Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE ASSOCIATION BETWEEN SOME *FUSARIUM* SPP. AND SEED QUALITY IN MAIZE (*ZEA MAYS* L.)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Seed Technology at Massey University, New Zealand

> Flavia Kabeere 1995

ABSTRACT

The effect of delayed harvest on the occurrence and incidence of seed-borne *Fusarium* spp. and their effects on seed quality was investigated using four maize cultivars (Pioneer 3551, 3591, 3709 and 3475) over two seasons (1989/90, 1990/91) at Massey University, Palmerston North. As harvest was delayed from April to July, the percentage of cobs showing *Fusarium* mould increased. Cultivar 3551 tended to develop *Fusarium* cob mould later in the season (June) than the other three cultivars.

In both seasons the percentage of seeds of all four cultivars infected with *Fusarium* spp. increased as harvest was delayed. However, there was a difference between the two seasons; in 1989/90 the mean percentage of seeds carrying *Fusarium* spp. was 26%, 39%, 70% and 82% for April, May, June and July harvests respectively, while the corresponding levels for 1990/91 were 1%, 9%, 31% and 40% respectively. Between season differences were ascribed to climatic differences, the former season being wetter and warmer than the latter. There were only minor differences among cultivars for the percentage of seeds carrying *Fusarium* spp. *F. graminearum* was the species most consistently detected in all cultivars in both seasons, being recorded from 16%, 31%, 53% and 72% of seeds from the 1989/90 April to July harvests respectively, and from 0%, 6%, 25% and 30% of seeds from the same harvest times in 1990/91. *F. subglutinans*, *F. poae* and other *Fusarium* spp. were also detected, but their incidence was generally low.

Seed-borne Fusarium did not significantly reduce seed germination or vigour. In both seasons germination was between 86-99% for all cultivars. However, any dead seeds bore evidence of F. graminearum mycelial growth. Mycotoxins were recorded in seeds from all harvests in both seasons and mycotoxin levels increased as harvest was delayed. However, there were differences between seasons, as mean levels of Zearalenone, α Zearalenol, Nivalenol and Deoxynivalenol ranged from 0.06 -1.42 mg/kg seed in 1989/90, but from 0.0 - 0.54 mg/kg seed in 1990/91. In all cultivars and at most harvests in both years, levels of α Zearalenol and of Nivalenol increased earlier than those of Zearalenone and Deoxynivalenol. Mycotoxin differences among cultivars and the precise nature of the relationship between specific *Fusarium* species and mycotoxin development urgently requires further study, because of the potential for human and animal health problems.

Fusarium spp. from seed-culture colony were initially identified macroscopically on Malt Agar (MA), with pure cultures later being verified by the International Mycological Institute (UK). Subsequently, cultures were studied on Potato Dextrose Agar (PDA), Malt Extract Agar (MEA) and on Carnation Leaf Agar (CLA), with the final identity of seed-culture colonies being verified on CLA.

Colony texture and colour (including agar pigmentation) were initially used to separate *Fusarium* species detected on MA from infected seeds after harvest into a series of groups, ie 'red and fluffy', 'red centre', 'red and lobed', 'cream and fluffy', and 'cream and lobed' for *F. graminearum*. *F. crookwellense* was also separated as a 'red centre' type of colony while *F. culmorum* was separated as 'cream and flat', *F. subglutinans* 'purple and strands' type, and *F. poae* as 'purple/white/cream and powdery' type. While it was possible to differentiate the five types of *F. graminearum* on MA, it was not possible to distinguish *F. graminearum* 'red centre' type from *F. crookwellense*, although *F. culmorum* was relatively easy to differentiate from *F. graminearum* and *F. crookwellense*. Use of PDA or MEA pure cultures to differentiate *F. graminearum* from *F. crookwellense* or *F. culmorum* was not successful because the colony morphology of these three species was similar. However, *F. subglutinans* and *F. poae* were readily identified macroscopically on MA and MEA.

F. graminearum seed-culture colonies which did not sporulate on MA or MEA in most cases readily formed perithecia of Gibberella zeae on CLA (in the presence of 40W NUV light) regardless of whether the cultures were initiated by single germinated spores or by mass transferred inoculum. Those colonies which did sporulate on MA or MEA formed abundant sporodochia on CLA but not perithecia. CLA was also used to identify F. graminearum (G. zeae) from maize seeds or seedlings by direct plating of these structures after surface disinfection. Full descriptions of the *Fusarium* colonies on the various media used are presented.

Fusarium survival in seed during storage depended upon seed moisture content (SMC) and storage temperature. F. graminearum was eliminated from seed at 14% SMC stored at 30°C and 25°C after 3 or 6 months storage, respectively, but survived at low levels (1-5%), together with F. subglutinans (1-7%), F. poae (1-2%) at these temperatures and 10% SMC. F. subglutinans and F. poae in seeds at 14% SMC did not survive after 9 months storage at 30°C. In seed stored at 5°C, Fusarium spp. infection levels did not decline after 12 months of storage at both 10 and 14% SMC. These results suggest a possible control strategy for producing Fusarium free seed, providing seed moisture content is not greater than 10%. At a storage temperature of 30°C, the post-storage germination of seed at 14% SMC had dropped to under 10% within 3 months, but seed at 10% SMC maintained its germination (88-97%) throughout the storage trial. After 12 months seed storage at 5°C (sealed storage) or 25°C (open storage), mycotoxin levels were similar to pre-storage levels.

The requirements of Koch's postulates were fulfilled in demonstrating that seed-borne *F. graminearum* was transmitted from maize seeds to seedlings under aseptic conditions in a glasshouse maintained at a temperature of 14° C to 17° C. The mean transmission rate (48%) was similar to the original seed-borne inoculum which suggests that under favourable environmental conditions, the pathogen will be effectively transferred from the seed to seedlings. *F. graminearum* had little effect on seedling emergence or survival, but was associated with a high percentage of seedlings with scutellum-mesocotyl/scutellum-main root lesioning. In the field, *F. graminearum* was consistently isolated from seedlings, but seed transmission could not be confirmed because of the presence of soil-borne inoculum, ie the pathogen was isolated from up to 37% of seedlings from a seed lot which carried only 1% seedborne inoculum.

F. subglutinans was also proved to be seed transmitted under the same glasshouse conditions as described for F. graminearum. The significance of surface-

borne inoculum of this pathogen was demonstrated in that the mean transmission rate for non-surface disinfected seed lots was 81%, whereas it was only 7% for surface disinfected seed lots. *F. subglutinans* was associated mainly with 'above sand level' seedling infection (coleoptile-node infection, leaf/shoot blight, shoot wilt and seedling stunting). However, *F. subglutinans* was rarely detected in seedlings from the field, possibly because of the antagonistic effects of mycopathogenic fungi such as *Gleocladium roseum*.

These results are discussed, particularly in relation to the significance of F. graminearum and F. subglutinans as seed-borne pathogens of maize, and the difficulties inherent in the identification of *Fusarium* spp. following seed health testing. It is likely that these seed-borne *Fusarium* spp. are more important because of their association with mycotoxins, than with any effects they have as an inoculum source for diseases of maize.

ACKNOWLEDGEMENTS

The study for this degree, the completion of the research and the preparation of this thesis would not have been possible without the support of a number of individuals and organisations. I wish therefore to express my sincere gratitude and appreciation to the following:

Professor Murray J. Hill, my Chief Supervisor, for his supervision, guidance and support during the conduct of the research and the writing of the thesis.

Associate Professor John G. Hampton, my second supervisor, for encouragement and valuable suggestions in the planning of experiments, especially the glasshouse and field studies, and the patience he showed in the improvement of the manuscript of this thesis; Dr Peter Long of Massey University, for useful suggestions on plant diseases.

Dr Denis Lauren of HortResearch, Ruakura Research Centre for analysing my seed samples for mycotoxin contamination. Mr Allan K. Hardacre of HortResearch, Palmerston North, for valuable information on growing maize in New Zealand and for extra seed samples. Dr Hassan M. Hussein of Massey University for expert guidance in identifying *Fusarium* spp., and Dr S. Ganeshanadam of Massey University for helpful suggestions regarding statistical analysis and computing.

Dr Michael Baxter of the Department of Microbiology and Genetics, Massey University, and Mr Nick Grbavac, of the Official Seed Testing Station, Ministry of Agriculture and Fisheries, Palmerston North for near-ultraviolet light culture incubation facilities; Dr Keith Funnell of Plant Growth Unit, Massey University, for supplying all carnation leaves.

Mr Hugh Neilson of the Department of Plant Science and the staff of the Photographic Centre, especially Tony Watts, Leigh Dome and Cath Goss for their expert photography of my research materials; Mr Graeme Donaldson for his help in the graphics and Mrs Kathy Hamilton for her humour and skilful typing of this manuscript. The staff of the Seed Technology Centre, Massey University for their valuable help in so many ways, particularly Mr Craig McGill and Mr Robert Southward for their technical help and Mrs Karen Hill for her expert advice on seed testing; and the students of the Seed Technology Centre for help and moral support.

Financial support for this research programme was received from the Rockefeller Foundation, New York, USA, and I am very grateful to the Foundation for granting me the scholarship which allowed me to conduct this study. My great thanks go also to Hon. Professor Tarsis Kabwegyere, Ministry of Foreign Affairs, Uganda, for his encouragement for me to apply for these funds and for his kind support. I am also grateful to Professor K.S. Milne, Head of the Department of Plant Science, Massey University, for arranging extra financial support in my final year of study.

My employer, the Ministry of Agriculture, Animal Industry and Fisheries (Uganda), particularly, the Uganda Seed Projects and the National Agricultural Research Organisation (NARO) for granting me study leave.

Drs Charles Lawoko, Linus Opara and Mr Charles Chua, of Massey University; Pastors Denis Humphreys and Mark Somerville and Christians of the Assembly of God Church, Palmerston North; Margaret and Allan Cliff, Palmerston North, John and Judy Whitefield, Ashhurst, and all other unmentioned friends and colleagues for their great encouragement, prayers and help in various ways.

Frank and Rosette Twine Kakuru of Kamokya, Kampala, Uganda, for looking after my little daughter, Keren, and handling all my family responsibilities and obligations while I was doing this study; Keren, for patiently waiting for me for all this time! Mrs Eva Tumuhairwe, Kampala, for good home coordination.

Last, but not least, Jesus Christ, my Lord and my Saviour, and my personal friend, for his blessings, especially good health, endurance and wisdom!

TABLE OF CONTENTS

CHAPTER	ONE :	GENERAL INTRODUCTION	1			
1.1	MAIZE	AIZE AND ITS IMPORTANCE				
1.2	GROW	GROWING A MAIZE CROP				
1.3	MAIZE	E DISEASE PROBLEMS CAUSED BY FUSARIUM	4			
1.4	OBJEC	TIVES OF THE STUDY	. 7			
CHAPTER	TWO:	LITERATURE REVIEW	8			
2.1	THE G	ENUS FUSARIUM LINK AND ITS TAXONOMY	8			
	2.1.1	The genus Fusarium Link	8			
	2.1.2	Тахопоту	11			
2.2	FUSAR	YUM SPP. IN CULTURES AND THEIR				
	IDENT	TFICATION	15			
	2.2.1	Cultures	15			
	2.2.2	Isolation of <i>Fusarium</i> spp. from natural substrates	16			
	2.2.3	Recommended culture media for isolation	17			
	2.2.4	Fusarium culturing media	19			
	2.2.5	General purpose media: CLA and PDA	20			
	2.2.6	Selective media	21			
	2.2.7	Other media - MA	22			
	2.2.8 Incubation Conditions: Temperature and light					
		requirements	22			
	2.2.9	Fusarium species identification in pure culture	25			
2.3	MAIZ	E SEED DEVELOPMENT AND MAIZE CROP				
	DISEASES					
	2.3.1	Seed development	30			
	2.3.2	Maize seed dry down and harvest time	33			
	2.3.3	Pathogens and diseases of maize crops	34			
	2.3.4	Maize diseases caused by Fusarium and their				
		epidemiologies	36			
		2.3.4.1 Root rots	36			

				ix
		2.3.4.2	Stalk rots	38
		2.3.4.3	Cob rot/ear rot caused by Fusaria	39
		2.3.4.4	Symptoms of cob rot caused by	
			F. graminearum	40
		2.3.4.5	Symptom of cob rot caused by	
			F. moniliforme and F. subglutinans	41
		2.3.4.6	Multiple cob rot infections	42
	2.3.5	Seed infec	tion and pathogen establishment in seed	42
	2.3.6	Time of h	arvest and fungal invasion : factors	
		influencing	g the effects of Fusarium spp. on maize	
		seed infec	tion and quality	43
		2.3.6.1	Stage of seed maturity, cob infection and	
			seed penetration	43
		2.3.6.2	Infection spread in the ear and seed	
			penetration	44
		2.3.6.3	Site of internal seed inoculum and seed	
			germination	46
2.4	THE I	LIFE CYCI	LE OF F. graminearum	48
	2.4.1	Seed to pl	ant transmission, establishment of infection	
		and course	e of disease in fungi	48
	2.4.2	Transmiss	ion of <i>F. graminearum</i>	48
		2.4.2.1	Source of inoculum	48
		2.4.2.2	Inoculum types and their dispersal	50
		2.4.2.3	Infection and colonisation of maize ears	50
2.5	LIFE	CYCLE OI	F F. moniliforme/F. subglutinans	54
2.6	EFFE	CT OF FU	SARIUM INFECTION ON SEED	
	QUAI	LITY		55
	2.6.1	Time of h	arvest and seed deterioration	55
	2.6.2	Seed Heal	th: occurrence of Fusarium spp. in seeds	56

	2.6.3	Effects of Fusarium spp. on seed germination and
		seedling emergence: seedling blights 57
	2.6.4	Maize seedling blight caused by F. graminearum
		(= G. saubinetti)
	2.6.5	Mycotoxin production
	2.6.6	Factors affecting the production of mycotoxins 69
	2.6.7	Assessment of grain and maize parts for possible
		mycotoxin contamination 71
2.7	EFFE	CT OF SEED STORAGE ON FUSARIUM SPP 72
	2.7.1	Survival of <i>Fusarium</i> during storage in dry seeds 72
	2.7.2	Mycotoxin production during storage
	2.7.3	Airtight or sealed grain storage for control of
		micro-organisms 76
2.8	EFFE	CTS OF SEED STORAGE ON SEED QUALITY 77
CHAPTER 1	THREE	: THE EFFECTS OF HARVEST TIMING ON THE
		OCCURRENCE OF FUSARIUM SPP. AND THEIR
		EFFECTS ON SEED QUALITY IN MAIZE 81
3.1	INTR	DDUCTION 81
	3.1.1	Objectives
3.2	MATH	ERIALS AND METHODS 83
3.3	RESU	LTS
	3.3.1	Factors influencing Fusarium spp. seed infection and
		seed quality 89
	3.3.2	Seed germination and vigour
	3.3.3	Occurrence of Fusarium spp. and seed infection 99
		Description of Europeium and culture colonics 101
	3.3.4	Description of <i>Fusarium</i> spp. seed-culture colonies 101
	3.3.4 3.3.5	Identification of seed-culture colonies in pure cultures
	3.3.4 3.3.5	Identification of seed-culture colonies in pure cultures by the IMI
	3.3.43.3.53.3.6	Description of <i>Fusarium</i> spp. seed-culture colonies 101 Identification of seed-culture colonies in pure cultures by the IMI 114 Mycotoxin contamination of seeds 115
3.4	3.3.43.3.53.3.6DISCU	Description of <i>Fusarium</i> spp. seed-culture colonies 101 Identification of seed-culture colonies in pure cultures by the IMI 114 Mycotoxin contamination of seeds 115 JSSION 118

	3.4.2	Need for verification of identification of
		<i>F. graminearum</i>
CHAPTER H	FOUR:	IDENTIFICATION AND DESCRIPTION OF
		SEED-BORNE FUSARIUM SPECIES 130
4.1	INTRO	DDUCTION
4.2	OBJE	CTIVES
4.3	MATE	RIALS AND METHODS 133
	4.3.1	Identification of F. graminearum in pure cultures 133
		4.3.1.1 Colony morphology on PDA and MEA 133
		4.3.1.2 Conidial and perithecial formation on CLA 136
	4.3.2	Identification of F. crookwellense and F. culmorum 137
		4.3.2.1 Colony morphology on PDA and MEA 137
		4.3.2.2 Conidial development on CLA 137
	4.3.3	Verification of identification of Fusarium spp. from
		seed-culture colonies on MA 137
		4.3.3.1 Seed-culture colony categorisation and
		description
		4.3.3.2 Seed-culture colony identification 138
	4.3.4	Effects of medium on colony appearance: Malt
		Extract Agar
		4.3.4.1 Seed-culture colony categorisation 139
		4.3.4.2 Seed-culture colony identification 139
4.4	RESU	LTS
	4.4.1	Colony morphology of F. graminearum on PDA and
		on MEA
	4.4.2	Conidial and perithecial formation by F. graminearum
		on CLA
		4.4.2.1 Sporodochial formation
		4.4.2.2 Perithecial formation
		4.4.2.3 Description of macroconidia, perithecia
		and ascospores

xi

	4.4.3	Colony morphology of F. crookwellense and					
		F. culmori	um on PDA and MEA 149				
		4.4.3.1	Colony morphology of F. crookwellense 149				
		4.4.3.2	Conidial development by F. crookwellense . 153				
		4.4.3.3	Colony morphology of F. culmorum 153				
		4.4.3.4	Conidial development by F. culmorum				
			on CLA				
4.5	VERI	FICATION	OF SEED-CULTURE COLONY				
	IDEN	TIFICATIC	DN				
	4.5.1	Seed-cultu	re colony categorisation on MA 157				
	4.5.2	Seed-cultu	re colony identification on CLA 159				
		4.5.2.1	Description of F. graminearum seed-culture				
			colonies: 'cream and lobed' type 162				
		4.5.2.2	Description of F. crookwellense seed-culture				
			colonies: 'red centre' type 164				
		4.5.2.3	Description of F. culmorum seed-culture				
			colonies: 'cream and flat' type 164				
	4.5.3	Effects of	medium on colony appearance : Malt				
		Extract Ag	gar 167				
		4.5.3.1	Seed-culture colony categorisation 167				
	4.5.4	Seed-cultu	re colony identification on CLA 167				
	4.5.5	Descriptio	n of seed-culture colonies on MEA 169				
		4.5.5.1	F. graminearum: 'pink and fluffy' type 169				
		4.5.5.2	F. graminearum: 'pink, lobed and				
			sporulating' type 169				
		4.5.5.3	F. graminearum: 'pink and lobed,				
			non-sporulating' type 171				
		4.5.5.4	F. graminearum: 'cream and lobed' type 171				
		4.5.5.5	F. culmorum: 'cream and flat' type 171				
	4.5.6	Colony mo	orphology of F. graminearum on PDA and				
		on MEA f	ollowing subculturing from seed-culture				
		colonies g	rowing on MEA 174				

4.6	DISCU	DISCUSSION		
	4.6.1	Differentiation of F. graminearum from		
		F. crookwellense and F. culmorum in pure cultures		
		on PDA		
	4.6.2	Identification and differentiation of Fusarium spp.		
		seed-culture colonies on MA: F. graminearum,		
		F. crookwellense and F. culmorum 175		
	4.6.3	Effects of MEA on pure cultures and on seed-culture		
		colony morphology of F. graminearum, F. crookwellense		
		and F. culmorum; and perithecia formation by		
		F. graminearum		
	4.6.4	Incubation period for seed-culture colonies 180		
	4.6.5	Mass transfer of inoculum direct onto CLA versus		
		single spore culture initiation for identification		
		of F. graminearum, F. crookwellense and F. culmorum		
		from maize seed-culture colonies on MA 180		
	4.6.6	Identification of Fusarium spp. on CLA 181		
		4.6.6.1 Identification based on macroconidia 181		
		4.6.6.2 Identification of F. graminearum based		
		on perithecia formation		
	4.6.7	Relationships among F. graminearum seed-culture		
		colony types, population Groups 1 and 2 of Francis and		
		Burgess (1977) and morphological types A and B of		
		Cullen <i>et al</i> (1982)		
4.7	CONC	CLUSION		
CHAPTER I	FIVE:	EFFECTS OF SEED MOISTURE CONTENT AND		
		STORAGE TEMPERATURE ON SURVIVAL OF		
		FUSARIUM SPP. AND ON SEED QUALITY 191		
5.1	INTRO	ODUCTION		
5.2	OBJE	CTIVE		
5.3	MATH	ERIALS AND METHODS 193		

xiii

	5.3.1	Seed lots a	and seed lot preparation
	5.3.2	Pre-storag	e seed quality assessment 194
		5.3.2.1	Seed moisture content determination 194
		5.3.2.2	Seed germination and seedling growth 194
		5.3.2.3	Seed health tests
	5.3.3	Seed quali	ty changes during storage
5.4	RESU	LTS	
	5.4.1	Seed Mois	sture Content
	5.4.2	Fusarium	spp. incidence and decline 196
	5.4.3	Seed germ	ination
	5.4.4	Seedling d	ry weight
	5.4.5	Mycotoxir	ns
5.5	DISCU	USSION .	
	5.5.1	Fusarium	species decline
	5.5.2	Seed germ	ination decline
	5.5.3	Effects of	storage conditions on Fusarium spp. and
		seed quali	ty
	5.5.4	Causes of	Fusarium spp. decline
5.6	CONC	CLUSION	
CHAPTER	SIX:	A STUDY	OF THE TRANSMISSION OF Fusarium
		graminear	um FROM MAIZE SEEDS TO SEEDLINGS
		PART 1	: GLASSHOUSE STUDY 214
6.1	INTR	ODUCTION	N
6.2	OBJE	CTIVES .	
6.3	MATE	ERIALS AN	ND METHODS 216
	6.3.1	Initial seed	d quality assessment
	6.3.2	Establishin	ng seedlings in the glasshouse
	6.3.3	Seedling h	arvesting 218
	6.3.4	Dead seed	s and pre- and post-emergence damped off
		seedlings;	external fungal growth examination and
		pathogen i	solation

		6.3.5	Live seedlings disease symptom and external fungal
			growth examination
			6.3.5.1 Description of seedling parts 221
		6.3.6	Preservation of live seedlings
		6.3.7	Pathogen isolation from live seedlings 222
		6.3.8	Determination of recovery of F. graminearum and other
			fungi from dead seeds and seedlings 223
		6.3.9	Calculation of transmission rate of F. graminearum
			from seed to seedlings 224
	6.4	RESUI	LTS
		6.4.1	Initial seed quality 224
		6.4.2	Seedling emergence
		6.4.3	Disease symptoms on ungerminated seeds and on
			seedling parts
		6.4.4	Isolation of F. graminearum and F. subglutinans from
			dead seeds/seedlings and lesioned/non-lesioned living
			seedlings
		6.4.5	Transmission rate
	6.5	DISCU	JSSION
PART	2:	FIELD	STUDY
	6.6	INTRO	DDUCTION
	6.7	OBJEC	CTIVES
	6.8	MATE	RIALS AND METHODS
	6.9	RESUI	LTS
	6.10	DISCU	JSSION
PART	3:	SEED A	AND SEEDLING INOCULATION STUDY:
		косн	'S POSTULATES VERIFICATION
	6.11	INTRO	DDUCTION
	6.12	OBJEC	CTIVES
	6.13	MATE	RIALS AND METHODS
		6.13.1	Inoculum preparation
		6.13.2	Seedling inoculation

			xvi
	6.	13.2.1	Above ground parts seedling inoculation 272
	6.	13.2.2	Seed inoculation
	6.13.3	Seedling	g harvesting and pathogen re-isolation 273
6.14	RESULT	s	
	6.14.1	Initial S	eed Quality 273
	6.14.2	Tempera	ature conditions during the study
	6.14.3	Seedling	g emergence
	6.14.4	Disease	symptoms
	6.14.5	Re-isola	tion of pathogens 280
6.15	CONCLU	JSION	
CHAPTER	SEVEN:	GENER	AL DISCUSSION 283
7.1	SEED H	ARVEST	TIMING 283
7.2	IDENTI	FICATIO	N OF SEED-BORNE FUSARIUM SPP 284
7.3	FUSARIU	UM EFFE	CT ON SEED QUALITY AND FUSARIUM
	CONTRO	DL	
7.4	TRANS	AISSION	OF SEED-BORNE INOCULUM OF
	F. grami	nearum A	ND OF F. subglutinans 287
7.5	SOURCE	ES OF FL	ISARIUM INOCULUM AND THEIR
	EFFECT	ON DIS	EASE DEVELOPMENT 289
BIBLIOGR	APHY .	••••	
APPENDIC	ES		

LIST OF TABLES

Table 2.1	Some examples of the plant diseases caused by Fusarium
	species
Table 2.2	Summary of synonymy within the Liseola section 14
Table 2.3	Comparison of key diagnostic features of F. culmorum,
	F. sambucinum, F. crookwellense and F. graminearum Groups 1
	and 2 27
Table 2.4	Key characters for the identification of some Fusarium
	species in some taxonomic sections 28
Table 2.5	Diseases of maize in New Zealand 35
Table 2.6	Names of diseases of maize caused by Fusarium species 37
Table 2.7	Fusarium mycotoxins and their producers
Table 3.1	Monthly weather data, 1990 and 1991 91
Table 3.2	Normal, abnormal and ungerminated seeds after a germination
	test before drying of seeds harvested in 1991 97
Table 3.3	Normal, abnormal and dead seeds from germination tests of
	seeds harvested in 1990 and 1991 after drying
Table 3.4	Conductivity of leachates (mean reading) from maize seeds
	harvested in 1990 and 1991 from April to July 98
Table 3.5	Percentage of cobs showing visual symptoms of Fusarium
	mycelial growth
Table 3.6	Percentage of seeds carrying Fusarium species,
	1990 and 1991 102
Table 3.7	Relationship between cultures identified by IMI and
	category of seed-culture colonies from which the cultures
	were obtained 103
Table 4.1a	Colony morphology of F. graminearum on PDA 143
Table 4.1b	Colony morphology of F. graminearum on MEA 144
Table 4.2	Colony morphology of F. crookwellense on PDA and MEA . 150
Table 4.3	Colony morphology of F. culmorum on PDA and MEA 155
Table 4.4	Listing of seed-culture colony 'types' on MA, number of

xviii

	colonies in each type, and identification of Fusarium species	159
Table 4.5	Listing of seed-culture colony 'types' and their sporulation	
	tendency on MEA, number of colonies in each type, and	
	identification of Fusarium species	168
Table 5.1	Seed moisture content before and after 9 months storage	
	at six temperatures	196
Table 5.2	Incidence of Fusarium species prior to storage	197
Table 5.3	Incidence (%) of Fusarium spp. during 9 months storage	
	at six temperatures and two seed moisture contents	198
Table 5.4	A comparison of F. graminearum survival levels (%) and retenti	on
	of germination capacity (%) during storage at 5-30°C of seeds	
	at 14% moisture content in sealed containers	203
Table 5.5	A comparison of F. graminearum survival levels (%) and retenti	on
	of germination capacity (%) during storage at 5-30°C of seeds	
	with 10% moisture content in sealed containers	204
Table 5.6.	Mean seedling dry weight (mg/seedling) after seed storage at	
	10% and 14% SMC and temperatures of 5-30°C for 9 months in	ı
	sealed containers	206
Table 5.7.	Analysis of Variance table showing nested treatment combination	ns
	and probability (F) values for seedling dry weight data at 3	
	to 9 months storage at 5-30°C and 10% and 14% SMC \ldots	207
Table 6.1	Initial seed quality: percentage of seeds yielding F. graminearus	m
	and other fungi	225
Table 6.2	Seedling emergence and survival under glasshouse	
	conditions (%)	228
Table 6.3	Recovery (%) of F. graminearum and F. subglutinans from	
	live, pre- and post-emergence damped off seedlings and from	
	dead seed raised in the glasshouse	235
Table 6.4	Transmission rate of F. graminearum and F. subglutinans to	
	seedlings under glasshouse conditions (%)	238
Table 6.5	Seedling emergence and survival under field	
	conditions (%)	251

Table 6.6	Percentage of live seedlings with visual disease symptoms at	
	10 d and 21 d harvests	255
Table 6.7	Number of dead seeds and unemerged seedlings harvested	
	and number from which F. graminearum and other fungi were	
	isolated	257
Table 6.8	Percentage of live seedlings that yielded F. graminearum,	
	Fusarium spp. and mycopathogenic fungi after harvest from	
	the field	258
Table 6.9	Percentage of live seedlings that yielded field fungi and	
	mucorales after harvest from the field	259
Table 6.10	Initial quality of seed used in the seed and seedling	
	inoculation study	274
Table 6.11	Number of seedlings visually showing lesions and	
	external F. graminearum and F. subglutinans growth and from	
	which the species were re-isolated on CLA	278

LIST OF FIGURES

Figure 2.1	Spore form and conidiogenous cells	10
Figure 2.2	Diagram of procedures for preparing cultures for Fusarium	
	species identification	. 18
Figure 2.3	Disease cycle of F. graminearum in maize	51
Figure 2.4	Influence of soil temperature on percentage of infection by	
	Fusarium graminearum on seedlings of maize and wheat,	
	compared with the growth rate of fungus on agar medium	63
Figure 2.5	Curves showing the influence of temperature upon the	
	composition of wheat and maize seedlings	65
Figure 3.1	Seed moisture content (%) on different harvest dates in	
	1990 and 1991	. 90
Figure 3.2	Mean level of contamination (mg/kg) by different mycotoxins	
	for pooled cultivar data (1990)	116
Figure 3.3	Mean level of contamination (mg/kg) by different mycotoxins	
	for pooled cultivar data (1991)	117
Figure 4.1	Diagram showing procedures followed in preparing and studying	5
	pure cultures initiated by single germinated spores (conidia)	135
Figure 4.2	Relationships for F. graminearum isolates A and B of Cullen	
	et al. (1982), Group 1 and Group 2 of Francis and Burgess	
	(1977) and seed-culture colony types	188
Figure 6.1	Diagram showing maize seedling regions, parts and orientation	
	in the sand bed in the glasshouse and in the soil in	
	the field	220
Figure 6.2	Seedling emergence under glasshouse conditions (%)	226
Figure 6.3	Mean soil moisture content (%) and soil temperature (°C) and	
	recorded during seed germination, seedling emergence and	
	establishment under field conditions	250
Figure 6.4	Seedling emergence under field conditions (%)	252
Figure 6.5	Koch's postulates: proof of pathogenicity - diagram	
	showing the principles of/or steps taken to verify	
	Koch's postulates	268

LIST OF PLATES

.

Plate 3.1	Maize cobs (parts) showing visual symptoms of Fusarium	
	infection, ie white mycelial growth/mould	85
Plate 3.2	Maize cobs in a declined position	93
Plate 3.3	Dehusked maize cobs showing bleached tip kernels without	
	Fusarium mycelial growth	93
Plate 3.4	Maize cobs showing field fungal growth on husks, cobs	
	with exposed shank, cob with mainly butt moulding and	
	mould-free cob	94
Plate 3.5	Perithecia, asci and ascospores of G. zeae	95
Plate 3.6	Perithecia and ascospores of G. subglutinans	96
Plate 3.7	Germinating seeds and a dead seed in a germination test	
	showing F. graminearum infection and secondary infection	100
Plate 3.8	Cobs showing Fusarium mould and rotten or discoloured seeds	100
Plate 3.9	F. graminearum; 'red and fluffy' type	105
Plate 3.10	F. graminearum; 'red centre' type	105
Plate 3.11	F. graminearum: 'red and lobed' type; various morphological	
	shapes as seen over transmitted light	106
Plate 3.12	F. graminearum: 'cream and fluffy' type	106
Plate 3.13a	F. moniliforme var subglutinans (F. subglutinans); 'pink	
	and strands' type	108
Plate 3.13b	F. moniliforme var subglutinans (F. subglutinans); 'pink	
	and strands' type	109
Plate 3.13c	F. moniliforme var subglutinans (F. subglutinans); 'pink	
	and strands' type	110
Plate 3.14a	F. poae: 'purple and powdery', 'white and powdery' types	112
Plate 3.14b	F. poae: 'purple and powdery', 'white and powdery' types	113
Plate 4.1	Colony morphology of F. graminearum on PDA, with cultures	
	7R, 20R, 21R and 26R representing the 'red and fluffy',	
	'cream and fluffy', 'red centre' and 'red and lobed' types	141

Plate 4.2	Colony morphology of F. graminearum on MEA, with cultures	
	7R, 20R, 21R and 26R representing the 'red and fluffy',	
	'cream and fluffy', 'red centre' and 'red and lobed' types	142
Plate 4.3	F. graminearum: sporodochia formed on CLA; macroconidia from	n
	CLA culture from 'red centre' type of seed-culture colony	146
Plate 4.4a	Perithecia initials and mature perithecia of G. zeae on	
	CLA formed under 40W NUV light conditions	147
Plate 4.4b	Perithecia initials and perithecia formation on CLA under	
	2 x 18 W NUV light	148
Plate 4.4c	G. zeae perithecia, asci and ascospores	150
Plate 4.5	F. crookwellense colony morphology on PDA and on MEA	152
Plate 4.6	Sporodochia and macroconidia of F. crookwellense	154
Plate 4.7	F. culmorum colony morphology on PDA and on MEA	156
Plate 4.8	Sporodochia and macroconidia of F. culmorum from CLA	158
Plate 4.9	Seed-culture colony morphology of F. sambucinum and	
	F. decemcellulare on MA	161
Plate 4.10	F. graminearum ('cream and lobed' type) on MA	163
Plate 4.11	F. crookwellense on MA	165
Plate 4.12	F. culmorum on MA	166
Plate 4.13	F. graminearum: 'pink and fluffy' type on MEA	170
Plate 4.14	F. graminearum 'pink, lobed and sporulating' on MEA	170
Plate 4.15	F. graminearum: 'pink and lobed' non-sporulating on MEA	172
Plate 4.16	F. graminearum: 'cream and lobed' on MEA	172
Plate 4.17	F. culmorum on MEA	173
Plate 4.18	F. graminearum/F. crookwellense aerial mycelium absent at	
	the colony junctions due to inter-colony effect	173
Plate 6.1	Photograph showing seedling establishment conditions in the	
	glasshouse	218
Plate 6.2	Seedling death post-emergence	227
Plate 6.3a	'Above sand level' lesions/symptoms and those found 'below sand	
	level' associated with F. subglutinans	229
Plate 6.3b	'Above sand level' lesions/symptoms and those found 'below sand	

	level' associated with F. subglutinans	230
Plate 6.4	'Below sand level' seedling reddish-brown lesions/symptoms	
	or damage due to F. graminearum infection	232
Plate 6.5a	Cultural morphology of F. graminearum and F. subglutinans	236
Plate 6.5b	Perithecia of G. zeae on carnation leaf pieces and on	
	roots of a maize seedling on CLA	237
Plate 6.6	Seedling disease symptoms under field conditions	254
Plate 6.7	F. graminearum pure culture and macroconidia before inoculation	270
Plate 6.8	F. subglutinans before inoculation	271
Plate 6.9	F. graminearum leaf infection and F. subglutinans leaf and	
	coleoptile infection following inoculation of these parts with	
	respective spore suspensions	276
Plate 6.10a	F. subglutinans: leaf and coleoptile infection following soaking	
	(inoculation) seeds in a spore suspension	277
Plate 6.10b	F. graminearum: characteristic mesocotyl, root and node	
	lesioning/disease symptoms following soaking of seeds in spore	
	suspension; close up of sunken centre; F. graminearum growing	
	out of the infected seedling tissue on CLA	279
Plate 6.11	F. graminearum: pure culture on CLA after re-isolation from inocul	ated
	maize seedling; macroconidia from the pure culture	281
Plate 6.12	F. subglutinans: pure culture after re-isolation from inoculated	
	maize seedling; macroconidia from pure culture; polyphialides;	
	microconidia and macroconidia	282

xxiii

LIST OF APPENDICES

Appendix 3.1	Relative ratings for four Pioneer maize cultivars	326
Appendix 3.2	Drying rate (moisture content loss (%)) in 1990 and 1991	327
Appendix 3.3	Types and levels of mycotoxins detected in seeds of four	
	cultivars harvested in 1990 and 1991	328
Appendix 3.4	Description of F. subglutinans and F. poae on carnation leaf	
	agar (CLA)	329
Appendix 4.1	Description of some Fusarium species in pure cultures in	
	petri dishes or test tubes	330
Appendix 4.2	Description of pure culture colony morphology of F.	
	graminearum on PDA and on MEA following subculturing	
	from seed-culture colonies growing on MEA	335
Appendix 4.2.1	Colony morphology of F. graminearum isolates on PDA	
	following subculturing from seed-culture colonies	
	growing on MEA	336
Appendix 4.2.2	Colony morphology of F. graminearum isolates on MEA	
	following subculturing from seed-culture colonies	
	growing on MEA	337
Appendix 5.1	Decline in the percentage of seeds carrying various	
	Fusarium spp. during 12-months seed storage at 25°C in	
	single layered paper bags or 5°C in sealed containers	338
Appendix 5.2	Incidence of Pencillium and Aspergillus during storage	
	for 9 months at seed moisture contents of 10% and 14%	
	and six temperatures (5-30°C) in sealed containers (%) $\ .$	339
Appendix 5.3	Normal and abnormal seedlings and dead seeds after 3,	
	6 and 9 months storage at 10% and 14% seed moisture	
	contents and temperatures of 5-30°C in sealed containers	340
Appendix 5.4	Levels (mg/kg) of mycotoxins after seed storage at 5°C	
	and 25°C for 12 months	340

Appendix 6.1	Minimum, maximum and mean daily temperatures recorded	
	during germination of non-surface and surface disinfected	
	seeds and seedlings emergence and establishment under	
	glasshouse conditions	342
Appendix 6.2	Minimum, maximum and mean daily air temperatures	
	recorded during seed germination, seedling emergence	
	and establishment under field conditions	343
Appendix 6.3	Minimum, maximum and mean daily air temperatures	
	recorded during the Koch's Postulates study	344

xxv