by 
reducing the increases in the current period. 

Residual analysis of the VECM of LOGCPINT and LOGCPIT 

The residuals of the VECM were analysed to evaluate whether they might have caused the 
inadmissible results. 

The Jarque-Bera value of the residuals of MOGCPIT is 1.380913 (p = 0.501347) 
The Jarque-Bera value of MOGCPNIT is 2.473014 (p = 0.290397) 
The residuals of both time series appear stationary (Figure 4.10), although it could be argued 
that the variance of LOGCPINT varied somewhat over time .. 

Figure 4.10 Residuals of VECM of LOGCPINT and LOGCPIT 
LOGCPINT Res iduals 

0015 

0010 

0005 

0 OOO 

-0005 

-00'0 

-0015 
88 00 92 94 96 98 CX) 02 

LOGC PIT Residuals 

0.015------ --~ 

00101 
0005 

-0 005 

-0 010 

88 90 92 94 96 98 00 02 

The ACF of the residuals of MOGCPINT are close to significant at various lags (eg 3 , 4, 11 
and 12). The Q statistics of the residuals of MOGCPINT become significant starting after 
lag 11. The ACF and the Q statistics of MOGCPIT are not significant. It is of concern that 
the residuals of MOGCPINT are not well behaved since it may invalidate the model. 
The correlation coefficient of the residuals of MOGCPIT and MOGCPINT is -0.199072 
The cross-correlogram of the two series of residuals does not show significant correlations. 
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Innovation Accounting 

The Impulse Response Function does not appear to be sensitive to the order in which the time 
series were entered (Figure 4.11). Both times series seem to be considerably influenced by 
each others innovations. 

Figure 4.11 Impulse Response Function of VECM of LOGCPINT and LOGCPIT 
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The variance of both after 10 periods seems to have a considerable proportion caused by the 
other (Figure 4.12). The order of entering the time series does seem to have a considerable 
effect on the Variance Decomposition. 

Interpretation of relationship between LOGCPIT and LOGCPINT 

The above analysis resulted in various VECMs as shown in Table 4.26. This appears to be 
different from what was expected after performing the Granger Causality tests. The DF 
models had 1 lag while the best VECM had two lags. However, VECMs with 1 lag in the data 
were possible too according to Table 4 .26. The DF tests indicated a Model 2 for both time 
series and this is similar to the Option 4 that was chosen by the cointegration analysis. 

The economic interpretation of the results appears less than straightforward. It tended to 
indicate that both forms of inflation react to a deviation from their long-term equilibrium with 
a trend, regardless whether the departure was caused by one or the other. A possible 
explanation is that if inflation is too high, monetary policy and/or some other factors will 
force both types of inflation down. 
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Figure 4.12 Variance Decomposition of LOGCPINT and LOGCPIT 
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CHAPTERS 

TIME SERIES ANALYSIS OF MONETARY AGGREGATES 

Introduction 

Monetary aggregates are of importance for causing inflation according to the Quantity Theory 
of Money. The increased amount of money that is present in the economy would enable 
people to bid more money for the available resources. A review of the discussions regarding 
this theory over the last few centuries is provided by Laidler (1991). This would result in 
increased inflation. A number of monetary aggregates are being monitored by the RBNZ. The 
following will be analysed in this chapter. 

Ml Notes and coins held by the public plus chequeable deposits, minus inter­
institutional chequeable deposits, and minus central government deposits. 

M2 Ml plus all non-Ml funding (call funding includes overnight money and 
funding on terms that can of right be broken without break penalties) minus 
inter-institutional non-Ml call funding. 

M3 Notes and coins held by the public plus NZ dollar funding minus inter-M3 
institutional claims and minus central government deposits. 

M3(R) Same as M3, less funding from non-residents. 
M3 excluding repurchase agreements NZ dollar funding excluding securities sold 

under agreements to repurchase. 
M3(R) excluding repurchase agreements NZ dollar funding from New Zealand residents 

excluding securities sold under agreements to 
repurchase. 

Since there is a natural progression when one considers these categories, from a statistical 
perspective it is more appropriate in some instances to analyse the monetary aggregates based 
on their differences. 

The following categories and abbreviations will be used throughout this chapter. 
Ml Ml 
M2R M2-Ml 
M3RR M3(R) - M2 
Some of the time series showed considerable seasonal patterns. Consequently some of the 
time series were seasonally adjusted after log transformation. The adjustment method was 
additive, it was the difference from the moving average. Seasonal adjustment will be denoted 
by "SA". The "A" has been added where the series have been adjusted for inflation. Details of 
the seasonal adjustment and the CPI adjustment are given in Chapter 2. 

The monetary aggregates are collected on a monthly basis, while the inflation indices are 
collected on a quarterly basis. Initially this chapter will analyse the various monetary data 
series at a univariate level. Subsequent to these analyses, cointegration analyses are 
performed. The price surveys for the CPI are mainly performed at the middle of each quarter, 
although some weekly and some monthly surveys are also performed. In fact some items are 
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monitored throughout the quarter. The monetary aggregates are measured at the last day of 
each month. Under these circumstances a perfect match of data is not immediately obvious. It 
was decided to use the mean of the three months of each quarter as the value that covers the 
quarterly period. 

The unjvariate and multivariate analyses will be carried out as explained in Chapter 2.The 
standard errors are put in parentheses below each DF equation. The criterion for rejecting a 
unit root is p < 0.1. The criterion for rejecting the rand ~ statistics is p < 0.05. Dickey and 

Fuller (1981) provided critical values for these latter two test statistics. Regrettably if the 
sample size of this chapter is considered only the sample sizes of 25 and 50 are relevant. 
Consequently various critical values are required to be shown at times for one tests statistic to 
decide whether a hypothesis is to be rejected or not. 

The following DF models were evaluated: 
• LOGMl 
• LOGM2R 
• LOGM3RR 
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LOGMJ 

This section analyses the time series that consists of the natural logarithm of Ml. The data are 
derived from the RBNZ. The data are quarterly figures that are based on averaging the three 
months in each quarter. The time series covers the period from 1988:2 to 2004:1. The time 
series LOGMI has an upward trend (Figure 5.1). The period 1990 to 1994 does not show the 
upward trend. The variance seems to be constant. The ACF dies down slowly. The 
differenced series LOGMI appears stationary. 

Figure 5.1 Time series and differenced time series of LOG Ml 
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The possible stationarity of the series before 1994:1 was reason for concern. A Chow 
Breakpoint Test was performed with 1994:1 as breakpoint on what would have been Model 1 
(Table 5.1). 

Table 5.1 Chow Breakpoint Test of OF Model 1 at 1994:1 

F - sta tistic 
Loo Likelihood ratio 

Value 
2.9252 
15.3807 

Probability 
0.02 
0.009 

As the Chow test shows significant evidence of a break point, it was decided to continue the 
analysis with the dataset from 1994:1 to 2004:1. There are some reservations about the use of 
the Chow test this way and they are discussed in Chapter 2. 

The time series of LOG Ml was tested for stationarity in (5.1) to (5.5) by using the Dickey­
Fuller equations as outlined in Chapter 2. 

Model 1 
MOGMl, = 1.8968 + 0.0055t - 0.2093LOGM1

1
_ 1 + &

1 (5.1) 

(0.8376) (0.0023) (0.0932) 

RSS = 0.026836 AIC = -4.3190 SC= -4.1924 Adj. R2 = 0.0969 
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Model 2 
MOGMlt = -0.0748 + 0.0140LOGM11-l + SI 

(0.1507) (0.0159) 

Model 2R 
MOGMll = 0.0234 + SI 

(0 .0045) 

RSS = 0.031320 

Model 3 
MOGMl 1 = 0.0025LOGM1,_1 + s1 

(0.0005) 

Model 3R 
MOGMl, = 0 + s, 
RSS = 0.053279 

Analysis of DF models 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Some DF statistics of models (5.1) to (5.5) are shown in Table 5.2. Model 1 is the only model 
that has a unit root. 

The unrestricted and the restricted equations for </J2 are (5.1) and (5.5) respectively. For </J3 

these equations are (5 .1) and (15.3). There are 40 usable observations (T=40) and 3 
parameters (k=3) in the unrestricted models of </J2 and </J3 . There are 3 restrictions in </J2 and 2 

in </J3 • 

The statistics r ar and r /fr as well as <jJ
3 

are not significant. This indicates that the 

deterministic components were not significantly different from 0, but the two other models 
are not in agreement with this finding by not having a unit root. The </J2 statistic however 

appeared to be highly significant. This finding was surprising given the other statistics. 

Table 5.2 Summary of the Dickey-Fuller tests of LOGMJ 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 TT -2.25 -3 .19 (0.1) y=O 

raT 
2.26 2.75 (0.1 , 50) a0 = 0 given y = 0 

r /Jr 
2.39 2.38 (0.1, 50) a2 = 0 given y = 0 

2.81 (0.05 , 50) 

<P2 
12.15 8.21 (0.01 , 25) a0 = y = a 2 = 0 

</J3 
3.09 5.61 (0.1, 50) y = a2 = 0 

2 rµ 0.65 y~O y=O 

3 r 5.26 y~O y=O 
# n listed if p-value for precise sample size of time series not known 
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The ACF of the residuals of Model 1 shows that lags 3, 4 and 5 are significant. Also the Q 
statistics from lag 3 onward are significant. A seasonally adjusted series was computed in 
order to remove the autocorrelation of the residuals in the model. Another option would have 
been the inclusion of more lags in the model. However the time series are relatively short and 
this would have resulted in a considerable loss of degrees of freedom. When attempted it 
appeared that lag 1 to 4 would not be significant but lag 5 would be. The seasonally 
adjustment is additive based on the difference from the moving average and details are 
provided in Chapter 2. 

Model 1 (SA) 
11LOGM1SA

1 
= 1.1511 + 0.0034t - O.l263LOGM1SA1_ 1 + &1 

(0.6344) (0.0017) (0.0706) 

RSS = 0.014411 AIC = -4.9408 SC= -4.8141 

11LOGM1SAI = 0.023430 + &I 

(0.0032) 

RSS = 0.016339 

11LOGM1SA( = 0 + &I 

RSS = 0.036657 

(5.5SA) 

(5.1SA) 

Adj. R2 = 0.0703 

(5.3SA) 

The ACF of the residuals of the seasonally adjusted Model 1 does not show significant lags 
(20 lags included). There are no significant Q statistics. The r statistics of the seasonally 
adjusted models are shown in Table 5.3. Note that the data set contained less than 50 data 
points. Both deterministic components are not significant (p > 0.1) if the hypothesis of unit 
root is accepted. 

The unrestricted and the restricted equations for c/J2 are (5.1SA) and (5.5SA) respectively. For 

c/J3 these equations are (5.lSA) and (15.3SA). There are 40 usable observations (T=40) and 3 

parameters (k=3) in the unrestricted models of c/J2 and </J3 • There are 3 restrictions in </J2 and 2 

in c/J3 • Similar to the previous models that were not seasonally adjusted the r statistics and 

</J3 were not significant while the </J2 statistic was highly significant. 

Again Models 2 and 3 did not have a unit root. 

Models 2 and 3 were rejected as unit root models, and therefore only Model 1 remained. The 
residuals of the model did not show autocorrelation after seasonal adjustment. However, this 
model was not very satisfactory since the hypothesis of significant deterministic components 
was rejected, while Models 2 and 3 with one and no deterministic components respectively 
were rejected. 
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Table 5.3 Summary of the Dickey-Fuller tests of LOGMJSA 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 r r -1.79 -3 .19 (0.1) y =0 

rar 1.81 2.75 (0.1, 50) a0 = 0 given y = 0 

r /Jr 
1.97 2.38 (0.1, 50) a2 = 0 given y = 0 

~ 2 
19.04 8.21 (0.01, 25) a0 = y = a2 = 0 

~ 3 
2.48 5.61 (0.1, 50) a0 = y = a2 = 0 

2 rµ 0.99 y >-0 y =0 

3 r 7.30 y >-0 y =0 

# n listed if p-value for precise sample size of time series not known 

It is rather unsatisfactory that one test appears to suggest a certain model (ie unit root without 
deterministic components) while a related test rejects this model. This appears to add to the 
evidence that these tests are at times problematic when applied to certain ( existing) time 
series . 

The selected seasonally adjusted model implies a quadratic trend in the undifferenced time 
series of LOGMJ. Although possibly plausible over a short time period, this would not be 
plausible over an extended period of time. 
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LOGM2R 

This section analyses the natural logarithm of the M2 with the Ml excluded (LOGM2R). 
Similar to LOGMJ the time series was analysed from 1994:1 to 2004:1. The time series 
LOGM2R has an upward trend (Figure 5.2). There seems some variation in the variance. The 
ACF dies down slowly. The differenced series appears stationary. 

Figure 5.2 Time series and differenced time series of LOGM2R 
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The time series of LOGM2R was tested for stationarity in (5.6) to (5.10) by using the Dickey­
Fuller equations as outlined in Chapter 2. 

Medell 
MOGM 2R1 = 4.2038 + 0.0055t -0.4249LOGM2R

1
_ 1 + &

1 

(1.1472) (0.0018) (0.1168) 

Model2 
MOGM 2R

1 
= 0.8020- 0.0777LOGM2R

1
_ 1 + s, 

(0.3522) (0.0348) 

Model 2R 
MOGM2R, = 0.0161+ s, 

(0.0064) 

Model 3 
MOGM2R, = 0.0016LOGM2R

1
_ 1 + s, 

(0.0006) 

Model 3R 
MOGM3R, = O+s, 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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Table 5.4 Summary of the Dickey-Fuller tests of LOGM2R 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 

rr 
-3.63 -3.19 (0.1) r =O 

-3.52 (0.05) 

rar 
3.66 3.20 (0.05, 25) ao = 0 given y = 0 

r /J r 
3.08 2.85 (0.05, 25) a2 = 0 given r = 0 

<P2 
8.06 6.75 (0.025, 25) ao = r = a2 = 0 

<P3 
7.81 5.61 (0.1 , 50) r = a2 = 0 

2 
rµ 

-2.23 -2.60 (0.1) r =O 

r aµ 
2.28 2.18 (0.1 , 50) a0 = 0 given y = 0 

<P1 5.97 5.18 (0.05 , 25) ao = r = 0 
3 r 2.47 r >- o r=O 
# n listed if p-value for precise sample size of time series not known. Time series has 40 observations after 
adjusting endpoints 

The various r statistics for Models 1 to 3 are shown in Table 5.4. There is weak support for 
unit root in Model 1. Model 2 has a unit root and Model 3 does not have a unit root. 

The ACFs of the residuals of Model 1 and Model 2 do not show significant lags (40 
observations included). There are no significant Q statistics. The r statistics for both Model 1 
and Model 2 are significant. The unrestricted and the restricted equations for </J2 are (5 .6) and 

(5.10) respectively. For </J3 these equations are (5.6) and (5.8) . There are 40 usable 

observations (T=40) and 3 parameters (k=3) in the unrestricted models of </J2 and </J3 . There 

are 3 restrictions in </J2 and 2 in </J3 . The <P statistics of Model 1 were both significant as well. 

The unrestricted and the restricted equations for </J1 are (5 .7) and (5.10) respectively. There are 

40 usable observations (T=40) and 3 parameters (k=3) in the unrestricted model. There are 2 
restrictions. The </J1 statistic was significant. 

Table 5.5 is required to make a judgement regarding the best model. This would appear to be 
Model 1 based on the information criteria. Note the Adjusted R2 of Model 3 which is 
negative. This is another reason to reject this model. 

Table 5.5 

Model 1 
Model 2 
Model 2R 
Model 3 
Model 3R 

RSS and information criteria of Dickey-Fuller models of LOGM2R 
RSS AIC SC 
0.044922 -3.8038 -3 .6772 
0.0565 -3.6247 -3.5403 
0.063893 
0.0642 -3.5468 -3.5046 
0.074264 

Adj. R2 

0.2589 
0.0926 

-0.0048 

The selected model implies a quadratic trend in the undifferenced time series. Although 
possibly plausible over a short time period, this would not be plausible over an extended 
period of time. 
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LOGM3RR 

This section analyses the time series that consists of the natural logarithm of M3RR. 
The analysis covers the period from 1994:1 to 2004:1 in quarters. The time seriesLOGM3RR 
has an upward trend (Figure 5.3). The variance seems constant. The ACF dies down slowly 
although faster than many of the other time series analysed so far. The differenced time series 
(DLOGM3RR) seems stationary. 

Figure 5.3 Time series and differenced time series of LOGM3RR 
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The time series of LOGM3RR was tested for stationarity in (5 .11) to (5.15) by using the 
Dickey-Fuller equations as outlined in Chapter 2. 

Model 1 
MOGM3RR1 = 1.8490 + 0.0024t -O.l774LOGM3RR,_1 + 0.3534MOGM3RR,_1 + £

1 

(0.8433) (0.0012) (0.0815) (0.1586) (5.11) 

Model2 

MOGM3RR, = 0.2850-0.0255LOG3RR1-1 + 0.2773MOGM3RR
1

_ 1 + £ , 

(0.3464) (0.0326) (0.1605) (5.12) 

Note that lag 1 was used for Model 2 to enable the calculation of <P statistics. The coefficient 

of the term LOGM3RR1.1 is not significant and could therefore be removed from the model. 
However the <P statistics are based on evaluating a restricted and an unrestricted model with 

regard to the deterministic components and having different lags included in the model would 
result in additional differences between the models. 

Model 2R 
MOGM3RR = 0.01449 + 0.2642MOGM3RR,_1 + £, 

(0.0060) (0.1588) (5.13) 
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Model 3 

UOGM3RR{ = 0.00l4LOGM3RRl-1 + 0.2646MOGM3RRt -l + SI (5.14) 

(0.0006) (0.1590) 

Model 3R 

MOGM3RR{ = 0.4407 MOGM3RRt-l + SI (5.15) 

(0.0472) 

The RSS of the various models which are required for the calculation of the 1 statistics are 

displayed in Table 5.6 as well as the various information criteria. 

Table 5.6 RSS and information criteria of Dickey-Fuller models of LOCM3RR 
RSS AIC SC 

Model 1 0.035867 -3.9485 -3.7779 
Model 2 0.040041 -3.8897 -3.7617 
Model 2R 0.040719 
Model 3 0.040793 -3.9224 -3 .837044 
Model 3R 0.047179 

Adj. R2 

0.1103 
0.0343 

0.0428 

The various r and 1 statistics of Models (5.11) to (5.15) are displayed in Table 5.7. Models 

1 and 2 have a unit root but Model 3 does not have a unit root. In the case of Model 3 the unit 
root tests were performed with up to 5 lags. In all cases y > 0 and consequently all these 

models were rejected. 

The ACF of Model 1 and Model 2 do not have significant lags and the Q statistics are not 
significant either (16 lags included). 

Table 5.7 Summary of the Dickey-Fuller tests of LOCM3RR 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 rr -2.18 -3.19 (0.1) y =O 

' ar 
2.19 2.75 (0.1, 50) a0 = 0 given y = 0 

r {Jr 
2.02 2.38 (0.1, 50) a2 = 0 given y = 0 

12 3.68 4.31 (0.1, 50) a0 = y = a2 = 0 

13 2.37 5.61 (0.1, 50) y = a2 = 0 

2 
' µ 

-0.78 -2.60 (0.1) y =0 

'aµ 
0.82 2.18 (0.1 , 50) a0 = 0 given y = 0 

11 3.12 3.94 (0.1, 50) a0 = y = 0 

3 r 2.40 y >-0 y =0 

# n listed if p-value for precise sample size of time series not known The time series has 39 observations after 
adjusting the endpoints. 

The remaining r Slacistics of Model 1 and Model 2 were not significant. This is in 
contradiction with the models chosen with this methodology because they are supposed to 
have deterministic components. 
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The unrestricted and the restricted equations for </>2 are (5.11) and (5.15) respectively. For </>3 

these equations are (5.11) and (15.13). There are 39 usable observations (T=39) and 4 
parameters (k=4) in the unrestricted models of </>2 and </>3 • There are 3 restrictions in </>2 and 2 

in</>3 • 

It is not possible to reject the null hypotheses based on </>2 or </>3 • This can be interpreted as 

meaning that if the process is unit root, then a0 and a2 are not significant. This is in line with 
the r statistics, but of concern since they should be significant in Model 1. 

The unrestricted and the restricted equations for </>1 are (5.12) and (15.15) respectively. There 

are 39 usable observations (T=39) and 3 parameters (k=3) in the unrestricted model. There are 
2 restrictions. Again the null hypothesis is not rejected meaning that the constant is not 
significant. 

The Chow Breakpoint test was performed to evaluate the existence of breakpoints. There 
appeared to be a breakpoint at 1998:1 (Table 5.8) for Model 1. This too is of concern as it 
might invalidate the DF models. 

Table 5.8 Chow Breakpoint Tests of LOGMJRR 
Value Probability 

Model 1 
F - statistic (1998:1) 3.6703 0.0147 
Log Likelihood ratio (1998:1) 15.1204 0.0044 

F - statistic (2002:2) 3.0037 0.0332 
Log Likelihood ratio (2002:2) 12.7747 0.0124 

Model 2 
F - statistic (1998:1) 0.8683 0.4673 
Log Likelihood ratio (1998:1) 2.9631 0.3974 

F - statistic (2002:2) 2.3353 0.0918 
Log Likelihood ratio (2002:2) 7.5082 0.0573 

Both Model 1 and Model 2 supported the unit root hypothesis. However also in both cases the 
deterministic components did not appear to be significant. In addition the Chow test 
especially for Model 1 indicated a breakpoint. Model 3 however did not support unit root. 
Therefore there was no satisfactory DF model. 
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Granger Causality of inflation and monetary aggregates 

According to the Quantity Theory of Money an increase of available money stock would 
result in an increasing inflation rate. Consequently it is of interest to test this theory with the 
three monetary aggregates that have been discussed in the previous sections by using Granger 
Causality tests. Various p values for Granger Causality tests for monetary aggregates and 
inflation are displayed in Table 5.9. The null hypothesis tested in Table 5.9 is that the left 
hand column (egLOGMJSA) does not Granger Cause the second column from the left (eg 
LOGCPI). The next row of data in this table calculates Granger Causality in the opposite 
direction (eg does LOGCPI Granger Cause LOGMJSA ?). EViews calculates these regressions 
as follows: 
LOGM1SA, = a 0 + a 1LOGM1SA,_1 + ... + a 1LOGM1SA

1
_1 + {31LOGCPI1_1 + ... + {31LOGCPI,_1 

LOGCPI, = a 0 + a 1LOGCPI,_1 + ... + a 1LOGCPI,_1 + {31LOGM1SA,_1 + ... + {31L OGM1SA,_1 

It reports F-statistics are the Wald statistics for the joint hypotheses: /31 = · · · = /31 = 0 

Inspection of Table 5.9 shows that many combinations of the time series display Granger 
Causality. The Granger Causality is not limited to the monetary aggregates Granger Causing 
the inflation indices . The reverse also occurs. 

There is strong support for LOGMJSA Granger Causing various forms of inflation when the 
lag period is short. This is in line with the Quantity Theory of Money . However he opposite 
also occurs where LOGCPINT Granger Causes LOGMJSA after 3 to 8 lags. It becomes highly 
significant at 6 and 7 lags. 

It is striking when considering LOGM2R and LOGM3RR that the Granger Causality is more 
often in the direction that is opposite to that expected by the Quantity Theory. This 
relationship is called ' reverse causation ' and is discussed by Laidler (1991). Increased 
inflation appears to generate increased values of these two monetary aggregates. Jt could be 
hypothesised that the monetary aggregates are increasing in value to enable transactions to 
take place under the higher demand for money caused by inflation. 
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Table 5.9 P values of Granger Causality analysis of monetary aggregates and inflation rates 
Time series Lags 

1 2 3 4 5 6 7 8 

Ml 
MlSA CPI 0.004** 0.0005** 0.005** 0.015* 0.06 0.15 0.09 0.15 
CPI MlSA 0.63 0.14 0.21 0.55 0.64 0.57 0.62 0.52 

MlSA CPIX 0.015* 0.014** 0.07 0.07 0.12 0.23 0.13 0.09 
CPIX MlSA 0.27 0.07 0.07 0.26 0.50 0.46 0.61 0.70 

MlSA CPINT 0.008** 0.06 0.30 0.21 0.32 0.08 0.06 0.004** 
CPINT MlSA 0.46 0.30 0.03* 0.02* 0.0109* 0.0008** 0.008** 0.04* 

MlSA CPIT 0.24 0.17 0.11 0.04* 0.048* 0.16 0.21 0.02* 
CPIT MlSA 0.60 0.70 0.04* 0.14 0.12 0.20 0.39 0.43 

M2 

M2R CPI 0.88 0.76 0.66 0.39 0.03* 0.06 0.09 0.16 
CPI M2R 0.006** 0.006** 0.02* 0.06 0.15 0.25 0.36 0.13 

M2R CPIX 0.94 0.94 0.86 0.78 0.46 0.71 0.86 0.76 
CPIX M2R 0.006** 0.008** 0.015* 0.04* 0.06 0.19 0.16 0.15 

M2R CPINT 0.07 0.11 0.10 0.09 0.09 0.006** 0.004** 0.006* 
CPINT M2R 0.047* 0.14 0.12 0.20 0.22 0.07 0.06 0.20 

M2R CPIT 0.79 0.85 0.37 0.18 0.09 0.17 0.40 0.25 
CPIT M2R 0.02* 0.10 0.03* 0.03* 0.007** 0.03* 0.06 0.12 

M3 

M3RR CPI 0.014* 0.07 0.15 0.15 0.26 0.31 0.31 0.46 
CPI M3RR 0.04* 0.02* 0.08 0.16 0.07 0.03* 0.04* 0.04* 

M3RR CPIX 0.049* 0.12 0.31 0.37 0.46 0.41 0.46 0.54 
CPIX M3RR 0.09 0.07 0.22 0.33 0.32 0.13 0.11 0.048* 

M3RR CPINT 0.17 0.46 0.65 0.73 0.61 0.56 0.64 0.69 
CPINT M3RR 0.02* 0.008** 0.009** 0.0009** 0.002** 0.0007** 0.003** 0.0002** 

M3RR CPIT 0.84 0.80 0.55 0.63 0.78 0.75 0.72 0.28 
CPIT M3RR 0.22 0.14 0.053 0.048* 0.07 0.049* 0.14 0.11 
Note: Period covered 1994:1 - 2004:1. All time series are log transformed. * (**) denotes rejection of the 
hypothesis at the 5% (1 % ) significance level. 

86 



Cointegration analyses of inflation and monetary aggregates 

It is of interest to evaluate whether the different patterns displayed by the Granger Causality 
tests of the previous section can be captured with Vector Error Correction Models. A number 
of combinations of time series will be analysed below since they are of interest from an 
economic perspective. 

The following Vector Error Correction Models will be explored in varying degrees of detail. 
• LOGCPI LOGM1SA 
• LOGCPI 
• LOGCPI 
• LOGCPI 
• LOGCPI 

LOGM2R 
LOGM3RR 
LOGM1SA LOGM2R 
LOGM1SA LOGM2R 

where SA denotes seasonal adjustment 

LOGM3RR 

Cointegration analysis of LOGCPI and LOGMJSA 

The monetary aggregate denoted by LOGMJSA is an obvious option to explore the Quantity 
Theory of Money as became obvious when it was tested for Granger Causality. The more 
readily accessible money is available in the market, the more the price level will increase. The 
time series LOGCPI and LOGMJSA both show an increase over time (Figure 5.4). However 
the slope of LOGMJSA is steeper. Both series show little variation in the undifferenced series. 
The differenced series show more variation in LOGMJSA than in LOGCPI. 

Figure 5.4 Time series and differenced time series of LOGCPI and LOGMJSA 
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The various cointegration analyses of LOGCPJ and LOGMISA are displayed in Table 5.10. 
The setup of the table is explained in section 2.9. Briefly there are five options for the VECM 
and 8 lags. The VECM options include options for the data trend and the Cointegrating 
Equation (CE). The resulting cells contain from top to bottom the number of cointegrating 
equations, the AIC and the SC in this order. 
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Table 5.10 Cointegration analysis of LOGCPI and LOGMISA 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 1 2 1 0 1 
39 obser-vations -12.91587 -13.24858 -13.22962 

-12.57463 -12.82203 -12.71776 
Lag 1 - 2 0 1 0 0 1 
38 obser-vations -12.89986 -13.05828 

-12.33963 -12.36877 
Lag 1-3 0 1 0 0 0 
37 obser-vations -12.71074 

-11.97058 
Lag 1-4 0 0 0 0 0 
36 obser-vations 
Lag 1-5 0 0 1 2 
35 obser-vations -12.77741 

-11.30016 
Lag 1-6 0 0 0 2 2 
34 obser-vations 
Lag 1-7 0 0 0 1 2 
33 obser-vations -12.68344 

-11.09623 
Lag 1-8 1 2 2 1 2 
32 obser-vations -12.30683 -12.61018 

-10.65787 -10.82381 
Note: Period covered 1994:1 - 2004:1. 

The Granger Causality analysis only showed a significant relationship up to and including 4 
lags. The cointegration analysis showed some VECMs at higher lags. Both information 
criteria suggest that Option 3 with 1 lag is the optimal model. 

VECM of LOGCPI and LOGMJSA 

A VECM as suggested by Table 5.3 is displayed in (5.16). 

1 = [CPI
1 1 -0.178927M11 1 -5.22228]+ 

[
!iCP/ l [- 0.199694] 
!1Ml/ 0.253765 - -

[ 
0.165603 - 0.074886] [/iCP/1_ 1 l + [0.005987] + [ccn,, l 

-1.140289 0.172407 /1Ml,_1 0.024720 cMl,t 
(5.16) 

where CPI is LOGCPI, Ml is LOGMJSA and significant coefficients are in bold. 

Equation (5.16) shows that adjustment to the long-term equilibrium is done by MOGCPI. If 
the value for LOGMJSA is too large in the previous period for the equilibrium, LOGCPI 
compensates by increasing relatively more. This is in support of Quantity Theory of Money. 
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6.LOGCPJ Y also shows a significant negative correlation with 6.LOGMlSA
1

_
1

• Relative to the 

increase of the amount of money in the previous period, the CPI will decrease in the current 
period. This is not what one would expect according to the Quantity Theory. 

Analysis of residuals of VECM of LOGCPI and LOG Ml SA 

Various tests were performed on the residuals to ensure that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 

The Jarque-Bera value of the residuals of MOGCPI is 0 .9886 (p = 0.6100) 
The Jarque-Bera value of the residuals of MOGM1SA is 5.0022 (p = 0.0820) 

Figure 5.5 Residuals of VECM of LOGCPI and LOGMISA 
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Whether or not the residuals of both time series are stationary is questionable (Figure 5 .5). 
There may have been more variation in the last part of MOGCPJ . In the case of 
tiLOGMlSA the mean may have shifted as well. 

The ACF of the residuals of MOGCPI may have been significant at lag 10 but the Q 
statistics did not have significant values. The ACF of the residuals of MOGMlSA and its Q 
statistics did not have significant values. 

The residuals did not appear to be well behaved. To what degree it may have invalidated the 
model cannot be determined. 

The correlation coefficient between the two time series was -0.2316 and there were no 
significant Jags or leads in the cross-correlogram. 
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Innovation Accounting 

The Impulse Response Function and the Variance Decomposition show similar patterns 
regardless of the order in which the time series were placed. The values differ slightly. 

The inflation shows a strong reaction to a shock to the monetary aggregate after 10 periods 
(Figure 5.6). The reverse is not the case 

Figure 5.6 Impulse Response Function of VECM of LOGCPI and LOG Ml SA 
Response of LOGCPI to One S.0 . Innovations 
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The variance of inflation is equally made up of inflation and the monetary aggregate after 10 
periods (Figure 5.7). On the other hand there appears no influence of the inflation on the 
variance of MOGMlSA. 

Figure 5. 7 Variance Decomposition of VECM of LOGCPI and LOGMISA 
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Interpretation of VECM of LOGCPI and LOGMJSA 

LOGCPI will react more strongly to movements away from the equilibrium than LOG Ml 
will. The adjustment parameter in the VECM for LOGCP/

1 
is significant. Therefore the 

conclusion is that LOGCPI reacts to changes of LOGMJSA. The IRF and the VD also showed 
a sensitivity of LOGCPI to LOGMJSA but not the other way. The results are in agreement 
with the Granger Causality tests. The negative significant lag term in (5.16) does not fit in 
with the hypothesis of the Quantity Theory well. The residuals of the VECM were not well 
behaved and this is of some concern. It cannot be determined whether it was to an 
unacceptable degree. 
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Cointegration analysis of LOGCPI and LOGM2R 

The time series M2R constitutes M2 -Ml. The reasons for analysing the time series M2R 
rather than M2 are explained in the introduction. It is of considerable interest that the Granger 
Causality tests showed that between LOGM2R and LOGCPI on the one hand and LOG Ml SA 
and LOGCPI on the other hand were in different directions. It seems to indicate that different 
economic patterns exist between inflation (LOGCPI) and the two monetary aggregates in 
question. 
Both LOGCPI and LOGM2R increase over time (Figure 5 .8). The slope of LOGM2R is 
steeper than that of LOGCPI. 

Figure 5.8 Time series and differenced time series of LOGCPI and LOGM2R 
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The various cointegration analyses of LOGCPI and LOGM2R are displayed in Table 5.11. 
The setup of the table is explained in section 2.9. Briefly there are five options for the VECM 
and 8 lags. The VECM options include options for the data trend and the Cointegrating 
Equation (CE). The resulting cells contain from top to bottom the number of cointegrating 
equations, the AIC and the SC in this order. 

Table 5.11 shows that the best model according to the SC is very different from the model 
according to the AIC. The model suggested by the SC is considerably more parsimonious 
with fewer deterministic components and only 1 lag in the data series rather than the 8 lags 
for the other model. 

VECM of LOGCPI and LOGM2R 

A VECM as suggested by the SC is displayed in (5.17) 

= [M2RI -1.5037CPI1 1]+ 
[
/1M2R1 ] [-0.1018] 
!lCPII -0.0113 -

[
-0.1601 -l.9656][LiM2Rt-l l + [&M 2R,tl 
- 0.0017 0.3285 !lCPI1_1 &cPI ,1 

(5.17) 

where CPI is LOGCPI and M2R is LOGM2R and the significant coefficients are in bold. 

92 



Table 5.11 Cointegration analysis of LOGCPI and LOGM2R 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 1 1 0 0 2 
39 obser-vations -11.58583 -11.60212 

-11.24459 -11.21822 
Lag 1 - 2 1 1 0 0 2 
38 obser-vations -11.44350 -11.44965 

-10.92636 -10.88942 
Lag 1- 3 0 0 0 0 0 
37 obser-vations 
Lagl-4 0 0 0 0 2 
36 obser-vations 
Lagl-5 0 0 0 1 2 
35 obser-vations -11.53755 

-10.33771 
Lagl-6 0 0 0 1 2 
34 obser-vations -11.66045 

-10.26877 
Lag 1 - 7 0 1 1 2 2 
33 obser-vations -11.28874 -11.35626 

-9.79228 -9.814400 
Lag 1- 8 0 0 0 1 2 
32 obser-vations -11.98371 

-10.19734 
Note: Period covered 1994:1 - 2004:1. 

Model (5 .17) shows that both time series have significant adjustment coefficients. 
The VECM suggest that the current LOGM2R increases if the LOGCPI in the previous period 
had been high. However, LOGCPI react similarly to this situation. The overall economic 
interpretation that should be given to (5.17) is not immediately obvious. 
The residuals therefore seem to be reasonably well behaved. 

Although none of the lagged terms appeared significant, the coefficient 0.3285 came close to 
significance. 

Analysis of residuals of VECM of LOGCPI and LOGM2R 

Various tests were performed on the residuals to ensure that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 
The Jarque-Bera value of the residuals of MOGM2R is 0.1572 (p = 0.9244). 
The Jarque-Bera value of the residuals of MOGCPI is 1.2558 (p = 0.5337). 
The residuals of the VECM appear stationary although it could be argued that the mean of 
LOGCPI may have shifted somewhat over time (Figure 5.9). 
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Figure 5.9 Residuals of VECM of LOGCPI and LOGM2R 
LOGCPI Residuals 
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The ACF of neither of the residuals shows significant findings. The Q statistics are not 
significant either. 

The correlation between the residuals of MOGM 2R and MOGCPI is -0.2000 
The cross-correlogram shows a significant positive value at lag 4. 

Innovation Accounting 

The order in which the time series have been entered into the IRF and VD does not appear to 
be important. After 10 periods both time series react stronger to shocks to their own series 
than shocks to the other series (Figure 5.10). This is most apparent for MOGCPI . In 
addition in the case of MOGCPI I this effect seems to be increasing over time while for 
MOGM 2R it seems to be decreasing. 

The variance of both time series is mainly determined by themselves with little effect of the 
other series (Figure 5 .11 ). 

Interpretation of the VECM of LOGCPI and LOGM2R 

Both adjustment parameters of the VECM are significant. This is not in line with the Granger 
Causality analysis. Furthermore, both adjustment coefficients have the same sign which is 
difficult to explain in economic terms. 
The term MOGCP/

1
_1 comes close to significance for MOGCP/

1
• This means that the 

inflation in the previous period still influences the current period. 
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Figure 5.10 Impulse Response Function of VECM of LOGCPI LOGM2R 
Response of LOGCPI to One S.D . Innovations 
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Figure 5.11 Variance Decomposition of VECM of LOGCPI LOGM2R 
Variance Decorrposition of LOGCPI Variance Decorrposibon of LOGCPI 
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Cointegration analysis of LOGCPI and LOGM3RR 

Both time series show an upward trend with the slope of LOGM3RR. steeper than that of 
LOGCPI (Figure 5.12). There appears little variation. The differenced series of LOGM3RR. 
shows more variation than that of LOGCPI. 

Figure 5.12 Time series and differenced time series of LOGCPI and LOGM3RR. 
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The various cointegration analyses of LOGCPI and LOGM3RR are displayed in Table 5.12. 
The setup of the table is explained in section 2.9. Briefly there are five options for the VECM 
and 8 lags. The VECM options include options for the data trend and the Cointegrating 
Equation (CE). The resulting cells contain from top to bottom the number of cointegrating 
equations, the AIC and the SC in this order. Both information criteria propose the same model 
which consists of Option 4 with 1 lag. 

Table 5.12 Cointegration analysis of LOGCPI and LOGM3RR 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 1 1 0 1 2 
39 obser- -12.11835 -12.16829 -12.31267 
vations -11.77710 -11.78439 -11.84346 
Lag 1-2 0 0 0 1 2 
38 obser- -12.22009 
vations -11.57367 
Lag 1-3 0 0 0 0 2 
37 observations 
Lag 1-4 0 1 0 2 2 
36 obser- -11.85050 
vations -10.92678 
Lag 1-5 0 1 1 2 2 
35 obser- -11.75740 -11.88737 
vations -10.64644 -10.73197 
Lag 1-6 0 1 1 2 2 
34 obser- -11.81437 -11.96286 
vations -10.51247 -10.61607 
Lag 1-7 0 1 1 1 2 
33 obser- -11.85257 -12.04405 -12.07093 
vations -10.35606 -10.50219 -10.48372 
Lag 1-8 0 2 1 1 2 
32 obser- -11.98925 -11.93190 
vations -10.24869 -10.14554 
Note: Period covered 1994:1 - 2004:1. 
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VECM of LOGCPI and LOGM3RR 

A VECM as suggested by the SC is displayed in (5.18). 

1 = [CPI/ 1 + 0.269462M3RR/ 1 -0.007695t-9.624383 ]+ 
[ 

11CPI l [- 0.128616] 
M3RR

1 
-0.447881 - -

[ 
0.046026 0.057441] [ 11CPit-l l [0.003843] [ 8 cPl I l 
-1.445020 0.461610 /1M3RRt-1 + 0.018387 + CM3R;l, t 

(5.18) 

where CPI is LOGCPI, M3RR is LOGM3RR and the significant coefficients are in bold. 

Although (5.18) contains one significant adjustment coefficient, the coefficient of M3RR 1_ 1 is 

not significant and consequently this equation is of little use as a VECM for economic model 
building. Nevertheless the equation will be evaluated below to determine whether this can be 
explained by some statistical issues. 

Residual analysis of VECM of LOGCPI and LOGMJRR 

Various tests were performed on the residuals to ensure that the assumptions for the linear 
model were met. This is of special interest in this case with the non-significant term as 
explained above. 
The Jarque-Bera value of the residuals of MOGCPI is 0.1572 (p = 0.9244). 
The Jarque-Bera value of the residuals of MOGM3RR is 1.2558 (p = 0.5337). 
The residu als of the VECM appear stationary (Figure 5.13). 

Figure 5.13 Residuals of VECM of LOGCPI and LOGM3RR 
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The ACF of neither of the residuals shows significant findings. The Q statistics are not 
significant either. 
The residuals of the VECM seemed well behaved. 

The correlation coefficient of the two series is 0.3437. The cross correlogram of the residuals 
does not show significant results. 

Innovation Accounting 

Both the IRF and the VD differ depending on the order in which the two time series were 
entered. This was as expected based on the correlation coefficient. The difference was more a 
matter of degree rather than different patterns However in the case of the IRF of 
!1LOGM 3RR the reaction to a shock of !1LOGCPI changed from barely a response to a 
negative response after 10 periods (Figure 5.14). The !1LOGCPI showed a negative response 
to a shock to !1LOGM 3RR after 10 periods. 

Figure 5.14 Impulse Response Function of VECM of LOGCPI and LOGM3RR 
Response of LOG CPI to One S.D . Innovations 

0.004~-------~ 

0 .002 

0 OOO ········-

'·. 
-0.002 --... 

··---. 

·0004 ---... __ 

··---... --------
1 2 3 4 5 6 7 8 9 10 

I- LOG CPI ·-- LOGM3A9 

Response of LOGM3RR to One S.D . lnnow.tions 

0.04~-------~ 

,/ 
0.03 / ·--------.... 

··-- ·---·--
0.02 

0.01 

o.oo.(_ __ ::::::::;:=:::;::==s---.--J 
1 2 3 4 5 6 7 8 9 10 

j- LOGCPJ ·-- LOG M3Rij 

Order LOGCPI LOGM3RR 

Response of LOGC PI to One S.D . Innovations 

0.004~-------~ 

0 .002 -----------------1 .. --··-,. 
0 .000;.----',----------; 

-0.002 

-0.004 ·-... 
··-... ··---.. 

1 2 3 4 5 6 7 8 9 10 

j- LOG CPI ·-.. LOG MJRfi 

Response of LOGM3RA to One S.D . Innovations 

0.04~-------~ ·------... 
··-.. 

003 ,' ·---..... _______ _ 

0.02 

0.01 

000....,_ _______ __, 

I~ -0.0,-1-......=::=======l 
1 2 3 • 5 6 7 8 9 10 

I- LOGCPl .. _ LOGM3R~ 

Order LOGM3RR LOGCPI 

The VD of !1LOGM3RR showed little effect of !1LOGCPI at all periods (Figure 5.15). 
However, the VD of !1LOGM 3RR showed a greater effect of !1LOGCPI than of its own time 
series after 10 periods. 

98 



Figure 5.15 Variance Decomposition of VECM of LOGCPI and LOGM3RR 
V..-iance Decarpositioo of LOGCPI 
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Interpretation of VECM of LOGCPI and LOGMJRR 

One of the adjustment parameters of the VECM is significant. However, the coefficient of the 
term MOGM3RR,_1 is not significant. Therefore the model cannot be used as a VECM. The 

term MOGM3RR,_ 1 is significant for both MOGCP/
1 

and MOGM3RR, . This is interpreted 

as meaning that it is associated with an increased inflation and an increase of its own value. 
These results of the innovation accounting would have been of great interest but the problems 
with the VECM renders their value questionable. 
The cointegration analysis appeared to provide a significant result at Option 4 with lag 1. 
Further analysis demonstrated that the VECM did not meet the criteria of an Option 4 VECM. 
This seems to point to a weakness in the methodology. 
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Cointegration analysis of LOGCPI, LOGMJSA and LOGM2R 

M2 as is commonly used constitutes Ml and M2R (See introduction of this chapter). It is of 
interest to see whether by bringing these two time series together (albeit with a seasonally 
adjusted Ml) will result in new insights when cointegration analyses are performed with 
LOGCPI. It would appear that LOGM1SA and LOGM2R increase in a similar manner (Figure 
5.16). However the differenced series show some differences between these two with the 
LOGM2R initially having more variation than LOGM1SA. 

Figure 5.16 Time series and differenced time series of LOGCPI, LOGM1SA and LOGM2R 
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The various cointegration analyses of the above time series are displayed in Table 5.13. The 
setup of the table is explained in section 2.9. Briefly there are five options for the VECM and 
8 lags. The VECM options include options for the data trend and the Cointegrating Equation 
(CE). The resulting cells contain from top to bottom the number of cointegrating equations, 
the AIC and the SC in this order. 

Both information criteria suggested one lag. However the SC had Option 4 with one 
cointegrating equation while the AIC had Option 3 with two cointegrating equations. 

VECM of LOGCPI, LOGM1SA and LOGM2R 

Various versions of this VECM were possible. The complete VECM of one model is 
displayed in (5.19). 

-0.072420 

0.121926 [CP/t-1 -0.6322M11 _ 1 + 0.3155M2R1_ 1 + 0.0076t -4.2735 ]+ 

-0.162041 

[ 

0.0285 - 0.0502 - 0.0006 

- 0.8565 0.1346 0.0211 

-1.6209 -0.1981 -0.1016 

!l.CP/1_ 1 0.0061 &cn ,r l 
/l.Ml1_ 1 + 0.0238 + CMl 1 

!l.M2R,_] 0.0284 &M2R ,t 

(5.19) 

where CPI is LOGCPI, Ml is LOGM1SA and M2R is LOGM2R and the significant 
coefficients are in bold. 
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Table 5.13 Cointegration analysis of LOGCPI, LOGMJSA and LOGM2R 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 2 3 2 1 3 
39 obser-vations -16.72587 -16.93376 -16.81070 

-15.83011 -15.91003 -16.00025 
Lagl-2 2 2 1 1 3 
38 obser-vations -16.49087 -16.49100 -16.60087 -16.67914 

-15.19804 -15.11198 -15.43732 -15.47249 
Lag 1- 3 1 2 1 1 3 
37 obser-vations -1 6.13590 -16.08942 -16.20668 -16.47294 

-14.69914 -14.30435 -14.63930 -14.86202 
Lag 1- 4 1 1 1 1 3 
36 obser-vations -16.31807 -16.31277 -16.35374 -16.58896 

-14.47063 -14.42134 -14.37434 -14.56558 
Lag 1 - 5 0 1 1 2 3 
35 obser-vations -16.42975 -16.43657 -16.69484 

-14.11895 -14.03689 -13.93965 
Lag 1- 6 1 2 2 3 3 
34 obser-vations -16.23813 -16.52129 -16.60941 

-13.54455 -13.46857 -13.51179 
Lagl-7 1 3 2 3 3 
33 obser-vations -16.34548 -1 6.75483 

-13.21642 -13.21763 
Lag 1- 8 
32 obser-vations Insufficient number of observations 
Note: Period covered 1994:1 - 2004:1. 

Although (5.19) has one significant adjustment factor, the coefficients of the two monetary 
aggregates in the CE are not significant. In addition none of the lagged terms had a significant 
coefficient. Consequently this VECM is not of use as an economic model. Nevertheless the 
model will be evaluated to see whether some statistical aspects are of interest. 

Residual analysis ofVECM of LOGCPI, LOGMJSA and LOGM2R 

Various tests were performed on the residuals to check whether the assumptions for the linear 
model were met. 
The Jarque-Bera value of the residuals of lllOGCPI is 0.7800 (p = 0.6718) 
The Jarque-Bera value of the residuals of lllOGMlSA is 3.8726 (p = 0.1442 
The Jarque-Bera value of the residuals of !1LOGM2R is 0.4315 (p = 0.8059) 
The residuals of the VECM appear stationary (Figure 5.17). 
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Figure 5.17 Residuals of VECM of LOGCPI andLOGMJSA andLOGM2R 
LOGCPI Residuals 

0.010-,-------------, 

.0.010.,-.,.....,._~~~~~,.....,-Ti 
~ ~ ~ ~ ~ ~ ~ 01 oo ro ~ 

LOGM 1 SA Residuals 

0.06-,-------------, 

0.04 

LOGM2R Residuals 

•0.12+---,~~~~~~~ ~~~ITT. ~ 00 01 00 ro ~ 

The ACF of none of the residuals shows significant findings. The Q statistics are not 
significant either. The residuals of the VECM seem well behaved. 

Table 5.14 Correlation coefficients of the residuals of the VECM of LOGCPI, LOGMISA and LOGM2R 

MOGCPI 
MOGCPI 
MOGMlSA 

MOGMlSA 
MOGM2R 
MOGM2R 

Correlation coefficient 
-0.2035 

-0.2718 

0.4891 

The cross-correlogram may have shown a positive correlation between the residuals of 
MOGCPI and MOGM 2R at lag 4. Table 5.14 shows the high value of the correlation 
coefficient of the two monetary aggregates. This may affect the innovation accounting 
analysis. 

Innovation Accounting 

Since there are three time series, there are six different orders that can be used for entering the 
series into the Impulse Response Function and the Variance Decomposition. Two are shown 
below for illustrative purposes (Figure 5.18 and 5.19). 
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The IRF of MOGCPI shows a strong positive response to shocks to 11LOGM1SA and a 
negative response to MOGM 2R . The order in which the two monetary aggregates are 
entered clearly affect the response of MOGCPI they create. 

Figure 5.18 Impulse Response Function of VECM of LOGCPI, LOGMISA and LOGM2R 
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The order in which the two monetary aggregates are entered matters much when the VD of 
MOGMlSA is considered. If LOGM2R is entered before LOGMISA, then both these time 
series contribute approximately the same proportion to the variance of 11LOGM1SA. If the 
order is reversed (left hand site of Figure 3.33) then the contribution becomes similar to that 
by MOGCPJ which is about 10% after 10 periods. 
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Figure 5.19 Variance Decomposition of VECM of LOGCPI, LOGMISA and LOGM2R 
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Interpretation of VECM of LOGCPI and LOG Ml SA and LOGM2R 

The adjustment paraII\eter of MOGCPI
1 

is significant. However, none of the components of 

the error correction term (including the trend term) is significant. In the case of the data trend 
none of the lagged terms is significant. Again the results of the innovation accounting would 
have been of interest from an economic perspective but this is largely rendered by the 
problems of non-significant values in the CE. 

VECM of LOGCPI and LOGMJSA and LOGM2R (2 cointegrating equations) 

In an attempt to establish whether a more meaningful VECM could be detected the best 
model according to the AIC was evaluated in (5.20). By using two CEs there is also the 
possibility that perhaps the Quantity Theory might be modelled for Ml and reverse causation 
for M2R. 
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l:!.LOGCPI1 l r- 0.1792 0.0387 l LOGCPI
1 1 - 0.3691LOGM 2R, 1 -3.1826 

l:!.LOGMlS. = 0.2442 - 0.0368 - - + ~ [LOGM1SA, 1 -1.9986LOGM2R, 1 + 10.7483] 
l:!.LOGM 2R, 1.1318 0.0259 - -

0.1132 

-1.2325 

-0.0769 

0.1695 

0.2529 

0.0066 

0.0099 

-0.0889 

l:!.LOGCPI,_1 0.0062 r &LOGCPI, 
l:!.LOGM1SA,_I + 0.0251 + &LOGMISA,t 

M,QGM2R,_1 0.0238 &LOGM2r,t 

(5.20) 

-2.8523 

The difference between (5.20) and (5.19) is striking at this stage. Equation (5.20) appears to 
have at least a significant coefficient in each cointegration equation which may make it 
meaningful from an economic perspective. 

Three long-term relationships can be distinguished. Both LOGCPI and LOGM2R show short­
term corrections to departures from their long-term equilibrium. They have opposite signs of 
their adjustment coefficients and this seems to make more economic sense than VECM of 
these two time series only that was discussed at an earlier stage. 

In addition LOGCPI also appears to react to a departure of the long-term equilibrium between 
the two monetary aggregates. As LOGM1SA increases from its long-term equilibrium with 
LOGM2R, LOGCPI will increase more. 

Residual analysis of VECM of LOGCPI, LOGMISA and LOGM2R (2 cointegrating 
equations) 

Various tests were performed on the residuals to check whether the assumptions for the linear 
model were met. 
The Jarque-Bera value of the residuals of MOGCPI is 1.1074 (p = 0.5748) 
The Jarque-Bera value of the residuals of MOGM1SA is 5.4240 (p = 0.0664) 
The Jarque-Bera value of the residuals of MOGM2R is 0.5145 (p = 0.7732) 
The residuals of the monetary aggregates in the VECM may have shown a slight upward 
ternd of the mean (Figure 5.20). 

The ACF of the residuals of l:!.LOGCPI may have been significant at lag 10, but the other 
time series did not show significant findings. The Q statistics of none of the series was 
significant either. 
The residuals seemed reasonably well behaved. 

Table 5.15 Correlation coefficients of the residuals of the VECM of LOGCPI, LOGMISA and LOGM2R 

l:!.LOGCPI 
l:!.LOGCPI 
l:!.LOGM1SA 

MOGM1SA 
MOGM2R 
l:!.LOGM2R 

Correlation coefficient 
-0.2585 

-0.1803 

0.4893 

The correlation coefficient of especially the two monetary aggregates in Table 5.15 is very 
similar to the one identified in the VECM with one CE only. 
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The cross-correlogram between the residuals of /J..LOGCPI and /J..LOGM2R showed a 
significant negative lead 7. The remaining values of the cross-correlograms were not 
significant. 

Figure 5.20 Residuals of VECM of LOGCPI, LOGMJSA and LOGM2R 
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Innovation Accounting 

The high correlation coefficient between the two monetary aggregates clearly influences the 
IRF (5.21) and the VD (5.22). The response of /J..LOGCPI to shocks to /J..LOGMlSA is 
obvious regardless of the ordering and this is an important finding. 

The VD too shows the importance of /J..LOGMlSA with regard to /J..LOGCPI. 
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Figure 5.21 Impulse Response Function of VECM of LOGCPJ, LOGMISA and LOGM2R 
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Comments on the VECMs of LOGCPI, LOGMISA, LOGM2R 

The VECM with two cointegrating equations was of more use than the one with one CE only. 
Although it is encouraging to have results that can be interpreted in a meaningful economic 
sense it is reason for concern too. At first sight there was no good reason to choose (5 .20) 
rather than (5.19). Both should have resulted in admissible models. The information criterion 
chosen cannot be used for 'weeding out ' the first model. Equation (5.20) showed the 
importance of the relationship between LOGCPI and LOGM2R. However the innovation 
accounting seemed to show that the relationship between LOGCPI and LOGM2R was of more 
importance. 
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Figure 5.22 Variance Decomposition of VECM of LOGCPI, LOGMJSA and LOGM2R 
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Cointegration analysis of LOGCPI, LOGMJSA, LOGM2R and LOGM3RR 

Finally of interest is a cointegration analysis that evaluates the three monetary aggregates that 
have been used so far and LOGCPI. Figure 5.23 gives the impression that the slope of the 
monetary aggregates is steeper than that of the inflation. The monetary aggregates also 
display more variation. 

Figure 5.23 Time series and differenced time series of LOGCPI, LOGMISA, LOGM2R and 
LOGM3RR 
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The various cointegration analyses of the above time series are displayed in Table 5.16. The 
setup of the table is explained in section 2.9. Briefly there are five options for the VECM and 
8 lags. The VECM options include options for the data trend and the Cointegrating Equation 
(CE). The resulting cells contain from top to bottom the number of cointegrating equations, 
the AIC and the SC in this order. 

The large number of time series relative to the length of the time series resulted in models 
with 5 lags at the most. All possible VECMs with one exception had 2 or 3 Cointegration 
Equations. The SC selected this VECM with the 1 CE as the best model. It probably 
illustrates the parsimonious nature of the information criterion. However, it also raises some 
doubts whether a criterion based on parsimony is necessarily the best way to select a model. 
This issue will be further discussed in the general discussion. 

VECM of LOGCPI, LOGMJSA, LOGM2R and LOGM3RR 

Since there were 4 time series and 1 CE was deemed to exist, there were 4 possible ways of 
displaying the CE. One model is displayed in full (5.21) and the CEs of the remaining models 
are displayed in (5.22) to (5.24). Although all 4 versions had negative significant adjustment 
coefficients, none had a significant coefficient of a time series in the CE. 
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Table 5.16 Cointegration analysis of LOGCPI , LOGMJSA , LOGM2R and LOGM3RR 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 2 3 2 1 2 
39 obser- -20.98558 -20.96893 -21.22277 -21.07200 -21.19454 
vations -19.62060 -19.13474 19.68718 -19.83500 -19.48832 
Lagl-2 2 3 1 3 3 
38 obser- -20.73326 -20.67425 -20.85088 -20.91012 -20.98999 
vations -18.66473 -18.13168 -18.95473 -18.19517 -18.23195 
Lag 1-3 2 3 3 4 3 
37 obser- -20.43916 -20.43733 -20.47874 -20.83995 
vations -17.65270 -17.17196 -17.16983 -17.35688 
Lagl-4 3 3 4 4 3 
36 obser- -20.43876 -20.60108 -21.10051 
vations -16.56793 -16.59830 -16.87779 
Lag 1-5 2 2 2 3 2 
35 obser- -21.14468 -21.19747 -21.30396 -22.06981 -22.29890 
vations -16.87858 -16.84249 -16.86010 -17.13714 -17.67730 
Lag 1-6 
34 observations 
Lag 1-7 
33 observations 
Lag 1-8 Insufficient number of observations 
32 observations 
Note: Period covered 1994:1 - 2004:1. 

The significant adjustment coefficient applied in all cases to LOGCPI. Interestingly, the trend 
was significant in (5.24) but not in any of the other ones. This illustrates that although the 
same space may be spanned by the vectors, the conclusions can still differ if one uses 
'significance' for making decisions regarding the meaning of a model. It was decided not to 
further explore this model because it was not informative. 

!::.CPI
1 

~11 

~2R
1 

t1M3RR1 

-0.0016 

0.0009 

-0.0069 

-0.004706 

[CPI
1
_, + 4.2396M11_ 1 + 19.8010M2R1_1 + 23.6496M3RR1_1 -0.6675t -485.1551] 

-0.1024 -0.0150 0.0042 0.0469 !::.CPI1 -1 0.0051 £ CPI ,t 

-0.6544 -0.0193 -0.0304 -0.2262 11Aflt-l 0.0311 £M l, t 
+ + + 

-1.7205 -0.3461 - 0.1915 -0.26591 t1M2R1-1 0.0384 £M2R ,t 

-1.5462 0.2423 0.0582 0.5144 t1M3RR1-1 0.0113 £M3EE,t 

(5.21) 
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0.0038 

-0.0292 [M1SA1_ 1 + 4.6705M2R1-1 + 5.5783M3RR1_ 1 + 0.2359CPI1_1 l 
-0.0200 - 0.1574t-114.4344 

-0.0068 

-0.1365 

- 0.0932 [M2R,_1 + 1.1944M3RR1_ 1 + 0.0505CPI1_ 1 + 0.2141M1SA1_ 1 l 
- 0.0320 - 0.0337t - 24.5016 

0.0178 

-0.1113 

-0.0382 [M3RR1_ 1 + 0.0423CP!t-1 + O.l 793M1SA1 _ 1 + 0.8373M2R1 _ 1 ] 

0.0212 - 0.0282t - 20.5143 

-0.1630 

(5.22) 

(5.23) 

(5.24) 

where CPI is LOGCPI, Ml is LOG Ml SA , M2R is LOGM2R, M3RR is LOGM3RR and the 
significant coefficients are in bold. 

Discussion 

Money can be defined in various ways and three different monetary aggregates were 
evaluated in this Chapter. 

VECMs for LOGCPI, LOGMISA and LOGM2R seemed to provide results that were 
informative and can be used for model building. However, the meaning of some of the results 
(eg equation (5.17)) was not immediately clear. Further research may be able to clarify what 
caused the results . The standardised manner of finding the best model would have resulted in 
(5.19). This model was not informative. However model (5.20) was quite informative. This 
again raises the issue how to find an appropriate model without ' data dredging ' until a model 
is found that appeals to the analyst. 

This discussion on the importance of the monetary aggregates will be continued later when 
the interest rates and the GDP are evaluated. 
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CHAPTER6 

TIME SERIES ANALYSES OF INTEREST RATES 

Introduction 

In recent times NZ governments have been committed to keeping inflation within bounds. A 
number of tools can be used to control inflation. Some of these will be in the hands of 
government (eg affecting employment) while other tools are available to the RBNZ. The 
government has made inflation control a main task of the RBNZ as set out in an agreement 
between these two parties. Currently it is 1 to 3 percent over the medium term. The tools 
available to the RBNZ include the manipulation of the monetary base and the interest rates. 
The RBNZ uses the Official Cash Rate (OCR) as its primary tool to control inflation. 

A sign of success to reduce inflation could be considered the CPI figure of the second quarter 
of 1991 when for the first time in recent history the yearly inflation rate was less than 3.0% 
(ie 2.8% ). The difference in inflation rates before and after June 1991 offers, from an analysis 
perspective, opportunities as well as disadvantages. An analysis of the economy under 
different economic conditions that are characterised by high as well as low inflation has 
advantages as well as disadvantages. Issues with potential profound economic effects should 
preferably be considered under varying conditions. The main disadvantage of the considerable 
difference in inflation rates is that the actual time series available for analysis has now 
become divided into two relatively short time series which make it more difficult to make 
robust inferences. In order to be consistent with some other chapters the analysis in this 
chapter will cover the quarters over the period 1994:1 - 2004:1. 

Interest rates compete with a number of other investment vehicles ( eg share market and real 
estate) for available resources. Consequently one would expect some form of return between 
these investment vehicles after taking into account such matters as risk premiums, taxation 
distortions and investment fashions. If one of these types of investment became more 
profitable than the other ones, more resources would be allocated to this type of investment, 
reducing its returns and lifting that of the others. However the setting of the OCR by the 
RBNZ distorts this mechanism. 

This chapter analyses two interest rates: the Call Deposit Rate (CD) and the Six Month 
Deposit Rate (SMD). The longer money is lent, ceteris paribus, the higher the interest rate 
should be because the lender is foregoing the consumption of the resources for a longer 
period. In addition there is a greater risk of unforeseen inflation rate changes. The latter would 
not matter if both lender and borrower are risk neutral and the inflation rate can accelerate or 
decelerate with equal probabilities and at similar speeds. In reality the lender may be more 
risk averse the longer the period the money is not available to him, ie more reluctant to accept 
the current inflation rate as fixed if it is low. One would also expect that both the lender and 
the borrower have a better knowledge of the inflation rate in the immediate term than in the 
medium or long term. 
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The univariate and multivariate analyses will be carried out as explained in Chapter 2.The 
standard errors are put in parentheses below each DF equation. The criterion for rejecting a 
unit root is p < 0.1 and the criterion for rejecting the r and </J statistics is p < 0.05 (See 

Chapter 2). Dickey and Fuller (1981) provided critical values for these latter two test 
statistics. Regrettably if the sample size of this chapter is considered only the sample sizes of 
25 and 50 are relevant. Consequently various critical values are required to be shown at times 
for one tests statistic to decide whether a hypothesis is to be rejected or not. 

Call Deposit Rate (CD) 

The time series of the call deposit interest rates covers the period 1994:1 to 2004:1 in 
quarterly time periods. The CD time series starts at a level of less than 4 percent (Figure 6.1). 
After a steep increase it remains at a level of approximately 6.5 percent for a number of years. 
There is a steep decline after 1998 and the interest rates remain at a lower level until the end 
of the series. The differenced series is more or less stationary although a large peak and a 
large trough can be distinguished. 

Figure 6.1 Time series and differenced time series of CD 
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OF Models of CD 

The time series of CD was tested for stationarity in (6.1) to (6.5) by using the Dickey-Fuller 
equations as outlined in Chapter 2. 

Model 1 

I).CD, = 1.9079- 0.0386t -0.2701CD,_I + 0.81241).CD,_I -0.36381).CD,_2 + £, (6.1) 

(0.5460) (0.0110) (0.0782) (0.1203) (0.1371) 

Model 2 

I).CD, = 0.0886- 0.0312CD,_I + 0.8637 !J.CD,_1 - 0.5439/J.CD,_2 + £, (6.2) 

(0.1969) (0.0443) (0.1379) (0.1468) 
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Model 2R 
!1CD1 = -0.0415 + 0.8638!1CD1_ 1 - 0.5815~CD1_ 2 + &1 (6.3) 

(0.0669) (0.1369) (0.1357) 

Model3 
!1CDr = -O.Ol24CD1_1 + 0.8624!1CD1_ 1 - 0.5670!1CD1_ 2 + &

1 (6.4) 

(0.0150) (0.1363) (0.1359) 

Model 3R 
!1CDr = 0.8696!1CDr-1 -0.5791!1CD1_ 2 + &1 (6.5) 

(0.1354) (0.1345) 

The RSS and the information criteria of DF models (6.1) to (6.5) are shown in Table 6.1. 

Table 6.1 RSS and information criteria of Dickey-Fuller models of CD 

Model 1 (6.1) 
Model 2 (6.2) 
Model 2R (6.3) 
Model 3 (6.4) 
Model 3R (6.5) 

~S NC ~ 

4.222452 0.9039 1.1193 
5.796736 1.1681 1.3405 
5.8811 
5.8313 
5.945881 

1.1214 1.2507 

The various DF statistics of (6.1) to (6.5) are displayed in Table (6.2). 

Table 6.2 Summary of the Dickey-Fuller tests of CD 
Model Test Value Critical Value (p-value, n#) 

Statistic 
1 r, -3.45 -3.53 (0.05) 

-3.20 (0.1) 

ra, 
3.49 3.20 (0.05, 25) 

3.59 (0.025, 25) 

r /Jr 
-3.51 3.25 (0.025, 25) 

3.74 (0.01, 25) 

</J2 4.49 4.67 (0.1, 25) 

5.68 (0.05, 25) 

5.13 (0.05, 50) 

<p3 6.48 5.61 (0.1, 50) 

6.73 (0.05, 50) 

2 
rµ 

-0.70 -2.61 (0.1) 

Taµ 
0.45 2.18 (0.1, 50) 

</J1 
0.42 3.94 (0.1, 50) 

3 r -0.83 -1.62 (0.1) 

Adj. R2 

0.6282 
0.5046 

0.5159 

Hypothesis 

y=O 

a0 = 0 given y = 0 

a2 = 0 given y = 0 

ao = r = a2 = 0 

y = a2 = 0 

r=O 

a0 = 0 given y = 0 

ao = r = 0 

y=O 
n listed if p-value for precise sample size of time series not known, time series has 38 observations after 

adjusting endpoints 
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Model 1 

The model suggests unit root (p > 0.05). However the evidence is not strong. The ACF of the 
residuals of (6.1) does not show significant lags (16 lags included). There are no significant Q 
statistics. 

There was concern about a possible breakpoint and therefore the Chow Breakpoint test was 
performed (Table 6.3). According to this test there is no evidence for a breakpoint at 1998:1. 

Table 6.3 Chow Breakpoint Test of DF Model 1 of CD at 1998:l 

F - statistic 
Log Likelihood ratio 

Value 
0.64 
4.13 

Probability 
0.67 
0.53 

Both deterministic components ( r ar and r fJr ) are significant (p < 0.05) if the hypothesis of unit 

root is accepted. 

The unrestricted and the restricted equations for </J2 are (6.1) and (6.5) respectively. For </J3 

these equations are (6 .1) and (6.3). There are 38 usable observations (T=38) and 5 parameters 
(k=5) in the unrestricted models of </J2 and </J3 . There are 3 restrictions in </J2 and 2 in</J3 . 

The null hypothesis for </J2 is not rejected. This can be interpreted as meaning that if the 

process is unit root, then a0 and/or a2 may be zero too. This is not in line with the r statistics. 
The null hypothesis of </J3 is not rejected either (p > 0.05). This can be interpreted as meaning 

that if the process is unit root, then a2 is not significantly different from 0. 

The results of the tests are ambiguous. Although the process is unit root, the deterministic 
components are not always considered to be significant. This tends to indicate that a better 
model without deterministic components should exist. 

Mode/2 

Model 2 has a unit root (p > 0.1). The ACF of (6.2) seems to show a significant lag (lag 15) 
and the Q statistics of lags 15 and 16 are significant (16 lags included). Given the multiple use 
of p values it is not unexpected that by chance at times seemingly significant findings occur. 
If for instance 20 tests are performed at 0.05, one spurious significant result can be expected. 

The constant ( a0) is not significant at the 10% significance level as shown by r aµ • 

The unrestricted and the restricted equations for </J1 are (6.2) and (6.5) respectively. There are 

38 usable observations (T=38) and 4 parameters (k=5) in the unrestricted model. There are 2 
restrictions. The null hypothesis for </J1 is not rejected, meaning that ao is not significant. 

Similar to Model 1 a time series with unit root is identified that initially seems to have 
deterministic component(s). On closer examination the constant in Model 2 appears not 
significant. 
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Model3 

Model 3 appears to have a unit root (p > 0.1). The ACF of the residuals of (6.4) appears 
significant at lag 15 and the Q statistics are significant at lag 15 and 16 (16 lags included). A 
possible explanation for these significant values has been given above in Model 1. 

Selection of the best CD DF Model 

Model 3 seems the best model. It includes two lags. The information criteria of Model 1 were 
smaller but the lack of significance of the deterministic components was of concern. 

This means that the CD has a unit root, it displays a pattern that could be taken to be a random 
walk without a drift. Therefore the value of CD in the next period will be close to the current 
value. However long term predictions of the CD cannot be made confidently if based on its 
own values only. 

Sixth Month Deposit Rate (SMD) 

The quarterly time series of the SMD covers the period 1994:1 to 2004:1. The time series 
SMD shows a sharp increase at the beginning (Figure 6.2). After that initial increase there 
appears a continuous decline, with one sharp drop in the beginning of 1998 followed by an 
increase. The differenced time series appears stationary with the exception of a deep through 
in 1998. 

Figure 6.2 Time series and differenced time series of SMD 
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DF Models of SMD 

The time series of SMD were tested for stationarity in (6.6) to (6.10) by using the Dickey­
Fuller equations as outlined in Chapter 2. 
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Model 1 
MMDI = 2.5852-0.0315( - 0.2995SMDl-l + 0.7011MMDH 

(0.8318) (0.0115) (0.0957) (0.1320) 

-0.2213MMD,_2 + c1 (6.6) 

(0.1554) 

Model 2 
MMD

1 
=0.5710-0.0929SMD1_ 1 +0.7347MMD

1
_ 1 -0.3680MMD

1
_ 2 +c

1 
(6.7) 

(0.4249) (0.0643) (0.1435) (0.1593) 

Model 2R 
MMD

1 
= -0.0305 + 0.7347 MMD,_1 -0.4669MMD

1
_ 2 + c

1 
(6.8) 

(0.0847) (0.1457) (0.1460) 

Model 3 
MMD 1 = -0.0081SMD,_1 + 0.7343MMD

1
_ 1 -0.4590MMD

1
_ 2 + c 1 (6.9) 

(0.0128) (0 .1451) (0 .1458) 

Model 3R 
MMD

1 
= 0.7353MMD1_ 1 - 0.4659MMD1_ 2 + c1 (6.10) 

(0.1439) (0.1442) 

The RSS and various information criteria of DF models (6.6) to (6.10) are shown in Table 6.4. 
The various DF statistics of (6.6) to (6.10) are displayed in Table 6.5. 

Table 6.4 RSS and information criteria of Dickey-Fuller models of SMD 
RSS AIC SC Adj. R2 

Model 1 7.310513 1.4528 1.6682 0.5061 
Model 2 8.9736 1.6051 1. 7775 0.4115 
Model 2R 9.5237 
Model 3 9.4502 1.6042 1.7335 0.3980 
Model 3R 9.5590 

Model] 

The standardised procedures that are outlined in Chapter 2 would initially have resulted in the 
equation below because the second lag is not significant. 

MMD1 = 2.9936 -0.0345t - 0.3532SMD1_ 1 + 0.6086MMD1 _1 + c1 

(0.6449) (0.0096) (0.0750) (0.1172) 

RSS = 7.8189 AIC = 1.4360 SC= 1.6066 Adj. R2 = 0.5085 

However, the standardised procedures also require that all DF models have an equal number 
of lags which is two lags in this case. This is because the ~ statistics are based on a nested 
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Table 6.5 Summar of the Dicke -Fuller tests of SMD 
Model Test Value Critical Value (p-value, n Hypothesis 

Statistic 
1 r, -3.13 -3.20 (0.1) r =O 

' a, 3.11 3.14 (.05, 50) a0 = 0 given y = 0 

r fJ. 
-2.74 2.81 (0.05, 50) a2 = 0 given r = 0 

'P2 3.38 4.31 (0.1 , 50) ao = r = a2 = 0 

<p3 1.08 1.37 (0.1, 50) r = a2 = 0 
2 'µ -1.44 -2.61 (0.1) r =O 

' aµ 0.57 2.18 (0.1, 50) a0 = 0 given y = 0 

'P1 5.00 5.18 (0.05, 25) ao = r = 0 
4.86 (0.05, 50) 

3 r -0.63 -1.62 (0.1) r =O 

# n listed if p-value for precise sample size of time series not known, time series has 38 observations after 
adjusting endpoints 

approach. Therefore the same number of lags is required for all models and consequently 
(6.6) was computed. 

The model suggests unit root (p > 0.1). The ACF of the residuals of (6.6) does not show 
significant lags (16 lags included). There are no significant Q statistics. There was some 
concern a breakpoint might exist and a Chow Breakpoint Test was performed (Table 6.6). 
According to this test there is no evidence for a breakpoint at 1998:1. 

Table 6.6 Chow Breakpoint Test of DF Model 1 of SMD at 1998:1 

F - statistic 
Log Likelihood ratio 

Value 
1.16 
7.16 

Probability 
0.35 
0.21 

Neither the null hypothesis of r a, nor r 
13

, and rejected. Consequently the deterministic 

components are not deemed significant. 

The unrestricted and the restricted equations for </J2 are (6.6) and (6.10) respectively. For </J3 

these equations are (6.6) and (6.8). There are 38 usable observations (T=38) and 5 parameters 
(k=5) in the unrestricted models of <p2 and <p3 • There are 3 restrictions in <p2 and 2 in </J3 • 

The null hypothesis of <p2 is not rejected (p > 0.1). This can be interpreted as meaning that if 

the process is unit root, then a0 and a2 are zero too. The null hypothesis for </J3 is not rejected 

either (p > 0.1). This can be interpreted as meaning that if the process is unit root, then a2 is 
not significantly different from 0. 

Consequently the initial test showed a unit root model with deterministic components. The 
deterministic components were subsequently deemed to be not significant. 
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Mode/2 

Model 2 has a unit root (p > 0.1). The ACF of the residuals of (6.7) does not show significant 
lags (16 lags included). There are no significant Q statistics. 

The deterministic component ( r aµ ) is not significant (p > 0.1) if the hypothesis of unit root is 

accepted. 

The unrestricted and the restricted equations for ~1 are (6 .7) and (6.10) respectively . There are 

38 usable observations (T=38) and 4 parameters (k=5) in the unrestricted model. There are 2 
restrictions. Since the value of the test statistic ~1 falls between the critical values at p=0.05 

for a sample size of 25 and a sample size of 50, the decision is not clear-cut. The evidence for 
rejecting the null hypothesis is weak. 

The initial test indicated a unit root model with a deterministic component. The test based on 
r aµ rejected the deterministic component being different from O and ~1 , although less clear, 

appeared do the same. 

Mode/3 

Model 3 has a unit root (p > 0.1). The ACF of the residuals of Equation (6.9) does not show 
significant lags (16 lags included). There are no significant Q statistics. 

There was some concern a breakpoint might exist and a Chow Breakpoint Test was performed 
(Table 6.7) . According to thi s test there is no evidence for a breakpoint at 1998:1. 

Table 6.7 Chow Breakpoint Test of DF Model 3 of SMD at 1998:1 

F - statistic 
Log Likel ihood ratio 

Selection of DF SMD model 

Value 
0.29 
1.01 

Probability 
0 .83 
0.80 

All three models suggested unit root. Based on the statistics for the deterministic components 
Model 3 seemed the best model. This is despite the information criteria indicating that Model 
1 might be a better model. 

This means that the SMD has a unit root, it displays a random walk without a drift. Therefore 
the value of SMD in the next period will be close to the current value. However long term 
predictions of the SMD cannot be made confident! y if based on its own values only. 

Summary of DF test of interest rates 

Model 3 was the best DF model for both CD and SMD. In both cases there were 2 lags. Both 
analyses initially permitted the use of models that included either 1 or 2 deterministic 
components. Had either the AIC, the SC or Adj. R2 been used as a criterion for selecting the 
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optimal model, then in both cases the Model 1 would have been chosen incorrectly. The usual 
t-statistics and F-statistics do not apply and the critical values provided by Dickey and Fuller 
(1981) must be used. There are only two options available (sample sizes 25 and 50) that may 
be of use in the case of the sample size that was used. This resulted in one of the decisions 
regarding rejecting the null hypothesis or not, not being entirely clear. However it should 
always be kept in mind that the selection of the p value itself that is used for decision making 
is a subjective decision too. 
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Granger Causality of inflation and interest rates 

The DF models chosen for CD and SMD were the same. This was not unexpected when one 
considers the nature of the time series. One would expect the patterns of the returns of the two 
interest rates to be similar but with a greater return for the SMD because the lender has to 
forgo the use of his/her assets for a longer period of time. One would also expect that if 
changes occur, then they would first be noticed in the CD rate and they would possibly occur 
later in the SMD. Also because the SMD occurs over a longer period of time the curve might 
have a more smoothed appearance than that of the CD. 

The RBNZ manipulates the interest rates through the use of the OCR. If the OCR goes up, so 
will the interest rates. By raising ( or lowering) the interest rates, the national production is 
reduced (or increased) which should result in a reduction (or increase) of inflation (CPI in this 
thesis) . Consequently it will be of interest to see what relationship can be detected between 
two interest rates that are likely to react swiftly to changes of the OCR and the CPI. 

Given the above considerations Granger Causality tests and Cointegration tests will be 
performed on the interest rates and inflation. 

Various p values for Granger Causality tests for interest rates and inflation are displayed in 
Table 6.8. The null hypothesis tested in Table 6.8 is that the left hand column (eg CD) does 
not Granger Cause the second column from the left (eg SMD). The next row of data in this 
table calculates Granger Causality in the opposite direction (eg does CD Granger Cause 
SMD?). EViews calculates these regressions as follows: 
CD, = a 0 + a 1CD,_1 + ... + a 1CD,_1 + /31SMD1_ 1 + ... + /31SMD1_ 1 

SMD1 = a 0 + a 1SMD,_ 1 + ... + a1SMD, _1 + /31CD1 _ 1 + ... + /3PD,_1 

It reports F-statistics are the Wald statistics for the joint hypotheses: /3 1 = · · · = /31 = 0 

Table 6.8 P val ues of Granger Causality tests of interest and inflation rates 
Time series Lags 

1 2 3 4 5 6 7 8 

CD SMD 0.75 0.22 0.56 0.17 0.33 0.47 0.65 0.31 
SMD CD 0.15 0.19 0.43 0.42 0.49 0.66 0.64 0.09 

LOG- CD 0.008** 0.011 * 0.001 ** 0.09 0.50 0.18 0.21 0.26 
CPI 
CD LOG- 0.31 0.001 ** 0.007** 0.007** 0.03* 0.052 0.07 0.0504 

CPI 

LOG- SMD 0.015* 0.0108* 0.08 0.39 0.57 0.60 0.22 0.51 
CPI 
SMD LOG- 0.97 0.0002* 0.001 ** 0.001 ** 0.007** 0.009** 0.004** 0.011 * 

CPI 
Note: Period covered 1994:1- 2004:1. *(**) denotes rejection of the hypothesis at the 5%(1 %) significance 
level. 

There were no significant lags for CD and SMD (8 lags included). This means that one time 
series is not Granger Causing the other. They may still react simultaneously to the same 
stimuli. 
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The pattern of SMD or CD on the one hand and CPI on the other hand is quite similar. When 
the lag number is small LOGCPI is Granger Causing CD or SMD. However, starting from 2 
lags, CD or SMD are Granger Causing LOGCPI. The observation that LOGCPI Granger 
Causes either CD or SMD may be explained by the increase in inflation resulting in an 
increase in the OCR. The latter observation is encouraging because it may mean that the 
interest rates are indeed associated with reducing or increasing the CPI at a later stage. 
Obviously both explanations are tentative and confirmation would be subject to further 
analysis. 
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Cointegration Analysis 

The rationale for carrying out cointegration analyses was explained in the previous section on 
Granger Causality. Cointegration analysis was performed of the following time series. 

• CD SMD 
• LOGCPI CD 
• LOGCPI SMD 
• LOGCPI CD SMD 

The dataset that was used is shown in the appendix. Note that LOGCPI in the Vector Error 
Correction Model (VECM) calculations of contained 4 instead 6 significant digits. The 
differences in the results are of a minor nature. 

Cointegration analysis of CD and SMD 

Figure 6.3 shows the similar patterns of the original and the differenced time series of CD and 
SMD. The return on the SMD is consistently better than on the CD. 

Figure 6.3 Time series and differenced time series of CD and SMD 
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Table 6.9 analyses the VECMs of CD and SMD. The setup of the table is explained in section 
2.9. Briefly there are five options for the VECM and 8 lags. The VECM options include 
options for the data trend and the Cointegrating Equation (CE). The resulting cells contain 
from top to bottom the number of cointegrating equations, the AJC and the SC in this order. 
The best VECM using the SC is Option 4 with 2 lags (Table 6.9). Although these time series 
did not show any Granger Causality (p > 0.05) in Table 6.8, various VECMs were identified 
in Table 6.9. In fact every one of the 5 options and every lag seemed to be possible, but not 
every combination of these two. 

VECM of CD and SMD 

The best VECM of Table 6.7 according to the SC is displayed in (6.11) 
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= [en, 1 -0.7808SMD, 1 + 0.0567t -0.2983 ]+ 
[ 

!!.CD, l [- 0.9100] 
!!.SMD, - 0.6837 - -

[
0.8851 - 0.3770] [ /iCD,_1 l + [- 0.1702 - 0.3770] [ /iCD,_2 l + [- 0.0321] + 
0.4578 0.2194 !!.SMD,_1 - 0.1049 - 0.5050 !!.SMD1_ 2 - 0.0182 

[ 
&en I l 

&SMD ,r 

(6.11) 

where the significant coefficients are in bold typeface. 

VECM (6.11) has two significant adjustment factors. However, they are both negative. It is 
hard to reconcile that these coefficients are both of the same sign, indicating a correction for 
both time series in the same direction if the series are not in equilibrium. 

The significant coefficient of the time-dependent term in the error correction term is difficult 
to interpret from an economic perspective. Such a term would indicate ongoing divergence 
which does not make sense for the time series in question where CD grows at a faster rate 
than SMD. The shortness of the time series might lead to this type of situations. At the same 
time there is a constant negative component in the cointegration equation. This may have 
compensated for the positive trend. 

Table 6.9 Cointegration analysis of CD and SMD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 0 1 1 2 2 
39 obser-vations 1.775330 1.809640 

2.159229 2.236194 
Lag 1 to 2 0 0 0 1 2 
38 obser-vations 1.471763 

2.118179 
Lag 1 to 3 0 0 0 1 2 
37 obser-vations 1.417689 

2.244917 
Lag 1 to 4 0 0 0 1 2 
36 obser-vations 1.242105 

2.253798 
Lag 1 to 5 0 0 0 1 2 
35 obser-vations 1.173019 

2.372859 
Lag 1 to 6 0 0 0 1 2 
34 obser-vations 1.016164 

2.407846 
Lag 1 to 7 1 1 0 1 2 
33 obser-vations 1.533997 1.546635 0.617478 

2.985156 3.043142 2.204683 
Lag 1 to 8 1 1 1 2 2 
32 obser-vations 1.232091 0.932344 0.807655 

2.881044 2.627101 2.548216 
Note: Period covered 1994:1 - 2004:1. 
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Although the best model included 2 lags, the second lag did not have significant coefficients 
in VECM (6.11). The only lagged term that was significant in the VECM applied to CD at 1 
lag. This coefficient indicated a positive correlation. 

Residual analysis of VECM of CD and SMD 

Various tests were performed on the residuals to verify that the assumptions for the linear 
model were met. If not, the model may give misleading information about the system being 
modelled. Since the VECM was not satisfactory it was considered important to evaluate any 
deviations of the residuals from the usual assumptions. 

The Jarque-Bera value of the residuals of !::.CD is 0.7913 (p = 0.6733). 
The Jarque-Bera value of the residuals of !::.SMD is 1.5004 (p = 0.4723). 
The residuals of the VECM appear stationary (Figure 6.4). 

Figure 6.4 Residuals of VECM of CD and SMD 
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The ACF of the residuals of !::.CD, appears significant at 2, 7, 11 and 16 lags and the Q 

statistics at lag 5 and from lag 7 onward are significant (16 lags included). The ACF of the 
residuals of !::.SMD1 appears significant at lag 7 and the Q statistics at lag 7 and from lag 10 

onward are significant (16 lags included). 

The correlation coefficient of the residuals of !::.CD, and !::.SMD, is 0.7900. They are also 

positively cross-correlated at lag 7 and lead 16, and negatively at lead 11 .. 

The autocorrelations of the residuals of VECM (6.11) is of concern since it may be associated 
with the problems identified in the VECM. Consequently VECMs with 1 to 3 lags and 1 
cointegration equation were attempted. In all cases a considerable degree autocorrelation of 
the residuals of !::.CD, remained. The cross-correlations remained high, especially at lag 0. 

None of these models was considered a suitable replacement for (6.11). 
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A model with 4 lags did not have ACFs of the residuals with significant lags. Neither were 
there significant Q statistics. The cross-correlation of the residuals at lag O remained high. 
This model might be better than (6.11). However it was considered that it eventuated from a 
less than desirable approach and the accusation of data dredging could be made. 

Innovation Accounting 

Despite the problems with the residuals that are explained above the Impulse Response 
Function and the Variance Decomposition were evaluated. As explained above, the 
correlation coefficient of the residuals of (6.11) is 0.789958. This number is very high and is 
likely to affect the results of the Impulse Response Function (IRF) and the Variance 
Decomposition (VD). 

Figure 6.5 Impulse Response Function of VECM of CD and SMD 
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The IRF and the VD of both 11CD and 6.SMD appear to be very sensitive to the order in 
which CD and SMD were entered (Figure 6.5). 

The impulse response of l::iCD to one standard deviation shock of 6.SMD is greater in the 
long run than a similar shock by 11CD ( order CD SMD). If the order is reversed the response 
for one is positive and the other is negative. The impulse responses of 6.SMD for both orders 
show they react stronger to one SD innovation of 6.SMD than l::iCD after several periods 
(Order CD SMD). Again, if the order is reversed a positive and a negative response eventuate. 
One would expect that shocks to the very short term interest rate (CD) has a larger impact on 
either of the time series than a shock to the longer term interest rate. However this is not what 
the IRF seems to suggest. 
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Figure 6.6 Variance Decomposition of VECM of CD and SMD 
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The variance decomposition of !1CD (order CD SMD) is initially mainly taken up by CD but 
later SMD dominates. If the order is reversed SMD seems to be determining most of the 
variance from the beginning. In the long run both orders show some agreement. 
At the early lags the variance decomposition of MMD also shows considerable differences 
between the two different orders. At the later lags the results become more similar. 
In both cases in the long run the variance of each time series is mainly caused by SMD. 

Discussion of VECM of CD and SMD 

The standard approach to find an acceptable VECM resulted in (6.11) However, this VECM 
appeared to be rather unsatisfactory both from a statistical and from an economic perspective. 
Some other models were explored (data not shown) that were not satisfactory either. The 
intention was to arrive at a model by using a structured approach. Without pre-empting the 
discussion on this topic in the general discussion it can already be stated that this seemed not 
very successful in this case. The alternative to try models in a haphazard way until a 
reasonable model eventuates seems a questionable approach from an economic perspective. It 
should be considered that Granger Causality did not result in any significant results. The 
intention of this thesis includes contrasting Granger Causality results with Cointegration 
results. The outcome may be that Granger Causality is to be used to make some cointegration 
tests inadmissible. The DF tests for both time series had suggested they had a unit root 
without a constant or trend and with two lags. The VECM indicated two lags but the second 
lag did not have any significant coefficients. The VECM also indicated a constant which was 
not in agreement with the DF models. 
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Cointegration analysis of LOGCPI and CD 

One might expect that an association exists between inflation and interest rates. A rise in 
inflation may result in higher interest rates. This is because the RBNZ tries to dampen 
inflation by increasing the OCR. Also higher interest rates may be required to compensate for 
the diminished real returns. The analysis below was performed to see whether such an 
association could be distinguished. Figure 6.7 gives the impression there is little or no 
association betweenLOGCPJ and CD. However, Table 6.1 has already provided strong 
support for Granger Causality. 

Figure 6. 7 Time series and differenced time series of LOGCPI and CD 
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Table 6.10 analyses the VECMs of LOGCPI and CD. The setup of the table is explained in 
section 2.9. Briefly there are five options for the VECM and 8 lags. The resulting cells 
contain from top to bottom the number of cointegrating equations, the AIC and the SC in this 
order. The best VECM using both the SC and the AIC is Option 4 with 1 lag (Table 6.10). As 
with previous analyses of other time series, the vast array of VECMs with different options 
and lags is of concern. 

VECM of CD and LOGCPI 

The best VECM of Table 6.8 according to the SC and AIC is displayed in (6.12) 

= [CD/ 1 -43.2862LOGCPIC 1 + 0.3144t + 288.8693 ]+ 
[ 

tiCDI l [- 0.4887] 
MOGCPIC - 0.0016 - -

[
0.7419 -16.0997] [ l:1CD1_ 1 l [0.0590] [ &enc l 
0,0048 0.0381 M.,QGCPJt-1 + 0,0051 + &LOGC~I,c 

(6.12) 

where the significant coefficients are in bold typeface. 
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Table 6.10 Cointegration analysis of LOGCPJ and CD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 1 2 1 1 2 
39 obser-vations -6.771203 -7.083172 -7.227654 

-6.429959 -6.656618 -6.758444 
Lag 1 to 2 1 2 0 0 0 
38 obser-vations -7.068689 

-6.551556 
Lag 1 to 3 1 1 0 0 0 
37 obser-vations -7.004621 -6.950568 

-6.308008 -6.210416 
Lag 1 to 4 0 0 0 0 0 
36 obser-vations 
Lag 1 to 5 0 1 0 1 2 
35 obser-vations -6.772333 -7.166540 

-5.661370 -5.966700 
Lag 1 to 6 1 2 0 1 2 
34 obser-vations -6.679233 -6.950907 

-5.422230 -5.559225 
Lag 1 to 7 0 0 0 0 2 
33 obscr-vations 
Lag 1 to 8 0 1 1 1 2 
32 obser-vations -6.725835 -6.865532 -6.804697 

-5.031077 -5 .124970 -5.018331 
Note: Period covered 1994:1 - 2004:1 

The CE shows that CD reacts to changes of divergence of the LOGCPI and CD series. The 
reverse does not appear to be the case in (6.12). Both differenced time series show a 
correlation with /1CD,_1 • Similar to VECM (6.11) there is a time-dependence in the error 

correction term. However both coefficients of these deterministic components in the CE are 
positive. The increase in their difference therefore increases in a quadratic manner over time 
which does not appear plausible in an economic sense in the long term. The constant term in 
the data for MOGCPI is plausible since it indicates an ongoing constant increase. 

Analysis of residuals of VECM of CD and LOGCPI 

The Jarque-Bera value of the residuals of /1CD CD is 0.0922 (p = 0.9522) 
The Jarque-Bera value of the residuals of MOGCPI is 1.1755 (p = 0.5556) 
The residuals of VECM (6.12) appear stationary (Figure 6.8). 

The ACF of the residuals of MOGCPI, and /1CD, do not appear significant with the possible 

exceptions lag 10 for MOGCPI, and lag 16 for !1CD1 • The Q statistics are not significant. 

The correlation coefficient at lag O was 0.1690. The rest of the cross-correlogram shows a 
significant value after a lead of 8 periods and possibly a lag of 4 periods and a lead of 10 
periods. It is concluded that although not perfect, the residuals appear to behave in an 
acceptable manner. 
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Figure 6.8 Residuals of VECM of CD and LOGCPI 
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Innovation accounting 

The correlation coefficient of MOGCP/
1 
and !::,.CD

1 
is 0.1690. This number is relatively low 

and not likely to affect the results of the Impulse Response Function and the Variance 
Decomposition. This is borne out by Figures 6.9 and 6.10. 

Figure 6.9 Impulse Response Function of VECM of LOGCPI and CD 
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The response of MOGCPI seems susceptible to shocks to MOGCPI but little to shocks to 
!::,.CD . The response of !:!.CD in the long-run is greater if shocks are applied to 
MOGCPI than shocks to !:!.CD . 
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Figure 6.10 Variance Decomposition of VECM of LOGCPI and CD 
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The variance of MOGCPI is mainly determined by its own past. However the variance of 
11CD is influenced by MOGCPI to a considerable degree. 

Discussion of VECM LOGCPI and CD 

VECM (6.12) seemed better behaved than (6.11). The model seems acceptable from a 
statistical perspective and plausible from an economic perspective. The main impression is 
that CD reacts to LOGCPI but not the other way. This reflects RBNZ policy of increasing the 
OCR (and consequently CD) if inflation accelerates. Granger Causality also showed an effect 
of CD on LOGCPI. Had a VECM been chosen with more lags this effect might have been 
evident. However, the structured approach that is attempted throughout this thesis does not 
permit for this situation. 
Model 2 had been chosen for LOGCPI, although this was for a longer time series. A constant 
was also identified in (6.12). However there was no significant lagged difference term for 
LOGCPI in (6.12). 
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Cointegration analysis of LOGCPI and SMD 

Figure 6.11 gives the impression there is little or no association between LOGCPI and SMD. 
However, Table 6.8 has already provided strong support for Granger Causality. Therefore it is 
still of interest to further investigate the relationship between these two time series. The 
apparent conflict cannot be explained easily. If anything it should be seen as an 
encouragement to perform statistical tests in addition to inspecting figures. 

Figure 6.11 Time series and differenced time series of LOGCPI and SMD 
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Table 6.11 analyses the VECMs of LOGCPI and SMD. The setup of the table is explained in 
section 2.9. Briefly there are five options for the VECM and 8 lags. The resulting cells 
contain from top to bottom the number of cointegrating equations, the AIC and the SC in this 
order. The best VECM using the SC is Option 5 with 1 lag (Table 6.11). The AIC leads to the 
same conclusion. 

VECM of LOGCPI and SMD 

The optimal model according to the information criteria is displayed in (6.13). 

= [SMDI 1-47.91lLOGCPI11 +0.3050t+318.7660]+ 
[ 

/1.SMD, l [- 0.5273] 
MOGCPII - 0.0004 - -

+ ~ + -6 t + . (6.13) 
[
0.7640 -9.5975][ !:::,SMDl-1 l [0.0625] [-0.0008] [ C SMDt l 
0.0048 - 0.0335 MOGCPil-1 0.00:,5 - 7. 79 c LOGCPI , I 

where the significant coefficients are in bold typeface. 

The model shows that the SMD reacts to a deviation of the long-term equilibrium between 
SMD and LOGCPI. The intercept and trend in the cointegrating equation are difficult to 
support from an economic perspective. Both SMD and LOGCPI are correlated with the SMD 
at one lag. 

132 



Table 6.11 Cointegration analysis of LOGCPI and SMD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 2 2 0 0 1 
39 obser- -6.990251 
vations -6.478386 
Lag 1 to 2 1 1 0 0 0 
38 obser- -6.703897 -6.684411 
vations -6.186765 -6.124184 
Lag 1 to 3 0 0 0 0 2 
37 observations 
Lag 1 to 4 0 0 0 0 1 
36 obser- -6.826038 
vations -5 .770359 
Lag 1 to 5 0 0 0 1 2 
35 obser- -6.825508 
vations -5.625668 
Lag 1 to 6 1 1 0 2 2 
34 obser- -6.481605 -6.513921 
vations -5.224603 -5.212026 
Lag 1 to 7 0 0 0 1 2 
33 obser- -6.748331 
vations -5 .161126 
Lag 1 to 8 0 1 1 2 2 
32 obser- -6.363757 -6.501365 
vations -4.669000 -4. 760804 
Note: Period covered 1994:1 - 2004:1 

Although the VECM of SMD and LOGCPI (6.13) is different from the VECM of CD and 
LOGCPI (6.12), the significant coefficients (in bold) are very similar. Although option 5 
indicates a significant quadratic trend in the data, this does not appear to be the case in (6.13). 
This makes the model more plausible from an economic perspective. However, it calls in 
question the statistical aspects as to why this option was selected in the first place. 

Residual analysis of the VECM of SMD and LOGCPI 

The Jarque-Bera value of the residuals of MMD is 6.601424 (p = 0.036857). This suggests 
the residuals are not normally distributed. 
The Jarque-Bera value of the residuals of t:.LOGCPI, is 1.393896 (p = 0.4981). 

The residuals of t:.LOGCPI, do not appear stationary (Figure 6.12). Especially the mean 

seems to change over time. The variance of residuals of MMD does not appear to be constant 
either (Figure 6.12). 
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Figure 6.12 Residuals of VECM of LOGCPI and SMD 
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The ACF of the residuals of l::.SMD, are not significant. The Q statistics are not significant 

either. The ACF of the residuals of MOGCP/
1 
appears significant at lag 10 and at from lag 

10 onward the Q statistics become significant as well (except lag 13). 

The correlation coefficient of the residuals of MOGCP/
1 

and !::.SMD, is 0.355543. The rest 

of the cross correlogram does not show significant values with the exception of the lead at 
period 8. 

The residuals of VECM (6.13) are not well-behaved. Since this violates some of the 
assumptions of the linear model (ie normality), this calls in question the validity of the model. 
The VECM of CD and LOGCPI on the one hand and SMD and LOGCPI on the other hand 
appeared very similar. It is of interest that the residuals of the first one were so well behaved 
but not those of the second one. 

Innovation accounting 

The large correlation coefficient may lead to the order in which the series are entered being 
quite important with regard to the IRF and the VD. The order appears to have some influence 
but the basic conclusions remain unchanged. In the long run MOGCPJ react strongly to its 
own shocks but not to those of !::.SMD (Figure 6.13). In the long run !::.SMD responds more to 
innovations of MOGCPI than of l::.SMD . 
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Figure 6.13 Impulse Response Function of VECM of LOGCPI and SMD 
Response of LOG CPI to One S.D. lnnowtions 
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Figure 6.14 shows that the order has a certain influence of the variance decomposition of both 
MOGCPI as well as t:SMD although the general impression remains largely unchanged. 
The variance of MOGCPI is mainly determined by its past values, while the variance of 
t:SMD is also influenced by the past values of MOGCPJ. 

Figure 6.14 Variance Decomposition of LOGCPI and SMD 
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Discussion of VECM LOGCPI and SMD 

The large number of parameters in VECM (6.13) seem unnecessary and not plausible from an 
economic perspective. There are considerable similarities with Model (6.14) which is in line 
with the similarities that are shown in the various previous figures and Figure 6.15. 

The SMD reacts to changes of LOGCPJ. This probably reflects economic policy by the RBNZ 
where the OCR is increased when the inflation rate is deemed to increase too much. 
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Cointegration analysis of CD, SMD and LOGCPI 

Both the CD and the SMD have shown to have VECMs with LOGCPI in the previous two 
sections. It will now be of interest to enter all three time series in one VECM to evaluate 
whether or not only one of the two interest rates matters more in such a situation. Figure 6.15 
shows that CD and SMD have a very similar pattern. They do not appear to have an 
association with LOGCPI. 

Figure 6.15 Time series and differenced time series of LOGCPI, CD and SMD 
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Table 6.12 analyses the VECMs of LOGCPI and SMD. The setup of the table is explained in 
section 2.9. Briefly there are five options for the VECM and 8 lags. The resulting cells 
contain from top to bottom the number of cointegrating equations, the AIC and the SC in this 
order. Admissible models can be seen for all options and at all lags. The best VECM using the 
SC is option 4 with 1 lag (Table 6.12). Both SC and AJC would lead to Option 4 but there is a 
large difference in the number of lags. 

VECM of CD, SMD and LOGCPI (1 cointegrating equation) 

The best VECM according to Table 6.12 is: 

-0.7476 D..CD, 

D..SMD, 

UOGCPI, 

-0.8209 [CD,_1 -0.4406SMD,_1 -20.7467LOGCP/1_1 +0.1750t +138.6307] 

-0.0016 

0.5625 0.1041 -32.1698 !1CD1_1 0.1334 l: cD ,t 

+ 0.2990 0.3026 -42.4272 D..SMD,_1 + 0.2196 + l:sMD ,t (6.14) 

0.0010 0.0037 -0.0693 UOGCPI1_1 0.0055 c LOGCPl ,t 

where the significant coefficients are in bold typeface. 
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Table 6.12 Cointegration analysis of LOGCPI, CD and SMD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 2 3 2 1 2 
39 obser-vations -6.512965 -6.818658 -6.692002 -6.842001 

-5.617201 -5.794928 -5.881549 -5.690304 
Lag 1 to 2 1 3 0 0 1 
38 obser-vations -6.497767 -6.658121 

-5.463502 -5.365290 
Lag 1 to 3 0 1 1 1 1 
37 obser-vations -6.745071 -6.901029 -6.849970 -6.789218 

-5.264768 -5.333649 -5.239053 -5.091223 
Lag 1 to 4 0 1 1 2 3 
36 obser-vations -6.986905 -7.124715 -7.343868 

-5.095480 -5.145317 -5 .012576 
Lag 1 to 5 0 1 1 2 3 
35 obser-vations -7.045030 -7.170906 -7.648715 

-4.734227 -4.77126 -4.893527 
Lag 1 to 6 0 2 1 2 3 
34 obser-vations -7.534406 -7.746423 -8.054219 

-4.481685 -4.918167 -4.866819 
Lag 1 to 7 1 2 2 3 3 
33 obser-vations -7.403216 -7.689392 -7.761725 

-4.274155 -4.197541 -4.224525 
Lag 1 to 8 
32 obser-vations Insufficient number of observations 
Note: Period covered 1994:1 - 2004:1 

Equation (6.14) has 2 significant adjustment coefficients. They apply to ~CD
1 
and l!!.SMD

1
• 

Therefore any adjustment to restore to the long-term relationship is done by the interest rates. 

The coefficient of LOGCPI,_1 in the cointegrating equation is not significant. Therefore the 

adjustments apply to the interest rates only. It is of interest that the relationships that were 
found previously between either of the two interest rates and the inflation rate cannot be 
detected in this VECM. The trend in the CE has a significant coefficient. In essence the 
VECM has now been reduced to the VECM which was analysed previously (6.11). The 
second negative adjustment factor (-0.8209) is problematic. One would expect that the 
adjustment coefficient of l!!.SMD, be positive to restore the series to its long term equilibrium. 

No further analysis of this model is required because of its similarity with (6.11). 

VECM of CD, SMD and LOGCPI (2 co integrating equations) 

Since LOGCPI was found to have significant coefficients in the VECM when evaluated with 
CD or SMD but not with both of these together, it was deemed of interest to evaluate the next 
best model according the SC on Table 6.12. This VECM was Option 3 with 1 lag. It had 2 
cointegrating equations. 
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MOGCPII r- 0.0345 _ 0.0025 

[

LOGCPI, 1 + 0.0474SMDI 1 - 7.2266] 
!lCD, = -8.8153 - 0.6883 - - + 

CD, 1 -1.3377 SMDI 1 + 4.4873 
!lSMDI -8.4101 -0.2772 - -

-0.0613 

-30.2286 0.4440 0.0762 !lCD
1

_ 1 + 
0.0014 0.0028 [MOGCP/1_ 1 0.0055 

0.1178 + 

0.0698 

& LOGCPl ,t 

&CD,t 

& SMD ,t 

(6.15) 

-13.7795 0.1736 0.3886 !lSMD
1

_ 1 

The adjustments in (6 .15) are done by the interest rates. In the case of the first CE, if either 
LOGCPI or SMD are too high, then a decrease of CD and a decrease by SMD will occur. CD 
also makes the adjustment if there is a disequilibrium between CD and SMD. None of the 
coefficients of the lagged differenced terms is significant. This is surprising since one would 
have expected some autocorrelation in these time series. 

Although the equations should be the same it was considered of interest to change the order in 
which the time series were placed in the VECM. 

0.5027 

!lSMD, = -0.2774 
!lCDI 

1 

r- 0.6883 
-0.0277 - -

[ 
CD, 1 + 28.2095LOGCPI, 1 -199.3711 l 

MOGCP( - 0.0025 

0.4440 0.0762 

0.1736 0.3886 

0.0014 0.0028 

-30.2286 

-13.7795 

-0.0613 

SMDI 1 + 21.0888LOGCPI, 1 -152.4001 
0.0017 . -

!lCD,_1 0.1178 & co ., 

!lSMD
1

_ 1 + 0.0698 + & SMD ,t (6.16) 

MOGCP!r-1 0.0055 & LOGCPl ,t 

Equation (6.16) shows that CD is now the only variable that reacts to a disturbance of the 
long-term equilibrium of the three time series. The long-term equilibria apply to CD and 
LOGCPI in the first CE, and SMD and LOGCPI in the second CE. In both CEs the 
equilibrium consists of an interest rate plus the inflation being constant. If one views Figure 
6.15 one could hypothesise that because the pattern of CD and SMD appears similar, the 
adjustment mechanisms would be similar too. However this is not the case in (6.16) where the 
adjustment coefficient is positive in one CE and negative in the other one. In the first CE, if 
LOGCPJ increases, then the long-term equilibrium is restored by a decrease in CD. In the 
bottom CE an increase of CD occurs. This latter finding appears hard to explain. 

Analysis of residuals ofVECM of LOGCPI, CD and SMD 

Various tests were performed on the residuals to verify that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 
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The Jarque-Bera value of the residuals of MOGCPI is 1.2948 (p = 0.5234) 
The Jarque-Bera value of the residuals of 11CD is 3.9457 (p = 0.1391) 
The Jarque-Bera value of the residuals of /1SMD is 2.0235 (p = 0.3636) 

The residuals of MOGCPI and /1SMD seem to show that their variances are not constant 
(Figure 6.16). The mean of all residuals appear constant. 

Figure 6.16 Residuals of VECM of LOGCPI, CD and SMD 
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The ACF of the residuals of MOGCPI may be significant at lag 10, but the Q statistics are 
not significant. The ACF of 11CD appears significant at lag 2. Its Q statistics are significant at 
lags 2, 3, 7, 9 to 11, 15 and 16. The ACF and the Q statistics of /1SMD did not show any 
significant lags. In the case of all these series 16 lags were included. 

The correlation between the residuals of MOGCPJ and 11CD is 0.0190. 
The correlation between the residuals of MOGCPJ and /1SMD is 0.2367. 
The correlation between the residuals of 11CD and /1SMD is 0.8403. 

In addition to the above, MOGCPI and 11CD seem negatively cross correlated at 8. 
MOGCPI and /1SMD are positively cross-correlated at lead 6. 11CD and /1SMD are cross­
correlated at lag 7. 

The residuals are not particularly well behaved and the sequence of entering 11CD and 
/1SMD is likely to have a considerable effect on the innovation accounting. 

140 



Innovation Accounting 

Because there are three time series, the time series can be entered into the IRF and the VD in 
six different orders. For illustrative purposes two different ones will be used. 

Figure 6.17 Impulse Response Function of VECM of LOGCPI, CD and SMD 
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Regardless of the order, MOGCPI shows a greater response to shocks to its own time series, 
than to responses to the other series. 

The pattern of response of !:!.CD and l:!.SMD to shocks to the three times series is the same in 
the bottom two left hand figures. The same applies to the right hand figures. The peaks in the 
bottom two figures (both left hand and right hand) after 2 periods for both orders are notable. 
It is related to the time series ( either CD or SMD) that was first entered. After 10 periods this 
effect has disappeared. Neither Granger Causality nor the VECM can be used to decide which 
series should be entered first. 

The left hand figures show that the VD of the !J.CD is largely made up from shocks to its own 
series. The same applies for l:!.SMD in the right hand figure. The VD of the interest rate that 
was not entered first is still largely determined by the other interest rate. It illustrates the 
importance of the order. It also shows that if it is not known which order to use first no robust 
conclusions can be drawn 
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Figure 6.18 Variance Decomposition of VECM of LOGCPI, CD and SMD 
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No Granger Causality was shown to exist between CD and SMD. The figures and the 
correlation coefficient showed that these two time series were highly correlated. Although not 
demonstrated here, they both react strongly and similarly to changes of the OCR. 

The VECMs that were analysed showed that both the CD and the SMD reacted to changes of 
LOGCPI. This makes sense from an economic perspective. There was "no evidence" of the 
reverse that the inflation rate reacts to changes of the interest rates. This had been shown with 
Granger causality but was not demonstrated with the VECMs. This may partially be explained 
by the SC criterion which was parsimonious by choosing models with small numbers of lags 
(1 or 2) only. However the parsimony did not apply to the options chosen (4 and 5) which 
included time-dependence. 

The time-dependence in the cointegrating equations was not very plausible from an economic 
perspective. The fact that these factors at times lost their significance when further evaluated 
was of concern from a statistical perspective. 

A large number of VECMs appeared admissible. This is of some concern because it may 
carry the risk of hypotheses being supported as a result of data dredging. However, it cannot 
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be ruled either that various models may at times be applicable. It should also be considered 
that the lack of rejection of a model does not mean that the model is correct. It may mean that 
the time series may not have been large enough to result in rejection. 

The residuals were not always well behaved. The raises the question whether one should still 
consider a hypothesis as not rejected since some of the assumptions did not hold. 
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CHAPTER 7 

TIME SERIES ANALYSES OF GROSS DOMESTIC PRODUCT 

Introduction 

The Gross Domestic Product and the Output gap play an important role in the management of 
the inflation by the RBNZ. The basic philosophy is that when the output is too large for the 
nationally available resources, inflationary pressures will start to increase. This is because a 
'bidding war' will start by the various users of these resources. Consequently prices for these 
resources will increase. 

A way to dampen the demand for resources is to increase interest rates. This will make it less 
attractive to borrow funds for production and expansion of production. The mechanism used 
by the RBNZ is to the set the level of the Official Cash Rate (OCR). An increase in OCR will 
result in an increase in interest rates, and in due course a decrease of GDP and a decrease of 
inflation. Consequently an analysis of these variables in the context of cointegration analysis 
will be of interest both from a statistical and an economic perspective. 

The following two measurements of GDP will be analysed in this chapter. 

LOGEGDP 

LOGPGDP 

Natural logarithm ($m) of expenditure-based real Gross Domestic 
Product in 1995/96 dollars. A measure of total final purchases in the 
economy. It includes stock building. 
Natural logarithm ($m) of production-based real Gross Domestic 
Product in 1995/96 dollars. A measure of total value-added in the 
economy. 

The Department of Statistics' web site mentions that the two GDP series are conceptually the 
same. However different estimation techniques are used. It is interesting from both a 
statistical and an economic perspective to evaluate to what degree they diverge. Also of 
interest is to establish whether different conclusions will be arrived at by using the different 
series. 

The univariate and multivariate analyses will be carried out as explained in Chapter 2.The 
standard errors are put in parentheses below each DF equation. The criterion for rejecting a 
unit root is p < 0.1 and the criterion for rejecting the r and ~ statistics is p < 0.05 (See 

Chapter 2). Dickey and Fuller (1981) provided critical values for these latter two test 
statistics. Regrettably if the sample size of this chapter is considered only the sample sizes of 
25 and 50 are relevant. Consequently various critical values are required to be shown at times 
for a test statistic to decide whether a hypothesis is to be rejected or not. 

Some of the analyses below may at first sight appear uninformative from an economic 
perspective. However, they were performed to show the risk of 'data dredging'. By using the 
standardised techniques that are advocated in this thesis it becomes apparent that at times 
various hypotheses can be supported. Data dredging is definitely not advocated in this thesis. 
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Expenditure-based real GDP, seasonally adjusted (LOGEGDP) 

The quarterly time series LOGEGDP covers the period 1994:1 to 2004:1 in quarterly periods. 

Figure 7.1 Time series of LOGE GDP 
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The time series has an upward trend and displays a seasonal pattern (Figure 7.1). An additive 
seasonal adjustment as described in Chapter 2 was performed in EViews on the log 
transformed series. 

Figure 7.2 Time series and differenced time of LOGEGDP after seasonal adjustment 
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The seasonally adjusted series (LOGEGDPSA) has an upward trend. The variance seems to be 
constant. The ACF dies down slowly. The differenced series (DLOGEGDPSA) appears 
stationary. 

DF Models of LOGEGDPSA 

The time series of LOGEGDPSA was tested for stationarity in (7.1) to (7.5) by using the 
Dickey-Fuller equations as outlined in Chapter 2. 

To keep the description of models (7 .1) to (7 .5) concise, LOGEGDPSA will be denoted as 
EGDP in the equations below. 

145 



Model 1 
MGD~ = 6.3609 + 0.0051t-0.6364EGD~_1 + &, (7.1) 

(1.5956) (0.0013) (0.1598) 

Model 2 
MGD~ = -0.1330 + 0.0143EGD~_1 - MGD~_1 + &, (7.2) 

(0.2445) (0.0241) (0.1455) 

Model 2R 
MGD~ = 0.0082-0.0124/iliGDP,_1 + &, (7.3) 

(0.0025) (0.0360) 

Model 3 
MGDP, = 0.001206EGDP,_1 -0.5231/iliGDP,_1 + &, (7.4) 

(0.0002) (0.1433) 

Model 3R 
MGD~ = -0.1786/iliGDP,_1 + &, (7.5) 

(0.1629) 

The RSS and various information criteria of these DF tests are displayed in Table 7.1. Model 
1 appears to be the best if the information criteria are inspected without considering other 
issues. 

Table 7.1 RSS and information criteria of Dickey-Fuller models of LOGEGDPSA 

Model 1 (7.1) 
Model 2 (7.2) 
Model 2R (7.3) 
Model 3 (7.4) 
Model 3R (7.5) 

RSS AIC SC 
0.006146 -5. 7929 -5.6663 
0.006397 -5. 7237 -5.5957 
0.0087 
0.0065 
0.011000 

-5.7668 -5.6815 

Adj. R2 

0.2670 
0.2305 

0.2451 

The ADF of (7.1) is -3.9827 (p = 0.01, critical value -4.2023; p = 0.05, critical value 
-3.5247). There is weak evidence against a unit root in (7.1). The ACF of the residuals of 
(7.1) does not show significant lags (20 lags included). There are no significant Q statistics. 

Model 1 (7.1) is the only model listed above that did not have a significant value for 
MGDP,_1 • This creates problems with the following analyses where a lagged differenced 

value is required. Consequently the equation with MGDP,_1 included was re-evaluated. 

MGD~ = 4.4716 + 0.0037t -0.44 71EGDP,_1 -0.3016/iliGDP,_I + £, (7.la) 

(1.8881) (0.0015) (0.1891) (0.1653) 

RSS = 0.005456 AIC = -5.8315 SC= -5.6609 Adj. R2 = 0.3249 

The DF statistics of Models 1 to 3 of LOGEGDPSA are displayed in Table 7.2 
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Table 7.2 Summary of the Dickey-Fuller tests of LOGEGDPSA 
Model Test Value Critical Value (p-value, n~ 

Statistic 
1 (7.la) r, -2.36 -3.19 (.1) 

ra, 2.37 2.77 (0.1, 25) 

2.75 (0.1, 50) 

r /fr 
2.46 2.85 (0.05, 25) 

2.39 (0.1, 25) 

</J2 
11.85 8.21 (0.01, 25) 

</)3 10.41 8.65 (0.025, 25) 

10.61 (0.01, 25) 

9.31 (0.01, 50) 

2 rµ 0.59 y >- 0 

3 r 5.11 y >- 0 
# n listed if p-value for the precise sample size of the time series not known 

Hypothesis 

y=O 

a0 = 0 given y = 0 

a2 = 0 given y = 0 

a0 = y = a2 = 0 

y = a2 = 0 

y =O 

y =O 

There appears to be strong support for unit root in the new Model 1 (7.la). Neither Model 2 
nor Model 3 had a unit root. 

The ACF of the residuals of (7.la) does not show significant lags (16 lags included). There 
are no significant Q statistics. 

It is of concern that the strength of conviction of unit root is considerably increased by adding 
a non-significant term to an equation. Nevertheless, (7.la) rather than (7.1) will be used for 
evaluating Model 1. 

There are 39 observations after adjusting endpoints. The deterministic component r ar is not 

significant (p > 0.1) if the hypothesis of unit root is accepted. Whether the term r /Jr is 

significant or not is debatable. 

The unrestricted and the restricted equations for <p2 are (7.la) and (7.5) respectively. For </J3 

these equations are (7.la) and (7.3). There are 39 usable observations (T=39) and 4 
parameters (k=4) in the unrestricted models of </>2 and </>3 • There are 3 restrictions in </>2 and 2 

in</>3 • 

It is possible to reject the null hypothesis based on</>2 • This can be interpreted as meaning that 

if the process is unit root, then ao and/or a2 are significant which may be seen as further 
clarification of the conclusions based on the r ar and r /Jr statistics. It is possible to reject the 

null hypothesis of </>3 (p < 0.05). This can be interpreted as meaning that if the process is unit 

root, then a2 is significant. 

Figure 7.2 did not provide any indication of a breakpoint and the Chow Breakpoint test does 
not appear required. 
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Model 1 as described in Equation (7.la) is the only model that was not rejected as a DF 
model. The DF model infers a quadratic trend in the undifferenced time series. From an 
economic perspective this would only be plausible if applied to a short period of time. In the 
long run a quadratic growth of LOGEGDPSA would not be sustainable. However, the 
constant in this OF model according to the r ar statistics does not appear significant which 

largely brings this conclusion in question. The essence of Model 1 is that it contains two 
deterministic components. In a sense if one of these is not significant, then it can be argued 
that Model 1 is no longer an appropriate model. 

Production-based real GDP, seasonally adjusted (LOGPGDP) 

The quarterly time seriesLOGPGDP covers the period from 1994:1 to 2004:1. The series 
LOGPGDP has an upward trend (Figure 7.3). There is a seasonal pattern. 

Figure 7.3 Time series of LOG PG DP 
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The seasonally adjusted series has an upward trend (Figure 7.4). The variance seems to be 
constant. The ACF dies down slowly. The differenced series of LOGPGDPSA 
(DLOGPGDPSA) appears stationary. 

Figure 7.4 Time series and differenced time of LOG PG DP after seasonal adjustment 
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The time series of LOGPGDPSA was tested for stationarity in (7.6) to (7.10) by using the 
Dickey-Fuller equations as outlined in Chapter 2. To keep the description of models (7.6) to 
(7.10) concise, LOGPGDPSA will be denoted as PGDP in the equations below. 
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Model 1 
MGD~ = 1.8998 + 0.0014t - 0.1899PGD~_1 + 0.0112/1PGDP,_1 + 0.3837 /1PGD~_ 2 + E, 

(1.0775) (0.0008) (0.1080) (0.1778) (0.1746) (7.6) 

Model 2 
MGDP, = -0.0634 + 0.0069PGD~_1 - 0.1036MGDP,_1 + 0.2865MGD~_2 + &

1 

(0.1670) (0.0165) (0.1723) (0.1722) (7.7) 

Model 2R 
MGDP = 0.0066 - 0.0960/1PGDP,_1 + 0.2935!1PGDP,_2 + &, 

(0.0024) (0.1693) (0.1694) (7.8) 

Model 3 
MGDP, = 0.0007PGDP,_1 -0.0973/1PGD~_1 + 0.2923MGD~_2 + &

1 

(0.0002) (0.1694) (0.1694) (7.9) 

Model 3R 
!)J>GDP, = 0.1967 !)J>GDP,_I + 0.5910!),J>GDP,_2 + &, 

(0.1450) (0.1435) (7.10) 

The RSS and various information criteria of (7.6) to (7.10) are displayed in Table 7.3. The 
Adj. R2 value seems particularly small, indicating that many aspects of this time series are not 
captured by these models. 

Table 7.3 RSS and information criteria of Dickey-Fuller models of LOGEGDPSA 
RSS AIC SC Adj. R2 

Model 1 0.002004 -6. 7494 -6.5339 0.0826 
Model 2 0.002210 -6.704044 -6.5317 0.0179 
Model 2R 0.0022221 
Model 3 0.0022 -6.7524 -6.6232 0.0419 
Model 3R 0.002716 

The various DF statistics of (7.6) to (7.10) are displayed in Table 7.4 

Table 7.4 Summary of the Dickey-Fuller tests of LOGEGDPSA 
Model Test Value Critical Value (p-value, n#) Hypothesis 

Statistic 
1 r ,, -1.76 -3.20 (0.1) r=O 

r a, 1.76 2.75 (0.1 , 50) ao = 0 given y = 0 

r /3, 
1.84 2.38 (0.1, 50) a2 = 0 given r = 0 

~ 2 
3.91 4.31 (0.1, 50) ao = r = a2 = 0 

~3 
1.20 5.61 (0.1, 50) r = a2 = 0 

2 rµ 0.42 r >- o r =O 

3 r 2.80 r >- o y=O 
n listed if p-value for the precise sample size of the time series not known 
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Model 1 was the only model that had a unit root. In the case of both Model 2 and Model 3 the 
unit root was rejected because y >- 0. Model 2 as displayed in (7.7) and in its restricted form 

(7.8) contains 2 lags. Although not significant they were left in the equations in order to be 
able to derive the </J statistics for Model 1. If the lags were removed from Model 2, the time 

series still would not have a unit root ( y >- 0). Similar to Model 2, Model 3 as displayed in 

(7.9) and in its restricted form (7.10) contains 2 lags. Although not significant they were left 
in the equations in order to be able to derive the </J statistics. In this case too, removal of the 

lags did not result in a time series with a unit root ( r >- 0 ). 

The ACF of Model 1 (7 .6) does not show significant lags (16 lags included). There are no 
significant Q statistics. 

Both deterministic components ( r a, and r /Jr) are not significant (p > 0.1) if the hypothesis of 

unit root is accepted. 

The unrestricted and the restricted equations for </J2 are (7.6) and (7.10) respectively. For </J3 

these equations are (7.6) and (7.8). There are 38 usable observations (T=38) and 5 parameters 
(k=5) in the unrestricted models of </J2 and </J3 • There are 3 restrictions in </J2 and 2 in </J3 • 

The null hypothesis that uses </J2 as the test statistic is not rejected. If the process is unit root, 

then both a0 and a2 are not significantly different from 0. The null hypothesis based on </J3 that 

the process is unit root and a2 equals O is not rejected. 

No satisfactory unit root model was identified. Although Model 1 was unit root, the 
deterministic components appeared not significantly different from 0. Consequently Model 2 
or 3 should have been unit root. This was not the case. So yet another failure of the 
methodology appears to have occurred. It is unclear whether an attempt should be made to 
explain the model in economic terms. This is because the quadratic trend of the undifferenced 
time series which Model 1 indicates is not supported by significant deterministic components. 

Comparison ofDF Models ofLOGEGDPSA andLOGPGDPSA 

The Dickey-Fuller analyses of LOGEGDPSA and LOGPGDPSA resulted in different 
conclusions. In both cases a form of Model 1 was chosen. LOGEGDPSA used one lag while 
LOGPGDPSA used two lags. There was a difference in the degree of significance of ther and 
the <P statistics. Since both time series are conceptually the same, the difference between them 

should have been minor. It was acknowledged by the Department of Statistics that timing and 
valuation problems cause more problems for the expenditure-based GDP than the production­
based GDP. 
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Granger Causality of GDP, inflation and interest rates 

The interaction between GDP, interest rates and inflation are deemed to be particularly 
important when monetary policy is set by the RBNZ. Granger Causality tests are performed 
below to see whether any association can be distinguished (Table 7.5). 

The null hypothesis tested in Table 7 .5 is that the left hand column ( eg LOGPGDPSA) does 
not Granger Cause the second column from the left (egLOGEGDPSA) . The next row of data 
in this table calculates Granger Causality in the opposite direction ( eg does CD Granger 
Cause SMD?) . EViews calculates these regressions as follows: 
LOGPGDPSA1 = a 0 + a 1LOGPGDPSA1_1 + ... + a 1LOGPGDPSA1_1 + 

f3 1LOGEGDPSAI-I + ... + {3,LOGEGDPSA{-/ 

LOGEGDPSA
1 

= a 0 + a 1LOGEGDPSA
1

_1 + ... + a 1LOGEGDPSA
1

_ 1 + 

{3 1LOGPGDPSA
1

_ 1 + ... + {31LOGPGDPSA
1

_ 1 

It reports F-statistics are the Wald statistics for the joint hypotheses: {31 = · · · = /3, = 0 

An increase in production-based GDP (LOGPGDPSA) appears to 'cause ' an increase in 
expenditure-based GDP (LOGEGDPSA) . Conceptually the datasets are identical, so this could 
be considered an anomaly. However, it is also possible that there is some sort of a lag in 
measuring the LOGEGDPSA that is reflected in the Granger Causality tests. 

The pattern for LOGCPI on the one hand and either LOGEGDPSA or LOGPGDPSA was very 
similar. The above tests suggest that both the expenditure-based and the production-based real 
GDP Granger Cause inflat ion. This can be interpreting as supporting the RBNZ's view of the 
main cause of infl ation. The overheating of the economy (an increase in the output gap) is 
considered to be a m ain cause of inflation. 

The relationship between the GPD indicators and the interest rates appeared to be very similar 
for the combinations that were used. An increase in GDP Granger Causes an increase in 
interest rates. This can be explained by an increase that is more than deemed desirable by the 
RBNZ resulting in an increase of the OCR. This in turn results in higher interest rates . It 
should be noted that the OCR was only used in the latter part of the time series that were 
evaluated. The Granger Causality tests did not show that higher interest rates result in a 
reduction of GDP. Various hypotheses might be used to explain these findings. One is that an 
effect of a variable cannot be seen if this variable is constantly adjusted. Another hypothesis is 
that the tool in not effective to achieve the results for which it is used. 
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Table 7.5 P values of Granger causality tests of GDP, interest rates and inflation 
Time series Lags 

1 2 3 4 5 6 7 8 

GDP 
LOG LOG 0.0003** 0.016* 0.10 0.09 0.06 0.13 0.11 0.11 
PGDPSA EGDPSA 
LOG LOG 0.46 0.13 0.20 0.17 0.28 0.44 0.48 0.06 
EGDPSA PGDPSA 

GDP and inflation 
LOG LOG 0.03* 0.007** 0.03* 0.04* 0.06 0.07 0.02* 0.046* 
EGDPSA CPI 
LOG LOG 0.04* 0.36 0.75 0.69 0.49 0.34 0.63 0.86 
CPI EGDPSA 

LOG LOG 0.003** 0.004** 0.012* 0.03* 0.06 0.09 0.04* 0.08 
PGDPSA CPI 
LOG LOG 0.93 0.73 0.70 0.53 0.71 0.72 0.82 0.89 
CPI PGDPSA 

GDP and interest rates 
CD LOG 0.31 0.25 0.21 0.10 0.32 0.26 0.11 0.24 

EGDPSA 
LOG CD 0.03* 0.012* 0.09 0.02* 0.15 0.22 0.04* 0.10 
EGDPSA 

SMD LOG 0.36 0.50 0.26 0.21 0.33 0.24 0.36 0.66 
EGDPSA 

LOG SMD 0.06 0.0195* 0.25 0.24 0.23 0.19 0.012* 0.009** 
EGDPSA 

CD LOG 0.051 0.11 0.26 0.48 0.83 0.85 0.27 0.23 
PGDPSA 

LOG CD 0.03* 0.02* 0.12 0.02* 0.11 0.13 0.03* 0.10 
PGDPSA 

SMD LOG 0.06 0.09 0.22 0.43 0.70 0.65 0.69 0.69 
PGDPSA 

LOG SMD 0.07 0.02* 0.22 0.23 0.11 0.11 0.046* 0.02* 
PGDPSA 
Note: Period covered 1994:1- 2004:1. *(**) denotes rejection of the hypothesis at the 5%(1 %) significance 
level. 
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Cointegration Analysis 

Cointegration analyses were performed with time series reflecting GDP, CPI, Ml and interest 
rates. The intention was in particular to analyse what variables affect GDP and CPI and to 
what degree. It is appreciated that the DF tests above did not explain the presence or absence 
of a unit root in the time series particularly well. From an economic perspective the existence 
of a unit root seems quite plausible. These aspects together make it of particular interest to 
apply cointegration tests to the time series. The combinations of time series that will be 
analysed are: 

GDP 
• LOGEGDPSA LOGPGDPSA 

CPI and GDP 
• LOGCPI LOGEGDPSA 
• LOGCPI LOGPGDPSA 
• LOGCPI LOGEGDPSA LOGPGDPSA 

CPI, EGDP and Ml 
• LOGCPI LOGEGDPSA LOGMJSA 
• LOGCPI LOGEGDPSA LOGMJSA 

EGDP and interest rates 
• LOGEGDPSA CD 
• LOGEGDPSA SMD 

Cointegration analysis of LOGEGDPSA and LOGPGDPSA 

Figure 7.5 shows that LOGEGDPSA and LOGPGDPSA appear to be moving closely together 
over time. This is as expected since they are supposed to measure the same. There generally 
appears to be more variation in the expenditure-based GDP than in the production-based GDP 
and the reasons were explained when the DF models were discussed. It is questionable 
whether cointegration tests for these time series will assist much in elucidating basic 
economic processes. However, it is interesting from the perspective of cointegration analysis 
of two series that should not diverge too much from each other since they measure the same. 
The more one series is underestimated at one stage, the more it should move back to the other 
series during the next period. 

Figure 7.5 Time series and differenced time series LOGEGDPSA and LOGPGDPSA 
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The various cointegration analyses of LOGEGDPSA and LOGPGDPSA are displayed in 
Table 7.6. The setup of the table is explained in section 2.9. Briefly there are five options for 
the VECM and 8 lags. The VECM options include options for the data trend and the 
Cointegrating Equation (CE). The resulting cells contain from top to bottom the number of 
cointegrating equations, the AIC and the SC in this order. 

Table 7.6 Cointegration analysis of LOGEGDPSA and LOGPGDPSA 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 2 2 0 1 1 
39 obser-vations -13 .64279 -13.60860 

-13.17356 -13.09673 
Lag 1 to 2 2 0 0 1 1 
38 obser-vations -13.89800 -13.87374 

-13.25159 -13.18423 
Lag 1 to 3 1 0 0 1 2 
37 obser-vations -13.33783 -13.72571 

-12.64122 -12.89848 
Lag 1 to 4 1 0 0 0 1 
36 obser-vations -13.30748 -13.61457 

-12.42775 -12.55889 
Lag 1 to 5 1 0 0 0 1 
35 obser-vations -13.09958 -13.55452 

-12.03306 -12.31025 
Lag 1 to 6 2 1 0 0 0 
34 obser-vations -13.02875 

-11.72685 
Lag 1 to 7 2 2 0 1 1 
33 -13.61147 -13.66650 
observations -12.02427 -12.03395 
Lag 1 to 8 2 1 2 2 1 
32 obser-vations -14.07481 -14.87658 

-12.38005 -13.04441 
Note: Period covered 1994:1 - 2004:1. 

With the exception of Option 3, all four other options were possible according to the use of 
cointegration analyses. Similarly all lags were possible as well. The two optimal models 
based on the SC and the AIC were quite different. The SC was considerably more 
parsimonious than the AIC. 

VECM of LOGE GDP SA and LOGPGDPSA 

To keep the description of the VECM (7.11) concise, LOGEGDPSA will be denoted as EGDP 
and LOGPGDPSA as PGDP. 
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= [EGDP, 1 - 0.6822PGDP, 1 - 0.0029t -3.1718 ]+ 
[
MGDP, l [- 2.0293] 
Af>GDP, - 0.3374 - -

[ 
0.4275 0.0745] [MGDP, _l l [ 0.3753 0.2643] [MGPD,_, l [E £GDP, l 

-0.0612 0.0953 Af>GDP,_I + -0.0191 0.3692 Af>GDP, _~ + E PGDP:, 

where the significant coefficients are in bold typeface. 

(7.11) 

The results of the Granger Causality test seem reflected in the VECM in that LOGEGDPSA 
reacts to changes in LOGPGDPSA. Equation (7.11) has two lags according to the 
cointegration analysis but no significant coefficients were identified in these lags. 

Residual analysis of VECM of LOGEGDPSA and LOGPGDPSA 

Various tests were performed on the residuals to ensure that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 
The Jarque-Bera value of the residuals of MOGEGDPSA is 0.1572 (p = 0.9244). 
The Jarque-Bera value of the residuals of MOGPGDPSA is 1.2558 (p = 0.5337). 
The residuals of the VECM appear stationary (Figure 7.6). 

Figure 7.6 Residuals of VECM of LOGEGDPSA and LOGPGDPSA 
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The ACF of the residuals of MOGEGDPSA and of MOGPGDPSA at up to 16 lags appear 
not significant and their Q statistics are not significant either. The assumptions that underlie 
the linear model seem justified. 

The correlation coefficient of the residuals of MOGEGDPSA and MOGPGDPSA is 
0.7784. They are not cross-correlated at the other lags of the cross-correlogram. 
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Innovation accounting 

The order in which the time series are entered results in a large difference between the 
Impulse Response Functions (IRF) (Figure 7.7). This is a result of the high correlation 
coefficient. 

If LOGPGDPSA is entered first, then the response of both MOGPGDPSA and 
MOGEGDPSA to innovations of MOGPGDPSA is large. Their response to an innovation 
from MOGEGDPSA is small. Granger Causality would suggest this is the proper order to 
put the time series in. If the other option was taken ( MOGEGDPSA first) then the conclusion 
would have been quite different. Both time series react in a similar manner to the innovations. 

Figure 7.7 Impulse Response Function of VECM ofLOGEGDPSA and LOGPGDPSA 
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Figure 7 .8 shows that the order in which the time series are entered also heavily influences the 
Variance Decomposition (VD). If MOGEGDPSA is entered first, then both time series 
influence each others' variance to a large degree. If MOGPGDPSA is entered first, then 
MOGPGDPSA heavily influences the variance of both time series after 10 periods. Again, 
based on Granger Causality, the latter order seems to be the appropriate one. 
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Figure 7.8 Variance Decomposition of VECM of LOGEGDPSA and LOGPGDPSA 
Vwiance Deccrrposition of LOGEGDPSA 
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Discussion of VECM of LOGEGDPSA and LOGPGDPSA 

Table 7.6 showed that a large number of VECMs could be admissible. The best model 
according to the AIC would have been option 5 with 8 lags. Since the data of the GDP series 
basically measure the same, this lag does not appear plausible. The SC resulted in a model 
with a considerably smaller number of variables. This was in line with the results of the 
Granger Causality test. Eight lags with 32 remaining observations would have used up a lot of 
degrees of freedom too! 

However, VECM (7.11) was rather unsatisfactory with the lag values that were not 
significant. The residuals were well behaved. 

The strong correlation between the residuals of the VECM made the interpretation of the IRF 
and the VD rather difficult. Granger Causality was of assistance to make a justifiable decision 
to place most trust in the option where LOGPGDPSA was used first. 

The tests show MOGEGDPSA reacts to changes in MOGPGDPSA. The IRF and VD also 
clearly showed the importance of MOGPGDPSA on MOGEGDPSA over time. 

The conclusion is reached that production-based GDP has a large impact on expenditure­
based GDP. Reducing the first one will affect the second one. The opposite does not appear to 
be the case. An economic explanation cannot be given in principle since the data series are 
intended to be the same. However the findings may reflect the data collection process and this 
would constitute an important finding. The results indicate that the different methodologies 
result in different interpretations which in turn might affect economic policy. 
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Cointegration analysis LOGCPI and LOGEGDPSA 

The output gap may considerably affect inflation and the cointegration analyses below use 
LOGCPI and LOGEGDPSA to evaluate this. Both undifferenced time series in Figure 7.9 are 
trending upward with apparently little variation. However, the differenced time series which 
have stationary means show that the variation of DLOGEGDPSA is greater than that of 
DLOGCPI. 

Figure 7.9 Time series and differenced time series of LOGCPI and LOGEGDPSA 
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Table 7.7 shows the results of the cointegration analyses of LOGCPI and LOGEGDPSA. The 
setup of the table is explained in section 2.9. Briefly there are five options for the VECM and 
8 lags. The VECM options include options for the data trend and the Cointegrating Equation 
(CE). The resulting cells contain from top to bottom the number of cointegrating equations, 
the AJC and the SC in this order. The best model according to the SC is Model 3 with 1 lag 
only. All 5 models were possible in principle. The model chosen by the SC and the AIC were 
quite different. 

VECM of LOGCPI and LOGEGDPSA 

VECM (7 .12) shows that the differenced LOGCPI reacts to the difference between LOGCPI 
and LOGEGDPSA (ie the cointegration equation). In addition it reacts to the lagged 
differenced values of both LOGCPI and LOGEGDPSA. The association with its own lagged 
differenced observation is a positive one. The association with the LOGEGDPSA time series 
is negative. Both differenced time series have a constant term indicating a linear trend over 
time. 

The LOGEGDPSA was not sensitive to the cointegration equation. 

[ 
!1CPI1 l [- 0.2257] 

MGD~ = 0.2821 [CPI 1
_
1 - 0.5439EGDP1_1 -1.4007 ]+ 

[ 
0.3485 - 0.0898] [ !1CP!t-1 l [0.0040] [ E: CPI I l 

- 0.4222 - 0.4311 MGDP,_I + 0.0136 + c EGD~,I 
(7.12) 
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where CPI is LOGCPI, EGDP is LOGEGDPSA and significant coefficients are in bold 
typeface. 

Table 7.7 Cointegration analysis LOGCPI and LOGEGDPSA 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept lntercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 1 2 1 0 1 
39 obser- -13 .62252 -13.91596 -13 .88934 
vations -12.28128 -13.48941 -13.37748 
Lag 1 to 2 1 1 0 0 1 
38 obser- -13.64424 -13.68436 -13.92218 
vations -13 .12710 -13.12413 -13.23231 
Lag 1 to 3 1 1 0 0 0 
37 obser- -13.6554 -13.6784 
vations -12.9588 -12.9383 
Lag 1 to 4 1 2 0 0 0 
36 obser- -13.6016 
vations -12.72186 
Lag 1 to 5 0 0 0 0 0 
35 observations 
Lag 1 to 6 0 0 0 0 2 
34 observations 
Lag 1 to 7 0 0 0 1 2 
33 obser- -13.5077 
vations -11.9205 
Lag 1 to 8 1 2 1 1 2 
32 obser- -13.1321 -13.5245 -13.4720 
vations -11.4832 -11.7839 -11.6856 
Note: Period covered 1994:1 - 2004:1 

The Granger Causality test allowed for Granger Causality in both directions. However 
generally (ie when one considers the various lags) LOGEGDPSA Granger Causes LOGCPI. 

Residual Analysis of VECM of LOGCPI and LOGEGDPSA 

Various tests were performed on the residuals to ensure that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 

The Jarque-Bera value of the residuals of LOGCPI is 2.587541 (p = 0.274235). 
The Jarque-Bera value of the residuals of LOGEGDPSA is 0.677616 (p = 0.712619). 
The residuals of the LOGEGDPSA appear stationary (Figure 7.10), although it could be 
argued that the mean of the residuals of LOGCPI seems to change somewhat over time. This 
again demonstrates the difficulty of making inferences based on inspecting figures. 
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Figure 7.10 Residuals ofVECM ofLOGCP/andLOGEGDPSA 
LOGCPI Residuals 
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The ACF of none of the residuals shows significant findings. Their Q statistics are not 
significant either. The assumptions for the linear model seem to hold. 

The correlation between the residuals of LOGEGDPSA and LOGCPI is 0.235768. The cross­
correlogram of the residuals does not appear to have significant values at the other lags. 

Innovation Accounting 

The patterns in Figure 7.11 appear similar for both orders used. However, entering 
LOGEGDPSA seems to result in a larger difference between the time series as plotted in the 
figure. Granger Causality (Table 7.1) and economic theory would suggest thatLOGEGDPSA 
should be entered first. 

The inflation (LOGCPI) seems sensitive to shocks of inflation (LOGCPI) in the shorter term 
and becomes sensitive to the shocks of the GPD (LOGEGDPSA) in the longer term. The 
LOGEGDPSA does hardly react to shocks of LOGCPI but shows a direct reaction to shocks 
of LOGEGDPSA. 

Similar to the IRF, the effect of ordering is present but seems minor for the VD (Figure 7.12). 
Over time the variance of LOGCPI is more or less equally influenced by LOGCPI and 
LOGEGDPSA. As expected, the variance of LOGEGDPSA shows little contribution from 
LOGCPI. 
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Figure 7. 11 Impulse Response Function of VECM of LOGCPI and LOGEGDPSA 
Response of LOGCPI to 0,e S .0 . Innovations 
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Figure 7. 12 Variance Decomposition of VECM of LOGCPI and LOGEGDPSA 
Variance Oecorrposition of LOGCPI Variance Oecorrposition of LOGCPI 
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Similar to the IRF, the effect of ordering is present but seems minor for the VD (Figure 7.12). 
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Discussion of VECM of LOGCPI and LOGEGDPSA 

As far as the GDP variable is concerned, the constant term that was not significant in the DF 
test of Model 1 (7.la) has now become significant. The trend term however has disappeared 
from the model. In addition the term MGD~_1 was not significant in its DF model but has 

now become significant. 

The CE seemed to indicate that LOGCPI reacts to departures of the long term equilibrium 
with LOGEGDPSA Although this was possible according to the Granger Causality tests at 
lag 1, the GC tests seemed to provide more evidence for the opposite at lag 1 and the other 
lags. This VECM in effect is saying that the CPI reacts to deviations from the long term 
equilibrium between CPI and GDP. This is in line with economic thinking. 
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Cointegration analysis LOGCPI and LOGPGDPSA 

The impression one acquires from Figure 7.13 is very similar to that of Figure 7.9 as should 
be the case since both time series are intended to measure the same. The undifferenced time 
series are trending up with little apparent variation. The differenced time series of 
LOGPGDPSA shows more variation than the differenced series of LOGCPI. 

Figure 7.13 Time series and differenced time series of LOGCPI and LOGPGDPSA 
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Table 7.8 shows the results of the cointegration analyses of LOGCPI and LOGPGDPSA. The 
setup of the table is explained in section 2.9. Briefly there are five options for the VECM and 
8 lags. The VECM options include options for the data trend and the Cointegrating Equation 
(CE). The resulting cells contain from top to bottom the number of cointegrating equations, 
the AIC and the SC in this order. Table 7.7 and Table 7.8 show considerable differences. The 
SC and the AlC in Table 7.7 suggest the same model. This is Option 3 with 2 lags. This was 
not an admissible option in Table 7.8. 

VECM of LOGCPI and LOGPGDPSA 

The optimal VECM as identified in Table 7.8 is displayed in (7.13) 

= +[CPI1 1 -0.604780PGD~ 1 -0.790137]+ 
[ 

!:iCP/1 l [- 0.344470] 
MGD~ 0.064899 - -

[ 
0.333856 -0.145224] [ f:.CP/ 1 _ 1 l + [0.108384 -0134533] [ /:iCP/1_ 2 l 
-0.384663 0.003414 MGD~_1 0.173444 0.334565 MGD~_ 2 + 

[
0.00481] + [cCP/,1 l 
0.00609 &cPl ,t 

(7.13) 

where CPI is LOGCPI, PGDP is LOGPGDPSA and the significant coefficients are in bold 
typeface. 
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Table 7.8 Cointegration analysis of LOGCPI and LOGPGDPSA 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept 

No trend No trend 
Intercept 
No trend 

Intercept 
Trend 

Intercept 
Trend 

Lag 1 1 2 
39 obser- -14.7009 
vations -14.0704 
Lag 1 to 2 2 1 
38 obser- -14.79130 
vations -14.23108 
Lag 1 to 3 0 1 
37 obser- -14.62402 
vations -13.88386 
Lag 1 to 4 0 0 
36 observations 
Lag 1 to 5 0 0 
35 observations 
Lag 1 to 6 0 0 
34 observations 
Lag 1 to 7 0 0 
33 observations 
Lag 1 to 8 1 2 
32 obser- -14.25631 
vations -12.60735 
Note: Period covered 1994:1 - 2004:1. 

0 0 

1 0 
-14.89909 
-14.29577 
0 0 

0 0 

0 0 

0 0 

0 0 

2 1 
-14.73695 
-12.95058 

0 

1 
-14.83551 
-14.14600 
0 

0 

0 

2 

2 

2 

VECM (7.13) has coefficients that are similar to the VECM of LOGCPI and LOGEGDPSA 
(7.12). The main differences apply to two significant coefficients in the first differenced lag of 
(7.12). Although a second lag of the differenced component was suggested by the 
cointegration analysis, VECM (7.13) did not contain significant values. Consequently the 
similarity between the (7.12) and (7.13) is better than expected initially which is encouraging. 
However the issue remains that models that are admissible for one data collection system are 
not so for the other one. 

Residual analysis of VECM of LOGCPI and LOGPGDPSA 

Various tests were performed on the residuals to ensure that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 

The Jarque-Bera value of the residuals of MOGCPI is 4.098450 (p = 0.128835). 
The Jarque-Bera value of the residuals of MOGPGDPSA is 0.823137 (p = 0.662610). 
The residuals of the VECM appear more or less stationary (Figure 7.14). Similar to the 
residuals of MOGCPI in Figure 7.10, the mean of the residuals of MOGCPI in Figure 
7.14 seems to vary somewhat, but it is not to the same degree. 
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Figure 7.14 Residuals of VECM of LOGCPI and LOGPGDPSA 
LOGCPI Residuals 
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The ACF of neither of the residuals shows significant findings. Their Q statistics are not 
significant either. The assumptions for the linear model seem to hold. 

The correlation coefficient of the residuals of MOGCPI and MOGPGDPSA is 0.366008 
The cross-correlogram of residuals also seems to show a significant value at Jag 10. If a large 
number of lags are evaluated it is to be expected that at times a Jag appears to be significant, 
so this finding is deemed to be of no relevance. 

Innovation accounting 

Both the IRF and the VD patterns of MOGEGDPSA and MOGPGDPSA seem similar 
although some quantitative differences exist. Based on Granger Causality LOGPGDPSA 
should be entered before LOGCPI. 

The patterns of the IRF do not seem to be greatly affected by the ordering (Figure 7.15). After 
10 periods MOGCPI is more affected by innovations of MOGPGDPSA than by its own 
innovations. MOGPGDPSA is considerably influenced by its own innovations but not so 
much by the innovations of MOGCPI . 
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Figure 7.15 Impulse Response Function of VECM of LOGCPI and LOGPGDPSA 
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Both the variance of /1LOGCPI and /1LOGPGDPSA are heavily influenced by 
/1LOGPGDPSA after 10 periods regardless of the ordering (Figure 7.16). 

Figure 7.16 Variance Decomposition of VECM of LOGCPI and LOGPGDPSA 
V,:viance Decorrpositian of LOGCPI 
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Comments on the relationship of LOGCPI and LOGPGDPSA 

The DF unit root analysis resulted in Model 1 but the deterministic components were not 
significant. The VECM (7.13) does have a significant constant term. Both the DP tests and the 
VECM included two lags. However, in the case of the VECM the second lag did not contain a 
significant coefficient. 
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The adjustment coefficient and the coefficient of PGDP1_1 of the cointegration equation were 
both significant. This is encouraging since a meaningful economic model has now eventuated 
as described above. 

It is claimed at times that economic models are to be developed 'a priori' and statistical tests 
can be used to reject these models or not. There is a risk that if a model is rejected by a test an 
analyst might try other models that closely resembles the first one until the statistical test 
results in not rejecting that model. This analysis has shown a different aspect. If an analysis 
does not succeed with one variable a closely resembling variable can be used instead. In this 
case the same optimal model was arrived at if the issue of the lags is ignored. Usually the 
analysis strategy of Table 7.4 would not be used. In that case the final VECM used could 
differ quite a lot depending on what variable (LOGEGDPSA or LOGPGDPSA) is used. 
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Cointegration analysis LOGCPI, LOGEGDPSA and LOGPGDPSA 

Although LOGEGDPSA and LOGPGDPSA are conceptually the same it is of interest from a 
statistical perspective to assess whether the VECM changes if both time series are used 
concurrently for evaluating their association with LOGCPI. 

Figure 7.17 combines Figures 7.9 and 7.13 and comments can be found in the sections of 
these two figures. 

Figure 7.17 Time series and differenced time series of LOGCPI, LOGEGDPSA and 
LOGPGDPSA 
11,------- --- ---, 

10 ------------------------------

71------------"1 

6 -h--,-~~~~~r,,-,-----,-.,-,-,.....,........,-; 
~ ~ % "n ~ · ~ ~ ~ · ~ ~ 

i - LOGCP I ----- - LOGEGDPS A ---- LOGPGDPS1 

Time series of LOGCPI, LOGEGDPSA and 
LOGPGDPSA 

0_04 

0.02 

0.00 

-n02 

-n04 -t-rm~~~~~~~m 
~ $ $ ~ oo oo oo m 02 ro 04 

I - DLOGCPI ------- DLOGEGDPSA - --- DLOGPGDPSA I 

Differenced time series of LOGCPI, 
LOGEGDPSAandLOGPGDPSA 

Table 7.9 shows the results of the cointegration analyses of LOGCPI, LOGEGDPSA and 
LOGPGDPSA. The setup of the table is explained in section 2.9. Briefly there are five options 
for the VECM and 8 lags. The VECM options include options for the data trend and the 
Cointegrating Equation (CE). The resulting cells contain from top to bottom the number of 
cointegrating equations, the AIC and the SC in this order. Since there are now 3 time series 
there could be 2 cointegrating equations. Various options can be distinguished with 2 
cointegrating equations. However the preferred model (7.14) as identified in Table 7.9 only 
has one cointegrating equation. If the AIC is used, then 2 cointegrating equations are used in 
the model. However, again a large number of lags would be required. 

VECM of LOGCPI, LOGEGDPSA and LOGPGDPSA 

A VECM of LOGCPI, LOGEGDPSA and LOGPGDPSA is shown in (7.14). Since there are 3 
time series they can be entered in 6 different orders. The main issue however, is the variable 
they are normalised on. The model mainly shows the reaction of MOGEGDPSA to its 
divergence from MOGPGDPSA in the previous period. Apart from the constant term (7.14) 
is very similar to (7.11) and will not be analysed any further. 
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-1.3372 

-0.0803 [EGD~_1 - 0.7231PGD~_1 -0.0205CPI
1

_ 1 - 0.0026t - 2.6224 ]+ 
0.2057 

-0.1521 0.4018 -0.5385 MGD~-1 0.0089 &EGDP,t 

-0.2047 0.2001 -0.2829 MGD~-1 + 0.0096 + &PGDP ,t (7.14) 

- 0.1638 0.1850 0.2946 l:!.CPI1_ 1 0.0034 &cPI ,, 

where £GDP is LOGEGDPSA, PGDP is LOGPGDPSA and CPI is LOGCPI. 

Table 7.9 Cointegration analysis of LOGCPI, LOGEGDPSA and LOGPGDPSA 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 

CE No intercept Intercept Intercept Intercept Intercept 
No trend No trend No trend Trend Trend 

Lag 1 3 2 1 1 1 
39 obser- -21.10202 -21.32548 -21.57206 -21.49369 
vations -20.12094 -20.55769 -20.76161 -20.59793 
Lag 1 to 2 3 2 0 1 1 
38 obser- -21.03661 -21.79110 -21.71335 
vations -19.65759 -20.58446 -20.42052 
Lag 1 to 3 1 0 0 0 1 
37 obser .. -21.24822 -21.55467 
vations -19.81145 -19.85667 
Lag 1 to 4 1 0 0 0 0 
36 obser- -21.05436 
vations -19.20692 
Lag 1 to 5 1 0 0 0 0 
35 obser- -20.98094 
vations -18.71457 
Lag 1 to 6 3 2 1 2 3 
34 obser- -21.00652 -21.15051 -21.55986 
vations -17.95380 -18.32225 -18.37246 
Lag 1 to 7 3 2 1 2 3 
33 obser- -21.57429 -21.70160 -22.04973 
vations -18.08244 -18.43649 -18.42183 
Lag 1 to 8 
32 observations Insufficient number of observations. 
Note: Period covered 1994:1- 2004:1. 

VECM of LOGCPI, LOGEGDPSA and LOGPGDPSA (2 cointegration equations) 

The best model according to the SC in Table 7.9 with 2 cointegration equations was 
evaluated. This was Option 2 with 1 lag. Two forms of this VECM are shown (7.15 and 7.16). 

169 



0.0671 

[

MGD~ l r- 0. 7264 
!iCPI1 = 0.1235 

MGD~ - 0.1022 
[
EGDP/ 1 - l.0966PGDPI 1 + 0.9499] -0.1685 - - + 

_ 0.
2078 

CPI1_1 - 0.6186PGD~_1 - 0.6882 

[

- 0.4515 

-0.1084 

-0.1805 

-0.7381 

0.3070 

-0.2350 

0.5082] & EGDP ,t 

0.0570 + &cn ,r 

0.0789 & PGDP,r 

(7.15) 

Based on the t-statistics of the adjustment coefficients this model is full rank and 
consequently inappropriate. The model that has the initial order of LOGEGDPSA and 
LOGCPI reversed is the same. 

The VECMs that have the order LOGEGDPSA - LOGPGDPSA - LOGCPI or 
LOGPGDPSA-LOGEGDPSA -LOGCPI only have one negative significant adjustment 
coefficient. They will not be further evaluated. 

Finally the models with order LOGPGDPSA-LOGCPI -LOGEGDPSA or LOGCPI­
LOGPGDPSA -LOGEGDPSA are available for evaluation. 

[

MGDP l [ 0.2406 - 0.2078] 
I [PGD~ 1 - 0.9119EGD~ 1 - 0.8662] !iCPI

1 
= -0.0312 - 0.1685 - - + 

CPI/ 1 - 0.5641EGD~ 1 -1.2240 
IIBGD~ + 0.7551 0.0671 - -

[

0.0786 - 0.2350 - 0.1805] & PGDP ,r 

0.0570 0.3070 -0.1084 + &CPI 
1 

0.5082 - 0.7381 • 0.4515 & £GDP 1 

(7.16) 

The last VECM (7.16) is also inadmissible. It contains 3 significant adjustment coefficients. 

In summary, it has not been possible to develop a VECM that brings the 3 factors together. In 
a sense the above analysis was mainly of statistical interest rather than economic. It was 
already decided that two of the time series (LOGEGDPSA and LOGPGDPSA) were more or 
less similar. However it is of importance to evaluate how the cointegration analysis dealt with 
the series that were largely the same. 
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Cointegration analysis LOGCPI, LOGEGDPSA and LOGMJSA 

Over the years there has been an ongoing debate whether the output gap or the velocity of 
money are the main cause of inflation. Cointegration analysis with an inflation index and time 
series reflecting the output gap and monetary aggregates seem a good way to evaluate this 
issue. The monetary aggregate (LOGMJSA) that is used in this cointegration analysis is 
seasonally adjusted but it has not been adjusted for the CPI. The next section will use a CPI­
adjusted form. This approach is similar to that used in Chapter 5. 

Figure 7.18 gives the impression that LOGMJSA has a trend that is quite different from 
LOGCPI and LOGEGDPSA. Also the differenced series DLOGMISA displays more variation 
than the other two time series. 

Figure 7.18 Time series and differenced time series of LOGCPI, LOGEGDPSA and 
LOGMJSA 
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Table 7.10 shows the results of the cointegration analysis of these 3 time series. The setup of 
the table is explained in section 2.9. Briefly there are five options for the VECM and 8 lags. 
The VECM options include options for the data trend and the Cointegrating Equation (CE). 
The resulting cells contain from top to bottom the number of cointegrating equations, the AIC 
and the SC in this order. Both the SC and the AIC criterion suggest Model 4. However where 
the SC chooses a series with 1 lag only the AIC chooses the model with 7 lags. In addition the 
AIC indicates 2 cointegrating equations while the SC only indicates 1. 

VECM of LOGCPI, LOGEGDPSA and LOGMJSA 

The optimal VECM according to the SC is shown in (7 .17). 

!!J.Ml1 = 0.552232 [LOGCP/1_ 1 -0.105350Ml1_ 1 - 0.949562£GD~_1 + 0.0057t + 3.5919] 
!!J.CP/1 - 0.1632031 

tillGD~ 0.178656 

[ 

0.217239 

+ -0.874074 

-0.140503 

- 0.019717 - 0.103074 !!J.CPI
1

_ 1 

0.158989 0.086213 !!J.Mlt-1 

0.096995 - 0.457865 tillGD~_1 
[

0.005242 &cPI ,t 

+ 0.023010 + &Ml,t 

0.010156 & EGDP,t 

(7.17) 
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where CPI is LOGCPI, Ml is LOGMISA and EGDP is LOGEGDPSA and the significant 
coefficients are in bold. 

Table 7.10 Cointegration analysis of LOGCPI, LOGEGDPSA and LOGMJSA 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept Intercept Intercept Intercept Intercept 

No trend No trend No trend Trend Trend 
Lag 1 2 2 2 1 3 
39 obser- -18.67945 -18.87827 -18.97544 -18.86192 
vations -17.78368 -17.89720 -17.95171 -18.05147 
Lag 1 to 2 1 2 2 1 3 
38 obser- -18.60654 -18.68953 -18.81822 -18.90072 
vations -17.57228 -17.31051 -17.39610 -17.69408 
Lag 1 to 3 0 1 0 1 1 
37 obser- -18.57653 -18.86773 -18.82732 
vations -17.09622 -17.25681 -17.12932 
Lag 1 to 4 0 0 0 2 3 
36 obser- -19.01699 
vations -16.24048 
Lag 1 to 5 0 0 0 1 3 
35 obser- -19.02152 
vations -16.57740 
Lag 1 to 6 2 1 1 2 3 
34 obser- -18.49347 -18.41125 -18.61206 -18.97134 
vations -15.53054 -15.67278 -15.78381 -15.78394 
Lag 1 to 7 2 3 1 2 3 
33 obser- -18.82694 -19.16376 -19.42112 
vations -15.42578 -15.89866 -15.79322 
Lag 1 to 8 
32 obser- Insufficient number of observations 
vations 
Note: Period covered 1994:1 - 2004:1. 

The model that was selected (7.17) had two significant adjustment coefficients. They were for 
LOGCPI and LOGMISA. 

Inflation (LOGCPI) is showing association with GDP (LOGEGDPSA) at two levels. There is 
a negative association if one considers the lag in the model. In addition there is also an 
association through the cointegrating equation. If the long-run equilibrium is disturbed some 
factor brings them together again. This may be the monetary policy and the way it 
manipulates interest rates. 

The significant adjustment factor for LOGMISA is difficult to explain, especially since the 
significant coefficients in the cointegrating equation are for LOGCPI and LOGEGDPSA. It 
may be explained that if the EGDP is too high for the equilibrium with the inflation rate, Ml 
1s mcreases. 
The trend in the cointegrating equation was not significant which is contrary to the 
specifications of the model chosen from Table 7.10. 
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Analysis of the residuals of VECM of LOGCPI, LOGEGDPSA and LOGM1SA 

The residuals of the VECM were evaluated to verify that the assumptions for the linear model 
were not violated. 
The Jarque-Bera value of the residuals of MOGCPI is 0.480682 (p = 0.786360) 
The Jarque-Bera value of the residuals of MOGMlSA is 6.460324 (p = 0.039551) 
The Jarque-Bera value of the residuals of MOGEGDPSA is 0.291465 (p = 0.864389) 

The residuals of MOGMlSA are therefore not normally distributed according to the Jarque­
Bera test. This means that an important assumption has been violated. To what degree it 
renders the model invalid cannot be established. 

The means of MOGCPI and MOGMlSA seem to vary somewhat over time according to 
Figure 7.19. 

Figure 7.19 Residuals of VECM (7.17) of LOGCPI, LOGEGDPSA and LOGMJSA 
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* A VECM with 2 significant cointegration equations according to Table 7.4 will be discussed in the next 
section 

The ACF of none of the residuals shows significant findings. Their Q statistics are not 
significant either 

The cross-correlogram may have shown significant findings at lags 2 and 12 for the residuals 
ofLOGMJSA andLOGEGDPSA. 
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The correlation between the residuals of MOGCPI and llLOGMlSA is 
The correlation between the residuals of MOGCPI and llLOGEGDPSA 1s 
The correlation between the residuals of MOGMlSA and MOGEGDPSA is 

-0.087449 
0.258852 
0.103689 

Innovation Accounting 

Since three time series are analysed six different orders were possible. Two of these are 
shown in Figures 7.20 and 7.21. The correlation between the residuals of the 3 time series was 
small and therefore the order should not matter much. Indeed the IRF did not appear to be 
sensitive to the two orders that are shown. After 10 periods MOGCPI seems particularly 
sensitive to innovations of MOGEGDPSA . This illustrates how shocks to the GDP affect 
inflation. Figure 7.23 also shows that MOGMlSA displayed a negative response after 10 
periods to innovations of MOGEGDPSA . 

Figure 7 .20 Impulse Response Function of VECM (7 .17) of LOGCPI, LOGEGDPSA and 
LOGM1SA 
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Figure 7.21 showed that the order had little effect on the Variance Composition. This is 
similar to Figure 7.20 and is explained by the small correlation coefficients. 
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Figure 7.21 Variance Decomposition of VECM (7.17) of LOGCPI, LOGEGDPSA and 
LOGMISA 
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There was little influence of MOGMlSA on the variance of the other two time series. 
However, MOGEGDPSA did have an large effect on the variance of MOGCPI after 10 
periods. 

Comments of the relationship of VECM of LOGCPI, LOGEGDPSA and LOGM1SA 

The VECM had two significant coefficients (ie adjustment factors). There should have been a 
significant trend in the cointegrating equation but there was none. The data series indicated an 
effect of MOGEGDPSA,_1 on MOGCPI . A departure from the long-term equilibrium 

between the CPI and the GDP is corrected by the CPI. The effect of MOGEGDPSA on 
MOGMlSA according to the innovation accounting was greater than expected. 
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VECM of LOGCPI, LOGM1SA and LOGEGDPSA (2 cointegrating equations) 

In addition to the optimal model as established according the Schwarz Criterion above the 
second best model was evaluated. This was the Option 3 with 1 lag as shown in (7.18). This 
was done because it had two cointegrating equations and the specification without the trend in 
the cointegration equation appeared more plausible from an economic perspective. There was 
little difference between the values of the two SCs. In both cases VECMs were not rejected 
and it is of interest whether the coefficients of these two models are materially different or 
might in fact result in a model that explained the three time series better in relation to each 
other. 

[ 

!1CPI1 

/1Ml/ = 
/1.EGDP, 

0.173970 

-1.382577 

-0.925592 

-0.197573 

0.570941 

0.452869 

0.0364621 

[
CPI/ 1 - 0.546028EGDP, 1 -1.379552] 

0.059583 - - + 
Ml- 3.057569EGDP, 1 + 21.53602 

0.192841 -

- 0.071364 - 0.0153761 [ /1CPI1_1 0.0059831 &cn ,1 

0.094319 0.045347 /1Ml1_ 1 + 0.027421 + &Ml,t 

-0.143520 -0.124675 /1.EGDP,_I 0.017152 &EGDP, t 

(7.18) 

where CPI is LOGCPI, Ml is LOGMJSA, EGDP is LOGEGDPSA and the significant 
coefficients are in bold typeface. 

The significant adjustment coefficients apply to MOGCPI and MOGEGDPSA. 
MOGCPI reacts to departures of its long term equilibrium with LOGEGDPSA as has been 
seen previously by decreasing. In addition it also reacts by increasing when the GDP 
increases too much in relation to the money supply. 
This time GDP reacts to departures from its long-term equilibrium with CPI. It reacts by 
increasing. This means that if inflation is too high in the previous period, the GDP will 
increase more to compensate. The second Cointegrating Equation shows that if the money 
aggregate is too high for the GDP, the GDP will correct by increasing. 

Other ways of displaying the chosen model were options (7.19) and (7.20) 

[

- 0.1976 - 0.00361 

[
CPI/ 1 -0.1786Ml/ 1 -5 .2255] 

= + 0.4529 - 0.8369 - - + 
EGDP, 1 - 0.3271Ml- 7.0435 

0.5709 - 0.4939 -

0.1740 - 0.0154 -0.0714 !1CPI1_1 0.0060 &cn ,1 

-0.9256 -0.1247 -0.1435 /1.EGDP,_I + 0.0172 + &EGDP,t (7.19) 

-1.3826 0.0453 0.0943 0.0274 &Ml,t 
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-0.8369 MGD~_, 

LlMl,-1 

!1CPI1-1 

-0.4939 

-0.0036 

+ 0.1928] 
0.0596 [EGD~_ 1 -1.8314CPI1_ 1 + 2.5265] + 

+ 0.0
365 

Ml, _1 - 5.5997CP/1_1 + 29.1610 

- 0.1247 - 0.1435 -0.9256 MGD~_1 0.0172 & EGDP,t 

0.0453 0.0943 -1.3826 t:iMl,_, + 0.0274 + &Ml,t 

- 0.0154 -0.0714 0.1740 t:iCPI,_I 0.0060 &cPI ,, 

(7.20) 

Although all these three equations are equivalent, it is of interest to note that (7.18) has four 
significant adjustment coefficients and (7.19) and (7.20) only have three. When there are two 
cointegrating vectors, essentially two vectors are chosen which span a space. The way in 
which the algorithm makes its choice depends on the order in which it is given the variables. 
Thus the long-run relationships can come in different forms. Any linear combination of these 
is also a long-run relationship. The number of significant adjustment coefficients may depend 
on the choice of the two cointegrating vectors to span the "cointegrating space". 
The following discussions are based on (7.18) although parts may equally apply to the other 
equations . None of the lagged values in the data series is significant nor are the adjustment 
factor of MJSA. 

Analysis of residuals of VECM of LOGCPI, LOGMJSA and LOGEGDPSA (2 
cointegrating equations) 

Various tests were performed on the residuals to verify that the assumptions for the linear 
model were met. If they are not, the model may give misleading information about the system 
being modelled. 

The Jarque-Bera value of the residuals of MOGCPI is 1.0108 (p = 0.6033). 
The Jarq ue-Bera value of the residuals of MOGMlSA is 8.8230 (p = 0.0121). 
The Jarque-Bera value of the residuals of t:iLOGEGDPSA is 0.8122 (p = 0.6662). 
The Jarque-Bera value for the residuals of MOGMlSA is too high. They do not display a 
normal distribution. 

The re siduals of this VECM (7.15) and VECM (7.16) are very similar (Figure 7.22). 
The ACF of none of the residuals shows significant findings. Their Q statistics are not 
significant either. 

The correlation between MOGCPI and MOGMlSA is 
The correlation between MOGCPI and MOGEGDPSA is 
The correlation between MOGMlSA and MOGEGDPSA is 

-0.254940 
0.067158 
0.071862 

The order in which the times series will be entered for innovation accounting is not likely to 
be influential with regard to the results. 

The cross-correlogram of the three residuals does not show significant findings. 
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Innovation accounting 

Figure 7 .22 compares the IRF of the VECMs (7 .17) and (7 .18). The order used was the same 
for both figures. Although the patterns of the individual series have remained the same, the 
position of the lines in relation to each other has shifted. If one were willing to accept both 
models, then the ramifications for economic policy would become different. 

Figure 7.22 Impulse Response Function of VECMs of LOGCPI, LOGEGDPSA and 
LOGM1SA 
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The VDs (Figure 7.23) showed a similar issue as the IRFs. Again this would have 
implications for economic policies. A shock to the CPI would result in a response of the CPI 
after 10 periods according to the VECM with 1 cointegrating equation but no response 
according to the VECM with 2 cointegrating equations. 
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Figure 7.23 Variance Decomposition ofVECMs ofLOGCPI,LOGEGDPSA andLOGMJSA 
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Comments on the differences between the two VECMs 

Although both VECMs were admissible according to Table 7.21 , the actual equations differed 
considerably . The different IRFs and VDs have quite different meanings in an economic 
sense. The differences that were shown would be of concern since the economic interpretation 
of the two VECMs differs so much. 

In the section on the VECM with the two CEs, a number of economic ramifications were 
discussed. Since the residuals of the monetary aggregate this models were not normally 
distributed, there is a concern the inferences may not be valid. 
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Cointegration analysis of LOGEGDPSA and CD 

When the RBNZ is of the opinion that the output gap becomes too large and production has 
become more than the economy can sustain, it increases the OCR. Since retail banks loan and 
borrow from the RBNZ based on the OCR, they will adjust their lending rates to the public in 
accordance with changes to the OCR. This in tum should lead to an increase or decrease of 
the GDP. In this case the Call Deposit Rate (CD) was chosen as an example of an interest rate 
since it was considered to be very sensitive to changes of the OCR. 

The time series LOGEGDPSA shows a steady increase (Figure 7.24). The time series of CD is 
very irregular with a sharp decline. Both differenced time series appear stationary. There is a 
large through in the differenced time series of CD (DCD). 

Figure 7.24 Time series and differenced time series of LOGEGDPSA and CD 
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A cointegration analysis was performed to evaluate the relationship between LOGEGDPSA 
and CD (Table 7.11). The setup of the table is explained in section 2.9. Briefly there are five 
options for the VECM and 8 lags. The VECM options include options for the data trend and 
the Cointegrating Equation (CE). The resulting cells contain from top to bottom the number 
of cointegrating equations, the AlC and the SC in this order. All 5 options seemed to be 
possible. Both information criteria select Model 4, but the SC uses 2 lags while the AlC uses 
6 lags. 

VECM of LOGEGDPSA and CD 

A VECM as suggested by the SC is displayed in (7.21). 

= [CD1 1 - 67.7135EGD~ 1 + 0.6671t + 669.0170 ]+ 
[ 

!iCD1 l [- 0.3565] 
MGD~ 0.0008 - -

[ 
0.6837 -20.2785][ !iCD1 _ 1 l + [-0.3495 -14.3314][ !iCD1 _ 2 l + 

- 0.0026 - 0.4815 MGD~_ 1 - 0.0035 0.0280 MGD~_ 2 

[
0,2331] [ £CD I l 
0,0121 + G EGD~,t 

(7.21) 

where the significant coefficients are in bold type face and EGDP is LOGEGDPSA. 
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Table 7.11 Cointegration analysis of LOGEGDPSA and CD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept 

No trend 
Intercept 
No trend 

Intercept 
No trend 

Intercept 
Trend 

Intercept 
Trend 

Lag 1 
39 obser­
vations 
Lag 1 to 2 
38 obser­
vations 
Lag 1 to 3 
37 obser­
vations 
Lag 1 to 4 
36 obser­
vations 
Lag 1 to 5 
35 obser­
vations 
Lag 1 to 6 
34 obser­
vations 
Lag 1 to 7 
33 obser­
vations 
Lag 1 to 8 
32 obser­
vations 

1 
-4.1723 
-3.8310 
1 
-4.4567 
-3.9396 
1 
-4.7137 
-4.0171 
1 
-4.7878 
-3.9081 
0 

1 
-5.0178 
-3. 7608 
2 

2 

Note: Period covered 1994:1 - 2004:l. 

2 

1 
-4.5569 
-3.9966 
2 

1 
-4.7596 
-3.8359 
0 

1 
-5.1157 
-3.8138 
1 
-4.8218 
-3.3253 
2 

0 

0 

0 

0 

0 

0 

0 

1 
-5.0318 
-3 .2913 

1 
-4.6212 
-4.1520 
1 
-5 .1186 
-4.4722 
1 
-5.2859 
-4.4587 
0 

1 
-5 .2214 
-4.0216 
1 
-5.2955 
-3.9038 
1 
-5.2239 
-3.6367 
1 
-5.1861 
-3.3997 

2 

2 

1 
-5.2383 
-4.3675 
1 
-5.1010 
-4.0543 
1 
-5 .1835 
-3.9392 
2 

2 

2 

The interest rate (CD) reacts to a divergence of the GDP and the CD. This can be explained as 
the interest rates being increased as the GDP becomes too large for the long-term equilibrium 
in the previous period. This probably reflects monetary policy. 

Figure 7.24 shows clearly that CD has decreased over time. However the constant (0.2331) in 
(7.21) and also the coefficient of !1CD

1
_ 1 are both positive and significant. CD 's coefficients 

for MGDP,_1 , MGD~_ 2 and !1CD
1

_ 2 are all significant and negative. One cannot but wonder 

whether the large number of variables allowed a degree of model fitting that does no longer 
reflect the actual data generating process. 

Inspection of Figure 7 .24 shows two time series that are moving in different directions. This 
too does not seem to point to a cointegrating relationship. 

Analysis of residuals of VECM of LOGEGDPSA and CD 

Various tests were performed on the residuals to verify that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. This is of particular interest in this case because of the positive sign of the 
significant adjustment factor. 

181 



The Jarque-Bera value of the residuals of MGDPSA is 0.208281 (p = 0.901099). 
The Jarque-Bera value of the residuals of !1CD is 0.070761 (p = 0.965238). 
The residuals of MGDPSA appear stationary (Figure 7.25). The variance of !1CD appears to 
decrease over time. 

Figure 7.25 Residuals of VECM of CD and LOGEGDPSA 
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The ACF of the residuals of !1CD and MGDPSA do not show significant lags and the Q 
statistics are not significant either (16 lags included). The assumptions for normality of the 
residuals seem to hold. 

The correlation between the residuals of MGDPSA and !iCD is -0.015171. 
The residuals of !1CD and !1EGDPSA are correlated after 4, 6 and possibly 14 periods. An 
inclusion of more lags in the VECM might have been appropriate. 

Innovation Accounting 

The IRFs are not sensitive to the order in which the time series are entered (Figure 7.26). 
After 10 periods CD appears to be sensitive to innovations of LOGEGDPSA. This is more so 
than to innovations to itself. LOGEGDPSA does not appear to be sensitive to innovations to 
CD. 
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Figure 7.26 Impulse Response Function of VECM of LOGEGDPSA and CD 
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The Variance Decomposition of CD after 10 periods is heavily influenced by LOGEGDPSA 
(Figure 7.27). Here too, the order in which the time series were entered was not important. 

Figure 7.27 Variance Decomposition of VECM of LOGEGDPSA and CD 
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Comments on VECM of CD and LOGEGDPSA 

The analyses have shown that the CD reacts strongly to the LOGEGDP. This is explained by 
RBNZ policies of increasing the OCR if it considers that the output gap will become too 
large. This is in line with the results of the Granger Causality tests. 
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It was shown that as LOGEGDPSA increased, CD decreased. This makes a meaningful 
cointegration relationship less anticipated. The procedures developed in this thesis were 
nevertheless followed, if anything to detect whether anomalous result might eventuate. 

One could also hypothesise that the output gap becomes larger as the interest rates become 
lower. There was no evidence supporting this hypothesis. This observation may be explained 
by the effect of the OCR overriding the sensitivity of business to interest rates. However, one 
may still wonder about the use of the interest rates (through the OCR) for reducing demand 
and thereby inflation. 

This issue raises the possibility of carrying a full analysis of every option to determine which 
one is acceptable. The problem becomes that if one attempts sufficient models, at some stage 
one will comply but this may be a spurious result. The information criterion may be used for 
choosing the best model, but the models tested with this criterion should be acceptable in the 
first place. 
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Cointegration analysis of LOGEGDPSA and SMD 

The rationale for evaluating the Sixth Monthly Deposit Rate (SMD) is very similar to 
evaluating the CD. The difference is the longer period of time the money will not be available 
to the depositor. Of particular importance in this analysis is to what degree the effects of CD 
and SMD differ and whether the same problems will occur. 

Figure 7.28 shows considerable similarities with Figure 7.24. The differenced time series 
seem stationary. There is one deep trough in the differenced series of SMD (DSMD). 

Figure 7.28 Time series and differenced time series of LOGEGDPSA and SMD 
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Both information criteria again select Model 4 (Table 7.12). The SC also selected the same 
number of lags as was chosen in the case of CD. 

VECM of LOGEGDPSA and SMD 

The VECM suggested in Table 7.12 is shown in (7.22) 

= [SMD, 1 -78.5227EGDP, 1 +0.7167t +775.3579]+ 
[ 

t::SMD, l [- 0.4832] 
MGDP, 0.0014 - -

[
0.5531 - 27.2074] [ t::SMD,_1 l + [- 0.1606 -16.1921] [ t::SMD,_2 l + 
0.0006 -0.4100 MGD~_1 - 0.0047 0.0695 MGD~_2 

+ ' (7.22) 
[
0.3155] [ G SMD I l 
0.0114 G EGDP ,t 

where EGDP is LOGEGDPSA and the significant coefficients are in bold typeface. 
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Table 7. 12 Cointegration analysis of LOGEGDPSA and SMD 
Five assumption options regarding trend in data and CE 

1 2 3 4 5 
Data trend None None Linear Linear Quadratic 
CE No intercept 

No trend 
Intercept 
No trend 

Intercept 
No trend 

Intercept 
Trend 

Intercept 
Trend 

Lag 1 2 
39 obser-vations 

Lag 1 to 2 1 
38 obser-vations -3.9595 

-3.4424 
Lag 1 to 3 1 
37 obser-vations -4.0921 

-3.3955 
Lag 1 to 4 1 
36 obser-vations -4.1905 

-3.3108 
Lag 1 to 5 1 
35 obser-vations -4.1807 

-3.1142 
Lag 1 to 6 1 
34 obser-vations -4.3443 

-3.0873 
Lag 1 to 7 1 
33 obser-vations -4.1810 

-2.7298 
Lag 1 to 8 2 
32 obser-vations 

Note: Period covered 1994:1 - 2004:1. 

2 

1 
-3.9888 
-3.4286 
1 
-4.0803 
-3.3401 
1 
-4.1466 
-3.2228 
0 

1 
-4.3830 
-3.0811 
1 
-4.4947 
-2.9982 
1 
-4.2319 
-2.5371 

1 
-4.0869 
-3.6604 
0 

0 

0 

0 

0 

1 
-4.5512 
-3.0094 
1 
-4.3542 
-2.6136 

1 
-4.3760 
-3.9068 
1 
-4.5663 
-3.9199 
1 
-4.7004 
-3.8732 
0 

0 

0 

1 
-4.5119 
-2.9247 
0 

2 

2 

1 
-4.6483 
-3.7775 
1 
-4.5141 
-3.4584 
1 
-4.4843 
-3.2401 
0 

2 

2 

The two equations (7.21 and 7.22} that assess the relationship between the GDP and interest 
rates are very similar. Not only do they consist of the same model, the size of the coefficients 
is very similar as well. MMD reacts to departures from the long-run equilibrium between 
SMD and LOGEGDPSA. 

Analysis of the residuals of the VECM of LOGE GDP SA and SMD 

Various tests were performed on the residuals to verify that the assumptions for the linear 
model were met. If not the model may give misleading information about the system being 
modelled. 

The Jarque-Bera value of the residuals of MGDPSA is 0.381673 (p = 0.826268). 
The Jarque-Bera value of the residuals of MMD is 1.181938 (p = 0.553790). 
The residuals of the VECM appear stationary (Figure 7 .29) 
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Figure 7.29 Residuals of VECM of LOGEGDPSA and SMD 
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The ACF of the residuals of MGDPSA does not show significant lags and the Q statistics are 
not significant either (16 lags included). The ACF of the residuals of MMD seems to show a 
significant value at lag 2. However, there are no significant Q statistics (16 lags included). 

The correlation between the residuals of MGDPSA and !::SMD is 0.129065. In contrast with 
the residuals of VECM (7.21) the residuals of VECM (7.22) are not cross-correlated . 

Innovation Accounting 

The ordering of the variables does not influence the IRF or VD greatly . Figure 7.30 shows a 
pattern that is very similar to Figure 7 .26. Figure 7 .31 shows a pattern that is very similar to 
Figure 7.27. 

Figure 7.30 shows that one SD innovation of MOGEGDPSA has a severe impact on SMD 
but the opposite is not the case. Similarly, after 10 periods much of the variance of SMD is 
derived from LOGEGDPSA. 
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Figure 7.30 Impulse Response Function of VECM of LOGEGDPSA and SMD 
Response of LOGEGDPSA to One S.D. Innovations 
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Figure 7.31 Variance Decomposition of VECM of LOGEGDPSA and SMD 
V..-iaice DecOOl)OSitioo of LOGEGDPSA 
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Comments on VECM of LOGEGDPSA and SMD 

The VECM ofLOGEGDPSA and CD shows many similarities to the VECM of 
LOGEGDPSA and CD. It can be hypothesised that they are largely subject to the same 
influences. An increase of the GDP will lead to an increase of the interest rates, which will 
dampen demand. The opposite could not be proven, that interest rates are influencing the 
GDP. 
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Comment on the analyses of Gross Domestic Product time series 

The GDP plays an important role in monetary policy. If the GDP increases too fast, the risk of 
an undesirably high level of inflation is considered to be likely to occur in the near future. 
Dampening demand by raising interest rates through the OCR is used as the main tool to 
reduce the GDP increase. It should be noted that the OCR has only been in place in the last 
part of the time series. 

The GDP time series showed seasonal patterns which were adjusted. Both series (the 
expenditure-based GDP and the production-based GDP) measure essentially the same but 
because measured in a different manner, different conclusions from both a statistical and an 
economic perspective cannot be ruled out. For both series a OF Model 1 was chosen but there 
were differences in the lagged terms. The DF models were not satisfactory. This was because 
in both instances a Model 1 was chosen but for LOGEGDPSA the r ar did not appear to be 

significant and for LOGPGDPSA both deterministic components were not significant. 

The Granger Causality tests showed similarity in patterns between the GDP series and 
inflation. This also applied to the GDP series and the interest rates. There was support for the 
hypothesis that GDP ' drives' inflation. There was also evidence that GDP 'drives' the interest 
rates, ie it reflects RBNZ's policy. No support was found for the opposite that interest rates in 
turn affect GDP. 

Both Granger Causality and Cointegration Analysis showed relationship between the two 
GDP measurements. This may reflect the nature of the measurements rather than being based 
on an economic principle. 

The VECM and GC were not in accordance with regard to GDP and CPI. The VECM showed 
that the CPI was the time series that reacted to the other ones in the CE. However it should be 
noted that there were also significant lagged differenced values. 

Cointegration analysis seems a suitable technique to distinguish between the effect of the 
output gap and the quantity of money in the circulation on inflation. The cointegrating 
equations did not show an effect of LOGEGDPSA (see 7.17). The clearest effect to restore the 
long-term equilibrium was by LOGCPI and it applied to the combination of LOGCPI and 
MISA. Also M1SA showed an effect in the CE but this was difficult to explain. 

The VECMs that evaluated the interest rates and the EGDPSA showed that a departure from 
the long term equilibrium resulted in an adjustment by the interest rates. The opposite could 
not be established. The figures did not give an indication of cointegration. It is also of interest 
to not that both 6.CD and MMD had significant negative coefficients for their first and 
second lag with MOGEGDPSA. This together with the large number of (significant) 
coefficients in the models is of concern. It gives the impression that the method is quite 
flexible for fitting a model. However, this model may not be meaningful from an economic 
perspective. 
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The cointegration analyses always showed large numbers of admissible VECMs. They would 
also vary widely with regard to the lags that were included and the option (ie deterministic 
components) that were included in the models. This is of concern since it creates too m any 
opportunities to select a model regardless of the economic theory that is used. One may 
perhaps see this from a different, statistically more correct perspective. The models are not so 
much accepted; rather they have not been rejected yet. The main reason for this would be the 
short data series. However, it this is the case, how long should a series be before conclusions 
can be drawn? 
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CHAPTERS 

THEORETICAL CONSIDERATIONS OF INFLATION IN AN ECONOMY WHERE 
VARIOUS CURRENCIES ARE USED CONCURRENTLY 

Introduction 

The above analyses have considered a number of factors that are commonly associated with 
inflation. An important issue when analysing factors that affect inflation are the economic 
policies that are in place. The impact of for instance the monetary aggregates on inflation may 
change considerably if the economic policies change. 

An important factor that may greatly affect inflation is the use of currency substitution . There 
has been a debate for many years now about a common currency between Australia and New 
Zealand, the ANZAC dollar. If this does not occur, currency substitution which is a process 
that appears permitted under New Zealand legislation may become more widespread . 

This chapter will discuss some issues raised by currency substitution in a qualitative sense. 
The contents of this chapter were presented at the Conference of the New Zealand 
Association of Economists (Inc) in 2003 in Auckland 
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A conceptual discussion of the concurrent use of multiple currencies 
in a small open economy 

Peter B van der Logt1
, Professor Lawrence C Rose2 and Dr Geoff Jones3 

Abstract 

Generally goods and services are purchased with a currency that is specific to a country. In 
recent times dollarisation (ie adopting a foreign currency) and currency unions have been 
discussed as alternatives to the New Zealand dollar being the legal tender in New Zealand. 

Foreign currencies are sometimes accepted by sellers in countries with unstable currencies or 
in tourist resorts. This paper discusses some ramifications of extending this concept to the 
whole of a small open economy that does not suffer from any major monetary problems. 
Buyers and sellers would on a voluntary basis agree what currency (including the NZD) to 
use for their exchange of goods and services. 

In contrast with dollarisation and currency unions, the concurrent use of multiple currencies 
would constitute a monetary event that does not require a political decision. However, this 
does not mean this system is without consequences. There are likely to be benefits as well as 
drawbacks, and in some cases the effect is not overly clear. 

A number of these issues will be discussed in this paper on a conceptual basis. They include 
the spread between buying and selling a currency, insurance against sudden depreciation, 
facilitating immigration, purchasing expensive assets, hedging, currency risk premium, 
seignorage, the Official Cash Rate, and the size of the monetary aggregates. 

The impact of some of the issues mentioned above might depend on the extent to which 
various currencies are used at the same time. Quantitative research is currently being carried 
out to improve the understanding of the impact. 

JEL classification: E52, F31 

1 (Presenter) Postgraduate student at Massey University, Toko Ngawa Drive, RD2, Motueka, Phone and fax (03) 527 8385, e-mail: 
Manuka.glade@paradise.net.nz 
2 Professor of Finance, Department of Commerce, Massey University, Albany Campus 
3 Senior lecturer in Statistics, Institute of Information Sciences and Technology, College of Sciences, Massey University, Palmerston North 
Campus 
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A conceptual discussion of the concurrent use of multiple currencies in a small open 
economy 

1 Introduction 

Normally people will pay with their domestic currency in their own country and with a 
foreign currency when they are abroad. This situation is taken for granted. People generally 
convert foreign currency into the domestic currency before making domestic purchases. 
(Collins et al., 1999). However, Collins et al. also mention that at times tourist shops may 
accept foreign currency as an exception to this rule. There have been periods in the past where 
foreign money was used for domestic purposes. Pamuk (1997) described how debased 
European currencies circulated in the seventeenth-century Ottoman empire. Kirschen (1974) 
stated that the actual precious metal content, rather than their face value mattered when 
currencies were used abroad. There have also been episodes in the New Zealand history 
where foreign money was used domestically. For instance in 1931 Australian coins were 
commonly used which were not legal tender in New Zealand (Matthews, 2003). A number of 
other events are notable since they show that this situation is not unchangeable. Several 
countries of the European Union have recently adopted one currency (the Euro) for everyday 
use. Another example is the acceptance of foreign currencies in countries when their currency 
is under pressure. Banks may offer their customers the option of keeping accounts in foreign 
currencies. However, foreign currencies are not legal tender in New Zealand and 
consequently their widespread use would generally not be expected in New Zealand 

This article will discuss a number of aspects of the concept of using foreign currencies from a 
qualitative perspective. Currently the authors are carrying out research to quantify economic 
and financial aspects of this approach. Some of the issues raised may be irrelevant from a 
current New Zealand perspective. However, over time circumstances may change and 
presently unrealistic issues may become realistic. Therefore this paper is more concerned with 
potential scenarios than what is actually possible at this point in time. 

In recent times there have been many publications in New Zealand on altering the currency 
currently in use as legal tender (Hargreaves and McDermott, 1999; Grimes et al., 2000, Brash 
2000). A common theme in the discussion is either currency union where New Zealand will 
still have an input into monetary policy or dollarisation where the dollar from another country 
will be adopted. 

Various requirements for entering a currency union have been listed. They include: relative 
size in world trade, independence of external factors or restrictions, no exchange controls, 
very liquid primary and secondary markets for currency, stable foreign trade and economic 
circumstances in each of the countries in the union. Especially the first factor warrants 
attention. New Zealand 's relative size in the world trade is very small, and approximately one 
fifth of its exports are destined for Australia. Regardless of the argument whether this 
percentage is considerable or not, it would still leave most of New Zealand 's exports not 
covered by a currency union with Australia. However, it should be considered that, even if a 
currency union with Australia eventuated, the concurrent use of multiple currencies in the 
New Zealand economy would still remain an option. 
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A number of benefits have been listed for a currency union. A concise summary of Mundell 's 
work on currency unions can be found in Grimes et al. (2000). The positive effects include 
the tying of domestic inflation to the partner and convergence of interest rates, an anchor for 
monetary policy, reducing printing and transactions costs, protection against some domestic 
lobby groups and speculators, furthering economic integration and a multinational cushion 
against some shocks. The loss of ability to maintain an independent interest rate, seignorage, 
exchange rate adjustments to shocks and national sovereignty are described as negative 
effects. In this publication the authors expand on the relevance of these various issues to New 
Zealand. 

The shock absorber function of exchange rates is an important issue (for more details see 
section 4.7 below). The optimum-currency-area is much related to this concept. To some 
degree it requires some form of homogeneity within a region but differences between regions. 
Some of Mundell's work on this issue is discussed in Levi (1990). If multiple currencies were 
used concurrently, some of the benefits of an optimum-currency-area might be reduced. 

Australia is the most obvious contender for a currency union. Either the USD or the 
Australian dollar could be considered for dollarisation4. The loss of national sovereignty is 
described above as a negative issue. There is an emotional aspect to this argument. However, 
at times the loss of sovereignty is specifically applied to the loss of control over monetary 
policy. This argument is quite relevant from a macroeconomic perspective. 

The adoption of the Australian dollar, or any other currency for that matter, as legal tender, 
can be seen as an economic reform imposed from the top. This article will explore an 
alternative option of monetary change that can be considered as instigated by the users of the 
currency rather than by government or the monetary authority, ie a monetary reform from the 
bottom. Households and firms could start using foreign currencies for the purchase and sale of 
goods and services. The only requirement would be that both parties to a transaction agreed 
on the currency to be used. The government would not need to be excluded from this process. 
Taxes and transfer payments could also be paid in foreign currencies. Therefore, apart from 
the NZ dollar there would be the option to use the Australian dollar or US dollar, the Euro or 
whatever other currency on a voluntary basis in the New Zealand economy. 

The context of this paper is that of New Zealand being a small open economy. Its nominal 
GDP for the quarter ending September 2002 was 30,276 million NZ dollars. There are no 
restrictions on the flows of currencies in and out of the country, apart from reporting 
requirements if certain amounts are exceeded. The use of other currencies in New Zealand is 
not likely to affect the value of other currencies because of the New Zealand economy 's small 
size in comparison with its main trading partners. Although New Zealand is used throughout 
this paper as the country where multiple currencies could be used, in some cases the points 
made might be more applicable to other countries. 

This paper will first outline reasons for using multiple currencies concurrently. This is 
followed by reasons against doing so. The next section discusses various ways in which 
monetary matters might be influenced. Finally there is a section on measurement of the 
inflation rate in a geographic area rather than the measurement of the inflation rate of a 
currency. 

4 An alternative to dollarisation is a currency board where a country issues its own currency that is fully backed by financial assets 
denominated in another currency. This structure seems to be less popular now than in the past. 
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2 Reasons for using foreign currencies 

The concurrent use of foreign currencies would be a considerable change for many people. 
Change would not occur unless some were to benefit. Firms and households may want to use 
a foreign currency for various reasons and some of these will be discussed below. 
The most obvious benefit would be a reduction of the transaction costs. However protection 
against inflation and/or depreciation might also be important at times. This leads to the wider 
concept of insurance against adverse movements of the currency by holding wealth in various 
currencies. Investment might be promoted by seemingly unrelated matters. There is a risk 
premium attached to the loans in NZO. Also the NZO might appreciate if there is a sudden 
big demand. At a more basic level, accounting reports of profits and losses may be heavily 
influenced by exchange rate fluctuations. Their short-term volatility may deter organisations 
with short-term reporting cycles. 

2.1 Transaction costs 

If a good is imported into New Zealand, the NZ dollar has to be converted into a foreign 
currency first. There is a cost to the conversion associated with the buying and selling rates. 
This cost may not be immediately obvious if one buys from the importer or at a retail level. 
The cost of conversion has become an invisible part of the purchase price. The removal of the 
transaction costs will either reduce the cost of the imported good to the user of the good, or it 
will increase the profit margin of the importer. If it has the effect of reducing the costs of final 
goods, domestic industries will face increased price pressures. If it reduces the cost of an 
intermediate good that is used for producing an export product, the domestic industry may be 
able to produce this good cheaper. 

The sale of New Zealand goods in export markets can occur according to various scenarios. A 
foreign importer may buy NZ dollars, increasing the price in the foreign market of this good 
produced in New Zealand. An alternative scenario is the foreign importer buying the New 
Zealand good with a foreign currency, thereby shifting the cost of conversion to the NZ 
exporter. Whoever converts the money, there will be an additional cost to the NZ product 
(even before transport costs and insurance costs) which will make it less competitive in export 
markets. The degree to which the conversion matters will depend on the size of the spread. 
The spread differs for the various currencies and consequently the benefits will differ. Also 
the spread will differ for various markets ( eg retail and wholesale issues). 

The following scenario could be envisaged where conversion is not required. An exporter 
who acquired USO may use these to buy goods from a New Zealand importer and will pay 
with USO, which the importer will use to import US goods. A number of additional links 
between the importer and exporter could be considered increasing the number of people who 
could potentially be included in the pool of people using foreign currencies. For instance a 
dairy company sells milk overseas, pays the New Zealand farmers in USD, and the New 
Zealand farmers will use this money to buy US farm equipment with the USO they received 
for the milk. 

Under these scenarios, the foreign currencies would not be legal tender in New Zealand. A 
major benefit for using a legal tender is that it reduces the cost of the process required to reach 
agreement on the price of a good. This argument has been used extensively to show that 
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barter where one good is exchanged for another can be costly because of the effort that is 
required to find buyers and sellers with complimentary needs. This argument would only 
moderately apply to multiple currencies. Both parties should be able to establish fairly quickly 
whether they are willing to trade with the help of a foreign currency. Furthermore the 
currency, per se, would not necessarily affect the price of the good much, if anything. 

2.2 Insurance against sudden depreciation 

The New Zealand economy is to a large degree dependent on primary industries such as 
agriculture and forestry. Catastrophes such as the introduction of serious exotic animal 
diseases would not only affect the profitability of the farming community. In addition they 
might also result in an immediate depreciation of the NZD. A research paper by the Reserve 
Bank of New Zealand and the Treasury (Anonymous, 2003) considered that it was difficult to 
estimate the magnitude of the exchange rate shock. Nevertheless the paper surmised on an 
initial drop of the NZD of approximately 20 percent in the first quarter. There are other 
aspects of New Zealand that make its currency vulnerable to sudden depreciation. They 
include its exposure to geography-associated disasters such as earthquakes (eg Wellington on 
a fault line) and climate-associated ones such as droughts affecting farming. Consequently it 
is in the interest of New Zealand residents to hold some of their wealth in foreign currencies 
that would not be affected by local disasters. 

Furthermore, a sudden depreciation would result in an under-valuation of assets denominated 
in NZD. This would be the ideal situation for overseas interests to buy these assets at 
depressed prices, before any price corrections had occurred. In other words, other parts of the 
economy are protected against being sold below 'fair market value'. 

It should be noted that there are other ways to protect one 's wealth (eg hedging). Like any 
insurance scheme there is a cost to this and the deliberation above is yet another way of 
dealing with the risk of holding wealth in a particular currency. 

2.3 Immigrants and returning citizens 

Large numbers of foreign immigrants have recently arrived in New Zealand. The conversion 
of their money into NZ dollars can be costly as described above. In addition if people have 
not decided yet whether or not to stay permanently the decision to convert becomes even 
more difficult. There is always a concern that the NZ dollar might depreciate suddenly and 
any higher interest rates would be required for some time to compensate the losses. It is not 
unusual for lobby groups from export industries to advocate the depreciation of the NZ dollar 
adding to the immigrants' apprehension. In addition, some immigrants may be reluctant to 
convert the currency they have used for their entire life and to which they are accustomed. 

The ability for immigrants to bring their wealth into the country and use it without having to 
convert it will encourage some to do so. Some immigrants are currently required to transfer 
certain minimum amount of investment funds into the country. The result might be that 
especially these immigrants may bring more wealth into the country than is strictly required 
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as a condition for entry. A reluctance to convert foreign currency that has been acquired 
overseas may also apply to returning NZ citizens. 

The influx of money that is used without conversion may have monetary consequences that 
are discussed elsewhere. 

2.4 Purchase and sale of expensive assets 

If a foreign company wishes to buy an asset it will need to acquire NZ dollars. If the asset is 
very costly and the quantity of NZ dollars available for purchase is relatively small, then the 
price of NZ dollars will be pushed up depending on the elasticity of supply of the NZ dollar. 
This could potentially increase the price of the asset in question to such a level that it is no 
longer profitable to purchase. The ability to pay for this asset with a foreign currency would 
overcome this issue. It should be noted that the appreciation would not only affect the 
purchaser of the expensive item but also other buyers who need NZ dollars. 

Similarly, the sale of a large asset by a foreign company that subsequent to this sale wants to 
repatriate the proceeds may bring a glut of NZ dollars onto the foreign exchange market, 
reducing the value of the NZ dollar and the company 's profits. 

2.5 Hedging and speculation 

Exporters and importers may currently have procedures in place to deal with foreign exchange 
movements. They may make use of facilities to hedge. Without hedging exporters and 
importers may make losses or profits as a result of currency movements. These losses or 
profits could be seen as part of a foreign exchange business rather than part of the core 
business of importing or exporting. 

The benefits and costs of forward contracts should be evaluated with regard to unexpected 
exchange rate changes as expected changes would already be embedded in differentials 
(Brookes et al., 2000). They mention that forward contracts are virtually cost-less when 
wholesale amounts are concerned. There are no bank fees and the bid-ask spreads are not 
materially different from spot transactions. However, they also explain how a cover for an 
exporter might be excessive if there is a downturn in sales. The exporter would have to 
purchase foreign currency in the spot market where it would now be more costly and the sale 
at the lower forward price that was previously established would constitute a loss. Their 
observations illustrate that forward contracts can become a position of exposure rather than a 
hedge. They explain the issue was the result of hedging of anticipated rather than certain cash 
flows. 

Options can be used in which case the bank carries the risk of adverse currency movements 
and consequently they charge a premium for such a contract. The longer the time period, the 
more expensive the option. They mention that the up-front cost is a significant proportion of 
the profit margin. However, since the option will be exercised at various times, the premium 
should not be considered a cost that is lost5• In a competitive market one would expect these 

5 This is an accounting issue to the extent that the cost is often recognised initially but the benefits must wait until the exercise time. 
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premiums to come down. There are finally two costs associated with this: the unexpected 
exchange rate movements and the insurance premium. 

Doing business by accepting foreign currency and using it for payments would to some 
degree be another form of hedging. However, some risk would remain. The foreign currency 
may depreciate (suddenly) against the NZ dollar and against other currencies. The impact on a 
firm of this depreciation would depend on the degree to which it would be able to continue 
carrying out business with this foreign currency without having to convert it into NZD or 
paying to pay a premium to compensate the suppliers. Brookes et al. (2000) mention firms 
making arrangements where the risks are passed on to customers and/or suppliers. The other 
side of this issue would be to what degree suppliers would benefit if the currency appreciated. 

2.6 Currency risk premium 

New Zealand interest rates have generally been higher than those in the United States. Ha and 
Reddell (1998) mentioned that "A(n) ... explanation is that there is a currency-related risk 
premium embedded into NZ interest rates - something that makes investors relatively less 
willing to invest in NZ dollar assets than US dollar assets for any given level of interest 
rates." This observation leads to the conclusion that being able to directly use USD rather than 
NZD would be to the benefit of companies seeking to borrow money. 

Hawkesby et al. (2000) investigated the existence of a currency risk premium with regard to 
the Australian dollar and the US dollar. His analysis suggested that the New Zealand currency 
risk premium compared with Australia is smaller than the currency risk premium found 
against interest rates in the United States. 

The use of other currencies would therefore be advantageous for borrowers. In contrast, 
lenders would be disadvantaged. Especially in a case like this one, it would be interesting to 
try to establish in a quantitative sense what equilibrium levels would eventuate between 
currency holdings in various denominations. 

2. 7 Reporting of profits and losses 

Private companies and investment funds may work on short-term reporting cycles. Currency 
fluctuations are reflected in their profits or losses. It may be beneficial for such enterprises to 
encourage their New Zealand based clients to trade in the domestic currency of these foreign 
companies and funds so that the short-term volatility of the exchange rate has a reduced 
impact on the reporting to their overseas owners. 

2.8 Protection of capital against erosion due to inflation 

The Covered Interest Parity theory states that higher inflation and concomitant depreciation of 
one currency versus another currency is compensated by higher interest rates. Part of the 
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interest that is received serves to compensate for the erosion of the capital value due to 
inflation. Interest payments in New Zealand are subject to taxation. It is therefore to the 
benefit of investors not to invest in a currency that is characterised by a relatively high 
inflation rate and prone to depreciation, since the compensation for inflation will be 'taxed' . 

If anything, this aspect shows the potential for competition between various (groups of) 
countries issuing a currency. To some degree their ability to maintain price stability would 
increase the popularity of their currency. This would be tempered by such factors as the 
interest rates they set (OCR or equivalent) and the 'economic fundamentals' that are in place 
in these countries. 

Fisher (1982) describes the inability of a government to control inflation as an important 
reason for dollarisation (ie increasing the use of any foreign currency). The NZD has not 
suffered from high inflation in recent times and consequently there is no need for the NZ 
government to dollarise for this reason. However, at times it may still be to the benefit of 
individuals to use another currency instead of the NZD as a store for their wealth. 

3 Reasons for not using foreign currencies and some practical issues 

The use of foreign currencies may mean that the volatility of the exchange rate is passed on 
more directly to others who so far were partially shielded from exchange rate volatility. When 
somebody receives a foreign currency instead of the NZ dollars that he would normally 
receive , several options are available. The foreign currency can be converted into NZ dollars 
immediate! y. Due to the transaction costs there will be a loss that could be prevented by 
adding a mark-up when the foreign currency is offered instead of the NZD. Another option is 
to invest the money in a foreign currency bank account or some other financial instrument. 
The new owner would need to decide what the benefit is of holding the various currencies. 
Finally the foreign currency could be used for purchasing goods and services with the foreign 
currency that was just received. In any case, the new owner must develop a strategy for 
managing foreign currencies, which is presently not required. 

The use of bank accounts for various currencies may lead to more fees to be paid. The ability 
to provide more services may be seen as a positive element by the banking sector. The 
assessment of one 's wealth may also become more complicated if it is expressed in various 
currencies that appreciate and depreciate against each other on an ongoing basis. 

There are some practical issues regarding the use of physical money (ie notes and coins) that 
need to be considered. Over the years credit cards and EFTPOS have become more popular. 
Issues such as giving change in shops no longer apply if these cards are used. Smart cards (eg 
for transport and parking) are becoming increasingly popular, further decreasing the need for 
notes and coins. 

Goods will need to be priced in at least one currency. Preferences may be based on: 
• Domestic currency. 
• Currency that was used to purchase the goods. 
• Strongest currency, ie least likely to depreciate. 
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The use of credit cards may facilitate the use of multiple currencies. Assume goods in shops 
are priced in USD. Payment occurs by credit card. Credit card companies will need to 
purchase USD with NZD. There will be a large demand for USD (probably negligible from a 
USD perspective) and a large supply of NZD. This has the potential to lead to a considerable 
depreciation. Depreciation (in the long term) would usually be associated with inflation, 
which is compensated by higher interest rates. This would not necessarily occur in this case 
because the depreciation is not inflation driven. 

In general, where one party benefits from changes as described in section 2, another party will 
be negatively affected. Consequently some issues that have been described as being positive 
will be considered to have a negative effect by others. 

4 Impact on monetary matters 

Monetary policy, virtually by definition, could be affected if other currencies are used on a 
wider scale in the domestic economy without conversion. A number of aspects of monetary 
policy will be briefly discussed below. Again, some of the aspects may be negligible from a 
practical perspective but this may depend on the circumstances. At times the monetary aspects 
as discussed below in the various sections will overlap but the angle of approach will differ. 

4.1 Seignorage 

Various definitions are in existence for seignorage (Kirschen, 1974). The basic concept was 
the par value of a currency minus the bullion and minting costs. A not uncommon view of 
seignorage is that it constitutes the interest earned on the real assets received in return for the 
money issued. Schmitt-Grobe and Uribe (1999) emphasise that inflation and domestic real 
growth also need to be considered when evaluating the seignorage lost. 

Whatever the most appropriate formula, as more foreign money is used, seignorage losses 
would be incurred by the New Zealand government. If dollarisation was introduced through 
the adoption of the Australian, the US dollar, or whatever other currency by the New Zealand 
government, the cost of lost revenue could be estimated. Attempts could be made to receive 
compensation. If the concurrent use of multiple currencies eventuated on a large scale this 
issue would be more complicated. There would not be a formal agreement between the 
various governments and in addition the mix of foreign currencies might change over time. 

The loss of seignorage to another country is a negative effect and it was already identified 
many several centuries ago. Bordo (1986) refers to a publication by Miskimin about a French 
king who tried periodically and unsuccessfully to prohibit the circulation of foreign coins. 
This was because it displaced the domestic currency. Although this attempt applied to 
(debased) commodity money, the same principles would apply to fiat money. If the 
population believes that its domestic currency is being debased (subject to 'excessive' 
inflation) it may try to switch to another currency. The prohibition of the use of foreign 
currency may be difficult to enforce. As mentioned previously, some aspects of the 
concurrent use of currencies may be irrelevant to New Zealand and this may be one of them. 
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4.2 Inflation targeting 

The Reserve Bank of New Zealand (RBNZ) is required to maintain a stable general level of 
prices. It uses the Official Cash Rate (OCR) for this purpose. Currently it is possible to have 
New Zealand bank accounts holding foreign currencies. One would expect that interest rates 
on such accounts would mainly be guided by the interest rates prevailing in the country that 
issues the currency if interest parity holds. If not, arbitrage gains could be made. 
Consequently, the more money is kept in foreign currency accounts rather than NZD 
accounts, the smaller the impact of OCR and the smaller the influence the RBNZ can exert on 
the short to medium term inflation rates. 

4.3 Monetary aggregates 

The money stock is commonly described in terms of Ml , M2 and M3. Credit is equally 
important when assessing the size of the money stock. If foreign money can freely flow into 
the country and be used without conversion the measurement of the money stock becomes 
more complicated, if not impossible. The inflation rate may be affected by the increase of 
money that over time becomes gradually available. 

It can be argued that banks can borrow as much money as they wish from the RBNZ, but this 
comes at a considerable cost. There are practical limits to the amount of money they will 
require from the RBNZ under the current conditions in New Zealand. However, if large 
amounts of money can enter the country over a very short period of time without conversion, 
then the monetary aggregates can change drastically . The question becomes whether large 
injections of money can have a significant impact on the effect of monetary aggregates on 
inflation from a practical perspective. 

Razzak (2001) has shown a changing relationship between money growth and inflation over 
an extended period. It is beyond the scope of this paper to analyse the reasons for this. In any 
case, the potential of an increased inflow of money to affect inflation should be considered. 

If large assets are purchased with foreign currencies, and this money stays in New Zealand, 
then the monetary aggregates will expand. There is at least a theoretical possibility that the 
monetary aggregates will expand much quicker than the output of the country causing 
increased demand for goods and services and subsequent inflation. 

4.4 Effects on the NZ dollar 

Currently when foreigners buy assets in New Zealand they will buy NZ dollars first. A 
consequence is an appreciation of the NZ dollar. Owners of NZ dollars will not be any worse 
off if they want to buy other New Zealand assets since the currency they hold has kept its 
value in terms of assets in New Zealand. However, if conversion does not occur, then there 
will be an increased money stock and more nominal money will be available to buy the same 
assets. Consequently the NZ dollar will be worth less. This raises the issue of whether NZ 

201 



dollars would need to be withdrawn from circulation to compensate for the inflow of foreign 
money. 

The use of multiple currencies may reduce the use of the NZ dollar for international trade 
purposes (goods and services). Black (1991) modelled the inverse relationship between 
volume and transaction costs of vehicle currencies. Similarly a reduction in the amount of 
money continuously available for foreign exchange purposes is likely to increase the spread 
of the NZD. A vicious circle might eventuate. 

Speculation occurs where people are willing to take a risk with a probability of making 
financial gains. In the past inappropriate pressure may have been placed on currencies in order 
to reap such gains. This could be successful in the case of fixed exchange rates. These tactics 
may have been more successful if the amount of money in circulation was small compared 
with the financial resources available to the speculators. A floating exchange rate as is 
currently in existence combined with sound economic policies are generally considered to be 
helpful in preventing crises. Nevertheless, the use of other currencies may provide protection 
in the sense that larger numbers of people use them. On the downside, the remaining smaller 
amount of the domestic currency might make it more vulnerable to speculation. 

4.5 Surplus/deficit of NZ dollars in the foreign exchange market 

The exchange rate is influenced by the balance of imports and exports if one ignores such 
factors as the financial markets and inflation for the sake of this argument. If exporters decide 
to keep the foreign currency they acquired (ie not to convert it into NZ dollars) then the 
balance between the supply by exporters and the demand by others will alter. The excess of 
NZ dollars could lead to a depreciation which is not based on trade or investment. Once the 
foreign currency has flown through the New Zealand economy and has started to be acquired 
by importers the requirements for currencies will go the other way. A process in reverse might 
occur at that stage where the demand for NZ dollars exceeds its supply. 

4.6 Financial markets and foreign debt 

The overall effect of the use of multiple currencies would be a reduced use of the NZ dollar in 
general, unless other countries started to use multiple currencies too. This may also lead to a 
reduced use of the NZ dollar in the financial markets. A less liquid market is generally more 
prone to distortions. 

The overseas debt of New Zealand residents is considerable. The dependence on foreign 
capital was discussed by Brash (2002). Increased borrowing by New Zealand residents of 
foreign currencies without subsequent conversions will have several ramifications. Foreigners 
may be less willing to be involved in any transactions involving NZ dollars because of the 
reduced liquidity. However, it may also be possible that it becomes easier for New Zealand 
residents to borrow money overseas in the foreign denominations. 
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4.7 Exchange rates as shock absorbers 

It has been suggested that the exchange rate functions as a shock absorber when compared 
with the Australian dollar (Conway and Franulovich, 2002). If exports are slumping, there 
will be an excess of NZD. This excess will lead to a depreciation of the currency, which in 
tum will lead to increased competitiveness and more exports. This aspect of currencies has 
been used as a reason against currency unions. Countries that use the same currency should 
according to this philosophy have similar business cycles. The shock absorber issue is also 
worth investigating when multiple currencies are used. 

4.8 Competitive depreciation 

If some residents are not saving sufficiently to fund others ' investment or desired 
consumption, then money needs to be borrowed from overseas. The foreign debt increases. 
This increase ultimately needs to be financed. Arguably by exporting more. This could be 
achieved by becoming more competitive. One way of becoming more competitive is by 
having a depreciating currency as described above. The words 'competitive depreciation' 
have been used for this. 

If most of the domestic trade is carried out with foreign currencies, depreciation will become 
less relevant as an option. At a theoretical level it may not be too difficult to distinguish 
between the shock absorber and the competitive depreciation function . In practice the 
difference may not always be so obvious. 

5 One country, one currency, one inflation rate 

Usually country, currency and exchange rate are seen as inextricably related variables . One 
currency's inflation rate may spill over into another currency due to export prices. However 
inflation leads to a depreciating currency (ceteris paribus) which would to some degree 
compensate for this . 

Now assume Australian goods are sold in New Zealand at the original Australian price plus 
perhaps additional transport and insurance costs. Inflation in Australia would result in more 
Australian dollars being demanded for this good in New Zealand too. The New Zealand 
inflation rate can be measured by converting the AUD prices of goods into NZD. This 
approach can become problematic if the use of the NZD is reduced to a very low proportion 
of the currency in circulation. Also if the amount of NZD being traded in the foreign 
exchange market is becoming smaller, volatility may very well increase. The exchange rates 
may no longer properly reflect the 'true' value of the currency. 

Instead of the NZD the most commonly used currency could be used as a benchmark. 
Alternatively a formula can be developed that takes into account the proportions of goods in 
the various categories, the increase in nominal price levels and the various exchange rates to 
make an estimate of increases of price levels. Therefore the inflation rate would apply to a 
geographic area, rather than to a currency. 
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6 Discussion 

If multiple currencies were used then the most commonly used ones are likely be the 
currencies that are used by New Zealand's main trading partners. A certain period of time 
would be require_d before sufficient foreign currency had flown into the country to have an 
effect in any of the areas listed. Such changes would not necessarily be of a permanent nature. 
For instance, if there were a reduction in the trade with the US and an increase in trade with 
China, then more of the Chinese currency and less of the USD might circulate in New 
Zealand. 

The scenarios discussed above differ from events driven by and following a currency union. 
The changes would be driven from the bottom rather than the top. New Zealand legislation 
states that legal tender notes and coins can be issued solely by the Reserve Bank of New 
Zealand. The use of foreign currencies by trading partners based on mutual agreement does 
not appear to be in violation of this legal requirement. Matthews (2003) mentions that "Legal 
tender is a legally defined means of settling a debt. A creditor is not obliged to accept legal 
tender, but cannot further pursue the debt if the offer of legal tender is refused." 

This paper is of a qualitative nature. The various issues that have been raised are only 
considered from a qualitative, hypothetical, viewpoint. A number of reasons were given to 
explain why the use of multiple currencies might benefit some people. Similarly a number of 
possible ramifications of the use of foreign currencies were discussed. The authors do not 
express an opinion whether, on balance, the country will benefit or not. As is the case with 
many economic issues, there are matters of equity and of degree. Quantification of the 
benefits and the impact on monetary matters are outside the scope of this paper but it will be 
required at some stage to develop opinions about actual effects. It is clear that the concurrent 
use of multiple currencies is a complicated matter from a quantitative perspective. If 
quantified some issues mentioned in the previous sections may appear to be insignificant. The 
authors are currently carrying out quantitative research to improve their understanding of the 
impact. This research entails the analysis of time series to acquire a better understanding how 
the various variables interact. The problem of extrapolating the results of such analyses to a 
situation that may be quite new is well appreciated. The next stage would be the amendment 
of an existing model or the development of a new model to make preliminary estimates. 
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CHAPTER9 

GENERAL DISCUSSION 

The initial chapters of this thesis discussed theoretical statistical and economic aspects of time 
series analysis and of inflation. The subsequent analyses applied this theory to time series of 
inflation in New Zealand combined with monetary aggregates, interest rates and gross 
domestic product. The analyses were initially applied at a univariate level and next 
multivariate equations were evaluated. 

The key research questions for this thesis were stated in the introductory chapter. They 
applied to economics and statistics. Although the four key questions addressed different 
issues, some of the answers below will apply to more than one question at the same time. 

Before answering the key questions, the principles of hypothesis testing should be considered 
first to be able to put the results of the analyses in perspective. A (null) hypothesis is 
formulated and the analysis will reject his hypothesis or not. Two errors can be made. A Type 
I error is made if the null hypothesis is rejected incorrectly. A Type II error has occurred if the 
null hypothesis has been accepted when in fact it was incorrect. The probability of 
committing a type I error is called the level of significance and 0.05 has usually been used in 
this thesis, but not for unit root testing. Many tests at the 5% significance level have been 
performed in this thesis. This is likely to lead to some Type I errors. The magnitude of the 
Type II errors was not known. Consequently, when results of a model become available in 
this thesis, they should be interpreted as rejecting the null hypothesis or not (yet). A Type II 
error could have been committed. Also as the sample size increases, the null hypothesis might 
still be rejected. 

This thesis has set out to develop an approach to analysis that was as standardised as possible 
to reduce any bias. Enders described an approach to establish DF models on pages 256 to 258. 
This appeared unsatisfactory. It could be argued that it is preferable to have all possible 
information available at the same time to evaluate which models have not been rejected. Then 
a decision can still be made which model is deemed to be the ' best' one, for instance by using 
the Schwartz Criterion or the Akaike Information Criterion. The standardised approach was 
further extended to Granger Causality Tests and cointegration analyses. However in the 
process it became clear that frequently various models were possible that were conceptually 
quite different. No doubt the shortness of the data series was a problem. As described above, 
models are not so much accepted as being true. Rather models are rejected or not rejected. 
Consequently having various models not rejected (yet) is not necessarily a sign of a flawed 
process. It does however illustrate a problem. Two different information criteria were used. 
Regrettably one got the impression that these two criteria each had their own bias. If ever, and 
this happened frequently , there were differences between the optimal models, the model 
chosen by the Schwarz Criterion was more parsimonious than the Akaike Information 
Criterion. This suggests that the choice of criterion can have an influence on the conclusions 
reached. 
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Question 1: Can equations be found that could serve as a backbone for a small model 
of the New Zealand economy for the period in question? 

This thesis was to some degree motivated by Svensson 's small economic model (2000). 
Svensson described a small model that initially seemed suitable for investigating inflation 
issues . However once research started in this thesis on analysing inflation a comment made by 
that author became worrisome. He mentioned: " ... there is no calibration and/or estimation of 
the parameters in the current version [of the model]: the only criterion applied is that they 
must not be a priori unreasonable. As a consequence, the numerical results are only 
indicative." Then he continued: "although it would be very desirable to test the model 's 
predictions empirically, the short periods of inflation targeting in the relevant countries 
probably imply that several years of data are necessary for any serious data testing." Although 
this is a reasonable starting point it does raise some matters of concern in principle. This 
approach allows an author to try a wide variety of different coefficients until a model 
eventuates that is in accordance with the thinking of the author. This process can be quite 
insidious without the author being aware of his/her own bias. Any model that does not 
conform could be called inadmissible . Consequently some system that is robust with regard to 
association between variables is required. Rather than using Svensson's model an attempt was 
made in this thesis to empirically investigate some aspect of inflat ion in New Zealand in 
recent years. 

A large number of equations were evaluated to this end of which a number were described in 
this thesis. The most important variable of any small model was going to be inflation and 
especially the variable LOGCPI was used to model inflation. Many equations that are 
described above appeared unsuitable for a model since they did not have significant 
coefficients where they were required. However some showed promise. Some equations may 
be improved in future research by using a related variable instead of the variable used ( eg 
Production-based GDP instead of Expenditure-based GDP). It is appreciated that this again 
risks introducing an analyst's bias. A few equat ions are listed below that should be considered 
for inclusion into a model. Equation (5.20) can be considered when including the monetary 
aggregates in the model. For the relationship between inflation and interest rates (6.12) can be 
considered which seems to show the reaction of RBNZ to inflation. Regrettably the 
standardised way of analysis did not identify an equation for the opposite direction. However 
Granger Causality tests suggested such equations should be possible. Equation (7.13) 
addresses the relationship between GDP and inflation. Equation (7.17) had a monetary 
aggregate added as well. For the relationship between interest rates and GDP (7.21) can be 
considered. Therefore based on existing New Zealand data some equations were identified 
that can be used for developing a small model of the economy and inflation in particular. 
Although they are not 'perfect' for this purpose yet, they can be further developed. It is 
surmised that models based on empirical analysis have benefits over models based on an 
analyst's opinion when analysing economic policy. 

An important aspect of each model is how many variables should be included. The probable 
answer is that it should be large enough to give required answers with a known accuracy. It 
could be argued that some aspects are so important that they should always be included. In the 
case of the work done, the next priority to improve the model would be the inclusion of 
equations relating to the exchange rate and inflation of the major trading partners. 
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Question 2: Can economic and monetary policy be seen reflected in the data sets. 

The most important monetary policy tool in New Zealand is the increase or decrease of the 
OCR and consequently other interest rates as inflation is deemed to move outside the targets. 
Various equations seemed to show this policy (eg (6.12)). More importantly perhaps is the 
question whether economic or monetary policies are successful. The VECMs that were 
analysed did not provide support. The VECMs that were analysed showed that the interest 
rates reacted to the inflation rate but the opposite was not demonstrated. The thesis did not 
analyse the OCR but two different interest rates instead. This was because the OCR series is 
very small, is 6 weekly, and there seems to be an immediate reaction in the market to changes 
of the OCR. Analysing the relationship between OCR and inflation rate would have been an 
option. However because of the way the OCR works, retail banks cannot ignore the OCR 
because they borrow and lend to the RBNZ based on these rates. This is not to say that the 
policies were not successful. For instance the Granger Causality tests showed that a reaction 
of the inflation rates to the OCR may be happening if larger lags are used. However, such 
models were not considered because the Schwartz Criterion seemed to be prone to choose 
VECMs with a small number of lags. This would be an area for further investigation. Also in 
this case it should be considered that association and correlation do not necessarily equate to 
causation. Chapter 3 had already shown in a qualitative manner other variables that may have 
caused low inflation. There is a need for any policy to be validated and it was regrettable that 
the cointegration analysis as an example of a validation procedure was not able to provide 
support for the current policy. In this area too further multivariate analysis seems required to 
clarify what factors have contributed most to New Zealand's low inflation rate in recent years. 

Question 3: How well do standard cointegration techniques work under practical 
conditions? 

The short length of the time series used in this thesis was of concern. The choice was a 
deliberate one. Policy changes that may affect relationships and trends of time series occur 
relatively frequently in practice. One need only consider how often the same government is 
likely to stay in power in a democracy. Government changes are usually accompanied by 
policy changes. Consequently it will often be more appropriate to evaluate short time series 
rather than long ones. New Zealand time series of approximately ten years are used to 
evaluate this issue. 

The Chow test for breakpoints was used in this thesis to evaluate the existence of breakpoints 
possibly due to policy changes. The drawback of this approach was described in Chapter 2. 
However it seemed to be the most plausible way to verify that breakpoints were not 
responsible for perceived unit roots in time series. 

The issue of the short time series can be rephrased. If these data series are too short for these 
methodologies, then should these methodologies be used in the first place? Are there other, 
better techniques available? Is it possible that the results are misleading to such an extent that 
one would make better decisions without the results of cointegration analyses? A main focus 
throughout this thesis has been to evaluate how much confidence one can have in the results 
of the application of these techniques and in particular the Dickey-Fuller tests and 
cointegration analysis. 
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The following is a list of statistical issues in which the cointegration analysis was found to be 
unsatisfactory. 

There were a number of Dickey-Fuller tests that indicated a model with unit root and 
deterministic components. However, based on the r or ~ statistics it often appeared that 

these deterministic components should not be in the model , they were not significant. This 
situation became even more problematic if the models without deterministic components did 
not have a unit root. 

The r or </J statistics did not always agree with each other. 

Granger Causality tests did not show any possible causality, but the cointegration tests did not 
reject a cointegrating relationship. 

The co integration analyses indicated the inclusion of various significant deterministic 
components, lags and cointegration equations. At times significance for the relevant variables 
did not exist. 

Despite the various statis tical problems some economic conclusions could be reached. One 
may well wonder whether it is justified to reach these conclusion if statistical aspects are such 
that they m ay be misleading. 

The number of VECMs that were not rejected according to the cointegration analyses was 
invariably large and these sometimes had quite different economic implications. A number of 
reasons are outlined above (eg small number of observations). The correct model might have 
been among them. Two information criteria were displayed in the tables. Their function is not 
to reject a hypothesis; they are for finding the best model among all acceptable models. The 
tables with the cointegration results showed that generally the SC would choose a more 
parsimonious model than the AJC would. One may wonder whether the use of the SC 
introduces a bias for model selection by always selection the most parsimonious model while 
in fact all these models might be rejected as the length of the time series increased. 

Where statistical tests are used to evaluate economic policies it is obviously important to 
validate they are appropriate for the purpose for which they are used. Although the techniques 
may be impeccable from a mathematical perspective there may be limitations to the degree 
they can be applied to in a practical context. The analyses that were performed raised a 
number of issues that are of concern in that regard. 

The tests showed a large number of issues that require further research. It may be tempting to 
reject the use of Dickey-Fuller tests and cointegration analysis on relatively small data series. 
However the large body of work performed on these techniques tends to indicate that it is 
likely that alternative, clearly superior, methods are not readily available. This can perhaps be 
phrased differently: "Is it possible at all to make meaningful statements on the series that were 
investigated by using statistical techniques?" Are there too many (unknown) factors for such 
small series? The use of Bayesian statistics could be considered. This would introduce more 
subjectivity which this thesis has tried to avoid. 

The recommended way forward at this stage to further clarify how well the methodologies 
perform is by simulating time series and then analyzing these. Among other things thus the 
extent of Type 2 errors can be established. 
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Question 4: Can an automated approach involving the examination of a large number 
of possible models produce sensible results? 

"Sensible" can be interpreted as meaning that the results of the various models should not 
contradict each other. In addition the final result of a model, ie a group of equations, should 
preferably cover the area of interest in a coherent manner. 

Over the years there have been many economic theories. The ability of an analyst to support 
his or her views by intentionally or unintentionally selecting those variables that would 
support his or her theory are of concern. An automated approach would reduce this concern to 
some extent. Therefore, one reason for an automated approach is to reduce bias or at least be 
transparent in the selection of equations for a model. A number of rules are to be established 
to build a model. An example is "p < 0.05" to reject an equation or not. Next the 'best' 
equation needs to be chosen when several equations are available. There may be an issue of 
parsimony of rules, the fewer the better, but then too: what are the best rules? This thesis 
showed that some automation would be possible. However, it is also clear that the process 
that was used in the thesis was still very time-consuming and further research in this area s 
advocated. 

It has been postulated by some that a model should be developed a priori and then this model 
should be tested with some statistical technique. The large number of significant cointegration 
equations that were consistently found tended to indicate that testing models that have been 
established a priori has its drawbacks too. It is altogether too easy to accept a model given the 
low power of the test. Even if a model were rejected it would usually not be too difficult to 
find an acceptable model by adding or deleting a lag or a deterministic component in the 
model. 

Concluding comments 

At this stage it seems appropriate to bear in mind that the questions and answers discussed in 
this thesis applied to the methodology as discussed in Chapter 2. Already there may be 
improvements but they are outside of the scope of this thesis. 

At the end of a considerable number of analyses some judgement of the methodologies used 
may be expected. The analyses showed some worrying problems when the methodology is 
applied to the New Zealand data series, but at times the results were plausible as well. 
Research by many is ongoing and improvement of the methodology is likely to occur, and 
may in fact have occurred already. The critical question when reading this thesis is: What is 
the probability that the analyses provide incorrect or even misleading results? One gets the 
impression that the jury is still out whether this methodology is appropriate for the time series 
to which they were applied. It is strongly recommended at this stage not to rely on the results 
of these methodologies only when evaluating and formulating economic policy. 
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APPENDIX 

Time series 

Quarter LOGCPI LOGCPIX LOGCPINT LOGCPIT LOGLC LOGHE 
1994:1 6.8156 6.8101 6.7380 6.8686 6.7822 2.7081 
1994:2 6.8189 6.8145 6.7490 6.8696 6.7833 2.7147 
1994:3 6.8309 6.8244 6.7667 6.8718 6.7890 2.7147 
1994:4 6.8427 6.8309 6.7748 6.8781 6.7901 2.7213 
1995:1 6.8544 6.8352 6.7846 6.8787 6.7946 2.7279 
1995:2 6.8638 6.8416 6.7902 6.8854 6.7979 2.7344 
1995:3 6.8659 6.8448 6.8040 6.8800 6.8035 2.7408 
1995:4 6.8711 6.8512 6.8118 6.8837 6.8090 2.7473 
1996:1 6.8763 6.8565 6.8273 6.8826 6.8134 2.7537 
1995:2 6.8835 6.8648 6.8378 6.8880 6.8167 2.7663 
1996:3 6.8896 6.8680 6.8443 6.8889 6.8222 2.7726 
1996:4 6.8967 6.8742 6.8547 6.8917 6.8287 2.7850 
1997:1 6.8937 6.8763 6.8635 6.8881 6.8352 2.7973 
1997:2 6.8947 6.8794 6.8708 6.8872 6.8416 2.8034 
1997:3 6.8997 6.8855 6.8820 6.8890 6.8459 2.8094 
1997:4 6.9048 6.8906 6.8906 6.8910 6.8501 2.8154 
1998:1 6.9068 6.8937 6.8946 6.8916 6.8544 2.8214 
1997:2 6.9117 6.8957 6.8978 6.8951 6.8607 2.8332 
1997:3 6.9167 6.9027 6.8998 6.9043 6.8638 2.8391 
1997:4 6.9088 6.9017 6.8965 6.9058 6.8680 2.8449 
1999:1 6.9058 6.9037 6.8984 6.9077 6.8711 2.8507 
1999:2 6.9078 6.9078 6.9078 6.9078 6.8742 2.8565 
1999:3 6.9117 6.9117 6.9153 6.9082 6.8783 2.8679 
1999:4 6.9137 6.9147 6.9174 6.9110 6.8824 2.8622 
2000:1 6.9207 6.9207 6.9245 6.9166 6.8855 2.8679 
2000:2 6.9276 6.9276 6.9282 6.9272 6.8906 2.8736 
2000:3 6.9412 6.9422 6.9346 6.9481 6.8937 2.8848 
2000:4 6.9527 6.9527 6.9412 6.9635 6.8977 2.8848 
2001:1 6.9508 6.9518 6.9364 6.9647 6.9037 2.8959 
2001:2 6.9594 6.9603 6.9383 6.9783 6.9078 2.9069 
2001:3 6.9651 6.9660 6.9435 6.9851 6.9137 2.9178 
2001:4 6.9707 6.9717 6.9501 6.9885 6.9187 2.9178 
2002:1 6.9763 6.9773 6.9625 6.9890 6.9236 2.9339 
2002:2 6.9866 6.9875 6.9686 7.0026 6.9285 2.9285 
2002:3 6.9912 6.9921 6.9785 7.0014 6.9354 2.9497 
2002:4 6.9976 6.9994 6.9883 7.0063 6.9402 2.9549 
2003:1 7.0012 7.0031 6.9964 7.0054 6.9460 2.9549 
2003:2 7.0012 7.0022 7.0055 6.9969 6.9508 2.9653 
2003:3 7.0058 7.0067 7.0184 6.9925 6.9584 2.9806 
2003:4 7.0130 7.0139 7.0333 6.9928 6.9641 2.9857 
2004:1 7.0166 7.0184 7.0450 6.9894 6.9679 2.9907 

212 



Quarter LOGMl LOGM1SA LOGM2R LOGM3RR 
1994:1 9.0809 9.0761 9.7063 10.2863 
1994:2 9.1253 9.1166 9.8109 10.2707 
1994:3 9.1206 9.1399 9.8012 10.2892 
1994:4 9.1523 9.1465 9.8255 10.3104 
1995:1 9.1386 9.1338 9.8553 10.3620 
1995:2 9.1770 9.1683 9.9008 10.3836 
1995:3 9.1378 9.1571 9.9053 10.4216 
1995:4 9.1973 9.1915 9.9929 10.4181 
1996:1 9.2170 9.2122 10.0265 10.4189 
1995:2 9.2337 9.2250 10.0454 10.5208 
1996:3 9.1976 9.2169 9.9792 10.5872 
1996:4 9.2425 9.2367 10.0418 10.6027 
1997:1 9.2675 9.2627 10.0735 10.5656 
1997:2 9.2970 9.2883 10.1035 10.5898 
1997:3 9.2952 9.3145 10.0920 10.6474 
1997:4 9.3161 9.3103 10.0358 10.6888 
1998:1 9.3212 9.3164 10.0286 10.7140 
1997:2 9.3419 9.3332 10.0535 10.7193 
1997:3 9.3434 9.3627 10.0794 10.6925 
1997:4 9.4286 9.4228 10.1542 10.6227 
1999:1 9.4786 9.4738 10.1742 10.6503 
1999:2 9.5136 9.5049 10.1535 10.6639 
1999:3 9.5604 9.5797 10.2290 10.6509 
1999:4 9.5933 9.5875 10.2171 10.6336 
2000:1 9.5978 9.5930 10.1643 10.6496 
2000:2 9.5955 9.5868 10.1666 10.6849 
2000:3 9.5862 9.6055 10.1773 10.6977 
2000:4 9.6358 9.6300 10.1697 10.7081 
2001 :1 9.7016 9.6968 10.1838 10.6862 
2001 :2 9.7403 9.7316 10.2617 10.6996 
2001:3 9.7334 9.7527 10.3253 10.7169 
2001:4 9.8089 9.8031 10.2826 10.7184 
2002:1 9.8431 9.8383 10.3292 10.7131 
2002:2 9.8792 9.8705 10.3090 10.7296 
2002:3 9.8547 9.8740 10.3068 10.7920 
2002:4 9.8927 9.8869 10.3566 10.8270 
2003:1 9.8963 9.8915 10.3244 10.8812 
2003:2 9.9275 9.9188 10.3647 10.8490 
2003:3 9.9478 9.9671 10.3782 10.8757 
2003:4 9.9966 9.9908 10.3638 10.9603 
2004:1 10.0181 10.0133 10.3504 11.0137 
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Quarter CD SMD LOGEGDPSA LOGPGDPSA 
1994:1 3.857 5.566 9.9969 9.9833 
1994:2 4.280 5.770 10.0131 9.9940 
1994:3 4.557 6.570 9.9888 10.0011 
1994:4 5.083 7.863 10.0164 10.0138 
1995:1 6.223 8.667 10.0323 10.0292 
1995:2 6.590 8.867 10.0518 10.0402 
1995:3 6.430 8.390 10.0350 10.0432 
1995:4 6.310 8.040 10.0494 10.0481 
1996:1 6.413 8.060 10.0623 10.0691 
1995:2 6.640 8.593 10.0781 10.0746 
1996:3 6.755 9.133 10.0761 10.0795 
1996:4 6.380 8.168 10.0905 10.0945 
1997:1 5.390 7.313 10.0810 10.0903 
1997:2 4.797 7.177 10.1169 10.1075 
1997:3 4.763 7.190 10.1145 10.1001 
1997:4 5.163 7.366 10.1083 10.0985 
1998:1 6.260 . 8.028 10.0956 10.0927 
1997:2 6.577 8.270 10.1006 10.0993 
1997:3 4.943 6.457 10.1083 10.0966 
1997:4 2.860 4.357 10.1242 10.1028 
1999:1 2.440 4.223 10.1407 10.1176 
1999:2 2.530 4.323 10.1446 10.1218 
1999:3 2.530 4.543 10.1641 10.1486 
1999:4 2.913 5.149 10.1665 10.1609 
2000:1 3.257 5.797 10.1978 10.1729 
2000:2 3.380 6.508 10.1806 10.1661 
2000:3 3.477 6.630 10.1895 10.1776 
2000:4 3.513 6.507 10.1962 10.1818 
2001:1 3.470 5.993 10.1945 10.1845 
2001:2 3.257 5.400 10.2158 10.1991 
2001:3 3.080 5.330 10.2262 10.2043 
2001:4 2.404 4.671 10.2358 10.2139 
2002:1 2.203 4.733 10.2448 10.2228 
2002:2 2.277 5.500 10.2506 10.2381 
2002:3 2.368 5.517 10.2763 10.2507 
2002:4 2.430 5.587 10.2750 10.2592 
2003:1 2.387 5.460 10.2863 10.2640 
2003:2 2.337 4.993 10.2729 10.2666 
2003:3 2.120 4.811 10.3141 10.2853 
2003:4 2.073 5.130 10.3034 10.2901 
2004:1 2.083 5.293 10.3298 10.3126 
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