Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ARTIFICIAL LIGHT SPECTRA AND

PLANT GROWTH.

A thesis presented in partial fulfilment

of the requirements for the degree of

Master of Horticultural Science

in

Plant Science

at

Massey University

Ian James Warrington

1972

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Professor J.A. Veale for his support and guidance given during this work.

I extend special thanks to Dr. K.J. Mitchell, Director, Plant Physiology Division, D.S.I.R. for his encouragement and interest in the projects carried out in this thesis and for the use of equipment and resources of the Plant Physiology Division.

Thanks are extended also to the Department of Scientific and Industrial Research for leave granted on half-salary during part of this work and for full salary during the remainder. Specifically, I am indebted to Dr. K.J. Mitchell for a position on staff while this work was being done.

Further, I should like to thank all those who have helped me in a variety of ways, especially the Technical Systems Group of the Plant Physiology Division who competently set up and maintained the growth rooms and cabinets and carried out the electrical work required on each of the light rigs; the Nursery Management Group of the P.P.D. for their care of the plant material prior to its placement under treatment conditions; the electron microscope staff of the Applied Biochemistry Division for their supervision and instruction; and the professional and technical staff members of Massey University and the D.S.I.R. who have been associated with various aspects of this work. Thanks go especially to Dr. J.M. Wilson for his helpful criticism and advice in the writing of the manuscript.

Specifically I would like to thank my wife Gwendolyn, for her assistance in the drafting work involved and for her encouragement and understanding during this work.

Finally, I wish to thank Mrs. C. Le Cheminant for typing this thesis.

(iii)

SUMMARY

This study was undertaken to investigate the suitability of various commercially available high-pressure discharge lamp systems for controlled environment use. Two main experiments were carried out. The Spectral Balance experiment consisted of three treatments each at a similar total visible irradiance (160 W m^{-2}) based on high-pressure discharge lamps (HPLR, HPI and "Metal-arc" types) supplemented with bluefluorescent and tungsten lamps, and three subsequent treatments based on the "Metal-arc" lamp with varying supplemtation and different irradiance levels (105, 200, 250 W m^{-2}). The Spectral Bias experiment consisted of blue-biased, balanced and red-biased spectral treatments obtained by varying the proportions of different artificial lamp types (viz. "Metalarc", Blue HPI and Quartz Halogen). Each spectral bias treatment was studied at two irradiance levels (130 and 200 W m^{-2}). Four species (Sorghum bicolor L., Glycine max L., Lolium perenne L., Trifolium repens L.) were used as test plants at day and night regimes of 22.5/17.5°C and 60/90% R.H. with a 12 h photoperiod for all treatments. The two experiments were carried out in Climate Rooms and Growth Cabinets of the Plant Physiology Division, D.S.I.R., Palmerston North.

Results from the Spectral Balance experiment showed that either of the three lamp types with adequate blue and red wavelength supplementation could be used for plant studies in controlled environments, but on an efficiency basis the order of selection was "Metal-arc", HPI, HPLR. Results from the Spectral Bias experiment showed marked changes in shoot dry-weight increases, leaf area formation, dry-weight per unit area of leaf, stem length, tiller number, main stem angle, root/ shoot ratio, proportions of plant parts, relative growth rates, relative rates of leaf area expansion, net assimilation rates and leaf area ratios in response to the biased spectral treatments. Biochemical changes were also recorded which showed short-wave enhancement of total amino-acids, proteins, aspartic and glutamic and other amino acids, and a long-wave enhancement of soluble sugars, starch and total carbohydrates. A scheme is presented incorporating the observed responses with those recorded in the literature. Total leaf chlorophyll was

increased under short-wave conditions but chloroplast structure was found to be unaffected by the spectral treatments.

(iv)

Calculations were made of the relationships between leaf area, the number of absorbed quanta and the total dry-matter accumulation for each Spectral Bias treatment and results indicated that the spectral influence on the distribution of the assimilated carbon within the plant (i.e. to leaf or to non-leaf tissue) primarily influenced the subsequent plant dry-weight increase.

The implications of the present studies are discussed in relation to providing a standardized artificial light spectrum for controlled environment work. This consideration includes a study of natural sunlight spectra under various environmental conditions and a discussion of the technical difficulties encountered when using these particular lamp systems.

TABLE OF CONTENTS

			* *	Page	
Ackn	ow1.	edgement	S	(ii)	
Summa	Immary				
Table	e of	f Conten	ts	(v)	
List	of	Figures		(xi)	
List	of	Tables		(×iii)	
List	of	Plates		(xv)	
List	of	Diagram	S	(xv)	
List	of	Schemes	9	(xvi)	
I	INT	TRODUCTI	DN	1	
II	LI	TERATURE	REVIEW	4	
	1.	Influe	nce of Light Spectra on Plant Growth		
		and Dev	velopment	4	
		1.1.	General	4	
		1.2.	Wavelength Dependence of Photo-		
			morphogenesis	5	
		1.2.1.	Leaf Responses	8	
		1.2.2.	Stem Growth	9	
		1.2.3.	Growth Analysis Components	12	
		1.3.	Phytochrome and High Energy Systems	13	
	2.	Effects	s of Light Quality on Photosynthesis		
		in Hig	h Plants.	17	
	3.	Waveler	ngth Effects on Biochemical Metabolism	21	
		3.1.	Influence of Specific Wavelengths on		
			Metabolism	21	
		3.2.	Mechanisms of Wavelength Action	23	
		3.3.	Influence of Light Spectra on		
			Chlorophyll Levels and Chloroplast		
			Structure	28	
		3.4.	Summary	31	
	4.	Light			
		4.1.	Measurement Systems	31	
		4.1.1.	The Measurement of Radiant Flux		
			Density (Irradiance)	33	
		4.2.	Illumination Engineering, Lamp Design		
	2 8		and Choice, and Lamp Types	34	
	9	4.2.1.	General	34	

1

(vi)

-			
n	-	-	-
\mathbf{r}	а	п	А.
	•	ч	-

		4.2.2.	Lamp Types	36
		4.2.2.1	(a) Incandescent or Filament	
			Lamps	36
			(b) The Quartz Halogen Lamp	36
		4.2.2.2	2. Electric Discharge Lamps	37
			(a) General	37
			(b) High-Pressure Mercury-Vapour	
			Discharge Lamps	38
			(c) Type HPLR (MBFR) Lamps	38
			(d) Recent Developments	39
		4.2.2.3	. Tubular Fluorescent Lamps	40
		4.2.2.4	. Xenon Lamps	40
		4.3.	Use of Artificial Light Sources	41
		4.3.1.	General	41
		4.3.2.	Early Studies	42
		4.3.3.	Fluorescent Tube Development and Use	44
		4.3.4.	High-Pressure Discharge Lamp Use	51
	5.	Current	Studies	52
III	MAT	ERIALS A	ND METHODS	54
	1.	Control	led Environment Facilities	54
		1.1.	Spectral Bias Experiment	54
		1.1.1.	Climate Rooms	54
		1.2.	Spectral Balance Experiment	54
		1.2.1.	Growth Cabinets	54
	2.	Lightin	ng Systems	55
		2.1.	Spectral Bias Experiment	55
		2.2.	Spectral Balance Experiment	57
		2.3.	Spectroradiometer Calibration	59
	3.	Enviror	nmental Conditions	59
		3.1.	Spectral Bias Experiment	59
	×	3.1.1.	Temperature and Humidity	59
		3.1.2.	Carbon Dioxide	60
		3.1.3.	Air Speed	60
		3.1.4.	Daylength	60
		3.2.	Spectral Balance Experiment	60
	4.	Plant N	Naterials	60
		4.1.	Propagation	60
		4.1.1.	Spectral Bias Experiment	60
	×	4.1.2.	Spectral Balance Experiment	61
1.	3.	4.2.	Experimental Conditions	61

(vii)

			Page
	4.2.1.	Spectral Bias Experiment	62
	4.2.2.	Spectral Balance Experiment	62
5.	Experi	mental Layout	62
	5.1.	Spectral Bias Experiment	62
	5.2.	Spectral Balance Experiment	63
6.	Plant	Measurements	64
	6.1.	Methods of Measurement	64
7.	Data A	nalysis	65
	7.1.	Spectral Bias Experiment	65
	7.2.	Spectral Balance Experiment	67
8.	Bioche	mical Analyses	68
	8.1.	Carbohydrate Determinations	68
	8.1.1.	Spectral Bias and Spectral Balance	
		Experiments	68
		Protein Nitrogen Determinations	68
ж	8.2.1.	Spectral Bias and Spectral Balance	
		Experiments	68
	8.3.	1 2	69
		Spectral Bias Experiment	69
	8.4.		70
		Spectral Bias Experiment	70
9.		on Microscopy	71
	9.1.	Spectral Bias Experiment	71
	JLTS		73
1.		al Balance Experiment	73
		General	73
		Plant Weight	74
		Shoot Dry Weight	74
		Relative Growth Rate	74
		Dry Matter Percentage	75
		Stem Length	75
		Leaf Area Per Plant	76
		Dry Weight Per Unit Area	76
		Leaf Shape	76
		Tiller Number (Sorghum)	77
		Proportions of Plant Parts	77
		Shoot Components	77
		Root:Shoot Ratio	78
8 B		Biochemical Results	78
(8)	1.7.1.	Carbohydrate Content	78

IV

Page

	1.7.2. Protein Content	79
2.	Spectral Bias Experiment	80
	2.1. General	80
	2.2. Plant Appearance	80
	2.3. Plant Weight	81
	2.3.1. Shoot Dry Weight	81
	2.3.2. Dry Matter Percentage	82
	2.4. Leaf Area Per Plant	83
	2.5. Growth Analysis Components	84
	2.5.1. Relative Growth Rates	84
	2.5.2. Leaf Area Ratio	85
	2.5.3. Net Assimilation Rate	86
	2.6. Proportions of Plant Parts	86
	2.6.1. Root:Shoot Ratio	87
	2.6.2. Leaf: Shoot Ratio	87
×	2.6.3. Petiole:Shoot Ratio	88
	2.6.4. Stem: Shoot Ratio	88
	2.7. Plant Leaf Characteristics	88
	2.7.1. Dry Weight Per Unit Area of the Last	
	Mature Leaf Blade	88
	2.7.2. Leaf Shape (Last Mature Leaf Blade)	89
	2.7.3. Leaf Number	90
	2.7.4. Relative Rate of Leaf Area Expansion	91
	2.8. Plant Height	91
	2.8.1. Stem and Shoot Length	91
	2.8.2. Sheath Extension (Sorghum)	92
	2.9. Main Stem Angle (Sorghum)	92
	2.10. Tiller Number (Sorghum)	93
	2.11. Biochemical Results	94
	2.11.1. Total Chlorophyll, Chlorophyll a and	
10	Chlorophyll b Levels	94
	2.11.2. Carbohydrate Content	94
	2.11.2.1. Leaf Carbohydrate Content	94
	(a) Soluble Sugar	94
	(b) Starch	95
	(c) Total Carbohydrate	95
	2.11.2.2. Petiole Carbohydrate Content	96
	(a) Soluble Sugar	96
ж. П	(b) Starch	96
a National	(c) Total Carbohydrate	96
1.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

			Page
		Protein Content	96
		. C:N Ratio	97
		. Amino Acid Content	98
	2.12.	Investigation of Treatment Effects	
		on Chloroplast	98
	2.12.1	. Chloroplast Types, General	98
		(a) Soybean	98
		(b) White Clover	99
		. Chloroplast Types, Treatment Effects	
	ISCUSSION		101
1		Response to Various Spectra and	
	Irradi	ance Levels	101
	1.1.	General	101
2	. Morpho	logical	103
	2.1.	Division of Assimilates	103
	2.2.	Leaf Area, Leaf Shape-and Leaf Number	104
	2.3.	Stem Length	107
	2.4.	Sorghum Stem Length, Stem Angle and	
		Tiller Number Interactions	108
	2.5.	Morphogenetic Response Control	
		Mechanisms	110
	2.6.	Relationships to Other Environmental	
		Studies	112
		(a) Effects of Temperature	112
		(b) Effects of Light Irradiance	114
3	. Photos	ynthesis, Leaf Area and Dry Matter	
	Yield		116
	3.1.	General	116
	3.2.	Interception of Photons	117
	3.3.	Absorption of Intercepted Photons	118
4	Bioche	mical Analyses	121
	4.1.	General	121
	4.2.	Glutamic and Aspartic Acids	121
	4.3.	5	122
	4.4.		123
	4.5.	Other Amino Acids	124
	4.6.		124
5		plast Form and Size and Chlorophyll	
5.	Conten		105
6		cial Light Sources	125
υ,	ALCIII	CIAL LIGHT SUURCES	127

V

			Page
		6.1. Lamp Selection	127
		6.2. Lamp Performance	131
VI	CON	CLUSION	134
	1.	General	134
	2.	Controlled Environment Requirements	134
	3.	Plant Systems' Responses	136
	4.	Concluding Remarks	140
VII	APP	ENDICES	141
	1.	Procedure for Measuring Irradiance (Energy	
		Flux Density)	141
	2.	Distribution Values of Light Irradiance over	
		the Plant Area for Individual Light Types and	d
		Each Total Lamp Combination	142
		A. Balanced Treatment	142
		B. Red-Biased Treatment	143
	54	C. Blue-Biased Treatment	144
		D. All Spectral Treatments	145
	3.	Nutrient Solutions	146
		A. Hoagland's 1.	146
		B. N.C.S.U. Nutrient Solution	147
	4.	Absorbed Photon Flux Density Values for	
		Each Spectral and Irradiance Treatment	150
	5.	Chloroplast Ultrastructure	152
	6.	Solar Radiation Characteristics	153
VIII	BIB	LIDGRAPHY	158

÷

(×i)

٠

FIGURES

Fig. No.		o. Title After	Page
	1.	Spectral Bias experiment. Spectral Irradiance Distribution Curves. (High irradiance treatment)	56
		A. Blue Biased treatment	
		B. Balanced treatment	
		C. Red Biased treatment	
	2.	Spectral Balance experiment. Spectral Irradiance	
		Distribution Curves.	58
		A. Rig I	
		B. Rig II	
		C. Rig III	
IV	Resul	ts	
1	Spect	ral Balance experiment	
	3.	Shoot dry-weight increase	74
	4.	Shoot dry-matter percentage	75
	5.	Stem (shoot) length	76
	6.	Leaf area per plant	76
	7.	Dry-weight per unit area of leaf	76
	8.	Last mature leaf length	77
	9.	Sorghum tiller number	77
	10.	Leaf soluble sugar content	78
	11.	Leaf starch content	78
	12.	Leaf total carbohydrate content	78
	13.	Leaf protein content	79
2	Spect	ral Bias experiment	
	14.	Shoot dry-weight increase	81
	15.	Shoot dry-matter percentage	82
	16.	Leaf area per plant	83
	17.	Relative growth rate	84
	18.	Root:shoot ratio	86
	19.	Plant part ratios	86
	20.	Dry-weight per unit area of leaf	88
	21.	Last-mature leaf length	89
	22.	Last-mature leaf width	89
	23.	Stem (shoot) length	91
	24.	Sorghum tiller number	93
	25.	Sorghum main stem angle	93

		(xii)	
	Fig.	No. Title	After Page
	26.	Total leaf chlorophyll, chlorophyll a and	
		chlorophyll b content	94
	27.	Leaf chlorophyll a:b ratio	94
	28.	Leaf soluble sugar content	94
	29.	Leaf starch content	94
	30.	Leaf total carbohydrate content	94
	31.	Leaf protein content	96
	32.	Leaf C:N ratio	97
ŝ	Disc	ussion	54 L
	33.	Combined response results to the Spectral Bi	as
		experiment treatments	101
	34.	Sorghum tiller number vs. stem length	108
	35.	Sorghum stem angle vs. tiller number	108
	36.	Sorghum tiller number vs. stem length	108
	37.	Relative growth rate vs. irradiance level	114

V

(×iii)

TABLES

т	able N	o. Heading	After	Page	
	1.	Radiometric and photometric terms		32	
III	Mater	ials and Methods			
2.1	.Spect	ral Bias Experiment			
	2.	Spectral treatments		54	
	3.	Mean visible irradiance values and sp	ectral		
		distribution		57	
	4.	Proportion of total irradiance contri	buted by		
		each lamp type		57	
	5.	Energy distribution per 25 nm bandwid	th	57	
	6.	Beginning, end and mean irradiance va	lues for		
		each treatment		57	
	×	A. Eppley Pyranometer with RG 8 (380-700 nm)	filter		
e 1		B. Eppley Pyranometer with RG 8	filter		
		(700-1400 nm)			
		C. Eppley Pyranometer (380-1400	nm)		
	7.	Visible photon flux density per 25 nm	240	57	
2.2.	Spect	ral Balance Experiment			
	8.	Spectral Treatments			
	9.	Mean visible irradiance values and sp	ectral		
		distribution		58	
	10.	Mean total irradiance values and cont	ribution of		
		lamp types		58	
	11.	Spectral flux distribution per 25 nm	bandwidth	58	
	12.	Visible photon flux density per 25 nm		58	
IV	Result	2 2			
1	Spectral Balance Experiment				
	13.	Relative growth rate (RGR)		74	
	14	Leaf length:breadth ratio		77	
	15.	Ratios of plant parts. (a) Proportion	s of Shoot	77	
		(b) Root:Shoot		78	
2	Spect	ral Bias Experiment			
	16.	Relative growth rate (RGR)		84	
3	17.	Leaf area ratio, LAR; Net assimilation	n rate. NAR:		
	9.97 10.97	and Mean relative growth rate, RGR.		85	
	18.	Leaf number (Final harvest)		90	

11

(xiv)

•

à

т	able N	o. Heading After	Page
	19.	Relative rate of leaf area expansion (RLAGR)	91
	20.	Amino acid content	98
V	Discu	ssion	
	21.	Relative growth rate (RGR)	114
	22.	Relative relationships of leaf area, photon	
		flux absorption and dry-matter accumulation	117
			Page
VII	Appen	dicas	Fage
VII	23.	Distribution values of light irradiance over the	
	23.	plant area for individual light types and each	142
		total lamp combination	142
		A. Balanced Treatment	142
		B. Red-Biased Treatment	143
	,	C. Blue-Biased Treatment	144
		D. All Spectral Treatments	145
	24.	Distribution of standard solar radiation curve	154
	25.	Spectral distribution of solar energy	155
	26.	Proportional distribution of spectral energy	100
	20.	for various air masses and equivalent sun angles	156
		on basis of amount in 400-700 nm range = 100	150
	27.	Relative solar irradiance, luminous efficiency,	
	210	and colour temperature at sea level for various	
		air-mass values	157
	28.	Absorbed photon flux density for 25 nm wavebands	157
	20.	Auguree photon itex density for 25 Hm wavebands	150

(xv)

PLATES

Plate	No.	Héadings · Afte	er Page
1.	Light 1	ig in servicing position	54
2.	Light r	ig in operating position	54
3.	Lamp ty	pes	58
4.	Sorghum	, Spectral Bias treatments	80
5.	Soybear	, Spectral Bias treatments	80
6.	Perenni	al Ryegrass, Spectral Bias treatments	80
7.	White (Clover, Spectral Bias treatments	80
8.	Sorghum	n, side view, main stem angle	92
9.	Sorghum	, face view, glasshouse post-treatment	109
10.	Sorghum	, side view, glasshouse post-treatment	109
Fig.	E.M. 1.	Soybean	152
	8	a. Lower Palisade Mesophyll	
		b. Spongy Mesophyll	
	2.	Soybean	152
		a. Upper Palisade Mesophyll	
		b. Spongy Mesophyll	10
	3.	Soybean High Light	152
		Upper Palisade Mesophyll	
	4.	Soybean High Light	152
		Lower Palisade Mesophyll	
	8.	Soybean Low Light	152
		Spongy Mesophyll	
	9.	White Clover	152
		a. Palisade Mesophyll	
		b. Spongy Mesophyll	
	10.	White Clover High Light	152
	241	Palisade Mesophyll	· 7.,
	13.	White Clover Low Light	152
		Spongy Mesophyll	
		DIAGRAMS	
1.	Climate	Room, side view	54
2.	Growth	Cabinet, front view	55
3.	Contrib	ution of lamp types to combined spectral	
	irradia	nce distribution	56

(xvi)

SCHEME

No.	Heading ·				After	Page
1.	Wavelength	effects	on metabo	lic pathways		121

"If at any time I speak of Light and Rays as coloured or endued with colours, I would be understood to speak not philosophically and properly, but grossly, and according to such Conceptions as vulgar People in seeing all these experiments would be apt to frame. For the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour".

> "OPTICKS" NEWTON.