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Abstract

Evolutionary Algorithms (EAs) are a modern heuristic algorithm that have proven
efficiency on a large number of real-life problems. Despite the rich history of appli-
cations understanding of both how and why EAs work is lagging far behind. This
is especially true for one of the main components of EAs, that is hypothesized by

many to underlie their efficiency: population.

The first problem considered in this thesis is the introduction of a recombina-
tion operator, K-Bit-Swap (KBS) and its comparison to mainstream operators,
such as mutation and different types of crossover. A vast amount of statistical ev-
idence is presented that shows that EAs using KBS outperform other algorithms
on a whole range of problems. Two problems are selected for a deep theoretical

analysis: OneMax and Royal Roads.

The main problem of modeling EAs that use both population and a pool of par-
ents is the complexity of the structures that arise from the process of evolution. In
most cases either one type of species is considered or certain simple assumptions

are made about fitness of the species.

The main contribution of this thesis is the development of a new approach to
modeling of EAs that is based on approximating the structure of the population
and the evolution of subsets thereof. This approach lies at the core of the new tool
presented here, the Elitism Levels Traverse Mechanism that was used to derive
upper bounds on the runtime of EAs. In addition, lower bounds were found us-

ing simpler assumptions of the underlying distribution of species in the population.

xii



The second important result of the approach is the derivation of limiting dis-
tributions of a subset of the population, a problem well-known in areas such as
epidemiology. To the best of the author’s knowledge, no such findings have been

published in the EA community so far.
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Notation

The notation for species, a*...n is used to denote both the type and the size of

the type, i.e. instead of |a*|...|n|.

Q@ Elite species

a* Super-elite species

15} Non-elite species with the next-best fitness to «

b Elite species with the next-best auxiliary value to o*

v Non-elite species other than

~* Elite species other than o* and *

) Proportion of elite species in the population

o* Proportion of super-elite species in the population

n All non-elite species in the population (both 5 and «)

© Probability to swap bits between two parents in the recombination pool
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A Size of the recombination pool

1 Size of the population

K Number of bins (plateaus of fitness) in a string

M Size of the bin (length of the plateau of fitness)

M Total number of types of infections in the population (only in Section 5.2)
m; Number of species with infection type j (only in Section 5.2)

mi s+  Mean first hitting time of the absorbing state 6"«

in a Markov Chain
n Length of the string (total number of bits in the string)
N Population size (only in Section 2.3.2)

(1, A)  Evolutionary Algorithm with population size p and recombination pool

size A, no elitism

(u+ A)  Evolutionary Algorithm with population size p and recombination pool

size A using some form of elitism

P(H;)  Probability to select j pairs of elite parents (1BS) or j elite parents (RLS)

into the recombination pool

P(Gy) Probability to evolve at least one higher-ranked offspring given k

improvements so far

P(Go,) Probability to fail to evolve a higher-ranked offspring given k

improvements so far
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Pswap

Prip

v

511(04*)

Sl2

821

522

Sk

Probability to observe « elite parents in the population (Uniform)

Probability to select an elite pair (1BS) or species (RLS)

into the recombination pool given « elite species in the population
Probability to swap bits between parents using the KBS operator
Probability to flip bits in a parent using RLS

Random variable

The first expression in Phase 1

The summand in the first expression in Phase 1

The second expression in Phase 1

The first expression in Phase 2

The second expression in Phase 2

Mean first hitting time in a Markov Chain

K™ bin in the string

whole string

Auxiliary value of K" bin in the string (also V;)

Auxiliary value of the whole string (also V)

xXviil





