Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Wireless Vehicle Presence Detection Using Self-

Harvested Energy

By

Frazer K. Noble

A thesis in partial fulfilment of the requirements for the degree of

Master of Engineering

In

Mechatronics

Massey University,

Albany,

New Zealand

2009

Abstract

Rising from the "excess demand" modern societies and economies place on limited road resources, congestion causes increased vehicle emissions, decreases national efficiency, and wastes time (Downs, 2004). In order to minimise congestion's impacts, traffic management systems gather traffic data and use it to implement efficient management algorithms (Downs, 2004). This dissertation's purpose has been the development of a distributable vehicle presence detection sensor, which will wirelessly provide vehicle presence information in real time. To address the sensor's wireless power requirements, the feasibility of self-powering the device via harvested energy has been investigated. Piezoelectric, electrostatic, and electromagnetic energy harvesting devices' principles of operation and underlying theory has been investigated in detail and an overview presented alongside a literature review of previous vibration energy harvesting research. An electromagnetic energy harvesting device was designed, which consists of: a nylon reinforced rubber bladder, hydraulic piston, neodymium magnets, and wire-wound coil housing. Preliminary testing demonstrated a harvested energy between 100mJ and 205mJ per axle. This amount is able to be transferred to a 100Ω load when driven over at speeds between 10km/h and 50km/h. Combined with an embedded circuit, the energy harvester facilitated the development of a passive sensor, which is able to wirelessly transmit a vehicle's presence signal to a host computer. The vehicle detected event is displayed via a graphical user interface. Energy harvesting's ability to power the embedded circuit's wireless transmission, demonstrated the feasibility of developing systems capable of harvesting energy from their environment and using it to power discrete electronic components. The ability to wirelessly transmit a vehicle's presence facilitates the development of distributable traffic monitoring systems, allowing for remote traffic monitoring and management.

Acknowledgements

First and foremost, I would like to offer my deepest gratitude to the mentors of this research: Dr. Johan Potgieter, Dr. Fahkrul Alam, and Dr. Peter Xu; who, with their guidance and tuition allowed for the completion of this dissertation.

For their invaluable advice and services, I would also like to thank Eddie Rodgers, Jamie McIntyre, and Gordon Hein.

As usual, the unconditional support of my family and loved ones is something always appreciated; as such, I would like to acknowledge my mother and father, Cristine and David Noble; my brother and sister, Rhys and Frances-Elise Noble; partner, Monique Hall; grandparents, Dawn and Kingsley Collins, and Stella and Jack Noble. Their support, both direct and indirect, provided a bastion of confidence during times of difficulty.

For those who I have gained knowledge from indirectly, your work has provided a rich source of information that has only furthered my own abilities, and I thank you.

Lastly, I would like to thank the staff and lecturers of Massey University's School of Engineering and Advanced Technology at Albany for the interest shown in the project and their freely given advice.

Table of Contents

Abstract		i
Acknowl	ledgements	ii
Table of	Contents	. iii
List of Fi	igures	v
List of Ta	ables	. vii
Chapter	1 Introduction	1
Chapter	2 Literature Review	5
2.1	Introduction	5
2.2	Wireless Sensor Nodes	6
2.3	Electromagnetic Vibration Energy Harvesting	9
2.4	Piezoelectric Vibration Energy Harvesting	.12
2.5	Electrostatic Vibration Energy Harvesting	.13
2.6	Conclusion	.14
Chapter	3 Foundation of Energy Harvesting	.18
3.1	Vibration Harvesting's Inertial Transduction Mechanism	.18
3.2	Piezoelectric Energy Harvesting	.20
3.2.1	Piezoelectric Energy Harvesting Theory	.20
3.2.2	Principle of Piezoelectric Vibration Energy Harvesting	.25
3.3	Electrostatic Energy Harvesting	.26
3.3.1	Electrostatic Energy Harvesting Theory	.26
3.3.2	Principle of Electrostatic Vibration Energy Harvesting	.30
3.4	Electromagnetic Energy Harvesting	.31
3.4.1	Electromagnetic Energy Harvesting Theory	.31
3.4.2	Faraday's Law of Induction and Lenz's Law	.32
3.4.3	Principle of Electromagnetic Energy Harvesting	.33
Chapter	4 Vehicle Presence Detection Sensor and Reception System Design	.35
4.1	Introduction	.35
4.2	Electromagnetic Energy Harvester Design	.36
4.3	Design of a Energy Harvesting Device Interface and Vehicle Presence	е
Detec	tion Embedded Circuit	.43

4.4	Embedded Microcontroller's Sensing Application	
4.4.1	PIC16F688 Microcontroller	
4.4.2	Embedded Sensing Application Overview	62
4.4.3	Embedded Sensing Application Source Code	63
4.5	Wireless Transceiver Design	72
4.6	Vehicle Detected Graphical User Interface	77
4.6.1	Graphical User Interface Application Overview	77
4.6.2	Graphical User Interface Design	78
4.6.3	Graphical User Interface Application Source Code	80
Chapte	r 5 System Integration and Testing	90
5.1	Testing of Individual System Components	90
5.1.1	Electromagnetic Energy Harvester Testing	90
5.1.2	Embedded Microcontroller's Application Testing	
5.1.3	Wireless Transceiver Testing	
5.1.4	Graphical User Interface Application Testing	
5.2	System Integration and Testing	
Chapte	r 6 Conclusion	
Referer	nces	

List of Figures

Name

Figure 1: General structure of a wireless sensor node	6
Figure 2: Inertial transduction mechanism schematic	19
Figure 3: Traffic monitoring system's architecture	36
Figure 4: Traffic monitoring sensor's architecture	36
Figure 5: CAD model for proposed electromagnetic energy harvester	38
Figure 6: Wire-wound coil housing and coils	39
Figure 7: Opposing series and series coil configurations' voltage waveforms	40
Figure 8: Combined bladder and hydraulic piston	41
Figure 9: Wire-wound coil housing, coils, and adapter	42
Figure 10: Magnetic load and adapter	42
Figure 11: Completed energy harvesting device and test platform	43
Figure 12: Vehicle presence detection sensor's embedded architecture	44
Figure 13: Microchip's PIC16F688 microcontroller	44
Figure 14: Linear Technology's LTC3401 DC/DC converter	45
Figure 15: Digi's XBee 802.15.4 (Series 1) ZigBee module	46
Figure 16: MBRS130LT3 surface mount Schottky power rectifier	46
Figure 17: Rectifier schematic	47
Figure 18: Comparison of general purpose and Schottky diode rectifiers	47
Figure 19: General purpose and Schottky diode rectifiers' output voltage	
measured across a 100 Ω load	48
Figure 20: Schottky diode charge pump and rectifier comparison circuit	49
Figure 21: Schottky diode and rectifier circuit's output	49
Figure 22: LTC3401 circuit schematic	50
Figure 23: Rectifier and soft start circuit schematic	51
Figure 24: Rectifier and soft start circuit's simulated outputs	51
Figure 25: Sensor's embedded circuit schematic	55
Figure 26: Routed embedded circuit's PCB board	55
Figure 27: Sensor's fabricated embedded circuit and components	57
Figure 28: Wireless transceiver's circuit schematic	74
Figure 29: Routed wireless transceiver's PCB	75

Figure 30: Wireless transceiver's fabricated board and components	77
Figure 31: Graphical user interface's communication window	80
Figure 32: Graphical user interface's settings window	80
Figure 33: Waveform measured across the load at 10km/h	91
Figure 34: Waveform measured across the load at 20km/h	93
Figure 35: Waveform measured across the load at 30km/h	94
Figure 36: Waveform measured across the load at 40km/h	95
Figure 37: Waveform measured across the load at 50km/h	96
Figure 38: General purpose diode rectifier circuit schematic	97
Figure 39: Rectified waveforms generated at 10km/h and 30km/h	98
Figure 40: Rectified and smoothed waveform measured across the load	99
Figure 41: EEPROM SFRs' and variables' contents before EE_Read method	
execution	.100
Figure 42: EEPROMM SFRs' and variables' contents after EE_Read method	
execution	.101
Figure 43: EEPROM SFRs' and variables' contents before EE_Write method	
execution	.102
Figure 44: EEPROM SFRs' and variables' contents after EE_Write method	
execution	.102
Figure 45: EUART's SFRs' and variables' contents before Transmit method	
execution	.103
Figure 46: EUART's SFRs' and variables' contents after Transmit method	
execution	.104
Figure 47: SIM UART1's output window	.104
Figure 48: Graphical user interface demonstrating reception of a vehicle deter	ct
event	.108

List of Tables

Name	Page
Table 1: Electromagnetic energy harvesters' device characteristics	16
Table 2: Piezoelectric energy harvesters' device characteristics	16
Table 3: Electrostatic energy harvesters' device characteristics	16