Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

INVESTIGATION OF LACTOSE UTILIZATION GENES IN <u>CLOSTRIDIUM ACETOBUTYLICUM</u>

by

KERRIE RUTH HANCOCK

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biotechnology at Massey University, Palmerston North

New Zealand

1988

1.6

ABSTRACT

Preparatory to constructing a genomic library of <u>Clostridium acetobutylicum</u>, cell lysis and DNA preparation conditions leading to undegraded DNA were examined. Early to mid-exponential phase cells lysed more readily than cells at late-exponential or stationary phase. Lysis was facilitated by 0.3% w/v glycine in the growth medium. Achromopeptidase was a more effective lytic enzyme than either mutanolysin or lysozyme.

All strains of <u>C</u>. acetobutylicum produced high levels of DNase activity, coinciding with the late-exponential and stationary growth phases. Chromosomal DNA isolated from all strains of <u>C</u>. acetobutylicum was rapidly degraded. This degradation was not prevented by the use of various protein inactivating agents. The adverse effect of oxygen and related radicals on the DNA of this strict anaerobe was considered to be responsible. Undegraded DNA was isolated by protecting the cells to be lysed from oxygen.

A genomic library of <u>C. acetobutylicum</u> NCIB2951 in the cosmid vector pLAFR1, constituting 3,500 recombinant clones, was prepared. Clones from this library complemented various <u>Escherichia coli</u> auxotrophic mutations, showing that <u>C. acetobutylicum</u> genes are expressible in <u>E. coli</u>.

Recombinant clones coding for the β -galactosidase of NCIB2951 were isolated from the genomic library using the chromogenic substrate X-gal. The <u>lacY</u> mutation of HB101 could not be complemented by these clones, suggesting that a classical <u>lac</u> operon system does not exist in <u>C. acetobutylicum</u>.

The β -galactosidase (<u>cbg</u>) gene was further subcloned on a 5.2 kb <u>Eco</u>RI fragment, and was expressed when the fragment was cloned in either orientation. <u>Cbg</u> was thus expressed from its own promoter. The <u>cbg</u> gene is inducible by lactose in <u>C</u>. <u>acetobutylicum</u>. When cloned into <u>E</u>. <u>coli</u>, however, this gene was expressed constitutively, the level being unaffected by the presence of the inducer, IPTG or glucose.

Six strains of <u>C. acetobutylicum</u> possessed a sequence highly homologous to the cloned β -galactosidase fragment. The β -galactosidase gene region of NCIB2951 showed only low homology to the DNA from other Gram-positive bacteria (<u>Streptococcus lactis ATCC7962</u>, <u>Streptococcus thermophilus DRI1424</u>, <u>Lactobacillus bulgaricus DRI20056</u>, <u>Lactobacillus helviticus DRI20064</u>), and no detectable homology to DNA from Gram-negative bacteria (<u>E. coli</u> DC272 or <u>Rhizobium loti</u> PN2231).

The β -galactosidase activity of the 5.2 kb fragment was inactivated by Tn5 insertion at either of two loci. Locus I (400 bp) was approximately 500 bp from locus II (approximately 3.2 kb). Maxi-cell analysis identified a 100 kDa protein as the β galactosidase gene product.

The 5.2 kb fragment was sequenced and analyzed. Three ORF's were identified. ORF1 (cbgA) coded for the structural β -galactosidase gene. Significant amino acid homology was detected with the amino acid sequences of the lacZ, ebgA (E. coli) and lacZ (Klebsiella pneumoniae). ORF2 (cbgR) coded for a small regulatory protein which shared homology with the amino acid sequence of the "0.3 kb gene" from Bacillus subtilis. ORF3 coded for a truncated protein which shared significant homology with the N-terminal amino acid regions of spo0A and spo0F (B. subtilis), two regulatory proteins of the two-component system. Hence, no lac operon exists in <u>C. acetobutylicum</u>.

ACKNOWLEDGEMENTS

I am indebted to my supervisors, Dr Ian Maddox, Dr Lindsay Pearce and Professor Barry Scott for their collective inspiration, encouragement, guidance, advice, and patience during this PhD, and for providing the facilities which enabled this study. Special thanks goes to the following people for their encouragement, advice and friendship which was greatly appreciated.

At New Zealand Dairy Research Institute (NZDRI): Audrey, Graham and Guy for your constant interest and encouragement, thanks. Also Sam and Charlotte. At Massey: Noemi, Feng Feng, and Sirinda (fellow PhDs at Biotechnology) and Mike, for your friendship.

Everyone at 'Scott Base' and the surrounding area: Caroline, Michelle, Grant, Robert, Gopher, Chris, Eva, Sharon, Trish, Mike, Lawrence, Sally, George, and Leslie for their friendship, sense of humour and for sharing the lab with me (i.e. tolerance). To those involved in the 'conspiracy' concerning my computer and I the joke was much appreciated!!!

To Eva, thanks for your assistance and tutoring concerning the SDS-PAGE.

Also to 'Garfield' and 'Footrot Flats' for keeping me sane.

I gratefully acknowledge the following grants, without which this work could not have been done: New Zealand Energy Research Development Council, and the New Zealand Dairy Research Institute.

I would also like to thank Dan Legg (NZDRI) and Robert Hickson (Scott Base) for their great patience and help in using the computers to create this thesis. Also thanks to Paul Le Ceve for his expertise with the photos, and Gail Haydock for help with the typing.

To my family, I would like to show my greatest gratitude, for their unending love and support. Dedicated to my mother

and especially to my late father

LIST OF CONTENTS

m			
Ρ	2	o	A
	а	5	Ś

ABSTRACT	(i)				
ACKNOWL	ACKNOWLEDGEMENTS				
LIST OF CO	(v)				
LIST OF FI	GURES		(xiii)		
LIST OF TA	ABLES		(xvii)		
ABBREVIA	TIONS		(xix)		
CHAPTER PART I:	1: LITER	RATURE REVIEW	1		
1.1	Introdu	ction	1		
	1.1.1	History	1		
	1.1.2	Revival of the fermentation process	4		
1.2	The Org	ganism	5		
	1.2.1	Classification	5		
	1.2.2	Morphological characteristics	5		
	1.2.3	Cultural characteristics	6		
	1.2.4	Substrate range and nutritional requirements	7		
	1.2.5	Life cycle	8		
	1.2.6	Sporulation	9		

1.3	Bioche	emistry		10
	1.3.1	Cours	e of fermentation	10
	1.3.2	Metal	polic pathways	11
		1.3.2.1	Acid producing pathways	11
		1.3.2.1	Solvent producing pathways	15
	1.3.3	Factor	rs triggering solventogenesis	16
PART II:				
1.4	Genet	ics of <u>C.</u> acc	etobutylicum	18
	1.4.1	Taxonomy	of the genus <u>Clostridium</u>	18
	1.4.2	Genetics	and strain improvement	22
		1.4.2.1	Mutagenesis	23
		1.4.2.2	Mutagenesis of <u>C.</u> acetobutylicum	23
	1.4.3	Plasmids		26
		1.4.3.1	Plasmids in <u>C. acetobutylicum</u>	26
		1.4.3.2	Construction of shuttle vectors using plasmids from Clostridium species	27
	1.4.4	Bacterion	hages	29
	1.4.5	Genetic ti	ransfer systems	30
		1.4.5.1	Protoplast regeneration	30
		1.4.5.2	Protoplast fusion	32
		1.4.5.3	Protoplast transformation	33
		1.4.5.4	Conjugation of <u>C. acetobutylicum</u>	34
1.5	Chara	cterization of	of various	36
	<u>C. acc</u>	Introduct	e Berres	30
	1.5.1	Cloping	uii f ganas from	50
	1.J.2	<u>C. acetob</u>	utylicum	37

1	
(1	711)
()	11)

PART	III:		
1.6	Lacto	se utilization	42
	1.6.1	The use of whey for the ABE fermentation	42
	1.6.2	Whey production in New Zealand	44
1.7	Pathw micro	ways of lactose utilization in organisms	47
	1.7.1	Metabolism of lactose in <u>E. coli</u> (the <u>lac</u> operon)	47
	1.7.2	Metabolism of lactose by the PEP:PTS system	49
	1.7.3	Lactose utilization in <u>C. acetobutylicum</u>	51
1.8	Cloni	ng of lactose utilization genes	52
	1.8.1	Lac operon system	52
	1.8.2	PEP:PTS system	53
PART	IV:		
1.9	Aim	of the thesis	54
CHAPTE	ER 2: ME	THODS AND MATERIALS	55
2.1	Bacterial	strains and plasmids	55
2.2	Preparati	on of culture media	59
	2.2.1 L	iquid media	59
	2.2.2 S	olid media	60
2.3	Maintena	nce of cultures	60
2.4	Growth o	f bacteria	60
2.5	Method of	of lysis	61
	2.5.1 L	ysis experiments using lysozyme	61
	2.5.2 L	ysis experiments using mutanolysin	62
	2.5.3 L	ysis experiments using achromopeptidase	62
2.6	Batch fer	mentation run	63
	2.6.1 D	Nase assay	64

(viii)

2.7	Isolati	ion of plasmid DNA	64
	2.7.1	Cleared lysate method	65
	2.7.2	Alkaline lysis method	66
	2.7.3	Rapid boiling method	67
2.8	Isolati	ion of genomic DNA	67
	2.8.1	E. coli, Streptococcus, Lactobacillus	67
	2.8.2	C. acetobutylicum	69
2.9	Digest	tion of DNA with restriction enzymes	70
2.10	Prepa	ration of packaging extracts	71
2.11	Constr <u>C.</u> ace	ruction of a pLAFR1 gene bank to etobutylicum NCIB2951	72
2.12	Horizo	ontal agarose gel electrophoresis	74
2.13	Deter	mination of molecular weights	74
2.14	Deter	mination of DNA purity	74
2.15	Purific	cation of DNA preparation	74
2.16	Elutio	n of DNA from agarose	75
2.17	Prepa	ration of dialysis tubing	75
2.18	Prepa	ration of [³² P]-labelled DNA probes	76
2.19	DNA	transfer and hybridization	77
2.20	DNA	ligation	78
2.21	Trans	formation of <u>E. coli</u>	78
2.22	Conju	gation	79
2.23	Phosp	ho-ß-galactosidase enzyme assay	79
2.24	ß-gala	ctosidase enzyme assay	80
2.25	Prepa	ration of bacteriophage lambda 467	81
2.26	Mutag Tn5	genesis of plasmid DNA with transposon	82
2.27	Maxi-	cell analysis	83
2.28	Protei	n gel analysis	84
2.29	Prepa	ration of Bal 31 deletions	85

2.30	Large-	-scale preparation of M13 RF DNA	86
2.31	Prepar	ration and transformation of E. coli cells	87
2.32	Hybrid	dization of M13 plaques	88
2.33	Prepar	ration of recombinant M13 ss DNA templates	88
2.34	Prepar	ration and assembly of glass plates	89
2.35	Pourir	ng and running of sequencing gels	90
2.36	Prepar	ration of the NTP mixes	91
2.37	Prepar	ration of [³⁵ S]-labelled M13 templates	92
2.38	Seque	ncing with Sequenase kit	93
2.39	Forma	ation of the sequence	93
CHAPTE	ER 3:EI EN <u>C.</u>	FFECT OF VARIOUS BACTERIOLYTIC NZYMES ON THE LYSIS OF <u>ACETOBUTYLICUM</u>	
3.1	Introd	uction	94
	3.1.1	Bacterial cell walls	94
	3.1.2	C. acetobutylicum cell envelope	95
	3.1.3	Peptidoglycan	98
	3.1.4	Bacteriolytic enzymes	98
	3.1.5	Aim	105
3.2	Result	ts	105
3.3	Discus	ssion	106
	3.3.1	Effect of glycine of the medium	107
	3.3.2	Culture age	107
	3.3.3	Peptidoglycan sensitivity and accessibility	109
3.4	Summ	ary	112

CHAPTER 4:PREPARATION OF A GENOMIC LIBRARY OF <u>C. ACETOBUTYLICUM</u> NCIB2951

4.1 Introduction		ction	113
	4.1.1	Aim	114

			(x)
			Page
4.2	Result	S	114
	4.2.1	Difficulties in preparation of the genomic library	114
	4.2.2	Preparation of the genomic library	120
4.3	Discus	ssion	123
	4.3.1	DNase activity	124
	4.3.2	Preparation of genomic library	127
4.4	Summ	ary	128
CHAPTI	ER 5:ID IZ GI N	DENTIFICATION AND CHARACTER- LATION OF LACTOSE UTILIZATION ENES IN <u>C. ACETOBUTYLICUM</u> CIB2951	
5.1	Introd	uction	129
	5.1.1	Lactose utilization of C. acetobutylicum	129
	5.1.2	Aim	130
5.2	Result	S	130
	5.2.1	Complementation of HB101 auxotrophic mutations	130
	5.2.2	Attempts to isolate the <u>pbg</u> gene from the <u>C</u> . <u>acetobutylicum</u> genomic library	133
	5.2.3	Attempts to select for the <u>C. acetobutylicum</u> <u>pbg</u> gene by expression in <u>E. coli</u>	135
	5.2.4	Detection of β -galactosidase gene in <u>C. acetobutylicum</u>	136
	5.2.5	Restriction enzyme mapping of pKH107	140
	5.2.6	Expression of <u>cbg</u> in <u>E. coli</u> in the presence of different carbon sources.	140
	5.2.7	Detection of β -galactosidase genes in other <u>C. acetobutylicum</u> strains using hybridization	142
	5.2.8	Degree of homology of the <u>C. acetobutylicum</u> NCIB2951 <u>cbg</u> gene region with DNA from other bacteria	144

1	• \
()	(1)
<u>۱</u>	<u>, , , , , , , , , , , , , , , , , , , </u>

5.3	Discus	ssion	146
	5.3.1	Complementation of <u>E. coli</u> auxotrophs with the <u>C. acetobutylicum</u> genomic library	146
	5.3.2	Attempts to isolate the <u>C. acetobutylicum</u> <u>pbg</u> gene	147
	5.3.3	Cloning of the cbg gene from C. acetobutylicum	148
5.4	Summ	ary	151
СНАРТ	ER 6:TH Ol B-0	RANSPOSON TN5 SITE-DIRECTED MUTAGENESIS F <u>C. ACETOBUTYLICUM</u> NCIB2951 GALACTOSIDASE GENE	
6.1	Introd	uction	152
	6.1.1	Transposons	152
	6.1.2	Aim	153
6.2	Result	s	154
	6.2.1	Site-specific mutagenesis of plasmid pKH107	154
	6.2.2	Physical analysis of plasmid derivatives	156
	6.2.3	Examination of the ß-galactosidase gene function	165
	6.2.4	Maxi-cell analysis	165
6.3	Discus	sion	168
	6.3.1	Tn5 insertional specificity	168
	6.3.2	Identification of the two gene loci for β-galactosidase expression	170
	6.3.3	Gene products of the B-galactosidase gene region	172
6.4	Summ	ary	172
СНАРТ	ΈR 7:ΝΙ ΟΙ β-	UCLEOTIDE SEQUENCE AND GENETIC RGANIZATION OF THE 5.2 KB <u>ECO</u> RI GALACTOSIDASE FRAGMENT	
7.1	Introd	uction	173
	7.1.1	M13 biology	173
	7.1.2	Modification of M13 for sequencing	173

	7.1.3	Generation of insert templates	176
	7.1.4	Aim	177
7.2	Result	ts	177
	7.2.1	Preparation of insert DNA	177
	7.2.2	Nuclease Bal 31 digestion	180
	7.2.3	Nucleotide sequence results	181
7.3	Discus	ssion	214
	7.3.1	Analysis of the 5.2 kb fragment	215
	7.3.2	Nucleotide content and codon preference	
		analysis	220
	7.3.3	Amino acid content	227
7.4	Summ	ary	229
CHAPT	ER 8:FI	NAL DISCUSSION AND CONCLUSIONS	230
BIBLIO	GRAPH	IY	235

(xii) <u>Page</u>

(xiii)

LIST OF FIGURES

1.1	Typical outline of an ABE fermentation	12
1.2	Biochemical pathways in C. acetobutylicum	13
1.3	Phylogenetic relationship between Clostridium	21
1.4	Utilization of waste whey within New Zealand	43
1.5	Pathways of lactose utilization in bacteria	45
1.6	The lactose operon in <u>E. coli</u>	46
3.1	Structure of the cell wall of C. acetobutylicum	96
3.2	The general structure of cell wall peptidoglycan and enzyme sites	97
3.3	Lysis results of <u>C</u> . <u>acetobutylicum</u> cells of various growth phases grown in the absence of glycine using lysozyme	100
3.4	Lysis results of <u>C. acetobutylicum</u> cells of various growth phases grown in the presence of glycine using lysozyme	101
3.5	Lysis results of <u>C. acetobutylicum</u> cells of various growth phases grown in the absence of glycine using mutanolysin	102
3.6	Lysis results of <u>C. acetobutylicum</u> cells of various growth phases grown in the presence of glycine using mutanolysin	103
3.7	Lysis results of <u>C.</u> <u>acetobutylicum</u> cells of various growth phases grown in the absence of glycine using achromopeptidase	104
4.1	Detection of extracellular DNase activities in various strains of <u>C. acetobutylicum</u>	115
4.2	Levels of intracellular and extracellular DNase activity in a <u>C. acetobutylicum</u> fermentation NCIB2951	116
4.3	Analysis by gel electrophoresis of a random selection of cosmid clones from the genomic library of <u>C. acetobutylicum</u> NCIB2951	122

1	٠	>
()	11	1
1		' /

5.1	Analysis by agarose gel electrophoresis of cosmids isolated from the <u>C. acetobutylicum</u> NCIB2951 genomic library which complement the <u>proA2</u> , <u>leuB6</u> , and <u>thi</u> auxotrophic mutation present in <u>E. coli</u> HB101	131
5.2	Hybridization of <u>L</u> . <u>casei pbg</u> gene region to an <u>Eco</u> RI genomic digest of <u>C</u> . <u>acetobutylicum</u> NCIB2951	134
5.3	Restriction enzyme digests of cosmids that expressed ß-galactosidase activity	136
5.4	Restriction enzyme map of the 5.2 kb $\underline{\text{Eco}}$ RI fragment containing the β -galactosidase gene region of <u>C. acetobutylicum</u> NCIB2951	139
5.5	Hybridization of <u>C. acetobutylicum</u> NCIB2951 ß-galactosidase gene regions from pKH107 to <u>Eco</u> RI genomic digests of other <u>C. acetobutylicum</u> strains	143
5.6	Hybridization of the 5.2 kb <u>Eco</u> RI fragment containing the ß-galactosidase gene region of <u>C. acetobutylicum</u> NCIB2951 to genomic and plasmid DNA of other Gram-positive and Gram-negative bacteria	145
6.1	Agarose gel electrophoresis of <u>Eco</u> RI digests of Tn5-mutagenized pKH107 derivatives	155
6.2	Diagram of a generalized pKH107 derivative containing a Tn5 insertion within the 5.2 kb <u>Eco</u> RI fragment, showing the area used as probe	157
6.3	Hybridization of the 3.2 kb <u>EcoRI/HindIII</u> fragment from pSUP202 to plasmids carrying the mutagenized 5.2 kb <u>Eco</u> RI β-galactosidase fragment of NCIB2951 (A)	158
6.4	Hybridization of the 3.2 kb <u>EcoRI/HindIII</u> fragment from pSUP202 to plasmids carrying the mutagenized 5.2 kb <u>Eco</u> RI β-galactosidase fragment of NCIB2951 (B)	159

6.5	Hybridization of the 3.2 kb <u>EcoRI/Hind</u> III fragment from pSUP202 to plasmids carrying the mutagenized 5.2 kb <u>Eco</u> RI β-galactosidase fragment of NCIB2951 (C)	160
6.6	Hybridization of the 3.2 kb <u>EcoRI/Hind</u> III fragment from pSUP202 to plasmids carrying the mutagenized 5.2 kb <u>Eco</u> RI β-galactosidase fragment of NCIB2951 (D)	161
6.7	Map of pKH107 containing the 5.2 kb <u>Eco</u> RI ß-galactosidase fragment of NCIB2951 with the positions of the Tn5 inserts shown	162
6.8	Autoradiograph of a 6% SDS-PAGE gel showing the plasmid-encoded proteins produced by <u>in vivo</u> maxicell [³⁵ S]-methionine labelling	167
7.1	Diagram of the M13 life cycle	174
7.2	Diagram of modified M13	175
7.3	Sequencing strategy for the 5.2 kb EcoRI fragment	178
7.4	Nucleotide sequence of the 5.2 kb EcoRI fragment	182
7.5	Diagram of analysis of sequence using FRAMES	189
7.6	Nucleotide sequence and deduced amino acid sequence for ORF1 (cbgA)	192
7.7	Comparison of various B-galactosidase amino acid sequences	197
7.8	Comparison of various β -galactosidase simplified amino acid sequences	200
7.9	Nucleotide sequence and deduced amino acid sequence for ORF2 ($cbgR$)	205
7.10	Comparison of the amino acid sequences of CbgR and "0.3 kb gene"	207
7.11	Comparison of the simplified amino acid sequences of CbgR and the "0.3 kb gene"	207

		(xvi)
		Page
7.12	Nucleotide sequence and deduced amino acid sequence for ORF3	210
7.13	Comparison of the amino acid sequences of ORF3, Spo0A, and Spo0F	212
7.14	Comparison of the simplified amino acid sequences of ORF3, Spo0A, and Spo0F	213

LIST OF TABLES

1.1	Carbohydrates fermented by C. acetobutylicum	7
1.2	Homology studies between Clostridium species	18
1.3	Classification of <u>Clostridium</u> species	20
1.4	Mutants of C. acetobutylicum	24
1.5	Plasmids detected in C. acetobutylicum	27
1.6	Summary of experiments into shuttle vectors	28
1.7	Cloned genes of C. acetobutylicum	38
2.1	Bacterial strains used in this project	55
3.1	Differences in the cell wall components between Gram-positive and Gram-negative bacteria	94
3.2	Morphology of <u>C</u> . <u>acetobutylicum</u> cells at various stages of growth	108
4.1	Investigation of C. acetobutylicum DNA stability	119
5.1	Expression of <u>C</u> . <u>acetobutylicum</u> β -galactosidase activity in <u>E</u> . <u>coli</u>	141
5.2	Detection of β-galactosidase activity in various strains of bacteria using lactose selective medium supplemented with X-gal	144
6.1	β-galactosidase activity in Tn5-mutagenized derivatives of pKH107	163
7.1	Plasmids used for the preparation of Bal31 deletion derivatives of the 5.2 kb EcoRI fragment	179
7.2	Table of Shine-Dalgarno and putative promoter sequences for the three ORF's	190

		(xviii)
		Page
7.3	Percentage (G+C) of the genomic DNA of specific bacteria + β -galactosidase genes	215
7.4	Codon usage in different ORF's of genes from <u>Clostridium</u> species, compared to <u>B. subtilis</u> and <u>E. coli</u>	222
7.5	Comparison of codons used in ß-galactosidase genes from specific bacteria	224
7.6	Frequency (%) of amino acid utilization in proteins encoded by specific bacteria	228

ABBREVIATIONS

pfu	plaque-forming units
Ар	ampicillin
Cm	chloramphenicol
Km	kanamycin
Tc	tetracycline
SDS	sodium dodecyl sulphate
PEG	polyethylene glycol
kDa	kilodaltons
MDa	megadaltons
RF	replicative form
TTC	2,3,5 triphenyl tetrazolium chloride
X-gal	5-bromo-4-chloro-3-indoyl galactopyranoside
SS	single stranded
DS	double stranded
IPTG	isopropyl thiogalactopyranoside
ORF	open reading frame
SD	Shine-Dalgarno sequence

kb

kilobases