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ABSTRACT 

The motility of C lostridium acetobutylicum P262 and its relationship to 

solventogenesis were investigated. Motility was monitored in a typical 

batch fermentation process using sulphuric acid casein whey permeate 

as substrate. The motile behaviour of C .  acetob utyl ic u m  was 

characterized by "runs" wherein the cells were observed to swim in a 

long, smooth line, then the cells "tumbled" by thrashing around for a 

few seconds before running again. The "runs" were particularly 

associated with the early phase of sugar utilization and acid production, 

while "tumbles" were associated with the onset of solventogenesis. 

During solvent production, the cells tumbled more frequently and the 

runs progressively became shorter and slower. The proportion of 

cells in the culture which exhibited motility increased to almost 1 00% 

up to 13h after inoculation, but decreased considerably after this time. 

Assays for positive chemotaxis (chemoattraction) and negative 

chemotaxis (chemorepulsion) were performed to identify the 

chemoeffectors of C. acetobutylicum. Motile cells of C. acetobutylicum 

were observed to migrate towards glucose, galactose, and lactose. 

These sugars were identified as attractants. Acetate and butyrate 

elicited a dual response. Cells were repelled from the dissociated form 

and attracted towards the undissociated form above a minimum 

threshold concentration. Chemoattraction to butyric acid was observed 

at a threshold concentration of 9 x 1 0-2 M which is similar to the 

concentration of undissociated butyric acid inside the cell ( 1 . 3 x 1 0-2 

M) at which solventogenesis is reported to be initiated, suggesting that 

the intracellular butyric acid concentration is the likely switch for 
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solventogenesis to commence. The solvents acetone, butanol and 

ethanol were identified as repellents. 

The behavioural response of C. acetobutylicum towards the sugars, 

acids and solvents demonstrates that the motility observed during 

fermentation is a chemotactic response. Chemotaxis appears to 

provide survival advantage to C. acetobutylicum. 

A non-motile mutant was isolated by mutagenesis using ethyl methane 

sulfonate. This mutant was morphologically indistinguishable from the 

motile parent strain, such that it possesses flagella in typical number 

and shape as those of the parent, and is capable of producing clostridial 

forms and endospores. This type of mutant is a paralyzed mutant and 

the mutation may be a defect in any of the genes that code for flagellar 

rotation. 

The non-motile mutant was capable of solvent production suggesting 

that motility is not a regulatory mechanism for the switch to solvent 

production, but merely a behavioural chemotactic response. However, 

the maximum butanol concentration achieved, the initial rate of 

butanol production, the yield, and the sugar utilization observed with 

the mutant were poorer than those of the parent strain. These confirm 

the positive relationship between motile, chemotactic cultures and 

solvent production. The low butanol production by the non-motile 

mutant suggests that the mutant has a lower butanol tolerance than does 

the parent. 
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Inhibition studies have shown that both growth and solvent production 

of C. acetobutyl icum are subject to  end-product toxicity . Growth 

i n hibit ion stud ies confi rmed that  the non-motile mutant w as l ess 

tolerant to solvents than was the parent .  

A deficiency in membrane-bound ATPase activity was observed with 

the non-motile mutant but not in the parent strain .  This deficiency in 

ATPase activity, lack of motility, and lower butanol tolerance may 

exp l ai n  the l ow butano l  producti on by the mutan t. 

On a percentage basis, greater i nh i bi tion of solvent production was 

observed in the parent than in  the mutant suggesti ng that bu tanol 

toxicity duri ng the so l vent production phase i s  more profound i n  the 

presence of another target s i te ( i .e .  ATPase) in addition to the cell 

membrane .  It was further suggested that during growth ,  bu tanol 

i n hib i t ion due to membrane disrupt ion was more importan t  than 

inh ibition of ATPase . 

Thus,  chemotaxis prevents C. acetobutyl icum from being confined in a 

toxic s i tuation.  Moti le cel ls are more solventogenic because they can 

chemotac tical ly respond to changes in their envi ronmen t, and are less 

susceptib le to product inhibition . 
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