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ABSTRACT

Let f and g be Möbius transformations with finite-orders p and q respectively.
Further, let γ = tr[f, g] − 2, where tr[f, g] is the trace of the commutator of f
and g in the standard SL(2,C) representation of Möbius transformations.

The group G = 〈f, g〉 is then defined, up to conjugacy, by the parameter set
(p, q, γ), whenever γ 6= 0. If the group G is discrete and non-elementary, then
it is a Kleinian group. Kleinian groups are intimately related to hyperbolic
3-orbifolds.

Here we develop a computer program that constructs a fundamental domain
for such Kleinian groups. These constructions are undertaken directly from
the parameters given above. We use this program to investigate, and add to,
recent work on the classification of arithmetic Kleinian groups generated by two
(finite-order) elliptic transformations.
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1. INTRODUCTION

Over the last few decades the theory of Kleinian groups has flourished through
its deep connections to low dimensional topology and geometry. The high-
light of these recent studies being G. Perelman’s recent proof1 of Thurston’s
geometrisation conjecture, which states that any compact 3-manifold can be
decomposed canonically into submanifolds that have geometric structures; see
[48]. These geometric structures fall into eight possible types, the most prevalent
and least understood of which are the submanifolds with hyperbolic structures.
The geometrization conjecture also provides an analogue, for 3-manifolds, of the
uniformization theorem for surfaces.

This latter result, the uniformization theorem, is a noted achievement by math-
ematicians of the 19th century; implying, for instance, the Poincaré conjecture.
Additionally, there have been many other recent advances in this field, includ-
ing: the density conjecture, [2],[13]; the ending lamination conjecture, [12]; the
surface subgroup conjecture, [35]; and the virtual Haken conjecture, [3].

While we do not discuss all these results here (nor offer any statements of
precise theorems), together they provide a remarkably complete picture of the
structure of hyperbolic isometry group actions and their quotient spaces. These
quotient spaces being 3-dimensional hyperbolic manifolds and orbifolds (where
the addition of a precise type of singular structure is allowed). The study of
these group actions, the study of Kleinian groups, is the focus of this thesis.

Kleinian groups are non-elementary discrete groups of orientation-preserving
isometries acting on hyperbolic 3-space. Non-elementary and discrete implying
that the group does not have an abelian subgroup of finite index.

We consider hyperbolic 3-space, X, and the group of Möbius transformations
M, the fractional linear transformations acting on the extended complex plane
Ĉ = C ∪ {∞}. As a Lie group, the isometry group Isom+(X) is isomorphic to
M. A common model for hyperbolic 3-space is the upper half-space

U = {(x, y, t) ∈ R3 | t > 0}

1 2006 Fields Medal.



2 1. Introduction

with a metric
ds2 =

dx2 + dy2 + dt2

t2
.

With the t = 0 hyper-plane of R3 then being identified with C, the complex
plane, allowing us to equate ∂X with the Riemann sphere Ĉ. And Möbius
transformations can take both a functional and a matrix form, often being
presented as the projective special matrix group PSL(2,C), of complex 2 × 2

matrices

±

[
a b

c d

]
, ad− bc = 1

under matrix multiplication.

Work in classifying Kleinian groups began over 100 years ago with Klein’s Er-
langer program which aimed to demonstrate the deep links between geometry
and group theory; and, as mentioned above, the past decades have seen consid-
erable renewed interest in these groups underscoring the deep links between the
study of groups, complex analysis and the classification of geometric spaces.

Of considerable relevance to us, among these recent works, are the computa-
tional studies of hyperbolic structures on knot and link complements, ideal trian-
gulations, and generalisations of Poincaré’s theorem for fundamental polygons.
Particularly through J. Weeks’ programme SnapPea2, [59]; a demonstration of
its computational application in the greater theory is manifested by the census
of hyperbolic manifolds.

Before discussing the specifics of the work in this thesis, we demonstrate the
basic links between groups and spaces with the simple Euclidean example of the
torus (a 2-manifold). As shown in Figure 1.1.

Fig. 1.1: The torus, T 2.

The torus is among the simplest of closed manifolds, being the quotient of Eu-
clidean 2-space under the action of a group G generated by two linearly indepen-
dent translations on the real-plane. This group action identifies a quadrilateral
which tessellates the entire plane by copies of itself translated by the group - a
fundamental domain, E2/G. The quotient map induced by the group action is
an equivalence relation on the plane - two points are the same if there is a group
element whose action maps one to the other. This equivalence relation then

2 1999 MacArthur “Genius” prize.
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wraps up the boundary of a fundamental domain - giving something isometric
to T 2 = S1 × S1.

Simply switching the direction of the identification between two edges (in this
torus example), the quotient space becomes considerably more complicated. In
this situation it yields the Klein bottle, a non-orientable 2-manifold that cannot
be embedded in Euclidean 3-space.

Working in 3-dimensions, and with the added complexity of hyperbolic space,
gives rise to much more interesting, and complicated, tessellations and funda-
mental domains. For example, see the successful construction in Figure 1.3.
This thesis focuses on the construction of such domains for a variety of appli-
cations.

Traditionally, in all but simple cases, the discreteness of a given subgroup ofM
is very difficult to determine, [30]; with there being a lack of criteria that are
both sufficient and necessary for the condition. This has lead to classification
work focusing on specific classes of groups. To this end, Fuchsian groups, the 2-
dimensional counterparts to Kleinian groups, have long been classified; as have
the elementary discrete groups. Similarly, manifolds and orbifolds are more or
less classified for all but this hyperbolic case, [19]; with the study of Kleinian
groups having largely focused on the torsion-free (manifold) cases, explicitly
leaving the classification of hyperbolic 3-orbifolds as a special case to be dealt
with later [42].

Recently, focus has turned to attempts at identifying universal constraints on the
geometry of Kleinian groups, such as minimal covolume, the Margulis constant,
collaring theorems and more. This work has led to intense study of spaces of
two-generator Kleinian groups, further encouraged by the following theorem.

Theorem (Proposition 2 of [33]). Let G be a non-elementary subgroup of M.
Then G is discrete if and only if every two-generator subgroup 〈f, g〉 is discrete
for every f, g ∈ G.

We focus on the two-generator subgroups, G = 〈f, g〉, of M. These can be
parameterised, up to conjugacy, by the ordered set of complex numbers

par(G) = (β, β′, γ) ∈ C3,

where
β = tr2f − 4,

β′ = tr2g − 4,

γ = tr[f, g]− 2.
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These traces coming from the matrix representation of Möbius transformations.

This parameterisation of two-generator groups opens access to alternative means
of studying these groups; and allows for the elegant expression of a number of
discreteness results, for example we have the following theorem.

Theorem (Jørgensen’s inequality, [33]). If 〈f, g〉 is a Kleinian group, then

|β|+ |γ| ≥ 1.

Through the use of Jørgensen’s necessary requirement for discreteness, given
above, and many similar “inequalities for discreteness”, numerous results have
been realised with respect to the parameter spaces of discrete groups, along with
geometric descriptions of a group’s generating elements; see [28], [57]. These
studies typically begin by describing the space of two-generator discrete sub-
groups ofM using these various generalisations of Jørgensen’s inequality based
around an intriguing family of polynomial trace identities in SL(2,C), [25],[26].

These polynomials identify inequalities that hold except for certain specific pa-
rameter sets. We highlight the following simple example.

Theorem. If 〈f, g〉 is a Kleinian group, then

|1 + β|+ |γ| ≥ 1

unless γ = 1 + β and 〈f, g〉 is Nielsen equivalent to a group generated by two
elements of finite order 2 and 3.

From which the question arises: what are the γ-values for a Kleinian group
generated by elements of finite order 2 and 3, particularly those with γ = 1 +β.

First, there are infinitely many such values, namely

γ = 1− 4 sin2(π/p) = 1 + β, p ≥ 7.

These correspond to the (2, 3, p) triangle groups (the groups generated by reflec-
tion in the sides of a hyperbolic triangle with interior angles π/2, π/3, and π/p),
but there are others. A few of these groups are arithmetic groups (arithmetic
groups being mentioned further below and discussed in Section 2.3.4), but the
question arises as to how to determine discreteness for the remainder.

In this situation, (for this and other inequalities) we generally do not know a
priori if a given parameter set corresponds to a discrete group, and in most cases
it will not. However, in important cases it may well be discrete. Part of our work
here is set up to help determine where possible, when these “exceptional points”
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lead to discrete groups, by constructing a fundamental domain, calculating its
volume (which may be infinite) and giving other clues as to its identity; the
failure to construct such a domain otherwise suggesting that the group is not
actually discrete.

Building on these inequalities it is possible to determine general a priori bounds,
or “universal constraints", which hold under various assumptions; but will not
generally hold for the extremal case. These assumptions often take the form of
geometric requirements related, for example, to distances between elements of
the singular set or between the axes of group elements. The challenge then is to
try prove that if these assumptions fail, then specific geometric configurations
must occur which produce a two-generator subgroup of a specific type.

This is achievable as the failure of these assumptions often confines the investi-
gation to a small sub-space of two-generator discrete groups that is supposed to
have been a priori completely described. This reduces possible extremal groups
to a finite list of candidates for further consideration; often, many of which are
arithmetic. Once it is shown that the examples which the a priori bounds do
not cover are arithmetic, other techniques can be used to identify extremals
from this finite list. In this way it it has been shown that most examples of
small volume hyperbolic orbifolds and manifolds have an arithmetic structure;
and, more generally, the same is true for other types of extremal problems.
To summarise, the identification of extremal manifolds and orbifolds is predi-
cated on the assumption that the extremals for these geometric problems are
two-generator arithmetic Kleinian groups, and this is generally the case.

Working with finite lists of (often) arithmetic groups relates to another part
of the overall research program on Kleinian groups, that is, the enumeration
of all the two-generator arithmetic Kleinian groups. In this thesis we make
a major advance in that programme with a “computational” classification of
all the arithmetic groups generated by two elements of finite orders 2 and p,
p = 3, 4, 6. These cases have previously been identified as the most difficult
cases to deal with. These methods should ultimately deal with the remaining
cases, but more research related to specific classes of algebraic integers within
ellipses of the complex plane needs to be completed first.

If we consider the case of Kleinian groups generated by a pair f and g of finite
order (elliptic) transformations, with orders p and q respectively, then

β = tr2f − 4 = −4 sin2(π/p),

β′ = tr2g − 4 = −4 sin2(π/q),
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and there is then the alternative parameter set

(p, q, γ),

which we will consider closely in this thesis.

By focusing on specific p and q values, the results mentioned above have been
combined to provide a growing description of the γ parameter space, [23]. Often
these groups correspond to arithmetic lattices (nice, discrete groups) and their
subgroups; the distinction between the groups and their proper subgroups being
that arithmetic groups are of finite covolume.

This is another area in which our work contributes. The arithmetic criteria
obtained are sufficient to show that a group is not only discrete, but a (discrete)
subgroup of an arithmetic group. However, it provides no indication as to
whether or not the group has finite covolume, nor the orbifold’s underlying
topology. Under Mostow rigidity, [49], (co)volume is an important topological
invariant of these (groups and) orbifolds, so its identification from a possible
γ-value is an important component in the facilitation of these identifications.
Our computer programme (mentioned below) computes this volume, directly
from γ. Once a possible candidate has been identified from this volume data
(matched against a list of data on things like orbifold surgeries on the cusped
census) explicit calculations can be made to confirm the correct identification
of the group. Note though that it is possible for two different orbifolds to have
the same volume.

All this arithmetic work, combined with other recent work, leads to a fairly
complete descriptions of some γ-parameter spaces. These descriptions combine
a free boundary, beyond which all γ-values correspond to free groups, [24]; an
iterative disc-covering procedure, projecting discs based on Jørgensens’s and
similar inequalities, within which the group (p, q, γ) cannot be discrete with the
possible exception of certain special points (as described in the example above),
[28]; and a recent knot-based investigation that has begun to establish the struc-
ture of the fractal “free” boundary, [62]. The results of these are demonstrated
for the (3, 2, γ) groups in Figure 1.2.

These disc covering methods provide a plethora of parameter sets for groups
generated by two elliptic transformations. As noted above, in some cases the
γ parameters are analytically known to be discrete, while in other cases the
question of discreteness remains. For example, the (7, 2)-commutator plane,
analogous to that above, has no arithmetically determined points.

The attempted construction of a fundamental domain then allows the possible
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Fig. 1.2: The (3, 2, γ) parameter space, C.
(Figure 1.3 of [62].)

confirmation of the group as a discrete group. If a successful construction is
achieved and a covolume is calculated, it can then be compared against the orb-
ifold data arising from Dehn surgeries on hyperbolic knot complements. Thus
this work offers one of the few possible ways to identify the structures of pa-
rameter slices when we do not expect many of the groups to be arithmetic.

Thus our project is part of this area of research, with a focus on computationally
determining if a group is discrete and, if so, if it has finite covolume, through the
generation of a fundamental domain, directly from a given parameter set. As
a part of the overall investigation into the two-elliptic-generator case, we task
ourselves the goal of providing an informative description of the construction of
fundamental domains for the Klienian groups generated by two elliptic elements;
deliberately allowing for an experimental approach to the construction of a
group’s fundamental domain. Applications of computational methods for the
construction and study of fundamental domains were first demonstrated in [56];
an application which has revolutionised the approach to this area of study.

To this end, we have developed a computer program, SnappyD, for the con-
struction of fundamental domains for these groups; the use of an earlier version,
titled F-elliptic, has already appeared in the results of [62]. This program is
based solidly on a specific set of subroutines found in the well used and oth-
erwise adapted program SnapPea [59]; we have chosen to use this program as
the basis of our own as its use in this field is well noted, and it contains an
impressive level of documentation.

This work also developed from an investigation into the failures of SnapPea
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Fig. 1.3: A successful (left), and an unsuccessful (right), construction.

(based programs), when attempting to determine fundamental domains for
Kleinian groups with infinite, as opposed to finite, covolume; see Figure 1.3.
Thus a goal of this work is the computation and successful construction of the
representative quotient spaces for such groups.

This computer program has then allowed us to construct and study fundamen-
tal domains for a large number of groups; groups which have featured in the
several, recent publications related to the classification of arithmetic hyperbolic
3-orbifolds and investigation of Kleinian groups; see [23], [60] and [62]. The
work here reinforces the results seen in these references, based on which we give
the following result which relies on the “computational boundary” identified by
Zhang in [62].

Theorem. Let G = 〈f, g〉 be an arithmetic Kleinian group where f is an elliptic
transformation of order 3, 4 or 6; and g an elliptic transformation of order 2.
Then G is listed in the tables of Chapter 5.

More specifically, we have reaffirmed the covolume results seen in [23] and [62];
adding values missing from their tables and confirming those values already seen.
In doing this we give Theorem 5.3.3 in Section 5.3.1, an expansion of Theorem
8.2 of [23], and complete Table 1 of [60]. And, under the conjectures of [62],
we further refine the complete list of two-generator arithmetic groups that are
generated by an element of order 2 and order 3, 4 or 6; leaving only 18 possible
members still in need of confirmation, all of which appear to lie extremely close
to the previously mentioned fractal boundary.

In using these computational methods, we highlight the value of these programs
and their ability to lend considerable insight into the methods used to construct
domains in these, and related, applications. This insight is exemplified in our
identification of pairs of (p, q, γ) and (p, q, β−γ) parameter sets that demonstrate
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parallax (Section 5.2.4) in their volumes. Results based on these groups (and
the relevant fundamental domains) have been used in previous work; but as far
as we are aware, this is the first instance that this parallax nature has been
highlighted in relation to the classification of arithmetic groups.

Thesis Overview

We begin in Chapter 2 with a preliminary overview of Kleinian groups through
an introductory treatment of Möbius transformations, before highlighting group
properties and recent work on the classification of the Kleinian groups in [23],
[60] and [62]. In doing this we establish our focus as related to the investigation
of two-elliptic-generator Kleinian groups, and their (p, q)-commutator spaces.
From there, we describe the geometric action of a discrete group, laying the
framework for the computational methods used in subsequent chapters. This
is achieved through a detailed description of fundamental domains and their
existence through Dirichlet domains and fundamental polyhedrons.

This allows us to outline the Dirichlet_ subroutines of the program SnapPea
in Chapter 3. These routines form the basis of our program, so we attempt a
thorough exposition of the underlying routines and spatial description on which
the program runs, while taking care to avoid the minute trivialities of the im-
plemented programming. Using this description of the basis routines, Chapter
4 details the considerations necessitated in their application to the two-elliptic-
generator groups that we are interested in; with regard to achieving construc-
tions for domains of infinite covolume, within the Euclidean representation of
polyhedral structures.

We supplement these process descriptions with judicious use of figures and
flowcharts. And, in Section 3.4.1, provide code-excerpts of the top-level pro-
cesses from the Dirichlet_ subroutines of SnapPea [59], along with a list of
computational constants.

The resultant program, SnappyD, has then been used to construct domains for
the groups given in [23], [60] and [62]; with detailed summary tables provided in
Appendix C. In Appendix B we also provide a simple overview of the execution
of the program, its variants and the contents of the support files.

In Chapter 5 a reduction and description of these tables is provided. This is
begun with a detailed description of the results for the generalised arithmetic
triangle groups of [60]; before we discuss the outlier data and similar results that
our computations have uncovered. We summarise these results in Section 5.3,
listing polynomial tables and covolume results as relevant to the classification
of arithmetic groups. We end with the classification given in [62], and the
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furthering of several group results given in [23].

Among these results we highlight the existence of a number of groups that dis-
play parallax in their covolume results, and groups that fail the cycle condition
on Poincaré polyhedrons. These groups include those used in the work of recent
references around which extra consideration may be needed. We also point to a
possible categorisation of Fuchsian group output based on basepoint movements.

We have written this with an aim of providing a reference for any similar projects
that other researchers may desire to embark upon; focusing on the overall ge-
ometric, and computational, aspects of the project. By doing this we hope to
maintain a level of accessibility within the work, providing a thorough descrip-
tion of the relevant computational action of SnappyD (SnapPea).

As we deal with several models of hyperbolic geometry, we avoid detailing any
model specifically; instead providing a brief overview of the four canonical mod-
els, their relation to one another and their representative isometry groups in
Appendix A. Given this we note several key references, specifically the texts
[10], [41] [44] and [55] which are considered core references for research into
Kleinian groups. In addition to these, [41] is a definitive reference on arithmetic
groups and [51] provides a foundation in topology.



2. THE GEOMETRY OF KLEINIAN GROUPS

Here we outline the properties of Kleinian groups, as relevant to our interests.
The general results of this section are detailed across [10], [32], [44] and [55];
with an introductory account provided in most papers given in the bibliography.

2.1 Discrete Groups

Let X be a topological metric space and G a group of transformations on X; G
is then discrete if the identity, I, of G is isolated in the topology of local uniform
convergence. Any subgroup of a discrete group is also discrete.

For our purposes X will be a model of hyperbolic 3-space and G will be a
subgroup of Isom+(X), the orientation-preserving isometries of X. We describe
these background spaces in Appendix A.

Let x be any element of X, then:

• The stabilizer of x is the subgroup Gx = {g ∈ G : gx = x}; and

• The orbit of x is the set G(x) = {gx : g ∈ G}.

Any two points x, y ∈ X are in the same orbit if and only if G(x) = G(y). In
this way the orbits partition X.

G is said to act discontinuously on X if and only if for every compact subset K
of x, and for all but finitely many g in G,

g(K) ∩K = ∅.

If g(K) ∩K = ∅ for all g 6= I, then G is said to act properly1 discontinuously
on X.

If G acts discontinuously on X, then each stabilizer Gx is finite and each orbit
G(x) is a closed discrete subset of X.

Definition 2.1.1. Let X be topological space and let G be a group of transfor-
mations acting discontinuously on X. Then a fundamental set S for G in X is
a subset of X containing one, and only one, point from each orbit G(x).

1 Freely discontinuous in some references.
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Clearly, a fundamental set is a partition of X such that any two points x and y,
in X, are in the same partition if, and only if, there exists a transformation g,
in G, such that gx = y. This provides a natural quotient space, the orbit space
X/G = X/ ∼, where the quotient mapping is: x ∼ y if and only if there exists
g in G, such that g(x) = y.

Let X and G be as above, and let vol() be a volumetric measure on X. Then a
subset D of X is referred to as a fundamental domain of G in X if and only if:

• D is a domain (an open connected subset of X);

• there exists a fundamental set S, such that D ⊂ S ⊂ D; and

• the vol(∂D) is zero.

This last criterion is not always used in the definition for a fundamental domain;
if a fundamental domain satisfies this criterion, then it is said to be proper,
otherwise it is an improper fundamental domain.

Definition 2.1.2. A fundamental domain D for G in X, is said to be locally
finite if and only if for every compact subset K of X the set

{g ∈ G | g(D) ∩K 6= ∅}

is finite.

Fundamental domains provide a useable, geometric realisation of a quotient
space. A group G is cocompact if its fundamental domain has compact closure;
and is defined to have covolume equal to the volume of its fundamental domain.

2.2 Möbius Transformations

Consider the Riemann sphere, Ĉ = C∪ {∞}, and the fractional linear transfor-
mations, f : Ĉ 7→ Ĉ,

f : z 7→ az + b

cz + d
,

where ad− bc = 1. These mappings are known as Möbius transformations, and
form a group under the composition of functions. We denote this group byM.

This group of Möbius transformations is then the group of orientation-preserving
transformations on Ĉ that are the finite compositions of reflections in lines and
circles. It follows that each element of M has a unique representation in, and
thatM is isomorphic to, the matrix group PSL(2,C) ≈ SL(2,C)/{±I}.

We will follow the general tradition of abusing notation, whereby we simultane-
ously consider a Möbius transformation as both a function and a matrix; and



2.2. Möbius Transformations 13

further, we will consider matrices in SL(2,C) in the understanding that they
are a double cover of PSL(2,C).

f = ±

[
a b

c d

]
, ad− bc = 1.

In this way we consider f to have a trace value tr(f) = ±(a+ d), and a trace-
square value tr2(f) = (a + d)2; noting that tr(f) is dependant on the chosen
matrix representation of f , where tr2(f) is not.

Through the Poincaré extension, below, these transformations can be extended
to represent the orientation-preserving isometries on the upper half-space model
of hyperbolic 3-space, see Appendix A. Thus the classification of Möbius trans-
formations following in the rest of this section carries over onto the group of
orientation-preserving isometries Isom+(X).

It is common in the literature to forgo the label M and refer directly to
PSL(2,C) as a representation of Isom+(X). We do not do this here as different
models of hyperbolic 3-space have different, though isomorphic, representative
matrix groups and we will not be immediately focusing on a single background
model as is commonly the case.

2.2.1 The Poincaré Extension

We consider the extended real space R̂n = Rn ∪ {∞}, and note the equivalence
between R̂2 and Ĉ. The Möbius group on R̂n is then denoted M(R̂n) and is the
group of orientation-preserving transformations that are the finite compositions
of reflections in hyper-planes and hyper-spheres of R̂n. The Möbius group on
X ⊂ R̂n, denoted M(X), is then the subgroup of M(R̂n) preserving X.

By considering R2 to be the (x, y)-plane in R3 and by taking each reflecting
line and circle, used to compose an element of M(R̂2), to be the intersection
of R2 with a reflecting orthogonal plane or sphere, the action of M(R̂2) can be
extended to act on R̂3. This extended action preserves, and is symmetric on
either side of, the (x, y)-plane; thus it is common to restrict consideration of
this action to the upper half-space Û3 = {(x, y, z) ∈ R3 : z ≥ 0}∪{∞} and note
that M(R̂2) ≈M(Û3).

This construction is known as the Poincaré extension, and the group of
orientation-preserving compositions of reflections in hyper-spheres and hyper-
planes, in R̂n, that preserve Ûn is isomorphic to M(R̂n−1). More specifically,
M(Û3) is isomorphic toM.

Note that the action of Möbius transformations, as extended onto Û3 above, can
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be easily determined by extending their fractional linear form with quaternion
algebra, see [10]. Further, the boundary ∂U3 is the extension of the (x, y)-plane,
R2∪{∞} ≈ Ĉ; exposing the link between a group’s action on a space’s boundary
and its action on the space within.

2.2.2 Conjugacy Classes and Trace Classification

Let f and g be elements of the group G. Then f is said to be conjugate (in G) to
g if and only if there exists h (in G) such that hgh−1 = f . This is an equivalence
relation, and it is common to consider the conjugacy classes of group elements
as a means of considering transformations by their general “geometric” actions
as opposed to explicit form.

Let k be any non-zero complex number, we define the Möbius transformation
mk, in function form, by

mk(z) = kz (if k 6= 1); and m1 = z + 1.

These Möbius transformations are referred to as standard forms. Every non-
identity element of M is conjugate to one, and only one, of these standard
forms.

gfg−1 = mk, for some g ∈ G and some k ∈ C \ {0}.

Hence these standard forms can be used to represent each of the conjugacy
classes ofM.

Let f , g be any two elements of M. Then f is conjugate to g if and only if
tr2(f) = tr2(g); and further

tr2(mk) = k + 2 + 1/k.

Thus it is common to classify the conjugacy classes ofM by both their standard
forms (geometric actions) and tr2 values.

Definition 2.2.1. Let f be any non-identity element ofM, then

1. f is parabolic if and only if tr2(f) = 4

(equivalently f is conjugate to the standard form m1);

2. f is elliptic if and only if tr2(f) ∈ [0, 4)

(equivalently f is conjugate to a standard form mk, where |k| = 1, k 6= 1);

3. f is hyperbolic if and only if tr2(f) ∈ (4,+∞)

(equivalently f is conjugate to a standard form mk, where |k| 6= 1, k ∈ R);
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4. f is loxodromic2 if and only if tr2(f) /∈ [0,+∞)

(equivalently f is conjugate to a standard form mk, where |k| 6= 1, k /∈ R).

Notice that, when acting on Ĉ, a parabolic transformation has a single fixed
point, and the other classes of transformations each have two fixed points. Act-
ing in U3, each non-parabolic transformation f has an axis, the unique geodesic
that arcs between its fixed points on Ĉ.

For a more detailed description of Möbius transformations and their classifica-
tion see [10], [44] and [55].

2.2.3 Elliptic Elements

We take particular interest in elliptic transformations, as they form a key part
of the groups that we will be investigating.

Elliptic transformations are conjugate inM to transformations of the (standard)
form

f : z 7→ eiθz, 0 < θ < 2π.

This makes them rotations of θ about their axes, and thus comparable to the
rotational transformations of Euclidean geometry.

Note that these transformations have standard matrix representation:

f =

[
ei
θ
2 0

0 e−i
θ
2

]
;

And so the trace-squared value for an elliptic element is

tr2(f) = 4 cos2(θ/2).

Consider a non-identity transformation f inM, and let n be the least positive
integer such that fn = I. Then f is said to be of (finite) order n; if no such n ex-
ists, then f has infinite order. All non-identity, orientation-preserving isometries
with finite order are elliptic. An elliptic transformation is called a primitive (el-
liptic) transformation of order n ≥ 3 if it is of order n and tr2(f) = 4 cos2(π/n).

A group G is said to be torsion-free if it has no non-trivial elements of finite-
order; thus a subgroup ofM is torsion-free if and only if it contains no elliptic
transformations.

2 Usage of the term loxodromic is not consistent in the literature, where it is often extended
to include the hyperbolic transformations.
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2.2.4 Limit Sets and Ordinary Sets

Let G be a discrete subgroup of M, considered to be acting on Ĉ, and let Λ0

be the set of fixed points for all hyperbolic and loxodromic elements in G.

Λ0 = {z ∈ Ĉ | there exists f ∈ G, tr2(f) /∈ [0, 4] such that f(z) = z}.

The limit set Λ is the closure of Λ0 in Ĉ, and the complement of the limit set,
Ω = Ĉ \ Λ, is referred to as the ordinary set3. If G is torsion-free then it acts
properly discontinuously on Ω, and discontinuously otherwise.

If Λ contains more than 2 points then G is a non-elementary group, otherwise G
is an elementary group. Λ is the smallest non-empty G-invariant closed subset
of Ĉ; and if G is non-elementary, then Λ is a perfect set4.

2.3 Kleinian Groups

Our specific interest is in the non-elementary discrete subgroups of M, these
groups being collectively known as Kleinian groups5.

Kleinian groups are intimately related to hyperbolic geometry; the group M
being isomorphic to Isom+(X); where X is hyperbolic 3-space, as described in
Appendix A. In fact the quotient space X/G, when G is a Kleinian group, is
isometric to an orientable hyperbolic 3-orbifold; when G is torsion-free, then
X/G is also referred to as an orientable hyperbolic 3-manifold.

It is noticeable that many references refer to orbifolds inclusively as manifolds, or
to avoid them as an exceptional class of groups to be dealt with later; presumably
this is due to the term, and relevance of, orbifolds not having been highlighted
until work focusing on the classification of Kleinian groups and manifolds was
well underway, [58]. See, for example, [42].

Let G be a Kleinian group, then, as in Section 2.1, G is said to be cocompact
if and only if X/G is compact; and, similarly a Kleinian group G is said to
have (in)finite covolume if and only if X/G has (in)finite volume with respect
to its induced hyperbolic metric. A Kleinian group with finite covolume is
non-cocompact if and only if it contains parabolic elements.

Kleinian groups are those non-elementary groups which act discontinuously on
X.

3 The ordinary set is also often refered to as the domain of discontinuity or the regular set.
4 A set S is perfect if it contains all of its limit points; equivalently, S is perfect if S is

closed and has no isolated points.
5 In the literature, There is some variation over the definition of Kleinian groups; primarily

in the restriction to non-elementary groups.
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Theorem 2.3.1. Let G be a non-elementary subgroup ofM, then G is discrete
if and only if G acts discontinuously on X.

Note that this theorem does not hold for the closure of X. If a group G ⊂ M
acts discontinuously on X, then it is discrete; however a group may be discrete
while not acting discontinuously on ∂X. For example, take f(z) = 2z, then
〈f〉 ⊂ M is a discrete group that does not act discontinuously on C. When we
refer to the general action of an element it will generally be with respect to its
extended action on X.

2.3.1 Elementary, Fuchsian and Degenerate Groups

While not our specific focus, for the sake of completeness we also describe a
number of other types of subgroups ofM.

Recall that a discrete group, G, is said to be elementary if the limit set Λ contains
no more than two points, or, equivalently, if it has a finite orbit in R3; otherwise
it is said to be non-elementary. If all elements in G have a common fixed point,
then G is referred to as reducible; all reducible groups are elementary.

Further, if Ω is empty then a Kleinian group G is said to be of the first kind;
otherwise it is of the second kind. If a Kleinian group has finite covolume, then
it is of the first kind.

If each element in G preserves some disc or halfplane in Ĉ, then G is called
a Fuchsian group; in which case, G is conjugate to a subgroup of PSL(2,R).
Fuchsian groups are a well studied set of groups that are intimately related to
the isometries of hyperbolic 2-space in the same way Kleinian groups are to
hyperbolic 3-space.

The set of Fuchsian groups has been classified, as have the elementary groups,
see [10]. The torsion-free Kleinian groups have also been heavily studied; a good
reference for this class of groups, following Poincaré’s treatment of Fuchsian
groups, can be found in [42].

There are numerous other classes of Kleinian groups. We highlight several for
the case of G, where G is a finitely generated Kleinian group.

• G is a quasifuchsian group if Λ is a Jordan curve and there are no elements
in G that interchange the components of Ω.

• G is an extended quasifuchsian group if Λ is a Jordan curve and there are
elements in G that interchange the components of Ω.

• G is a degenerate group if Λ and Ω are both non-empty and connected.
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• G is a web group if Ω contains infinitely many components each with a
quasifuchsian group stabilizer.

Note that an extended quasifuchsian group has a quasifuchsian subgroup of
index two. And the boundary of each component of Ω in a web group must be
a Jordan curve.

Determining the discreteness of a given subgroup in M is generally a difficult
problem, see [30]. There are many sufficient, or necessary, conditions; but no
simple conditions that are both necessary and sufficient for discreteness. This
leaves the classification of Kleinian groups an active area of research. Aiding
these investigations are the notable properties of Kleinian groups to decompose
when finitely generated; as investigated in [1], [61] and their references. Specif-
ically, any finitely generated Kleinian groups can be “constructed” from a set of
elementary groups, totally degenerate groups and web groups. More relevant to
our work is the following well known result.

Theorem 2.3.2 (Proposition 2 of [33]). The group G is a Kleinian group if and
only if, for each pair f, g ∈ G, the two-generator group 〈f, g〉 ⊂ G is a Kleinian
group.

Given the results above, it is common to study general Kleinian groups through
these more specific groups. We note that this research follows the above result
in restricting our attention to certain types of two-generator Kleinian groups;
specifically, our interest will be in groups generated by a pair of elliptic trans-
formations, i.e. Kleinian groups with torsion, relating to hyperbolic 3-orbifolds.

2.3.2 Parameterisation of Two-Generator Groups

For any two elements f, g ∈ M we define the commutator [f, g] = fgf−1g−1,
and note that tr[f, g] is invariant under conjugation, matrix representation and
alternating the order of f and g.

Using this, the trace-squared parameterisation given in Section 2.2 can be ex-
panded to a parameterisation of two-generator groups.

Definition 2.3.3. Let G = 〈f, g〉 be a two-generator subgroup of M. Then we
define the parameter set of G to be

par(〈f, g〉) = (β, β′, γ)

where
β = β(f) = tr2(f)− 4,

β′ = β(g) = tr2(g)− 4,

γ = γ(f, g) = tr[f, g]− 2.
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These parameters have been normalised (as compared to the individual param-
eters given in Section 2.2.2) so that f is parabolic if and only if β(f) = 0. Note
that f and g then share a common fixed point if and only if γ(f, g) = 0. Recall
that if the generators share a fixed point, then all elements of G share a common
fixed point; in which case G is reducible and, thus, elementary.

In the literature it is common to have par(〈f, g〉) = (γ, β, β′). We give the
version above for consistency, as we will later use a modified parameter set of
the form (p, q, γ), see Section 2.4.

Using this parameterisation we give the following well known theorem.

Theorem 2.3.4. If γ 6= 0, then (β, β′, γ) determines a two-generator group
〈f, g〉 ⊂ M up to conjugacy.

The proof of this, see [27], is found in demonstrating that an appropriate pair
of generators can always be constructed from a given parameter set; in Section
4.2 we demonstrate such generators for the two-elliptic-generator case, see also
[16].

By this parameterisation the space of two-generator subgroups ofM (γ 6= 0) is
linked to the complex space C3; the discreteness of the group 〈f, g〉 may then
be considered in context of the point (β, β′, γ) ∈ C3.

2.3.3 Projections of Discreteness

The following results demonstrate that we can project the parameter space C3

onto C2, mapping general two-generator Kleinian groups onto Kleinian groups
where one generator is of order two, and that furthermore there is a symmetry
in these spaces for each fixed β-value.

Theorem 2.3.5 (Lemma 2.26 in [28]). If (β, β′ = β, γ = γ0(γ0 − β) 6= 0)

are the parameters for a discrete group, then there exists a discrete group with
parameters (β,−4, γ0).

Theorem 2.3.6 (Lemma 2.29 in [28]). If (β, β′, γ) are the parameters of a
discrete group where γ 6= 0, β, then there exists discrete groups with parameters
(β,−4, γ) and (β,−4, β − γ).

Note that β′ = −4 implies that g is an elliptic element of order two.

The case where γ = β 6= 0 is dealt with below and relates to a special class of
groups discussed in [43].

Theorem 2.3.7 (Lemma 2.31 in [28]). If (β, β′, γ) are the parameters of a dis-
crete group 〈f, g〉 with γ = β(f) 6= 0, then either f is an elliptic transformation
of order 2, 3, 4, 6, or g is an elliptic transformation of order 2.
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These projections cover all possible sets of parameters, except when γ 6= 0;
which, as noted above, correspond to elementary groups. Such elementary
groups are discussed in detail in [63].

The above projections map Kleinian groups onto subgroups of their Z2 exten-
sion, its Lie product and both their conjugates. Thus inducing the symmetry
seen in Figure 2.1 and other, similar figures; in fact, [23], [28] and [62] each
note that in generating these figures, calculations have only been done in the
first quadrant and they have then mapped them onto the other three quadrants
using the above results.

In the case of β = β′, the projection onto a subgroup of the Z2 extension is
geometrically equivalent to introducing an order-2 group element mapping the
axis of f to the axis of g. As G is commonly an index 2 subgroup of this Z2

extension, the covolume of these extensions can be expected to be half that of
the original group.

Later, in Chapter 5, we use these results to generate multiple additional repre-
sentative generators for computational work.

2.3.4 Arithmetic Groups

Arithmetic groups, also known as arithmetic lattices, are a subclass of Kleinian
groups, noted for the strong interplay between their geometric, group and
number-theoretic properties. The text [41] discusses them in great detail, and
gives the following definition.

Definition 2.3.8. A finite covolume Kleinian group G is an arithmetic Kleinian
group if and only if the following three conditions hold:

1. kG is a number field with exactly one complex-place.

2. trG consists of algebraic integers.

3. The quaternion algebra AG ∼=
(
a,b
kG

)
is ramified at all real-places of kG.

If a Kleinian group with non-finite covolume satisfies conditions 1 - 3, then it is
not an arithmetic group but is instead a proper subgroup of an arithmetic group.

For instance, the Bianchi groups are the groups PSL(2, Od), where d is a positive
square-free integer. These groups represent the commensurability classes of the
non-cocompact arithmetic Kleinian groups, see [41].

Arithmetic Kleinian groups can be obtained from quaternion algebras; and
arithmetic properties have been determined which provide arithmetic criteria
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sufficient to determine whether various two-generator subgroups ofM are dis-
crete, [23]. Recent work has focused on developing methods for the classification
of the cocompact arithmetic Kleinian groups, most specifically in the case of
groups with two-elliptic-generators.

Theorem 2.3.9 (Theorem 2.6 in [23]). Let G = 〈f, g〉 be a Kleinian group,
with f a primitive elliptic element of order n ≥ 3, g an elliptic element of order
2, and γ 6= 0, β. Then G is a subgroup of an arithmetic Kleinian group if:

• Q(γ, β) has at most one complex place;

• γ is a root of a monic polynomial p(z) ∈ Z[β][z];

• if γ and γ are not real, then all other roots of p(z) are real and lie in the
interval (β, 0);

• if γ is real, then all other roots of p(z) are real and lie in the interval
(β, 0).

If G is also of finite covolume, then G is an arithmetic Kleinian group.

In the above theorem, the requirement on the field Q(γ, β) to have at most
one complex place can, for some cases, be described in terms of the polynomial
p(z). Specifically in the cases where n = 3, 4, 6 these criteria offer a much
simpler description, see [23].

The interest in two-elliptic-generator arithmetic groups, noted in Theorem 2.3.9,
is motivated by results proving that there are only finitely many arithmetic
Kleinian groups generated by elliptic elements [39]. A full classification has
already been determined for the non-cocompact case; and a description of 21
arithmetic generalised triangle groups, from the cocompact case, is given in
[60]. The work here is related to a greater project on the classification of the
two-elliptic-generator arithmetic groups.

2.4 The γ Parameter Space

Following Theorem 2.3.2 and the results of the previous section, it is common to
focus on the investigation of two-generator Kleinian groups; and, more specifi-
cally, the nature and “geometry” of their parameter sets when considered as a
subspace of C3.
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The (p, 2)-Commutator Plane

We consider only the two-generator Kleinian groups 〈f, g〉 where f is a primitive
elliptic of order p, and g is a primitive elliptic of order q. In this case

par(〈f, g〉) =

(
−4 sin

(
π

p

)
,−4 sin

(
π

q

)
, γ

)
;

and one can consider the alternative parameter set

par(〈f, g〉) = (p, q, γ).

We follow the results of previous sections and consider the groups 〈f, g〉 where
f is a primitive elliptic of order p ≥ 2 and g is an elliptic of order 2. By fixing
p, attention can be restricted to the γ parameter and its parameter-space C;
which is referred to as the (p, 2)-commutator plane. While all non-zero values
of the (p, 2)-commutator plane may correspond to a two-generator group, only
a subset of these will correspond to Kleinian groups.

Note that if (2, 2, γ) corresponds to a discrete group, then it is either a cyclic or
dihedral group; therefore the cases when p = q = 2 are commonly ignored.

In the case p > 2, given a point γ ∈ C∗ one can then ask whether the parameter
set (p, 2, γ) corresponds to a Kleinian group? If it does, then does this group
have finite covolume and is it arithmetic? And further, what can we say about
the (p, 2)-commutator plane in general?

Fig. 2.1: (3, 2)-commutator plane with disc covering and fractal boundary.
(Figure 3.16 of of [62].)

Investigating these commutator planes is an active area of research, see [62],
[23] and the references therein. The remainder of this section will give a brief



2.4. The γ Parameter Space 23

overview of this research and explain the various results demonstrated on the
(3, 2)-commutator plane shown in Figure 2.1; as seen in [62].

Comparable results and images have been shown for other (p, 2)-commutator
planes, most specifically where p = 3, ..., 7. Similar images, and related results,
can be found in [23] and [62].

We begin by highlighting two key features of all (p, 2)-commutator planes.

2.4.1 Symmetry

The reflective symmetry, seen in Figure 2.1, follows from the results of Section
2.3.3 which imply a symmetry in discreteness results, on the (p, 2)-commutator
plane, about the lines Im(γ) = 0 and Re(γ) = 1

2β.

That is, if one of the following parameter sets corresponds to a (arithmetic)
Kleinian group:

• (β,−4, γ),

• (β,−4, β − γ),

• (β,−4, γ),

• (β,−4, β − γ);

then they all correspond to a (arithmetic) Kleinian group.

2.4.2 Bounds and Inequalities

By a fundamental domain construction argument based on the Klein combina-
tion theorems, see [1], [24], it is known that for each commutator plane there
exists a real number γ0 ≥ 0 such that for all γ, if |γ| > γ0, then (p, 2, γ) corre-
sponds to a free group. This γ0-value is indicated by the circle seen in Figure
1.2.

Thus, when |γ| is large enough, every parameter set (p, 2, γ) corresponds to a
two-generator discrete group 〈f, g〉 that is isomorphic to the free product of the
two cyclic subgroups 〈f〉 and 〈g〉. In other words, (p, 2, γ) corresponds to a
group with presentation:

〈f, g | fp, g2 = I〉.

In addition to this free boundary |γ| > γ0, many other inequalities have been
shown to exist between the various parameters. One of the earlier results in
this area was Jørgensen’s inequality, which provides a necessary condition for
non-elementary Kleinian groups.
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Theorem 2.4.1 (Jørgensen’s Inequality, [33]). If 〈f, g〉 is a Kleinian group,
then its parameters satisfy the following inequality

| β(f) | + | γ(f, g) |≥ 1.

This theorem has stimulated research in these inequalities, with many results
having been determined with respect to the complex analysis of Möbius trans-
formations; for example see [26], [27] and [57]. The inequality in Theorem 2.4.1
can easily be rearranged to have the form |γ| ≥ r for some positive real number
r; but, more specific to our setting, [28] provides the following inequality.

Theorem 2.4.2. If 〈f, g〉 is a Kleinian group, and f or g is an elliptic of order
n ≥ 3 and γ 6= 0, β, then

| γ |≥ 2 cos

(
2π

7

)
.

These inequalities, and the free boundary, can be used to begin to describe the
space of two-elliptic-generator Kleinian groups.

2.4.3 Disc Covering

Recent work, demonstrated in [23] and the references therein, has seen the devel-
opment of methods which utilize a variety of inequalities, like those mentioned
above, and semi-group polynomials in the γ-parameter, to build a description
of the γ-plane. This description comprises of an iterative series of boundaries
upon the γ-values corresponding to discrete groups within a (p, 2)-commutator
plane.

Let G = 〈f, g〉 be a discrete group where f and g are elliptic. Take

h = g ◦ fm1 ◦ g−1 ◦ fm2 ◦ g ◦ ... ◦ fmn ◦ g(−1)
n

,

where mi = ±1. Then 〈f, h〉, as a subgroup of 〈f, g〉, is discrete; by Theo-
rem 2.3.6, the group represented by (β(f),−4, γ(f, h)) is discrete; and, further,
γ(f, h) is given by a semigroup polynomial t in γ(f, g) and β(f).

Fixing p, the semigroup polynomial only has variable γ(f, g), which gives rise
to an iterative process for the derivation of successive γ-values in the (p, 2)-
commutator plane.

γi+1 = t(γi).

This iterative process is described in [28], and cannot have 0 as a limit. Further
it cannot iterate into the regions determined by inequalities, such as those given
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in Section 2.4.2 above, to not hold discrete groups; with the exception of certain
‘exceptional’ values.

〈f, g〉 discrete ⇒ 〈f, h〉 discrete

〈f, h〉 not discrete ⇒ 〈f, g〉 not discrete

If R is one of the regions where γ does not correspond to a discrete group, then
neither does the set t−1(R) . This provides a disc covering method whereby
the only valid Kleinian group values of γ can be found in C\{∪t−1(R) : t ∈ τ},
where τ is the set of such semigroup polynomials; with the exception of certain,
hard to determine, exceptional points.

The results of this disc covering method for the (3, 2)-commutator plane, as
undertaken in [23], are shown in Figure 2.1; specifically the discs and the points
contained within them.

Determining the regions R, and their exceptional points, can be difficult; but
[23] notes that there exist polynomials in the arithmetic data for which valid,
discrete γ-values are a root. Using this, one can determine arithmetic conditions
which guarantee the discreteness of a group. The arithmetic theorems recently
developed then reduce the search for γ-values down to a test on polynomials.

These methods have been used to eliminate large regions of possible γ-values in
a number of (p, 2)-commutator planes. See [23] and its references, specifically
[28], for more details and images of other disc coverings.

2.4.4 Fractal Boundary

Using SnapPea (see Section 3.1) for the experimental construction of γ-words,
and eliminating the determinably free elements, progress has recently been made
in demonstrating a conjecturally fractal boundary beyond which all γ-values
correspond to free groups, [62].

This has been done through a consideration of (m, 0) Dehn surgery upon hy-
perbolic 2-bridge links. These links correspond to hyperbolic orbifolds groups
generated by two order-m transformations. These groups are not free, so are
contained within the |γ0| circle, but are generally outside the disc covering given
above. This work has given rise to a “computational boundary”, beyond which
there are only free groups. In the (p, 2)-commutator planes this is conjectured
to be a fractal Jordan curve, and is observationally comparable to the Riley
slice.

The boundary is shown, for the (3, 2) case, in Figure 2.1, and is given by the
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individual points surrounding the disc covering.

This work has greatly improved upon the previously mentioned |γ0| bounds,
and gives an indication towards the overall completeness of these disc covering
methods.

2.5 Fundamental Polyhedrons

We return to focusing on the topological and geometric structures used to rep-
resent a group, and note that for the remainder of this chapter there will be the
tacit assumption that X is a model of hyperbolic 3-space and G is a discrete
subgroup of Isom+(X). However, it is worth noting that this discussion gener-
alises easily to an n-dimensional case; and, as such, it is often given this way, see
[20], [44] and [55]; similarly G can be generalised to include orientation-reversing
isometries and other non-hyperbolic geometries can be used.

Further, as it can be hard to accurately represent this information in a visual
manner, pictures provided in this section will generally be given as 2-dimensional
cross-sections. Given this, pictures should be considered as general guides only.
For a comparative reference, a full description of the 2-dimensional case can be
found in [10].

2.5.1 Polyhedrons

Let the set P be comprised of a non-empty intersection of countably many, non-
disjoint, open half-spaces in X, such that only finitely many of the hyper-planes,
defining these half-spaces, meet any compact subset of X. Then P is an open
convex polyhedron in X. Figure 2.2 shows several polyhedrons in the projective
disc model of hyperbolic space.

Fig. 2.2: Polyhedrons.

The closure of P is denoted P , and we note that it has a natural cell decompo-
sition which is given by the intersections of the above half-planes.

• The single dimension three cell is P itself.
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• The dimension two cells are called the sides6 of P , denoted si;

• The dimension one cells are referred to as the edges of P , denoted ei; and

• The dimension zero cells are the vertices of P , denoted vi.

Note that the sides are closed, convex subsets of the defining hyper-planes; edges
the closed, geodesic line segments lying in the intersection of exactly two sides;
and vertices the finite end-points of these edges, where 3 or more sides meet.
The boundary of P in X, ∂P , is a union of the countably many sides of P .

2.5.2 Side-Pairings and Identification

An identification on a polyhedron P is a map assigning each side s with a side
s′, and an isometry gs, such that:

• gs maps s′ onto s;

• (s′)′ = s and gs′ = (gs)
−1; and

• for each s, there is a neighbourhood U of s, such that

gs(U ∩ P ) ∩ P = ∅.

We refer to a polyhedron with identification as an identified polyhedron and we
call the transformations gs the side-pairing transformations of P , denoting the
group they generate by GS . Further we consider the notations gs′ and g′s to be
interchangeable.

Notice that if s = s′, then the above conditions imply that gs is of order two.

Definition 2.5.1 (reflection relations). Relations of the form g2s = 1 are called
the reflection relations of an identified polyhedron P .

Let P ∗ be the identified polyhedron obtained by identifying the sides of P . Then
we have the usual quotient map

π : P 7→ P ∗

Where, for x, y ∈ P , π(x) = π(y) if there is a side-pairing transformation g such
that g(x) = y. We refer to sets and points A,B ⊂ P as identified whenever
π(A) = π(B).

6 In this, three-dimensional, case it is common to refer to the side of P as faces; we avoid
this here for simple notational benefits.
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Definition 2.5.2 (metric condition). Let P be a polyhedron. If π−1(x) is a
finite set for each x ∈ P ∗, then P is said to satisfy the metric condition.

If P satisfies the metric condition, then the standard quotient metric ρ∗ is a
metric on P ∗. The core property of the metric ρ∗ is that

ρ∗(π(x), π(y)) ≤ ρ(x, y),

for all x and y in P . This ensures that if π : P 7→ P ∗ is continuous, then P ∗ is
complete if and only if it is complete in the metric ρ∗.

Fundamental Polyhedron

Definition 2.5.3 (Fundamental Polyhedron). Let G be discrete, and let P be
a polyhedron in X. Then P is a fundamental polyhedron for G if and only if:

• For every non-trivial g ∈ G, g(P ) ∩ P = ∅.

• For every x ∈ X, there is a g ∈ G such that g(x) ∈ P .

• P has an identification.

• P is locally finite.

Clearly, if a polyhedron is a fundamental domain, then it is a fundamental
polyhedron. It is not uncommon for the concept of polyhedrons to be generalised
so that non-polyhedral domains might also be considered to have sides and an
identification.

2.5.3 The Dirichlet Domain

Given a discrete group G there is a standard method of construction used to
determine a fundamental polyhedron; this construction is called a Dirichlet
domain.

Definition 2.5.4 (Dirichlet domain). Let ρ be a metric on X and let G be
discrete. Then

1. Choose a point 0 in X, such that the stabilizer of 0, G0, contains only the
identity element, I.

2. For any element g ∈ G\{I}, define the half-space Hg(0) of points closer
to 0 than to g(0),

Hg(0) = {x ∈ X | ρ(x, 0) < ρ(x, g(0))}.
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3. Let D(G, 0) be the intersection of all such half-spaces,

D(G, 0) = ∩g∈G,g 6=IHg(0).

Then D(G, 0) is the Dirichlet domain for G with basepoint 0.

Fig. 2.3: The construction of a Dirchlet domain.

In this way D(G, 0) is comprised of the points of X closer to 0 than to any g(0),
g ∈ G\{I}. It is clear that this construction process satisfies the intersection
definition for polyhedrons given above, thus D(G, 0) is a polyhedron in X.

The elements of G also provide an identification on the boundary of D(G, 0),
with the transformation g which “generates” a side s in Hg(0), also being a side-
pairing transformation, mapping s′ onto s. Clearly D(G, 0)∩g(D(G, 0)) = ∅ for
all g ∈ G\{I}, the closure of D(G, 0) contains a fundamental set for G and, as
any compact set can only meet finitely many of its G images, D(G, 0) is locally
finite; thus we have the following result.

Theorem 2.5.5. The Dirichlet domain D(G, 0) is a fundamental polyhedron
for the discrete group G.

This Dirichlet process results in the construction of a fundamental domain for
any discrete group G; and it is worth noting that any group G for which we can
construct a fundamental domain is discrete.

2.6 The Geometry of Fundamental Polyhedrons

Any subsequent consideration of fundamental domains will be solely with re-
spect to fundamental polyhedrons and Dirichlet domains. As such, we cover
some of the additional properties of these constructions, with the specific intent
of setting up terminology for discussing the Poincaré theorem, given below, and
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the construction processes discussed in Chapter 3. See [31], [44] and our other
references for further details on these constructions.

A fundamental polyhedron P is exact if and only if each side of P is equal to
the intersection P ∩ g(P ) for some side-pairing transformation g. The Dirichlet
domain of a discrete group is an exact fundamental polyhedron.

In a procedural sense, if Hg(0), g ∈ G, determines a new side during the con-
struction of a Dirichlet domain, then we call it a side-generating transformation.
All side-pairing transformations are side-generating, but the set of side-pairing
transformations may not contain all the side-generating transformations of the
D(G, 0) construction process.

For every point x ∈ s, ρ(0, x) = ρ(gs(0), x), and so ρ(0, x) = ρ(g′s(0), g′s(x)) =

ρ(0, g′s(x)). The element gs, which generates a side s, also maps its side pair
s′ onto s, gs(s′) = s; from this it follows that if y is any point in P , then
ρ(a, 0) = ρ(b, 0) for all a, b ∈ π−1(y).

Let x be any point in X, then we can draw a path from some point y in P to
x, such that the path does not pass through the translates of any vertices or
edges of P . There are a series of conjugates of side-generating transformations
that will map any translate of P along this path onto the next translate of
P . As these conjugating elements can be made as products of side-generating
transformations, it is clear that P tessellates X. Thus we have GS = G.

Theorem 2.6.1. Let P be a fundamental polyhedron for the group G. Then
the side-pairing transformations of P generate the group G.

2.6.1 Cycle Transformations

Let P be a complete fundamental polyhedron, we consider the following proce-
dure based on its identification:

1. Select an arbitrary edge e1;

2. there are two sides meeting at e1, label one s1;

3. determine side s′1 and the side-pairing transformation g1(s1) = s′1;

4. let e2 = g1(e1);

5. continue to determine si, s′i and gi, for ei i ≥ 2

This gives rise to a sequence of edges {ei}, side pairs {(si, s′i)}, and of side-
pairing transformations {gi}. Note that gi = g′si = gs′i .
Define the period m as the least positive integer such that all three of the above
sequences are periodic with period m. The sequence of edges {e1, ..., em} is
called an edge cycle, which we will simply denote {e1}.
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Fig. 2.4: An edge cycle.

Definition 2.6.2 (cycle transformation). The isometry Be1 = gm ◦ ... ◦ g1 is
called the cycle transformation at e1.

Note that Be1(e1) = e1, and if ei ∈ {e1}, then the cycle transformation at ei is
conjugate to the cycle transformation at e1. In this way we need only consider
conjugacy classes of edge cycles, each class corresponding to a distinct set of
identified edges.

For each edge ei in the cycle {e1}, let α(ei) be the (hyperbolic) dihedral angle
made by the sides s′i−1 and si, measured from inside P .

Definition 2.6.3 (Cycle condition). A polyhedron P is said to satisfy the cycle
condition if and only if for each edge cycle {e1}, there is a positive integer v
such that

v

m∑
i=1

α(ei) = 2π.

If a polyhedron satisfies the Cycle condition, then each edge cycle has the rela-
tion Bv = I.

Definition 2.6.4 (Cycle relations). The relations of the form Bv = I are called
the cycle relations of the fundamental polyhedron P .

2.6.2 Ideal Sides, Edges and Vertices

Consider a polyhedron P ⊂ X, with closure P , as defined above.
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Let P ′ be the closure of P with respect to X = X ∪ ∂X. Then P ⊂ P ′ and
∂P = ∂P ⊂ ∂P ′.

Here we are concerned with those points contained in the intersection ∂P ′∩∂X,
which we refer to as the ideal points of P . These points are highlighted red in
Figure 2.5; however, note that these images are cross-sections of X so only
clearly demonstrate the 2-dimensional case.

Fig. 2.5: The ideal components of a polyhedron.

It is common to extend the definition of sides, vertices and edges to include
these ideal parts of the polyhedron P . We then refer to all non-ideal points in
P ′, or P , as being finite.

An ideal side is a maximal 2-dimensional component of ∂P ′ ∩ ∂X. As the
definition of a polyhedron implies convexity, no two ideal sides can meet. An
ideal side and a finite side are either: disjoint; meet at a curve on ∂X (ideal
edge); or meet at a point on ∂X (ideal vertex). Note that it is possible for an
ideal and finite side to meet at more than one distinct ideal vertex while sharing
no ideal edges.

As above, an ideal edge is a maximal, 1-dimensional component in the intersec-
tion of an ideal side and a finite side of P . Due to the nature of hyper-planes
in X, no two distinct finite faces can share an ideal edge.

The ideal vertices are then the endpoints in ∂X of any (finite or ideal) edges of
P . An ideal vertex is referred to as proper if it is the endpoint of finite edges
only, otherwise it is improper. There can be no similar categorisation of edges
and faces.

If two finite sides of P meet at, and only at, a single ideal vertex v, then v

is known as an infinite-edge. Cycles can be constructed for infinite-edges as
they are for finite edges. This construction process either ends at an ideal edge,
making it a chain; or completes a cycle. Any such cycle is referred to as an
infinite-edge cycle.

Theorem 2.6.5 (Cusp Condition). A fundamental polyhedron is complete if all
its infinite-edge cycle transformations are parabolic.
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We note that ideal sides have no side-pairings, as any side-pairing transformation
g would infer a contradiction P ∩ g(P ) 6= ∅ or g(P ) * X. However, ideal edges
and ideal vertices can be considered to be identified, like their finite counterparts,
under a continuous extension of the quotient map π.

2.7 Poincaré’s Theorem

We end this chapter with a brief discussion on Poincaré’s (fundamental) theorem
for fundamental polyhedrons.

Definition 2.7.1. Let P be a complete polyhedron with an identification satis-
fying the cycle condition. Then P is called a Poincaré polyhedron.

Theorem 2.7.2 (Poincaré’s Theorem). Let P be a Poincaré polyhedron, then:

• GS is discrete;

• P is a fundamental polyhedron for GS; and

• the cycle relations and the reflection relations (of P ) form a complete set
of relations for GS.

This is a subtle theorem that stands out as one of the few simple, sufficient
criterions for discreteness; further, it provides a direct link between the funda-
mental domain of a group and its group presentation. As such, this theorem
serves as a cornerstone to many areas of research and is outlined in many texts.

The proof is very rarely given explicitly for the three-dimensional case - we
have not been able to find one. Maskit gives a detailed overview of the proof
in 2-dimensions, before indicating how to extend it to 3-dimensions in [45];
here he also first demonstrated that a commonly held convexity condition was
not required. In fact, while convexity is a part of our original descriptions of
polyhedrons and the Dirichlet construction, it isn’t necessary for any of the
descriptions that followed.

The proof of Poincaré’s theorem is now often given in a general n-dimensional
form, as in [44], we note that [20] provides the most detailed and complete
exposition available on the theorem; demonstrating it in it’s most general form,
as well as providing a review of the current literature on the topic.

The constructions, given in these Sections 2.5-2.7, provide a method from which
quick and accurate computation of fundamental domains can be based, which
is discussed further in Chapters 3 and 5; and in the canonical reference [56]
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We note again that the Dirichlet domain is a function of both the group G

and the basepoint 0. Shifting the basepoint will give a distinct construction,
geometrically comparable to the Dirichlet domain for a group conjugate to G.

Additionally Poincaré polyhedrons are not restricted to polyhedrons with finite-
covolume; and thus Poincaré’s theorem for fundamental polyhedrons holds for
domains with ideal vertices, edges and sides.



3. COMPUTING FUNDAMENTAL DOMAINS

In this chapter we discuss a computational framework for the construction of
fundamental polyhedrons. The method outlined here is taken from the kernel
of the computer program SnapPea [59], and is an implementation of the theory
given in Chapter 2.

Later, in Chapter 4, we discuss our intended application and adaption of the
processes given here, before using them to construct domains for discrete groups
generated by two finite-order elliptic transformations in Chapter 5.

3.1 SnapPea

SnapPea is a computer program designed for the study of hyperbolic 3-manifold
and knot theory. The primary developer is J. Weeks, who created the first ver-
sion as part of his doctoral thesis. When we refer to this program we are referring
to the modern kernel of the program - that is, the current computational core of
the program, not the user interface or any other satellite parts of the program.
SnapPea can be downloaded via [59].

The overall focus of this program is on the triangulation of manifolds (orb-
ifolds), and from them the purposeful derivation of information relevant to the
classification of groups and manifolds. It performs several main computations:
taking a knot, or representative file, as an input; constructing a triangulation
of the knot complement, describing the manifold as a gluing of tetrahedra; and
determining the fundamental group and other manifold properties. From there
it can be used to perform Dehn surgeries on the knot complement or use the
fundamental group to construct a fundamental domain in hyperbolic 3-space,
representative of the manifold or orbifold.

In this way the main focus of SnapPea revolves around computations on, and
manipulations of, a triangulation data structure.

SnapPea is often considered to be comprised of two main parts: the routines
relating to the determination of an ideal triangulation for a hyperbolic knot
complement; and those relating to the computation of the canonical decompo-
sition of this complement. However, for our purposes we consider the SnapPea
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Fig. 3.1: Flow chart of the SnapPea program.

kernel to be divided into two different sections, those parts dealing with this
triangulation and decomposition of a knot complement, and those dealing with
the construction of a fundamental domain; the later of which we refer to collec-
tively as Dirichlet_ subroutines. These subroutines, which we detail below,
are concerned with the construction of Dirichlet domains as we have described
in Section 2.5.3.

3.1.1 The Dirichlet_ subroutines

As stated, our interest is in SnapPea’s computational processes that focus on
the construction of fundamental domains in hyperbolic space.

These processes are a centralized group of programs written across several files,
each possessing a different component of the computational process for the con-
struction of a fundamental polyhedron. We note these files below.

• Dirichlet.c provides overall structure to the general construction pro-
cesses; giving global organization, formatting input generators for the
main construction procedure, accessing the routines for finalising the do-
mains, and providing access to the core Dirichlet domain construction
routines.

• Dirichlet_basepoint.c provides the routines for moving the basepoint
of the Dirichlet domain in an attempt to maximise its injectivity radius.

• Dirichlet_construction.c contains the two main construction routines,
the functions for cutting the domain representation, and the preliminary
finalisation routines for confirming the resultant construction as a funda-
mental polyhedron.

• Dirichlet_extras.c provides the functions for adding all the “bells and
whistles” to the Dirichlet domain once it has been computed. These de-
termine the edge classes and calculate the hyperbolic volume of the fun-
damental polyhedron, Euler characteristic and other constants; and, in
doing so, confirm the fundamental polyhedron.
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• Dirichlet_precision.c provides some access to the standard error re-
ducing functions of SnapPea for use in these subroutines.

The actual construction procedure is detailed below in Section 3.3.

Fig. 3.2: Interaction of the Dirichlet_ subroutines.

There are two additional Dirichlet_ files that, while a part of the gen-
eral Dirichlet_ subroutines (by name), are not among those under our
consideration, these are: Dirichlet_rotate.c, which helps the SnapPea
user interface to keep track of the visual representation of a domain; and
Dirichlet_conversion.c, which converts the Dirichlet domain back into a
triangulation for use inline with the majority of SnapPea’s functions.

In addition to the files given above, the Dirichlet_ subroutines run off the
routines and data structures provided by a number of other files; such as the
matrix algebra and kernel files of SnapPea; and the file winged_edge.h, which
provides the overall data structure for representing the polyhedron data. For
our purposes we consider these additional files to be part of the greater, overall
Dirichlet_ subroutines.

Note that all the files mentioned above are freely available for download as part
of the SnapPea kernel [59], and have been provided in PDF form in the SnappyD
support files.

3.1.2 SnapPea as a Template

The code of the SnapPea kernel is freely available for use as a template for build-
ing programs upon. The most notable example of a program based on SnapPea



38 3. Computing Fundamental Domains

is probably the program Snap, [17]. A program providing an updated, object
orientated, code that integrates the computational methods of SnapPea with
the highly accurate computational techniques of the number theory program
Pari, [53]. Snap maintains a similar triangulation focus to SnapPea, and it is
worth noting that its developers encouraged the depth of development seen in
parts of the modern SnapPea program.

Given the similar ideas, but greater accuracy of Snap, it is worth addressing the
idea that using it as a basis over SnapPea would seem the wiser choice. Indeed,
brief communication with one of the developers did indicate that Snap should
also have infinite precision Dirichlet domain construction routines. However,
the code has scarce documentation, especially when compared to the incredibly
well documented SnapPea, while still maintaining a triangulation specific focus,
so we felt working from SnapPea would be the wiser initial choice. As we discuss
in Chapter 6, increasing the precision of these routines is an option for a later
discussion.

Our choice of SnapPea was also encouraged by its noted successes, its construc-
tion procedures are even used in Snap as a double check. Additionally, the
program has been used in other related research, see [62], and a goal at the on-
set of this project was determining why certain attempts to construct Dirichlet
domains, using a program based on the Dirichlet_ subroutines, were failing.
This last issue is dealt with in Chapter 5.

3.1.3 Groups of Interest

It is our intention to modify the Dirichlet_ subroutines to prevent the failure
of the program in a variety of situations; we discuss these changes and issues
in Chapter 4. Specifically, we will expand the routines to construct domains
for both finite and non-finite constructions, directly from a modified parame-
ter set (p, q, γ); while providing information on the construction process and
structure of the fundamental polyhedron, providing a core upon which future
investigations and adaptation may be based.

The triangulation process of SnapPea ensures that any group for which a do-
main construction attempt is made, will be both (approximately) discrete and
have finite covolume. We are interested in the arithmetic, disc-covering and
“free boundary” related groups as discussed in Section 2.4. In the case of arith-
metic data we know that the group is discrete; but for other points, especially
the exclusion points of the disc-covering, this is not necessarily the case. For
investigative purposes, we require the program to be able to attempt domain
constructions for both sets of groups.
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3.2 Computing Fundamental Polyhedrons

In applying a computational theory to the construction of a fundamental poly-
hedron, there are several important issues that require consideration.

At its most basic level, as outlined in Section 2.5.3, the procedure for construct-
ing a fundamental polyhedron follows three basic steps:

1. Start with

• X, a model of hyperbolic 3-space;

• G, a discrete group of isometries acting on X; and

• 0, a suitable basepoint in X.

2. Determine g(0) for a non-identity element g of G and remove (“cut off”)
all points in X closer to g(0) than they are to 0.

3. Repeat step (2) for all non-identity elements of G.

However, based on this naive interpretation of the process, several considerations
arise in the computation of a Dirichlet domain, namely: the accurate and easy
representation of a polyhedron in hyperbolic 3-space; the representation, or
storing, of group information in both an accessible and usable way; and an
accurate cutting method with which to generate the polyhedron.

Additionally, in any case that is likely to be of interest, this is a countably
infinite construction process. While in practice a final domain may often be
found quickly, generally there is no guarantee that, after n ∈ N cutting steps,
the Dirichlet domain for a group will be realised. Further, in a system without
infinite precision, there is a likely chance that after a sufficiently large number
of cutting steps, or generations of group elements, the accumulation of error will
exceed the bounds of acceptable accuracy. Thus this construction process must
be tempered with the realisation of possible failure.

In this section we describe the implementation of the background mathematical
constructs used by the Dirichlet_ subroutines, and note the practical limita-
tions that have been kept in mind. The realisation of these limitations against
the computational goals of this project are discussed in Chapter 5.

We note that for the remainder of this work, when we refer to polyhedrons, Pi,
and half-spaces, Hg, we are generally referring to their respective closures; as
distinct from the open sets defined in Sections 2.5.1 and 2.5.3. This is due to the
computational representation of spaces being best based on closed sets. Within
the context of this ongoing discussion, this should not cause any confusion.
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3.2.1 Implementation of Hyperbolic Space

For the general purposes of describing a polyhedron, the projective disc model,
D3 (see Appendix A), lends itself to being the obvious choice of background
model as it avoids many of the extraneous properties inherent of hyperbolic
space, specifically:

• the space is finitely bounded in R3, with D3 being identified as the unit
3-ball; and

• the geodesics of D3 are Euclidean straight-line segments in R3.

Additionally, it is noted in [37] that the isometry and transformation calculations
in D3 do not take on the rational form they do in other models.

This allows (finite) Dirichlet domains to be described by the conventional linear
data structures that are often used to represent Euclidean polyhedrons. Under
this model, SnapPea uses a winged edge data structure to represent a polyhedron
in R3, see [8]. This mesh construct is noted for a description which focuses on a
description of the edge data, which aligns well with the edge properties outlined
in Section 2.6.

Note that while the choice of D3, as a model of hyperbolic 3-space, gives access
to the common, real linear algebra, description of a polyhedron and the real
linear algebra inherent of the representative isometry group, PSO(1, 3), it is
still necessary to accurately consider the polyhedral domain P as a hyperbolic
structure; especially with relation to the action of hyperbolic isometries on the
basepoint and alterations to the polyhedron.

However, with this linear representation, an issue arises with the Dirichlet do-
main construction process being required to start from an arbitrarily large do-
main. We take the basepoint 0 = {0, 0, 0} ⊂ R3, and require an initial polyhe-
dron P0 from which the construction can begin. A group element, g, will then
induce a cutting action represented by P0 ∩ {x : ρ(x, 0) ≤ ρ(x, g(0))}.

If we maintain the Euclidean representation of a polyhedron, then any attempt
to use a regular n-gon (with arbitrarily large n) to approximate the boundary
∂D3 ⊂ R3, in a meaningful way, would be data intensive and likely still not
general enough. Whereas using a non-polyhedral structure for P0 introduces
an undesirable level of complexity to the description of the initial construction.
Given this, the Dirichlet_ subroutines instead begin with a domain that exists
beyond D3; to discuss this situation we define a new class of points.

Definition 3.2.1 (Classification of Points). Consider a model of hyperbolic 3-
space X, embedded in a parent space Y (R̂1,3 or R̂3). Let y be any element of
Y , then:
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• y is finite if and only if it is contained in X;

• y is ideal if and only if it is contained in ∂X, the boundary of X with
respect to Y ; and

• y is hyperideal if and only if it is neither finite nor ideal.

This definition extends the description of finite and ideal points given in Section
2.6.2. Considering only the projective disc model of hyperbolic 3-space, we can
restate the definition in more measurable terms.

Fig. 3.3: The components of a polyhedron.
(A) hyperideal components; (B) finite component; and (C) ideal components.

Definition 3.2.2 (Classification of Points in R3). Let y be any point in R3,
then:

• y is finite if and only if ‖y‖2E < 1;

• y is ideal if and only if ‖y‖2E = 1;

• y is hyperideal if and only if ‖y‖2E > 1

In this computational setting, SnapPea cannot be quite so exact; the
Dirichlet_ subroutines consider a point y to be:

• finite if and only if ‖y‖2E < 1− 4× 10−7; and

• hyperideal if and only if ‖y‖2E > 1 + 10−3.

Leaving a band of width 1.0004× 10−3 within which a point is considered to be
ideal.

We refer to any polyhedron in R3 with an interior that includes hyperideal
parts as a hyperideal polyhedron, and any other non-empty polyhedron as a
finite polyhedron. Note that a finite polyhedron is not prohibited from having
ideal vertices or infinite (hyperbolic) volume; but it cannot have ideal edges or
faces, as the linear representation of polyhedrons would then imply that there
must be hyperideal parts to the polyhedron.
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The Dirichlet domain construction then begins from a simple hyperideal poly-
hedron, a Euclidean cube set in R3:

P0 = {(x1, x2, x3) ∈ R3 : ‖x1‖E , ‖x2‖E , ‖x3‖E ≤ 2}.

Thus ensuring that any Dirichlet domain will be contained within this initial
polyhedron.

However, there is a catch, by using this framework of linear representation,
and hyperideal starting point, we restrict our possible solutions of accurately
represented fundamental polyhedrons to those with only finite or proper ideal
vertices. That is, as indicated above, these procedures cannot be used to accu-
rately represent a domain with ideal faces.

Fig. 3.4: The initial cube, P0, and a resultant finite polyhedron P .

Within SnapPea, this hyperideal starting point and subsequent domain restric-
tion is not an issue, as the generating groups arise from hyperbolic knot com-
plements and so only domains whose polyhedrons are fully within the interior
of D3, with the exception of a possibly countable number of ideal vertices, are
considered valid constructions. In other words, in their application within Snap-
Pea, there is an assumption that there exist elements g in G that will remove
all hyperideal parts of the initial domain (this is something we are unable to
assume in our work).

Note that in all of the above, the Dirichlet_ subroutines actually consider R3

as the x1 = 1 hyper-plane of the Minkowski space R1,3, so as to allow easy use
of the PSO(1, 3) representation of isometry transformations. The individual
group elements being contained in data structures to match the PSO(1, 3) data
group, and generally being stored alongside their inverses so that if a face is
generated, then so too is its identified mate.
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3.2.2 Group Generation and Representation

As mentioned above, the D3 model of hyperbolic space uses the PSO(1, 3)

matrix group to represent Isom+(X), see Appendix A. This is a group of
4 × 4 real matrices whose actions, when applied in vector form and restricted
appropriately, act as hyperbolic isometries on the unit 3-ball. This real linear
algebra fits with the Euclidean polyhedral representation and allows for more
straight-forward calculations than might otherwise be possible.

However, the groups G commonly used to generate the Dirichlet domains are not
finite, which can make working with them as a whole computationally intensive.
In an attempt to avoid this issue, the Dirichlet_ subroutines use a sequential
method of generating group elements, making use of the fact that G is finitely
generated. Let G be generated by generators gj and take:

• G0 to be the set of generators {gj};

• P0 to be the initial cube structure, as defined above;

• for i > 0, Gi to be the set of side-generating elements of Pi together with
their first-order products; and let

Pi = Pi−1 ∩g∈Gi−1
Hg(0),

where
Hg(0) = {x | ρ(x, 0) ≤ ρ(x, g(0))}.

Then, in this way Gi and Pi can be constructed sequentially and, for all i ≥ 0,
we have

G0 → Gi−1 → Gi ⊆ G

P ⊆ Pi ⊆ Pi−1 ⊆ P0

Where P = D(G, 0).

By working off the side-generating transformations, the Dirichlet_ subroutines
ensure that the group data remains manageable, and lets “needless” transfor-
mations be ignored.

However, as we note in Section 3.3.1, if Pi = Pi+1, or equivalently Gi = Gi+1,
then this group construction method stops progressing. If construction stops,
then as the generators, gj , should appear in Pi as side-generating transforma-
tions and a superset of the intended domain has been constructed, geometric and
topological data can be used to determine any further cuts that are necessary
to realise the final polyhedron P .
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Overall, this provides an efficient and effective method of group and domain
generation; and in the case of groups that SnapPea deals with, quickly leads
to a finite polyhedron containing the desired fundamental domain, if one is
achievable.

Note that rather than waiting for the end of this sequential process, once a finite
polyhedron has been realised the Dirichlet_ subroutines move onto a more
geometric construction method, making use of the side-pairing transformations
and their nature within the polyhedron’s identification. This is detailed further
in Section 3.3.1.

3.2.3 Error

By working in D3, with matrices in PSO(3, 1), as opposed to the more commonly
used PSL(2,C), the Dirichlet_ subroutines are able to use real linear algebra
in both polyhedral and group representation. However, this comes with a risk
of possibly permitting a faster accumulation of error. SnapPea handles error
by a simple method of fixed error resolution; and number recognition through
“safe” functions at certain steps.

The routines keep firm limits on this error by way of an error catch system that
constantly checks for topological errors; ensuring that the constructions either
remain valid to within specific bounds of accuracy or are discarded. This allows
the program to work at high speed, and attempt constructions that may fail,
regardless of other factors.

Overall, this provides a straight-forward method of attempting an infinite
(though practically finite) process, without attempting to force the system be-
yond topological irregularities; focusing on an end result that makes use of the
reciprocal nature of Dirichlet domains - if we achieve a successful construction
D(G, 0), then the construction must be valid as its identification will in turn
generate G.

Resolution

There are many individual error (or resolution) bounds within the program,
such as the ideal and hyperideal approximations mentioned in Section 3.2.1.
For reference purposes, we provide a brief list and description of the main error
bounds in Section 3.4.2.

Separate from these is an alterable resolution setting: vertex epsilon, εV ; this
setting is used to determine the accuracy of vertex positions. Specifically, for
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any vertices u, v ∈ R3, for construction purposes we have

v = u⇔ ‖v − u‖E < εV .

An important feature to note here is that ‖.‖E is a Euclidean measure, so does
not take into account the hyperbolic length of potential edges. In this way,
depending on the size of the individual faces that make up our desired domain,
and the particular form of the group G, this setting can potentially have quite
an impact on the final output in a successful construction process, depending
on edge sizes and specific input generators.

The files in SnapPea note that constructions can generally be considered likely
to fail if εV is not set within (10−16, 10−2), due to either being too imprecise
or attempting to be precise beyond the accuracy of the general computer arith-
metic. In Appendix C we test all our constructions over the full range of these
εV settings. We also note that in later sections we refer to εV by the value k,
where εV = 10−k.

3.3 The Dirichlet Process

Here we detail the overall construction process, as undertaken by the
Dirichlet_ subroutines, using the space and structures as described above.
We note that the general approach here is an attempt to find a fundamental
polyhedron for a given group (from generating isometries), not the direct com-
putation of a Dirichlet domain as described in Definition 2.5.4, of Section 2.5.3.

For additional reference, and to assist this discussion, we provide Figures 3.5 and
3.6; as well as pseudo-code overviews of the three main construction routines,
see Section 3.4.1. Recall that the full code for these routines can be found in
the downloadable SnapPea [59], or in the support files of SnappyD.

3.3.1 The Construction Procedure

The general process of construction is outlined in Figure 3.5. We break it down
to several key steps, which we cover in detail below; note that this is an ex-
panded, and case dependent, version of the basic Dirichlet domain construction
process described in Sections 3.2.1 and 2.5.3.

Figure 3.6 demonstrates the physical alterations made to the polyhedron as it
progresses through these seven steps.

Given an input list of generators:

1. Check the input generators;
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Decision WL1: Exit if the injectivity radius is maximised.
Decision WL2: Exit if the polyhedron is finite.

The details of red-boxed steps Check Identification and
Finalise Polyhedron are shown in Figures 3.7 and 3.9 respectively.

Fig. 3.5: Flow chart of the construction procedure.
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Step: (A) the initial cube; (B) the initial cuts; (C)-(D) bulk slicing;
(E)-(F) maximising the injectivity radius; and (G) the finalised domain.

Fig. 3.6: The construction of a Dirichlet domain.
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2. Create a hyperideal polyhedron P0 (initial cube) and perform the initial,
generator determined, cuts to make P1;

3. Calculate the products of current side-generating transformations and cut
with them (bulk slicing);

4. Repeat Step 3 until Pi is a finite polyhedron;

5. Check the identification on Pi;

6. Attempt to shift the basepoint and maximize the injectivity radius of Pi,
if the basepoint moves, start from Step 2 again; and

7. Finalize the domain by determining the general constants and quotient
map equivalence classes.

Note that this process has a double while-loop structure due to Steps 4 and
6; Step 4 being a crucial processing loop. As noted below there is also a loop
structure in the side-paring routines of Step 5.

For code reference: Dirichlet.c handles Step 1, and calls the functions from
Dirichlet_basepoint.c and Dirichlet_extras.c for Steps 6 and 7 respec-
tively. Whereas the majority of the construction itself, taking place in Steps
2-5, is handled by Dirichlet_construction.c. See Section 3.4.1

Generators (Step 1)

The Dirichlet_ subroutines are begun with the acceptance of a list of matrix
group generators g1, ..., gn ∈ PSO(1, 3), which are immediately adapted into a
more useable Matrix_pair data structure, that links a generator and its inverse,
ensuring they are always accessible together.

However, before any attempt at construction is made, the program attempts to
‘tidy’ the generators. This is done to ensure that none of the generators fix the
basepoint 0, and that the cuts induced by the different generators don’t remove
one another.

Ensuring that each generator induces a side-generating cut is important for the
group tracking procedure, as detailed in Section 3.2.1. If a generator is identified
as inducing a degenerate cut, then it is simplified by a composition with other
generators to provide an equivalent, non-degenerate, generator set. This is the
set G0 = {gj}.



3.3. The Dirichlet Process 49

Initial Cube and Cuts (Step 2)

With the starting generators confirmed, the construction can then begin with
the initial cube P0 - a cube embedded in the hyperideal space of D3, as discussed
in Section 3.2.1; with the intention that this cube be trimmed down to a finite
polyhedron.

The sides of this initial cube are not associated with any group elements, ensur-
ing they are empty components of the general cutting process.

With a construction space initialised, the cube is then cut by the hyper-planes
induced by the individual actions of the initial group generators. This provides
the initial sides, and links the group generating process with the geometric
cutting process.

P1 = P0 ∩∀gj Hgj (0).

Bulk Slicing (Steps 3 and 4)

This is the main construction process undertaken by the function
initial_polyhedron() in the file Dirichlet_construction.c, see Section
3.4.1. We consider these steps to be the main constructive action of the
Dirichlet_ subroutines.

Here, a list Gi is created that contains all the side-generating transformations of
the current domain Pi together with their first-order products; the polyhedron
is then cut by the planes induced by these products to obtain Pi+1; and the
process is repeated.

There are only two possible exits from this loop:

1. the successful construction of a finite polyhedron (a polyhedron fully con-
tained in D3); or

2. the accumulation of error beyond the acceptable bounds of resolution.

This process proceeds quickly, with a successful construction typically complet-
ing this step in well under ten iterations of the loop.

Identification (Step 5)

If the process makes it to Step 5, then the polyhedron Pi is an accurate repre-
sentation of a superset (in D3) of the intended Dirichlet domain. At this point
the routine compute_Dirichlet_domain() calls the functions check_faces(),
verify_faces() and verify_group(), to check and develop the identification
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on the polyhedron1. These ensure that the construction is a fundamental poly-
hedron, as desired, and complete the general polyhedron construction process.

Fig. 3.7: Flow chart of the identification process.

The identification is checked in three stages, the first two ensuring that there is
an identification on Pi, with the third confirming the constructed polyhedron as
an actual fundamental domain for the group and not some finite-sheeted cover.

1. check_faces() runs through each side of the polyhedron, checking that
the identification maps each side’s edge into its mate;

Fig. 3.8: Paring two sides.
(A) a side s with mate s′; and (B) a mateless side s.

This is actually a secondary construction routine, attempting to “pare”
(or “cut”) each side with various transformations generated via its mate
(paired side) and those sides adjoining its mate. The side-paring process
is split into two cases: sides with mates on the polyhedron; and sides
without.

1 Recall that, for 3-dimensional polyhedrons the terms face and side are largely synonymous.
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Case 1 Side s with side-generating transformation gs and mate s′.
Consider s′ and an adjacent side t. If there exists a point v′ such
that v′ /∈ s′ and v′ /∈ Ht(0) but gs(v′) ∈ s, then take v = gs(v

′).

Case 2 Side s with side-generating transformation gs but no mate.
Let s′ = g−1s (s), then as s′ is not a side of the polyhedron there must
exist some side t such that the cut induced by gt would cut s′. Take
v ∈ s, such that v′ = g′s(v) ∈ s′ would also be removed by gt.

Then

ρ(0, v) = ρ(gs(0), v),

ρ(0, v′) > ρ(gt(0), v′).

from which it follows that

ρ(0, v) > ρ(gs ◦ gt(0), v).

Thus the transformation b = gs ◦ gt will induce a cut on the polyhedron
removing the part of s containing v.

In either case, determining the side t is not straight forward. Instead the
procedure undertaken is to attempt to pare s with any transformation
b induced by a valid side, t, of the polyhedron. In the mateless case a
cut must be induced by some choice of side, and if one is not, then a
topological error is reported. In the mated case, if no cuts are made, then
it follows that gs(s′) ⊂ s.

This check processes through all sides of the polyhedron under a for-loop
that is reset whenever a cut is made. As these cuts can introduce new
sides into the polyhedron, this process continues until no more cuts can
be made, thus ensuring that all faces have been checked.

In this way check_faces() ensures that each side is a subset of its mate
under the side-pairing transformations, implying gss′ = s for all sides s.

2. verify_faces() provides an additional check to the result of
check_faces() by looping through each side of the polyhedron and con-
firming that each pair of sides has the same number of edges; and

3. verfiy_group() then goes through each transformation in the generator
list and attempts to reconstruct it from the side-generating transforma-
tions.
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The combination of these three processes confirm that the polyhedron Pi has
an identification. And as the set of side-generating transformations generate
the elements of G0, that identification generates the original group G. Thus
Gs = G and Pi = P = D(G, 0).

Injectivity Radius (Step 6)

The injectivity radius, r, is the radius of the largest ball centred at 0, B(0, r),
that is fully contained within the polyhedron P ; and is related to exponential
maps, [18]. A maximised injectivity radius gives some indication towards there
being a minimal number of sides, and increased symmetry, in the constructed
polyhedron.

If the construction reaches this step, then it has been demonstrated that
the input generators lead to the construction of a fundamental polyhedron.
So compute_Dirichlet_domain() calls the Dirichlet_basepoint.c routines.
This routine attempts to determine a conjugation of the set of side-generating
transformations that will maximise the distance from the basepoint to the clos-
est side, subject to the condition no other side becomes closer than it. This is
a non-linear problem so calculations are done with a linearised version.

The program loops through the requisite calculations keeping track of the overall
basepoint displacement. If the basepoint moves less than a minimal amount,
then the calculated domain is considered to already have a maximised injectivity
radius; and the program moves on to Step 7. Otherwise, attempts to move the
basepoint continue until they reach the bounds of the linearisations accuracy,
at which point the program returns to Step 2, recomputing the fundamental
polyhedron using the full group of side-generating transformations as generators.

We note that there is an allowance within the calling of the domain construction
routines to skip Step 6 and so avoid this component of the construction process.

Finalisation and Output (Step 7)

Once a final fundamental polyhedron has been constructed, the
compute_Dirichlet_domain() routine passes the construction on to the
bells_and_whistles() function of Dirichlet_extras.c for finalisation. The
general process of this step is outlined in Figure 3.9.

At this point in the construction process, all that has been computed is a winged
edge data structure, with abstract group elements associated with each side,
such that this data can be combined to provide an identified polyhedron. In
other words, the only known data is basic geometric “position” information and
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Fig. 3.9: Flow chart of the finalisation process.

individual side-pairing information. The goal is then to combine this informa-
tion to provide a full identification (quotient mapping) on the polyhedron and
calculate all relevant domain information.

1. Quotient Mapping:

The first step in this process is to classify all the sides, edges and vertices
under their identified quotient mapping. This has already been done on
the set of sides through the generation of side-pairs (under side-pairing
transformations).

Identifying the edge classes is not quite as straightforward with each side
only being aware of a single, arbitrary, bounding edge, and needing to it-
erate through all possible matches between the bounding edges to identify
the correct mappings. This is achieved by looking at the edges of side
s, with sequential vertices labelled v1, ..., vn, and its pair s′, with vertices
labelled u1, ..., un, and determining which m ∈ N gives the smallest sum
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of distances between the vertices of mapped edge pairs.

n∑
i=0

‖ui+m(modn) − gs(vi)‖E .

This then gives the set of quotient map identities seen Figure 3.10, and
edge classes are then set accordingly.

ui+m(modn) = gs(vi)
π(ui+m(modn)) = π(vi)

Fig. 3.10: Determining edge pairings.

During this edge matching step, the specifics of how each member of the
edge class maps to its mates are also determined. Identifying vertices can
then be achieved through identifying a vertex with all those it is mapped
to under the recorded edge classes.

2. Subdivision:

Having specified the quotient map, the program then attempts to ensure
that the singular set of the constructed orbifold is contained within the
subcomplex of the polyhedron’s cell construction. That is, it ensures no
points of the singular set are part of the interior of a side. This is done in
two steps:

• All edge classes containing an edge that maps to its inverted self are
split in two, then a new quotient map is generated; and

• All sides that map to themselves are subdivided appropriately, then
a new quotient map is generated.

The sub-division of a side s is split into three possible cases:

(A) gs is a reflection through a point in the centre of s, in which case the
side is split into multiple parts;

(B) gs is a reflection in s, in which case no actual subdivision occurs; and

(C) gs rotates one half of the side onto the other, in which case the side
is split in two.
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Fig. 3.11: Subdividing a side.
(A) reflection in a point; (B) reflection in the side; and

(C) rotation about an axis.

This last case is the only orientation-preserving case2, and the side is split
along the axis of the transformation gs. See Figure 3.11.

3. Calculating Geometric Properties:

With a full identification determined on the polyhedron, geometric data
is then computed for the construction. This includes the calculation of
side, edge and vertex distances and lengths, and calculating the variation
in each of these measures within the individual edge and vertex classes -
if this variation is too great the construction is abandoned and an error
reported.

The dihedral angles at each edge are also calculated, as are the solid angles
at each vertex. This data is then used to determine the sum of angles in
each class, and provide their singularity order; specifically, the real number
v in equation

v

m∑
i=1

α(ei) = 2π

is calculated for each edge class.

The finalisation of the construction is then completed with the calculation
of certain construction classifying data. The inner and outer radii, the
geometric Euler characteristic, the spine radius and volume of the poly-
hedron are all calculated; along with the deviation of the construction.
This deviation is the maximum of all the side-generating transformation
deviations (from a PSO(1, 3) matrix), and is usually very small - between
10−12 and 10−15; see DEVIATION_EPSILON in Section 3.4.2.

As the volume of the polyhedron is of key interest in our work (as the
group’s covolume), we note that the volume is calculated via decomposing

2 While our discussion, and interest, is focused on the situation involving only orientation-
preserving transformations, SnapPea itself is not restricted to using only these isometries and
so can be used to construct domains for non-orientable orbifolds.
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the polyhedron into “birectangular tetrahedra” and then determining the
volume of each tetrahedron individually by the Lobachevsky function.

Upon the successful completion of this step, the polyhedron has been fully de-
scribed as a quotient space and fundamental polyhedron for the group G. The
data for this fundamental polyhedron is then returned back through the calling
program as a final output.
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3.4 Code Excerpts

For additional reference, we end this Section with streamlined code excerpts
for the four of the main routines found in the Dirichlet_ subroutine files, see
3.1.1; followed by a brief, descriptive list of the main error bounds.

3.4.1 Code

The first three of these excerpts comprise the main construction routines, with
the fourth being the top level finalisation routine.

The comments made with regard to each routine should be considered alongside
the process outlined at the top of Section 3.3.1.

Dirichlet_from_generators_with_displacement

00 Dirichlet_from_generators_with_displacement(){

01 array_to_matrix_pair_list()

02 precise_generators()

03 simplify_generators()

04 if generator_fixes_basepoint()

05 conjugate_matrices()

06 while(true){

07 compute_Dirichlet_domain()

08 if (polyhedron == NULL)

09 return NULL;

10 if (maximize_injectivity_radius == true){

11 maximize_the_injectivity_radius()

12 }else{

13 if (Dirichlet_bells_and_whistles() != func_failed)

14 return polyhedron;

15 else

16 return NULL

17 }

18 }

19 }

This function is the main routine of the file Dirichlet.c, providing external access to
the Dirichlet_ subroutines and running checks on both the input and final polyhe-
dron.

• Lines 01-05 comprise Step 1;

• Line 07 calls compute_Dirichlet_domain for Steps 2 through 5;

• Line 11 calls maximise_the_injectivity_radius for Step 6; with
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• Lines 06-18 providing the associated loop; and

• Line 13 calls Dirichlet_Bells_and_Whistles for Step 7.

Within the SnapPea code there are multiple routines that provide external access to
the Dirichlet_ subroutines, but they all call this function.

compute_Dirichlet_domain

00 compute_Dirichlet_domain(){

01 initial_polyhedron()

02 if (check_faces() == func_failed)

03 return NULL;

04 count_cells()

05 sort_faces()

06 if (verify_faces() == func_failed)

07 return NULL;

08 if (verify_group() == func_failed)

09 return NULL;

10 rewrite_gen_list()

11 return polyhedron;

12 }

This function is called by Dirichlet_from_generators_with_displacement() to run
Steps 2-5, and is the top routine of the file Dirichlet_construction.c. It provides ac-
cess to the construction and initialisation routines for Steps 2-4 and then runs through
Step 5.

• Line 01 calls initial_polyhedron for Steps 2 through 4;

• Line 04 is an error check, to ensure the construction is a polyhedron; and

• Lines 02, 06 and 08 comprise Step 5.

initial_polyhedron

00 initial_polyhedron(){

01 new_WEPolyhedron();

02 make_cube()

03 if (slice_polyhedron() == func_failed)

04 return NULL;

05 while (has_hyperideal_vertices() == true)}

06 compute_all_products()

07 if (slice_polyhedron() == func_failed)

08 return NULL;

09 }

10 return polyhedron;

11 }
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This function is called by compute_Dirichlet_domain() to run Steps 2-4, and is the
major initial construction routine of Dirichlet_construction.c.

• Line 02 is the first part of Step 2;

• Line 03 is the second part of Step 2;

• Lines 05-09 is the loop of Steps 3 and 4;

• Lines 06 and 07 being Step 3.

Dirichlet_bells_and_whistles

00 Dirichlet_bells_and_whistles(){

01 face_classes()

02 edge_classes()

03 vertex_classes()

04 subdivide_edges_where_necessary()

05 subdivide_faces_where_necessary()

06 dihedral_angles()

07 solid_angles()

08 if (vertex_distances() == func_failed)

09 return func_failed;

10 if (edge_distances() == func_failed)

11 return func_failed;

12 face_distances()

13 if (edge_lengths() == func_failed)

14 return func_failed;

15 compute_approx_volume()

16 compute_inradius()

17 compute_outradius()

18 compute_spine_radius()

19 compute_deviation()

20 compute_geometric_Euler_characteristic()

21 return func_OK;

22 }

This function is called by Dirichlet_from_generators_with_displacement() and is
the primary routine of the file Dirichlet_extras.c, completing Step 7 by calling all
the functions to finalise the polyhedron. We note that there are only three conditions
where the construction might return failure, though there is the possibility of fatal
errors occurring in, and being identified by, many of the other computations.

3.4.2 Constants

We also provide a list of the more noted computational constants used in the core
Dirichlet_ subroutine files. We categorise these based on parent file; and, where
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applicable, we briefly describe the processes related to these constants. As with the
code above, these constants should be considered alongside the processes and other
references within this chapter.

In file: Dirichlet.h

MATRIX_EPSILON (εM = 10−5).
For all computational purposes, two matrices A = (ai,j) and B = (bi,j) in
PSO(1, 3) are considered equal if and only if |ai,j − bi,j | < εM for all i, j.

In file: Dirichlet.c

SIMPLIFY_EPSILON (εsimple = 10−2).
Take matrices A and B in PSO(1, 3), A is considered simpler than B if and
only if

cosh ρH(A(0), 0) < cosh ρH(B(0), 0)− εsimple.

This measure is used to determine the potential improvement made in moving
from generators {g, f} to {g, gf}, in an attempt to avoid degeneracy in the
generator set.

FIXED_BASEPOINT_EPSILON (εfix = 10−6).
A transformation matrix A = (ai,j) in PSO(1, 3) is considered to fix the base-
point if and only if a0,0 < 1 + εfix.

In file: Dirichlet_construction.c

CUBE_SIZE (C = 2.0).
This is half the width of the initial cube structure, as described in Section 3.2.1.

ERROR_EPSILON (εerror = 10−4).
If a non-identity matrix A, in PSO(1, 3), is generated, and if

ρ(0, A(0)) < εerror,

then an error is returned. By starting with group generators, and attempting
to maximise the injectivity radius, the routines ensure that this only occurs if
A is a (computationally) erroneous identity matrix.

HYPERIDEAL_EPSILON (εhyp = 10−3).
A point x in R1,3 is considered to be hyperideal if and only if

‖x‖2L > εhyper.

Recall that ‖x‖2L = −x20 + x21 + x22 + x23 and x0 = 1.

VERIFY_EPSILON (εverify = 10−4).
This replaces εsimple in the function verify_group(), as it attempts to filter
the set of side-generating transformations down to the original set of generators.
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DEVIATION_EPSILON (εdev = 10−3).
The deviation of a matrix in PSO(1, 3) is a measure of how much the inner-
products, of row i and column j, deviate from the expected values (1,0, or −1).
If an inner-product’s deviation exceeds εdev, then the calculations have moved
too far from PSO(1, 3) and so a failure is reported.

In file: Dirichlet_extras.c

DIST_EPSILON (εD = 10−3).
Let gs be a side-pairing transformation, if

|ρ(0, gs(0))− ρ(0, g′s(0))| > εD,

then something has gone wrong and an error is reported.

LENGTH_EPSILON (εL = 10−3).
The variance in edge lengths across an edge class must be no more than εL.

IDEAL_EPSILON (εideal = 4× 10−7).
A point x in R1,3, that is not hyperideal, is considered to be ideal if and only if

‖x‖2L ≥ −εideal.

Recall that ‖x‖2L = −x20 + x21 + x22 + x23 and x0 = 1.
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4. IMPLEMENTATION OF THE DIRICHLET ROUTINES

It is our intention to use the routines, outlined in Chapter 3, in an attempt to compute
fundamental polyhedrons for groups with two elliptic generators, as introduced in
Section 2.4.

We will calculate these polyhedrons directly from their associated (modified) param-
eter sets:

(p, q, γ) 7→ P = D(G, 0)

using a modified version of the Dirichlet subroutines.

The actual implementation of the routines in themselves is quite straight-forward, as
the only input required is a list of group-generating elements in PSO(1, 3) form.

The specifics of our method of generator construction are covered below in Section
4.2, but they are not a primary focus of this chapter. Here our interest is in how
the Dirichlet subroutines, as found in SnapPea and detailed in Section 3.3, may not
be generally suitable in application to our groups of interest, as mentioned in Section
3.1.3.

In this chapter we discuss our modifications to the code, which we implement through
our new program SnappyD. The goal being to adapt these routines so that they are
able to deal with domains represented by hyperideal constructions.

We discuss the results of our program in Chapter 5

4.1 SnappyD

A key part of this project has been exploring and adapting these routines to avoid
the issues alluded to above, so that some results about our groups of interest might
still be determined. In addition to this, as mentioned in Section 3.1.2, there was
an underlying motivation of investigative work - there already being a local SnapPea
based program that implemented the Dirichlet_ subroutines, which failed for certain
group constructions.

To this end, we have written a program that interfaces with the (now) modified
Dirichlet_ subroutines of SnapPea. We call our program SnappyD, in reference to
SnapPea. In essence, SnappyD is a “wrapper” or “shell” program, providing access to
these modified routines and outputting informative data relevant to the construction
process.
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Fig. 4.1: Flow chart of the SnappyD program.

The program does not have a full user interface. Instead we have decided to run it
off a series of text-files, with an input list of parameter sets, another input of selected
output options and a single output file; as discussed in Appendix B.

Given our motivations and intended use of the program, we have added considerable
construction tracking information that can be accessed through the output file. This
has provided the information from which the polyhedron plots seen in this thesis have
been constructed (using a Matlab based print function); as well as a great deal of
insight into the construction process and any potential failures.

This chapter details how SnappyD constructs matrix group generators from a given
modified parameter set, and how the Dirichlet_ subroutines it uses have been mod-
ified from those in SnapPea. For more information on SnappyD see Appendix B and
the support files.

4.2 Input Generator Sets

SnappyD takes an input parameter set, constructs matrices to represent the group
generator set, and then passes them on to our modified version of the Dirichlet_

subroutines. As such, we start with a discussion on our chosen method of matrix
construction, as this informs our discussion on alternative parameter inputs in Section
4.2.2.

Note that our interest is solely in those discrete groups with two elliptic generators,
both of finite order, as described in Section 2.4. In this case, for the primitive elliptic
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generators f , g with order p, q respectively, we have

β = β(f) = tr2(f)− 4 = −4 sin(π/p),

β′ = β(g) = tr2(g)− 4 = −4 sin(π/q).

This allows us to consider modified parameter sets of the form (p, q, γ), as mentioned
in Section 2.4.

4.2.1 Generators in PSL(2,C)

As noted in Section 2.3.2, each parameter set determines a two-generator group in
PSL(2,C) up to conjugacy. As such, there are infinitely many groups upon which
each construction can be based on.

For computational purposes, it is appropriate to follow the common method of as-
suming one generator is a standard form; meaning one generator will have a (near)
diagonal matrix representative in PSL(2,C) (PSO(1, 3)). We choose the generator
corresponding to the lead input parameter, p, to be of this form.

Under this assumption, the generators for the group G with modified parameter set
par(G) = (p, q, γ), are constructed in SL(2,C) to be:

〈f, g〉 ,

with f = [
eiπ/p 0

0 e−iπ/p

]
(4.1)

and g =  cos
(
π
q

)
+ x γ

4
csc2

(
π
p

)
1 cos

(
π
q

)
− x

 , (4.2)

where

x =

√
− sin2

(
π

q

)
− γ

4
csc2

(
π

p

)
. (4.3)

A full overview and derivation for the construction of these generators can be found
in [16]; though here Mg has been trivially altered from that given in the reference.

Standard Forms, Fixed Points and Conjugation

We note that when viewed as acting on Ĉ, f fixes the points 0 and ∞; and g has fixed
points

z =

√
− sin2

(
π

q

)
− γ

4
csc2

(
π

p

)
± i

√
sin2

(
π

q

)
,



66 4. Implementation of the Dirichlet Routines

which are of the form z = w + ui ± vi, where x = w + ui as in Equation 4.3, and
w, u, v ∈ R.

While due to the complex square root in the initial term there are technically four
possible values, the selection of these root pairs is made in the determination of the x
term in generating matrix g, see Equations 4.2 and 4.3.

Fig. 4.2: The fixed points of f and g on C.

The fixed points, or axes, of the isometies f and g, acting on U3, are then the geodesic
arcs between these fixed points. In the case of f this is the positive component of the
x3-axis, which includes the Dirichlet basepoint (0, 0, 1) (in U3).

As stated in Section 3.3, the Dirichlet_ subroutines attempt to ensure that the gen-
erating matrices do not contain the basepoint in their set of fixed points, so all of
our generator sets will be conjugated on entry into the routines. We had previously
attempted a conjugation during generator construction that would move the basepoint
to 1

2
(w+ ui); but, in testing, this gave no decrease in measurable error, while increas-

ing the overall manipulation of the generator set, see Section 4.5.3. Thus we have
abandoned the alteration, leaving the code available in the back-up source code for
possible later use.

Precision

An additional benefit of the f and g representation, shown in Equations 4.1 and 4.2,
is the accuracy in the matrix entries.

Of the 16 components of the matrix entries in f and g, 6 are numerical constants
and another 4 are trigonometric constants; further, of the remaining 6 components, 2

feature these constants additively, 2 are γ multiples of a trigonometric constant and
all solely feature terms involving these constants and γ. In this way, all the entries are
derived from the real constants 1, 0, sin(π/n), cos(π/n), sin2(π/n), csc2(π/n), and a
complex term γ.
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Within a general computing system1 we could compute all this to an arbitrary level
of accuracy; but the Dirichlet_ subroutines work in double precision. Thus, these
constants have all been calculated individually to double precision for 2 ≤ n ≤ 50 and
stored within the generator construction routines of SnappyD.

Thus, for the purposes of this project, we limit acceptable elliptic order values to
2 ≤ p, q ≤ 50 and also disallow the elementary cases p = q = 2.

PSO(1, 3) Representation

While this discussion has focused on the PSL(2,C) representation of Isom+(X), we
note that it is PSO(1, 3) matrices that are used in the Dirichlet_ subroutines, see Sec-
tion 3.2.1. It was our original intention to construct generators straight into PSO(1, 3),
see [16], in a bid to boost initial accuracy, however the gains here also appeared in-
consequential.

Instead we construct generators in PSL(2,C) and then map them into PSO(1, 3) using
the routines already present in SnapPea, see Appendix A. This leaves the generator
construction process more easily open to later alteration and the immediate display of
generators more applicable to common references.

4.2.2 Parameter Sets

Recall that each modified parameter set describes a conjugacy class of two-generator
groups and so, by the method of generator construction given above, the projection

(p, q, γ) 7→ 〈f, g〉

produces one specific pair of group generators, out of an infinitude of possible pairs.

While in general not all parameter sets correspond to a discrete group, for our purposes
we assume all those we work with do; each set of parameters having been derived
through arithmetic or other means, as seen in Chapter 2.

Considering that, as noted in Section 3.2.3, the Dirichlet_ subroutines only proceed
while error does not exceed the bounds of acceptable accuracy, the use of multiple
computationally distinct generator sets will provide a level of redundancy in our overall
calculations. This should not only provide additional likelihood of success, but also
further insight into the robustness and accuracy of the constructions based around
each group.

Rather than directly manipulating our generator constructions, we can instead use
variations of the parameter set to construct equivalent, or closely related, group gen-
erators that are often computationally distinct from those already available.

1 That is to say, in a computational computer program like Maple or Mathematica.
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Parameterisation

We consider a modified parameter set, of the form (p, q, γ), from which generating
matrices are constructed under the assumption that the lead generating element will
be a standard form; with all three parameters then influencing the construction of the
second generator. However, as

〈f, g〉 = 〈g, f〉

and
tr[f, g] = tr[g, f ]

the parameter sets (p, q, γ) and (q, p, γ) must both represent the same conjugacy class
of groups in Isom+(X).

This is not surprising, as the usual projection onto an order n commutator plane is
arbitrary with respect to generator order. In this situation, it follows that if p 6= q,
then the set (q, p, γ) will generally lead to the construction of an equivalent, and
computationally distinct, set of generating matrices.

Similarly, the γ parameter of each set will typically appear as the complex root of a
polynomial; these roots occur in pairs, and each group parameterised by one of these
complex conjugates provides another computationally distinct set of generators.

This infers that while a parameter set determines a group up to conjugacy, for our con-
structions the particular representation of the parameter set determines the particular
member of the conjugacy class that is generated. Thus, for our purposes, when p 6= q

and Im(γ) 6= 0, we have four computationally distinct, but equivalent, parameter sets:

(p, q, γ), (4.4)

(q, p, γ), (4.5)

(p, q, γ), (4.6)

(q, p, γ). (4.7)

With p = q and Im(γ) = 0 each reducing the number of variant options by a factor of
two.

Z2 extension

In the case where p = q there is no distinction between the parameter sets 4.4 and 4.5,
or 4.6 and 4.7. However, by using the Z2 extension as detailed in Section 2.3.3, new
groups can be constructed which are generated by an order p (= q) element, an order
2 element, and have a gamma parameter γ0 determined by the equation

γ = γ0(γ0 + 4 sin2(π/p)).
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This gives four new parameter sets:

(p, 2, γ0) (4.8)

(p, 2, γ0) (4.9)

(2, p, γ0) (4.10)

(2, p, γ0) (4.11)

The groups represented by these new parameter sets should be distinct from the origi-
nal group, but remain members of the same commensurability class of groups. Specif-
ically, these groups can be expected to have half the covolume of the original group;
if they don’t, then they should have the same volume, indicating that the particular
order-two generator is an element of the original group.

Parameter Sets

In this way, from any given parameter set, (p, q, γ), for a two-elliptic-generator group:

• If γ /∈ R, then we can consider constructions generated by four (two if p = q)
initial matrix generator sets, taken from the computationally distinct parameters
sets 4.4 - 4.7; and

• If p = q, then we can also consider these alongside the constructions generated
by the parameter sets 4.8 - 4.11, giving a total of 6 initial matrix generator sets
to work from.

In the case the γ ∈ R, these numbers are halved.

Following this idea, we use multiple generator sets, noting that while it is hoped that
each of the distinct but equivalent generator sets will give the same result, it is neither
uncommon nor unexpected for there to be some discrepancy, particularly for large
values of p, q or γ. We highlight some of these variations in Chapter 5.

We note that the γ ∈ R case, and indeed the general case of β, β′, γ ∈ R, has been
classified [29]; and so are not a part of our general focus.

4.3 Failures in Implementation

When it works, the domain construction procedure outlined in Chapter 3 is fast, com-
pleting in a matter of seconds; with the main construction loop (while loop two, see
Figure 3.5) generally terminating in well under ten iterations for relatively simple do-
mains. However, it is not hard to find discrete groups in our class of interest where the
initial construction fails to finish within 106 iterations; and, if we artificially terminate
the loop and attempt to continue with the construction after a ‘reasonable’ number of
iterations, then the domain fails topological checks and the program fails in completing
the domain’s construction.

This non-completion of while-loop two is quite distinct from the standard construction
failures outlined in Section 3.2.1. Those failures comprising of a series of controlled
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exits that are induced by geometric or group theoretic incongruities that are often
due to an accumulation of error. While failure on artificially exiting the loop is not
unexpected, as loop exit-criteria have not been satisfied, getting to a point where
artificial exits are required is an issue.

There are two primary reasons for these continuing loops:

1. the desired construction is a hyperideal polyhedron; or

2. effective cutting action is not being undertaken.

The first issue is of key interest, as the system of the entire Dirichlet_ subroutines
is built around the assumption of a domain represented by a finite polyhedron. Iden-
tifying this case, while preventing a loop induced by the secondary cause, is the focus
of this section.

Below we discuss our expanded description of domains to further classify these hyper-
ideal issues, before detailing the alterations we have then been able to make to the
Dirichlet_ subroutines; this has allowed us to construct representations of domains
with ideal sides using hyperideal polyhedrons.

4.3.1 Hyperideal Issue

As the Dirichlet_ subroutines are not designed to deal with hyperideal polyhedrons,
adapting the routines to work with them is a primary concern.

When the attempted construction of such a representative polyhedron occurs, it is
often observable in the evolution of a domain structure. This is demonstrated in the
non-completing construction seen in Figure 4.3. The sides that remain consistently
throughout the shown construction are lying on the initial cube and it is clear that
there is an issue in cutting off hyperideal regions in the domain; this construction
process never exits while-loop two due to domain’s hyperideal components. Compare
this with Figure 3.6.

This is seen in most relevant constructions that fail to complete, and it does not seem
inappropriate to assume that almost all non-completing constructions (as opposed
to those constructions that fail) stem from the desired domain requiring hyperideal
representation.

As noted in Section 3.2.1, the Dirichlet_ subroutines make no provision for a funda-
mental domain with ideal sides, as any such domain will have a hyperideal representa-
tion in the polyhedron structure underlying the routines. The assumption of domain
with only finite or proper vertices being a defining feature of the construction process,
most specifically in the exit requirement for while loop two, see Section 3.3.1.

This is a serious obstacle in our use of the code; as we have seen in Section 2.4, there
are infinitely many groups that fit in this incompatible category that are in our class
of interest.

As the key issue we need to work around involves the type (finite, ideal or hyperideal) of
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Fig. 4.3: Hyperideal construction failure.

each point in the polyhedron, we have implemented a classification over the developing
polyhedron.

Classification of the Hyperideal Parts

At every major step in the construction or finalisation of the polyhedron (outside of
the basic cutting steps), we classify the current polyhedron with respect to its finite
and hyperideal components. In the Dirichlet_ subroutines there already exists a
Boolean function for determining whether or not a given polyhedron is hyperideal,
based on the vertices, but this work expands on it greatly.

We classify the polyhedron in four steps, each relating to an individual component:

• We identify the nature of each vertex as either finite, ideal or hyperideal; using
the measures given in Section 3.2.1. This classification of vertices provides the
details upon which the remaining classification is processed.

• Each edge, e, is classified relative to three points, the two endpoints v1 and v2,
and v0, the point on the edge closest to the origin (basepoint):

– If v0, v1 and v2 are hyperideal, then e is hyperideal;

– If v1 and v2 are both non-hyperideal, then e is finite; or
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– If either of v1 and v2 are hyperideal while v0 is finite, then e is retracted.

Note that as v0 is at least as close to the origin as v1 and v2, it is not possible
for v0 to be hyperideal if either of v1 and v2 are not.

• A side, s, is classified first by whether or not it has a side-generating transfor-
mation, and then by the classification of its bounding edges.

– If s has no associated side-generating transformation, then it is a false side
to be ignored for all construction and classification purposes.

Otherwise:

– If s has only finite edges, then it is finite.

– If s has retracted edges, then it is retracted; and

– If s has only hyperideal edges it is (bounded) hyperideal;

The polyhedron Pi itself can then be classified by a check of whether or not it has
hyperideal vertices, and whether or not it has retracted edges.

Retraction Points

We have also expanded the description contained in the edge data-structure to include
the retraction point for each of its end points. If the end vertex is finite (or ideal) then
the retraction point matches it. If hyperideal, but retractable, it holds the ideal point
that the vertex would retract to - this point is the intersection of the edge with the
unit sphere. Retraction points are calculated by the bisection method, using SnapPea’s
measures for ideal and hyperideal points to determine an edge’s ideal intersection point.

If the edge is marked hyperideal, then it has no finite component and the retractions
are marked to be the basepoint, 0. This mirrors a general classification of hyperideal
components where we give them zero position, length, volume, etc.

The retraction point v′, on edge e, of vertex v.
Where e is: (A) a hyperideal edge;

(B) a finite edge; and (C) a retracted edge.

Fig. 4.4: Retraction points and edge classification.

For non-hyperideal edges, the segment between the retraction points is the “real”
useable component of the edge.

We note that retraction points are marked with respect to edges; in this way each
vertex may have multiple, distinct retraction points. Further, no finite vertex may
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exist at the basepoint, as this would infer that the basepoint is fixed by some group
element; so hyperideal retractions being set to this point adds no ambiguity to the
construction.

The retraction points are stored in the edge data-structure only. As the polyhedron is
the convex hull of its vertices, and each vertex is the intersection of multiple edges of
sides, the retraction information cannot be coherently stored in the vertex construct.
Vertices do, however, keep track of whether of not they are linked to a retraction point
on an edge.

False Sides

In classifying the sides as finite, retractable or hyperideal; we also assumed that hy-
perideal sides are those without group action, this is not an entirely valid assumption,
as there could theoretically exist generated sides whose finite components have been
wholly removed by a subsequently generated side; but this is preferable to removing
any potentially useable data from the polyhedral data structure.

As far as we are aware this situation has not arisen, and if it were to, then it would
either: cause an error in the check_faces() function, denying a successful construction
over outputting incorrect results; or, have no effect on the construction or its validity.

Infinite Edges

Through this classification we have been able to alter the processes used throughout
the program, so as to take into account the expanded nature of the desired polyhedral
constructions. However, given the highly specific nature of infinite edges (see Section
2.6.2), and the fuzzy ideal boundary inherent in the Dirichlet_ system, we have
decided not to expand our classification to attempt such a definitive classification of
infinite edges; if any such points exist.

It is worth noting that if infinite edges do not exist then the domain is guaranteed
complete and potential infinite edges should be visible in the final observable geometric
structure; should there ever arise any concern over them. Because of this, we do not
confirm the completeness of hyperideal domains. This is a minor hole in the program,
but we feel it is justified; putting us in line with many references that do not give a
full treatment to the completeness condition, as noted in [20].

4.3.2 Loop Exits

With the above hyperideal classification of the constructing polyhedron, we also need
an appropriate method of avoiding the aforementioned infinite-loop in while-loop
two. Outside of general failure, the loop has one exit condition “the polyhedron

is finite”, so a more comprehensive set of exit criteria is required.

There are two reasons for an apparently non-completing loop:

• No new cuts are being made (Gi+1 = Gi ⇔ Pi+1 = Pi) and the current domain
Pi is hyperideal.
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• Small cuts are being slowly made (error may be in effect here).

Faced with a potential infinite loop, the program needs a way to determine whether
the intended construction has reached its end, while still hyperideal in nature, or if
the process should be continued in search of a finite end point.

Fig. 4.5: Hyperideal construction decision

As most constructions conclude in fewer than 10 iterations of the basic construction
loop, we begin by simply setting a catch-all limit of 50 loops; under the assumption that
if cuts are being made at this point, then they are most likely due to an accumulation
of error in the matrix representation of group elements. If this is not the case, then
it should be noticeable from the output tracking information; and, in either case, the
continuing construction procedures in the identification routines will hopefully be able
to salvage a valid construction.

For example, this ongoing loop issue can occur at the extreme ends of valid vertex
epsilon settings, provided that an accumulation of error does not default the construc-
tion first. And a similar, resolution-dependant, infinite loop has been noticed in the
side-paring routines when resolution is set too low. We have not yet identified any
other valid cases in our groups of interest.

The more likely situation, in falling into an infinite loop, is that the construction is
not progressing as no more new cuts are being generated; this implies no new group
elements are being added to the working group. Once this happens, no new cuts can
be generated.

At this point either the construction is a failure or the domain is hyperideal, and a
method of distinguishing between the two cases is required. It is not our desire to force
the construction process beyond its normal limits, so we identify when this situation is
happening and attempt one extra round of calculating group-element products (twice
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in one loop) in an attempt to generate new cutting actions. If this doesn’t work, this
step of the construction is abandoned and while-loop two is exited.

The idea with this is that we don’t want to force the routines through to unnecessary
errors; and if we don’t make the construction gains we need, then the identification
routines may progress the construction further. If not, then there are other generator
sets that may succeed. Originally we had set out to generate higher level products2

when progress was not being made, but this quickly becomes computationally intensive
- constructing the m-fold products of side-generating transformations for a polyhedron
with n sides involves the construction of mn matrices in PSO(1, 3); a very modest 10

sided figure requires 128000 arithmetic operations to compute the third order products.

In Loop Classification

In the interests of ensuring that the system does not exit while-loop two without as full
a construction as possible, especially in the hyperideal case, we have also incorporated
the identification routines, discussed in Section 3.3.1 and modified in Section 4.4.1
below, into the loop.

In some ways this is quite a distinct alteration to the flow of the original routines, but
the overall effect in this alteration is minimal - simply reducing the number of loops
often needed, while allowing for an increased trackable depth within the program.
Allowing us to maintain a better record of when key construction points are achieved.

In this new position, these routines are given no ability to fail the construction, act-
ing only as a supplementary set of construction routines and adding some additional
options for tracking success within the domain generation process.

With the confirmation of a fundamental domain now available in loop, we leave the
original confirmations of while-loop one in place, as a catch-all for any exit and a
visible reconfirmation. It should be noted that these alterations of the loop process do
not guarantee the success of the overall construction, but do prevent the most common
form of infinite loop that can occur in the program.

The modified while-loop two is outlined in Figure 4.6. We summarise the new loop
exit criteria and their interaction with the identification routines.

Case 1 Exit conditions satisfied:

Loop manually stopped (50 iterations); or finite polyhedron.

Follow on interaction:

The identification is checked.
If successful, the domain is finalised.

Case 2 Exit conditions satisfied:

Cutting has stopped.

2 We have generally run SnappyD with two variants: one using the double round of product
calculations and one that simply exits the loop. But there is an additional variant that will
sequentially work up to calculating n-fold products; we do not use this version as it has so far
given minimal gains for a considerable increase in computing time. See Appendix B
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Decision 1: Is the polyhedron finite?
Decision 2: Is the number of iterations greater than 50?
Decision 3: Is effective cutting action still being made?
Decision 4: Have we attempted to compute second level products?

Fig. 4.6: The modification of while-loop two

(The identification may have been confirmed in loop.)

Follow on interaction:

The identification is (double) checked.
If successful, the domain is finalised.

From which it is clear that we have maintained the original integrity of the Dirichlet_
subroutines while expanding the while-loop two processes to deal with the hyperideal
case. Further, the inclusion of identification routines, to allow for the tracking of
construction successes allows the process to determine whether the construction itself
is actually complete.

As mentioned previously, we have identified one other potentially infinite loop occur-
rence, in the check_faces() component of the identification checking routines, but
this is either due to resolution settings or greater errors. We have considered working
to also prevent this loop (however rare), but felt that there was no obvious way around
it that would not have other potential effects upon the greater class of successful com-
putations.

4.4 Finalisation

Having expanded the main construction and loop processes to develop and classify
hyperideal polyhedrons, it is then necessary to expand the identification, basepoint
and other finalisation routines to also work with these constructions.

The classification and finalisation routines come after exiting while-loop two in the
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construction process. In the standard system this would mean that the polyhedron is
finite; but in our modified routines this is not necessarily the case. The first step is to
demonstrate the identification on the (hyperideal) polyhedron, confirming a fundamen-
tal domain; this may have already been demonstrated in the modified while-loop two,
as discussed above. Once this has been done, then the basepoint can be maximised;
before developing a quotient map and determining constants of interest.

4.4.1 Identification

Checking an identification on the hyperideal polyhedron requires some additional con-
sideration; with each of the separate verification programs needing to be altered to
take into account the existence of hyperideal (or, specifically, transformation-less)
sides. To this end we incorporate a new function classify_polyhedron() into the
routines. This function generates a classification over the polyhedron, as outlined in
Section 4.3.1, and is called prior to each iteration of the identification routines.

The individual components of these routines, as in SnapPea, are covered in Sec-
tion 3.3.1 (step 5). The two “key” identification routines (check_faces() and
verify_groups()) need theoretically minor alteration; having to now skip consid-
eration of those components of the polyhedron related to its hyperideal sides.

Then, with the above classification over the polyhedron, verify_faces() can investi-
gate the full stratification of edge types around each side and confirm the numbers in
each non-hyperideal class matches across the side-pairings.

If these routines are successful, then it is confirmed that the construction represents a
Dirichlet domain, D(G, 0).

4.4.2 Basepoint Restriction

The movement of the basepoint is handled by the Dirichlet_basepoint.c routines
and is the feature of while-loop one3; see Section 3.3.1 (step 6). It is worth noting
that the actual basepoint, used to begin the construction, is always centred at 0 in
the projective model of hyperbolic space; the group is actually conjugated to affect an
artificial movement of the basepoint.

Now that ideal sides are a possibility, the routines used to maximise the injectivity
radius of the polyhedron become a concern. Recall that, for the purposes of this
construction, the injectivity radius is the hyperbolic distance from the basepoint to
the closest side. While in the case of a finite polyhedron there is no issue in this
maximisation system, with a hyperideal polyhedron there is the possibility that the
lack of a finite side in some direction may allow for the basepoint to be moved towards
a limit point on the sphere at infinity. That is, there is a possibility that the injectivity
radius will tend to infinity for hyperideal polyhedrons.

3 As noted in Section 3.3.1, moving the basepoint, and avoiding while-loop one, is an option
within the standard Dirichlet_ routines. We have versions of SnappyD that allow for either
option; see Appendix B.
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Fig. 4.7: Basepoint issues with hyperideal polyhedrons.

As motion of the basepoint proceeds in a series of small increments, we sum these steps
in an attempt to track the overall movement. We consider b̃, the sum of Euclidean
movements induced upon the base point, this does not accurately represent the position
of the basepoint but does give some indication as to its relative position. This is not
restricted to only the movements induced by the basepoint routines, also including any
minor resetting of the basepoint that may be affected by a manipulation of the initial
generator set. In this way all constructions, even non-maximised, will show some form
of basepoint manipulation.

We then allow access to the basepoint routines only while ‖b̃‖2E ≤ 0.7. If the bound is
hit or exceeded, then it is noted in the output file. In these circumstances it may be
best to work with, or compare output alongside that of, a non-maximised version of
the domain.

While exceeding this bound does not strictly indicate an issue with the construction,
it is generally indicative of a case of potential interest, especially if this is seen across
multiple generating sets for the same conjugacy class of groups. These results are
discussed further in Section 5.2.5.

4.4.3 “Bells and Whistles” Finalisation

These routines are all discussed in Section 3.3.1 (step 7); and, as in SnapPea, if the
construction process reaches this point, then the polyhedron is a Dirichlet domain for
the group G.

Quotient Mapping

The processes that generate a quotient map on the polyhedron run off a comprehensive
edge-pairing routine, based upon the known side-pairings. For sides and vertices,
limiting the routine’s access only to those components with finite parts works well.
But the dependence on a winged edge data structure and the additional complexity
of edges, now with finite, retractable or hyperideal natures, makes several extra levels
of consideration necessary to the edge-pairing routines.

The standard process for determining the edge-pairings is to look at a side, (double)
check that they have the same number of edges and work around them from an easily
calculated starting point. The core process in this method is still usable, but requires
expansion to take into account the purely hyperideal edges, of which any number can
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exist, which arise in retracted sides and that can have no part in the identification
and generation of edge classes. Further, as edges may not necessarily have finite, or
otherwise comparable, end points we instead have to focus on the individual retraction
points of each edge.

Fig. 4.8: Pairing edges on retracted sides.

This is a much more complicated process; but works well. Recall that all hyperideal
components are given 0 measure and the retraction points on hyperideal edges are set
to the basepoint. This allows the process to focus on processing the retracted vertices,
without possibility of data corruption through the consideration of false points. See
Figure 4.8

Further, the data from this process can be accessed in the output script and provides
an interesting means of visualising the development of the quotient mapping.

The Bisection of Edges and Sides

With an accurate quotient mapping the bisection of edges and sides, to ensure that the
singular set of the orbifold is contained within the vertex structure, is still possible.

The groups we use are all orientation-preserving; this means that edges may need to be
bisected as usual, but the only possible side-splitting situation is that linked to an order
two rotation about an axis contained in the side. As our generators are of finite-order,
sides that map to themselves, and thus require bisection, are not uncommon.

If a side is finite, then the standard bisection routines work. However, if it is a
retraction or bounded with only hyperideal edges, then there is the potential for some
issues to arise. Namely, in these situations it is entirely possible that the edge structure
will be such that no obvious cut is actionable, see B, C, D in Figure 4.9; and compare
with Figure 3.11.

Fig. 4.9: Bisecting the sides of hyperideal polyhedrons.
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Generally, determining a non-obvious bisection line should not be too difficult; simply
requiring the determination of the associated transformation’s axis. But effecting such
a bisection is a major alteration to the standard format of the polyhedron’s winged
edge structure. As these bisections are a largely cosmetic issue in our appreciation
of the domains, and do not affect the overall nature of the construction, we skip the
bisection of a side if it is of type B, C or D seen in Figure 4.9.

If any bisections are skipped, they are noted in the output file. The only effect of
forgoing the bisection of a side, is in the tracking of group data, as noted in Section
4.5.3 below.

Other Data

In following with the rest of these modifications, the final domain data is calculated
as per the standard Dirichlet_ subroutines, utilizing our classification of components
to avoid enacting computations on hyperideal components.

The lengths and distances across mapping classes are all calculated by finite compo-
nents, along with the dihedral angles and singularity orders. But for classification
data, we focus solely on the calculation of the volume and deviation; excluding the
other geometric classifying constants, like spine-radius and radii, which lie outside the
general domain confirmation processes.

This provides the data we are interested in, leaving the other data routines to be
adapted and incorporated at a later date.

4.5 Word Tracking

As seen above, the overall program constructs a polyhedron and, if finite, gives its
hyperbolic volume. This volume (or lack of volume in the hyperideal case) being our
primary interest. But the finalisation routines develop a lot of information that is
otherwise unused in the construction.

More specifically, the routines also develop a full quotient mapping over the polyhe-
dron, and determine the singularity orders about each relevant point. This information
is related to Poincaré’s Theorem and, with a word description of group elements, can
provide an additional level of insight into our groups of interest and the construction
process used.

4.5.1 Words

Within SnapPea there exist group representation routines that attempt to build a
representation from the triangulation of a manifold. These routines are not available,
nor applicable, to the Dirichlet_ subroutines; however, by adding a word generation
and tracking system, we can generate a word for each constructed group element, a
word for each of the polyhedron’s cycle transformations and build some form of group
representation.
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Let g be any element of G, then we use w(g) to denote the reduced word for g. Words
are held in SnappyD using a simple integer array; which, due to storage concerns,
we limit to being 126 letters long. This system is built around there being only two
generators, but it can very easily be expanded to deal with more. The generators are
the only length one words and the identity the only length zero word.

Whenever relevant group elements are manipulated, the corresponding words are also
generated. However, if computing f ◦ g and

length(w(f)) + length(w(g)) > 126,

then w(f ◦ g) is set to the empty word and an error in word tracking is reported in
the output script.

There is no easy way to incorporate the word data-structure into the matrix represen-
tation, so instead it is imbedded within the common matrix pair structure used for
tracking matrices, which stores a group element alongside its inverse. Where a matrix
is stored individually, as in noting side-generating transformations, data structures
have been expanded to also hold the word. This keeps relevant information together
and ensures both matrix and word representations can be easily referenced.

In this way the word tracking system sits outside of the modified Dirichlet_ subrou-
tines and in no way interacts with the actual computations. To keep things simple,
this word tracking is always in effect; but is only displayed in the output script when
desired.

4.5.2 Edge Cycles

With the stored word information we can generate words for each cycle transformation
in the finalised domain. This is achieved by looping through the edge class {ei}

ei 7→ ei+1 7→ ... 7→ ei+m;

and noting the side-generating transformations

g−1
i 7→ g−1

i+1 7→ ... 7→ g−1
i+m.

This information can then be used to generate the word of the inverse cycle transfor-
mation:

w(B−1
ei ) = w(g−1

i ◦ g
−1
i+1 ◦ ... ◦ g

−1
i+m) = w(g−1

i )w(g−1
i+1)...w(g−1

i+m).

Combined with an edge’s singularity order n, we can then determine the words for the
cycle relations B−nei = I.

The program avoids direct calculation and storage of these larger words and instead
outputs them directly, accompanied by the relevant singularity order. Note that at this
point the cycle condition has not been shown to be satisfied; the information relevant
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to the checks for this condition are given alongside the display of the singularity order.

4.5.3 Applications and Poincaré’s Theorem

As we do not confirm the completeness condition, see Section 4.3.1, and lack a means
of classifying infinite edges, we cannot technically use the Poincaré Theorem. However
assuming the condition is satisfied we can still look at the data presented critically. In
either case the information provided by this tracking of words is of general interest.

For such interests, we have created an output option that works under the assump-
tion of satisfying Poincaré’s Theorem and displays each side-generating transformation
(generators) and each edge cycle (relations) to provide a pseudo-presentation of the
group; while confirming the cycle condition. There are, however, still issues that must
be recognised when considering this output:

• The “presentation” may not be complete, with unactionable side bisections being
unable to effect the relevant edge cycles. In other words, certain reflection
relations may be left out of the list of relations, though this will be noted in the
general output.

• There is no in-built method for dealing with the word problem in this program.
Further, each variant generator set uses the same letters to represent different
elements, so a direct comparison between groups can be especially difficult.

For these reasons we consider this representation output as basic observational data
and will not use it in our work in classifying groups. Despite these issues, this still
allows for considerable insight into the construction process.

For example, it was through this output that we uncovered the additional complexities
that the simplification routines were inducing in the initial generating sets, in response
to the basepoint avoiding conjugation highlighted in Section 4.2.1. Under this prelim-
inary conjugation it was not uncommon to have the input generators {f, g}, being
adapted into forms similar to {f, f7gf−8} = f7{f, gf−1}f−7. Whereas these adapta-
tions have not been seen to occur for generator sets that have not had this preliminary
conjugation applied to them.



5. COMPUTATIONAL GEOMETRY

We have used our program, SnappyD, for the attempted construction of fundamental
domains relating to a large number of groups. In this chapter we provide an overview
of the related computational results, and their application.

As a preliminary investigation, we give a detailed overview of a well-known set of
groups in Section 5.1; where we highlight a number of observable results. In Section
5.2, we detail aspects of the computational nature of our results, highlighting the
properties of what might be considered the outliers in our output data. We then
summarise the results from all our constructions in Section 5.3 with reference to the
classification of arithmetic groups.

Specifically, we use SnappyD to construct fundamental domains for a number of groups
derived from, and related to, those discussed in Section 2.4, paying particular interest
to the volume of such constructions. These groups are either derived from arithmetic
data, and so are known a priori to be discrete; or arise as exceptional points in the
disc covering procedure, where discreteness may be unconfirmed.

Full output tables, comprising the base data for all successful constructions can be
found in Appendix C. A small portion of the results in the appendix are discussed
here directly, but they are all referenced with respect to the classification of groups.

Results

The overall process of SnappyD and the general output are described in detail in Chap-
ters 3 and 4. Our particular interest in its application is in determining the covolume
of an orbifold given its associated parameter set; or, alternatively, determining that the
orbifold is associated with a hyperideal construction (as described in Section 4.3.1),
which the system then denotes as “free”. These are generally not free groups and will
instead be among the types of Kleinian groups listed in Section 2.3.1; this result in-
dicating a demonstration of discreteness where computational results were previously
unavailable.

To help ensure the achievement of results we base our construction on multiple com-
putational parameter sets, as described in Section 4.2.2, and attempt these individual
constructions over a range of error resolutions (vertex epsilon, see Section 3.2.3). As-
suming a successful construction, this then provides a variety of information regarding
the rigidity of the construction and its comparative complexity.

As the domain generated for any given G, its conjugates and, potentially, its Z2 ex-
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tension should all share a superficially equivalent complexity, we do not undertake a
rigorous investigation of the individual constructions and avoid a full description of
the related calculations. Instead focusing on the overall group set G.

We consider the volume as our end result, qualifying it by deviation in the constructed
polyhedron. Recall that the deviation is a measure of the distance a side-generating
transformation is from PSO(1, 3). These results, when combined with information
relevant to the source of the parameter set, then allow us to determine the discreteness
and possible arithmeticity of the group.

Discrete Groups

In a general setting, there is no assumption that a given modified parameter set (p, q, γ)

corresponds to a discrete group; in which case there can be no assumption of success.
But, in the case of subgroups of arithmetic groups, all the parameter sets that we use
correspond directly with a discrete, if not arithmetic, group. Through this we know
that, ignoring the considerations of error and precision, a fundamental polyhedron can
be constructed for each of these groups.

With this knowledge we can attempt the construction of a valid domain, and reaffirm
the constructions against other earlier results.

We split our interest between to two general sources, specifically the group data for
two-elliptic-generator groups relating to both the arithmetically determinable points
and the exceptional points within the “computational boundary” data; both described
in Chapter 2 and taken from references [23], [60] and [62].

As these groups arise from discreteness or arithmeticity calculations; the γ-values
are each derived from a relevant polynomial. Where possible, we have listed these
polynomials in the relevant sections of this chapter. We otherwise reference the groups
by parameter; generally considering the parameter set to be representative of the class
of equivalent parameter sets as per Section 4.2.2.

5.1 Example: Generalised Triangle Groups

As an initial example we focus on the groups given in Table 1 of [60]. This is a table
of data on arithmetic generalised triangle groups, and we presume the few volumes
given there are taken from a reference table.

These groups have presentations of the form

〈f, g | fp = gq = wr = I〉

where w is some word in f and g and r is some integer power. They arise from
arithmetic computations and have an associated γ-polynomial as given in Table 5.1
below.

We pick this set of groups as [60] consists of a detailed description of them with group
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presentations, arithmetic details and a description of each of the associated orbifolds.
Additionally they are finite with volumes given for only 6 out of the 21 given groups.
Our results allow us to complete the description of covolumes and also provide a more
directly insightful output.

The data given in the original table corresponds to 21 groups that occur in seven sets
of three, which we refer to as triples. The first entry of each triple is a (3, 3)-group
with the following two entries being (3, 2)-group, Z2 extensions; with no additional
consideration being given to complex conjugates, as is common in the literature. Here
we denote each of the triples by an index n.

n (p, q) γ-polynomial γ V0 covolume
1 (3, 3) 2 + 6z + 4z2 + z3 −1.77184± 1.11514i 0.2646 0.264774439883296

(3, 2) 1 + 7z + 5z2 + z3 −2.41964± 0.60629i 0.1323 0.132387219941707
(3, 2) 2 + 4z + 4z2 + z3 −0.58036± 0.60629i 0.1323 0.132318149806017

2 (3, 3) 2 + 4z + 2z2 + z3 −0.68055± 1.63317i 0.6616 0.661714937315199
(3, 2) 1 + z + 3z2 + z3 −0.11535± 0.58974i 0.3308 0.330857468657719
(3, 2) 2 + 10z + 6z2 + z3 −2.88465± 0.58974i 0.3308 0.330717107428080

3 (3, 3) 1 + 2z + 2z2 + 2z3 + z4 0.19927± 1.58951i − 0.982766244039437
(3, 2) 1 + 21z + 21z2 + 8z3 + z4 −3.13846± 0.48506i − 0.492361631010942
(3, 2) 1 + 3z + 3z2 + 4z3 + z4 0.13846± 0.48506i − 0.491484440296781

4 (3, 3) 2 + 30z + 30z2 + 24z3 + 8z4 + z5 −2.80606± 1.15645i − 1.090072770048278
(3, 2) 1 + 22z + 22z2 + 18z3 + 7z4 + z5 −0.89704± 0.95897i − 0.545209773747604
(3, 2) 2 + 32z + 32z2 + 24z3 + 8z4 + z5 −2.10296± 0.95897i − 0.544786544898183

5 (3, 3) 2 + 4z + 4z2 + 2z4 + z5 0.84236± 1.35530i − 1.232257018354058
(3, 2) 2 + 2z + 2z2 + 10z3 + 6z4 + z5 0.29843± 0.37680i − 0.616139999303372
(3, 2) 1 + 34z + 34z2 + 28z3 + 9z4 + z5 −3.29843± 0.37680i − 0.615425771551932

6 (3, 3) 1 + 14z + 51z2 + 66z3 + 38z4 + 10z5 + z6 −3.19690± 0.90182i − 1.696240561334381
(3, 2) 1 + 30z + 79z2 + 80z3 + 40z4 + 10z5 + z6 −1.92469± 1.06173i − 0.847936929164838
(3, 2) 1 + 12z + 34z2 + 40z3 + 25z4 + 8z5 + z6 −1.07531± 1.06173i − 0.848229498305300

7 (3, 3) 2 + 10z + 8z2 + 2z3 + 2z4 + z5 0.68088± 1.73330i − 2.446924195119881
(3, 2) 1 + z6z3 + 5z4 + z5 0.27988± 0.48692i − 1.223512318246351
(3, 2) 2 + 28z + 54z2 + 36z3 + 10z4 + z5 −3.27988± 0.48692i − 1.221755633824927

Tab. 5.1: Generalised triangle groups.

We provide an updated table in Table 5.1; listing the previous covolume, V0, where
available, and our new calculated covolume. This table does not list the individual
volume for each of the various computational parameter sets, instead displaying the
volume associated with the lowest deviation for each conjugate pair. As with all
tables in this thesis, we only give the γ-value to 5 decimal places, whereas our general
computations are undertaken at 15 decimal places, to fit with the double precision
used in the program.

5.1.1 Output Tables

As this is an initial example, here we give the summary output information related to
the fundamental polyhedrons constructed for these groups.

In Table 5.2 we give the output of SnappyD, summarised by:

• n, the set of groups under consideration.

• (p, q), the respective order of generators input into the program.

• γ, the γ-parameter used, reduced to 5 decimal places.
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• εV , is the band of vertex resolution k-values for which the construction holds;
each resolution setting is of the form 10−k, for integer k. Note that we only test
within the bounds suggested by SnapPea: 3 ≤ k ≤ 15.

• deviation, the largest deviation of a side-generating transformation in the con-
struction.

• B0, the base point in R3, moved via conjugation under the “maximise injectivity
radius” routines.

• ||B0||2E , the square of the Euclidean distance that the basepoint has been moved
(to 2 d.p.).

• S/V/E, S being the total number of sides, V the vertices and E the edges,
that the final polyhedron has. Note that in the general situation, S/V/E only
considers those sides, vertices and edges that are either finite or retractable; in
this case, however, there are only finite sides, vertices and edges.

• covolume, the dominant hyperbolic volume of the particular construction.

The larger summary tables given in the Appendix C follow an identical structure to
that given here.

For this example, in Table 5.3, we also give the summary of output information for
the nCPT_NM variant of SnappyD, see Appendix B. This variant does not maximise the
injectivity radius, so offers a comparison of basepoint effects. Where applicable, this
table also fits the format given above.

5.1.2 Variance and Rigidity

The results displayed in Table 5.1 are consistent with those seen elsewhere and, aside
from slight variations due to precision, fit well with the general theory. However, one
of the more interesting results, shown in both Tables 5.2 and 5.3, is the rigidity of
these constructions compared against this slight variance in the individual results.

Notably, for each computational parameter set, if a polyhedral construction holds for
a value of εV , then any successful construction from the same parameter set gives the
same polyhedral form - basepoint, S/V/E counts and volume all remain unchanged.
The one exception to this are the data tremors mentioned below and discussed in
Section 5.2.3. Against this, the same repetition of form is generally not seen across
the computational parameter sets within a parameter class; outside of that affected
by the basepoint routines.

The effects of moving the basepoint are highlighted in comparing Tables 5.2 and 5.3.
Firstly, of primary interest in relation to the focus of our calculations, maximising the
injectivity radius generally decreases the spread in volumes over a set of equivalent
parameter sets by an order of magnitude or more. And further, as might be expected,
the basepoint routines have a homogenising effect on the various polyhedral forms, as
expressed through the side, edge and vertex counts.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (3, 3) −1.77184 + 1.11514i 3↔ 13 2.55× 10−15 (−0.04, 0.31, 0.21) 0.14 10/7/15 0.264774439883296

−1.77184− 1.11514i 4↔ 14 5.33× 10−15 (0.24, 0.31, 0.17) 0.18 14/12/24 0.264774439883378
(3, 2) −2.41964 + 0.60629i 3↔ 14 2.22× 10−15 (0.19, 0.25, 0.14) 0.12 14/12/24 0.132387219941707

−2.41964− 0.60629i 4↔ 14 2.44× 10−15 (0.25, 0.14, 0.22) 0.13 8/9/15 0.132387219941693
−0.58036 + 0.60629i 4↔ 13 1.73× 10−14 (−0.17, 0.27,−0.02) 0.10 22/24/44 0.132318149806017
−0.58036− 0.60629i 4↔ 13 2.98× 10−14 (−0.17, 0.25, 0.11) 0.10 22/24/44 0.132403276354546

(2, 3) −2.41964 + 0.60629i 3↔ 14 2.44× 10−15 (0.14, 0.21,−0.14) 0.08 14/12/24 0.132387219941619
−2.41964− 0.60629i 3↔ 14 2.66× 10−15 (0.14, 0.21, 0.14) 0.08 14/12/24 0.132387219941758
−0.58036 + 0.60629i 5↔ 12 2.30× 10−14 (0.05, 0.21, 0.24) 0.10 22/24/44 0.132426403921074
−0.58036− 0.60629i 5↔ 12 2.41× 10−14 (0.15, 0.19, 0.15) 0.08 22/24/44 0.132158766596323

2 (3, 3) −0.68055 + 1.63317i 5↔ 13 1.53× 10−14 (0.19, 0.45, 0.19) 0.27 16/14/28 0.661714937315159
−0.68055− 1.63317i 5↔ 13 1.42× 10−14 (0.34, 0.40, 0.24) 0.34 16/14/28 0.661714937315199

(3, 2) −0.11535− 0.58974i 6↔ 13 3.17× 10−13 (−0.11, 0.30, 0.19) 0.14 24/32/54 0.330857468657992
−0.11535 + 0.58974i 4↔ 13 2.13× 10−14 (−0.11, 0.35,−0.04) 0.14 24/32/54 0.330857468657719
−2.88465− 0.58974i 4↔ 14 2.71× 10−14 (0.33, 0.03, 0.36) 0.24 22/24/44 0.330802402206134
−2.88465 + 0.58974i 4↔ 14 5.02× 10−14 (0.33, 0.29, 0.22) 0.24 22/24/44 0.330264970254204

(2, 3) −0.11535− 0.58974i 4↔ 12 5.85× 10−14 (0.30, 0.24, 0.19) 0.18 24/32/54 0.330857468657576
−0.11535 + 0.58974i 4↔ 12 2.89× 10−14 (0.21, 0.26, 0.26) 0.18 24/32/54 0.330857468657535
−2.88465− 0.58974i 4↔ 13 2.89× 10−14 (0.29, 0.22, 0.23) 0.18 22/24/44 0.330788586067824
−2.88465 + 0.58974i 5↔ 13 1.47× 10−14 (−0.04, 0.08, 0.40) 0.17 22/24/44 0.330717107428080

3 (3, 3) 0.19927 + 1.58951i 5↔ 11 1.35× 10−14 (0.31, 0.51, 0.14) 0.38 20/24/42 0.982766244039437
0.19927− 1.58951i 6↔ 13 1.97× 10−13 (0.42, 0.39, 0.33) 0.44 20/24/42 0.982766244039443

(3, 2) −3.13846 + 0.48506i 4↔ 14 9.77× 10−15 (−0.28, 0.09, 0.39) 0.24 18/18/34 0.492361631010875
−3.13846− 0.48506i 4↔ 14 9.33× 10−15 (−0.28, 0.28, 0.29) 0.24 18/18/34 0.492361631011032

0.13846 + 0.48506i 4↔ 13 6.95× 10−14 (−0.08, 0.39,−0.05) 0.16 24/32/54 0.491693878116127
0.13846− 0.48506i 4↔ 13 6.14× 10−14 (−0.08, 0.31, 0.24) 0.16 24/32/54 0.491677333327298

(2, 3) −3.13846 + 0.48506i 4↔ 13 7.44× 10−15 (0.07, 0.06, 0.36) 0.14 18/18/34 0.492361631010930
−3.13846− 0.48506i 4↔ 13 3.55× 10−15 (0.34, 0.27, 0.23) 0.24 18/18/34 0.492361631010942

0.13846 + 0.48506i 4↔ 12 9.04× 10−14 (−0.26, 0.21, 0.26) 0.18 24/32/54 0.491677333327583
0.13846− 0.48506i 4↔ 13 4.00× 10−14 (−0.19, 0.33, 0.20) 0.18 24/32/54 0.491484440296781

4 (3, 3) −2.80606 + 1.15645i 4↔ 13 1.61× 10−14 (0.31, 0.41, 0.35) 0.38 18/18/34 1.090072770048188
−2.80606− 1.15645i 6↔ 12 8.88× 10−15 (0.58, 0.24, 0.46) 0.61 18/23/39 1.090072770048278

(3, 2) −0.89704 + 0.95897i 5↔ 13 7.66× 10−15 (0.14, 0.43, 0.06) 0.21 18/16/32 0.544958718160841
−0.89704− 0.95897i 5↔ 13 1.73× 10−14 (0.16, 0.43,−0.04) 0.21 18/16/32 0.544962897261796
−2.10296 + 0.95897i 4↔ 13 1.38× 10−14 (0.15, 0.37, 0.13) 0.18 18/17/33 0.545036385024126
−2.10296− 0.95897i 5↔ 14 7.11× 10−15 (0.45, 0.30, 0.28) 0.38 18/17/33 0.544739451493277

(2, 3) −0.89704 + 0.95897i 3↔ 14 3.33× 10−15 (0.08, 0.34, 0.05) 0.13 18/16/32 0.545209773747604
−0.89704− 0.95897i 5↔ 14 6.55× 10−15 (0.12, 0.35, 0.15) 0.16 18/16/32 0.544974108710528
−2.10210 + 0.95897i 5↔ 13 6.44× 10−15 (0.23, 0.07, 0.37) 0.19 18/17/33 0.544786544898183
−2.10210− 0.95897i 4↔ 13 8.22× 10−15 (0.19, 0.33, 0.08) 0.15 18/17/33 0.545036385024131

5 (3, 3) 0.84236 + 1.35530i 4↔ 12 4.85× 10−14 (0.37, 0.54, 0.10) 0.45 20/26/44 1.232257018353899
0.84236− 1.35530i 4↔ 12 3.62× 10−14 (0.45, 0.37, 0.39) 0.50 20/26/44 1.232257018354058

(3, 2) 0.29843 + 0.37680i 4↔ 11 3.21× 10−13 (−0.07, 0.41,−0.06) 0.17 26/36/60 0.616139999305901
0.29843− 0.37680i 4↔ 13 1.71× 10−13 (−0.07, 0.31, 0.27) 0.17 26/36/60 0.616139999304282
−3.29843 + 0.37680i 5↔ 13 2.36× 10−13 (−0.30, 0.09, 0.44) 0.29 24/26/48 0.616097893053077
−3.29843− 0.37680i 5↔ 13 1.45× 10−14 (−0.31, 0.32, 0.32) 0.30 24/26/48 0.615425771551932

(2, 3) 0.29843 + 0.37680i 4↔ 12 7.59× 10−14 (−0.23, 0.24, 0.26) 0.18 26/36/60 0.616139999303372
0.29843− 0.37680i 3↔ 12 1.12× 10−13 (−0.18, 0.33, 0.22) 0.19 26/36/60 0.616024211234735
−3.29843 + 0.37680i 5↔ 14 4.62× 10−14 (0.14, 0.05, 0.40) 0.18 24/26/48 0.616128509177734
−3.29843− 0.37680i 3↔ 13 1.91× 10−14 (0.40, 0.29, 0.29) 0.33 24/26/48 0.616128509177068

6 (3, 3) −3.19690 + 0.90182i 6↔ 11 2.19× 10−13 (−0.33, 0.27, 0.54) 0.47 20/20/38 1.696240561334349
−3.19690− 0.90182i 5↔ 13 6.10× 10−14 (−0.33, 0.28, 0.54) 0.48 20/20/38 1.696240561334381

(3, 2) −1.92469 + 1.06173i 4↔ 13 5.00× 10−14 (0.14, 0.39, 0.13) 0.19 22/24/44 0.848365358302074
−1.92469− 1.06173i 4↔ 12 5.66× 10−15 (0.55, 0.21, 0.38) 0.49 22/26/46 0.847936929164838
−1.07530 + 1.06173i 4↔ 13 2.29× 10−13 (0.20, 0.45, 0.07) 0.25 26/28/52 0.847904607792574
−1.07530− 1.06173i 5↔ 14 2.99× 10−13 (0.27, 0.44, 0.13) 0.28 26/28/52 0.847904607792901

(2, 3) −1.92469 + 1.06173i 4↔ 14 8.44× 10−15 (0.16, 0.12, 0.37) 0.18 20/20/38 0.847979373190956
−1.92469− 1.06173i 3↔ 13 5.46× 10−14 (0.19, 0.35, 0.08) 0.16 22/24/44 0.847921705316328
−1.07531 + 1.06173i 5↔ 14 2.16× 10−13 (−0.05, 0.21, 0.40) 0.21 26/28/52 0.849015226143611
−1.07531− 1.06173i 5↔ 14 1.80× 10−13 (0.19, 0.37, 0.15) 0.20 26/28/52 0.848229498305300

7 (3, 3) 0.68088 + 1.73330i 5↔ 12 3.06× 10−13 (0.57, 0.60, 0.10) 0.69 24/30/52 2.446924195119881
0.68088− 1.73330i 5↔ 13 8.67× 10−13 (0.68, 0.40, 0.42) 0.80 24/30/52 2.446924195121926

(3, 2) 0.27988 + 0.48692i 4↔ 12 4.98× 10−13 (0.16, 0.50,−0.04) 0.28 26/34/58 1.222531911485409
0.27988− 0.48692i 4↔ 12 2.95× 10−13 (0.16, 0.50, 0.03) 0.28 26/34/58 1.222412331605630
−3.27988 + 0.48692i 6↔ 12 2.07× 10−12 (−0.55, 0.07, 0.47) 0.53 28/30/56 1.220360017152392
−3.27988− 0.48692i 5↔ 13 1.64× 10−12 (−0.32, 0.32, 0.35) 0.33 28/30/56 1.221755633824927

(2, 3) 0.27988 + 0.48692i 5↔ 12 7.88× 10−13 (0.10, 0.40, 0.13) 0.19 26/36/60 1.221708487472495
0.27988− 0.48692i 4↔ 12 2.44× 10−13 (0.12, 0.40, 0.18) 0.21 26/34/58 1.223512318246351
−3.27988 + 0.48692i 4↔ 13 1.71× 10−12 (0.14, 0.07, 0.43) 0.21 28/30/56 1.221624951511321
−3.27988− 0.48692i 5↔ 13 1.09× 10−12 (0.48, 0.32, 0.53) 0.61 28/30/56 1.220360017153322

Tab. 5.2: Summary of the SnappyD output data used to build Table 5.1.
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n (p, q) γ εV deviation S/V/E covolume
1 (3, 3) −1.77184 + 1.11514i 3↔ 13 1.55× 10−15 14/12/24 0.264687258680185

−1.77184− 1.11514i 4↔ 14 5.11× 10−15 16/16/30 0.264686441306019
(3, 2) −2.41964 + 0.60629i 3↔ 14 2.44× 10−15 14/12/24 0.132129725818503

−2.41964− 0.60629i 4↔ 14 2.44× 10−15 18/18/34 0.132128103188614
−0.58036 + 0.60629i 4↔ 13 1.35× 10−14 20/24/42 0.132432240182155
−0.58036− 0.60629i 4↔ 13 8.66× 10−15 24/32/54 0.132131747290004

(2, 3) −2.41964 + 0.60629i 3↔ 14 9.99× 10−16 14/12/24 0.132387219941671
−2.41964− 0.60629i 3↔ 14 1.78× 10−15 16/16/30 0.132322895571381
−0.58036 + 0.60629i 5↔ 12 1.42× 10−14 24/32/54 0.131911327267540
−0.58036− 0.60629i 5↔ 12 3.03× 10−14 20/24/42 0.132060396011615

2 (3, 3) −0.68055 + 1.63317i 5↔ 13 2.15× 10−14 20/24/42 0.661552728945180
−0.68055− 1.63317i 5↔ 14 1.29× 10−14 20/24/42 0.661069296768815

(3, 2) −0.11535− 0.58974i 6↔ 13 2.60× 10−14 24/32/54 0.330777803760144
−0.11535 + 0.58974i 4↔ 13 1.89× 10−14 22/28/48 0.330777690867818
−2.88465− 0.58974i 4↔ 14 6.02× 10−14 32/42/72 0.330927423235746
−2.88465 + 0.58974i 4↔ 14 4.49× 10−14 30/40/68 0.329017346148485
−0.11535− 0.58974i 4↔ 12 4.07× 10−14 22/28/48 0.330051212280796
−0.11535 + 0.58974i 4↔ 12 2.14× 10−14 22/28/48 0.330312643854552
−2.88465− 0.58974i 4↔ 13 2.75× 10−14 24/28/50 0.331565307952308
−2.88465 + 0.58974i 5↔ 15 6.13× 10−14 28/34/60 0.330751336927118

3 (3, 3) 0.19927 + 1.58951i 5↔ 11 2.89× 10−14 26/36/60 0.984599506000193
0.19927− 1.58951i 6↔ 14 5.66× 10−14 22/28/48 0.987652431633644

(3, 2) −3.13846 + 0.48506i 4↔ 14 2.11× 10−14 28/34/60 0.491997114458778
−3.13846− 0.48506i 4↔ 14 1.40× 10−14 30/38/66 0.491563198867146

0.13846 + 0.48506i 4↔ 13 5.68× 10−14 24/34/56 0.491747854413174
0.13846− 0.48506i 4↔ 13 5.87× 10−14 24/32/54 0.490133650431142

(2, 3) −3.13846 + 0.48506i 4↔ 13 3.44× 10−15 24/28/50 0.492447868444507
−3.13846− 0.48506i 4↔ 13 7.99× 10−15 32/42/72 0.493054678033088

0.13846 + 0.48506i 4↔ 12 5.48× 10−14 24/32/54 0.491574570296174
0.13846− 0.48506i 4↔ 13 2.42× 10−14 24/32/54 0.489965849808521

4 (3, 3) −2.80606 + 1.15645i 4↔ 13 8.38× 10−14 32/46/76 1.089918280135662
−2.80606− 1.15645i 6↔ 12 8.66× 10−14 32/48/78 1.088779735890397

(3, 2) −0.89704 + 0.95897i 3↔ 13 6.77× 10−15 20/22/40 0.544426169529836
−0.89704− 0.95897i 3↔ 13 1.82× 10−14 20/22/40 0.544922154168940
−2.10296 + 0.95897i 4↔ 13 6.37× 10−14 28/36/62 0.547169909744077
−2.10296− 0.95897i 4↔ 14 1.06× 10−13 24/28/50 0.547057918815104

(2, 3) −0.89704 + 0.95897i 3↔ 14 2.33× 10−15 18/16/32 0.544172613086960
−0.89704− 0.95897i 3↔ 14 5.66× 10−15 20/20/38 0.545351262916556
−2.10296 + 0.95897i 4↔ 14 7.17× 10−14 28/32/58 0.544259874629925
−2.10296− 0.95897i 4↔ 13 4.53× 10−14 26/28/52 0.544484565914210

5 (3, 3) 0.84236 + 1.35530i 4↔ 12 2.73× 10−14 24/34/56 1.232133992072095
0.84236− 1.35530i 4↔ 12 2.56× 10−14 20/24/42 1.228000819263353

(3, 2) 0.29843 + 0.37680i 4↔ 11 2.52× 10−13 26/38/62 0.614057325941823
0.29843− 0.37680i 4↔ 13 1.45× 10−13 26/36/60 0.615400480567670
−3.29843 + 0.37680i 5↔ 14 2.61× 10−13 34/44/76 0.615955840645185
−3.29843− 0.37680i 5↔ 13 4.22× 10−14 34/44/76 0.616826022797327

(2, 3) 0.29843 + 0.37680i 4↔ 12 6.58× 10−14 26/36/60 0.615547856614611
0.29843− 0.37680i 3↔ 12 7.03× 10−14 26/36/60 0.616354916916405
−3.29843 + 0.37680i 6↔ 14 9.19× 10−14 36/46/80 0.616620247901536
−3.29843− 0.37680i 4↔ 13 3.04× 10−14 30/38/66 0.617052387498835

6 (3, 3) −3.19690 + 0.90182i 5↔ 11 1.47× 10−13 32/46/76 1.700543453502957
−3.19690− 0.90182i 5↔ 13 1.09× 10−13 32/46/76 1.699810630880004

(3, 2) −1.92469 + 1.06173i 4↔ 14 5.75× 10−14 26/34/58 0.850210625627002
−1.92469− 1.06173i 5↔ 12 9.33× 10−15 22/26/46 0.850328904734173
−1.07531 + 1.06173i 4↔ 14 2.27× 10−13 28/32/58 0.849073425906248
−1.07531− 1.06173i 5↔ 14 4.16× 10−13 28/34/60 0.848298916169056

(2, 3) −1.92469 + 1.06173i 4↔ 14 2.66× 10−14 24/26/48 0.849584527813553
−1.92469− 1.06173i 3↔ 13 2.31× 10−14 20/20/38 0.850777178404936
−1.07531 + 1.06173i 5↔ 14 2.58× 10−13 28/30/56 0.848157500807782
−1.07531− 1.06173i 5↔ 14 1.43× 10−13 28/32/58 0.849911973939790

7 (3, 3) 0.68088 + 1.73330i 5↔ 12 5.68× 10−13 28/38/64 2.447545319087347
0.68088− 1.73330i 5↔ 14 1.24× 10−12 28/36/62 2.440210655861061

(3, 2) 0.27988 + 0.48692i 4↔ 12 3.45× 10−13 24/34/56 1.223947900719701
0.27988− 0.48692i 4↔ 12 2.17× 10−13 26/36/60 1.226976667567070
−3.27988 + 0.48692i 6↔ 14 6.49× 10−12 42/58/98 1.225912173877403
−3.27988− 0.48692i 5↔ 14 3.96× 10−12 46/64/108 1.223013782735435

(2, 3) 0.27988 + 0.48692i 5↔ 12 3.87× 10−13 28/40/66 1.223300684685046
0.27988− 0.48692i 4↔ 12 1.42× 10−13 28/40/66 1.225205491656666
−3.27988 + 0.48692i 4↔ 13 3.01× 10−12 36/46/80 1.223621083476920
−3.27988− 0.48692i 5↔ 13 1.89× 10−12 44/62/104 1.223864938465404

Tab. 5.3: Non-maximised output for the data in Table 5.2
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We highlight these effects in Table 5.4; giving, for each set of parameters, sp(V ol), the
spread of output volumes, and n(S/V/E), the number of distinct S/V/E counts; for
both the maximised (CPT) and unmaximised (nCTP_NM) output polyhedrons.

n (p, q)
nCPT_NM CPT

n(S/V/E) sp(V ol) n(S/V/E) sp(V ol)

1
(3, 3)

5
8.2× 10−7

4
8.2× 10−14

(3, 2) , (2, 3) 5.2× 10−4 2.3× 10−4

2
(3, 3)

7
4.8× 10−4

3
4.0× 10−14

(3, 2) , (2, 3) 2.5× 10−3 5.9× 10−4

3
(3, 3)

8
3.1× 10−3

3
6.0× 10−15

(3, 2) , (2, 3) 3.1× 10−3 8.8× 10−4

4
(3, 3)

8
1.1× 10−3

4
9.0× 10−14

(3, 2) , (2, 3) 3.0× 10−3 4.7× 10−4

5
(3, 3)

7
4.1× 10−3

5
8.4× 10−13

(3, 2) , (2, 3) 3.0× 10−3 7.1× 10−4

6
(3, 3)

8
7.3× 10−4

4
3.2× 10−14

(3, 2) , (2, 3) 2.6× 10−3 1.1× 10−3

7
(3, 3)

9
7.3× 10−3

4
2.0× 10−12

(3, 2) , (2, 3) 4.0× 10−3 3.2× 10−3

Tab. 5.4: The effect of maximising the basepoint.

Presumably, if the basepoint maximisation routines could continue indefinitely, did not
require linearisation of functions or were working in a system with higher accuracy,
then we would see greater homogeneity in the basepoint distance, volume and S/V/E
results. The basepoint routines also effect the other data used to summarise the
output; specifically, for the 70 sets of constructions above, basepoint maximisation
leads to 41 increases and only 14 decreases in the size of the εV -bands; whereas,
due to increased matrix manipulation it results in 31 decreases to 38 increases in the
polyhedron deviations.

Another interesting observation is variance in the deviation results and the εV -bands
under which the constructions hold. Other than all constructions holding under a
common vertex epsilon subinterval of 10−6 > εV > 10−11 and deviations generally
remaining in the same order of magnitude, there are no obvious relationships between
these results within a parameter class; although structural considerations encourage
the supposition of one.

5.1.3 Tremors in Covolume and Deviation

For the sake of clarity and space, in building the above tables, we have ignored one
particular form of outlier that is seen in our output. Specifically, the differing out-
put values that may occur across the successful εV -values relating to a single input
parameter set.

In doing this we have removed subtle variations in the results experienced in 2 of the 70

listed computational parameter sets. For the standard SnappyD output, these results
are visible in the greater appendix tables; but, for the sake of completeness in this
example, we also give them here in Table 5.5.

Note that in Table 5.5, as with the tables seen in the appendix, we list the overall
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n (p, q) γ εV deviation B ||B||2E S/E/V covolume
5 (3, 3) 0.84236 + 1.35530i 4↔ 12 4.85× 10−14 (0.37, 0.54, 0.10) 0.45 20/26/44 1.232257018353899

0.84236− 1.35530i 4↔ 12 3.62× 10−14 (0.45, 0.37, 0.39) 0.50 20/26/44 1.232257018354058
(3, 2) 0.29843 + 0.37680i 4↔ 11 3.21× 10−13 (−0.07, 0.41,−0.06) 0.17 26/36/60 0.616139999305901

0.29843− 0.37680i 4↔ 13 1.71× 10−13 (−0.07, 0.31, 0.27) 0.17 26/36/60 0.616139999304282
−3.29843 + 0.37680i 5↔ 13 2.36× 10−13 (−0.30, 0.09, 0.44) 0.29 24/26/48 0.616097893053077
−3.29843− 0.37680i 5↔ 13 1.45× 10−14 (−0.31, 0.32, 0.32) 0.30 24/26/48 0.615425771551932

(2, 3) 0.29843 + 0.37680i 4↔ 12 7.59× 10−14 (−0.23, 0.24, 0.26) 0.18 26/36/60 0.616139999303372
0.29843− 0.37680i 3↔ 12 1.12× 10−13 (−0.18, 0.33, 0.22) 0.19 26/36/60 0.616024211234735

−3.29843 + 0.37680i
5↔ 14 4.62× 10−14

(0.14, 0.05, 0.40) 0.18 24/26/48
0.616128509177734

5 4.86× 10−14 0.616128509177205
−3.29843− 0.37680i 3↔ 13 1.91× 10−14 (0.40, 0.29, 0.29) 0.33 24/26/48 0.616128509177068

2 (3, 3) −0.68055 + 1.63317i 5↔ 13 2.15× 10−14 - - 20/24/42 0.661552728945180
−0.68055− 1.63317i 5↔ 14 1.29× 10−14 - - 20/24/42 0.661069296768815

(3, 2) −0.11535− 0.58974i 6↔ 13 2.60× 10−14 - - 24/32/54 0.330777803760144
−0.11535 + 0.58974i 4↔ 13 1.89× 10−14 - - 22/28/48 0.330777690867818
−2.88465− 0.58974i 4↔ 14 6.02× 10−14 - - 32/42/72 0.330927423235746
−2.88465 + 0.58974i 4↔ 14 4.49× 10−14 - - 30/40/68 0.329017346148485

(2, 3) −0.11535− 0.58974i 4↔ 12 4.07× 10−14 - - 22/28/48 0.330051212280796
−0.11535 + 0.58974i 4↔ 12 2.14× 10−14 - - 22/28/48 0.330312643854552
−2.88465− 0.58974i 4↔ 13 2.75× 10−14 - - 24/28/50 0.331565307952308

−2.88465 + 0.58974i
5↔ 15 6.13× 10−14 - - 28/34/60

0.330751336927118
15 3.91× 10−14 0.330751336927133

Tab. 5.5: Full output for parameters 5 of Table 5.2 and 2 of Table 5.3.

construction result in the top line for each computational set, with outliers within this
overall result listed below. We call computational outliers of this form (data) tremors.
These occur semi-regularly and are discussed further in Section 5.2.3.

5.1.4 Rigidity Under Loss of Precision

As a final part of this example, we also look at the devolution of the construction under
a loss of input precision. As mentioned above, our generated output results are taken
from an input γ-parameter known to a precision of 15 decimal places. Interestingly,
as this precision is reduced the constructed polyhedron is still maintained.

In Table 5.6, we demonstrate this for the (3, 3) parameter sets of the n = 1 triple.
Here, as precision is lost the width of successful εV values decreases until a precision
of 6 decimal places is reached; below which the construction fails.

d.p. (3, 3,−1.771844506346038 + 1.115142508039937i) (3, 3,−1.771844506346038− 1.115142508039937i)
εV deviation covolume εV deviation covolume

15 3− 13 2.55× 1015 0.264774439883296 4− 14 5.33× 1015 0.264774439883378
14 3− 14 3.22× 1015 0.264774439883291 4− 14 5.77× 1015 0.264774439883487
13 3− 12 5.11× 1015 0.264774439882926 4− 12 6.22× 1015 0.264774439882894
12 3− 11 1.67× 1015 0.264774439882821 4− 11 7.33× 1015 0.264774439882191
11 3− 10 3.44× 1015 0.264774439905987 4− 9 3.66× 1015 0.264774439975595
10 3− 8 2.00× 1015 0.264774440241217 4− 8 6.00× 1015 0.264774441376238
9 3− 8 3.77× 1015 0.264774436152756 4− 8 4.77× 1015 0.264774441318465
8 3− 7 2.00× 1015 0.264774458561606 4− 6 5.33× 1015 0.264774430084478
7 3− 6 1.89× 1015 0.264774393214161 4− 6 4.44× 1015 0.264774482652009
6 3− 6 1.67× 1015 0.264775688660788 4 3.55× 1015 0.264770068097691

Tab. 5.6: The devolution of the (3, 3, γ) output as precision descreases.

Notable here is the gradual reduction in the number of agreed decimal places in the
output volume of the individual parameter sets; a change which seems to relate linearly
to the reduction in precision. But of further interest is the deviations reaction to the
loss of precision. While, in this example, the deviation maintains its order of magni-
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tude, it also seems to move randomly between increasing and decreasing, while ending
on a distinct improvement in both cases. Similar results are seen in the equivalent
output of the other groups related to the triple.

For further comparison we provide Table 5.7 which highlights the vertex epsilon bands
over which the Z2 extension related constructions hold.

d.p. γ = −2.419643377607081 + 0.606290729207199i γ = −0.580356622392919 + 0.606290729207199i
(3, 2, γ) (2, 3, γ) (3, 2, γ̄) (2, 3, γ̄) (3, 2, γ) (2, 3, γ) (3, 2, γ̄) (2, 3, γ̄)

15 3 7→ 14 3 7→ 14 4 7→ 14 3 7→ 14 4 7→ 13 5 7→ 12 4 7→ 13 5 7→ 12
14 3 7→ 14 3 7→ 14 4 7→ 14 3 7→ 14 4 7→ 14 5 7→ 13 4 7→ 13 5 7→ 12
13 3 7→ 13 3 7→ 13 4 7→ 13 3 7→ 13 4 7→ 12 5 7→ 12 4 7→ 12 5 7→ 12
12 3 7→ 13 3 7→ 12 4 7→ 12 3 7→ 13 4 7→ 11 5 7→ 11 4 7→ 11 5 7→ 11
11 3 7→ 11 3 7→ 11 4 7→ 11 3 7→ 11 4 7→ 10 5 7→ 10 4 7→ 10 5 7→ 10
10 3 7→ 10 3 7→ 10 4 7→ 10 3 7→ 10 4 7→ 9 5 7→ 9 4 7→ 9 5 7→ 9
9 3 7→ 8 3 7→ 8 4 7→ 8 3 7→ 8 4 7→ 7 5 7→ 8 4 7→ 7 5 7→ 8
8 3 7→ 8 3 7→ 8 4 7→ 8 3 7→ 7 4 7→ 7 5 7→ 7 4 7→ 7 5 7→ 7
7 3 7→ 6 3 7→ 6 4 7→ 7 3 7→ 6 4 7→ 6 5 7→ 6 4 7→ 6 5 7→ 6
6 3 7→ 5 3 7→ 5 4 7→ 5 3 7→ 5 4 4
5 3 7→ 5 3 7→ 5 4 3 7→ 4
4 3 3

Tab. 5.7: The devolution of εV -bands as precision decreases.

What is most striking in this table is:

• For γ = −2.419643377607081 + 0.606290729207199i, (3, 2, γ) and (2, 3, γ), and
(3, 2, γ) and (2, 3, γ) hold for approximately the same εV -bands; but there is no
apparent relation between the vertex epsilon bands of (p, q, γ) and (p, q, γ).

• Whereas for γ = −0.580356622392919 + 0.606290729207199i, there is a notable
comparison in the vertex epsilon bands of (p, q, γ) and (p, q, γ); but not between
(3, 2, γ) and (2, 3, γ), or (3, 2, γ) and (2, 3, γ).

Due to time and space constraints, we do not similarly investigate other groups though,
as noted in Chapter 6, the variations in accuracy (under resolution) in geometric
constructions is a potentially interesting area of research.

5.2 Computational Results

We have used all the groups from references [60], [62] and [23] as input for the SnappyD
program, the output results for which are given in the tables of Appendix C.

In this section we highlight various aspects noted in the resulting output files, specif-
ically with regard to the outliers within what are generally highly consistent compu-
tational results. Considering these we then summarise our actual results in Section
5.3.

We note that the tables given in this section are cropped out of the larger tables of
Appendix C, which should be seen for additional reference.



92 5. Computational Geometry

5.2.1 Failures

We begin with Table 5.8, where we provide a list of the group parameter information
for which SnappyD was unable to generate a fundamental polyhedron. In this case we
give the full input length of the first-quadrant γ-values.

(p, q) γ
(3, 2) 0.161691418362448 + 0.636709481679928i
(3, 2) 0.273409138442041 + 0.563821092829119i
(3, 2) −1.063559204522075 + 1.164380499099818i
(3, 2) −0.822388727866991 + 1.112527792130389i
(3, 2) 0.681519354760437 + 0.147287943028609i
(3, 2) 0.571863231390706 + 0.252351616795528i
(3, 2) 0.531012602661534 + 0.273494396101797i
(3, 2) −0.176111557895748 + 0.891627543858532i
(3, 2) −1.231365882100651 + 1.181179136574646i
(3, 2) −0.943438327815293 + 1.141151187720406i
(3, 2) 0.597265244764000 + 0.223225966457038i
(3, 2) 0.476225374351834 + 0.335893920570061i
(3, 2) 0.295161963992842 + 0.539127458455876i
(3, 2) 0.325799049368975 + 0.511380200203660i
(4, 2) 0.815157802391803 + 0.712418803346697i
(4, 2) 0.581529360457850 + 0.939156034693663i
(4, 2) −0.303676609148679 + 1.435949864109956i
(4, 2) −0.828352852975573 + 1.576686092327405i

Tab. 5.8: Construction failures.

The ‘total’ construction failures for each of these parameter sets is due to a simple
and rapid accumulation of numerical error; which faults the construction process in
the early cutting routines.

It is notable that each of these points is taken from [62]. Specifically Tables 5.6, 5.7
and 5.11; where they are given as points with no corresponding γ-polynomials. Each
of these groups should correspond to arithmetic data but it is not known whether
the group is an arithmetic group or a proper subgroup of one; indeed, they may even
correspond to actual free groups. We did not have the polynomial reference to re-
generate these numbers ourselves, so we could suppose that this is related to some
clerical error in the tables, akin to that noted in Appendix Section C.4.

In either case, it is a positive sign that the error in these failures seems consistent. A
future expansion in accuracy, or other adaptation to the code, might hopefully remedy
any issues in these constructions (if there are any).

5.2.2 Cycle Condition Failures

Further to the construction failures listed in Section 5.2.1, 5 of our groups have one
or more parameter sets whose final polyhedron fails to satisfy the cycle condition. We
give the output details of these parameter sets in Table 5.9; using an orange box to
mark those outputs failing the condition.

It is worth noting that the cycle condition is not tested in SnapPea’s Dirichlet_
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(p, q) γ εV deviation B ||B||2E S/V/E covolume

(3, 2) −1.50000− 0.60666i 3↔ 13 2.89× 10−15 (−0.03, 0.24, 0.05) 0.06 12/9/19 0.077777592962837

−1.50000 + 0.60666i 3↔ 13 2.66× 10−15 (−0.03, 0.24,−0.05) 0.06 12/9/19 0.077777592962811

(2, 3) −1.50000− 0.60666i 4↔ 13 8.66× 10−15 (0.02, 0.27, 0.10) 0.08 18/16/32 0.039015451336356

−1.50000 + 0.60666i 3↔ 14 failure. possibly generates a finite-sheeted cover

(3, 2) −0.52842− 0.78122i 5↔ 14 2.53× 10−14 (0.04, 0.34, 0.18) 0.15 22/24/44 0.363085747245742

−0.52842 + 0.78122i 4↔ 13 1.83× 10−14 (0.04, 0.37,−0.06) 0.15 22/24/44 0.362805250204902

−2.47158− 0.78122i 4↔ 13 1.50× 10−15 (0.38, 0.17, 0.29) 0.26 8/9/15 0.362887228283480

−2.47158 + 0.78122i 4↔ 13 3.00× 10−15 (0.30, 0.33, 0.17) 0.23 14/12/24 0.362887228283415

(2, 3) −0.52842− 0.78122i 4↔ 13 2.40× 10−14 (−0.05, 0.39, 0.21) 0.20 22/24/44 0.363031557094651

−0.52842 + 0.78122i 4↔ 13 2.78× 10−14 (−0.10, 0.26, 0.18) 0.11 22/24/44 0.363024421723659
−2.47158− 0.78122i 3↔ 13 2.89× 10−15 (0.28, 0.26, 0.20) 0.18 14/12/24 0.362887228283405
−2.47158 + 0.78122i 3↔ 14 2.55× 10−15 (0.28, 0.26,−0.20) 0.18 14/12/24 0.362887228283461

(5, 2) 0.11803− 0.60666i 4↔ 13 4.22× 10−14 (−0.27, 0.17, 0.18) 0.13 18/16/32 0.039105939852173

0.11803 + 0.60666i
4↔ 12 4.64× 10−14

(−0.27, 0.22, 0.11) 0.13 18/16/32
0.039120554210565

4 4.55× 10−14 0.039120554210676

−1.50000− 0.60666i 3↔ 12 6.77× 10−15 (−0.13, 0.39, 0.25) 0.23 16/16/30 0.234301713689990

−1.50000 + 0.60666i 3↔ 12 failure. possibly generates a finite-sheeted cover
(2, 5) 0.11803− 0.60666i 3↔ 13 2.49× 10−14 (−0.16, 0.02, 0.15) 0.05 18/16/32 0.039051905406329

0.11803 + 0.60666i
3↔ 13 2.49× 10−14

(−0.17, 0.03, 0.14) 0.05 10/8/16
0.039050285615583

3, 4 1.27× 10−14 0.039050285615487

5 failure.
−1.50000− 0.60666i 3↔ 14 failure. possibly generates a finite-sheeted cover
−1.50000 + 0.60666i 3↔ 14 failure. possibly generates a finite-sheeted cover

(3, 2) −0.07087 + 0.66435i 4↔ 13 7.84× 10−14 (0.07, 0.42,−0.07) 0.19 24/32/54 0.595189968898689

−0.07087− 0.66435i 4↔ 12 3.46× 10−14 (0.07, 0.42, 0.06) 0.19 24/32/54 0.595189968897844

−2.92913 + 0.66435i 5↔ 12 1.00× 10−12 (0.47, 0.14, 0.26) 0.30 22/20/40 0.297303264846344

−2.92913− 0.66435i 5↔ 13 5.37× 10−14 (0.39, 0.03, 0.41) 0.32 22/24/44 0.594206188118980

(2, 3) −0.07087 + 0.66435i 4↔ 13 1.01× 10−13 (−0.13, 0.22, 0.30) 0.15 24/32/54 0.595419291729511

−0.07087− 0.66435i 4↔ 13 8.83× 10−14 (−0.03, 0.39, 0.24) 0.21 24/32/54 0.595419291729334

−2.92913 + 0.66435i 5↔ 13 2.32× 10−14 (−0.02, 0.09, 0.46) 0.22 22/24/44 0.594663573037919

−2.92913− 0.66435i 4↔ 13 8.88× 10−15 (0.36, 0.24, 0.27) 0.26 22/24/44 0.594566134203106

(4, 2) −1.00000 + 1.73205i 5↔ 13 4.24× 10−14 (0.32, 0.98,−0.01) 1.06 16/12/28 Free?
−1.00000− 1.73205i 4↔ 13 2.43× 10−14 (0.65, 0.66, 0.04) 0.85 16/12/28 Free?

(2, 4) −1.00000 + 1.73205i 3↔ 14 5.86× 10−14 (0.13, 0.32, 0.95) 1.01 18/18/36 Free?
−1.00000− 1.73205i 4↔ 13 5.72× 10−14 (0.79, 0.35, 0.55) 1.05 18/18/36 Free?

Tab. 5.9: Groups that fail the cycle condition.

subroutines. Which is relevant as the data in this table demonstrates an inconsistency
within the results of a nature less stable than the Parallax data described in Section
5.2.4.

Of notable importance with these groups is that, with one exception, each contains at
least one construction that passes the cycle condition. And so we can ignore construc-
tions that fail the cycle condition when considering our summary output. Similarly,
the failure in each of these groups is caused by an edge cycle {ei} such that

2.5

m∑
i=1

α(ei) = 2π.

The one exception to this is the sole (4, 2, γ) group; for which, as seen in Table 5.9, each
construction fails the condition. However, the non-maximised output does pass the
condition in its (2, 4) forms. We note that this group exceeds the basepoint restrictions
as per Section 5.2.5; however due to the general failure of the cycle condition, we do
not take it as a valid consideration within that section.

This group also stands out for failing the cycle condition due to an edge cycle {ei}
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with angle sum given as
m∑
i=1

α(ei) = 0.

This edge cycle being a single edge with finite component comprising of a single vertex.
In this way the group stands out as a possible example of a constructed polyhedron
with infinite edge, as described in Section 2.6.2.

In Figure 5.1 we display the constructed polyhedron for the (4, 2,−1 + 1.73205i) form
of this group; highlighting the edge in question.

Fig. 5.1: Fundamental polyhedron for (4, 2,−1 + 1.73205i).
With the edge, and finite vertex marked in red.

This is the only example of this type of cycle condition failure seen in the groups we
have tested in this thesis. It is notable that the group does pass the condition in some
non-maximised forms; so further investigation of these forms may be of interest. Until
then, with confirmation of a valid construction in at least one form, we are confident
in the general “Free?” (hyperideal) result.

5.2.3 Tremors

As already noted in Section 5.1.3, several of our input parameter sets display what we
refer to as data tremors. As tremors are quite common, the two given in Table 5.5
of that section serve as examples; with all others being visible in the tables given in
Appendix C.

A data tremor is a slight variation in the output for a single computational parameter
set, as the selected vertex epsilon values change. Often this is just a minor shift in the
deviation and covolume values; but occasionally it can feature multiple changes across
the band of tested epsilon vertex values and also include construction failures. While
an obvious and interesting occurrence, these are not true errors like those outlined in
Sections 5.2.1 and 5.2.2.

These tremors are specific to an individual construction and are induced by the in-
teraction of vertex generation components of the cutting routines and εV -values. Let
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F (Pi, Gi, εV ) represent the construction process

Pi 7→ Pi+1,

as outlined in Section 3.2.2, working under a resolution of εV . Then, let v0 be a vertex
in Pi and v1 be a vertex induced by the cutting action of Gi, such that

10−(k+1) < ||v0 − v1||2E < 10−k.

Now consider F (Pi, Gi, εV ) = Pi+1.

• If εV ≥ 10−k, then a F (Pi, Gi, εV ) = Pi+1 is constructed containing only v0, as
a representative of both v0 and v1; and,

• if εV ≤ 10−(k+1), then a F (Pi, Gi, εV ) = Pi+1 is constructed containing both v0
and v1 as distinct vertices of the polyhedron.

In this way, as construction attempts are made over the breadth of vertex epsilon values
they move between distinguishing and not distinguishing the vertices v0 and v1. The
generation of tremors is also dependent on the original group-generating elements and
the current basepoint position; so neither construction possibility directly invalidates
the other.

Tremors can be induced by any cutting action in the construction process; with poly-
hedral differences being overwritten by later cutting, paring or basepoint maximising
actions. In this way tremors are merely a minor numerical variation in the group Gi
data, inducing a minor fluctuation in the final polyhedron.

5.2.4 Parallax

The SnappyD output for a small number of groups displays what we refer to as (Z2)
parallax.

In these cases there is a distinct difference in the constructed domain and output
volume for the different constructions within each class of parameter sets. Specifically,
the parameter sets (p, 2, γ) and (p, 2, β−γ), of a parameter class, correspond to distinct
groups. This can occur when the order two element, in the theorems of Section 2.3.3,
is already a member of 〈f, g〉 = G; in which case 〈f, h〉 is equal to G, rather than an
index 2 subgroup of G.

These situations can be identified by sets of input parameter with two (valid) output
volumes V1 and V2 which correspond to a case where V1 = 0.5V2; with (p, 2, γ) and
(p, 2, β− γ) being members of the same commensurability class. We refer to V2 as the
parallax volume. Table 5.10 highlights all the groups displaying parallax that we have
encountered.

As these two volumes split the results for each group in two, we only list the best
result for each V1 and V2. Here we mark out the parallax deviation and covolume in
blue, and the used data in yellow; this matches the tables given in Appendix C. It is
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(p, q) γ εV deviation B ||B||2E S/V/E covolume

(3, 2) −2.07638± 0.81470i 4↔ 13 3.64× 10−14 (0.09, 0.20, 0.08) 0.06 26/26/50 0.127456265703298

−0.92362± 0.81470i 3↔ 13 3.33× 10−15 (0.02, 0.35, 0.07) 0.13 18/16/32 0.255445410566101

(3, 2) 0.06115± 0.38830i 4↔ 13 2.65× 10−13 (−0.13, 0.20,−0.06) 0.06 24/22/44 0.102661071637195

−3.06115± 0.38830i 3↔ 14 2.66× 10−15 (−0.23, 0.24, 0.22) 0.16 18/18/34 0.205514735563156

(3, 2) 0.36778± 0.23154i 4↔ 12 1.55× 10−12 (0.26, 0.13, 0.39) 0.24 28/26/52 0.192584612983471

−3.36778± 0.23154i 4↔ 12 7.44× 10−15 (0.18, 0.12, 0.32) 0.15 20/20/38 0.385610022684362

(3, 2) −2.74540± 0.74953i 5↔ 12 5.70× 10−13 (0.45, 0.15, 0.25) 0.28 28/30/56 0.263536300108507

−0.25460± 0.74953i 5↔ 13 1.78× 10−14 (0.06, 0.42,−0.03) 0.18 22/26/46 0.526530016209333

(3, 2) −1.08698± 0.98787i 3↔ 13 9.25× 10−13 (−0.02, 0.21, 0.14) 0.07 28/30/56 0.264308750156759

−1.91302± 0.98787i 4↔ 13 7.44× 10−15 (0.12, 0.10, 0.34) 0.14 20/20/38 0.529035831989798

(3, 2) −2.48848± 1.00187i 4↔ 9 2.29× 10−11 (0.33, 0.17, 0.28) 0.21 38/38/74 0.770435534681183

−0.51152± 1.00187i 6↔ 13 3.08× 10−12 (0.19, 0.48, 0.04) 0.27 32/36/66 1.539578485870570

(4, 2) −0.12256± 0.74486i 3↔ 13 2.32× 10−14 (0.22, 0.23,−0.06) 0.11 20/18/36 0.137344777947632

−1.87744± 0.74486i 3↔ 13 1.89× 10−15 (0.13, 0.29, 0.13) 0.12 14/12/24 0.274956314143212

(4, 2) −1.59369± 1.19616i 4↔ 12 2.52× 10−14 (0.42, 0.37, 0.22) 0.36 26/28/52 0.447434850606938

−0.40631± 1.19616i 3↔ 13 1.45× 10−14 (0.24, 0.40, 0.05) 0.22 20/22/40 0.894660969880485

(4, 2) 0.78810± 0.40136i 3↔ 12 4.49× 10−13 (−0.15, 0.35, 0.31) 0.24 24/22/44 0.347567297638236

−2.78810± 0.40136i 4↔ 13 1.12× 10−14 (−0.05, 0.36, 0.39) 0.28 20/22/40 0.695106728358357

(5, 2) 0.25278± 0.85077i 4↔ 13 1.72× 10−14 (0.08, 0.43, 0.29) 0.28 20/18/36 0.313085454214014

−1.63475± 0.85077i 4↔ 14 3.77× 10−15 (−0.15, 0.52, 0.34) 0.41 14/12/24 0.626170908428058

(5, 2) −1.30017± 1.28803i 4↔ 10 1.43× 10−12 (−0.41, 0.39, 0.44) 0.51 26/28/52 0.700364591063245

−0.08180± 1.28803i 3↔ 13 2.05× 10−14 (0.30, 0.43, 0.24) 0.33 20/22/40 1.402192567477373

(6, 2) 0.50000± 0.86603i 3↔ 12 1.51× 10−14 (−0.23,−0.03, 0.33) 0.16 22/21/42 0.507438590492248

−1.50000± 0.86603i 3↔ 13 5.00× 10−15 (0.18, 0.36, 0.20) 0.20 16/14/30 1.016300073515976

Tab. 5.10: The groups displaying parallax.

notable that in every case listed, the parallax results coincide with a lower deviation,
presumably due to parallax groups having a simpler structure.

However, in selecting the data to use in the tables of Section 5.3 we ignore parallax
output. We do this for two primary reasons: when dealing with Z2 data we are
expecting covolumes half that of the original group G, and they fit better into the
general theory if they do so; and the general research area has an interest in smallest
covolumes.

It is worth noting that these groups have been seen in other references, and in these
cases it is commonly a parallax volume that has been used to represent the volume for
the class of parameter sets. As such this is the first time we have seen this parallax
property mentioned in the literature. See Section 5.3.1.

5.2.5 Basepoint Tracking and Fuchsian Groups

In the tables given in Appendix C, summarising the output details of each construction,
we have marked out the basepoint motions that hit or exceed the limits we have placed.

The tracking of each basepoint is based on the sum of Euclidean, as opposed to hy-
perbolic, distances that the basepoint is moved; so cannot be used as an accurate
measure for the actual position of a basepoint. However, any parameter set where the
basepoint consistently exceeds the limitations on its movement has the potential to be
of relevance.

As the basepoint is moved in non-constant increments, it is possible for its movement
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to exceed the bound we have placed on it. But it is uncommon for all computational
parameter sets related to a group to exceed this limit; the outlier groups for which
this occurs are discussed below.

Outside of these groups, it is notable that these more extreme, individual basepoint
movements occur predominantly for input (p, q) with p > q, especially for the larger
p-values. The number of extreme movements when p > q being greater, by roughly
a factor of 4, than the number when p < q. This is not surprising as this value
corresponds to the order of the lead input generator which, as per Section 4.2.1, is
constructed as a standard form with axis running near the basepoint. This infers that
the initial basepoint will be in the proximity of a 2π/p interior angle of the polyhedral
construction, increasing the likelihood of injectivity radius expansion as it moves away
from this axis.

Fuchsian Groups

In Table 5.11 below, we give the groups for which all successful output constructions
have their basepoint movement stopped by the limit we impose. These groups are
listed by a representative parameter set and their basepoint movements bi = ||B||2E
for each of the 4 computational parameter sets.

(p, q) γ-value b1 b2 b3 b4
(3, 2) −1.00000 + 0.00000i 1.01 1.25 1.19 1.19
(3, 2) −0.38197 + 0.00000i 1.18 0.88 0.99 0.78
(3, 2) 0.24698 + 0.00000i 0.82 1.08 0.84 0.79
(4, 2) −1.00000 + 0.00000i 1.11 1.11
(4, 2) 0.61803 + 0.00000i 1.03 0.83 0.92 0.96
(5, 2) −0.38197 + 0.00000i 1.17 0.83 1.16 1.08
(5, 2) 0.61803 + 0.00000i 1.03 0.93 1.07 0.76
(6, 2) 1.00000 + 0.00000i - 0.78 0.96 0.85
(7, 2) 0.24698 + 0.00000i 0.98 1.00 1.11 0.99
(7, 2) 1.24698 + 0.00000i - 0.85 1.00 0.70

Tab. 5.11: Fuchsian basepoint movements.

What is noticeable here is how the 0.70 limit on the basepoint movement is generally
exceeded by no small factor.

In each of the examples where this occurs, the group in question corresponds to those
identified as, or potential, Fuchsian in [23]. It is not surprising that such movements
occur in the construction of polyhedral domains for Fuchsian groups, as such construc-
tions must be the projection between one of more copies of the group’s fundamental
polygon on ∂H3; giving rise to the situation generalised in Figure 4.7.

In Figure 5.2 we demonstrate the basepoint movement of these Fuchsian groups in
comparison to other hyperideal constructions.

Based on these observations we postulate that if the constructions for each computa-
tional parameter set, related to a group G, are successful and exceed the basepoint
limit, then G is a Fuchsian group.
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Fig. 5.2: Domain maximisation and basepoint movement.
For a hyperideal polyhedron (top) and Fuchsian polyhedron (bottom).

5.3 Polynomial Tables

The group data we have used in our investigations is arithmetic in nature; based on
this, our computational results, and on the results of the source references, we give
the following theorems.

Theorem 5.3.1. The groups given in Table 5.1 and Tables 5.12-5.16 are arithmetic
and have covolumes approximated by the values given.

Theorem 5.3.2. The groups in Tables 5.17 - 5.18 have infinite covolume and are
proper subgroups of arithmetic groups

Noting that each parameter set (p, q, γ) given in a table also corresponds to groups
(p, q, γ), (p, q, β − γ) and (p, q, β − γ). The relevant tables are listed below.

5.3.1 Classification of Groups

Under our tabulated results, combined with our indication of Fuchsian groups, we
consider the volume related results of [23].

In Tables 5.19 and 5.20 we compare these results with those arising from our calcula-
tions. Noting that the red boxed γ-values in Table 5.20 correspond to groups indicated
to be Fuchsian as per Section 5.2.5.

In both Tables 5.19 and 5.20 we mark out new results in yellow. Further note that
those volumes of Table 5.19 that are marked out in blue differ from those given in [23];
these groups exhibit parallax volumes and in these cases one form of Z2-extension
obtains the minimum volume arithmetic group of which both forms are embedded
in, this volume being given by V∞. As noted in Section 5.2.4, we are aware of the
existence of this parallax, but always select the lower volume for our results.
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n (p, q) γ-polynomial γ covolume
1 (3, 2) z4 + 4z3 + 4z2 + z + 1 0.00755 + 0.51312i 0.327149654332475
2 (3, 2) z5 + 6z4 + 13z3 + 14z2 + 8z + 1 −0.66222 + 0.89978i 0.515836186082985
3 (3, 2) z5 + 8z4 + 23z3 + 27z2 + 11z + 1 −0.18484 + 0.71242i 0.517468087113118
4 (3, 2) z4 + 6z3 + 13z2 + 10z + 1 −0.79289 + 0.97832i 0.686008759135839
5 (3, 2) z4 + 8z3 + 21z2 + 19z + 4 0.21021 + 0.41375i 0.463893546593001
6 (3, 2) z4 + 6z3 + 13z2 + 11z + 1 −1.29342 + 1.00144i 0.463972819748495
7 (3, 2) z5 + 9z4 + 29z3 + 38z2 + 16z + 1 0.02268 + 0.62320i 0.646287064285721
8 (3, 2) z5 + 6z4 + 12z3 + 11z2 + 7z + 1 −0.37053 + 0.84016i 0.647079332036773
9 (3, 2) z3 + 2z2 + z + 1 −0.12256 + 0.74486i 0.785999075910039
10 (3, 2) z4 + 4z3 + 6z2 + 5z + 1 −0.75187 + 1.03398i 1.145197409428369
11 (3, 2) z5 + 5z4 + 6z3 − z2 − z + 1 0.34815 + 0.31570i 0.567165208527598
12 (3, 2) z5 + 7z4 + 19z3 + 25z2 + 14z + 1 −1.35087 + 1.05848i 0.567285975023829
13 (3, 2) z5 + 7z4 + 19z3 + 23z2 + 10z + 1 −1.02127 + 1.12212i 1.894601048848805
14 (3, 2) z4 + 5z3 + 8z2 + 6z + 3 −0.34861 + 0.75874i 0.432564598947726
15 (3, 2) 2z2 + 2z + 2 −1.00000 + 1.00000i 0.610519526694357
16 (3, 2) z5 + 7z4 + 18z3 + 23z2 + 17z + 5 −0.60186 + 0.93867i 0.711117203273613
17 (3, 2) z5 + 5z4 + 7z3 + 3z2 + 2z + 1 0.11005 + 0.57190i 0.712543560125077
18 (3, 2) z5 + 8z4 + 25z3 + 37z2 + 23z + 3 −1.86240 + 1.07589i 0.865996064707863
19 (3, 2) z3 + 3z2 + 2z + 2 −0.23931 + 0.85787i 1.255231836333305
20 (3, 2) z3 + 4z2 + 6z + 2 −1.22816 + 1.11514i 1.059048949359549
21 (3, 2) z3 + 4z2 + 5z + 4 −0.65219 + 1.02885i 1.498880413762323
22 (3, 2) z5 + 6z4 + 11z3 + 6z2 + 2z + 3 0.17229 + 0.58559i 1.181360578218381
23 (3, 2) z5 + 6z4 + 12z3 + 11z2 + 8z + 3 −0.13972 + 0.82586i 1.750517907450094
24 (3, 2) z4 + 3z3 − 2z + 1 0.46746 + 0.27759i 1.019779352592997
25 (3, 2) z4 + 6z3 + 12z2 + 7z + 1 −0.41847 + 0.93916i 1.018809897806248
26 (3, 2) z3 + 3z2 + 4z + 1 −1.34116 + 1.16154i 1.319305550522633
27 (3, 2) z3 + 2z2 + 1 0.10278 + 0.66546i 1.709353487322167
28 (3, 2) z4 + 3z3 + z2 − z + 1 0.33909 + 0.44663i 1.472909330019834
29 (3, 2) z4 + 6z3 + 12z2 + 9z + 1 −1.50000 + 0.60666i 0.039015451336356
30 (3, 2) z4 + 5z3 + 7z2 + 3z + 1 −0.21190 + 0.40136i 0.040890367870668
31 (3, 2) z3 + 4z2 + 4z + 2 −0.58036 + 0.60629i 0.132387219941707
32 (3, 2) z3 + 5z2 + 8z + 5 −1.12256 + 0.74486i 0.157117893796128
33 (3, 2) z3 + 3z2 + 2z + 1 −0.33764 + 0.56228i 0.156983968194460
34 (3, 2) z4 + 5z3 + 8z2 + 6z + 1 −0.92362 + 0.81470i 0.127456265703298
35 (3, 2) z2 + 3z + 3 −1.50000 + 0.86603i 0.338313868802930
36 (3, 2) z3 + 4z2 + 5z + 3 −0.76721 + 0.79255i 0.263008715157447
37 (3, 2) z4 + 5z3 + 6z2 + 1 0.06115 + 0.38830i 0.102661071637195
38 (3, 2) z6 + 8z5 + 24z4 + 35z3 + 28z2 + 12z + 1 −0.52842 + 0.78122i 0.362887228283480
39 (3, 2) z3 + 3z2 + z + 2 −0.11535 + 0.58974i 0.330717107428080

Tab. 5.12: The arithmetic groups of the (3, 2)-commutator plane.

Together, these results complete the volume classification of the groups in [23]. Specif-
ically, the results here allow us to complete the holes within Table 11 of [23], and so
extended Theorem 8.2, of [23].

Theorem 5.3.3 (Revised Theorem 8.2 of [23]). The following two-generator Kleinian
groups Gp,n, generated by elliptics of order p and 2, are arithmetic.

• G3,n for n = 3, ..., 14, n 6= 12,

• G4,n for n = 2, ..., 13, n 6= 10, 11,

• G5,n for n = 2, ..., 11, n 6= 5,

• G6,n for n = 1, ..., 8, n 6= 4, 7.

We also note that Table 5.18 and the failed constructions of Table 5.8 comprise the
totality of unknown, unconfirmed volumes listed in Tables 5.5, 5.6, 5.7 and 5.11 of
[62]; our earlier results for the groups of [62] having already been included in that
reference. Further, groups 3 and 10 in Table 5.5 and 10 in Table 5.6 of [62] are shown
to be among our noted parallax groups n = 3, 6 and 15 in Table 5.16, respectively.
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n (p, q) γ-polynomial γ covolume
1 (4, 2) z3 + z2 + 1 0.23279 + 0.79255i 0.595004149184967
2 (4, 2) z3 − z + 1 0.66236 + 0.56228i 0.824071575741213
3 (4, 2) z2 − z + 1 0.50000 + 0.86603i 1.524595659895754
4 (4, 2) z3 + z2 + 2z + 1 −0.21508 + 1.30714i 2.122090588879277
5 (4, 2) z4 + z3 − 3z2 − z + 3 1.06115 + 0.38830i 1.542632159257580
6 (4, 2) z4 + 2z3 + 2z2 + 3z + 1 0.03640 + 1.21238i 1.540788174525126
7 (4, 2) z4 + z3 − z2 + z + 1 0.65139 + 0.75874i 1.624021910597929
8 (4, 2) z4 − 4z2 + z + 3 1.36778 + 0.23154i 2.900382924576496
9 (4, 2) z4 + 3z3 + 5z2 + 5z + 1 −0.57943 + 1.45743i 2.889771482503296
10 (4, 2) z4 + 2z3 + z2 + 2z + 1 0.20711 + 0.97832i 1.028760806843382
11 (4, 2) z2 + z + 2 −0.50000 + 1.32288i 1.332406780851792
12 (4, 2) z2 + z + 2 0.34781 + 1.02885i 2.232710498631728
13 (4, 2) z3 + 3z2 + 5z + 4 −0.77330 + 1.46771i 1.927861496441281
14 (4, 2) z3 + 2z2 + 2z + 3 −0.09473 + 1.28374i 2.597157107493283
15 (4, 2) z3 − 2z + 2 0.88465 + 0.58974i 1.985525637343016
16 (4, 2) z2 + z + 1 −1.50000 + 0.86603i 0.253384811296644
17 (4, 2) z3 + 2z2 + z + 1 −0.12256 + 0.74486i 0.137344777947632
18 (4, 2) z2 + 2z + 2 −1.00000 + 1.00000i 0.457982797088671
19 (4, 2) z3 + 3z2 + 4z + 3 −0.65884 + 1.16154i 0.593932061794999
20 (4, 2) z3 + z2 + 1 0.23279 + 0.79255i 0.595004149184967
21 (4, 2) z3 + 2z2 + 2z + 2 −0.22816 + 1.11514i 0.793839731308609
22 (4, 2) z3 + z2 − z + 1 0.41964 + 0.60629i 0.264774439883719
23 (4, 2) z2 + 1 0.00000 + 1.00000i 0.915965594176532
24 (4, 2) z4 + 3z3 + 4z2 + 4z + 1 −0.40630 + 1.19616i 0.447434850606938
25 (4, 2) z4 + z3 − 2z2 + 1 0.78810 + 0.40136i 0.347567297638236

Tab. 5.13: The arithmetic groups in the (4, 2)-commutator plane.

n (p, q) γ-polynomial γ covolume
1 (5, 2) z2 − βz + 1 −0.69098 + 0.72287i 0.093325539506778
2 (5, 2) z(z − β − 1)2 − β − 1 0.11803 + 0.60666i 0.039050285615487
3 (5, 2) z2 − (β + 1)z + 1 −1.19098 + 0.98159i 0.468603427380289
4 (5, 2) z(z − β − 1)2 + 1 0.25278 + 0.85077i 0.313085454214014
5 (5, 2) z3 − (2β + 1)z2 + (β2 + β + 2)z − 2β − 1 −0.38197 + 1.27202i 0.861236641862642
6 (5, 2) z3 − (2β + 2)z2 + (β2 + 2β + 2)z − β 0.11803 + 1.16963i 1.119270315426469
7 (5, 2) z4 − (2β + 1)z3 + (β2 + β + 2)z2 − 2βz + 1 −0.08180 + 1.28803i 0.700364591063245
8 (5, 2) z3 − (2β + 3)z2 + (β2 + 3β + 2)z + 1 0.61803 + 0.78615i 0.861241520146132
9 (5, 2) z(z − β)(z − β − 2)2 + 1 0.87764 + 0.58260i 0.454271480250933

Tab. 5.14: The arithmetic groups in the (5, 2)-commutator plane.

n (p, q) γ-polynomial γ covolume
1 (6, 2) z3 − 2z2 + 2 1.41964 + 0.60629i 1.853421079184026
2 (6, 2) z3 − z2 + z + 1 0.77184 + 1.11514i 1.851412053612527
3 (6, 2) z3 − 2z2 + z + 1 1.23279 + 0.79255i 2.110523747092161
4 (6, 2) z3 − 3z2 + 2z + 1 1.66236 + 0.56228i 4.402234623856832
5 (6, 2) z3 + z + 1 0.34116 + 1.16154i 1.320702203534967
6 (6, 2) z2 + 2 0.00000 + 1.41421i 2.007682006682812
7 (6, 2) z2 − 2z + 2 1.00000 + 1.00000i 3.053218647256478
8 (6, 2) z3 + z2 + 3z + 1 −0.31945 + 1.63317i 2.646859749260644
9 (6, 2) z2 − z + 2 0.50000 + 1.32288i 3.549442254748726
10 (6, 2) z2 + z + 1 −0.50000 + 0.86603i 0.253735401602561
11 (6, 2) z2 + 1 0.00000 + 1.00000i 0.610643729451522
12 (6, 2) z2 − z + 1 0.50000 + 0.86603i 0.507438590492248
13 (6, 2) z3 + z2 + 2z + 1 −0.21508 + 1.30714i 1.019497428415326
14 (6, 2) z3 + z + 1 0.34116 + 1.16154i 1.320702203534967
15 (6, 2) z3 − z2 + 1 0.87744 + 0.74486i 1.022004856907895

Tab. 5.15: The arithmetic groups in the (6, 2)-commutator plane.
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n (p, q) γ covolume
1 (3, 2) −0.50000 + 0.86603i 0.676627737605571
2 (3, 2) 0.36778 + 0.23154i 0.192584612983471
3 (3, 2) −0.25460 + 0.74953i 0.263536300108507
4 (3, 2) 0.47582 + 0.16460i 0.220219588908876
5 (3, 2) 0.23676 + 0.31257i 0.154318773285096
6 (3, 2) −0.07087 + 0.66435i 0.297303264846344
7 (3, 2) −1.08698 + 0.98787i 0.264308750156759
8 (3, 2) 0.02764 + 0.73661i 2.606687956763813
9 (3, 2) −0.33909 + 0.92881i 1.786256005477690
10 (3, 2) −1.40631 + 1.19616i 1.473780096936488
11 (3, 2) −0.56154 + 1.01758i 1.886983797195308
12 (3, 2) −0.42847 + 1.00664i 2.457416519588215
13 (3, 2) −0.87763 + 1.11400i 3.438382428925763
14 (3, 2) −0.02256 + 0.77896i 2.904334127793920
15 (3, 2) −0.51152 + 1.00187i 0.770435534681183
16 (3, 2) 0.61068 + 0.18781i 1.959655953058214
17 (4, 2) 1.00755 + 0.51312i 3.667339431536167
18 (4, 2) 0.17660 + 1.20282i 3.308662886740566
19 (4, 2) −0.78492 + 1.30714i 0.824868942429759

Tab. 5.16: Additional arithmetic points.

n (p, q) γ-polynomial γ
1 (3, 2) z + 1 −1.00000 + 0.00000i
2 (3, 2) z2 + 3z + 1 −0.38197 + 0.00000i
3 (3, 2) z3 + 4z2 + 3z − 1 0.24698 + 0.00000i
4 (4, 2) z + 1 −1.00000 + 0.00000i
5 (4, 2) z2 + z − 1 0.61803 + 0.00000i
6 (4, 2) z4 + 4z3 + 7z2 + 6z + 1 −1.00000 + 1.27202i
7 (5, 2) z − β − 1 −0.38197 + 0.00000i
8 (5, 2) z − β − 2 0.61803 + 0.00000i
9 (5, 2) z2 − βz + 2 −0.69098 + 1.23391i
10 (6, 2) z2 + z + 2 −0.50000 + 1.32288i
11 (6, 2) z − 1 1.00000 + 0.00000i
12 (7, 2) z − β − 1 0.24698 + 0.00000i
13 (7, 2) z2 − βz + 1 −0.37651 + 0.92641i
14 (7, 2) z − β − 2 1.24698 + 0.00000i

Tab. 5.17: The hyperideal polynomial groups.

n (p, q) γ covolume
1 (3, 2) −1.50000 + 0.99849i hyperideal
2 (3, 2) −1.50000 + 1.07899i hyperideal
3 (3, 2) −1.50000 + 1.16963i hyperideal
4 (3, 2) −1.50000 + 1.21740i hyperideal
5 (3, 2) −1.50000 + 1.30625i hyperideal
6 (3, 2) −1.50000 + 1.27647i hyperideal
7 (4, 2) −1.00000 + 1.41421i hyperideal
8 (4, 2) −1.00000 + 1.55377i hyperideal
9 (4, 2) −1.00000 + 1.65289i hyperideal
10 (4, 2) −1.00000 + 1.73205i hyperideal

Tab. 5.18: Additional hyperideal points.
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(p, q) γ covolume V0 V∞
(3, 2) −1.50000 + 0.60666i 0.039015451336356 0.0390 0.0390
(3, 2) −0.21190 + 0.40136i 0.040890367870668 0.0408 0.0408
(3, 2) −0.58036 + 0.60629i 0.132387219941707 0.1323 0.0661
(3, 2) −1.12256 + 0.74486i 0.157117893796128 0.1571 0.0785
(3, 2) −0.33764 + 0.56228i 0.156983968194460 0.1571 0.0785
(3, 2) −0.92362 + 0.81470i 0.127456265703298 0.1274 0.1274
(3, 2) −1.50000 + 0.86603i 0.338313868802930 0.3383 0.0845
(3, 2) −0.76721 + 0.79255i 0.263008715157447 0.2638 0.0659

(3, 2) 0.06115 + 0.38830i 0.102661071637195 0.2056 0.1028
(3, 2) −0.52842 + 0.78122i 0.362887228283480 ? ?
(3, 2) −0.11535 + 0.58974i 0.330717107428080 0.3308 0.1654
(4, 2) −1.50000 + 0.86603i 0.253384811296644 0.2537 0.1268
(4, 2) −0.12256 + 0.74486i 0.137344777947632 0.1374 0.1374
(4, 2) −1.00000 + 1.00000i 0.457982797088671 0.4579 0.2289
(4, 2) −0.65884 + 1.16154i 0.593932061794999 0.5936 0.2968
(4, 2) 0.23279 + 0.79255i 0.595004149184967 0.5936 0.2968
(4, 2) −0.22816 + 1.11514i 0.793839731308609 0.7943 0.0661
(4, 2) 0.41964 + 0.60629i 0.264774439883719 0.2647 0.0661
(4, 2) 0.00000 + 1.00000i 0.915965594176532 0.9159 0.1526

(4, 2) −0.40630 + 1.19616i 0.447434850606938 0.8951 0.4475
(4, 2) 0.78810 + 0.40136i 0.347567297638236 0.3475 0.3475
(5, 2) −0.69098 + 0.72287i 0.093325539506778 0.0933 0.0933
(5, 2) 0.11803 + 0.60666i 0.039050285615487 0.0390 0.0390
(5, 2) −1.19098 + 0.98159i 0.468603427380289 0.4686 0.0390
(5, 2) 0.25278 + 0.85077i 0.313085454214014 ? ?
(5, 2) −0.38197 + 1.27202i 0.861236641862642 0.8612 0.0717
(5, 2) 0.11803 + 1.16963i 1.119270315426469 1.1199 0.0933
(5, 2) −0.08180 + 1.28803i 0.700364591063245 ? ?
(5, 2) 0.61803 + 0.78615i 0.861241520146132 0.8612 0.0717
(5, 2) 0.87764 + 0.58260i 0.454271480250933 ? ?
(6, 2) −0.50000 + 0.86603i 0.253735401602561 0.2537 0.0845
(6, 2) 0.00000 + 1.00000i 0.610643729451522 0.6106 0.3053
(6, 2) 0.50000 + 0.86603i 0.507438590492248 0.5074 0.1691
(6, 2) −0.21508 + 1.30714i 1.019497428415326 1.0212 0.5106
(6, 2) 0.34116 + 1.16154i 1.320702203534967 1.3193 0.3298
(6, 2) 0.87744 + 0.74486i 1.022004856907895 1.0212 0.5106

Tab. 5.19: The arithmetic Gp,n groups.

Of particular relevance here though, is that these few new results (of Table 5.18) all
correspond to hyperideal polyhedrons; this demonstrates that there are a number of
non-Arithmetic groups within the list of groups given in Tables 5.5, 5.6 and 5.11 of
[62]. This may not be entirely unexpected, but stands out among the data given in
the reference.

We end by noting that, by Conjectures 5.1.2, 5.2.2 and 5.3.2 of [62] where a “com-
putational boundary” has been identified for the space of free groups, the arithmetic
two-generator Kleinian groups generated by an order 2 element and either an order 3,
4 or 6 element are all included in the tables of this Chapter, specifically the groups
given in Table 5.1, Tables 5.12-5.16, and possibly Table 5.8 (pending confirmation of
volume).
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(p, q) γ V0 V∞
(3, 2) −1.00000 + 0.00000i S4 S4

(3, 2) −0.38197 + 0.00000i A4 A5

(3, 2) 0.24698 + 0.00000i Fuch Fuch

(4, 2) −1.00000 + 0.00000i S4 S4

(4, 2) 0.61803 + 0.00000i Fuch Fuch

(4, 2) −1.00000 + 1.27202i ∞ 0.0717

(5, 2) −0.38197 + 0.00000i A5 A5

(5, 2) 0.61803 + 0.00000i Fuch Fuch

(5, 2) −0.69098 + 1.23391i ∞ 0.4610
(6, 2) −0.50000 + 1.32288i ∞ 0.5555

(6, 2) 1.00000 + 0.00000i Fuch Fuch

(7, 2) 0.24698 + 0.00000i − Fuch

(7, 2) −0.37651 + 0.92641i − ?

(7, 2) 1.24698 + 0.00000i − Fuch

Tab. 5.20: The hyperideal Gp,n groups.
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6. CLOSING REMARKS

In this work we have made dramatic alterations to the Dirichlet_ subroutines of the
commonly used computational package SnapPea [59]; expanding and refocusing the
input data it runs on and offering a depth of insight into the computational processes
used in the construction of fundamental polyhedrons, for hyperbolic 3-orbifolds, that
we have not seen elsewhere in the literature.

We have then used our new program, SnappyD, to construct and study fundamental
domains for the groups listed in several recent publications related to the classification
of arithmetic hyperbolic 3-orbifolds and investigation of Kleinian groups; [23], [60] and
[62]. These constructions reinforce the results seen in these references and extend them
in important ways.

Most specifically, we have reaffirmed the covolume results seen in [23] and [62]; adding
values missing from the tables and confirming those values already seen.

In doing this we give Theorem 5.3.3 in Section 5.3.1, an expansion of Theorem 8.2 of
[23], and complete Table 1 of [60]. In addition to this, under the conjectures of [62]
we also further refine the complete list of two-generator arithmetic groups that are
generated by one element of order 2 and one element of order 3, 4 or 6; leaving only
18 possible members still awaiting confirmation.

In using these computational methods, we highlight the value of these programs and
their ability to lend considerable insight into computational methods used to con-
struct domains in these, and related, applications. This insight is exemplified in our
identification of both:

• constructed polyhedrons that fail the cycle condition (Section 5.2.1); and

• pairs of (p, q, γ) and (p, q, β − γ) parameter sets that demonstrate parallax in
their volumes (Section 5.2.4).

Results based on these groups (and the constructed polyhedrons) have been used in
previous work; but as far as we are aware, this is the first instance that their nature
has been highlighted in relation to the classification of arithmetic groups.

From here, a greater analytical exploration of the outlier results would be of consid-
erable interest. Especially this parallax property, and whether it can be determined
from, or acts to classify, parameter sets; and exploring the conjectured relationship
between Fuchsian groups and large basepoint movement (Section 5.2.5).

As an experimental project, working with fixed precision, accuracy is an issue here
and increasing the accuracy of these routines is something to be considered; along
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with attempting to confirm the arithmeticity of the last 18 groups. However, in the
meantime we see this limited precision as having considerable merit for the quick and
experimental approach it allows. Especially with regards to explorations related to
things like the exceptional data points resulting from the disc-covering procedure of
[28]; γ-values that relate to groups that may or may not be discrete. This provides
a level of computational insight into how group elements generate domains that we
believe, with further refinement, could lead to interesting studies comparable to those
on the iterative actions of Fuchsian and quasi-Fuchsian groups, [50].

Related to all this is the question of discreteness and the role of a representation in
finite precision with relation to results. Under finite (or even arbitrary) precision all
the groups that we are primarily concerned with (namely groups generated by two
elliptic transformations which are not free on those generators) are analytically finite,
as all γ parameters are isolated.

Considering the future expansion of this program, it would be of value to incorporate a
robust procedure for determining if a given group is not discrete, possibly through the
addition tests based around Jørgensen’s inequalities and a computational reference for
the known disc coverings of the γ parameter space (and other similar spaces) already
studied. It would also be of benefit to further develop the available machinery in
an attempt to generate a more thorough description of the boundary (or at least a
computational approximation of the boundary) for the space of free groups. Such a
combination of methods would advantage the more visually exciting areas of these
subjects, such as: the techniques utilized in generating the burgeoning description of
(p, 2)-commutator planes [28],[62]; the iterative mapping of spaces under group actions
[50]; and this description of quotient spaces.

In considering the general construction proceedures, we also echo the sentiment of
[20] in encouraging an attempt at building a more expansive and general collection
of functions for the construction and study of fundamental domains. The majority of
the functions used in SnappyD (SnapPea), and comparable programs, take a general
form; which, under modern programming techniques with the encapsulation of data
and alternative forms of data typing, should be amenable to a much greater range
of applications. Together this would allow for an expansion of scope from hyperbolic
3-orbifolds, to geometric manifolds in general; and more complicated situations.

Though, in considering future computational work, we are curious as to the continued
use of multiple separate code packages commonly being used, e.g. Pari, Geoview; and
wonder if it would not be better to write our programs in one of the more common
mathematical programming suites out there1, where the implementation of symbolic
computation, and other complexities, has already been handled.

1 For example, Mathematica provides comprehensive function databases for these applica-
tions, including access to a computer algebra system for symbolic computation and a variety
of highly developed graphical output, and user interface, options.
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APPENDIX





A. HYPERBOLIC 3-SPACE

The primary focus of this thesis is a computational discussion of fundamental domains
for hyperbolic 3-orbifolds; or, more directly, for the action of two-elliptic-generator
groups acting on hyperbolic space. Here we provide a brief overview of the primary
models of hyperbolic 3-space and some of the relationships between them and their
isometries.

A.1 The Four Models of Hyperbolic 3-space

Hyperbolic geometry is one of the seven canonical geometries described by Thurston
[58], and is represented by a 3-dimensional real vector space with a constant negative
curvature of −1. Below we outline the four canonical models of hyperbolic 3-space.

Note that in the main text we have denoted generic hyperbolic 3-space, unspecific of
model, by X with metric ρ.

The Hyperboloid Model

This first model is the only one not commonly embedded in a subset of R3, instead
being embedded in Lorentzian 4-space. Also known as Minkowski Space, this is a
four dimensional real vector space under the indefinite Lorentzian norm ‖x‖2L, and is
commonly denoted R1,3.

‖x‖2L = −x20 +

3∑
i=1

x2i .

Note that the x0 = 0 hyperspace of R1,3 is R3.

The hyperboloid model, H3, is then the positive sheet of the unit hyperboloid

H3 = {x ∈ R1,3 : ‖x‖2L = −1, x0 > 0},

with metric ρH given by

cosh ρH(x, y) = −x0y0 + x1y1 + x2y2 + x3y3.

The positive light cone of R1,3 is the set

L = {x ∈ R1,3 : ‖x‖2L = 0, x0 > 0}.

Note that the positive sheet of H3 is contained in the interior of L. The linear transfor-
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mations preserving the Lorentzian norm and the interior of the positive light cone form
PO(1, 3), the positive Lorentz group1, this group represents the full set of isometries
on H3; and PSO(1, 3), the positive special Lorentz group2 (the index two subgroup of
elements with determinant one), represents the orientation-preserving isometries.

Fig. A.1: Cross-section of H3 and the projections onto D3 and B3.

The Klein Ball Model

One can rescale H3, by its vector components in R1,3, so that x0 = 1; or, equivalently,
project H3 toward the origin and onto the unit 3-ball, centred in the x0 = 1 hyperspace.
This gives the Klein ball (or projective disc) model of hyperbolic 3-space, denoted D3,
which has a metric ρD given by

cosh ρD(x, y) =
1− x.y√

1− ‖x‖2E
√

1− ‖y‖2E
.

Where x, and x and y are considered vector elements of the ball B(0, 1), in R3 rather
than R1,3; this is often explained through a further projection of the unit 3-ball centred
in x0 = 1 onto the unit 3-ball centred in x0 = 0.

The retraction from H3 to D3 also retracts the action of PSO(1, 3), which is then also
the representation group for Isom+(D3). It is a noted property of this space that the
geodesics are Euclidean line segments in R3.

1 This is also often denoted O+(1, 3)
2 This is also often denoted SO+(1, 3)
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The Poincaré Disc Model

Alternatively, projecting H3 towards (−1, 0, 0, 0) and onto the unit 3-ball, centred in
the x0 = 0 hyperspace, gives rise to the conformal ball model, B3, which has a metric
ρB defined by

cosh ρB(x, y) = 1 +
2‖x− y‖2E

(1− ‖x‖2E)(1− ‖y‖2E)
.

The geodesics in this space are then the circular arcs orthogonal to the boundary S2,
and isometries are then the compositions of reflections in spheres orthogonal to this
boundary. Thus Isom+(B3) is a Möbius group.

Reflecting this model in the sphere S((0, 0, 1),
√

2) followed by the x3 = 0 plane gives
the upper half-space model, U3, which is seen in Section 2.2 and is commented on fur-
ther below. This pair of reflections conjugate the isometry group of Möbius transforma-
tions, demonstrating that Isom+(B3) is represented byM or, equivalently, PSL(2,C).

This model makes obvious the relation of ∂X to the Riemann sphere.

Fig. A.2: The mapping between conformal models.

The Upper Half-Space Model

The upper half-space model, U3, is mentioned in Section 2.2 and is the space

U3 = {x ∈ R3 | x3 > 0},
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with the metric ρU , given by

cosh ρU (x, y) = 1 +
‖x− y‖2E

2x3y3
.

But it is worth noting that in many references, the metric is given in an alternative,
differential form, as seen in Chapter 1.

ds =
dx21 + dx22 + dx23

x23
.

The Euclidean boundary of U3, or sphere at infinity, is

∂U3 = {x ∈ R3 | x3 = 0} ∪ {∞}.

And the geodesics of U3 are the intersection of Euclidean lines and circular arcs,
orthogonal to the boundary, with U3. Similarly, each geodesic plane is the intersection
of U3 with a Euclidean hemisphere (or plane) orthogonal to ∂U3; isometries being
reflections in these spheres. In this way, an equivalence between Isom+(X) and M,
the Möbius transformations preserving the upper half-space, is clear.

The two models B3 and U3 are known as the conformal models, as both spaces accu-
rately represent hyperbolic angles in their Euclidean embeddings.

A.2 Orientation-Preserving Isometries

As highlighted above and in Section 2.2, there is a deep interaction between the ge-
ometry of hyperbolic space, the group of Möbius transformations acting on the upper
half space U3, and the Möbius group of fractional linear transformations acting on the
extended complex plane.

That is, each non-identity orientation-preserving isometry acting on U3 has a unique
representation in PSL(2,C)

±

[
a b

c d

]
, ad− bc = 1.

Which is conjugate to a single standard form, these conjugacy classes being parame-
terised by the non-zero complex parameter k

• M1 = ±

[
1 1

0 1

]
; and

• Mk = ±

[ √
k 0

0 1/
√
k

]
, where k /∈ {0, 1}.

With the square of these matrix traces being invariant under conjugation this allows
for a trace-squared classification that can also be related back to the geometric action
of the isometry.
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Definition A.2.1 (Definition 2.2.1, Section 2.2.2). Let f be any element of M\{I},
then

1. f is parabolic if and only if tr2(f) = 4;

2. f is elliptic if and only if tr2(f) ∈ [0, 4);

3. f is hyperbolic if and only if tr2(f) ∈ (4,+∞);

4. f is loxodromic if and only if tr2(f) /∈ [0,+∞).

Mapping PSL(2,C) to PSO(1, 3)

Let V denote the set of all 2×2 complex Hermitian matrices3, then V is a 4-dimensional
real vector space with basis:

B1 =

[
1 0

0 1

]
;B2 =

[
0 1

1 0

]
;B3 =

[
0 i

−i 0

]
;B4 =

[
1 0

0 −1

]
.

And basis decomposition

M =

[
α γ

γ β

]
=
α+ β

2
B1 + <(γ)B2 + =(γ)B3 +

α− β
2

B4.

The function ‖x‖V =
√
−det(x), defines an indefinite norm on V, under which the

vectors B1, B2, B3, B4 provide a Lorentz-orthonormal basis, indicating that the inner-
product space V is isometric to R1,3. It follows that we can embed H3 in V in the
same manner it is embedded in R1,3.

Consider the mapping:

Φ : A 7→ AVA∗

Φ(A)(X) : X 7→ AXA∗

Where A ∈ SL(2,C). Notice that Φ(A)(X) = Φ(−A)(X). It is easily shown that
Φ(A)(X) is a linear function preserving the orientation and norm on V; further, each
Φ(A)(X) is a unique orientation-preserving isometry on H3, as embedded in V.

Thus the function Φ is an injection of SL(2,C) into Isom+(H3). With the above basis
decomposition, elements in PSO(1, 3) can then be generated that have actions on R1,3

equivalent to the action of Φ(A) on V.

In this way we can lift Φ to a mapping from SL(2,C) to PSO(1, 3), carrying the
classification above into PSO(1, 3). A reversal of this construction is not difficult and
provides a map from PSO(1, 3) into SL(2,C)/{I,−I}.

3 complex square matrices M = (mij) such that mij = mji
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A.3 Orientation-Reversing Isometries

The classification of orientation-reversing isometries is rarely covered in the literature.
The best classification we have found is in the SnapPea source file complex_length.c,
[59], where the lack of reference material is also noted.

Orientation-reversing transformations are dealt with in much the same way as
orientation-preserving; being the composition of a single reflection in a plane and an
orientation-preserving transformation (possibly the identity). For classification pur-
poses this is usually achieved via a single reflection in the x2 = 0 hyper-plane; in the
conformal models this leads to fractional linear transformations on z instead of z,

z 7→ az + b

cz + d
, where ad− bc = 1.

The transformations can then be classified into conjugacy classes under their
orientation-preserving component.

It should be noted that orientation-reversing loxodromic transformations do not exist.

A.4 Notes

The four models are commonly divided into two sets: the conformal models U3 and
B3; and the projective models H3 and D3. In the general literature, notation for the
specific models is not consistent, with it being common to simply use H3 or H3 to
denote hyperbolic space as pertaining to each individual text’s particular model of
interest.

The conformal models are the most common; prevalent for their links to complex
analysis and inversive geometry, alongside their conformal nature and the simple pa-
rameterization they exhibit. Whereas the projective models find more relation to
mathematical physics, specifically the hyperboloid model with Lorentzian space being
the background of space-time calculations. The parallel between the definition of the
hyperboloid model (‖x‖2H = −1) and the sphere (‖x‖2E = 1) is also noted; similarly the
generation of the Klein model is comparable to the gnomic projection of the sphere.

Given the Euclidean representation of its geodesics, the Klein disc model finds special
use in geometric representation; as seen in our use of it (following SnapPea). In fact,
both disc models are often used for demonstrative and artistic displays (see the work
of Escher, www.mcescher.com).

For a more detailed overall description on these models and the classification of Möbius
transformations see [10], [44] and [55]. For a detailed discussion on the mapping given
above, and explicit forms of these mapped matrices, see [16]; additionally, algorithms
for converting matrices between PSO(1, 3) and PSL(2,C) can be found in the SnapPea
file matrix_conversion.c, [59].



B. SUPPORT FILES

This work centres around the development and use of the computer program SnappyD.
As such, this thesis should come with an attached CD, or other accessible data-file,
containing the computer program itself along with several variants and a number of
support files.

This section briefly covers the execution of the SnappyD program and the contents of
the support files.

B.1 SnappyD

SnappyD is a computer program developed for the construction and investigation of
fundamental domains in reference to hyperbolic 3-orbifolds. It is named in reference
to the Dirichlet subroutines of Jeffrey Week’s SnapPea program, [59], upon which it
is solidly based.

Where other work seems to focus on expanding the accuracy of SnapPea’s overall
computations, with a focus on the accurate triangulation of link complements, or
providing domain construction routines for a narrow class of highly accurate groups;
SnappyD follows the construction of Dirichlet domains within the accuracy of double-
precision arithmetic, and allows for the successful construction of domains that would
be otherwise unacceptable within the confines of the common linear representation of
hyperbolic polyhedrons.

SnapPea and SnappyD are covered in Chapters 3 and 4, respectively.

B.1.1 Using the Program

To facilitate fast use of the program, SnappyD works as a simple executable file,
reading from two input files and writing to a single output file. These three files are
all of notepad (.txt) format and are summarised:

• The input file “snappyD_input.txt” provides a list of parameter sets, and several
other settings for each individual construction to be based upon. Each line in
the file is of the form:

n EV p q RE(γ) IM(γ)

Where:
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– n is an integer reference number for tracking the results of an individual
group or set of groups.

– EV ∈ [3, 15] is an integer, setting vertex epsilon εV = 10−EV ; and

– (p, q, γ) is the computational parameter set of interest;

The input file can contain any number of groups, but each must be given on a
separate line, with no additional formatting.

• The input file “snappyD_print_defaults.txt” contains only one meaningful line
of data; an array of 1’s and 0’s that are used to indicate the form and complexity
of output desired.

This array comprises the first line in the file and is the only line read by SnappyD;
the remainder of the file providing a description of the various options. This file
is not necessary for the success of the program, but without it the output will
only be given in its simplest form.

• The output file is titled “snappyD_OUTPUT_XX.txt”, where XX is a series of letters
to describe the particular variant of SnappyD used, see Section B.1.2 below. The
output file is re-generated each time (the specific variant of) the program is used.

Originally we had considered designing a simple user interface window. But both
building it, and using it, seemed unnecessarily time consuming.

To use the program, all that is strictly needed is the executable file and a
“snappyD_input.txt” file. As mentioned the output file is reconstructed each ex-
ecution, and will over-write any file with the same name; if you wish to save the
output, then relabeling it is highly encouraged.

B.1.2 Variants

There are a number of variants to the SnappyD program. The core version we use is
SnappyD_CPT.exe, which attempts to construct a polyhedron as outlined in Sections
4.3 and 4.4. Additionally there are:

1. SnappyD_CPT_NM.exe - which does not maximise the injectivity radius;

2. SnappyD_nCPT.exe - which does not attempt to “compute products twice” before
leaving while-loop two (see Section 4.3.2);

3. SnappyD_nCPT_NM.exe - which combines the alterations of the two previous vari-
ants; and

4. SnappyD_CPe_NM.exe - which does not maximise the injectivity radius, but will
attempt to sequentially compute more products in while-loop two, up to an
internally set limit (currently 5).

The core, SnappyD_CPT.exe, version of SnappyD is the one we have used for the
majority of our work, with the other variants existing mostly for comparison. The
support files only include actual executables for variants 3 and 4 above; though code
is provided for the others variants.
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As outlined in Section 4.3.2, SnappyD_CPe_NM.exe can take considerably longer to
progress constructions than the other variants. For this reason we have purposely
removed its access to the basepoint manipulation routines; and we suggest running it
only on small data sets and moderate precision settings (εV = 10−7). We note that un-
like the other variants, SnappyD_CPe_NM.exe will exit while-loop 2 if the identification
is confirmed on the constructed polyhedron.

We also provide the executable Snappy.exe, which reads from the input file
“snappy_input.txt”. The input file is identical to the SnappyD input, except that
it does not take an EV input, instead running at with default εV = 10−7. This is a
simple “wrapper” of the original Dirichlet subroutines as found in SnapPea, the only
alteration that has been made is capping while-loop two after 50 iterations. This pro-
gram writes to the file “snappy_output.txt”; and there are no output options for this
program - it simply lists the parameter set and either the constructions volume or
“FAIL”.

B.2 Progress Tracking and Output

The output for SnappyD is written into the file “snappyD_OUTPUT_XX.txt”, where “XX”
denotes the variant used. The exact details written in the output can vary dramatically,
depending on the “snappyD_print_defaults.txt” settings: from a simple statement
of the parameters with a volume if successful, or “FAILS” otherwise; to a full step-
by-step description of the entire process - detailing the separate functions entered,
the group elements being generated, and each attempt at classifying and verifying the
polyhedron.

The only output that can never be turned off is the announcement of fatal errors in
the construction process.

This output runs off a comprehensive and descriptive progress tracking system that
we have built into the code. Progress through the construction is tracked by a series of
Boolean values - allowing successes and errors to be announced when they occur; along
with optional tracking of individual construction processes, right down to detailing the
flow through the individual routines.

As noted earlier, this program is quite fast, and a simple output selection is ideal for
streaming through large lists of generator inputs.

A full description of the various output options would take considerable space, so
we instead refer the reader to the “snappyD_print_defaults.txt” file; and suggest
attempting to use the program to complete constructions across various “print” settings
- using a single parameter set.

B.3 Reference Information

In addition to the program, the support files include a variety of files relevant to the
information given in this thesis.
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Reference Data

The data-files, both input and output, for all tables seen in this thesis are given in the
support files. These have been given in a simple output style focusing on the interests
displayed here.

Files for generating the individual tables should also be available, in .txt, .pdf and
.tex formats.

Reference Code

Along with the executables, the support files should also include the code used to
generate the core program and its variants. Like SnapPea they are all written in the
C programming language.

For additional reference we also provide the base code for the SnapPea kernel (code),
both in a readable .pdf and a usable .c (and .h) formats.

The SnapPea kernel is also available online and is free to distribute; [59].
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Here we provide detailed tables from our use of SnappyD in constructing the funda-
mental domains for groups generated by two elliptic transformations. The results from
these tables are discussed, and applied, in Chapter 5.

Using SnappyD, we have investigated each of the groups listed in references [23], [60]
and [62]; through the attempted construction of their fundamental polyhedrons. For
ease in cross-referencing, in the tables given here we have maintained the group order
as per the tables seen in the individual references the groups are taken from.

The tables here display information as discussed in Section 5; listing the parameter sets,
basepoint movement, deviation and volume if finite; with a “Free” note for hyperideal
constructions1.

All results shown are for the standard version of SnappyD; the generated files for which
can be found in the SnappyD support files. A discussion on the various versions of
SnappyD can be found in Appendix B.1.2.

Table Structure

The structure of the tables given in this Appendix follows the form seen in Section
5.1.1. Specifically, each row of the table corresponds to the constructions based upon
one particular set of “computational” input parameters. With the parameter sets
corresponding to each inter-related class of groups being separated into their own box
of rows within the greater table.

In some circumstances a row will contain more than one line of data, this corresponds
to the data “tremors” discussed in Section 5.2.3. In these cases, the overall or dominant
result for the particular parameter set is given in the top line, with additional lines
listing the outlier results and their corresponding values.

The columns describe these constructions accordingly:

• n - a reference to the particular class of group parameters that is under consid-
eration.

• (p, q) - the respective order of generators, as input into the program.

• γ - the specific γ-parameter used. These are given only to 5 decimal places, due
to space constraints; the actual γ-values used are input at full double precision,

1 As mentioned in Chapter 5, hyperideal constructions are generally not free and are instead
likely to be among those groups listed in Section 2.3.1.
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having been calculated from the polynomials seen in the tables of Chapter 5,
where possible.

• εV - the band of vertex resolution k-values for which the construction holds; each
resolution setting is of the form 10−k, for integer k. See Section 3.2.3. Note that
we test all values within the bounds suggested by SnapPea: 3 ≤ k ≤ 15.

• deviation - the largest deviation of a side-pairing (generating) transformation
found in the final constructed polyhedron. See Section 3.3.1.

• B0 - the sum of Euclidean movements induced on the basepoint in an attempt
to maximise the injectivity radius, as discussed in Section 4.4.2.

• ||B0||2E - the Euclidean measure of distance the tracked basepoint has moved
(given to 2 decimal places).

• S/V/E - the total number of (real) sides, vertices and edges seen in the final
polyhedron. These counts do not include purely hyperideal components.

• covolume - the hyperbolic volume of the particular construction.

For most purposes, attention can be directed to the second and third rows, consisting
of the parameter data; and the last row, which states the volume of the construction.
If the final construction is a hyperideal polyhedron, then instead of listing a volume it
is marked as “Free?” to match the general SnappyD output; as noted in the text, these
groups do not generally correspond to actual free groups. Where there is a failure in
obtaining a successful construction, the row is marked appropriately and to save space,
where possible, multiple failing rows have been compounded; this should not add any
ambiguity to the results.

Marked Results

Certain components in each table have also been highlighted. Most noticeably, the
volumes used in the main tables of Chapter 5 have been blocked in yellow; these
correspond to the construction within a set of inter-related parameters that displays
the lowest deviation. Where multiple results share this deviation, the more successful
construction (determined by spread of εV -values) is highlighted.

We also circle specific data with coloured boxes.

• Deviations marked in a yellow box correspond to the lowest deviation within the
class of inter-related parameter sets, disregarding parallax outliers; if a parallax
outlier is the lowest deviation, then it is marked in a blue box along with its
corresponding volume.

• Volumes corresponding to constructions that fail the cycle condition are marked
out by an orange box.

• Basepoint distance measures that equal or exceeded their bounds, as given in
Section 4.4.2, are boxed in red.

The relevance of these results is covered in Chapter 5.
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C.1 Orbifold Generalised Triangle Groups

These are the groups used in the detailed example that comprises Section 5.1. Here,
in Table C.1, we detail the general output under the standard SnappyD; we do this
for the sake of completeness of the Appendix, with the information given here having
already appeared in the mentioned section. We do not list any greater tables detailing
the devolution or other results noted previously; the output details for which should
be available in the support files.

Note that these groups can also be found in Table 5.3 of [62]; but here they are taken
from [60].

Unlike the other tables in this Appendix, we have highlighted multiple volumes in each
class of parameters; each volume corresponding to one used in Table 5.1. This data
is also unique for being the only data set that we covered in this thesis that contains
parameter sets where p = q.

C.2 Disc Covering Groups

These groups are taken from [23] and correspond to investigations on commutator
planes. In the reference, a set of groups, Gp,n, is given for each of the five (p, 2)-
commutator planes, p = 3, ..., 7.

We give output for these groups in Tables C.2 - C.9, separating them into Gp,n sets
as per the reference.

Note that some of these groups are also seen in the results of [62].

C.3 Boundary Groups

These groups are those taken from the tables of [62]; we consider all groups, with the
exception of Tables 5.2, 5.3, 5.10 and 5.14, as the group data provided in those tables
already appears in references [23] and [60], so has been covered above.

We detail these groups in Tables C.10 - C.26. Note that the referencing systems in
several of the tables given in [62] are related to knot descriptions, which we forgo here;
reverting to a standard numerical reference for all groups.

Within these Tables there are still 10 individual parameter sets that have already
been covered in the disc-covering groups of [23]. We have not removed them from
these tables, so as to preserve the structure of referencing and comparison purposes,
and instead reference the above results from within the table.

C.4 Notes

• The finite constructions of Tables C.2 - C.8, C.10 - C.15, C.21, C.23, C.25 and
C.26 are summarised in Tables 5.12 - 5.15 of Section 5.3.
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• The hyperideal constructions of Tables C.2 - C.9, C.16 - C.19 and C.24 are
summarised in Table 5.17.

• All other finite and hyperideal constructions are covered in Tables 5.16 and 5.18
respectively.

• The group parameter sets over which SnappyD fails to output a successfully
constructed domain are covered briefly in Section 5.2.1.

• In displaying the γ-values in [62] to a chosen number of significant figures, the
author seems to have made some minor errors that we have corrected in our
tables.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (3, 3) −1.77184 + 1.11514i 3↔ 13 2.55× 10−15 (−0.04, 0.31, 0.21) 0.14 10/7/15 0.264774439883296

−1.77184− 1.11514i 4↔ 14 5.33× 10−15 (0.24, 0.31, 0.17) 0.18 14/12/24 0.264774439883378

(3, 2) −2.41964 + 0.60629i 3↔ 14 2.22× 10−15 (0.19, 0.25, 0.14) 0.12 14/12/24 0.132387219941707

−2.41964− 0.60629i 4↔ 14 2.44× 10−15 (0.25, 0.14, 0.22) 0.13 8/9/15 0.132387219941693

−0.58036 + 0.60629i 4↔ 13 1.73× 10−14 (−0.17, 0.27,−0.02) 0.10 22/24/44 0.132318149806017

−0.58036− 0.60629i 4↔ 13 2.98× 10−14 (−0.17, 0.25, 0.11) 0.10 22/24/44 0.132403276354546
(2, 3) −2.41964 + 0.60629i 3↔ 14 2.44× 10−15 (0.14, 0.21,−0.14) 0.08 14/12/24 0.132387219941619

−2.41964− 0.60629i 3↔ 14 2.66× 10−15 (0.14, 0.21, 0.14) 0.08 14/12/24 0.132387219941758
−0.58036 + 0.60629i 5↔ 12 2.30× 10−14 (0.05, 0.21, 0.24) 0.10 22/24/44 0.132426403921074
−0.58036− 0.60629i 5↔ 12 2.41× 10−14 (0.15, 0.19, 0.15) 0.08 22/24/44 0.132158766596323

2 (3, 3) −0.68055 + 1.63317i 5↔ 13 1.53× 10−14 (0.19, 0.45, 0.19) 0.27 16/14/28 0.661714937315159

−0.68055− 1.63317i 5↔ 13 1.42× 10−14 (0.34, 0.40, 0.24) 0.34 16/14/28 0.661714937315199

(3, 2) −0.11535− 0.58974i 6↔ 13 3.17× 10−13 (−0.11, 0.30, 0.19) 0.14 24/32/54 0.330857468657992

−0.11535 + 0.58974i 4↔ 13 2.13× 10−14 (−0.11, 0.35,−0.04) 0.14 24/32/54 0.330857468657719

−2.88465− 0.58974i 4↔ 14 2.71× 10−14 (0.33, 0.03, 0.36) 0.24 22/24/44 0.330802402206134
−2.88465 + 0.58974i 4↔ 14 5.02× 10−14 (0.33, 0.29, 0.22) 0.24 22/24/44 0.330264970254204

(2, 3) −0.11535− 0.58974i 4↔ 12 5.85× 10−14 (0.30, 0.24, 0.19) 0.18 24/32/54 0.330857468657576
−0.11535 + 0.58974i 4↔ 12 2.89× 10−14 (0.21, 0.26, 0.26) 0.18 24/32/54 0.330857468657535
−2.88465− 0.58974i 4↔ 13 2.89× 10−14 (0.29, 0.22, 0.23) 0.18 22/24/44 0.330788586067824

−2.88465 + 0.58974i 5↔ 13 1.47× 10−14 (−0.04, 0.08, 0.40) 0.17 22/24/44 0.330717107428080

3 (3, 3) 0.19927 + 1.58951i 5↔ 11 1.35× 10−14 (0.31, 0.51, 0.14) 0.38 20/24/42 0.982766244039437

0.19927− 1.58951i 6↔ 13 1.97× 10−13 (0.42, 0.39, 0.33) 0.44 20/24/42 0.982766244039443
(3, 2) −3.13846 + 0.48506i 4↔ 14 9.77× 10−15 (−0.28, 0.09, 0.39) 0.24 18/18/34 0.492361631010875

−3.13846− 0.48506i 4↔ 14 9.33× 10−15 (−0.28, 0.28, 0.29) 0.24 18/18/34 0.492361631011032
0.13846 + 0.48506i 4↔ 13 6.95× 10−14 (−0.08, 0.39,−0.05) 0.16 24/32/54 0.491693878116127
0.13846− 0.48506i 4↔ 13 6.14× 10−14 (−0.08, 0.31, 0.24) 0.16 24/32/54 0.491677333327298

(2, 3) −3.13846 + 0.48506i 4↔ 13 7.44× 10−15 (0.07, 0.06, 0.36) 0.14 18/18/34 0.492361631010930

−3.13846− 0.48506i 4↔ 13 3.55× 10−15 (0.34, 0.27, 0.23) 0.24 18/18/34 0.492361631010942

0.13846 + 0.48506i 4↔ 12 9.04× 10−14 (−0.26, 0.21, 0.26) 0.18 24/32/54 0.491677333327583

0.13846− 0.48506i 4↔ 13 4.00× 10−14 (−0.19, 0.33, 0.20) 0.18 24/32/54 0.491484440296781

4 (3, 3) −2.80606 + 1.15645i 4↔ 13 1.61× 10−14 (0.31, 0.41, 0.35) 0.38 18/18/34 1.090072770048188

−2.80606− 1.15645i 6↔ 12 8.88× 10−15 (0.58, 0.24, 0.46) 0.61 18/23/39 1.090072770048278

(3, 2) −0.89704 + 0.95897i 5↔ 13 7.66× 10−15 (0.14, 0.43, 0.06) 0.21 18/16/32 0.544958718160841
−0.89704− 0.95897i 5↔ 13 1.73× 10−14 (0.16, 0.43,−0.04) 0.21 18/16/32 0.544962897261796
−2.10296 + 0.95897i 4↔ 13 1.38× 10−14 (0.15, 0.37, 0.13) 0.18 18/17/33 0.545036385024126
−2.10296− 0.95897i 5↔ 14 7.11× 10−15 (0.45, 0.30, 0.28) 0.38 18/17/33 0.544739451493277

(2, 3) −0.89704 + 0.95897i 3↔ 14 3.33× 10−15 (0.08, 0.34, 0.05) 0.13 18/16/32 0.545209773747604

−0.89704− 0.95897i 5↔ 14 6.55× 10−15 (0.12, 0.35, 0.15) 0.16 18/16/32 0.544974108710528

−2.10210 + 0.95897i 5↔ 13 6.44× 10−15 (0.23, 0.07, 0.37) 0.19 18/17/33 0.544786544898183

−2.10210− 0.95897i 4↔ 13 8.22× 10−15 (0.19, 0.33, 0.08) 0.15 18/17/33 0.545036385024131

5 (3, 3) 0.84236 + 1.35530i 4↔ 12 4.85× 10−14 (0.37, 0.54, 0.10) 0.45 20/26/44 1.232257018353899

0.84236− 1.35530i 4↔ 12 3.62× 10−14 (0.45, 0.37, 0.39) 0.50 20/26/44 1.232257018354058

(3, 2) 0.29843 + 0.37680i 4↔ 11 3.21× 10−13 (−0.07, 0.41,−0.06) 0.17 26/36/60 0.616139999305901
0.29843− 0.37680i 4↔ 13 1.71× 10−13 (−0.07, 0.31, 0.27) 0.17 26/36/60 0.616139999304282
−3.29843 + 0.37680i 5↔ 13 2.36× 10−13 (−0.30, 0.09, 0.44) 0.29 24/26/48 0.616097893053077

−3.29843− 0.37680i 5↔ 13 1.45× 10−14 (−0.31, 0.32, 0.32) 0.30 24/26/48 0.615425771551932

(2, 3) 0.29843 + 0.37680i 4↔ 12 7.59× 10−14 (−0.23, 0.24, 0.26) 0.18 26/36/60 0.616139999303372

0.29843− 0.37680i 3↔ 12 1.12× 10−13 (−0.18, 0.33, 0.22) 0.19 26/36/60 0.616024211234735

−3.29843 + 0.37680i
5↔ 14 4.62× 10−14

(0.14, 0.05, 0.40) 0.18 24/26/48
0.616128509177734

5 4.86× 10−14 0.616128509177205
−3.29843− 0.37680i 3↔ 13 1.91× 10−14 (0.40, 0.29, 0.29) 0.33 24/26/48 0.616128509177068

6 (3, 3) −3.19690 + 0.90182i 6↔ 11 2.19× 10−13 (−0.33, 0.27, 0.54) 0.47 20/20/38 1.696240561334349

−3.19690− 0.90182i 5↔ 13 6.10× 10−14 (−0.33, 0.28, 0.54) 0.48 20/20/38 1.696240561334381

(3, 2) −1.92469 + 1.06173i 4↔ 13 5.00× 10−14 (0.14, 0.39, 0.13) 0.19 22/24/44 0.848365358302074

−1.92469− 1.06173i 4↔ 12 5.66× 10−15 (0.55, 0.21, 0.38) 0.49 22/26/46 0.847936929164838

−1.07530 + 1.06173i 4↔ 13 2.29× 10−13 (0.20, 0.45, 0.07) 0.25 26/28/52 0.847904607792574
−1.07530− 1.06173i 5↔ 14 2.99× 10−13 (0.27, 0.44, 0.13) 0.28 26/28/52 0.847904607792901

(2, 3) −1.92469 + 1.06173i 4↔ 14 8.44× 10−15 (0.16, 0.12, 0.37) 0.18 20/20/38 0.847979373190956
−1.92469− 1.06173i 3↔ 13 5.46× 10−14 (0.19, 0.35, 0.08) 0.16 22/24/44 0.847921705316328
−1.07531 + 1.06173i 5↔ 14 2.16× 10−13 (−0.05, 0.21, 0.40) 0.21 26/28/52 0.849015226143611

−1.07531− 1.06173i 5↔ 14 1.80× 10−13 (0.19, 0.37, 0.15) 0.20 26/28/52 0.848229498305300

7 (3, 3) 0.68088 + 1.73330i 5↔ 12 3.06× 10−13 (0.57, 0.60, 0.10) 0.69 24/30/52 2.446924195119881

0.68088− 1.73330i 5↔ 13 8.67× 10−13 (0.68, 0.40, 0.42) 0.80 24/30/52 2.446924195121926
(3, 2) 0.27988 + 0.48692i 4↔ 12 4.98× 10−13 (0.16, 0.50,−0.04) 0.28 26/34/58 1.222531911485409

0.27988− 0.48692i 4↔ 12 2.95× 10−13 (0.16, 0.50, 0.03) 0.28 26/34/58 1.222412331605630
−3.27988 + 0.48692i 6↔ 12 2.07× 10−12 (−0.55, 0.07, 0.47) 0.53 28/30/56 1.220360017152392
−3.27988− 0.48692i 5↔ 13 1.64× 10−12 (−0.32, 0.32, 0.35) 0.33 28/30/56 1.221755633824927

(2, 3) 0.27988 + 0.48692i 5↔ 12 7.88× 10−13 (0.10, 0.40, 0.13) 0.19 26/36/60 1.221708487472495

0.27988− 0.48692i 4↔ 12 2.44× 10−13 (0.12, 0.40, 0.18) 0.21 26/34/58 1.223512318246351

−3.27988 + 0.48692i 4↔ 13 1.71× 10−12 (0.14, 0.07, 0.43) 0.21 28/30/56 1.221624951511321

−3.27988− 0.48692i 5↔ 13 1.09× 10−12 (0.48, 0.32, 0.53) 0.61 28/30/56 1.220360017153322

Tab. C.1: Data from [60].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (3, 2) −1.00000 + 0.00000i 3↔ 14 1.07× 10−14 (0.73, 0.48,−0.49) 1.01 5/1/5 Free?
−2.00000 + 0.00000i 3↔ 14 3.11× 10−15 (0.78, 0.28, 0.75) 1.25 5/1/5 Free?

(2, 3) −1.00000 + 0.00000i 3↔ 14 5.66× 10−15 (0.80, 0.53, 0.51) 1.19 5/1/5 Free?
−2.00000 + 0.00000i 3↔ 13 8.10× 10−15 (0.78, 0.53, 0.54) 1.19 5/1/5 Free?

2 (3, 2) −0.38197 + 0.00000i 3↔ 13 6.77× 10−15 (0.76, 0.19, 0.75) 1.18 5/1/5 Free?
−2.61803 + 0.00000i 3↔ 13 4.66× 10−15 (0.78,−0.18, 0.50) 0.88 5/1/5 Free?

(2, 3) −0.38197 + 0.00000i 3↔ 13 9.99× 10−15 (0.71, 0.51, 0.48) 0.99 5/1/5 Free?
−2.61803 + 0.00000i 3↔ 14 9.44× 10−15 (0.84, 0.17, 0.19) 0.78 5/1/5 Free?

3 (3, 2) −1.50000− 0.60666i 3↔ 13 2.89× 10−15 (−0.03, 0.24, 0.05) 0.06 12/9/19 0.077777592962837

−1.50000 + 0.60666i 3↔ 13 2.66× 10−15 (−0.03, 0.24,−0.05) 0.06 12/9/19 0.077777592962811

(2, 3) −1.50000− 0.60666i 4↔ 13 8.66× 10−15 (0.02, 0.27, 0.10) 0.08 18/16/32 0.039015451336356

−1.50000 + 0.60666i 3↔ 14 failure. possibly generates a finite-sheeted cover
4 (3, 2)

−0.21190 + 0.40136i
3↔ 13 9.41× 10−14

(0.04, 0.24, 0.16) 0.09 22/20/40
0.040851193893052

3 7.66× 10−14 0.040825387267666
13 8.68× 10−14 0.040851193892787

−0.21190− 0.40136i 4↔ 12 3.32× 10−13 (0.11, 0.30, 0.06) 0.11 22/20/40 0.040890367881093
−2.78810 + 0.40136i 5↔ 13 1.40× 10−14 (0.23, 0.09, 0.16) 0.09 22/20/40 0.040848491993216

−2.78810− 0.40136i
4↔ 14 9.33× 10−15

(0.26, 0.17, 0.07) 0.10 22/20/40
0.040890367870632

14 8.33× 10−15 0.040890367870668

(2, 3) −0.21190 + 0.40136i
3↔ 12 3.33× 10−13

(0.07, 0.22, 0.25) 0.12 22/20/40
0.040848492004980

3 4.28× 10−13 0.040822685385170
−0.21190− 0.40136i 4↔ 13 1.44× 10−13 (−0.01,−0.03, 0.26) 0.07 22/20/40 0.040890367872991
−2.78810 + 0.40136i 3↔ 13 1.55× 10−14 (0.05, 0.10,−0.21) 0.06 22/20/40 0.040884964081833
−2.78810− 0.40136i 4↔ 13 4.42× 10−14 (0.05, 0.10, 0.21) 0.06 22/20/40 0.040884964083423

5 (3, 2) −0.58036− 0.60629i 4↔ 13 2.98× 10−14 (−0.17, 0.25, 0.11) 0.10 22/24/44 0.132403276354546
−0.58036 + 0.60629i 4↔ 13 1.73× 10−14 (−0.17, 0.27,−0.02) 0.10 22/24/44 0.132318149806017
−2.41964− 0.60629i 4↔ 14 2.44× 10−15 (0.25, 0.14, 0.22) 0.13 8/9/15 0.132387219941693

−2.41964 + 0.60629i 3↔ 14 2.22× 10−15 (0.19, 0.25, 0.14) 0.12 14/12/24 0.132387219941707

(2, 3) −0.58036− 0.60629i 5↔ 12 2.41× 10−14 (0.15, 0.19, 0.15) 0.08 22/24/44 0.132158766596323
−0.58036 + 0.60629i 5↔ 12 2.30× 10−14 (0.05, 0.21, 0.24) 0.10 22/24/44 0.132426403921074
−2.41964− 0.60629i 3↔ 14 2.66× 10−15 (0.14, 0.21, 0.14) 0.08 14/12/24 0.132387219941758
−2.41964 + 0.60629i 3↔ 14 2.44× 10−15 (0.14, 0.21,−0.14) 0.08 14/12/24 0.132387219941619

6 (3, 2) −1.12256− 0.74486i 3↔ 14 8.66× 10−15 (0.01, 0.30, 0.06) 0.10 20/22/40 0.157135965589727
−1.12256 + 0.74486i 3↔ 14 9.10× 10−15 (−0.03, 0.30, 0.08) 0.10 20/22/40 0.157403816793161
−1.87744− 0.74486i 4↔ 13 9.66× 10−15 (0.01, 0.26,−0.11) 0.08 24/26/48 0.157117893796116
−1.87744 + 0.74486i 3↔ 13 9.77× 10−15 (0.01, 0.27, 0.11) 0.08 24/26/48 0.157117893796155

(2, 3) −1.12256− 0.74486i
4↔ 14 8.88× 10−15

(−0.08, 0.26, 0.08) 0.08 20/22/40
0.157117893796278

14 8.10× 10−15 0.157117893796126
−1.12256 + 0.74486i 3↔ 13 6.11× 10−15 (−0.08, 0.26,−0.08) 0.08 20/22/40 0.157117893796012
−1.87744− 0.74486i 3↔ 13 8.66× 10−15 (0.00, 0.25, 0.04) 0.06 24/26/48 0.157117893796077

−1.87744 + 0.74486i 3↔ 13 4.66× 10−15 (0.01, 0.25,−0.00) 0.06 24/26/48 0.157117893796128

7 (3, 2)
−0.33764− 0.56228i

3↔ 12 9.41× 10−14
(0.16, 0.20, 0.20) 0.11 22/26/46

0.157285227171242
3 1.21× 10−13 0.157285227171591
4 failure.

−0.33764 + 0.56228i 4↔ 12 1.80× 10−13 (0.18, 0.26,−0.05) 0.11 24/28/50 0.157058545714813
−2.66236− 0.56228i 4↔ 14 1.09× 10−14 (0.26, 0.02, 0.30) 0.16 20/22/40 0.156850042593146
−2.66236 + 0.56228i 4↔ 14 1.67× 10−14 (0.26, 0.25, 0.18) 0.16 20/22/40 0.156983968194752

(2, 3) −0.33764− 0.56228i 4↔ 13 4.27× 10−13 (0.18, 0.24, 0.09) 0.10 22/26/46 0.157201560484605

−0.33764 + 0.56228i
4↔ 13 5.60× 10−13

(0.10, 0.16, 0.27) 0.11 24/28/50
0.156960920774735

13 2.93× 10−13 0.156960920774842

−2.66236− 0.56228i 4↔ 13 3.33× 10−15 (0.20, 0.19, 0.19) 0.11 20/22/40 0.156983968194460

−2.66236 + 0.56228i 4↔ 14 8.88× 10−15 (0.20, 0.18,−0.19) 0.11 20/22/40 0.156983968194785

8 (3, 2)
−0.92362 + 0.81470i

3↔ 13
3.33× 10−15 (0.02, 0.35, 0.07) 0.13

18/16/32 0.255445410566101
3 16/15/29 0.255512516393925
4 failure.

−0.92362− 0.81470i 4↔ 13 3.66× 10−15 (−0.00, 0.31, 0.11) 0.11 18/16/32 0.255177950088320
−2.07638 + 0.81470i 4↔ 13 2.05× 10−13 (0.17, 0.12, 0.21) 0.09 26/28/52 0.127673032901201

−2.07638− 0.81470i 4↔ 13 3.64× 10−14 (0.09, 0.20, 0.08) 0.06 26/26/50 0.127456265703298

(2, 3) −0.92362 + 0.81470i 3↔ 14 8.79× 10−15 (−0.05, 0.28, 0.05) 0.08 18/16/32 0.254944838148437
−0.92362− 0.81470i 5↔ 14 6.13× 10−15 (−0.02, 0.29, 0.11) 0.10 18/16/32 0.254967508911403

−2.07638 + 0.81470i
3↔ 13 3.13× 10−13

(0.19, 0.18, 0.11) 0.08 26/28/52
0.127612863244017

3 3.19× 10−13 0.127612863244156
−2.07638− 0.81470i 3↔ 13 1.21× 10−13 (0.04, 0.11, 0.18) 0.05 26/28/52 0.127736089451518

Tab. C.2: G3,n data from [23] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

9 (3, 2) −1.50000 + 0.86603i 3↔ 13 2.33× 10−15 (−0.01, 0.30, 0.11) 0.10 16/13/28 0.338313868802930

−1.50000− 0.86603i 4↔ 14 3.11× 10−15 (0.13, 0.34, 0.09) 0.14 12/8/19 0.338313868803489
(2, 3) −1.50000 + 0.86603i 3↔ 13 4.88× 10−15 (−0.02, 0.25, 0.11) 0.08 16/13/28 0.338313868802763

−1.50000− 0.86603i 3↔ 13 5.11× 10−15 (−0.02, 0.27, 0.05) 0.08 16/13/28 0.338313868802010

10 (3, 2) −0.76721− 0.79255i
3↔ 13 1.64× 10−14

(−0.02, 0.31, 0.12) 0.11 20/20/38
0.263723173448867

13 1.64× 10−14 0.263723173448867
−0.76721 + 0.79255i 4↔ 14 7.33× 10−15 (−0.05, 0.33, 0.07) 0.12 22/26/46 0.263487375455115
−2.23279− 0.79255i 5↔ 13 1.53× 10−14 (0.34, 0.22, 0.24) 0.23 22/26/46 0.263518203239260

−2.23279 + 0.79255i
4↔ 14 3.20× 10−14

(0.16, 0.32, 0.13) 0.14 24/34/56
0.263688965427039

4 2.80× 10−14 0.263688965427042
(2, 3) −0.76721− 0.79255i 4↔ 13 1.08× 10−14 (−0.04, 0.30, 0.01) 0.09 22/26/46 0.263394331688615

−0.76721 + 0.79255i 4↔ 13 1.52× 10−14 (−0.04, 0.29,−0.01) 0.09 22/26/46 0.263394331688655
−2.23279− 0.79255i 5↔ 14 9.10× 10−15 (0.16, 0.28, 0.10) 0.11 24/34/56 0.262917569081549

−2.23279 + 0.79255i 5↔ 14 6.00× 10−15 (0.16, 0.28,−0.11) 0.11 24/34/56 0.263008715157447

11 (3, 2) 0.06115 + 0.38830i 4↔ 12 1.01× 10−12 (0.05, 0.38, 0.09) 0.15 24/22/44 0.102843008210627

0.06115− 0.38830i
4↔ 13 7.67× 10−13

(0.10, 0.29, 0.22) 0.14 24/22/44
0.102696887119289

13 6.73× 10−13 0.102696887119277
−3.06115 + 0.38830i 4↔ 13 2.66× 10−15 (0.26, 0.27, 0.19) 0.17 18/18/34 0.205514735563116

−3.06115− 0.38830i 3↔ 14 2.66× 10−15 (−0.23, 0.24, 0.22) 0.16 18/18/34 0.205514735563156

(2, 3) 0.06115 + 0.38830i 4↔ 13 2.65× 10−13 (−0.13, 0.20,−0.06) 0.06 24/22/44 0.102661071637195

0.06115− 0.38830i
3↔ 13 3.74× 10−13

(−0.11, 0.17, 0.11) 0.05 24/22/44
0.102961237259604

3 3.16× 10−13 0.106095154776647

−3.06115 + 0.38830i
4↔ 14 5.11× 10−15

(0.01, 0.04, 0.28) 0.08 18/18/34
0.205571485365434

4 5.33× 10−15 0.205571485365421
−3.06115− 0.38830i 4↔ 14 4.22× 10−15 (0.24, 0.24, 0.18) 0.14 18/18/34 0.205579755283018

12 (3, 2) 0.24698 + 0.00000i 3↔ 14 2.44× 10−15 (0.63, 0.48,−0.43) 0.82 5/0/5 Free?
−3.24698 + 0.00000i 3↔ 13 2.32× 10−14 (−1.01, 0.15, 0.18) 1.08 11/7/17 Free?

(2, 3) 0.24698 + 0.00000i 3↔ 13 7.44× 10−15 (0.63, 0.49, 0.45) 0.84 5/0/5 Free?
−3.24698 + 0.00000i 3↔ 13 1.13× 10−14 (0.04, 0.13, 0.88) 0.79 11/7/17 Free?

13 (3, 2) −0.52842− 0.78122i 5↔ 14 2.53× 10−14 (0.04, 0.34, 0.18) 0.15 22/24/44 0.363085747245742

−0.52842 + 0.78122i 4↔ 13 1.83× 10−14 (0.04, 0.37,−0.06) 0.15 22/24/44 0.362805250204902

−2.47158− 0.78122i 4↔ 13 1.50× 10−15 (0.38, 0.17, 0.29) 0.26 8/9/15 0.362887228283480

−2.47158 + 0.78122i 4↔ 13 3.00× 10−15 (0.30, 0.33, 0.17) 0.23 14/12/24 0.362887228283415

(2, 3) −0.52842− 0.78122i 4↔ 13 2.40× 10−14 (−0.05, 0.39, 0.21) 0.20 22/24/44 0.363031557094651

−0.52842 + 0.78122i 4↔ 13 2.78× 10−14 (−0.10, 0.26, 0.18) 0.11 22/24/44 0.363024421723659
−2.47158− 0.78122i 3↔ 13 2.89× 10−15 (0.28, 0.26, 0.20) 0.18 14/12/24 0.362887228283405
−2.47158 + 0.78122i 3↔ 14 2.55× 10−15 (0.28, 0.26,−0.20) 0.18 14/12/24 0.362887228283461

14 (3, 2) −0.11535− 0.58974i 6↔ 13 3.17× 10−13 (−0.11, 0.30, 0.19) 0.14 24/32/54 0.330857468657992
−0.11535 + 0.58974i 4↔ 13 2.13× 10−14 (−0.11, 0.35,−0.04) 0.14 24/32/54 0.330857468657719
−2.88465− 0.58974i 4↔ 14 2.71× 10−14 (0.33, 0.03, 0.36) 0.24 22/24/44 0.330802402206134
−2.88465 + 0.58974i 4↔ 14 5.02× 10−14 (0.33, 0.29, 0.22) 0.24 22/24/44 0.330264970254204

(2, 3) −0.11535− 0.58974i 4↔ 12 5.85× 10−14 (0.30, 0.24, 0.19) 0.18 24/32/54 0.330857468657576
−0.11535 + 0.58974i 4↔ 12 2.89× 10−14 (0.21, 0.26, 0.26) 0.18 24/32/54 0.330857468657535
−2.88465− 0.58974i 4↔ 13 2.89× 10−14 (0.29, 0.22, 0.23) 0.18 22/24/44 0.330788586067824

−2.88465 + 0.58974i 5↔ 13 1.47× 10−14 (−0.04, 0.08, 0.40) 0.17 22/24/44 0.330717107428080

Tab. C.3: G3,n data from [23] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (4, 2) −1.00000 + 0.00000i 3↔ 14 2.00× 10−15 (0.75, 0.30, 0.68) 1.11 5/1/5 Free?
(2, 4) −1.00000 + 0.00000i 3↔ 14 8.77× 10−15 (0.76, 0.47, 0.55) 1.11 5/1/5 Free?

2 (4, 2) −0.50000 + 0.86603i 4↔ 13 1.29× 10−14 (0.07, 0.42,−0.03) 0.18 20/22/40 0.253735401602386
−0.50000− 0.86603i 4↔ 13 9.44× 10−15 (0.08, 0.42, 0.05) 0.18 20/22/40 0.253598511561355
−1.50000 + 0.86603i 3↔ 13 4.55× 10−15 (0.18, 0.41, 0.04) 0.20 18/22/38 0.253041353515199
−1.50000− 0.86603i 4↔ 13 5.55× 10−15 (0.38, 0.31, 0.25) 0.31 18/22/38 0.252720823519394

(2, 4) −0.50000 + 0.86603i 5↔ 13 7.66× 10−15 (−0.08, 0.28, 0.07) 0.09 20/22/40 0.253542824010740
−0.50000− 0.86603i 3↔ 13 2.00× 10−14 (−0.07, 0.30, 0.05) 0.10 20/22/40 0.253338508765728
−1.50000 + 0.86603i 4↔ 14 6.22× 10−15 (0.08, 0.30,−0.00) 0.10 18/22/38 0.253712610730981

−1.50000− 0.86603i
3↔ 14 3.33× 10−15

(0.02, 0.29, 0.07) 0.09 18/22/38
0.253384811296644

3 4.66× 10−15 0.253384811296590

3 (4, 2) −0.12256− 0.74486i 3↔ 13 2.71× 10−14 (−0.21, 0.30, 0.14) 0.16 16/13/27 0.137289264368554

−0.12256 + 0.74486i
3↔ 13 7.66× 10−14

(−0.05, 0.25, 0.18) 0.10 22/22/42
0.137353485832864

3, 4, 5 7.84× 10−14 0.137353485832673
−1.87744− 0.74486i 3↔ 14 4.22× 10−15 (−0.27, 0.37, 0.23) 0.27 14/12/24 0.274956314143136
−1.87744 + 0.74486i 5↔ 13 3.55× 10−15 (0.28, 0.43, 0.07) 0.27 14/12/24 0.274956314143194

(2, 4) −0.12256− 0.74486i 5↔ 13 1.07× 10−13 (0.08, 0.17, 0.15) 0.06 20/18/36 0.137439859735903

−0.12256 + 0.74486i 3↔ 13 2.32× 10−14 (0.22, 0.23,−0.06) 0.11 20/18/36 0.137344777947632

−1.87744− 0.74486i 3↔ 13 1.89× 10−15 (0.13, 0.29, 0.13) 0.12 14/12/24 0.274956314143212

−1.87744 + 0.74486i 4↔ 14 2.44× 10−15 (0.17, 0.30,−0.11) 0.13 14/12/24 0.274956314143310

4 (4, 2) −1.00000 + 1.00000i 4↔ 13 5.11× 10−15 (0.14, 0.44, 0.01) 0.21 16/13/28 0.457982797089828

−1.00000− 1.00000i 4↔ 13 3.11× 10−15 (0.30, 0.44, 0.19) 0.31 10/7/16 0.457982797088671

(2, 4) −1.00000 + 1.00000i 3↔ 14 1.13× 10−14 (−0.04, 0.27, 0.17) 0.10 16/13/28 0.457982797089235

−1.00000− 1.00000i
3↔ 7 6.11× 10−15

(0.08, 0.49, 0.21) 0.29 10/7/16
0.457982797088716

8↔ 13 6.33× 10−15 0.457982797088756

5 (4, 2) −0.65884− 1.16154i 3↔ 14 1.13× 10−14 (0.42, 0.49, 0.24) 0.47 22/28/48 0.594047553937928

−0.65884 + 1.16154i 4↔ 13 6.66× 10−15 (0.36, 0.56,−0.09) 0.46 22/28/48 0.593932061794999

−1.34116− 1.16154i 4↔ 13 3.13× 10−14 (0.25, 0.51,−0.03) 0.33 24/26/48 0.593035916591978

−1.34116 + 1.16154i
3↔ 12 4.41× 10−14

(0.25, 0.51, 0.02) 0.33 24/26/48
0.593035916591825

3 7.31× 10−14 0.593035916591793
(2, 4) −0.65884− 1.16154i 3↔ 14 1.44× 10−14 (0.17, 0.38, 0.17) 0.20 22/28/48 0.593687497734380

−0.65884 + 1.16154i 4↔ 14 1.12× 10−14 (0.19, 0.38,−0.17) 0.21 22/28/48 0.593688668377331
−1.34116− 1.16154i 4↔ 14 5.42× 10−14 (0.13, 0.37, 0.08) 0.16 24/26/48 0.592911657244731

−1.34116 + 1.16154i
3↔ 14 6.28× 10−14

(0.19, 0.37, 0.04) 0.18 24/26/48
0.593687497734524

3 6.08× 10−14 0.593687497734493

6 (4, 2) 0.23279− 0.79255i 5↔ 12 1.88× 10−14 (0.17, 0.50, 0.13) 0.29 22/26/46 0.593261429781721
0.23279 + 0.79255i 4↔ 11 5.50× 10−14 (0.13, 0.31, 0.38) 0.26 22/28/48 0.593639175240615
−2.23279− 0.79255i 5↔ 14 2.18× 10−14 (−0.27, 0.47, 0.31) 0.39 22/28/48 0.594063100273875

−2.23279 + 0.79255i 5↔ 13 1.10× 10−14 (−0.26, 0.28, 0.49) 0.39 22/28/48 0.595004149184967

(2, 4) 0.23279− 0.79255i 4↔ 13 4.69× 10−14 (0.03, 0.36, 0.11) 0.14 22/26/46 0.593261429782327
0.23279 + 0.79255i 3↔ 14 4.24× 10−14 (0.02, 0.34, 0.12) 0.13 22/28/48 0.592869862079440
−2.23279− 0.79255i 4↔ 14 1.71× 10−14 (0.33, 0.35, 0.21) 0.28 22/28/48 0.593689839020260
−2.23279 + 0.79255i 4↔ 14 1.75× 10−14 (0.33, 0.34,−0.22) 0.27 22/28/48 0.593689839020190

7 (4, 2) −0.22816− 1.11514i 4↔ 12 2.44× 10−14 (0.35, 0.44, 0.31) 0.41 22/26/46 0.793775329716258
−0.22816 + 1.11514i 4↔ 12 2.04× 10−14 (0.29, 0.53,−0.10) 0.38 24/32/54 0.793730924087971
−1.77184− 1.11514i 4↔ 11 1.08× 10−13 (−0.34, 0.45, 0.34) 0.44 22/30/50 0.794323319649402
−1.77184 + 1.11514i 4↔ 12 1.26× 10−13 (0.39, 0.56, 0.03) 0.46 22/30/50 0.794323319649266

(2, 4) −0.22816− 1.11514i 4↔ 14 4.95× 10−14 (0.08, 0.37, 0.17) 0.17 24/32/54 0.794272642251702

−0.22816 + 1.11514i 3↔ 14 1.86× 10−14 (0.11, 0.33, 0.23) 0.18 22/26/46 0.793839731308609

−1.77184− 1.11514i 4↔ 13 5.28× 10−14 (0.30, 0.39, 0.14) 0.26 22/30/50 0.794323319650378
−1.77184 + 1.11514i 4↔ 14 7.48× 10−14 (0.30, 0.38,−0.15) 0.26 22/30/50 0.794323319650373

8 (4, 2)
0.41964− 0.60629i

4↔ 13 4.00× 10−13

(−0.19, 0.32, 0.27) 0.21 22/20/40
0.264774439885714

4 1.65× 10−13 0.264774439884122
13 1.63× 10−13 0.264774439884123

0.41964 + 0.60629i 4↔ 13 2.42× 10−13 (0.01, 0.33, 0.18) 0.14 20/17/35 0.264774439884227
−2.41964− 0.60629i 4↔ 13 1.81× 10−13 (−0.23, 0.28, 0.31) 0.23 22/20/40 0.264736844559787
−2.41964 + 0.60629i 4↔ 13 6.08× 10−14 (−0.23, 0.31, 0.29) 0.23 22/20/40 0.264774439883397

(2, 4)
0.41964− 0.60629i

3↔ 12 3.94× 10−13
(0.39, 0.27, 0.12) 0.24 22/20/40

0.264774439886526
3 3.41× 10−13 0.264774439886159

0.41964 + 0.60629i 3↔ 12 2.90× 10−13 (0.15, 0.19, 0.29) 0.15 20/17/35 0.264774439884908

−2.41964− 0.60629i 3↔ 13 4.77× 10−14 (0.00, 0.13, 0.32) 0.12 22/20/40 0.264774439883719

−2.41964 + 0.60629i 4↔ 12 1.78× 10−13 (−0.07, 0.29, 0.37) 0.22 22/20/40 0.264774439884830

Tab. C.4: G4,n data from [23] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
9 (4, 2) 0.00000 + 1.00000i 4↔ 12 2.72× 10−14 (0.40, 0.50,−0.25) 0.47 20/23/42 0.915965594175611

0.00000− 1.00000i 4↔ 13 2.15× 10−14 (0.40, 0.42, 0.38) 0.48 20/23/42 0.915965594176800
−2.00000 + 1.00000i 4↔ 13 1.43× 10−14 (0.46, 0.57, 0.05) 0.54 14/10/24 0.915965594175439

−2.00000− 1.00000i 4↔ 13 4.66× 10−15 (−0.33, 0.49, 0.33) 0.46 14/10/24 0.915965594176536

(2, 4) 0.00000 + 1.00000i 4↔ 13 3.70× 10−14 (−0.04, 0.22, 0.37) 0.19 20/23/42 0.915965594176029

0.00000− 1.00000i
4↔ 13 3.22× 10−13

(0.14, 0.46, 0.28) 0.31 20/23/42
0.915965594178955

4 2.69× 10−14 0.915965594179460
−2.00000 + 1.00000i 4↔ 13 6.33× 10−15 (0.36, 0.37,−0.20) 0.31 14/10/24 0.915965594176399

−2.00000− 1.00000i 3↔ 14 4.66× 10−15 (0.36, 0.38, 0.19) 0.31 14/10/24 0.915965594176532

10 (4, 2)
0.61803 + 0.00000i

3↔ 13 7.11× 10−15
(0.76, 0.48, 0.47) 1.03 5/0/5 Free?

13 3.72× 10−14

−2.61803 + 0.00000i 4↔ 13 2.62× 10−14 (−0.80, 0.31, 0.31) 0.83 11/7/17 Free?
(2, 4) 0.61803 + 0.00000i 3↔ 13 6.22× 10−15 (0.68, 0.46, 0.49) 0.92 5/0/5 Free?

−2.61803 + 0.00000i 3↔ 13 1.80× 10−14 (−0.01, 0.21, 0.96) 0.96 11/7/17 Free?
11 (4, 2) −1.00000− 1.27202i 4↔ 11 1.37× 10−13 (0.23, 0.36, 0.18) 0.22 10/7/16 Free?

−1.00000 + 1.27202i 4↔ 13 3.74× 10−14 (0.41, 0.41, 0.14) 0.36 10/7/16 Free?
(2, 4) −1.00000− 1.27202i 5↔ 13 3.91× 10−14 (0.12, 0.20, 0.26) 0.12 10/7/16 Free?

−1.00000 + 1.27202i 4↔ 13 2.93× 10−14 (0.18, 0.12, 0.25) 0.11 8/6/13 Free?
12 (4, 2) −0.40631 + 1.19616i 5↔ 12 2.16× 10−14 (0.43, 0.57,−0.12) 0.53 20/22/40 0.897162578942312

−0.40631− 1.19616i 5↔ 12 2.35× 10−14 (0.42, 0.58, 0.09) 0.53 20/22/40 0.896781554188068

−1.59369 + 1.19616i
4↔ 12 2.75× 10−14

(0.42, 0.37, 0.22) 0.36 26/28/52
0.447434850607097

4 2.52× 10−14 0.447434850606938

−1.59369− 1.19616i 6↔ 12 3.90× 10−14 (0.42, 0.22, 0.37) 0.36 26/28/52 0.447402486364538

(2, 4) −0.40631 + 1.19616i 3↔ 13 1.45× 10−14 (0.24, 0.40, 0.05) 0.22 20/22/40 0.894660969880485

−0.40631− 1.19616i
3↔ 14 2.44× 10−14

(0.23, 0.40, 0.20) 0.25 20/22/40
0.896719777668525

3 2.26× 10−14 0.896719777668514

−1.59369 + 1.19616i
4↔ 13 7.35× 10−13

(0.11, 0.17,−0.27) 0.11 26/28/52
0.447434850610119

4 5.24× 10−13 0.447434850615054
−1.59369− 1.19616i 4↔ 12 1.72× 10−13 (0.11, 0.18, 0.26) 0.11 26/28/52 0.447434850609249

13 (4, 2)
0.78810 + 0.40136i

3↔ 12 4.49× 10−13
(−0.15, 0.35, 0.31) 0.24 24/22/44

0.347567297638236

3 7.54× 10−13 0.347567297638396
0.78810− 0.40136i 4↔ 12 9.87× 10−13 (−0.12, 0.45, 0.17) 0.24 24/22/44 0.347568126904567

−2.78810 + 0.40136i 4↔ 13 1.12× 10−14 (−0.05, 0.36, 0.39) 0.28 20/22/40 0.695106728358357

−2.78810− 0.40136i 3↔ 12 2.04× 10−14 (−0.16, 0.49, 0.26) 0.33 18/18/34 0.694418848157637
(2, 4)

0.78810 + 0.40136i
3↔ 11 9.50× 10−13

(0.02, 0.50, 0.25) 0.31 24/22/44
0.347568126901567

3 9.47× 10−13 0.347568126901511

0.78810− 0.40136i
3↔ 11 7.84× 10−13

(0.11, 0.58, 0.20) 0.39 24/22/44
0.347567297637630

3 7.85× 10−13 0.347567297637376
4 failure.

−2.78810 + 0.40136i 3↔ 14 3.69× 10−14 (0.12, 0.27, 0.27) 0.16 20/22/40 0.695481297423900
−2.78810− 0.40136i 4↔ 13 1.73× 10−14 (0.25, 0.31, 0.21) 0.20 20/22/40 0.695279250172051

Tab. C.5: G4,n data from [23] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (5, 2) −0.38197 + 0.00000i 3↔ 13 6.88× 10−15 (0.79, 0.63, 0.39) 1.17 5/1/5 Free?
−1.00000 + 0.00000i 3↔ 12 4.66× 10−15 (0.81, 0.32, 0.28) 0.83 5/1/5 Free?

(2, 5) −0.38197 + 0.00000i 3↔ 13 5.55× 10−15 (0.77, 0.46, 0.59) 1.16 5/1/5 Free?
−1.00000 + 0.00000i 3↔ 14 3.66× 10−15 (0.93, 0.34, 0.31) 1.08 5/1/5 Free?

2 (5, 2) −0.69098 + 0.72287i
3↔ 12 3.89× 10−15

(0.10, 0.34, 0.08) 0.13 10/8/16
0.093325539506778

3 5.88× 10−15 0.093325539506677
−0.69098− 0.72287i 4↔ 12 4.77× 10−15 (0.04, 0.31, 0.13) 0.11 10/8/16 0.093325539506687

(2, 5) −0.69098 + 0.72287i 5↔ 13 1.49× 10−14 (0.04, 0.16,−0.12) 0.04 10/8/16 0.093325539506920
−0.69098− 0.72287i 3↔ 13 1.29× 10−14 (0.04, 0.17, 0.12) 0.04 10/8/16 0.093325539506970

3 (5, 2) 0.11803− 0.60666i 4↔ 13 4.22× 10−14 (−0.27, 0.17, 0.18) 0.13 18/16/32 0.039105939852173

0.11803 + 0.60666i
4↔ 12 4.64× 10−14

(−0.27, 0.22, 0.11) 0.13 18/16/32
0.039120554210565

4 4.55× 10−14 0.039120554210676

−1.50000− 0.60666i 3↔ 12 6.77× 10−15 (−0.13, 0.39, 0.25) 0.23 16/16/30 0.234301713689990

−1.50000 + 0.60666i 3↔ 12 failure. possibly generates a finite-sheeted cover
(2, 5) 0.11803− 0.60666i 3↔ 13 2.49× 10−14 (−0.16, 0.02, 0.15) 0.05 18/16/32 0.039051905406329

0.11803 + 0.60666i
3↔ 13 2.49× 10−14

(−0.17, 0.03, 0.14) 0.05 10/8/16
0.039050285615583

3, 4 1.27× 10−14 0.039050285615487

5 failure.
−1.50000− 0.60666i 3↔ 14 failure. possibly generates a finite-sheeted cover
−1.50000 + 0.60666i 3↔ 14 failure. possibly generates a finite-sheeted cover

4 (5, 2) −0.19098 + 0.98159i 4↔ 13 1.17× 10−14 (0.29, 0.53,−0.17) 0.39 20/22/40 0.468603427380087
−0.19098− 0.98159i 4↔ 12 1.57× 10−14 (0.28, 0.46, 0.30) 0.38 20/22/40 0.468603427380127
−1.19098 + 0.98159i 4↔ 13 1.91× 10−14 (−0.23, 0.46, 0.33) 0.38 18/22/38 0.468603427379948

−1.19098− 0.98159i
3↔ 13 1.67× 10−14

(−0.23, 0.45, 0.35) 0.38 18/22/38
0.468603427380023

13 8.19× 10−14 0.468603427379797
(2, 5) −0.19098 + 0.98159i

3↔ 13 6.48× 10−14
(0.05, 0.34, 0.06) 0.12 20/22/40

0.468603427380566
3 2.11× 10−14 0.468603427380367

−0.19098− 0.98159i 3↔ 13 2.82× 10−14 (0.06, 0.35, 0.05) 0.13 20/22/40 0.468419988135056
−1.19098 + 0.98159i 3↔ 13 8.33× 10−15 (0.18, 0.35, 0.01) 0.15 18/22/38 0.468603427380267

−1.19098− 0.98159i 3↔ 13 6.77× 10−15 (0.05, 0.34, 0.10) 0.13 18/22/38 0.468603427380289

5 (5, 2) 0.61803 + 0.00000i 3↔ 12 7.33× 10−15 (0.75, 0.58, 0.35) 1.03 5/0/5 Free?

−2.00000 + 0.00000i

3↔ 13 8.22× 10−15

(−0.61, 0.73, 0.13) 0.93 7/6/12 Free?3, 4 9.10× 10−15

10, 11, 12 1.42× 10−14

13 2.72× 10−14

5, 9 failure.
(2, 5) 0.61803 + 0.00000i 3↔ 13 1.17× 10−14 (0.75, 0.45, 0.54) 1.07 5/0/5 Free?

−2.00000 + 0.00000i

3↔ 14 1.10× 10−14
(−0.25,−0.05, 0.83) 0.76

11/9/19 Free?
3, 4 8.66× 10−15 7/6/12
5 failure.

6↔ 9 6.44× 10−15 (−0.25,−0.05, 0.83) 0.76 7/6/12 Free?
6 (5, 2)

0.25278− 0.85077i
3↔ 11 8.85× 10−14

(0.06, 0.50, 0.13) 0.27 20/18/36
0.313340838688514

3 6.96× 10−14 0.313340838689695

0.25278 + 0.85077i 4↔ 13 1.72× 10−14 (0.08, 0.43, 0.29) 0.28 20/18/36 0.313085454214014

−1.63475− 0.85077i 4↔ 14 3.77× 10−15 (−0.15, 0.52, 0.34) 0.41 14/12/24 0.626170908428058

−1.63475 + 0.85077i 3↔ 13 8.77× 10−15 (−0.15, 0.47, 0.41) 0.41 14/12/24 0.626170908427892
(2, 5) 0.25278− 0.85077i 3↔ 13 1.31× 10−13 (−0.25, 0.21, 0.21) 0.15 20/18/36 0.312700441258862

0.25278 + 0.85077i 3↔ 12 1.63× 10−13 (−0.28,−0.04, 0.29) 0.16 22/22/42 0.313085454215978
−1.63475− 0.85077i 3↔ 13 4.00× 10−15 (0.18, 0.34, 0.17) 0.18 14/12/24 0.626170908427952
−1.63475 + 0.85077i 3↔ 13 6.00× 10−15 (0.18, 0.34,−0.18) 0.17 14/12/24 0.626170908427911

7 (5, 2) −0.69098 + 1.23391i 5↔ 12 4.44× 10−14 (−0.41, 0.57, 0.25) 0.55 16/13/28 Free?
−0.69098− 1.23391i 5↔ 12 1.22× 10−14 (0.43, 0.61, 0.13) 0.57 16/13/28 Free?
−0.69098 + 1.23391i 5↔ 12 2.15× 10−14 (−0.41, 0.57, 0.25) 0.55 16/13/28 Free?
−0.69098− 1.23391i 5↔ 11 2.39× 10−14 (0.43, 0.61, 0.13) 0.57 16/13/28 Free?

(2, 5) −0.69098 + 1.23391i 3↔ 13 5.00× 10−15 (−0.12, 0.18, 0.42) 0.22 12/11/22 Free?
−0.69098− 1.23391i 3↔ 13 3.64× 10−14 (0.10, 0.39, 0.12) 0.18 16/13/28 Free?
−0.69098 + 1.23391i 3↔ 13 4.71× 10−15 (−0.12, 0.18, 0.42) 0.22 12/11/22 Free?
−0.69098− 1.23391i 3↔ 13 3.60× 10−14 (0.10, 0.39, 0.12) 0.18 16/13/28 Free?

8 (5, 2) −0.38197 + 1.27202i 4↔ 13 1.48× 10−13 (0.52, 0.60,−0.22) 0.68 22/28/48 0.860875274165978

−0.38197− 1.27202i
4↔ 13 2.26× 10−14

(0.57, 0.52, 0.37) 0.73
22/28/48 0.861225344288923

4, 5 1.67× 10−14 20/25/43 0.861236641862642

−1.00000 + 1.27202i 3↔ 13 3.11× 10−14 (−0.27, 0.59, 0.32) 0.52 24/26/48 0.859899854837779
−1.00000− 1.27202i 4↔ 14 7.99× 10−14 (−0.27, 0.56,−0.34) 0.50 24/26/48 0.859899854837823

(2, 5) −0.38197 + 1.27202i 5↔ 13 1.29× 10−14 (−0.05, 0.23, 0.37) 0.19 20/25/43 0.861241520146001
−0.38197− 1.27202i 5↔ 13 1.71× 10−14 (0.16, 0.40, 0.17) 0.21 22/28/48 0.860875274165283

−1.00000 + 1.27202i
4↔ 14 5.71× 10−14

(0.25, 0.41, 0.08) 0.24 24/26/48
0.859899854837891

14 2.80× 10−14 0.859899854837936
−1.00000− 1.27202i 3↔ 14 1.33× 10−13 (0.16, 0.41, 0.10) 0.20 24/26/48 0.860960287124459

Tab. C.6: G5,n data from [23] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
9 (5, 2)

0.11803− 1.16963i
4↔ 12 5.74× 10−14

(0.59, 0.45, 0.46) 0.77 22/30/50
1.118581444567214

12 2.97× 10−13 1.118581444565920

0.11803 + 1.16963i 4↔ 11 9.98× 10−14 (0.60, 0.57, 0.33) 0.79 22/30/50 1.119298555873805
−1.50000− 1.16963i 4↔ 11 2.96× 10−13 (−0.21, 0.59, 0.44) 0.59 22/30/50 1.120064501687885
−1.50000 + 1.16963i 5↔ 11 1.57× 10−13 (−0.21, 0.57, 0.46) 0.58 22/30/50 1.119989940730108

(2, 5) 0.11803− 1.16963i 3↔ 13 3.67× 10−14 (0.11, 0.39, 0.20) 0.21 24/32/54 1.119270315426469

0.11803 + 1.16963i 4↔ 13 8.07× 10−14 (0.19, 0.36, 0.27) 0.24 22/30/50 1.118814103894236

−1.50000− 1.16963i
4↔ 14 4.82× 10−14

(0.33, 0.41, 0.18) 0.31 22/30/50
1.120222529291118

14 5.62× 10−14 1.120222529291008
−1.50000 + 1.16963i 5↔ 14 2.10× 10−13 (0.33, 0.41,−0.19) 0.31 22/30/50 1.120222529291431

10 (5, 2) −0.08180− 1.28803i 4↔ 11 6.79× 10−14 (0.60, 0.50, 0.41) 0.78 20/22/40 1.401249917568806

−0.08180 + 1.28803i 5↔ 11 1.70× 10−13 (0.59, 0.60,−0.27) 0.78 20/22/40 1.401249917567046
−1.30017− 1.28803i 5↔ 12 2.68× 10−12 (−0.50, 0.35, 0.44) 0.57 26/28/52 0.700666393700143

−1.30017 + 1.28803i
4↔ 10 1.87× 10−12

(−0.41, 0.39, 0.44) 0.51 26/28/52
0.700364591055182

4 1.43× 10−12 0.700364591063245

(2, 5) −0.08180− 1.28803i 3↔ 13 2.05× 10−14 (0.30, 0.43, 0.24) 0.33 20/22/40 1.402192567477373

−0.08180 + 1.28803i 3↔ 14 4.17× 10−14 (0.36, 0.43, 0.04) 0.32 20/22/40 1.401249917569314
−1.30017− 1.28803i 4↔ 12 1.75× 10−12 (0.11, 0.22, 0.30) 0.15 26/28/52 0.699824630962773
−1.30017 + 1.28803i 5↔ 12 2.18× 10−12 (0.11, 0.22,−0.30) 0.15 26/28/52 0.699824630999953

11 (5, 2)
0.61803 + 0.78615i

4↔ 11 2.23× 10−13
(0.38, 0.57, 0.24) 0.53 22/28/48

0.860708833608866
4 2.23× 10−13 0.860708833608874
5 failure.

0.61803− 0.78615i 4↔ 11 1.25× 10−13 (0.43, 0.55, 0.31) 0.59 22/28/48 0.861241520145068

−2.00000 + 0.78615i
3↔ 13 5.96× 10−14

(−0.12, 0.46, 0.54) 0.51 20/25/43
0.861241520145816

13 1.38× 10−13 0.861241520145561
−2.00000− 0.78615i 4↔ 13 6.33× 10−14 (−0.13, 0.64, 0.31) 0.52 20/25/43 0.861241520146301

(2, 5) 0.61803 + 0.78615i 3↔ 12 3.16× 10−14 (0.15, 0.38, 0.12) 0.18 22/28/48 0.860320286827674

0.61803− 0.78615i
4↔ 12 1.19× 10−13

(0.16, 0.39, 0.13) 0.20 22/28/48
0.861241520145928

13 7.02× 10−14 0.861241520145697

−2.00000 + 0.78615i 4↔ 13 2.00× 10−14 (−0.27, 0.15, 0.40) 0.26 20/25/43 0.861241520146132

−2.00000− 0.78615i 3↔ 13 3.26× 10−14 (0.34, 0.45, 0.28) 0.39 20/25/43 0.861241520146243

12 (5, 2)
0.87764 + 0.58260i

4↔ 12 3.64× 10−13
(0.15, 0.56, 0.18) 0.37 22/20/40

0.454752582526266
4 2.33× 10−13 0.454752582525471

0.87764− 0.58260i 4↔ 13 3.35× 10−13 (0.19, 0.52, 0.29) 0.39 22/20/40 0.454519626171802
−2.25960 + 0.58260i 5↔ 13 6.62× 10−14 (−0.01, 0.58, 0.11) 0.35 22/20/40 0.454752582524517
−2.25960− 0.58260i 4↔ 12 4.30× 10−13 (−0.05, 0.49, 0.34) 0.36 22/20/40 0.454519626172170

(2, 5) 0.87764 + 0.58260i 4↔ 13 7.77× 10−14 (−0.23, 0.04, 0.33) 0.16 22/20/40 0.454752582524330
0.87764− 0.58260i 3↔ 13 4.05× 10−13 (−0.31, 0.28, 0.22) 0.22 22/20/40 0.454272752254004

−2.25960 + 0.58260i 4↔ 12 2.83× 10−14 (−0.09, 0.34, 0.36) 0.25 22/20/40 0.454271480250933

−2.25960− 0.58260i 3↔ 13 7.66× 10−14 (−0.03, 0.22, 0.30) 0.14 22/20/40 0.454729363580044

Tab. C.7: G5,n data from [23] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (6, 2)

−0.50000 + 0.86603i
3↔ 13 7.55× 10−15

(0.32, 0.24, 0.44) 0.36 10/7/16
0.253735401603465

3 7.77× 10−15 0.253735401603176
4 8.44× 10−15 0.253735401602411

−0.50000− 0.86603i 3↔ 13 8.66× 10−15 (0.32, 0.24, 0.44) 0.36 10/7/16 0.253735401603135
(2, 6)

−0.50000 + 0.86603i
3↔ 13

6.22× 10−15 (0.17, 0.07, 0.19) 0.07 10/8/17
0.253735401602576

3, 4 0.253735401602561
5 failure.

−0.50000− 0.86603i 4↔ 13 1.82× 10−14 (0.23, 0.20, 0.17) 0.12 10/7/16 0.253735401603777

2 (6, 2) 0.00000 + 1.00000i 4↔ 13 1.15× 10−14 (0.46, 0.52, 0.41) 0.64 20/22/40 0.610643729451075
0.00000− 1.00000i 4↔ 13 1.14× 10−14 (0.46, 0.49, 0.41) 0.61 20/22/40 0.610124675044900

−1.00000 + 1.00000i
6↔ 13 2.98× 10−14

(−0.09, 0.65, 0.28) 0.51 18/22/38
0.610643729451021

13 5.22× 10−14 0.610643729451050
−1.00000− 1.00000i 4↔ 12 2.82× 10−14 (−0.09, 0.55, 0.44) 0.51 18/22/38 0.610643729451040

(2, 6)
0.00000 + 1.00000i

3↔ 13 2.35× 10−14
(0.12, 0.36, 0.06) 0.15 20/22/40

0.609758967962758
3 1.31× 10−14 0.609758967962676

0.00000− 1.00000i 3↔ 13 1.17× 10−14 (−0.12, 0.34, 0.15) 0.15 20/22/40 0.610691628099879
−1.00000 + 1.00000i 3↔ 14 1.55× 10−14 (0.04, 0.36,−0.12) 0.14 18/22/38 0.610643729451591

−1.00000− 1.00000i 4↔ 14 6.66× 10−15 (0.04, 0.36, 0.11) 0.14 18/22/38 0.610643729451522

3 (6, 2) 0.50000 + 0.86603i 4↔ 10 6.49× 10−13 (0.32, 0.55, 0.36) 0.53 20/17/36 0.507512535466457

0.50000− 0.86603i
4↔ 10 1.89× 10−13

(0.31, 0.43, 0.49) 0.52 20/17/36
0.507470803201674

4 1.43× 10−13 0.507470803203489
−1.50000 + 0.86603i 4↔ 12 2.00× 10−14 (0.02, 0.67, 0.38) 0.60 16/14/30 1.015497614363542
−1.50000− 0.86603i 4↔ 12 1.35× 10−14 (−0.04, 0.71, 0.25) 0.57 14/10/24 1.014941606407466

(2, 6) 0.50000 + 0.86603i 3↔ 12 1.51× 10−14 (−0.23,−0.03, 0.33) 0.16 22/21/42 0.507438590492248

0.50000− 0.86603i
3↔ 13 1.85× 10−13

(−0.20, 0.24, 0.25) 0.16 20/17/36
0.508115372507426

3 1.87× 10−13 0.508115372507441
−1.50000 + 0.86603i 3↔ 14 6.22× 10−15 (0.17, 0.36,−0.20) 0.20 16/14/30 1.016300073516832

−1.50000− 0.86603i 3↔ 13 5.00× 10−15 (0.18, 0.36, 0.20) 0.20 16/14/30 1.016300073515976

4 (6, 2) −0.50000 + 1.32288i 5↔ 12 3.33× 10−14 (−0.28, 0.79, 0.21) 0.75 16/13/28 Free?
−0.50000− 1.32288i 4↔ 12 2.02× 10−14 (−0.29, 0.76,−0.27) 0.73 16/13/28 Free?

(2, 6)

−0.50000 + 1.32288i

3↔ 13 3.00× 10−15

(−0.08, 0.21, 0.47) 0.27

15/16/30 Free?
3 3.55× 10−15

12/11/22
Free?

4, 5, 6 3.00× 10−15 Free?
12, 13 9.33× 10−15 17/19/35 Free?

6 failure.

−0.50000− 1.32288i

4↔ 13 9.88× 10−15

(0.38, 0.66, 0.34) 0.70

15/16/30 Free?
4, 5 4.88× 10−15 12/11/22 Free?

12, 13 1.34× 10−14 17/19/35 Free?
6 failure.

5 (6, 2) −0.21508− 1.30714i 4↔ 13 1.18× 10−13 (−0.32, 0.79,−0.05) 0.73 26/38/62 1.021768522986962

−0.21508 + 1.30714i 4↔ 11 3.72× 10−13 (−0.36, 0.76, 0.19) 0.75 26/36/60 1.021347614330418

−0.78492− 1.30714i 4↔ 13 7.08× 10−14 (−0.27, 0.70, 0.41) 0.73 22/26/46 1.019497428415570

−0.78492 + 1.30714i 5↔ 11 1.38× 10−13 (−0.10, 0.80, 0.22) 0.70 24/26/48 1.021266309673058
(2, 6) −0.21508− 1.30714i 4↔ 14 2.00× 10−13 (0.13, 0.41, 0.17) 0.22 26/38/62 1.022378515079977

−0.21508 + 1.30714i 5↔ 13 4.31× 10−14 (0.00, 0.29, 0.33) 0.20 22/28/48 1.021444941021198
−0.78492− 1.30714i 3↔ 12 6.68× 10−14 (0.17, 0.43, 0.11) 0.23 24/26/48 1.021266309674068

−0.78492 + 1.30714i
4↔ 13 1.58× 10−14

(0.15, 0.28, 0.34) 0.22 22/26/46
1.019497428415326

13 1.51× 10−13 1.019497428414627

6 (6, 2) 0.34116− 1.16154i 5↔ 12 1.51× 10−13 (−0.48, 0.74, 0.22) 0.82 26/36/60 1.320409963222722

0.34116 + 1.16154i 4↔ 11 2.40× 10−13 (−0.49, 0.53, 0.55) 0.82 26/36/60 1.321558562482194

−1.34116− 1.16154i 4↔ 13 1.77× 10−13 (−0.03, 0.72, 0.52) 0.79 22/30/50 1.319305550520877

−1.34116 + 1.16154i 4↔ 13 1.56× 10−13 (−0.11, 0.80, 0.33) 0.75 22/30/50 1.318904026482595
(2, 6) 0.34116− 1.16154i 4↔ 13 8.26× 10−14 (0.11, 0.40, 0.23) 0.22 26/36/60 1.322625363588137

0.34116 + 1.16154i 4↔ 13 4.51× 10−14 (0.22, 0.36, 0.30) 0.27 22/30/50 1.320702203534967

−1.34116− 1.16154i 6↔ 13 7.86× 10−14 (0.33, 0.42, 0.20) 0.33 22/30/50 1.319305550520717
−1.34116 + 1.16154i 5↔ 13 4.60× 10−14 (0.33, 0.41,−0.22) 0.33 22/30/50 1.319305550520641

7 (6, 2) 1.00000 + 0.00000i 3↔ 15 failure. possibly generates a finite-sheeted cover
−2.00000 + 0.00000i 3↔ 12 1.62× 10−14 (0.01, 0.85, 0.23) 0.78 11/9/19 Free?

(2, 6) 1.00000 + 0.00000i 3↔ 14 4.88× 10−15 (0.70, 0.44, 0.54) 0.96 5/0/5 Free?

−2.00000 + 0.00000i
3↔ 14 1.40× 10−14

(−0.24,−0.09, 0.88) 0.85
11/9/19 Free?

3, 4, 5, 6 5.77× 10−15 7/6/12 Free?
7 failure.

8 (6, 2) 0.87744− 0.74486i 5↔ 14 6.93× 10−14 (−0.43, 0.67, 0.31) 0.72 22/30/50 1.021266309675690

0.87744 + 0.74486i 4↔ 11 5.82× 10−14 (−0.47, 0.71, 0.23) 0.78 20/26/44 1.022578858868845
−1.87744− 0.74486i 6↔ 13 2.73× 10−13 (0.06, 0.79, 0.24) 0.69 26/36/60 1.021317792812498
−1.87744 + 0.74486i 4↔ 13 1.73× 10−13 (0.20, 0.68, 0.35) 0.63 26/38/62 1.020123408160045

(2, 6)
0.87744− 0.74486i

3↔ 13 2.82× 10−14
(0.23, 0.41, 0.14) 0.24 20/26/44

1.022004856907895

13 4.35× 10−14 1.022004856907774
0.87744 + 0.74486i 4↔ 12 4.35× 10−14 (0.23, 0.40, 0.12) 0.23 22/30/50 1.021266309674652
−1.87744− 0.74486i 3↔ 13 4.07× 10−14 (0.17, 0.37, 0.19) 0.20 26/38/62 1.020786170671771
−1.87744 + 0.74486i 4↔ 13 2.58× 10−13 (−0.12, 0.31, 0.28) 0.18 26/38/62 1.021187860075532

Tab. C.8: G6,n data from [23].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (7, 2) 0.24698 + 0.00000i 3↔ 13 6.11× 10−15 (0.70, 0.60, 0.35) 0.98 5/0/5 Free?

−1.00000 + 0.00000i
4↔ 13 9.66× 10−15

(−0.88, 0.39, 0.29) 1.00 11/7/17 Free?
13 2.09× 10−14

(2, 7)
0.24698 + 0.00000i

3↔ 14 5.11× 10−15
(0.75, 0.45, 0.58) 1.11 5/0/5

Free?
14 1.19× 10−14 Free?

−1.00000 + 0.00000i 3↔ 14 5.77× 10−15 (−0.23, 0.07, 0.97) 0.99 11/7/17 Free?
2 (7, 2) −0.37651 + 0.92641i

4↔ 13 2.26× 10−14
(−0.18, 0.46, 0.45) 0.45 10/7/16 Free?

4, 5 2.53× 10−14

−0.37651− 0.92641i 4↔ 12 1.11× 10−14 (−0.12, 0.53, 0.34) 0.40 18/15/32 Free?
(−2, 7) −0.37651 + 0.92641i 5↔ 12 2.22× 10−14 (−0.30,−0.14, 0.26) 0.18 18/15/32 Free?

−0.37651− 0.92641i 5↔ 12 2.55× 10−14 (−0.30, 0.13, 0.26) 0.18 18/15/32 Free?
3 (7, 2) 1.24698 + 0.00000i 3↔ 15 failure. possibly generates a finite-sheeted cover

−2.00000 + 0.00000i 4↔ 12 8.06× 10−14 (0.02, 0.87, 0.31) 0.85 11/9/19 Free?
(2, 7) 1.24698 + 0.00000i 3↔ 13 7.66× 10−15 (0.71, 0.44, 0.55) 1.00 5/0/5 Free?

−2.00000 + 0.00000i 3↔ 13 6.22× 10−15 (−0.22,−0.07, 0.81) 0.70 11/9/19 Free?

Tab. C.9: G7,n data from [23].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (3, 2) −2.66236 + 0.56228i 4↔ 14 1.67× 10−14 (0.26, 0.25, 0.18) 0.16 20/22/40 0.156983968194752

−2.66236− 0.56228i 4↔ 14 1.09× 10−14 (0.26, 0.02, 0.30) 0.16 20/22/40 0.156850042593146
−0.33764 + 0.56228i 4↔ 12 1.16× 10−13 (0.18, 0.26,−0.05) 0.11 24/28/50 0.157058545714459

−0.33764− 0.56228i
3↔ 12 1.11× 10−13

(0.16, 0.20, 0.20) 0.11 22/26/46
0.157285227171474

3 1.40× 10−13 0.157285227171736
4 failure.

(2, 3) −2.66236 + 0.56228i 4↔ 14 8.88× 10−15 (0.20, 0.18,−0.19) 0.11 20/22/40 0.156983968194785

−2.66236− 0.56228i 4↔ 13 3.33× 10−15 (0.20, 0.19, 0.19) 0.11 20/22/40 0.156983968194460

−0.33764 + 0.56228i 4↔ 12 3.60× 10−14 (0.10, 0.16, 0.27) 0.11 24/28/50 0.156960920774048
−0.33764− 0.56228i 4↔ 13 4.85× 10−13 (0.18, 0.24, 0.09) 0.10 22/26/46 0.157201560484887

2 (3, 2) −1.87744 + 0.74486i 3↔ 13 9.33× 10−15 (0.01, 0.27, 0.11) 0.08 24/26/48 0.157117893796149
−1.87744− 0.74486i 4↔ 14 9.33× 10−15 (0.01, 0.26,−0.11) 0.08 24/26/48 0.157117893796187
−1.12256 + 0.74486i 3↔ 14 8.66× 10−15 (−0.03, 0.30, 0.08) 0.10 20/22/40 0.157403816793093
−1.12256− 0.74486i 3↔ 14 9.33× 10−15 (0.01, 0.30, 0.06) 0.10 20/22/40 0.157135965589722

(2, 3) −1.87744 + 0.74486i 3↔ 13 3.11× 10−15 (0.01, 0.25,−0.00) 0.06 24/26/48 0.157117893796125

−1.87744− 0.74486i 3↔ 13 7.99× 10−15 (0.00, 0.25, 0.04) 0.06 24/26/48 0.157117893796084
−1.12256 + 0.74486i 3↔ 13 5.88× 10−15 (−0.08, 0.26,−0.08) 0.08 20/22/40 0.157117893796242
−1.12256− 0.74486i 4↔ 13 8.10× 10−15 (−0.08, 0.26, 0.08) 0.08 20/22/40 0.157117893796344

3 (3, 2) 0.00755 + 0.51312i 5↔ 12 6.66× 10−14 (−0.23, 0.00, 0.32) 0.16 24/32/54 0.326923948367612
0.00755− 0.51312i 4↔ 11 7.06× 10−14 (−0.23, 0.28, 0.17) 0.16 24/32/54 0.326895403085588
−3.00755 + 0.51312i 5↔ 13 6.66× 10−15 (0.31, 0.29, 0.21) 0.23 24/32/54 0.327149654332462
−3.00755− 0.51312i 4↔ 13 2.11× 10−14 (0.30, 0.03, 0.36) 0.22 24/32/54 0.327149654332549

(2, 3) 0.00755 + 0.51312i 4↔ 12 1.27× 10−13 (−0.27, 0.26, 0.11) 0.15 24/32/54 0.326923948368145
0.00755− 0.51312i 4↔ 11 5.91× 10−14 (−0.26, 0.28, 0.09) 0.15 24/30/52 0.326482313024283

−3.00755 + 0.51312i
4↔ 13 1.13× 10−14

(0.01, 0.07, 0.35) 0.13 24/32/54
0.327149654332475

4 1.15× 10−14 0.327149654332484
−3.00755− 0.51312i 4↔ 14 1.35× 10−14 (0.28, 0.24, 0.21) 0.18 24/32/54 0.327149654332518

4 (3, 2) −0.66222 + 0.89978i 3↔ 14 8.82× 10−14 (0.04, 0.40, 0.06) 0.16 28/34/60 0.517316315432455

−0.66222− 0.89978i 3↔ 13 5.66× 10−14 (0.21, 0.36, 0.23) 0.23 24/24/46 0.515836186082985

−2.33778 + 0.89978i 4↔ 14 9.53× 10−14 (0.27, 0.37, 0.15) 0.23 26/38/62 0.516551679156900

−2.33778− 0.89978i
5↔ 14 9.57× 10−14

(0.44, 0.23, 0.30) 0.34 24/30/52
0.517265636050405

5 1.05× 10−13 0.517265636050411
(2, 3) −0.66222 + 0.89978i 4↔ 13 6.75× 10−14 (0.07, 0.35, 0.03) 0.13 28/34/60 0.517270575096117

−0.66222− 0.89978i 4↔ 13 1.18× 10−13 (0.01, 0.33, 0.13) 0.12 28/34/60 0.516823508294407
−2.33778 + 0.89978i 5↔ 14 9.15× 10−14 (0.28, 0.30,−0.17) 0.20 26/38/62 0.517091710314763
−2.33778− 0.89978i 4↔ 14 1.40× 10−13 (0.33, 0.23, 0.26) 0.23 24/32/54 0.517371884527065

5 (3, 2) −2.81516 + 0.71242i 5↔ 12 2.00× 10−14 (0.42, 0.32, 0.25) 0.35 24/26/48 0.517468087113118

−2.81516− 0.71242i 5↔ 13 2.43× 10−13 (0.42, 0.03, 0.41) 0.34 24/26/48 0.517468087115553
−0.18484 + 0.71242i 5↔ 13 7.19× 10−14 (−0.03, 0.40, 0.03) 0.16 24/30/52 0.517265636050197
−0.18484− 0.71242i 4↔ 13 5.80× 10−14 (0.04, 0.34, 0.22) 0.17 24/32/54 0.517383226173917

(2, 3) −2.81516 + 0.71242i 5↔ 14 8.42× 10−14 (−0.07, 0.10, 0.51) 0.27 24/26/48 0.517468087113785
−2.81516− 0.71242i 3↔ 14 7.22× 10−14 (0.37, 0.22, 0.29) 0.27 24/26/48 0.517468087113621
−0.18484 + 0.71242i 4↔ 13 2.56× 10−14 (−0.09, 0.27, 0.23) 0.13 24/32/54 0.517030228001522

−0.18484− 0.71242i
4↔ 14 4.45× 10−14

(−0.01, 0.35, 0.01) 0.12 24/30/52
0.517064988010753

14 4.42× 10−14 0.517064988010771

6 (3, 2) −2.20711 + 0.97832i 4↔ 13 6.13× 10−13 (0.21, 0.38, 0.14) 0.21 36/44/78 0.682937609993004
−2.20711− 0.97832i 4↔ 13 2.87× 10−13 (0.49, 0.29, 0.31) 0.42 34/44/76 0.685854167198917

−0.79289 + 0.97832i
3↔ 13 6.28× 10−14

(0.15, 0.44, 0.06) 0.22 28/40/66
0.685358137796434

3 5.33× 10−14 0.685358137796378
−0.79289− 0.97832i 6↔ 13 4.88× 10−14 (0.14, 0.38, 0.17) 0.19 26/30/54 0.687624377722874

(2, 3) −2.20711 + 0.97832i 4↔ 13 2.58× 10−13 (0.25, 0.33,−0.12) 0.19 36/44/78 0.681939340447133
−2.20711− 0.97832i 4↔ 14 2.22× 10−13 (0.25, 0.34, 0.11) 0.19 36/44/78 0.681939340447074
−0.79289 + 0.97832i 4↔ 13 4.43× 10−14 (0.09, 0.34, 0.12) 0.14 26/30/54 0.686611589632577

−0.79289− 0.97832i 5↔ 13 2.91× 10−14 (0.12, 0.36, 0.15) 0.17 28/40/66 0.686008759135839

7 (3, 2) −3.21021 + 0.41375i 4↔ 14 8.84× 10−14 (−0.27, 0.08, 0.40) 0.24 24/30/52 0.463638985399381

−3.21021− 0.41375i
4↔ 14 1.05× 10−13

(−0.28, 0.30, 0.29) 0.25 24/30/52
0.463638985399384

14 6.73× 10−14 0.463638985399429
0.21021 + 0.41375i 4↔ 12 1.41× 10−13 (−0.20, 0.36,−0.01) 0.17 26/36/60 0.463543631310823
0.21021− 0.41375i 4↔ 12 9.66× 10−14 (−0.21, 0.28, 0.21) 0.17 26/36/60 0.462317766141817

(2, 3) −3.21021 + 0.41375i
4↔ 13 2.26× 10−14

(0.09, 0.05, 0.36) 0.14 24/30/52
0.463638985399296

13 6.81× 10−14 0.463638985399254

−3.21021− 0.41375i 4↔ 13 2.07× 10−14 (0.37, 0.29, 0.39) 0.38 22/24/44 0.463893546593001

0.21021 + 0.41375i 4↔ 12 1.22× 10−13 (−0.24, 0.28, 0.12) 0.15 26/36/60 0.461782733883807
0.21021− 0.41375i 4↔ 13 8.53× 10−14 (−0.23, 0.30, 0.10) 0.15 26/36/60 0.463638985399803

Tab. C.10: Data from Table 3.1 of [62] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
8 (3, 2) −1.70658 + 1.00144i 7↔ 13 8.84× 10−14 (0.08, 0.35, 0.12) 0.14 28/32/58 0.463291347321593

−1.70658− 1.00144i 4↔ 13 6.51× 10−14 (0.08, 0.35,−0.12) 0.14 28/32/58 0.463291347321527
−1.29342 + 1.00144i 4↔ 13 2.95× 10−14 (0.25, 0.40, 0.10) 0.23 22/24/44 0.463972819748543
−1.29342− 1.00144i 4↔ 13 2.82× 10−14 (0.20, 0.38, 0.14) 0.21 22/24/44 0.463493123342520

(2, 3) −1.70658 + 1.00144i 4↔ 14 1.07× 10−13 (0.12, 0.32, 0.04) 0.12 28/32/58 0.464944033504322
−1.70658− 1.00144i 5↔ 14 1.17× 10−13 (0.10, 0.32, 0.06) 0.11 28/32/58 0.465170051293689
−1.29342 + 1.00144i 3↔ 13 4.88× 10−14 (0.06, 0.15, 0.34) 0.14 22/24/44 0.463884802808912

−1.29342− 1.00144i 3↔ 13 2.02× 10−14 (0.21, 0.31, 0.19) 0.18 22/24/44 0.463972819748495

9 (3, 2) −3.02268 + 0.62320i 4↔ 14 1.97× 10−13 (0.39, 0.33, 0.25) 0.32 30/36/64 0.647382627247724
−3.02268− 0.62320i 5↔ 14 1.30× 10−13 (−0.36, 0.27, 0.31) 0.30 30/36/64 0.647382627247248

0.02268 + 0.62320i 4↔ 13 7.93× 10−14 (0.05, 0.44,−0.00) 0.20 26/34/58 0.647085571543276
0.02268− 0.62320i 4↔ 13 1.67× 10−13 (0.09, 0.43, 0.10) 0.20 26/34/58 0.647085571544311

(2, 3) −3.02268 + 0.62320i 5↔ 13 3.97× 10−14 (0.02, 0.09, 0.44) 0.20 30/36/64 0.646287064285721

−3.02268− 0.62320i
4↔ 14 1.95× 10−13

(0.37, 0.25, 0.26) 0.26 30/36/64
0.647387982377141

14 1.73× 10−13 0.647387982377091
0.02268 + 0.62320i 4↔ 12 1.10× 10−13 (−0.00, 0.36,−0.02) 0.13 26/36/60 0.646684596070416
0.02268− 0.62320i 4↔ 13 1.27× 10−13 (−0.03, 0.33, 0.19) 0.15 26/34/58 0.647085571543479

10 (3, 2) −0.37053 + 0.84016i 5↔ 13 1.07× 10−13 (0.13, 0.45, 0.03) 0.22 30/40/68 0.646819936948037

−0.37053− 0.84016i 4↔ 12 5.55× 10−14 (0.19, 0.41, 0.19) 0.24 30/40/68 0.647079332036773

−2.62947 + 0.84016i 5↔ 11 9.69× 10−14 (0.40, 0.36, 0.21) 0.34 26/34/58 0.647085571542674
−2.62947− 0.84016i 5↔ 13 1.06× 10−13 (0.39,−0.02, 0.43) 0.34 26/34/58 0.647085571542876

(2, 3) −0.37053 + 0.84016i
4↔ 13 8.04× 10−14

(−0.07, 0.25, 0.38) 0.21 30/40/68
0.646819936947746

4 8.13× 10−14 0.646819936947737
−0.37053− 0.84016i 4↔ 13 3.04× 10−13 (0.08, 0.36, 0.18) 0.17 30/40/68 0.646819936948211
−2.62947 + 0.84016i 4↔ 14 2.46× 10−13 (−0.15, 0.09, 0.51) 0.29 26/34/58 0.647085571542869
−2.62947− 0.84016i 4↔ 14 1.95× 10−13 (0.38, 0.27, 0.26) 0.28 26/34/58 0.647085571542963

11 (3, 2)
−2.87744 + 0.74486i

5↔ 14 7.15× 10−14
(0.46, 0.34, 0.27) 0.40 26/32/56

0.786130813717339
5, 6 0.786130813717339
7 failure.

−2.87744− 0.74486i 4↔ 13 3.16× 10−13 (0.45, 0.03, 0.44) 0.40 26/32/56 0.786225296258149
−0.12256 + 0.74486i 5↔ 13 3.78× 10−13 (0.06, 0.44, 0.02) 0.20 30/38/66 0.785863578105783
−0.12256− 0.74486i 4↔ 13 2.05× 10−13 (0.19, 0.39, 0.27) 0.26 28/38/64 0.785794396515464

(2, 3) −2.87744 + 0.74486i
4↔ 13 5.36× 10−13

(−0.04, 0.11, 0.54) 0.30 26/32/56
0.786222380061525

4 5.34× 10−13 0.786222380061523
−2.87744− 0.74486i 4↔ 13 3.38× 10−13 (0.41, 0.23, 0.30) 0.32 26/32/56 0.785957346960051
−0.12256 + 0.74486i 4↔ 13 1.52× 10−13 (0.08, 0.38, 0.04) 0.15 30/38/66 0.785999075910518

−0.12256− 0.74486i
4↔ 12

2.54× 10−14 (−0.01, 0.34, 0.18) 0.15 30/38/66
0.785999075910039

4 0.785999075910034
5 failure.

Tab. C.11: Data from Table 3.1 of [62] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
12 (3, 2) −2.24813 + 1.03398i

7↔ 14 4.07× 10−12
(0.26, 0.41, 0.15) 0.26 34/42/74

1.141541830593926
14 3.37× 10−12 1.141541830593913

−2.24813− 1.03398i
5↔ 13 2.50× 10−12

(0.53, 0.07, 0.43) 0.47 30/38/66
1.150966806397200

5 2.84× 10−12 1.150966806397164
−0.75187 + 1.03398i 4↔ 13 2.62× 10−12 (0.20, 0.47, 0.06) 0.26 36/44/78 1.144557251570631

−0.75187− 1.03398i
5↔ 14 4.00× 10−12

(0.20, 0.40, 0.19) 0.24 36/42/76
1.144289443644866

14 2.06× 10−12 1.144289443644726

(2, 3) −2.24813 + 1.03398i 5↔ 12 5.68× 10−13 (0.30, 0.35,−0.14) 0.23 34/42/74 1.145197409428369

−2.24813− 1.03398i 8↔ 13 7.73× 10−13 (0.43, 0.14, 0.36) 0.33 30/38/66 1.147770689218986
−0.75187 + 1.03398i 5↔ 14 1.50× 10−12 (0.14, 0.36, 0.15) 0.17 36/42/76 1.144776469725223
−0.75187− 1.03398i 6↔ 13 2.74× 10−12 (0.18, 0.38, 0.17) 0.21 36/44/78 1.145096650762742

13 (3, 2) −3.34815 + 0.31570i
4↔ 14 1.10× 10−13

(−0.34, 0.32, 0.26) 0.29 30/40/68
0.567218210159849

4 1.09× 10−13 0.567218210159845
−3.34815− 0.31570i 5↔ 14 5.84× 10−14 (−0.29, 0.35, 0.26) 0.27 26/32/56 0.567165208527812

0.34815 + 0.31570i 5↔ 12 1.01× 10−13 (−0.18, 0.38,−0.03) 0.18 26/38/62 0.567165208528317

0.34815− 0.31570i
4↔ 12 6.25× 10−14

(−0.20, 0.28, 0.24) 0.18 26/38/62
0.567165208527376

4 6.58× 10−14 0.567165208527338
5 failure.

(2, 3) −3.34815 + 0.31570i 5↔ 13 1.19× 10−14 (0.10, 0.03, 0.38) 0.16 26/32/56 0.567165208527598

−3.34815− 0.31570i
4↔ 14 3.51× 10−14

(0.38, 0.36, 0.30) 0.36 26/32/56
0.567165208527755

14 2.19× 10−14 0.567165208527715

0.34815 + 0.31570i
3↔ 12 3.47× 10−13

(−0.22, 0.30, 0.12) 0.15 26/38/62
0.567049507229398

3 3.57× 10−13 0.567049507229602
4, 5, 6 failure.

0.34815− 0.31570i 4↔ 12 2.38× 10−13 (−0.21, 0.31, 0.11) 0.16 26/38/62 0.566948496846089

14 (3, 2) −1.64913 + 1.05848i 4↔ 13 2.49× 10−14 (0.09, 0.37, 0.12) 0.16 26/32/56 0.567285975023820

−1.64913− 1.05848i 4↔ 13 2.18× 10−14 (0.09, 0.37,−0.13) 0.16 26/32/56 0.567285975023829

−1.35087 + 1.05848i
3↔ 13

2.51× 10−14 (0.36, 0.42, 0.13) 0.32
26/30/54 0.567162499322202

3, 4 22/23/43 0.567164292397292
5 failure.

−1.35087− 1.05848i 4↔ 13 5.48× 10−14 (0.23, 0.43, 0.05) 0.24 26/28/52 0.567165208528485
(2, 3) −1.64913 + 1.05848i 3↔ 14 1.33× 10−13 (0.14, 0.33, 0.05) 0.13 26/32/56 0.567285975024011

−1.64913− 1.05848i 4↔ 13 5.72× 10−14 (0.12, 0.33, 0.07) 0.13 26/32/56 0.567165208527762

−1.35087 + 1.05848i
3↔ 13

7.79× 10−14 (0.18, 0.14, 0.37) 0.19
26/30/54 0.567162499322480

3, 4 22/23/43 0.567164292397572
5 failure.

−1.35087− 1.05848i
4↔ 14

1.01× 10−13 (0.32, 0.30, 0.25) 0.25
26/30/54 0.567162499322576

4 22/23/43 0.567164292397665
5 failure.

15 (3, 2) −1.97873 + 1.12212i 6↔ 11 2.86× 10−11 (0.16, 0.44, 0.15) 0.24 54/82/134 1.893377029749469
−1.97873− 1.12212i 6↔ 11 1.16× 10−11 (0.50, 0.38, 0.27) 0.46 38/50/86 1.885892195233329
−1.02127 + 1.12212i 5↔ 13 4.84× 10−11 (0.25, 0.49, 0.07) 0.31 46/64/108 1.886872709877064
−1.02127− 1.12212i 5↔ 13 3.19× 10−11 (0.32, 0.47, 0.11) 0.34 46/64/108 1.880774913810047

(2, 3) −1.97873 + 1.12212i 5↔ 13 6.09× 10−11 (0.23, 0.12, 0.41) 0.23 38/50/86 1.884891575291061
−1.97873− 1.12212i 5↔ 13 1.57× 10−10 (0.24, 0.37, 0.09) 0.20 54/82/134 1.895705583407503

−1.02127 + 1.12212i 6↔ 11 8.40× 10−12 (−0.03, 0.24, 0.45) 0.26 46/64/108 1.894601048848805

−1.02127− 1.12212i 5↔ 13 3.92× 10−11 (0.25, 0.40, 0.17) 0.25 46/64/108 1.883406819520532

Tab. C.12: Data from Table 3.1 of [62] Part III.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (3, 2) −0.76721− 0.79255i 3↔ 13 1.64× 10−14 (−0.02, 0.31, 0.12) 0.11 20/20/38 0.263723173448867

−0.76721 + 0.79255i 4↔ 14 7.33× 10−15 (−0.05, 0.33, 0.07) 0.12 22/26/46 0.263487375455115
−2.23279− 0.79255i 5↔ 13 1.53× 10−14 (0.34, 0.22, 0.24) 0.23 22/26/46 0.263518203239260

−2.23279 + 0.79255i
4↔ 14 3.20× 10−14

(0.16, 0.32, 0.13) 0.14 24/34/56
0.263688965427039

4 2.80× 10−14 0.263688965427042
(2, 3) −0.76721− 0.79255i 4↔ 13 1.08× 10−14 (−0.04, 0.30, 0.01) 0.09 22/26/46 0.263394331688615

−0.76721 + 0.79255i 4↔ 13 1.52× 10−14 (−0.04, 0.29,−0.01) 0.09 22/26/46 0.263394331688655
−2.23279− 0.79255i 5↔ 14 9.10× 10−15 (0.16, 0.28, 0.10) 0.11 24/34/56 0.262917569081549

−2.23279 + 0.79255i 5↔ 14 6.00× 10−15 (0.16, 0.28,−0.11) 0.11 24/34/56 0.263008715157447

2 (3, 2) −0.34861 + 0.75874i 4↔ 14 3.09× 10−14 (0.02, 0.40, 0.04) 0.16 26/34/58 0.432564598948254
−0.34861− 0.75874i 4↔ 13 4.22× 10−14 (0.07, 0.39, 0.09) 0.17 26/34/58 0.432548106138239
−2.65139 + 0.75874i 4↔ 14 2.33× 10−14 (0.37, 0.33, 0.21) 0.28 26/34/58 0.432564598947727
−2.65139− 0.75874i 4↔ 13 4.84× 10−14 (0.36,−0.00, 0.39) 0.28 26/34/58 0.432414119827482

(2, 3) −0.34861 + 0.75874i 4↔ 13 4.22× 10−14 (−0.04, 0.31,−0.15) 0.12 26/34/58 0.432564598948507
−0.34861− 0.75874i 4↔ 13 6.64× 10−14 (−0.04, 0.32, 0.15) 0.13 26/34/58 0.432564598949059
−2.65139 + 0.75874i 5↔ 14 2.94× 10−14 (0.33, 0.24,−0.25) 0.22 26/34/58 0.432564598947876

−2.65139− 0.75874i 4↔ 13 8.10× 10−15 (0.33, 0.24, 0.24) 0.22 26/34/58 0.432564598947726

3 (3, 2) −1.00000 + 1.00000i 3↔ 14 1.09× 10−13 (0.15, 0.43, 0.07) 0.21 26/30/54 0.610778931489704
−1.00000− 1.00000i 4↔ 14 2.16× 10−13 (0.21, 0.43, 0.06) 0.23 26/30/54 0.611172970066301
−2.00000 + 1.00000i 5↔ 13 7.99× 10−14 (0.13, 0.39, 0.13) 0.18 30/42/70 0.610009854824228

−2.00000− 1.00000i 5↔ 13 2.38× 10−14 (0.42, 0.33, 0.25) 0.35 24/30/52 0.610519526694357

(2, 3) −1.00000 + 1.00000i
4↔ 14 2.08× 10−13 (0.14, 0.35,−0.15) 0.16 26/30/54 0.610632545608902

14 9.57× 10−14 (0.14, 0.35,−0.15) 0.16 26/30/54 0.610632545608938
−1.00000− 1.00000i 3↔ 13 7.06× 10−14 (0.14, 0.35, 0.14) 0.16 26/30/54 0.610797931045570

−2.00000 + 1.00000i
3↔ 14

8.50× 10−14 (0.18, 0.09, 0.36) 0.17 24/30/52
0.610519526695058

3 0.610519526695014
4 failure.

−2.00000− 1.00000i 4↔ 14 2.48× 10−13 (0.18, 0.33, 0.07) 0.15 30/42/70 0.610416962118645

4 (3, 2) −0.60186 + 0.93867i 4↔ 13 1.83× 10−13 (0.09, 0.42, 0.06) 0.19 28/34/60 0.710901322036743
−0.60186− 0.93867i 4↔ 14 1.05× 10−13 (0.23, 0.40, 0.24) 0.27 26/28/52 0.711606386948809
−2.39814 + 0.93867i 5↔ 13 6.84× 10−14 (0.33, 0.39, 0.17) 0.29 24/34/56 0.711338778934043

−2.39814− 0.93867i 5↔ 13 5.84× 10−14 (0.39,−0.04, 0.43) 0.34 26/38/62 0.711117203273613

(2, 3) −0.60186 + 0.93867i 4↔ 14 2.30× 10−13 (0.11, 0.37, 0.07) 0.15 28/34/60 0.712315086378573
−0.60186− 0.93867i 4↔ 13 3.78× 10−13 (0.05, 0.35, 0.14) 0.14 28/34/60 0.711763881371836
−2.39814 + 0.93867i 5↔ 14 2.06× 10−13 (0.34, 0.31,−0.21) 0.25 24/34/56 0.711338778934606
−2.39814− 0.93867i 5↔ 13 7.03× 10−14 (0.38, 0.27, 0.26) 0.28 26/38/62 0.710938595008224

5 (3, 2) 0.11005 + 0.57190i 5↔ 13 1.87× 10−13 (−0.02, 0.42,−0.00) 0.18 26/36/60 0.710510137161106
0.11005− 0.57190i 4↔ 13 1.84× 10−13 (0.07, 0.35, 0.28) 0.20 26/38/62 0.710579473464925
−3.11005 + 0.57190i 5↔ 14 2.72× 10−13 (0.39, 0.34, 0.25) 0.33 28/40/66 0.712180070353679
−3.11005− 0.57190i 5↔ 14 2.03× 10−13 (−0.33, 0.28, 0.32) 0.29 28/40/66 0.712180070353544

(2, 3) 0.11005 + 0.57190i 4↔ 13 1.19× 10−13 (−0.07, 0.28, 0.27) 0.16 26/38/62 0.710579473464162
0.11005− 0.57190i 4↔ 12 1.06× 10−13 (0.00, 0.37, 0.01) 0.14 26/36/60 0.710753951013632

−3.11005 + 0.57190i 4↔ 13 8.37× 10−14 (0.06, 0.08, 0.42) 0.18 28/40/66 0.712543560125077

−3.11005− 0.57190i 5↔ 13 2.45× 10−13 (0.37, 0.27, 0.25) 0.28 28/40/66 0.711612113759270

6 (3, 2) −1.86240 + 1.07589i 5↔ 14 1.20× 10−12 (0.13, 0.39, 0.13) 0.18 32/48/78 0.866178421227291
−1.86240− 1.07589i 4↔ 14 1.09× 10−12 (0.13, 0.38,−0.13) 0.18 32/48/78 0.866178421227852

−1.13760 + 1.07589i 4↔ 13 1.49× 10−13 (0.21, 0.46, 0.08) 0.26 28/36/62 0.865996064707863

−1.13760− 1.07589i 5↔ 14 5.05× 10−13 (0.28, 0.43, 0.17) 0.29 28/36/62 0.864674947308066
(2, 3) −1.86240 + 1.07589i 3↔ 13 2.82× 10−13 (0.14, 0.13, 0.37) 0.17 28/34/60 0.866237338993355

−1.86240− 1.07589i
4↔ 14 8.87× 10−13

(0.18, 0.35, 0.07) 0.16 32/48/78
0.865353485572168

14 6.66× 10−13 0.865353485572135
−1.13760 + 1.07589i 5↔ 13 1.74× 10−13 (−0.00, 0.21, 0.37) 0.18 28/36/62 0.864774791781850
−1.13760− 1.07589i 4↔ 13 3.30× 10−13 (0.21, 0.38, 0.15) 0.21 28/36/62 0.864164682655471

Tab. C.13: Data from Table 5.1 of [62] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
7 (3, 2) −0.23931− 0.85787i 5↔ 13 3.71× 10−12 (0.20, 0.39, 0.26) 0.26 38/60/96 1.252307176564980

−0.23931 + 0.85787i 4↔ 13 1.97× 10−12 (0.24, 0.51, 0.01) 0.32 32/44/74 1.252928202049658
−2.76069− 0.85787i 6↔ 12 1.43× 10−11 (0.48,−0.00, 0.47) 0.45 38/48/84 1.250321943401754
−2.76069 + 0.85787i 5↔ 13 9.92× 10−12 (0.50, 0.38, 0.26) 0.46 38/48/84 1.250713782739033

(2, 3) −0.23931− 0.85787i 5↔ 13 9.84× 10−13 (0.19, 0.39, 0.22) 0.24 32/44/74 1.255231836333305

−0.23931 + 0.85787i 5↔ 13 8.22× 10−12 (0.17, 0.41, 0.03) 0.20 38/60/96 1.251442419208005
−2.76069− 0.85787i 5↔ 13 4.29× 10−12 (0.46, 0.26, 0.32) 0.37 38/48/84 1.251828263901439
−2.76069 + 0.85787i 5↔ 13 4.56× 10−12 (−0.10, 0.12, 0.59) 0.37 38/48/84 1.252338870907436

8 (3, 2) −1.77184 + 1.11514i 5↔ 14 5.55× 10−13 (0.14, 0.39, 0.13) 0.19 32/44/74 1.067793082470478
−1.77184− 1.11514i 4↔ 13 7.93× 10−13 (0.14, 0.39,−0.13) 0.19 32/44/74 1.067737300243070
−1.22816 + 1.11514i 4↔ 14 7.33× 10−13 (0.29, 0.47, 0.09) 0.31 28/34/60 1.059048949359196

−1.22816− 1.11514i 4↔ 11 3.44× 10−13 (0.29, 0.46,−0.10) 0.31 28/34/60 1.059048949359549

(2, 3) −1.77184 + 1.11514i 4↔ 13 5.49× 10−13 (0.20, 0.36, 0.01) 0.17 32/44/74 1.067412724658020
−1.77184− 1.11514i 4↔ 14 1.42× 10−12 (0.18, 0.35, 0.08) 0.16 32/44/74 1.060315838908867
−1.22816 + 1.11514i 5↔ 13 7.64× 10−13 (0.10, 0.19, 0.38) 0.19 28/34/60 1.059072575346030
−1.22816− 1.11514i 3↔ 14 6.60× 10−13 (0.28, 0.37, 0.19) 0.25 28/34/60 1.059072575345849

9 (3, 2) −0.65219− 1.02885i 5↔ 13 8.60× 10−12 (0.41, 0.38, 0.31) 0.41 34/46/78 1.483691461545163
−0.65219 + 1.02885i 6↔ 14 8.50× 10−12 (0.18, 0.47, 0.05) 0.26 38/54/90 1.486637828881297
−2.34781− 1.02885i 5↔ 12 7.12× 10−12 (0.48,−0.01, 0.46) 0.44 38/50/86 1.496113936056134
−2.34781 + 1.02885i 8↔ 13 2.18× 10−11 (0.32, 0.42, 0.16) 0.31 62/98/158 1.491181485968302

(2, 3) −0.65219− 1.02885i 5↔ 13 9.50× 10−12 (0.16, 0.38, 0.17) 0.20 38/54/90 1.485461477905392
−0.65219 + 1.02885i 5↔ 13 8.99× 10−12 (0.18, 0.22, 0.39) 0.23 34/46/78 1.486979860104871

−2.34781− 1.02885i 6↔ 12 3.66× 10−12 (0.44, 0.23, 0.32) 0.35 38/50/86 1.498880413762323

−2.34781 + 1.02885i
5↔ 12

8.60× 10−12 (0.35, 0.34,−0.19) 0.28
62/98/158 1.494723230945138

5 62/92/152 1.493844293827972
6, 7 failure.

10 (3, 2) 0.17229 + 0.58559i 5↔ 12 1.14× 10−13 (0.12, 0.48,−0.02) 0.24 32/44/74 1.178776902865389
0.17229− 0.58559i 4↔ 12 5.12× 10−13 (0.25, 0.44, 0.24) 0.32 30/42/70 1.181360578216781
−3.17229 + 0.58559i 5↔ 13 1.82× 10−12 (−0.34, 0.12, 0.44) 0.32 32/46/76 1.177589893407057
−3.17229− 0.58559i 5↔ 14 2.30× 10−12 (−0.35, 0.30, 0.34) 0.33 32/46/76 1.177440816718236

(2, 3) 0.17229 + 0.58559i 4↔ 12 1.01× 10−12 (0.04, 0.29, 0.34) 0.20 30/42/70 1.181360578218381

0.17229− 0.58559i 4↔ 12 4.83× 10−12 (0.03, 0.36, 0.22) 0.18 32/44/74 1.179957019878848
−3.17229 + 0.58559i 4↔ 13 2.73× 10−12 (0.09, 0.08, 0.45) 0.22 32/46/76 1.179576630255273
−3.17229− 0.58559i 6↔ 13 1.65× 10−12 (0.42, 0.28, 0.28) 0.33 32/46/76 1.179374721462420

11 (3, 2) −0.13972 + 0.82586i 5↔ 13 2.89× 10−11 (0.21, 0.50, 0.01) 0.30 38/52/88 1.754207433479665
−0.13972− 0.82586i 5↔ 13 2.66× 10−11 (0.25, 0.40, 0.29) 0.31 38/54/90 1.748677559087148
−2.86028 + 0.82586i 6↔ 13 2.61× 10−11 (0.60, 0.39, 0.26) 0.58 42/64/104 1.757144139163060
−2.86028− 0.82586i 7↔ 10 4.39× 10−11 (0.58,−0.02, 0.49) 0.57 42/64/104 1.757711925963126

(2, 3) −0.13972 + 0.82586i 5↔ 12 5.84× 10−11 (0.15, 0.38, 0.23) 0.22 38/54/90 1.753904062661501

−0.13972− 0.82586i
5↔ 13 5.59× 10−11

(0.15, 0.39, 0.22) 0.22 38/52/88
1.750828480010552

5 4.85× 10−11 1.750828480015106
6 failure.

−2.86028 + 0.82586i 6↔ 11 1.23× 10−11 (−0.10, 0.11, 0.67) 0.47 42/64/104 1.750517907450094

−2.86028− 0.82586i 5↔ 12 2.36× 10−11 (0.51, 0.27, 0.41) 0.50 42/64/104 1.758382402555404

Tab. C.14: Data from Table 5.1 of [62] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (−3, 2) 0.46746 + 0.27759i 5↔ 13 6.37× 10−13 (0.08, 0.48,−0.07) 0.24 34/52/84 1.019779352598105

0.46746− 0.27759i 5↔ 13 5.76× 10−13 (0.11, 0.47, 0.12) 0.25 34/52/84 1.019118210708849
−3.46746 + 0.27759i 5↔ 13 3.75× 10−13 (−0.33, 0.04, 0.50) 0.36 28/36/62 1.019983204951585
−3.46746− 0.27759i 4↔ 14 3.33× 10−13 (−0.34, 0.39, 0.32) 0.37 28/36/62 1.021066214332981

(−2, 3)
0.46746 + 0.27759i

4↔ 13 1.49× 10−12
(0.01, 0.40,−0.01) 0.16 32/50/80

1.019562109651294
13 5.63× 10−13 1.019562109639764

0.46746− 0.27759i
5↔ 13 6.31× 10−14

(−0.03, 0.34, 0.25) 0.18 34/52/84
1.019779352593147

13 6.24× 10−14 1.019779352592997

−3.46746 + 0.27759i 5↔ 13 3.28× 10−13 (0.18, 0.02, 0.45) 0.23 28/36/62 1.020338996345516
−3.46746− 0.27759i 5↔ 13 5.03× 10−13 (0.46, 0.39, 0.37) 0.50 28/36/62 1.020542848704024

2 (−3, 2) −2.58153 + 0.93916i 5↔ 12 3.15× 10−13 (0.45, 0.41, 0.21) 0.41 34/52/84 1.018809897806248

−2.58153− 0.93916i 5↔ 13 8.12× 10−13 (0.42,−0.05, 0.47) 0.40 34/52/84 1.018746472843271
−0.41847 + 0.93916i 5↔ 13 7.27× 10−13 (0.27, 0.50,−0.05) 0.33 30/38/66 1.019168423089651
−0.41847− 0.93916i 5↔ 12 1.01× 10−12 (0.29, 0.42, 0.28) 0.34 30/38/66 1.017587293822094

(−2, 3) −2.58153 + 0.93916i 5↔ 13 1.09× 10−12 (−0.18, 0.10, 0.56) 0.35 34/52/84 1.017007935103982
−2.58153− 0.93916i 5↔ 13 1.23× 10−12 (0.43, 0.30, 0.27) 0.35 34/52/84 1.018393643850323
−0.41847 + 0.93916i 5↔ 12 6.99× 10−13 (0.06, 0.26, 0.37) 0.20 30/38/66 1.019337403809232
−0.41847− 0.93916i 5↔ 13 8.28× 10−13 (0.21, 0.45, 0.27) 0.32 30/38/66 1.019238041091295

3 (−3, 2) −1.65884− 1.16154i 6↔ 13 1.14× 10−11 (0.14, 0.40,−0.13) 0.20 40/56/94 1.308505501629080
−1.65884 + 1.16154i 6↔ 13 1.31× 10−11 (0.14, 0.41, 0.13) 0.20 40/56/94 1.308866192606601
−1.34116− 1.16154i 4↔ 13 1.97× 10−12 (0.62, 0.42,−0.22) 0.62 32/42/72 1.319305550522220
−1.34116 + 1.16154i 5↔ 13 2.85× 10−12 (0.62, 0.43, 0.21) 0.62 32/42/72 1.319305550523099

(−2, 3) −1.65884− 1.16154i 6↔ 14 1.11× 10−11 (0.18, 0.36, 0.08) 0.17 40/56/94 1.319474166893606
−1.65884 + 1.16154i 3↔ 14 3.79× 10−12 (0.08, 0.17, 0.38) 0.18 36/46/80 1.320408605566066
−1.34116− 1.16154i 5↔ 12 2.73× 10−12 (0.54, 0.21, 0.39) 0.48 32/42/72 1.319305550522260

−1.34116 + 1.16154i 4↔ 13 1.91× 10−12 (0.41, 0.14, 0.54) 0.48 32/42/72 1.319305550522633

4 (−3, 2) 0.10278− 0.66546i 6↔ 12 9.45× 10−12 (0.21, 0.39, 0.31) 0.29 38/62/98 1.709314096976351
0.10278 + 0.66546i 5↔ 13 1.29× 10−11 (0.29, 0.54,−0.03) 0.38 36/52/86 1.709274223642092
−3.10278− 0.66546i 6↔ 13 3.77× 10−11 (−0.39, 0.29, 0.35) 0.37 46/68/112 1.708422738797249

−3.10278 + 0.66546i 6↔ 12 7.24× 10−12 (0.45, 0.36, 0.28) 0.41 46/68/112 1.709353487322167

(−2, 3) 0.10278− 0.66546i 5↔ 13 1.33× 10−11 (0.21, 0.40, 0.27) 0.28 36/52/86 1.709344065589438
0.10278 + 0.66546i 5↔ 13 8.80× 10−12 (0.18, 0.43, 0.07) 0.22 38/62/98 1.709191960284029
−3.10278− 0.66546i 5↔ 11 7.34× 10−12 (0.43, 0.27, 0.29) 0.35 46/68/112 1.708508743153964
−3.10278 + 0.66546i 5↔ 12 4.14× 10−11 (0.06, 0.10, 0.49) 0.25 46/68/112 1.709394610761968

5 (−3, 2) 0.33909 + 0.44663i 5↔ 12 7.73× 10−12 (0.16, 0.50,−0.05) 0.28 40/56/94 1.472893660595506

0.33909− 0.44663i
4↔ 10 3.91× 10−12 (0.28, 0.48, 0.22) 0.36 36/50/84 1.474832589950734

5 failure.
−3.33909 + 0.44663i 6↔ 13 6.70× 10−12 (−0.43, 0.10, 0.49) 0.43 36/48/82 1.472712205090256
−3.33909− 0.44663i 5↔ 13 4.50× 10−12 (−0.44, 0.34, 0.36) 0.44 36/48/82 1.474788761845281

(−2, 3) 0.33909 + 0.44663i 4↔ 12 7.20× 10−12 (0.08, 0.32, 0.34) 0.23 36/50/84 1.475037573340682
0.33909− 0.44663i 6↔ 11 1.41× 10−11 (0.06, 0.37, 0.25) 0.20 40/56/94 1.472188300244882
−3.33909 + 0.44663i 4↔ 11 3.40× 10−12 (0.14, 0.07, 0.55) 0.33 36/48/82 1.474788761839685

−3.33909− 0.44663i 6↔ 12 2.70× 10−12 (0.48, 0.31, 0.42) 0.50 36/48/82 1.472909330019834

Tab. C.15: Data from Table 5.4 of [62].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (3, 2) −0.50000 + 0.86603i 4↔ 14 2.20× 10−14 (0.05, 0.41, 0.05) 0.17 22/23/44 0.676398849581584

−0.50000− 0.86603i 4↔ 13 2.55× 10−14 (0.16, 0.38, 0.22) 0.21 22/23/44 0.676760804700557
−2.50000 + 0.86603i 3↔ 13 3.55× 10−15 (0.36, 0.37, 0.19) 0.30 14/10/24 0.676627737605910
−2.50000− 0.86603i 4↔ 14 4.88× 10−15 (0.45, 0.18, 0.33) 0.35 8/7/15 0.676627737607669

(2, 3) −0.50000 + 0.86603i 3↔ 13 3.24× 10−14 (0.01, 0.30, 0.20) 0.13 22/23/44 0.676563238051973
−0.50000− 0.86603i 3↔ 13 1.57× 10−14 (0.01, 0.33, 0.14) 0.13 22/23/44 0.676563238050312

−2.50000 + 0.86603i 3↔ 14 3.55× 10−15 (0.35, 0.28,−0.24) 0.25 14/10/24 0.676627737605571

−2.50000− 0.86603i 3↔ 13 5.66× 10−15 (0.35, 0.28, 0.23) 0.26 14/10/24 0.676627737605229

2 (3, 2) 0.36778 + 0.23154i 4↔ 12 1.55× 10−12 (0.26, 0.13, 0.39) 0.24 28/26/52 0.192584612983471

0.36778− 0.23154i 5↔ 12 4.22× 10−12 (0.26, 0.27, 0.32) 0.24 28/26/52 0.192406713793864

−3.36778 + 0.23154i
4↔ 14

1.55× 10−14 (−0.23, 0.13, 0.37) 0.21 20/20/38
0.385365362960497

4 0.385365362960489
5 failure.

−3.36778− 0.23154i 3↔ 14 3.06× 10−14 (−0.23, 0.24, 0.31) 0.21 20/20/38 0.385610022684702
(2, 3) 0.36778 + 0.23154i 4↔ 12 4.76× 10−12 (0.02, 0.26, 0.21) 0.11 28/26/52 0.192773545478196

0.36778− 0.23154i
3↔ 12 2.48× 10−12

(0.02, 0.23, 0.13) 0.07 28/26/52
0.192220119252556

3 2.44× 10−12 0.192220119251988
12 2.27× 10−12 0.192220119242490

−3.36778 + 0.23154i 4↔ 12 7.44× 10−15 (0.18, 0.12, 0.32) 0.15 20/20/38 0.385610022684362

−3.36778− 0.23154i 4↔ 14 1.29× 10−14 (0.31, 0.25, 0.26) 0.23 20/20/38 0.385120703236589

3 (3, 2)
−0.25460 + 0.74953i

3↔ 13
4.17× 10−14 (0.06, 0.43, 0.02) 0.19 22/26/46

0.526530016209690
3 0.526530016209692
4 failure.

−0.25460− 0.74953i 5↔ 13 1.78× 10−14 (0.06, 0.42,−0.03) 0.18 22/26/46 0.526530016209333

−2.74540 + 0.74953i 4↔ 11 1.28× 10−12 (0.44, 0.13, 0.26) 0.28 28/30/56 0.263454475747302

−2.74540− 0.74953i 5↔ 12 5.70× 10−13 (0.45, 0.15, 0.25) 0.28 28/30/56 0.263536300108507

(2, 3) −0.25460 + 0.74953i 3↔ 13 6.03× 10−14 (−0.02, 0.33, 0.10) 0.12 24/28/50 0.526545516107715
−0.25460− 0.74953i 4↔ 13 4.56× 10−14 (0.01, 0.34, 0.15) 0.14 22/26/46 0.526530016209657
−2.74540 + 0.74953i 5↔ 11 3.95× 10−12 (0.12,−0.05, 0.33) 0.12 28/28/54 0.263272758034494

−2.74540− 0.74953i
3↔ 12 8.45× 10−13

(0.22, 0.11, 0.36) 0.19 28/30/56
0.263259271398095

3 8.64× 10−13 0.263259271398280

4 (3, 2) −1.50000 + 0.99849i 3↔ 13 1.19× 10−14 (0.21, 0.21, 0.20) 0.13 10/7/16 Free?
−1.50000− 0.99849i 4↔ 12 4.20× 10−14 (0.02, 0.24, 0.07) 0.06 10/7/16 Free?

(2, 3) −1.50000 + 0.99849i 4↔ 13 9.88× 10−15 (0.14, 0.10, 0.21) 0.08 10/7/16 Free?
−1.50000− 0.99849i 5↔ 13 3.95× 10−14 (0.10, 0.15, 0.21) 0.08 10/7/16 Free?

5 (3, 2) −1.50000 + 1.07899i 3↔ 12 9.10× 10−15 (0.09, 0.38, 0.12) 0.17 16/13/28 Free?
−1.50000− 1.07899i 4↔ 13 4.77× 10−15 (0.26, 0.41, 0.14) 0.26 12/8/19 Free?

(2, 3) −1.50000 + 1.07899i 3↔ 14 1.24× 10−14 (0.11, 0.32, 0.12) 0.13 16/13/28 Free?
−1.50000− 1.07899i 3↔ 14 1.20× 10−14 (0.11, 0.34, 0.08) 0.13 16/13/28 Free?

6 (3, 2) −1.50000 + 1.16963i 3↔ 14 1.69× 10−14 (0.14, 0.41, 0.12) 0.20 16/13/28 Free?
−1.50000− 1.16963i 4↔ 14 4.44× 10−15 (0.32, 0.44, 0.16) 0.33 12/8/19 Free?

(2, 3) −1.50000 + 1.16963i 3↔ 13 5.55× 10−15 (0.17, 0.35, 0.12) 0.17 16/13/28 Free?
−1.50000− 1.16963i 3↔ 12 1.98× 10−14 (0.17, 0.36, 0.09) 0.17 16/13/28 Free?

7 (3, 2) −1.50000 + 1.21740i 4↔ 14 5.88× 10−15 (0.16, 0.43, 0.12) 0.23 16/13/28 Free?
−1.50000− 1.21740i 6↔ 10 5.77× 10−15 (0.36, 0.46, 0.17) 0.37 12/8/19 Free?

(2, 3) −1.50000 + 1.21740i 3↔ 13 3.66× 10−15 (0.04, 0.20, 0.39) 0.20 12/8/19 Free?
−1.50000− 1.21740i 3↔ 13 1.38× 10−14 (0.20, 0.38, 0.10) 0.19 16/13/28 Free?

Tab. C.16: Data from Table 5.5 of [62] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
8 (3, 2) 0.47582 + 0.16460i 5↔ 11 1.11× 10−11 (0.32, 0.17, 0.42) 0.31 30/28/56 0.220140673239553

0.47582− 0.16460i 4↔ 11 2.99× 10−12 (0.33, 0.27, 0.36) 0.31 30/28/56 0.220140544640750
−3.47582 + 0.16460i 3↔ 11 4.74× 10−13 (−0.26, 0.25, 0.19) 0.17 30/28/56 0.220007282470588

−3.47582− 0.16460i 3↔ 11 1.79× 10−13 (−0.28, 0.22, 0.23) 0.18 30/28/56 0.220219588908876

(2, 3) 0.47582 + 0.16460i 3↔ 12 1.07× 10−11 (0.08, 0.27, 0.21) 0.12 30/28/56 0.219957247078344

0.47582− 0.16460i
4↔ 12 1.72× 10−11 ( 0.08, 0.25, 0.16) 0.09 30/28/56

0.220219589056842
3 8.78× 10−12 0.220219588953623

−3.47582 + 0.16460i
5↔ 12 1.12× 10−12 ( 0.13, 0.20, 0.36) 0.19 30/28/56

0.220140673225395
3 1.13× 10−12 0.220140673225399

−3.47582− 0.16460i
3↔ 4 1.03× 10−12 ( 0.15, 0.16, 0.33) 0.15 30/28/56

0.220007282472575
5↔ 11 1.04× 10−12 0.220007282472604

9 (3, 2) 0.23676 + 0.31257i 5↔ 12 8.68× 10−13 (0.16, 0.42, 0.05) 0.21 26/24/48 0.154287388430275
0.23676− 0.31257i 4↔ 12 3.78× 10−12 (0.20, 0.28, 0.28) 0.19 26/24/48 0.154364842410065
−3.23676 + 0.31257i 3↔ 11 2.62× 10−14

(−0.39, 0.23, 0.12) 0.22 26/24/48
0.154047973303354

3 7.31× 10−14 0.154047973303744

−3.23676− 0.31257i 5↔ 11 2.40× 10−14 (−0.39, 0.15, 0.22) 0.22 26/24/48 0.154318773285096

(2, 3) 0.23676 + 0.31257i 4↔ 12 7.57× 10−13 (−0.06, 0.24, 0.21) 0.11 26/24/48 0.153776007581217
0.23676− 0.31257i 3↔ 12 1.17× 10−12

(−0.04, 0.22, 0.10) 0.06 26/24/48
0.154375705696126

3 1.10× 10−12 0.154375705689934
−3.23676 + 0.31257i 4↔ 12 2.72× 10−13 (0.03, 0.20, 0.45) 0.25 26/24/48 0.154287388416193
−3.23676− 0.31257i 3↔ 12 7.77× 10−14 (0.09, 0.09, 0.41) 0.19 26/24/48 0.153513110895098

10 (3, 2) −0.07087 + 0.66435i 4↔ 13 7.84× 10−14 (0.07, 0.42,−0.07) 0.19 24/32/54 0.595189968898689

−0.07087− 0.66435i 4↔ 12 3.46× 10−14 (0.07, 0.42, 0.06) 0.19 24/32/54 0.595189968897844

−2.92913 + 0.66435i 5↔ 12 1.00× 10−12 (0.47, 0.14, 0.26) 0.30 22/20/40 0.297303264846344

−2.92913− 0.66435i 5↔ 13 5.37× 10−14 (0.39, 0.03, 0.41) 0.32 22/24/44 0.594206188118980

(2, 3) −0.07087 + 0.66435i 4↔ 13 1.01× 10−13 (−0.13, 0.22, 0.30) 0.15 24/32/54 0.595419291729511

−0.07087− 0.66435i 4↔ 13 8.83× 10−14 (−0.03, 0.39, 0.24) 0.21 24/32/54 0.595419291729334

−2.92913 + 0.66435i 5↔ 13 2.32× 10−14 (−0.02, 0.09, 0.46) 0.22 22/24/44 0.594663573037919

−2.92913− 0.66435i 4↔ 13 8.88× 10−15 (0.36, 0.24, 0.27) 0.26 22/24/44 0.594566134203106

11 (3, 2)

−1.08698 + 0.98787i

7↔ 12 1.20× 10−12

(0.05, 0.26, 0.15) 0.09
28/30/56 0.264160360839894

3 1.31× 10−12
24/23/45

0.264135365269606
4 1.20× 10−12 0.264043393927288

5, 6 failure.
−1.08698− 0.98787i 4↔ 12 1.21× 10−12 (0.16, 0.22, 0.21) 0.12 28/30/56 0.264618617416783
−1.91302 + 0.98787i 5↔ 13 4.11× 10−14 (0.11, 0.36, 0.13) 0.16 22/24/44 0.529237234824297
−1.91302− 0.98787i 4↔ 12 1.50× 10−14 (0.47, 0.21, 0.34) 0.38 22/26/46 0.529237234824279

(2, 3)
−1.08698 + 0.98787i

7↔ 11
1.27× 10−11 (−0.02, 0.21,−0.14) 0.07

28/30/56 0.264308750169820
4 24/23/45 0.264283754601990

5, 6 failure.

−1.08698− 0.98787i

3↔ 13
1.03× 10−12 (−0.02, 0.21, 0.14) 0.07

28/30/56 0.264308750156561
3 24/23/45 0.264283754576702

4, 5, 6 failure.
13 9.25× 10−13 (−0.02, 0.21, 0.14) 0.07 28/30/56 0.264308750156759

−1.91302 + 0.98787i 4↔ 13 7.44× 10−15 (0.12, 0.10, 0.34) 0.14 20/20/38 0.529035831989798

−1.91302− 0.98787i 4↔ 14 3.42× 10−14 (0.14, 0.32, 0.06) 0.13 22/24/44 0.529237234824353

Tab. C.17: Data from Table 5.5 of [62] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (3, 2) 0.02764 + 0.73661i 6↔ 9 9.68× 10−11 (0.32, 0.55,−0.03) 0.41 40/58/96 2.606687956763813

0.02764− 0.73661i 5↔ 12 1.40× 10−10 (0.36, 0.43, 0.33) 0.43 40/58/96 2.614768903946696
−3.02764 + 0.73661i 8↔ 9 3.25× 10−10 (0.48, 0.37, 0.28) 0.45 56/80/134 2.626708787863783
−3.02764− 0.73661i 7↔ 11 1.02× 10−09 (−0.44, 0.29, 0.37) 0.41 56/80/134 2.620881815776255

(2, 3) 0.02764 + 0.73661i 6↔ 12 6.72× 10−10 (0.14, 0.33, 0.40) 0.29 40/58/96 2.615056055121278

0.02764− 0.73661i
5↔ 13 5.17× 10−10

(0.25, 0.41, 0.27) 0.30 40/58/96
2.618423360997099

13 5.18× 10−10 2.618423360997209
−3.02764 + 0.73661i 6↔ 10 1.56× 10−09 (0.03, 0.11, 0.54) 0.30 56/80/134 2.603440024219396
−3.02764− 0.73661i 6↔ 10 2.13× 10−09 (0.45, 0.26, 0.31) 0.37 56/80/134 2.624609572288991

2 (3, 2) −0.33909 + 0.92881i 6↔ 13 3.24× 10−11 (0.28, 0.53, 0.01) 0.35 40/58/96 1.786629473177491

−0.33909− 0.92881i 5↔ 12 1.20× 10−11 (0.34, 0.46, 0.25) 0.39 40/58/96 1.786256005477690

−2.66091 + 0.92881i 6↔ 12 4.60× 10−11 (0.48, 0.40, 0.23) 0.45 40/58/96 1.781620783377264
−2.66091− 0.92881i 6↔ 12 1.09× 10−10 (0.46,−0.04, 0.48) 0.44 40/58/96 1.791590990342503

(2, 3) −0.33909 + 0.92881i 7↔ 12 4.73× 10−11 (0.07, 0.30, 0.43) 0.28 40/58/96 1.786256005501931
−0.33909− 0.92881i 4↔ 13 3.95× 10−11 (0.24, 0.41, 0.23) 0.27 40/58/96 1.786629473184663

−2.66091 + 0.92881i
5↔ 13 5.73× 10−11

(−0.14, 0.11, 0.58) 0.37 40/58/96
1.792459082163101

5 8.65× 10−11 1.792459082164200
−2.66091− 0.92881i 5↔ 12 7.18× 10−11 (0.42, 0.11, 0.38) 0.34 46/70/114 1.787425136044603

3 (3, 2) −1.40631 + 1.19616i 5↔ 13 5.55× 10−12 (0.61, 0.48, 0.17) 0.64 34/44/76 1.473170600500694
−1.40631− 1.19616i 5↔ 13 9.48× 10−12 (0.61, 0.47,−0.19) 0.63 34/44/76 1.473194395414834
−1.59369 + 1.19616i 5↔ 10 3.68× 10−12 (0.15, 0.42, 0.12) 0.22 38/50/86 1.476011079834294
−1.59369− 1.19616i 5↔ 14 4.41× 10−12 (0.38, 0.44, 0.19) 0.37 42/54/94 1.474680608065723

(2, 3) −1.40631 + 1.19616i 4↔ 13 9.58× 10−13 (0.42, 0.12, 0.46) 0.41 34/44/76 1.473780096939082

−1.40631− 1.19616i 5↔ 10 3.51× 10−12 (0.55, 0.28, 0.37) 0.52 34/44/76 1.473780096936488

−1.59369 + 1.19616i 5↔ 14 6.98× 10−12 (0.07, 0.19, 0.39) 0.19 42/54/94 1.474327445118291
−1.59369− 1.19616i 5↔ 13 9.81× 10−12 (0.19, 0.37, 0.09) 0.18 38/50/86 1.474327445110911

4 (3, 2) −0.56154 + 1.01758i 6↔ 13 3.03× 10−11 (0.18, 0.48, 0.05) 0.26 38/50/86 1.886983797195308

−0.56154− 1.01758i 5↔ 13 4.11× 10−11 (0.34, 0.43, 0.28) 0.38 40/54/92 1.912190055689327
−2.43846 + 1.01758i 7↔ 13 8.73× 10−11 (0.47, 0.41, 0.21) 0.44 58/94/150 1.918222504276216
−2.43846− 1.01758i 6↔ 13 1.52× 10−10 (0.44,−0.06, 0.48) 0.43 58/94/150 1.919398019822496

(2, 3) −0.56154 + 1.01758i 4↔ 13 6.15× 10−11 (0.10, 0.26, 0.38) 0.22 40/54/92 1.916994266198379
−0.56154− 1.01758i 6↔ 13 3.17× 10−11 (0.15, 0.38, 0.18) 0.20 38/50/86 1.906273264858948
−2.43846 + 1.01758i 6↔ 12 6.13× 10−11 (0.45, 0.28,−0.30) 0.37 58/94/150 1.910046253239740
−2.43846− 1.01758i 6↔ 11 4.99× 10−11 (0.45, 0.30, 0.28) 0.38 58/94/150 1.911148458736251

5 (3, 2) −0.42847 + 1.00664i 5↔ 12 1.55× 10−09 (0.25, 0.52, 0.03) 0.33 46/60/104 2.457689880923794
−0.42847− 1.00664i 5↔ 12 8.84× 10−10 (0.38, 0.44, 0.30) 0.43 44/56/98 2.446921256901292
−2.57153 + 1.00664i 6↔ 12 2.18× 10−09 (0.49, 0.44, 0.22) 0.48 52/86/136 2.446523234407060
−2.57153− 1.00664i 6↔ 12 9.06× 10−10 (0.46,−0.07, 0.50) 0.46 52/86/136 2.451739445687724

(2, 3) −0.42847 + 1.00664i
4↔ 12 1.17× 10−09

(0.13, 0.28, 0.40) 0.26 44/56/98
2.440184222920381

4 1.16× 10−09 2.440184222921835

−0.42847− 1.00664i 5↔ 12 3.93× 10−10 (0.22, 0.40, 0.21) 0.26 46/60/104 2.457416519588215

−2.57153 + 1.00664i 6↔ 11 1.41× 10−09 (−0.24, 0.07, 0.60) 0.42 52/86/136 2.447761959340231
−2.57153− 1.00664i 6↔ 12 1.56× 10−09 (0.48, 0.32, 0.29) 0.42 52/86/136 2.455684611354928

6 (3, 2) −0.87763 + 1.11400i 8↔ 11 3.81× 10−08 (0.58, 0.48, 0.14) 0.59 62/104/164 3.403866068741425
−0.87763− 1.11400i 3↔ 15 failure.
−2.12237 + 1.11400i 3↔ 15 failure.
−2.12237− 1.11400i 8↔ 12 6.35× 10−08 (0.72, 0.27, 0.40) 0.75 72/102/172 3.440750479073212

(2, 3) −0.87763 + 1.11400i 3↔ 15 failure.
−0.87763− 1.11400i 7↔ 11 6.43× 10−08 (0.51, 0.28, 0.36) 0.46 62/104/164 3.433832791680822
−2.12237 + 1.11400i 3↔ 15 failure.
−2.12237− 1.11400i 7↔ 12 3.34× 10−08 (0.54,−0.13, 0.63) 0.70 74/104/176 3.438382428925763

7 (3, 2) −1.50000 + 1.30625i 4↔ 13 5.45× 10−15 (0.21, 0.46, 0.12) 0.27 16/13/28 Free?
−1.50000− 1.30625i 4↔ 13 1.09× 10−14 (0.21, 0.46,−0.13) 0.27 16/13/28 Free?

(2, 3) −1.50000 + 1.30625i 3↔ 14 4.00× 10−15 (0.09, 0.23, 0.42) 0.24 12/8/19 Free?
−1.50000− 1.30625i 3↔ 14 1.87× 10−14 (0.26, 0.40, 0.11) 0.24 16/13/28 Free?

8 (3, 2) 0.16169± 0.63671i 3↔ 15 failure.
−3.16169± 0.63671i 3↔ 15 failure.

(2, 3) 0.16169± 0.63671i 3↔ 15 failure.
−3.16169± 0.63671i 3↔ 15 failure.

Tab. C.18: Data from Table 5.6 of [62] Part I.



C.4. Notes 145

n (p, q) γ εV deviation B ||B||2E S/V/E covolume

9 (3, 2) −0.02256 + 0.77896i 6↔ 12 8.18× 10−10 (0.24, 0.52,−0.01) 0.33 48/70/116 2.904334127793920

−0.02256− 0.77896i 6↔ 12 2.49× 10−09 (0.35, 0.42, 0.34) 0.42 46/68/112 2.879763283402163
−2.97744± 0.77896i 3↔ 15 failure.

(2, 3) −0.02256 + 0.77896i 5↔ 11 6.58× 10−09 (0.14, 0.31, 0.38) 0.26 46/68/112 2.869851292152975
−0.02256− 0.77896i 6↔ 12 6.17× 10−09 (0.18, 0.40, 0.24) 0.24 48/70/116 2.885077608625386
−2.97744 + 0.77896i 7↔ 10 8.22× 10−10 (0.01, 0.12, 0.57) 0.34 52/70/120 2.903307418976409
−2.97744− 0.77896i 6↔ 12 1.28× 10−08 (0.47, 0.25, 0.33) 0.40 52/70/120 2.885498461760693

10 (3, 2) −0.51152 + 1.00187i 6↔ 13 3.08× 10−12 (0.19, 0.48, 0.04) 0.27 32/36/66 1.539578485870570

−0.51152− 1.00187i 4↔ 13 5.56× 10−13 (0.33, 0.43, 0.28) 0.37 32/36/66 1.539039589792024

−2.48848 + 1.00187i 4↔ 9 2.29× 10−11 (0.33, 0.17, 0.28) 0.21 38/38/74 0.770435534681183

−2.48848− 1.00187i 7↔ 10 1.33× 10−10 (0.33, 0.14, 0.29) 0.21 38/38/74 0.772699345216488
(2, 3) −0.51152 + 1.00187i 3↔ 13 3.55× 10−12 (0.09, 0.26, 0.38) 0.22 32/36/66 1.538156498680045

−0.51152− 1.00187i 5↔ 13 3.82× 10−12 (0.15, 0.38, 0.18) 0.20 32/36/66 1.541135159292971
−2.48848 + 1.00187i 5↔ 9 1.88× 10−08 (0.21, 0.14,−0.25) 0.12 38/38/74 0.771200674029689
−2.48848− 1.00187i 5↔ 9 3.44× 10−09 (0.21, 0.14, 0.25) 0.12 38/38/74 0.771200667171090

11 (3, 2) −1.50000 + 1.27647i 4↔ 14 1.64× 10−14 (0.19, 0.45, 0.12) 0.26 16/13/28 Free?
−1.50000− 1.27647i 4↔ 13 2.20× 10−14 (0.19, 0.45,−0.13) 0.26 16/13/28 Free?

(2, 3) −1.50000 + 1.27647i 3↔ 13 3.22× 10−15 (0.07, 0.22, 0.41) 0.22 12/8/19 Free?
−1.50000− 1.27647i 3↔ 14 7.43× 10−15 (0.24, 0.39, 0.11) 0.22 16/13/28 Free?

Tab. C.19: Data from Table 5.6 of [62] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (3, 2) 0.27341± 0.56382i 3↔ 14 failure.

(3, 2) −3.27341± 0.56382i 3↔ 15 failure.
(2, 3) 0.27341± 0.56382i 3↔ 15 failure.
(2, 3) −3.27341± 0.56382i 3↔ 15 failure.

2 (3, 2) −1.06356± 1.16438i 3↔ 15 failure.
(3, 2) −1.93644± 1.16438i 3↔ 15 failure.
(2, 3) −1.06356± 1.16438i 3↔ 15 failure.
(2, 3) −1.93644± 1.16438i 3↔ 15 failure.

3 (3, 2) −0.82239± 1.11253i 3↔ 15 failure.
(3, 2) −2.17761± 1.11253i 3↔ 15 failure.
(2, 3) −0.82239± 1.11253i 3↔ 15 failure.
(2, 3) −2.17761± 1.11253i 3↔ 15 failure.

4 (3, 2) 0.68152± 0.14729i 3↔ 15 failure.
(3, 2) −3.68152± 0.14729i 3↔ 15 failure.
(2, 3) 0.68152± 0.14729i 3↔ 15 failure.
(2, 3) −3.68152± 0.14729i 3↔ 15 failure.

5 (3, 2) 0.57186± 0.25235i 3↔ 15 failure.
(3, 2) −3.57186± 0.25235i 3↔ 15 failure.
(2, 3) 0.57186± 0.25235i 3↔ 15 failure.
(2, 3) −3.57186± 0.25235i 3↔ 15 failure.

6 (3, 2) 0.61068 + 0.18781i 5↔ 11 4.00× 10−11 (0.33, 0.53,−0.18) 0.42 42/64/104 1.968366319874948
(3, 2) 0.61068− 0.18781i 5↔ 11 6.12× 10−11 (0.31, 0.38, 0.42) 0.41 42/64/104 1.968161596960865
(3, 2) −3.61068 + 0.18781i 5↔ 9 4.92× 10−11 (−0.32, 0.17, 0.51) 0.38 42/64/104 1.988929607692590

(3, 2) −3.61068− 0.18781i 5↔ 9 1.95× 10−11 (−0.37, 0.46, 0.29) 0.44 42/64/104 1.959655953058214

(2, 3)
0.61068 + 0.18781i

4↔ 11 7.05× 10−11 (0.15, 0.37, 0.35) 0.28 42/64/104 1.964645380021100
(2, 3) 6 failure.
(2, 3) 0.61068− 0.18781i 4↔ 10 1.87× 10−10 (0.17, 0.44, 0.39) 0.38 42/64/104 1.964079146075944
(2, 3) −3.61068 + 0.18781i 6↔ 11 3.55× 10−11 (0.33, 0.14, 0.45) 0.33 42/64/104 1.967925349483594
(2, 3) −3.61068− 0.18781i 5↔ 11 1.04× 10−09 (0.48, 0.30, 0.39) 0.47 42/64/104 1.969474111261852

7 (3, 2) 0.53101± 0.27349i 3↔ 15 failure.
(3, 2) −3.53101± 0.27349i 3↔ 15 failure.
(2, 3) 0.53101± 0.27349i 3↔ 15 failure.
(2, 3) −3.53101± 0.27349i 3↔ 15 failure.

8 (3, 2) −0.17611± 0.89163i 3↔ 15 failure.
(3, 2) −2.82389± 0.89163i 3↔ 15 failure.
(2, 3) −0.17611± 0.89163i 3↔ 15 failure.
(2, 3) −2.82389± 0.89163i 3↔ 15 failure.

9 (3, 2) −1.23137± 1.18118i 3↔ 15 failure.
(3, 2) −1.76863± 1.18118i 3↔ 15 failure.
(2, 3) −1.23137± 1.18118i 3↔ 15 failure.
(2, 3) −1.76863± 1.18118i 3↔ 15 failure.

10 (3, 2) −0.94344± 1.14115i 3↔ 15 failure.
(3, 2) −2.05656± 1.14115i 3↔ 15 failure.
(2, 3) −0.94344± 1.14115i 3↔ 15 failure.
(2, 3) −2.05656± 1.14115i 3↔ 15 failure.

11 (3, 2) 0.59727± 0.22323i 3↔ 15 failure.
(3, 2) −3.59727± 0.22323i 3↔ 15 failure.
(2, 3) 0.59727± 0.22323i 3↔ 15 failure.
(2, 3) −3.59727± 0.22323i 3↔ 15 failure.

12 (3, 2) 0.47623± 0.33589i 3↔ 15 failure.
(3, 2) −3.47623± 0.33589i 3↔ 15 failure.
(2, 3) 0.47623± 0.33589i 3↔ 15 failure.
(2, 3) −3.47623± 0.33589i 3↔ 15 failure.

13 (3, 2) 0.29516± 0.53913i 3↔ 15 failure.
(3, 2) −3.29516± 0.53913i 3↔ 15 failure.
(2, 3) 0.29516± 0.53913i 3↔ 15 failure.
(2, 3) −3.29516± 0.53913i 3↔ 15 failure.

14 (3, 2) 0.32580± 0.51138i 3↔ 15 failure.
(3, 2) −3.32580± 0.51138i 3↔ 15 failure.
(2, 3) 0.32580± 0.51138i 3↔ 15 failure.
(2, 3) −3.32580± 0.51138i 3↔ 15 failure.

Tab. C.20: Data from Table 5.7 of [62].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (4, 2) −0.50000 + 0.86603i 4↔ 13 1.29× 10−14 (0.07, 0.42,−0.03) 0.18 20/22/40 0.253735401602386

−0.50000− 0.86603i 4↔ 13 9.44× 10−15 (0.08, 0.42, 0.05) 0.18 20/22/40 0.253598511561355
−1.50000 + 0.86603i 3↔ 13 4.55× 10−15 (0.18, 0.41, 0.04) 0.20 18/22/38 0.253041353515199
−1.50000− 0.86603i 4↔ 13 5.55× 10−15 (0.38, 0.31, 0.25) 0.31 18/22/38 0.252720823519394

(2, 4) −0.50000 + 0.86603i 5↔ 13 7.66× 10−15 (−0.08, 0.28, 0.07) 0.09 20/22/40 0.253542824010740
−0.50000− 0.86603i 3↔ 13 2.00× 10−14 (−0.07, 0.30, 0.05) 0.10 20/22/40 0.253338508765728
−1.50000 + 0.86603i 4↔ 14 6.22× 10−15 (0.08, 0.30,−0.00) 0.10 18/22/38 0.253712610730981

−1.50000− 0.86603i
3↔ 14 3.33× 10−15

(0.02, 0.29, 0.07) 0.09 18/22/38
0.253384811296644

3 4.66× 10−15 0.253384811296590

2 (4, 2) 0.23279 + 0.79255i 4↔ 11 5.50× 10−14 (0.13, 0.31, 0.38) 0.26 22/28/48 0.593639175240615
0.23279− 0.79255i 5↔ 12 1.88× 10−14 (0.17, 0.50, 0.13) 0.29 22/26/46 0.593261429781721

−2.23279 + 0.79255i 5↔ 13 1.10× 10−14 (−0.26, 0.28, 0.49) 0.39 22/28/48 0.595004149184967

−2.23279− 0.79255i 5↔ 14 2.18× 10−14 (−0.27, 0.47, 0.31) 0.39 22/28/48 0.594063100273875
(2, 4) 0.23279 + 0.79255i 3↔ 14 4.24× 10−14 (0.02, 0.34, 0.12) 0.13 22/28/48 0.592869862079440

0.23279− 0.79255i 4↔ 13 4.69× 10−14 (0.03, 0.36, 0.11) 0.14 22/26/46 0.593261429782327
−2.23279 + 0.79255i 4↔ 14 1.75× 10−14 (0.33, 0.34,−0.22) 0.27 22/28/48 0.593689839020190
−2.23279− 0.79255i 4↔ 14 1.71× 10−14 (0.33, 0.35, 0.21) 0.28 22/28/48 0.593689839020260

3 (4, 2) −1.34116 + 1.16154i
3↔ 12 4.41× 10−14

(0.25, 0.51, 0.02) 0.33 24/26/48
0.593035916591825

3 7.31× 10−14 0.593035916591793
−1.34116− 1.16154i 4↔ 13 3.13× 10−14 (0.25, 0.51,−0.03) 0.33 24/26/48 0.593035916591978

−0.65884 + 1.16154i 4↔ 13 6.66× 10−15 (0.36, 0.56,−0.09) 0.46 22/28/48 0.593932061794999

−0.65884− 1.16154i 3↔ 14 1.13× 10−14 (0.42, 0.49, 0.24) 0.47 22/28/48 0.594047553937928
(2, 4) −1.34116 + 1.16154i

3↔ 14 6.28× 10−14
(0.19, 0.37, 0.04) 0.18 24/26/48

0.593687497734524
3 6.08× 10−14 0.593687497734493

−1.34116− 1.16154i 4↔ 14 5.42× 10−14 (0.13, 0.37, 0.08) 0.16 24/26/48 0.592911657244731
−0.65884 + 1.16154i 4↔ 14 1.12× 10−14 (0.19, 0.38,−0.17) 0.21 22/28/48 0.593688668377331
−0.65884− 1.16154i 3↔ 14 1.44× 10−14 (0.17, 0.38, 0.17) 0.20 22/28/48 0.593687497734380

4 (4, 2) 0.66236 + 0.56228i 5↔ 13 1.10× 10−13 (0.18, 0.40, 0.37) 0.32 22/30/50 0.825295376298228
0.66236− 0.56228i 4↔ 13 3.89× 10−14 (0.20, 0.52, 0.20) 0.35 22/30/50 0.824578962449851

−2.66236 + 0.56228i 4↔ 12 3.20× 10−14 (−0.23, 0.47, 0.26) 0.34 24/28/50 0.824071575741213

−2.66236− 0.56228i 4↔ 14 7.39× 10−14 (−0.26, 0.59, 0.15) 0.43 24/30/52 0.824403065414145
(2, 4) 0.66236 + 0.56228i 4↔ 12 1.07× 10−13 (0.07, 0.37, 0.14) 0.16 22/30/50 0.825510669974842

0.66236− 0.56228i 4↔ 13 4.17× 10−14 (0.07, 0.38, 0.13) 0.17 22/30/50 0.824521209676969
−2.66236 + 0.56228i 4↔ 13 8.84× 10−14 (−0.20, 0.06, 0.43) 0.23 24/30/52 0.823496863377182
−2.66236− 0.56228i 4↔ 14 8.55× 10−14 (0.42, 0.58, 0.35) 0.64 24/30/52 0.823979602632310

5 (4, 2) 0.50000 + 0.86603i 4↔ 13 5.80× 10−13 (0.61, 0.47, 0.46) 0.80 26/34/58 1.523565545131137

0.50000− 0.86603i 4↔ 11 2.78× 10−13 (0.61, 0.39, 0.51) 0.78 26/34/58 1.523980885312456
−2.50000 + 0.86603i 5↔ 11 4.76× 10−13 (−0.39, 0.21, 0.64) 0.61 28/34/60 1.523293304604914

−2.50000− 0.86603i 4↔ 12 4.40× 10−14 (−0.41, 0.63, 0.27) 0.64 28/34/60 1.524595659895754

(2, 4) 0.50000 + 0.86603i 4↔ 13 8.73× 10−13 (0.18, 0.31, 0.42) 0.31 26/34/58 1.522827749800601
0.50000− 0.86603i 4↔ 12 1.13× 10−12 (0.16, 0.39, 0.26) 0.25 34/46/78 1.523846644121271
−2.50000 + 0.86603i 5↔ 13 8.32× 10−13 (−0.25, 0.06, 0.58) 0.40 28/34/60 1.522412409614590

−2.50000− 0.86603i 4↔ 13 9.14× 10−13 (0.55, 0.52, 0.41) 0.75 28/34/60 1.524178139252510

6 (4, 2) −0.21508 + 1.30714i 6↔ 11 9.94× 10−13 (0.51, 0.61,−0.16) 0.66 44/58/100 2.122090588879277

−0.21508− 1.30714i 6↔ 10 7.00× 10−12 (0.52, 0.47, 0.37) 0.64 38/48/84 2.119372694824350
−1.78492 + 1.30714i 6↔ 11 1.52× 10−12 (−0.36, 0.37, 0.51) 0.53 42/62/102 2.125201114257589
−1.78492− 1.30714i 5↔ 12 6.96× 10−12 (−0.35, 0.49, 0.42) 0.54 42/62/102 2.124077667438180

(2, 4) −0.21508 + 1.30714i 5↔ 13 1.10× 10−11 (0.34, 0.43, 0.18) 0.33 38/48/84 2.119305381101686
−0.21508− 1.30714i 5↔ 14 6.60× 10−12 (0.31, 0.43, 0.23) 0.33 44/58/100 2.124295589694652
−1.78492 + 1.30714i 6↔ 12 2.87× 10−11 (0.40, 0.42,−0.17) 0.37 42/62/102 2.120955568937968
−1.78492− 1.30714i 5↔ 12 8.96× 10−12 (0.47, 0.18, 0.42) 0.43 38/52/88 2.122102670376362

Tab. C.21: Data from Table 5.8 of [62] Part I.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

7 (4, 2) 1.06115 + 0.38830i 4↔ 13 1.74× 10−13 (0.57, 0.52, 0.40) 0.75 26/38/62 1.545465473698826

1.06115− 0.38830i
5↔ 12 1.64× 10−13

(0.39, 0.56, 0.28) 0.54 30/46/74
1.542632159257580

12 4.87× 10−12 1.542632159259560
−3.06115 + 0.38830i 4↔ 10 6.96× 10−13 (−0.24, 0.62, 0.23) 0.49 28/30/56 1.542891480916546
−3.06115− 0.38830i 5↔ 11 5.14× 10−13 (−0.25, 0.69, 0.04) 0.54 28/32/58 1.542645122925050

(2, 4) 1.06115 + 0.38830i 3↔ 13 5.15× 10−13 (0.18, 0.35, 0.39) 0.31 26/38/62 1.542645122928808
1.06115− 0.38830i 3↔ 13 6.87× 10−13 (0.06, 0.37, 0.30) 0.23 30/46/74 1.542854953734646
−3.06115 + 0.38830i 5↔ 13 9.10× 10−13 (0.24, 0.30, 0.32) 0.25 38/48/84 1.542004392351739
−3.06115− 0.38830i 5↔ 12 4.41× 10−12 (0.36, 0.34, 0.27) 0.32 38/48/84 1.542145896625610

8 (4, 2) 0.03640 + 1.21238i 5↔ 11 1.85× 10−13 (0.51, 0.60,−0.18) 0.64 30/36/64 1.540788174525126

0.03640− 1.21238i 5↔ 10 3.63× 10−13 (0.66, 0.48, 0.53) 0.94 30/38/66 1.542645122913982

−2.03640 + 1.21238i 4↔ 12 1.90× 10−12 (0.61, 0.65, 0.03) 0.80 26/38/62 1.542302706507817
−2.03640− 1.21238i 5↔ 13 4.91× 10−13 (−0.42, 0.55, 0.42) 0.65 26/38/62 1.545386182393748

(2, 4) 0.03640 + 1.21238i 4↔ 12 5.57× 10−13 (0.24, 0.35, 0.38) 0.33 30/38/66 1.542645122929170

0.03640− 1.21238i
4↔ 12 1.02× 10−11

(0.28, 0.42, 0.24) 0.32 30/36/64
1.539457592499659

13 7.33× 10−13 1.539457592494465
−2.03640 + 1.21238i 6↔ 13 2.11× 10−13 (−0.30, 0.12, 0.55) 0.41 26/38/62 1.542645122925198
−2.03640− 1.21238i 4↔ 13 8.96× 10−13 (0.52, 0.42, 0.25) 0.51 26/38/62 1.545720979684452

9 (4, 2)
0.65139 + 0.75874i

4↔ 12 8.65× 10−14
(0.64, 0.38, 0.53) 0.83 30/40/68

1.624021910597929

4 9.13× 10−14 1.624021910598127
5, 6 failure.

0.65139− 0.75874i
5↔ 11 4.40× 10−13

(0.60, 0.60, 0.25) 0.78 30/40/68
1.623182497757532

5 4.40× 10−13 1.623182497757539
6, 7, 8 failure.

−2.65139 + 0.75874i 4↔ 13 4.95× 10−13 (−0.33, 0.15, 0.66) 0.57 30/38/66 1.626212883740653
−2.65139− 0.75874i 5↔ 12 1.33× 10−13 (−0.35, 0.66, 0.21) 0.61 30/38/66 1.625477965973462

(2, 4) 0.65139 + 0.75874i 4↔ 13 5.39× 10−13 (0.15, 0.39, 0.53) 0.46 30/40/68 1.622813060220924
0.65139− 0.75874i 4↔ 12 2.16× 10−12 (0.31, 0.42, 0.32) 0.37 30/40/68 1.623508874386314
−2.65139 + 0.75874i 5↔ 13 9.57× 10−13 (−0.22, 0.05, 0.54) 0.34 30/38/66 1.625086429747067

−2.65139− 0.75874i 4↔ 13 1.65× 10−12 (0.55, 0.59, 0.41) 0.82 30/38/66 1.626631271664573
4 1.07× 10−12 1.626631271663298

10 (4, 2) 1.36778 + 0.23154i 5↔ 8 1.92× 10−10 (0.59, 0.55, 0.39) 0.80 44/72/114 2.896525584118602

1.36778− 0.23154i 6↔ 9 2.95× 10−11 (0.69, 0.58, 0.36) 0.94 38/60/96 2.892098842548785
−3.36778 + 0.23154i 6↔ 9 3.34× 10−10 (−0.24, 0.74, 0.16) 0.63 46/60/104 2.892265006742646
−3.36778− 0.23154i 5↔ 8 3.76× 10−10 (−0.21, 0.73, 0.15) 0.60 44/58/100 2.895735473733071

(2, 4) 1.36778 + 0.23154i 5↔ 12 1.99× 10−11 (0.19, 0.37, 0.39) 0.33 44/72/114 2.900382924576496

1.36778− 0.23154i 3↔ 12 4.40× 10−11 (0.36, 0.42, 0.40) 0.47 38/60/96 2.889967487870522

−3.36778 + 0.23154i
4↔ 12 1.72× 10−10

(0.36, 0.35, 0.30) 0.34 54/82/134
2.896693414681468

4 1.72× 10−10 2.896693414681705
5 failure.

−3.36778− 0.23154i 5↔ 12 2.92× 10−10 (0.41, 0.37, 0.27) 0.38 54/82/134 2.895921415505758

11 (4, 2) −0.57943 + 1.45743i
6↔ 12 2.52× 10−11

(0.58, 0.64,−0.14) 0.76 48/62/108
2.889771482503296

12 3.19× 10−11 2.889771482506005

−0.57943− 1.45743i 6↔ 12 6.07× 10−11 (0.71, 0.57, 0.33) 0.94 46/58/102 2.883055816118886
−1.42057 + 1.45743i 5↔ 12 5.87× 10−10 (0.42, 0.61,−0.02) 0.55 40/64/102 2.888631582046883
−1.42057− 1.45743i 5↔ 9 2.11× 10−10 (0.42, 0.61,−0.00) 0.55 40/64/102 2.888357706163286

(2, 4) −0.57943 + 1.45743i 6↔ 11 8.88× 10−11 (0.09, 0.30, 0.56) 0.41 46/58/102 2.891037328603279
−0.57943− 1.45743i 5↔ 11 4.67× 10−10 (0.48, 0.46, 0.26) 0.50 46/58/102 2.887948649383576
−1.42057 + 1.45743i 4↔ 12 9.45× 10−11 (0.34, 0.43,−0.14) 0.32 40/64/102 2.891340099023110
−1.42057− 1.45743i 5↔ 12 2.91× 10−11 (0.34, 0.44, 0.13) 0.32 40/64/102 2.891141431027691

Tab. C.22: Data from Table 5.8 of [62] Part II.
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (4, 2) −0.22816 + 1.11514i 4↔ 12 2.04× 10−14 (0.29, 0.53,−0.10) 0.38 24/32/54 0.793730924087971

−0.22816− 1.11514i 4↔ 12 2.44× 10−14 (0.35, 0.44, 0.31) 0.41 22/26/46 0.793775329716258
−1.77184 + 1.11514i 4↔ 12 1.26× 10−13 (0.39, 0.56, 0.03) 0.46 22/30/50 0.794323319649266
−1.77184− 1.11514i 4↔ 11 1.08× 10−13 (−0.34, 0.45, 0.34) 0.44 22/30/50 0.794323319649402

(2, 4) −0.22816 + 1.11514i 3↔ 14 1.86× 10−14 (0.11, 0.33, 0.23) 0.18 22/26/46 0.793839731308609

−0.22816− 1.11514i 4↔ 14 4.95× 10−14 (0.08, 0.37, 0.17) 0.17 24/32/54 0.794272642251702
−1.77184 + 1.11514i 4↔ 14 7.48× 10−14 (0.30, 0.38,−0.15) 0.26 22/30/50 0.794323319650373
−1.77184− 1.11514i 4↔ 13 5.28× 10−14 (0.30, 0.39, 0.14) 0.26 22/30/50 0.794323319650378

2 (4, 2) 0.20711 + 0.97832i 4↔ 12 3.80× 10−14 (0.46, 0.57,−0.20) 0.58 24/30/52 1.028680367759286

0.20711− 0.97832i 4↔ 13 1.80× 10−14 (0.51, 0.53, 0.28) 0.62 24/30/52 1.028760806843382

−2.20711 + 0.97832i 4↔ 12 8.73× 10−14 (−0.30, 0.32, 0.54) 0.49 24/30/52 1.028760806843202
−2.20711− 0.97832i 4↔ 12 1.64× 10−13 (−0.32, 0.52, 0.36) 0.50 24/30/52 1.028504497181299

(2, 4) 0.20711 + 0.97832i 4↔ 13 5.44× 10−14 (−0.05, 0.33, 0.54) 0.40 24/30/52 1.028504497182124
0.20711− 0.97832i 4↔ 13 4.50× 10−14 (0.21, 0.40, 0.25) 0.27 24/30/52 1.028697470061227
−2.20711 + 0.97832i 5↔ 13 1.23× 10−13 (−0.20, 0.09, 0.47) 0.27 24/30/52 1.028810003857120
−2.20711− 0.97832i 4↔ 14 8.79× 10−14 (0.43, 0.39, 0.23) 0.39 24/30/52 1.028873340639614

3 (4, 2) −0.50000 + 1.32288i 4↔ 12 5.04× 10−14 (0.54, 0.62,−0.14) 0.69 28/36/62 1.332406780851792

−0.50000− 1.32288i
4↔ 13 5.64× 10−14

(0.58, 0.59, 0.20) 0.73 28/36/62
1.332638039347383

13 8.22× 10−14 1.332638039347364
−1.50000 + 1.32288i 4↔ 12 3.52× 10−13 (0.37, 0.58, 0.00) 0.48 30/44/72 1.333967006828866
−1.50000− 1.32288i 4↔ 12 2.87× 10−13 (0.37, 0.58,−0.02) 0.48 30/44/72 1.333967006828922

(2, 4) −0.50000 + 1.32288i 4↔ 13 7.10× 10−13 (−0.08, 0.29, 0.57) 0.41 28/36/62 1.333352290650703

−0.50000− 1.32288i
4↔ 14 1.44× 10−13

(0.36, 0.43, 0.23) 0.37 28/36/62
1.333372391725309

14 1.41× 10−13 1.333372391725283
−1.50000 + 1.32288i 5↔ 13 4.23× 10−13 (0.28, 0.41,−0.12) 0.27 30/44/72 1.333837383963351
−1.50000− 1.32288i 4↔ 12 1.15× 10−13 (0.28, 0.42, 0.11) 0.27 30/44/72 1.333837383963306

4 (4, 2) 0.34781 + 1.02885i 6↔ 10 2.91× 10−12 (0.58, 0.60,−0.23) 0.75 32/44/74 2.232892791283357
0.34781− 1.02885i 6↔ 10 3.12× 10−12 (0.54, 0.42, 0.46) 0.67 40/68/106 2.229129242949574
−2.34781 + 1.02885i 5↔ 10 2.76× 10−12 (−0.34, 0.37, 0.59) 0.61 48/68/114 2.228185242921229
−2.34781− 1.02885i 7↔ 10 2.07× 10−11 (−0.36, 0.56, 0.42) 0.62 48/68/114 2.226313685909248

(2, 4) 0.34781 + 1.02885i 5↔ 13 7.14× 10−12 (0.09, 0.27, 0.41) 0.25 40/68/106 2.229754821992193

0.34781− 1.02885i 4↔ 13 2.62× 10−12 (0.41, 0.44, 0.31) 0.46 32/44/74 2.232710498631728

−2.34781 + 1.02885i 6↔ 11 2.97× 10−12 (−0.15, 0.11, 0.56) 0.35 48/68/114 2.228627856967081
−2.34781− 1.02885i 6↔ 12 1.32× 10−11 (0.54, 0.39, 0.30) 0.53 48/68/114 2.231108255566736

5 (4, 2) −0.77330 + 1.46771i 5↔ 13 1.12× 10−12 (0.61, 0.63,−0.11) 0.77 30/40/68 1.926198482790508

−0.77330− 1.46771i 5↔ 13 2.68× 10−13 (0.64, 0.62, 0.20) 0.83 30/40/68 1.926630884489936
−1.22670 + 1.46771i 6↔ 13 3.32× 10−12 (0.40, 0.60,−0.02) 0.52 34/48/80 1.921819864166848
−1.22670− 1.46771i 5↔ 13 5.88× 10−12 (0.40, 0.60, 0.00) 0.53 34/48/80 1.919045852349486

(2, 4) −0.77330 + 1.46771i 4↔ 13 4.11× 10−13 (0.33, 0.19, 0.61) 0.51 30/40/68 1.926727950702606

−0.77330− 1.46771i
4↔ 13 2.48× 10−12

(0.58, 0.32, 0.39) 0.60 30/40/68
1.926727950701057

13 1.39× 10−12 1.926727950703559

−1.22670 + 1.46771i 4↔ 12 1.98× 10−13 (0.18, 0.18, 0.50) 0.31 32/44/74 1.927861496441281

−1.22670− 1.46771i
4↔ 12 4.11× 10−13

(0.30, 0.43, 0.13) 0.29 34/48/80
1.925812729834557

4 5.31× 10−13 1.925812729834050

86 (4, 2) −0.09473 + 1.28374i 5↔ 11 1.61× 10−12 (0.50, 0.60,−0.16) 0.64 40/60/98 2.597157107493283

−0.09473− 1.28374i 6↔ 10 1.75× 10−12 (0.69, 0.42, 0.46) 0.87 34/52/84 2.597642037600054
−1.90527 + 1.28374i 6↔ 12 9.56× 10−12 (0.52, 0.64, 0.01) 0.68 36/54/88 2.608247243662376
−1.90527− 1.28374i 8↔ 11 3.14× 10−12 (−0.36, 0.52, 0.42) 0.58 36/54/88 2.613640484296453

(2, 4)
−0.09473 + 1.28374i

6↔ 13 7.72× 10−12
(0.32, 0.24, 0.49) 0.40 38/60/96

2.598191623666021
4 7.61× 10−12 2.598191623665997
5 failure.

−0.09473− 1.28374i 5↔ 13 5.14× 10−12 (0.29, 0.43, 0.23) 0.32 40/60/98 2.595359034906877
−1.90527 + 1.28374i 6↔ 12 6.00× 10−11 (−0.31, 0.12, 0.48) 0.33 36/54/88 2.611707676528477
−1.90527− 1.28374i 7↔ 12 6.58× 10−11 (0.50, 0.31, 0.35) 0.48 40/58/96 2.600005617840727

7 (4, 2) 0.88465 + 0.58974i 6↔ 9 1.79× 10−12 (0.68, 0.52, 0.43) 0.92 30/42/70 1.986069411118363

0.88465− 0.58974i 5↔ 10 3.59× 10−13 (0.60, 0.53, 0.35) 0.77 30/42/70 1.985525637343016

−2.88465 + 0.58974i 6↔ 11 5.29× 10−13 (−0.28, 0.17, 0.71) 0.61 30/42/70 1.988902948387202
−2.88465− 0.58974i 4↔ 10 4.04× 10−12 (−0.32, 0.71, 0.24) 0.66 30/42/70 1.987396444211165

(2, 4) 0.88465 + 0.58974i 4↔ 13 4.10× 10−13 (0.26, 0.35, 0.43) 0.38 30/42/70 1.984732456421766

0.88465− 0.58974i 4↔ 11 3.87× 10−13 (0.33, 0.57, 0.52) 0.70 30/42/70 1.984987636520065
−2.88465 + 0.58974i 5↔ 13 1.74× 10−12 (−0.10, 0.04, 0.57) 0.33 30/42/70 1.985674551422753

−2.88465− 0.58974i 6↔ 13 2.96× 10−12 (0.55, 0.51, 0.40) 0.73 30/42/70 1.984728379613146

Tab. C.23: Data from Table 5.9 of [62].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (4, 2) −1.00000 + 1.41421i 5↔ 14 1.35× 10−14 (0.38, 0.58,−0.04) 0.48 16/13/28 Free?

−1.00000− 1.41421i 5↔ 13 2.12× 10−14 (0.38, 0.58, 0.02) 0.49 16/13/28 Free?
(2, 4) −1.00000 + 1.41421i 3↔ 13 3.77× 10−15 (0.04, 0.22, 0.46) 0.26 10/7/16 Free?

−1.00000− 1.41421i 3↔ 13 1.13× 10−14 (0.25, 0.42, 0.14) 0.25 16/13/28 Free?
2 (4, 2) −1.00000 + 1.55377i 5↔ 13 5.06× 10−14 (0.46, 0.62,−0.06) 0.60 16/13/28 Free?

−1.00000− 1.55377i 4↔ 13 3.31× 10−14 (0.47, 0.62, 0.04) 0.61 16/13/28 Free?
(2, 4) −1.00000 + 1.55377i 3↔ 14 4.44× 10−15 (0.12, 0.25, 0.51) 0.33 10/7/16 Free?

−1.00000− 1.55377i 3↔ 13 2.55× 10−14 (0.34, 0.44, 0.16) 0.34 16/13/28 Free?

3 (4, 2) 1.00755 + 0.51312i 7↔ 11 9.08× 10−12 (0.61, 0.52, 0.42) 0.82 52/76/126 3.667339431536167

1.00755− 0.51312i 8↔ 12 4.91× 10−10 (0.61, 0.58, 0.31) 0.80 48/66/112 3.681087139097583

−3.00755 + 0.51312i 6↔ 10 6.04× 10−09 (−0.27, 0.24, 0.75) 0.70 64/98/160 3.679014906160397

−3.00755− 0.51312i 6↔ 11 2.25× 10−09 (−0.29, 0.74, 0.33) 0.74 64/98/160 3.672306327492297
(2, 4) 1.00755 + 0.51312i 6↔ 12 1.46× 10−10 (0.20, 0.35, 0.41) 0.33 52/76/126 3.675159456805927

1.00755− 0.51312i 5↔ 12 6.87× 10−11 (0.42, 0.43, 0.38) 0.51 50/70/118 3.683332586060244
−3.00755 + 0.51312i 6↔ 11 2.74× 10−09 (0.02, 0.02, 0.58) 0.34 64/98/160 3.682522626324831

−3.00755− 0.51312i 6↔ 12 5.21× 10−10 (0.66, 0.56, 0.45) 0.96 64/98/160 3.686890741856108

4 (4, 2)
0.17660 + 1.20282i

6↔ 12 3.71× 10−10
(0.57, 0.61,−0.21) 0.75 38/54/90

3.316021637460442
12 2.14× 10−10 3.316021637488303

0.17660− 1.20282i 5↔ 12 7.19× 10−11 (0.70, 0.44, 0.48) 0.92 36/50/84 3.309439624044029
−2.17660 + 1.20282i 5↔ 9 9.24× 10−11 (−0.39, 0.39, 0.60) 0.66 50/76/124 3.315537713648098
−2.17660− 1.20282i 5↔ 9 1.63× 10−10 (−0.40, 0.57, 0.44) 0.68 50/76/124 3.316268299807699

(2, 4) 0.17660 + 1.20282i 5↔ 12 2.45× 10−11 (0.59, 0.21, 0.62) 0.77 36/50/84 3.308662886740566

0.17660− 1.20282i
4↔ 13 5.26× 10−11

(0.59, 0.41, 0.38) 0.65 36/50/84
3.314732294986595

13 2.55× 10−11 3.314732294987029
−2.17660 + 1.20282i 6↔ 11 2.99× 10−10 (−0.24, 0.12, 0.58) 0.41 50/76/124 3.319760346031557
−2.17660− 1.20282i 6↔ 13 3.24× 10−10 (0.56, 0.43, 0.28) 0.58 50/76/124 3.309158288660671

5 (4, 2) 0.81516± 0.71242i 3↔ 15 failure.
−2.81516± 0.71242i 3↔ 15 failure.

(2, 4) 0.81516± 0.71242i 3↔ 15 failure.
−2.81516± 0.71242i 3↔ 15 failure.

6 (4, 2) 0.58153± 0.93916i 3↔ 15 failure.
−2.58153± 0.93916i 3↔ 15 failure.

(2, 4) 0.58153± 0.93916i 3↔ 15 failure.
−2.58153± 0.93916i 3↔ 15 failure.

7 (4, 2) −0.30368± 1.43595i 3↔ 15 failure.
−1.69632± 1.43595i 3↔ 15 failure.

(2, 4) −0.30368± 1.43595i 3↔ 15 failure.
−1.69632± 1.43595i 3↔ 15 failure.

8 (4, 2) −0.82835± 1.57669i 3↔ 15 failure.
−1.17165± 1.57669i 3↔ 15 failure.

(2, 4) −0.82835± 1.57669i 3↔ 15 failure.
−1.17165± 1.57669i 3↔ 15 failure.

9 (4, 2) −1.00000 + 1.65289i 5↔ 12 1.42× 10−13 (0.85, 0.60,−0.01) 1.08 16/13/28 Free?
−1.00000− 1.65289i 4↔ 14 1.91× 10−14 (0.84, 0.59, 0.09) 1.07 18/19/36 Free?

(2, 4) −1.00000 + 1.65289i 3↔ 12 4.11× 10−15 (0.18, 0.27, 0.54) 0.40 10/7/16 Free?
−1.00000− 1.65289i 4↔ 13 8.90× 10−14 (0.77, 0.42, 0.58) 1.10 18/19/36 Free?

10 (4, 2) −1.00000 + 1.73205i 5↔ 13 4.24× 10−14 (0.32, 0.98,−0.01) 1.06 16/12/28 Free?
−1.00000− 1.73205i 4↔ 13 2.43× 10−14 (0.65, 0.66, 0.04) 0.85 16/12/28 Free?

(2, 4) −1.00000 + 1.73205i 3↔ 14 5.86× 10−14 (0.13, 0.32, 0.95) 1.01 18/18/36 Free?
−1.00000− 1.73205i 4↔ 13 5.72× 10−14 (0.79, 0.35, 0.55) 1.05 18/18/36 Free?

11 (4, 2) −0.78492 + 1.30714i 4↔ 13 2.35× 10−14 (0.47, 0.58,−0.08) 0.56 24/28/50 0.824868942429759

−0.78492− 1.30714i 4↔ 13 2.43× 10−14 (0.46, 0.58, 0.11) 0.56 24/28/50 0.824311173803825
−1.21508 + 1.30714i 4↔ 12 2.82× 10−14 (0.31, 0.55,−0.01) 0.40 24/30/52 0.824697952334939
−1.21508− 1.30714i 5↔ 11 7.80× 10−14 (0.31, 0.55,−0.01) 0.40 24/30/52 0.824751919464297

(2, 4) −0.78492 + 1.30714i
4↔ 13 9.61× 10−14

(0.04, 0.24, 0.39) 0.21 24/28/50
0.823655908723790

4, 5 2.89× 10−14 0.823655908723696
−0.78492− 1.30714i 3↔ 13 8.04× 10−14 (0.29, 0.45, 0.21) 0.33 24/28/50 0.824214675045511
−1.21508 + 1.30714i 4↔ 14 1.12× 10−13 (0.25, 0.40, 0.08) 0.22 24/30/52 0.824574862965058
−1.21508− 1.30714i 4↔ 14 9.30× 10−14 (0.19, 0.40, 0.10) 0.20 24/30/52 0.824533637845718

Tab. C.24: Data from Table 5.11 of [62].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume
1 (6, 2) 0.00000 + 1.00000i 4↔ 13 1.15× 10−14 (0.46, 0.52, 0.41) 0.64 20/22/40 0.610643729451075

0.00000− 1.00000i 4↔ 13 1.14× 10−14 (0.46, 0.49, 0.41) 0.61 20/22/40 0.610124675044900

−1.00000 + 1.00000i
6↔ 13 2.98× 10−14

(−0.09, 0.65, 0.28) 0.51 18/22/38
0.610643729451021

13 5.22× 10−14 0.610643729451050
−1.00000− 1.00000i 4↔ 12 2.82× 10−14 (−0.09, 0.55, 0.44) 0.51 18/22/38 0.610643729451040

(2, 6)
0.00000 + 1.00000i

3↔ 13 2.35× 10−14
(0.12, 0.36, 0.06) 0.15 20/22/40

0.609758967962758
3 1.31× 10−14 0.609758967962676

0.00000− 1.00000i 3↔ 13 1.17× 10−14 (−0.12, 0.34, 0.15) 0.15 20/22/40 0.610691628099879
−1.00000 + 1.00000i 3↔ 14 1.55× 10−14 (0.04, 0.36,−0.12) 0.14 18/22/38 0.610643729451591

−1.00000− 1.00000i 4↔ 14 6.66× 10−15 (0.04, 0.36, 0.11) 0.14 18/22/38 0.610643729451522

2 (6, 2) 0.87744 + 0.74486i 4↔ 11 5.82× 10−14 (−0.47, 0.71, 0.23) 0.78 20/26/44 1.022578858868845

0.87744− 0.74486i 5↔ 14 6.93× 10−14 (−0.43, 0.67, 0.31) 0.72 22/30/50 1.021266309675690
−1.87744 + 0.74486i 4↔ 13 1.73× 10−13 (0.20, 0.68, 0.35) 0.63 26/38/62 1.020123408160045
−1.87744− 0.74486i 6↔ 13 2.73× 10−13 (0.06, 0.79, 0.24) 0.69 26/36/60 1.021317792812498

(2, 6) 0.87744 + 0.74486i 4↔ 12 4.35× 10−14 (0.23, 0.40, 0.12) 0.23 22/30/50 1.021266309674652

0.87744− 0.74486i
3↔ 13 2.82× 10−14

(0.23, 0.41, 0.14) 0.24 20/26/44
1.022004856907895

13 4.35× 10−14 1.022004856907774
−1.87744 + 0.74486i 4↔ 13 2.58× 10−13 (−0.12, 0.31, 0.28) 0.18 26/38/62 1.021187860075532
−1.87744− 0.74486i 3↔ 13 4.07× 10−14 (0.17, 0.37, 0.19) 0.20 26/38/62 1.020786170671771

3 (6, 2) −0.21508 + 1.30714i 4↔ 11 3.72× 10−13 (−0.36, 0.76, 0.19) 0.75 26/36/60 1.021347614330418

−0.21508− 1.30714i 4↔ 13 1.18× 10−13 (−0.32, 0.79,−0.05) 0.73 26/38/62 1.021768522986962

−0.78492 + 1.30714i 5↔ 11 1.38× 10−13 (−0.10, 0.80, 0.22) 0.70 24/26/48 1.021266309673058

−0.78492− 1.30714i 4↔ 13 7.08× 10−14 (−0.27, 0.70, 0.41) 0.73 22/26/46 1.019497428415570
(2, 6) −0.21508 + 1.30714i 5↔ 13 4.31× 10−14 (0.00, 0.29, 0.33) 0.20 22/28/48 1.021444941021198

−0.21508− 1.30714i 4↔ 14 2.00× 10−13 (0.13, 0.41, 0.17) 0.22 26/38/62 1.022378515079977

−0.78492 + 1.30714i
4↔ 13 1.58× 10−14

(0.15, 0.28, 0.34) 0.22 22/26/46
1.019497428415326

13 1.51× 10−13 1.019497428414627
−0.78492− 1.30714i 3↔ 12 6.68× 10−14 (0.17, 0.43, 0.11) 0.23 24/26/48 1.021266309674068

4 (6, 2)

1.41964 + 0.60629i

4↔ 11 6.80× 10−12

(−0.10, 0.78, 0.35) 0.74 30/48/76
1.853822926081037

4
6.79× 10−12

1.853822926081040
11 1.853822926081656
10 failure.

1.41964− 0.60629i 5↔ 11 1.98× 10−12 (−0.40, 0.65, 0.62) 0.97 26/38/62 1.853113400207439

−2.41964 + 0.60629i 5↔ 12 1.22× 10−12 (0.04, 0.86, 0.31) 0.83 28/34/60 1.849394026788523

−2.41964− 0.60629i 5↔ 12 3.20× 10−13 (0.04, 0.86, 0.31) 0.83 32/42/72 1.853421079185258
(2, 6) 1.41964 + 0.60629i 4↔ 13 1.11× 10−13 (0.10, 0.44, 0.57) 0.53 28/40/66 1.849081037072025

1.41964− 0.60629i 4↔ 13 7.19× 10−14 (0.21, 0.40, 0.35) 0.33 28/40/66 1.853421079184026

−2.41964 + 0.60629i 4↔ 12 6.56× 10−13 (0.11, 0.36, 0.32) 0.25 36/48/82 1.853815964173367
−2.41964− 0.60629i 5↔ 13 1.59× 10−12 (0.32, 0.40, 0.26) 0.33 36/48/82 1.853815964175094

5 (6, 2) 0.77184 + 1.11514i 5↔ 12 1.27× 10−13 (−0.46, 0.68, 0.47) 0.90 26/32/56 1.853421079183917

0.77184− 1.11514i 5↔ 12 3.38× 10−13 (−0.45, 0.81, 0.18) 0.88 28/36/62 1.854318201353658

−1.77184 + 1.11514i 5↔ 12 7.75× 10−12 (0.01, 0.86, 0.31) 0.84 30/48/76 1.852704566782116

−1.77184− 1.11514i 5↔ 13 3.37× 10−12 (0.01, 0.87, 0.31) 0.85 28/40/66 1.853421079182651
(2, 6) 0.77184 + 1.11514i 4↔ 12 1.87× 10−12 (0.26, 0.36, 0.38) 0.34 28/36/62 1.855268147965626

0.77184− 1.11514i 4↔ 13 4.85× 10−13 (0.23, 0.42, 0.29) 0.31 26/32/56 1.851437303822129

−1.77184 + 1.11514i 6↔ 12 1.03× 10−13 (−0.26, 0.22, 0.48) 0.35 28/40/66 1.851412053612527

−1.77184− 1.11514i 4↔ 13 6.15× 10−13 (0.47, 0.43, 0.28) 0.49 28/40/66 1.852848782731610

6 (6, 2) 1.23279 + 0.79255i 5↔ 9 1.13× 10−11 (−0.15, 0.74, 0.37) 0.70 34/48/80 2.104888866208937

1.23279− 0.79255i 5↔ 9 6.59× 10−12 (−0.47, 0.73, 0.49) 0.99 26/34/58 2.112230922031761

−2.23279 + 0.79255i 5↔ 12 2.92× 10−12 (0.02, 0.85, 0.16) 0.75 34/50/82 2.108523889564296

−2.23279− 0.79255i 5↔ 12 2.73× 10−12 (0.02, 0.86, 0.26) 0.81 34/48/80 2.109921205240231

(2, 6) 1.23279 + 0.79255i 4↔ 13 3.36× 10−13 (0.41, 0.42, 0.32) 0.45 28/36/62 2.110523747092161

1.23279− 0.79255i
3↔ 13 1.35× 10−11

(0.32, 0.53, 0.45) 0.58 28/36/62
2.110692420015884

3 1.38× 10−11 2.110692420016515
13 7.86× 10−13 2.110692420000852

−2.23279 + 0.79255i 5↔ 12 1.93× 10−12 (0.03, 0.34, 0.34) 0.23 34/50/82 2.109257715349852
−2.23279− 0.79255i 4↔ 13 2.57× 10−12 (0.32, 0.40, 0.25) 0.32 34/50/82 2.109558614713941

7 (6, 2) 1.66236 + 0.56228i 5↔ 10 8.45× 10−9 (−0.01, 0.85, 0.32) 0.82 46/64/108 4.398582444311185

1.66236− 0.56228i 6↔ 7 9.04× 10−9 (−0.42, 0.76, 0.55) 1.06 40/54/92 4.396495857865980

−2.66236 + 0.56228i 7↔ 10 1.56× 10−10 (0.11, 0.80, 0.34) 0.77 54/84/136 4.393018786595057

−2.66236− 0.56228i
6↔ 9 2.34× 10−10

(0.02, 0.87, 0.31) 0.85 46/66/110
4.400822885695283

9 7.16× 10−10 4.400822886121945

(2, 6) 1.66236 + 0.56228i 4↔ 12 7.37× 10−11 (0.56, 0.31, 0.54) 0.70 42/56/96 4.402234623856832

1.66236− 0.56228i 6↔ 12 1.36× 10−10 (0.33, 0.42, 0.39) 0.44 64/96/158 4.408328044588912
−2.66236 + 0.56228i 5↔ 11 6.76× 10−10 (−0.05, 0.21, 0.55) 0.35 50/70/118 4.403179323627133

−2.66236− 0.56228i 5↔ 11 2.64× 10−9 (0.56, 0.53, 0.55) 0.90 48/68/114 4.401909752798479

Tab. C.25: Data from Table 5.12 of [62].
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n (p, q) γ εV deviation B ||B||2E S/V/E covolume

1 (6, 2) 0.34116 + 1.16154i 4↔ 11 2.40× 10−13 (−0.49, 0.53, 0.55) 0.82 26/36/60 1.321558562482194

0.34116− 1.16154i 5↔ 12 1.51× 10−13 (−0.48, 0.74, 0.22) 0.82 26/36/60 1.320409963222722

−1.34116 + 1.16154i 4↔ 13 1.56× 10−13 (−0.11, 0.80, 0.33) 0.75 22/30/50 1.318904026482595

−1.34116− 1.16154i 4↔ 13 1.77× 10−13 (−0.03, 0.72, 0.52) 0.79 22/30/50 1.319305550520877

(2, 6) 0.34116 + 1.16154i 4↔ 13 4.51× 10−14 (0.22, 0.36, 0.30) 0.27 22/30/50 1.320702203534967

0.34116− 1.16154i 4↔ 13 8.26× 10−14 (0.11, 0.40, 0.23) 0.22 26/36/60 1.322625363588137
−1.34116 + 1.16154i 5↔ 13 4.60× 10−14 (0.33, 0.41,−0.22) 0.33 22/30/50 1.319305550520641
−1.34116− 1.16154i 6↔ 13 7.86× 10−14 (0.33, 0.42, 0.20) 0.33 22/30/50 1.319305550520717

2 (6, 2) 0.00000 + 1.41421i 5↔ 13 7.93× 10−13 (−0.50, 0.54, 0.51) 0.80 30/44/72 2.008903021734428

0.00000− 1.41421i 5↔ 11 2.79× 10−12 (−0.36, 0.85, 0.04) 0.86 28/36/62 2.007682006681319

−1.00000 + 1.41421i 5↔ 12 5.70× 10−13 (−0.01, 0.84, 0.25) 0.77 28/38/64 2.008067163155648

−1.00000− 1.41421i 5↔ 12 2.21× 10−13 (−0.35, 0.88, 0.23) 0.96 26/36/60 2.007584103872233

(2, 6) 0.00000 + 1.41421i 4↔ 13 1.50× 10−13 (−0.07, 0.37, 0.65) 0.57 28/36/62 2.007682006682812

0.00000− 1.41421i
4↔ 14 1.66× 10−13

(0.49, 0.46, 0.30) 0.54 28/36/62
2.007682006683356

14 1.55× 10−13 2.007682006683051
−1.00000 + 1.41421i 4↔ 14 3.46× 10−13 (0.31, 0.45,−0.16) 0.32 28/38/64 2.007687025048551

−1.00000− 1.41421i
5↔ 14 3.38× 10−13

(0.31, 0.46, 0.15) 0.32 28/38/64
2.007687025047486

14 2.28× 10−13 2.007687025046759

3 (6, 2) 1.00000 + 1.00000i 4↔ 10 1.26× 10−11 (−0.39, 0.80, 0.32) 0.89 32/46/76 3.055778380625268

1.00000− 1.00000i 5↔ 10 8.00× 10−12 (−0.48, 0.73, 0.43) 0.95 30/46/74 3.052092045493262

−2.00000 + 1.00000i
6↔ 13 1.28× 10−10

(0.10, 0.81, 0.34) 0.77 38/54/90
3.048964087845691

13 4.66× 10−11 3.048964087743448
12 failure.

−2.00000− 1.00000i 5↔ 12 5.73× 10−11 (0.02, 0.87, 0.31) 0.85 38/52/88 3.048270916651866
(2, 6) 1.00000 + 1.00000i 4↔ 13 2.78× 10−12 (0.13, 0.30, 0.46) 0.31 38/64/100 3.054044210834238

1.00000− 1.00000i 5↔ 12 9.87× 10−13 (0.46, 0.44, 0.37) 0.55 30/46/74 3.053218647256478

−2.00000 + 1.00000i 6↔ 12 1.18× 10−11 (−0.19, 0.20, 0.52) 0.35 36/51/85 3.053293429162713
−2.00000− 1.00000i 5↔ 13 2.06× 10−12 (0.54, 0.45, 0.33) 0.60 36/51/85 3.055401540750088

4 (6, 2) −0.31945 + 1.63317i
5↔ 10 2.20× 10−11

(−0.21, 0.94, 0.03) 0.93 28/34/60
2.646717797379673

10 6.49× 10−11 2.646717797033200

−0.31945− 1.63317i 4↔ 12 9.54× 10−12 (−0.22, 0.94,−0.10) 0.95 28/34/60 2.646861970382090

−0.68055 + 1.63317i 5↔ 13 5.85× 10−12 (0.02, 0.85, 0.16) 0.74 38/54/90 2.643405336574825

−0.68055− 1.63317i 6↔ 13 6.11× 10−12 (−0.36, 0.83, 0.55) 1.12 32/46/76 2.646336153435846
(2, 6) −0.31945 + 1.63317i 5↔ 10 1.34× 10−12 (0.22, 0.27, 0.59) 0.46 30/40/68 2.646695166978066

−0.31945− 1.63317i 4↔ 13 6.55× 10−13 (0.65, 0.59, 0.39) 0.93 30/40/68 2.646859749260644

−0.68055 + 1.63317i 5↔ 13 9.35× 10−13 (0.20, 0.21, 0.60) 0.44 32/44/74 2.646859749267347
−0.68055− 1.63317i 4↔ 11 2.27× 10−12 (0.38, 0.48, 0.18) 0.41 38/54/90 2.648010914887581

5 (6, 2)
0.50000 + 1.32288i

5↔ 12 2.13× 10−11
(−0.42, 0.64, 0.48) 0.81 40/62/100

3.551014475800329
5 1.75× 10−11 3.551014475800596

0.50000− 1.32288i 6↔ 12 1.13× 10−10 (−0.45, 0.83, 0.29) 0.98 38/60/96 3.553374419561017

−1.50000 + 1.32288i 5↔ 10 3.51× 10−11 (0.00, 0.86, 0.31) 0.84 38/60/96 3.551123647189390

−1.50000− 1.32288i
7↔ 10 1.14× 10−10

(−0.01, 0.80, 0.34) 0.76 38/60/96
3.547460225579417

10 3.28× 10−10 3.547460225069884

(2, 6) 0.50000 + 1.32288i 5↔ 13 1.00× 10−11 (0.36, 0.28, 0.56) 0.52 34/52/84 3.549442254748726

0.50000− 1.32288i 5↔ 13 1.49× 10−11 (0.35, 0.44, 0.29) 0.40 40/64/102 3.555072579853269
−1.50000 + 1.32288i 7↔ 13 2.29× 10−11 (0.51, 0.44,−0.27) 0.54 38/58/94 3.553351881088147

−1.50000− 1.32288i
4↔ 12 4.79× 10−11

(0.52, 0.41, 0.32) 0.55 42/68/108
3.554390070486208

4 3.44× 10−11 3.554390070475067

Tab. C.26: Data from Table 5.13 of [62].


