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Abstract

The main objective of this thesis is the e�cient numerical description of strongly

correlated quantum gases. Due to the complex many-body structure of the wave

function, usually, numerical methods are required for its computation. The exact

diagonalization approach is considered, where the energies and the wave functions

are obtained by diagonalizing the Hamiltonian in a many-body basis. The dimen-

sion of the space increases combinatorially with the number of particles and the

number of single-particle basis functions, which limits the characterization of few-

body systems to intermediate interactions. One of the main components of the

convergence rate originates from the particle-particle interaction itself. The bare

contact interaction introduces a singularity in the wave function at the particle-

particle coalescence point. This is responsible for the slow convergence in the

�nite basis expansion in one dimension and it even causes pathological behavior

in higher dimensions.

Firstly, the Gaussian interaction potential is examined as an alternative pseu-

dopotential. After the description of the accurate calculation of the s-wave scat-

tering length of this potential, the convergence properties are investigated. As

this function is smooth, by construction the wave function is free from any sin-

gularity implying an exponentially fast convergence rate. If the resolution of the

basis set is not �ne enough, the �nite-range pseudopotential is indistinguishable

from the pathological contact potential. Through the example of few particles in

a two-dimensional harmonic trap, we show that in order to reach the necessary

resolution, the number of harmonic-oscillator single-particle basis functions must

increase quadratically with the inverse characteristic length of the pseudopotential.

This scaling property combined with the combinatorial growth of the many-body

space makes the physically realistic short-range potentials computationally inac-

cessible.

We have also applied the so-called transcorrelated approach, where the singular

part of the wave function is isolated in a Jastrow-type factor. This factor can be

transformed into the Hamiltonian reducing the irregularity of the eigenfunction



ii

and improving the convergence rate. We will show through the example of the

homogeneous gas in one dimension that this transformation e�ciently improves

the convergence from M−1 to M−3, where M is the number of the single-particle

plane-wave basis functions.
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Chapter 1

Introduction

The study of strongly correlated matter has attracted increasing research in-

terest in the past decades [1]. These systems cannot be explained with a simple

single-particle theory due to a signi�cant role of the particle-particle interaction

term. Therefore, a many-body theory should be considered to obtain a correct

description even at a qualitative level. It is essential to understand the underlying

physics of these systems in order to explain such interesting phenomena as high-

temperature superconductivity [2�5] or the fractional quantum Hall e�ect [6�8].

Moreover, the same theory is required for the description of exotic astronomical

objects like neutron stars [9�12].

Due to the complexity of many-body systems, the theoretical description be-

comes extremely di�cult. It is widely believed that the fundamental phenomenon

of high-temperature superconductivity can be modeled with the Hubbard model

in two dimensions [13], where only the on-site and nearest neighbor interactions

are considered. Even in this simple model there are no exact analytical solutions

available, hence e�cient numerical approaches are required [14]. Unfortunately,

all of these techniques scale exponentially with the size of the system, restricting

the applicability to the few-particle and intermediate interaction regimes.

An alternative solution can be an experimental realization of these strongly cor-

related systems in a well-controlled laboratory environment on an analog quantum

simulator [15]. Ultracold atoms have been widely used for these purposes thanks

to the experimental developments of the past two decades [16]. The optical and

1
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magnetic traps can be �nely tuned to mimic the desired external potential [16, 17].

Moreover, it is also possible to con�ne the system to lower dimensions [18] and

to even examine dimensional crossovers [19]. Additionally, due to Feshbach reso-

nances [20] the particle-particle interaction strength can be well-controlled with an

external magnetic �eld. In this way, they have managed to create and dissociate ul-

tracold molecules [21], realize strongly interactive two-dimensional systems [22, 23]

or perform direct examinations of the occupation numbers in the two-dimensional

Hubbard model [24].

Another important experimental development is the microtrap [25], where the

ultracold few-particle regime becomes accessible. This enables the investigation

of the transition from few- to many-body regimes [26, 27] or examination of pair-

ing [28] and the e�ect of the quantum statics in few-particle systems [29]. These

experiments provide signi�cant developments for the description of strongly cor-

related materials as they have the potential to realize the fractional quantum Hall

e�ect, where it is believed that the fundamental phenomenon can be observed in

the strongly interacting few-particle regime [30, 31].

The theoretical description of strongly correlated systems is usually done by

using e�cient numerical methods. One of the most elegant approaches is based on

the Bethe ansatz [32], which provides exact results by numerically solving a non-

linear set of equations [33�35]. This approach is restricted to the homogeneous

gas in one dimension. Although the strongly attractive limit of inhomogeneous

systems can be accurately approximated with this approach [36�39] for the general

cases and especially for higher dimensions a di�erent approach is required.

As bosons are symmetric under particle exchange, the ground state of the wave

function is nodeless. The wave function can be easily calculated with polynomially

scaling Quantum Monte Carlo (QMC) [40] approaches. As fermions are antisym-

metric under particle exchange the wave function has several nodes, where the

wave function can change sign. In this case the wave function and the energy

cannot be calculated with a polynomially scaling algorithm, which is frequently

referred to as the sign-problem [41]. A popular solution to this problem is to

expand the wave function in terms of antisymmetric many-body basis functions
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(determinants) where the antisymmetry of the particles is satis�ed. However, the

sign problem can be still present due to the unknown sign of the expansion coef-

�cients [41, 42]. Apart from some special cases [43, 44] they can be determined

only with those techniques, which scales exponentially with the size of the system

[41].

The most straightforward way to determine the energy and the wave function

is the exact diagonalization approach [45, 46], where the Hamiltonian is diagonal-

ized in a many-body basis. This basis set is usually constructed by selecting a

single-particle basis set, where all the con�gurations with a given particle number

are produced. The number of the many-body basis functions increases combinato-

rially with the number of particles and the number of the single-particle functions.

Generally, for larger interactions more basis functions are needed, limiting the ex-

act diagonalization approach to few-body systems and weakly correlated regimes

[47].

In order to improve this method the coe�cients are determined with e�cient

numerical techniques such as Auxiliary Field Quantum Monte Carlo [48, 49], Full

Con�guration Interaction Quantum Monte Carlo [50, 51], Matrix Product State

approaches [52], Arti�cial Neural Network [53]. Although these methods provide

signi�cant improvements compared to the exact diagonalization approach they are

still limited by the exponential scaling of the Hilbert space. Our principal goal in

this thesis is to develop and investigate possible methodologies, which can decrease

the necessary number of single-particle basis functions extending the applicability

of these approaches to larger particle numbers and stronger interactions.

This thesis is organized as follows. In the �rst part of Chapter 2, we discuss the

theoretical background of the particle-particle interaction models. We consider

interaction and temperature regimes, where the s-wave scattering length alone is

enough to describe the interaction between ultracold atoms and we can substitute

the complex interaction potential with a simpler pseudopotential. Then we discuss

one of the most popular pseudopotentials, the contact potential, in detail. This

potential leads to a singularity in the wave function or in its �rst derivative causing

a slow convergence rate in one dimension and straightforward application of it
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leads to pathological results in higher dimensions. In the last part of this chapter,

we brie�y overview the exact diagonalization approach. Finally, we discuss the

imaginary time propagation technique, which is used in the further chapters of

the thesis.

In Chapter 3, the �nite-range Gaussian pseudopotential is considered. We

provide accurate expressions for the s-wave scattering length in one, two and three

spatial dimensions. We �rst describe a numerical procedure to compute the value

of the s-wave scattering length from the parameters of the Gaussian but �nd that

its accuracy is limited in the vicinity of singularities that result from the formation

of new bound states. We then derive simple analytical expressions that capture

the correct asymptotic behavior of the s-wave scattering length near the bound

states. Expressions that are increasingly accurate in wide parameter regimes are

found by a hierarchy of approximations that capture an increasing number of

bound states. The small number of coe�cients that enter these expressions are

determined from accurate numerical calculations. The new approximate formulae

combine the advantages of the numerical and approximate expressions, yielding an

accurate and simple description from the weakly to the strongly interacting limit.

In Chapter 4. we investigate the convergence properties of the above mentioned

Gaussian potential. As this function is smooth the �nite basis set expansions are

guaranteed to converge exponentially fast. Nevertheless, if the �nite basis expan-

sion cannot resolve the �nite-range of the Gauss potential, it is indistinguishable

from the contact interaction leading to the same pathological behavior. We discuss

scaling relations for the required size of the basis set and demonstrate the basis

set convergence on the example of a two-dimensional system of few fermions in a

harmonic trapping potential. In particular, we show that the number of harmonic-

oscillator basis functions needed to reach the regime of exponential convergence

for a Gaussian pseudopotential scales with the fourth power of the pseudopotential

length scale, which can be improved to quadratic scaling when the basis functions

are re-scaled appropriately. Numerical examples for three fermions with up to a

few hundred single-particle basis functions are presented and implications for the

feasibility of accurate numerical multi-particle simulations of interacting ultra-cold
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atom systems are discussed.

In Chapter 5 we apply a di�erent philosophy to improve the convergence prop-

erties. The transcorrelated approach is applied, where the singularity of the wave

function is treated exactly and folded into the many-body Hamiltonian with a

similarity transformation. The resulting transcorrelated Hamiltonian is not Her-

mitian but can be treated numerically with a standard projection approach. The

smoothness of the wave function increases by at least one order and thus the con-

vergence rate for the ground-state energy improves. By numerical investigation of

a one-dimensional gas of spin-1
2
fermions, we �nd the error in the transcorrelated

energy to scale as M−3 with a single-particle basis of M plane waves compared to

M−1 for the expansion of the original Hamiltonian and M−2 using conventional

lattice renormalization.

Finally, in Chapter 6, the results of the two methodologies are concluded and

compared.

1.1 Publication list

In Chapters 3-5 we discuss independent research projects, which were published

in scienti�c journals. The contents of these chapters completely agree with the

articles below, only editorial works were performed to match the style of the thesis.

• Chapter 3: Peter Jeszenszki, Alexander Yu. Cherny, and Joachim Brand,

s -wave scattering length of a Gaussian potential, Physical Review A 97,

042708 (2018)

• Chapter 4: Peter Jeszenszki, Ali Alavi and Joachim Brand, Are smooth

pseudopotentials a good choice for representing short-range interactions?,

Physical Review A 99, 033608 (2019)

• Chapter 5: Peter Jeszenszki, Hongjun Luo, Ali Alavi and Joachim Brand

Accelerating the convergence of exact diagonalization with the transcorrelated

method: Quantum gas in one dimension with contact interactions, Physical

Review A 98, 053627 (2018)

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.042708
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.042708
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.033608
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.053627
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.053627


Chapter 2

Theoretical Background

2.1 Description of the interaction between ultra-

cold atoms

In this section, the physical interaction between the ultracold atoms is dis-

cussed through the perspective of the scattering theory. It will be shown that at

su�ciently low temperature the physics can be described by only one parameter,

the so-called s-wave scattering length. This parameter is used to de�ne pseudopo-

tentials, which can describe the interaction between the particles more e�ciently.

The contact pseudopotential and its e�ect on the wave function are discussed in

detail at the end of this section.

2.1.1 Approximation of the interaction potential with scat-

tering theory

We are considering a dilute atomic gas at low temperatures (typically on a µK

scale), which is trapped in a magnetic or optical trap. Thus, the full Hamiltonian

contains, besides the kinetic term, the external potential due to the magnetic

and optical �elds and the particle-particle interaction term. The most general

description of the latter requires the Hamiltonian to explicitly contain all the

possible interactions between the electrons and the nuclei constituting the atoms.

In practice such a detailed description is not necessary, as at low temperature

6
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ionization or internal atomic excitation processes are negligible [54, 55]. Hence,

these atoms can be well approximated by composite particles, where the total spin

of the composite particle determines the permutation symmetry (Fermi or Bose)

to be applied in a quantum mechanical description.

The interaction potential between the atoms is described by a complicated

many-body potential, which is di�cult to treat with theoretical methods. There-

fore, let us investigate the main contributions of this interaction in the usual

experimental conditions. The traps are �nely tuned to speci�c hyper�ne states

[17, 56], therefore, in order to avoid the loss of particles it is required to eliminate

every process, which leads to di�erent hyper�ne states [17, 54]. These are typically

the particle-particle collisions, where more than two particles are involved. The

frequency of these events are mainly determined by the probability to �nd three or

more particles within the volume R3, where R is the range of the interaction [17].

This probability can be controlled by the particle-number density, which should

be su�ciently low to avoid these collision processes [17].

As the two-body collisions dominate the particle-particle interactions, we can

simplify the complicated many-body interaction potential to pair interactions.

Therefore, the Hamiltonian can be written in the following form,

H =
N∑
i

(
− ~2

2m
∇2
i + Vtrap(ri)

)
+

N∑
i<j

V (|ri − rj|) , (2.1)

where term − ~2
2m
∇2
i is the kinetic energy operator of atom i, Vtrap is the trapping

potential and V (|ri − rj|) is the interaction potential between the atoms.

The determination of the pair potential is numerically demanding due to the

complicated interaction between the atoms [54, 57]. Moreover, the experimentally

measurable quantities are sensitive to the potential curve, which makes it di�cult

to compare the results of the theoretical calculations and the experimental mea-

surements [54, 57]. Therefore, scattering theory is applied to introduce a simpler

pseudopotential instead of the physical interaction potential.

In order to determine the main properties of the potential during the scattering,
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let us investigate a two-particle system without trapping potential in three dimen-

sions. The Hamiltonian can be separated into centre-of-mass and relative motion.

The �rst describes the motion of the free particle, whereas the latter considers the

non-trivial interaction potential,

Hrel = − ~2

2µ
∇2 + V (r) , (2.2)

where µ = m/2 is the reduced mass, and r is the distance between the particles.

In a scattering process we consider an incoming plane wave from one of the

spatial direction with momentum k and an outgoing scattered wave, ψscatt,

ψ = eikz + ψscatt ,

where the spatial direction z is chosen for the direction of the incoming wave. The

scattered wave at large interparticle separation can be expressed with a spherical

wave,

ψ = eikz + f(ϑ)
eikr

r
, (2.3)

where f(ϑ) is the scattering amplitude, and ϑ is the scattering angle, which is the

angle between the relative momenta before and after the scattering. Due to the

spherical symmetry of the Hamiltonian, the scattering amplitude depends only

on the scattering angle, which also imposes an axial symmetry on the wave func-

tion. The scattering amplitude includes all the e�ects of the interaction potential

during the scattering process. Therefore, in the following we concentrate on the

determination of f(ϑ) in the low temperature limit, when k → 0.

The wave function can be expanded in partial waves [17],

ψ =
1

r

∞∑
`=0

A` P` [cos (ϑ)]u3D,`(r), (2.4)

where A` is the expansion coe�cient, u3D,`(r)/r describes the radial part of the

wave function, and P`(x) is the Legendre polynomial [58]. The radial part of the
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wave function is determined by a di�erential equation [59],

[
− ~2

2µ

d2

d2r
+
` (`+ 1) ~2

2µr2
+ V (r)

]
u3D,`(r) = E u3D,`(r) , (2.5)

where E = ~2k2/2µ is the kinetic energy of the incoming wave.

Assuming that the potential V (r) has a �nite range R, the function u3D,`(r)

can be given as a sine function [17, 54, 60],

u3D,`(r)
r>>R∼ 1

k
sin
[
kr − π

2
`+ δ`(k)

]
, (2.6)

where ∼ stands for the asymptotical equality. The e�ect of the scattering potential

is encoded in δ`(k), which is called the phase shift. The relation between the scat-

tering amplitude and the phase shift can be determined by comparing Eqs.(2.3),

(2.4), and (2.6) [17, 61],

f (ϑ) =
∞∑
`=0

(2`+ 1)f` P` [cos (ϑ)] , (2.7)

f` =
1

k cot (δl) + ik
(2.8)

where f` is the partial scattering amplitude.

The weight of the di�erent partial scattering amplitudes can be determined by

considering Eq.(2.5). Note that the only di�erence between the `-states appears in

the so-called repulsive centrifugal potential ` (`+ 1) ~2/2µr2, which increases with

`. This potential keeps the particles with higher angular momenta further apart,

which in turn decreases the contribution of the scattering processes with larger

angular momentum. It can be explicitly expressed in the phase shift [60, 61],

δ`
k→0∼

k
2`+1 if ` < (n− 3)/2 ,

kn−2 if ` ≥ (n− 3)/2 ,

(2.9)
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where V (r)
r→∞∼ r−n. The ultracold atoms interact with van der Waals interaction,

where n = 6, which provides the following expressions for the phase shift:

δ0
k→0∼ k , (2.10)

δ1
k→0∼ k3 , (2.11)

δ2
k→0∼ k4 k→0∼ δ3

k→0∼ δ4
k→0∼ . . . . (2.12)

The values of δ` decreases with the angular momentum for small k from ` = 0 to

` = 2, then the values of δ` at ` ≥ 2 will be asymptotically equivalent.

The argument above means that it is enough to consider the smallest possible `

state, which is determined by the permutational symmetry of the wave function. In

case of bosons, the wave functions is symmetric under particle exchange, which can

be represented in the wave function of the relative motion (2.4) by a 180◦ rotation

in the scattering angle. Therefore, using the symmetry of Legendre polynomials

[58],

P` [cos (ϑ)] = (−1)` P` [cos (π − ϑ)]︸ ︷︷ ︸
− cos(ϑ)

,

it can be seen that only the even values of ` are allowed as for these states there is no

sign-�ip under particle exchange. Hence, the lowest possible angular momentum

state corresponds to ` = 0 (s-wave). In the case of two identical fermions, the

wave function is antisymmetric under particle exchange. Thus, it allows only odd

values of ` with the lowest angular momentum ` = 1 (p-wave).

In this thesis, we consider the spin-1/2 Fermi gas, where besides the previously

discussed interaction between identical fermions, another interaction is present

between fermions with di�erent spin. In this case the spatial part of the wave

function is symmetric under particle exchange, therefore similarly to the bosonic

case they interact via the s-wave process. As the contribution of the s-wave

scattering is much larger then the contribution from the p-wave scattering, the

interaction between the identical fermions is negligible.
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An explicit expression for f0 can be obtained by considering the limit of k → 0

in Eq.(2.5), where the e�ect of V (r) is negligible,

− ~2

2µ

d2

d2r
u3D,0(r; k = 0) = 0 . (2.13)

This equation can be solved,

u3D,0(r; k = 0) = C(r − a3D
s ) , (2.14)

where C and a3D
s are just two arbitrary constants.

Calculating the logarithmic derivative of Eq.(2.14), we can eliminate the coef-

�cient C,

u′3D,0(r; k = 0)

u3D,0(r; k = 0)
=

1

r − a3D
s

. (2.15)

The same logarithmic derivative can be calculated for Eq.(2.6), where the limit of

k → 0 should give back Eq.(2.15),

lim
k→0

[
u′3D,0(r)

u3D,0(r)

]
= lim

k→0
[k cot (kr + δ0)] =

1

r − a3D
s

. (2.16)

Applying the addition theorem for the cotangent function, and considering only

the leading order term of tan (kr) = kr+O(k3), the equation (2.16) can be further

simpli�ed,

lim
k→0

[
u′3D,0(r)

u3D,0(r)

]
= lim

k→0

[
1

r + 1
k cot(δ0)

]
=

1

r − a3D
s

.

Hence, the relationship between δ0 and a3D
s can be easily determined,

lim
k→0

k cot (δ0) = − 1

a3D
s

, (2.17)
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where a3D
s is called the three dimensional scattering length. Substituting it into

Eq.(2.8), the scattering amplitude in the zero energy limit can be determined,

f0 = −a3D
s .

Of course, in reality the momentum of the particles is larger than zero. For

bosons it is predominantly caused by the �nite temperature. For fermions there

is a larger e�ect due to the Pauli exclusion principle. Therefore, in some special

cases as the narrow Fesbach resonance [56, 62], the momentum dependent terms

should also be considered in the phase shift (2.17) and it can be taken into account

with a �nite range expansion [63, 64].

In spite of these, most of the collisions with the same value of a3D
s cannot be

distinguished from each other at low energies [17, 56, 62]. Therefore, we choose the

pseudopotential in a way to have a simple from for the theoretical calculations and

to reproduce the desired value of a3D
s . As a3D

s can be measured with experimental

techniques it provides an easy way to compare the theoretical calculations with

the experimental measurements [17, 54].

Generalizations of pseudopotentials in lower dimensions are introduced in a

similar manner. The one-dimensional scattering length, a1D [65], and the two-

dimensional s-wave scattering length, a2D
s [66, 67], are applied to parametrize the

pseudopotential [65].

2.1.2 Contact interaction

One of simplest possible pseudopotentials is the contact pseudopotential, where

the particles only interact if they are on top of each other. For the sake of simplicity

let us start with particles in one dimension, where the contact interaction can be

expressed with a Dirac-δ function [33, 65]

V1D(x) = − 2~2

ma1D
δ(x) . (2.18)

The Dirac-δ function is singular at the particle-particle coalescence point, x = 0

leading to an irregular behavior in the wave function [65]. This can be easily
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shown for two particles in a homogeneous system. The Schrödinger equation has

the following form in the relative-motion coordinate (x):

− ~2

2µ

d2

dx2
ψ1D(x)− ~2

µa1D
δ(x)ψ1D(x) = Eψ1D(x) ,

where µ(= m/2) is the reduced mass. Let us take the integral of this equation

over a small interval [−ε, ε] around the singularity,

− ~2

2µ

ε∫
−ε

d2

dx2
ψ1D(x)dx− ~2

µa1D

ε∫
−ε

δ(x)ψ1D(x)dx = E

ε∫
−ε

ψ1D(x)dx . (2.19)

Assuming that the wave function is continuous and �nite everywhere, as ε → 0

the right-hand side of Eq.(2.19) vanishes leading to a step in the �rst derivative,

− 2

a1D
ψ1D(0) = lim

ε→0

[
d
dx
ψ1D(x)

∣∣∣∣
x=ε

− d
dx
ψ1D(x)

∣∣∣∣
x=−ε

]
. (2.20)

It means the wave function has a cusp at the particle-particle coalescence point,

which can be described by an absolute value function,

ψ1D(x) =

(
1− |x|

a1D

)
ψ1D(0) +O

(
x2
)
. (2.21)

The expressions (2.20) and (2.21) can be considered as boundary conditions for

the wave function. If the boundary conditions are satis�ed, the eigenfunction can

be determined by considering only the interaction free Hamiltonian. This idea was

�rst introduced in the context of nuclear physics to describe the deuteron (diplon)

by Hans Bethe and Rudolf Peierls [68], and it is thus referred to as Bethe-Peierls

boundary conditions.

The boundary conditions have been successfully applied in one dimension as

they lead to exactly solvable models for the homogeneous gas [33�35] and for

the trapped systems in the strongly interacting limit [36, 38, 69]. However, in

more general cases, due to the e�ect of the trap the direct implementation of the

boundary conditions is di�cult. In these cases except of the two-body system [70]

the exact solutions are unknown. Therefore, instead of introducing the boundary
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conditions in the wave function, the Dirac-δ pseudopotential (2.18) is considered

in the Hamiltonian. Approximating the wave function with a �nite basis expan-

sion, perturbative and exact diagonalization approaches can be applied for the

determination of the wave function and the energy [47, 71, 72].

In higher dimensions, the representation of the contact potential is not as

straightforward as in one dimension. However, before we discuss the possible

pseudopotentials in more details let us start with the Bethe-Peierls boundary con-

ditions in two and three dimensions [73],

ψ2D(r) = ln

(
r

a2D
s

)
+O (r) , (2.22)

ψ3D(r) =
a3D
s

r
− 1 +O (r) . (2.23)

Comparing these expressions with the one-dimensional case in Eq.(2.21), where

only the �rst derivative of the wave function was discontinuous, in higher dimen-

sions the wave functions is already singular. This extreme behavior at the bound-

aries restricts the application of the boundary conditions to two- and three-body

systems [74, 75].

For larger particle numbers, a zero-range pseudopotential has to be de�ned. In

higher dimensions the bare Dirac-δ potential cannot be applied straightforwardly.

As the wave function is divergent at the coalescence point it would lead to in�-

nite potential energy, which causes the lack of scattering processes for repulsive

interaction and the nonphysical divergence of the energy for attractive interactions

[76, 77]. Therefore, the Dirac-δ potential has to be regularized with a di�erential

operator ∂
∂r
, which handles the singularity in the wave function and reproduces

the correct s-wave scattering length [78�80],

V2D(r) = − 2π~2

m ln (a2D
s )

δ (r)

[
1− ln

(
a2D
s

)
r
∂

∂r

]
, (2.24)

V3D(r) =
4πa3D

s ~2

m
δ(r)

∂

∂r
r . (2.25)

These potentials have been successfully applied in the description of few-body

systems [70] or in the perturbation theory of ultracold atomic gas [78]. However,
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evaluating the e�ect of the potentials (2.24) and (2.25) over the smooth functions,

we obtain back the matrix elements of the pathological Dirac-δ potential [47, 81].

In order to see this, let us calculate the matrix element for the pseudopotential

(2.25) between the non-singular spherically symmetric smooth functions f(r) and

g(r),

〈f |V3D| g〉 =
4πa3D

s ~2

m

∞∫
0

dr rf ∗(r)
δ (r)

r

∂

∂r
[rg(r)]

where the Dirac-δ function is transformed into polar coordinates and we integrate

out for the spherical angles. After simplifying with variable r and evaluating the

di�erentiation, we obtain two terms,

〈f |V3D| g〉 =
4πa3D

s ~2

m


∞∫

0

drf ∗(r)δ (r) g(r) +

∞∫
0

drf ∗(r)δ (r) r
∂g(r)

∂r︸ ︷︷ ︸
f∗(r)r ∂g(r)

∂r |r=0
=0

 .

The second term on the right-hand side is zero due to the factor r and the �rst

term on the right-hand side corresponds to a matrix element of a Dirac-δ function.

This means that we cannot apply the pseudopotentials (2.24) and (2.25) in any

numerical approach, which is based on the �nite basis expansion with smooth basis

functions.

Alternatively, two approaches have been commonly used for the numerical cal-

culations of these high dimensional systems. One of them is the so-called renor-

malization approach. This approach is based on the fact that the �nite basis

expansion cannot resolve the singularity of the Dirac-δ potential, hence the po-

tential in this representation has a �nite range leading to physically meaningful

scattering length [73]. The potential strength is renormalized according to the

number of the applied single-particle functions to obtain the correct scattering

properties. Exact mathematical descriptions can be derived for a homogeneous

system using a plane-wave basis set to determine the interaction strength corre-

sponding to a given scattering length [73]. Such explicit expressions are unknown
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for inhomogeneous systems. However, the renormalization is performed in a way

to reproduce the exactly solvable two-body results that seemingly give a reliable

approximation for the energy and the wave function even at larger particle num-

bers [77, 82]. The renormalization approach can also be applied to accelerate the

convergence of the �nite basis expansions [83, 84], which we will examine in detail

in Chapter 5.

An alternative approach is to use a �nite-range pseudopotential [81, 85, 86], in-

stead of the zero-range contact potential. In this case, the scattering length is well

de�ned, but due to the �nite length scale the scattering processes can be biased[81].

In order to eliminate this bias, besides extrapolating to the in�nite basis limit, an

additional extrapolation to the zero-range is required [81, 87]. In Chapter 3 and

Chapter 4 we present a detailed discussion about the scattering and convergence

properties of a speci�c �nite-range potential, the Gauss pseudopotential.

2.1.3 Connection between wave function derivatives and the

decay rate of expansion coe�cients

In numerical approaches it is a standard approximation to expand the wave

function over a �nite number of basis functions [47, 81]. In terms of analyzing the

convergence behavior of this expansion the derivatives of the wave function have

an important role. This can be easily demonstrated on the example of the plane

wave basis functions.

Let us consider a periodic function f(x) with period L,

f(x+ L) = f(x) .

We also assume that the (p−1)th derivative of the function f(x) is discontinuous

at x0, and its pth derivative at this point is related to the Dirac-δ function 1

dpf(x)

dxp
∼ δ(x− x0)A(x) , (2.26)

1The discontinuous function cannot be di�erentiated in a rigorous way. However, the di�er-
ention can be generalized with the so-called weak derivative [88], which can be calculated for
these functions. This leads to the expected Dirac-delta function for the weak derivative of the
Heavyside step function.
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where A(x) is a continuous regular function, which describes the p-th derivative

everywhere else.

Let us expand the function f(x) in a plane wave basis set,

f(x) =
∑
j

cj
1√
L
eikjx , (2.27)

where cj is the expansion coe�cient and 1/
√
L is the norm of the plane wave

function. We require the basis fucntions to be periodic with L as well, therefore,

the value of kj is set to

kj =
2πnj
L

,

where nj is an integer.

In a numerical approach, we can consider only a �nite number of basis functions

in the expansion (2.27). Therefore, it is advantageous if the coe�cients cj decay

rapidly.

Let us determine this decay rate by calculating cj with the overlap of function

f(x) and the corresponding plane wave basis function,

cj =
1√
L

L∫
0

dx f(x)eikjx . (2.28)

Using partial integration, cj can be expressed with the integral of the derivative

of f(x),

cj =
1

ikj
√
L

[
f(x)eikjx

]L
0︸ ︷︷ ︸

0

− 1

ikj
√
L

L∫
0

dx
df(x)

dx
eikjx ,

where the �rst term on the right hand side is zero as f(0) = f(L) and ei2πnj =

e0 = 1. The partial integration can be repeated p times,

cj =
1√
L

L∫
0

dx f(x)eikjx =
1√
L

(
−i
kj

)p L∫
0

dx
dpf(x)

dxp
eikjx ∼ 1√

L

(
−i
kj

)p
eikjx0 ,



Chapter 2. Theoretical Background 18

where the relation (2.26) is used and we assumed that the Dirac-δ function pre-

dominantly determines the integral expression above. As eikjx0 is bounded,

∣∣eikjx0∣∣ = 1 ,

in the limit of large value of kj, the value of cj decays polynomially,

cj
k→∞∼ 1

kpj
. (2.29)

It gives us the general rule that the functions, which are di�erentiable in higher

orders, converge more rapidly in their plane wave expansions. If the function is

di�erentiable in�nitely many times, then it converges faster than any polynomial

convergence and it can also be shown that this convergence is exponentially fast

[89].

Applying relation (2.29) for the contact interaction in one dimension, we �nd

that it converges with 1/k2
j as the second derivative of the absolute value function

in Eq.(2.21) leads to a Dirac-δ function.

The relation (2.29) also describes a more general connection between the short-

range interaction and the high momentum-tail. Due to the contact interaction, in

the asymptotic limit of large momentum the wave function decays with 1/k2, which

leads to a 1/k4 decay in the density [65]. Interestingly the same 1/k2 decay for the

wave function and 1/k4 decay for the density can be obtained in higher dimensions

as well [73]. This can be visualized easily if we recognize that the second derivative

of the wave functions (2.22) and (2.23) are related to the Dirac-delta function [73],

∇2 [ln(r)] = 2πδ(r) , in two dimensions ,

∇2

(
1

r

)
= −4πδ(r) , in three dimensions .

In the upcoming chapters, we focus more on the applicability of these relations

for the ultracold atoms with short-range interactions. In Chapter 4 instead of the

plane wave basis set we examine the convergence in the harmonic oscillator basis

set. In this basis set the convergence rate is still connected with the di�erentiability
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of the wave function. The energy converges polynomially with 1/n
(p+1)/2
j [90].

Though it is slower than the convergence in the plane wave basis set, it is still

expected to be exponentially fast if the wave function is smooth. In Chapter 4

we apply the Gauss pseudopotential, which is not singular, hence the exact wave

function is smooth and it converges exponentially fast at the asymptotic limit.

We follow a di�erent philosophy in Chapter 5, where we introduce a similarity

transformation, which improves the convergence by increasing the smoothness

leading to a faster converging basis expansion. We found that the di�erentiability

can be improved at least two orders for the homogeneous Bose gas leading to

1/k4
j decay for the coe�cients of the plane waves. For the homogeneous Fermi

gas the di�erentiablilty improves with one order, which results in a 1/k3
j decay in

momentum space.

2.2 Introduction to the exact diagonalization ap-

proach

In this section, the exact diagonalization approach is introduced. The basis set

representation and the problem of the exponential scaling are discussed. After that

a speci�c diagonalization technique, the imaginary time evolution, is thoroughly

discussed.

2.2.1 Exact diagonalization approach

In order to determine the ground-state wave function, |Ψ0〉, and energy, E0, let

us start with the time-independent Schrödinger equation,

H|Ψ0〉 = E0|Ψ0〉 . (2.30)

In exact diagonalization approach the Schrödinger equation is solved by introduc-

ing a �nite many-body basis set. The basis vectors are the Fock-state vectors,



Chapter 2. Theoretical Background 20

which can be constructed by a product of creation operators,

|Φn〉 =
∏
i

∏
σ

(
a†iσ

)niσ
|vac〉 ,

where |Φn〉 is the Fock-state vector, n = (n1σ1 , n2σ2 , . . . , niσ, . . . ), where niσ is

the occupation number of the ith single-particle state with spin σ, a†iσ creates a

particle to the same single-particle, |vac〉 is a vacuum state, which is a Fock-state

without any particles.

The wave function is expanded in the Fock-state basis,

|Ψ0〉 =
∑
n
cn0|Φn〉 , (2.31)

where cn0 is the expansion coe�cient. Substituting Eq.(2.31) into Eq.(2.30) and

projecting with 〈Φm| we obtain the following linear equation:

∑
n
Hmncn0 = E0 cm0 , (2.32)

where Hmn = 〈Φm|H|Φn〉 and the orthonormality of the basis vectors is used.

Hence, the diagonalization of the matrix H provides the ground-state energy and

wave function as the lowest eigenvalue and the corresponding eigenvector.

In order to de�ne the many-body basis set we select a set of single-particle

states, which can be determined from the non-interacting or mean-�eld solutions.

Subsequently, we consider all the possible occupation numbers corresponding to

these states for a given number of particles.

The number of the many-body basis states can be determined by considering

the number of the single-particle states, Mσ, and the number of the particles, Nσ,

for all the spin components. Usually, the number of single-particle states does not

change with the σ, thus in the following we drop the index σ in Mσ. In the case

of bosons the number of basis functions can be determined by a combinatorial

expression,

M b
mb =

∏
σ

(
M +Nσ − 1

Nσ

)
, (2.33)
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where M b
mb is the number of many-body basis functions. For fermions we obtain

a di�erent expression as the identical fermions cannot occupy the same single-

particle state due to the Pauli exclusion principle,

M f
mb =

∏
σ

(
M

Nσ

)
, (2.34)

where M f
mb is the number of many-body basis functions for fermions.

These combinatorial scalings lead to enormous number of basis functions even

for few particles and small number of single-particle states. For 10 bosons and 20

single-particle basis functions it means M b
mb = 2 · 108 many-body basis functions,

which translates into about 360 TByte memory usage just to store the Hamil-

tonian matrix. It is even larger for 5 spin-up and 5 spin-down fermions and 20

single-particle basis functions, where the number of the many-body basis functions

increases to M f
mb = 2.4 · 109 with a required memory of 53000 TByte. These huge

matrices cannot be stored in the currently available computer architectures. More-

over, the standard diagonalization algorithms cannot be applied as the number of

operations scales with the third power of the dimension of the space [91]. In the

following subsection we introduce a more e�cient numerical algorithm, where both

the memory requirements and the number of operations improve signi�cantly.

2.2.2 Propagation in imaginary time

In order to �nd an e�cient way to determine the ground-state solution let us

consider the Schrödinger equation in imaginary time (setting ~ = 1),

− ∂

∂τ
|Ψ〉 = H|Ψ〉 . (2.35)

The di�erential equation can be solved formally

|Ψ(τ)〉 = e−Hτ |Ψ(0)〉 , (2.36)

where we assumed that H does not depend on τ . The exponential operator on

the right hand side in Eq.(2.36) propagates |Ψ(0)〉 to the ground state at large τ
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values. In order to see this let us evaluate the e�ect of e−Hτ by expanding the

Hamiltonian in the basis of the eigenstates,

H =
∑
I

EI |ΨI〉〈ΨI | . (2.37)

Substituting Eq.(2.37) into Eq.(2.36), we can obtain the contributions from the

di�erent eigenstates to the state |Ψ(τ)〉,

|Ψ(τ)〉 = e
−τ

∑
I
EI |ΨI〉〈ΨI |

|Ψ(0)〉 =
∑
i

e−τEI 〈ΨI |Ψ(0)〉|ΨI〉 . (2.38)

During the imaginary time propagation, the state with EI > 0 decays expo-

nentially to zero, the state with EI < 0 increases exponentially, whereas the state

with EI = 0 stays constant. Hence, in the in�nite imaginary time limit, |Ψ(τ)〉

decays to the ground state,

lim
τ→∞
|Ψ(τ)〉 = |Ψ0〉 .

In the limit of τ → ∞, the norm of |Ψ(τ)〉 is exponentially large or small

depending on the sign of E0. In order to prevent this, a shift, S, is introduced in

the exponential,

|Ψ(τ)〉 = e−(H−S)τ |Ψ(0)〉 . (2.39)

The value of the shift is determined by keeping the norm to be constant. This

leads to an exponential decay of the excited states, while the value of the shift

naturally gives us the ground-state energy.

This imaginary time propagation requires an initial guess |Ψ(0)〉, which has to

have a non-zero overlap with the ground state, 〈Ψ0|Ψ(0)〉 6= 0, otherwise |Ψ(τ)〉

converges to one of the excited states. Although this condition theoretically cannot

be satis�ed without the prior knowledge of |Ψ0〉, in the most of the cases, the non-

interactive or the the mean-�eld solutions has a non-zero overlap with the ground

state. Therefore, in the practice the condition 〈Ψ0|Ψ(0)〉 6= 0 is usually satis�ed.
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Although the direct application of the exponential form of the Hamiltonian is

not possible due to the non-linear parametrization, the operator can be simpli�ed

by using the following identity of the exponential function [92],

ex = lim
k→∞

(
1 +

x

k

)k
. (2.40)

Hence, the exponential in (2.39) can be considered as a successive e�ect of the

Hamiltonian,

|Ψ(τ)〉 = lim
k→∞

[1− (H − S) ∆τ ]k |Ψ(0)〉 , (2.41)

where ∆τ = τ/k, which can be easily transformed to an iterative equation,

|Ψ(k+1)〉 = [1− (H − S) ∆τ ] |Ψ(k)〉 . (2.42)

Substituting the �nite basis expansion Eq.(2.31) into Eq.(2.42) and projecting onto

〈Φm|, we obtain the iterative expression for the coe�cients,

c
(k+1)
m = c

(k)
m −

∑
n

(Hmn − Sδmn) ∆τc
(k)
n . (2.43)

The shift is iteratively updated to preserve the norm of the wave function in

every A-th step [50],

S(k) = S(k−A) − ζ

A∆τ
ln

(
N

(k)
w

N
(k−A)
w

)
,

where ζ is a damping parameter and N (k)
w is L1 norm of the wave function,

N (k)
w =

∑
m

∣∣∣c(k)
m
∣∣∣ .

In the calculations parameters ζ is typically chosen between 0.05-0.1, while the

paramter A is chosen between 5-10.

There is an alternative way to obtain the energy and the wave function by

simply setting S = 0 and normalizing c(k)
m in Eq.(2.43) at every iteration step.
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This algorithm does not require the optimization of the shift and the energy is

obtained by simply the L2 norm of the wave function after the multiplication with

the Hamiltonian. However, in this case, this methodology requires to calculate the

square of the coe�cients and the normalization of the coe�cient with every (or

every A-th) iteration step. This increases the number of �oating point operations

compared to the previously discussed approach.

There are several diagonalization procedures, which determine the eigenvectors

and eigenvalues by the successive multiplication of the Hamiltonian, such as power

iterative methods [93], Lanczos algorithm [94] or Arnoldi algorithm [95]. These

methods are usually applied if only a few low-lying eigenvalues and the corre-

sponding eigenvectors are of interest. The Hamiltonian is usually sparse, which

improves the scaling of the number of operations from the third power to the �rst

power with the dimension of the Hilbert space [96].

Another advantage of the imaginary time propagation is the lower memory

requirement. It is not necessary to store the Hamiltonian matrix, only the e�ect

of the matrix on the coe�cients is needed.

This can be easily shown by considering the second quantized representation of

the Hamiltonian [97],

H =
∑
ij

∑
σ

hij a
†
iσajσ +

∑
ijkl

∑
σσ′

Vijkl a
†
iσa
†
jσ′alσ′akσ (2.44)

hij =

∫
dr ϕi(r)

(
− ~2

2m
∇2 + Vtrap(r)

)
ϕj(r) , (2.45)

Vijkl =

∫
dr
∫

dr′ ϕi(r)ϕj(r′)V (|r− r′|)ϕk(r′)ϕl(r). (2.46)

where ϕi(r) is the ith single-particle function, hij is the one-particle integral, Vijkl

is the two-particle integral.

The e�ect of the Hamiltonian (2.44) can be considered as moving one or two

particles to di�erent single-particle states. Thus all the matrix elements are zero

between those basis functions, which cannot be transformed to each other by

changing the single-particle states of maximum two particles. The remaining ma-

trix elements can be easily expressed with the one- and two-particle integrals in

Eqs.(2.45) and (2.46) [98�100].
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Therefore, it is enough to store the one- and two-particle integrals and the

coe�cients from two consecutive iteration steps in Eq.(2.43). As the number of

one- and two-particle integrals have a polynomial scaling with the single-particle

orbitals, their memory requirement is usually negligible compared to the combi-

natorially scaling memory requirement of the coe�cients. This means a linear

scaling with the dimensions of the space, which is a signi�cant improvement com-

pare to the quadratic scaling of the Hamiltonian matrix. Considering the previous

example with 10 bosons and 20 single-particle orbitals, it decreases the memory

usage from 360 TByte to 38 Mbyte. For 5 spin-up and 5 spin-down fermions, the

improvement is from 53000 TByte to 460 MByte. Both examples become easily

calculable on a desktop computer.

In Chapter 4 and 5 we used imaginary time propagation to determine the

ground-state energy and eigenvector. The algorithm has been implemented in

the N-electron Con�guration Interaction (NECI) code by the Ali Alavi's group

[50]. This group has developed the NECI code to calculate the Full Con�guration

Interaction Quantum Monte Carlo (FCIQMC) algorithm, which is based on the

stochastic sampling of Eq.(2.43). It also provides the possibility to apply the more

e�cient, but further approximated FCIQMC algorithm to ultracold atoms in the

future.



Chapter 3

The s-wave scattering length of a

Gaussian potential

3.1 Introduction

The interest in the accurate determination of s-wave scattering length has in-

creased in the past decades due to its importance in the description of systems of

ultracold atoms [17, 101]. As the range of the inter-particle interactions are usually

much smaller than the average inter-particle distances, the e�ects of interactions

can be expressed in terms of the scattering amplitude between pairs of particles.

For dilute gases at ultracold temperatures the kinetic energies are low and, there-

fore, the main contribution to the amplitude comes from the s-wave scattering at

zero momentum. Particle interactions are thus determined completely by a single

parameter, the s-wave scattering length [17, 102]. In theoretical calculations, it

is therefore not necessary to consider the detailed interaction potential between

the particles. Instead, a pseudopotential may be chosen in a way to reproduce

the desired value of the s-wave scattering length, which can simplify the required

computations considerably [17].

One of the simplest and most popular pseudopotentials is the Dirac-delta poten-

tial. Its straightforward application is, however, restricted to one dimension, since

in two or three dimensions it is meaningless without renormalisation [76, 77, 103].

An alternative option is to use �nite-range pseudopotentials, e.g. the �nite square

26
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well [81, 87], Troullier-Martins [85, 104], Pöschl-Teller [86, 105] or Gaussian poten-

tial [81, 87, 103, 106�111]. The scattering length is �nite for these pseudopoten-

tials, but an extrapolation to zero range might be necessary to avoid an unphys-

ical shape dependence [81, 87, 105]. The relationship between the parameter(s)

of the potential and the scattering length is not always trivial. Apart from some

special cases [105, 112] numerical techniques are required to determine this rela-

tion [60, 66, 113].

For Gaussian potentials no closed-form analytic expressions are available and

for this reason numerical approaches have been applied [64, 106, 110, 114]. In two

dimensions an approximate expression was derived by Doganov et al. [103]. These

authors considered two particles in a harmonic trap, where the Gaussian inter-

particle interaction is treated in a perturbative framework. The obtained second

order correction combined with the analytical result of the contact pseudopotential

[70, 115] provides the approximate expression. Due to the perturbative approach,

this approximation works quite well in the weakly interacting limit, but it deteri-

orates with increasing interaction strength.

In this chapter, we derive approximate analytical expressions for the s-wave

scattering length of a Gaussian pseudopotential in one, two and three dimensions1.

These expressions qualitatively describe the singularities of the s-wave scattering

length at the formation of the �rst bound state, which is problematic for purely

numerical approaches. Analytical formulae for weak interactions are derived in

one and two dimensions, where the s-wave scattering length has a singularity

at zero interaction strength. In order to improve the accuracy, the approximate

expressions are generalized by including the e�ects of additional bound states.

The unknown parameters in this ansatz are determined by non-linear �tting to

accurate numerical results. The obtained formulae are robust and simple and

accurately provide the values for the s-wave scattering length in wide regime of

attractive interaction.

We describe and carefully benchmark a numerical method to accurately deter-

mine the scattering length of a short-range scattering potential in one, two, and

1The candidate derived the analytic expression in this chapter and in Appendix D. A. Yu.
Cherny worked out the derivations in Appendix C.
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three spatial dimensions. The approach is based on previous work of Verhaar [66]

and may be useful in its own right as it is able to provide very accurate results

except for the immediate vicinity of the singularities. The numerical approach is

applicable for general short-range potentials and is not restricted to potentials of

Gaussian shape.

This chapter is organized as follows: In Sec. 3.2, after stating the problem

and discussing the required asymptotic conditions for scattering wave functions,

we present an accurate numerical approach for determining the s-wave scattering

length along with benchmark calculations for a Gaussian potential. In Sec. 3.3

approximate analytic expressions for the s-wave scattering length of a Gaussian

potential are derived before more accurate, generalized expressions with numeri-

cally determined parameters are introduced. Three appendices provide additional

details on derivations and numerical issues with determining the position of sin-

gularities in the scattering length, respectively.

3.2 Numerical determination of the S-wave scat-

tering length

3.2.1 Solution of the two-body problem and connection with

the s-wave scattering length

3.2.1.1 Two-body scattering problem

Let us consider a two-particle scattering process with the following n-dimensional

Hamiltonian:

H2p = − ~2

2m1

∇2
1 −

~2

2m2

∇2
2 + V (|r1 − r2|) , (3.1)

where V (|r1−r2|) is a spherically symmetric particle-particle interaction potential,

mi, ri and ∇2
i are the mass, coordinate and Laplace-operator of the i-th particle,

respectively. Although our main target is the Gaussian potential, we here consider
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more general classes of potentials for which the numerical procedures can be ap-

plied. Speci�cally, we assume that the interaction is su�ciently short-ranged to

justify the existence of the scattering length. This is ful�lled in n dimensions if

V (r) obeys the condition [116, 117]

∞∫
A

|V (r)|rn−1dr <∞

for a �nite A, where it is su�cient to assume that the potential decreases faster

than 1/rn+ε with ε > 0 at su�ciently large distance. In addition, we suppose that

the potential is non-singular at the origin (see, e.g., Refs. [117, 118])

B∫
0

r |V (r)| dr <∞, for 2 and 3 D, (3.2)

B∫
0

|V (r)| dr <∞, for 1 D, (3.3)

for a �nite B.

The eigenproblem for the Hamiltonian (3.1) can be simpli�ed by introducing

the center of mass coordinate R = (r1 + r2)/2 and relative coordinate r = r1− r2.

Then the wave function can be separated as [60, 102]

Ψ2p
nD(r1, r2) = exp(iQ ·R/~)ψnD(r) ,

where Q is the total momentum of the two particles. The relative wave function

ψnD(r) is an eigenfunction of the Hamiltonian of the relative motion,

H ΨnD(r) = EΨnD(r) (3.4)

with

H = − ~2

2µ
∇2 + V (r) , (3.5)

where E is the scattering energy and µ = m1m2/(m1 +m2) is the reduced mass.
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3.2.1.2 The s-wave scattering and boundary conditions

Due to the spherical symmetry of the potential, Eq. (3.4) can be further sim-

pli�ed by solving the angular coordinate dependent part separately through eigen-

states of the angular momentum operator. By de�nition, s-wave scattering cor-

respond to zero angular momentum with a spherically symmetric wave function.

The radial coordinate dependence in Eq.(3.4) can be obtained from the following

di�erential equation for the general n-dimensional case [66] 2

− ~2

2µ

(
d2

dr2
+
n− 1

r

d
dr

)
ΦnD(r)+ (3.6)

+ (V (r)− E) ΦnD(r) = 0 ,

where ΦnD(r) is the radial part of the relative wave function ψrelnD(r). For ultracold

atoms only low-energy scattering processes are relevant and we may set E = 0. As

we see in the following subsection, it also provides us with a simple way to de�ne

the s-wave scattering length. Appropriate boundary conditions for the di�erential

equation (3.6) can be obtained from smoothness and symmetry considerations in

the limit r → 0 (see the detailed description in Appendix A), as

ΦnD(0) = 1 , and Φ′nD(0) = 0 . (3.7)

3.2.1.3 Scattering length

As we discussed before in the previous chapter for a short-range potential,

the asymptotic of the wave function ΦnD(r) at distances much larger than the

characteristic length scale of the potential `v is given by a solution of Eq. (3.6)

with V (r) = 0 and E = 0, which is a linear combination of a constant and r in

1D (Eq.(2.21)), ln (r) in 2D (Eq.(2.22)), and 1/r in 3D (Eq.(2.23)). The s-wave

scattering length can be de�ned by the ratio of the corresponding constants in this

2The radial Schrödinger equation (3.6), and the asymptotic s-wave scattering length ex-
pressions (3.8)-(3.13), have been written in di�erent forms in Ref. [60]. Using the relation
u(r) = r(n−1)/2ΦnD(r), these expressions can be easily derived from each other.
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linear combination [66]:

Φ1D(r)
r�`v≈ N1D

(
r − a1D

s

)
, (3.8)

Φ2D(r)
r�`v≈ N2D

[
ln
(

2r

a2D
s

)
− γ
]
, (3.9)

Φ3D(r)
r�`v≈ N3D

(
1− a3D

s

r

)
. (3.10)

Here anDs is the n-dimensional s-wave scattering length, γ = 0.5772 . . . is the

Euler-Mascheroni constant, and NnD is a scalar factor. The scattering length can

be expressed as a limit of the function ΦnD(r) and its �rst derivative by eliminating

the unknown parameter NnD [66] 3 as

a1D
s = lim

r→∞

(
r − Φ1D(r)

Φ′1D(r)

)
, (3.11)

a2D
s = lim

r→∞
2r exp

(
− Φ2D(r)

rΦ′2D(r)
− γ
)
, (3.12)

a3D
s = lim

r→∞

(
r − rΦ3D(r)

rΦ′3D(r) + Φ3D(r)

)
. (3.13)

As it can be seen from the expressions above, a2D
s is always positive by de�nition,

while a1D
s and a3D

s can be of either sign. In the limiting case where the scattering

potential is absent the solution of Eq. (3.6) becomes a zero-energy plane wave,

i.e. the constant 1. Therefore, we have a1D
s → ∞ and a2D

s → ∞, while a3D
s → 0.

This means that the scattering length develops a singularity when V (r) → 0 in

one and two dimensions.

3.2.2 One and three dimensions

In three dimensions the radial Schrödinger equation can be simpli�ed by intro-

ducing the function [66]

u3D(r) = rΦ3D(r) . (3.14)

3The de�nition of a2Ds di�ers from the original de�nition of Verhaar et al. [119] with an
eγ/2 factor. The current de�nition is more common in the recent ultracold atomic literature
[22, 67, 120].
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Substituting Eq.(3.14) into the radial Schrödinger equation (3.6) and the expres-

sion for the s-wave scattering length (3.13), we obtain identical equations for three

and one dimensions

(
− ~2

2µ

d2

dr2
+ V (r)− E

)
u1D/3D(r) = 0 , (3.15)

a1D/3D
s = lim

r→∞

(
r −

u1D/3D(r)

u′1D/3D(r)

)
, (3.16)

where we have introduced u1D(r) ≡ Φ1D(r) for compact notation. The boundary

conditions are obtained by substituting Eq.(3.14) into Eq.(3.7) and now di�er

between one and three dimensions:

u1D(0) = 1 , u′1D(0) = 0 , (3.17)

u3D(0) = 0 , u′3D(0) = 1 . (3.18)

In a numerical procedure we may assume that the functions u1D/3D(r) and

u′1D/3D(r) can only be given with limited numerical accuracy (p) as

u1D/3D(r) = lim
p→∞

ũ1D/3D(r; p) ,

u′1D/3D(r) = lim
p→∞

ũ′1D/3D(r; p) ,

where p relates to the accuracy of the decimal representation and the numerical

method itself. For the numerical determination of the scattering length one should

then consider the combined limit

a1D/3D
s = lim

r,p→∞
ã1D/3D
s (r; p) ,

ã1D/3D
s (r; p) = r −

ũ1D/3D(r; p)

ũ′1D/3D(r; p)
.

3.2.3 Two dimensions

In two dimensions the original radial function Φ2D(r) is used directly. Here

a numerical instability is present as a result of the 1/r singularity in the �rst

derivative term of the radial Schrödinger equation (3.6) for two dimensions. The
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instability can be avoided by giving the boundary conditions at distance r = ε,

where ε is chosen large enough to avoid the numerical di�culties but small enough

to approximately satisfy the conditions of Eq. (3.7)

Φ2D(ε) ≈ 1 , Φ′2D(ε) ≈ 0 . (3.19)

Consequently, ε becomes another parameter of the numerical evaluation besides the

numerical accuracy (p). The scattering length is then obtained from the composite

limit

a2D
s = lim

r,p→∞
ε→0

2r exp

(
− Φ̃2D(r; ε, p)

rΦ̃′2D(r; ε, p)
− γ

)
︸ ︷︷ ︸

ã2Ds (r;ε,p)

, (3.20)

where Φ̃2D(r; ε, p) represents the approximate numerical solution of Eqs.(3.6) and

(3.19) with

Φ2D(r) = lim
p→∞
ε→0

Φ̃2D(r; ε, p) . (3.21)

3.2.4 The Gaussian potential and the convergence of nu-

merical results

We now apply this approach to the Gaussian potential

V (r) = − V0

2L2
e−

r2

L2 , (3.22)

which depends on parameters for the potential strength V0 and the length scale

L. Since we are free to use L as a scale parameter, we �nd that the ratio as/L

depends only on the single dimensionless parameter V0µ/~2. The results of the

numerical calculations and their physical interpretation will be discussed in Sec. 3.3

along with analytic approximations. Here we discuss the details and convergence

properties of the numerical approach.

The numerical calculations are performed with the fourth order Runge-Kutta

method of Mathematica [121], where the di�erential equation is represented on
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the usual discretized timesteps. The parameter p is considered here as a com-

posite variable. We set the parameters 'AccuracyGoal' and the 'PrecisionGoal',

which quantify the accuracy and precision of the numerical method, respectively,

to the same number p, which provides at least 10−p numerical accuracy. The

'WorkingPrecision', which controls the number of the digits in the calculations, is

set to p + 5 to reduce the error from the �nite numerical representation. Ideally,

we should consider the in�nite limit of p and r, and the zero limit of ε. On the

computer this limit is considered numerically with a �nite accuracy. The accuracy

of the calculation are checked with rectangular potential, where analytic solutions

are available. We found excellent agreement between the analytical and number

calculations for this example.

The convergence properties of the numerical procedure for the Gaussian po-

tential can be seen from Figs. 3.1 and 3.2 for the s-wave scattering length of the

Gaussian potential in two and three dimensions, respectively. First, the accurate

reference values were calculated by setting p = 11, r = 10L and ε = 10−6L,

which are given in Tables 3.1 and 3.2. Then the relative error of the scattering

length compared to the reference value is plotted as a function of the accuracy

parameters.

In all cases the relative error decays exponentially until the reference value of the

accuracy parameter is reached. At that point, due to the equality of ãnDs = anDs ,

the curves abruptly drop to zero. Beyond that point the relative error saturates

to a constant value that corresponds to the numerical error of the reference value

of the scattering length. In two dimensions (Fig. 3.1) the largest errors occur at

V0 = 0.002~2/µ and V0 = 11~2/µ, close to divergences of the scattering length (see

Fig. 3.5). This demonstrates that a larger numerical e�ort is required to obtain

the same numerical accuracy around the divergences of the scattering length.

In three dimensions the s-wave scattering length diverges near to V0 = 2.683~2/µ,

where the largest errors in are seen in panel (a) of Fig. 3.2. This singularity cor-

responds to the appearance of the weakly bound state, where the bound state
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V0 (~2/µ ) -10 0.002 5 11
a2D
s (L) 1.052775727581175 2.087502897416 · 10434 1.189350613760202 1.1340580605359 · 10−19

Table 3.1: Reference values for a2D
s computed with parameters p = 11, r =

10L, and ε = 10−6L at di�erent V0 values.

V0 (~2/µ ) -10 2.683 5 14
a3D
s (L) 1.06471218669307 2992.059356340681 2.25126701647514 0.04887055637493

Table 3.2: Reference values for a3D
s computed with parameters p = 11 and

r = 10L at di�erent V0 values.

energy, Eb, can be expressed approximately with the s-wave scattering length,

Eb =
1

ma3D
s

.

Theoretically, the obtained energy could be compared with the bound-state energy

calculated with the exact diagonalization approach, where the function umathrm3D(r)

is expanded in a �nite basis-set. For the accurate description of the weakly bound

state, those basis functions have to be considered, which are able to describe both

the bounded and unbounded states. The plane-wave basis functions in a rectan-

gular box with periodic boundary condition seem a natural choice. Though in

order to eliminate all numerical artifacts two extrapolations are required, one for

the in�nite basis-set limit and one for the in�nite box size limit. These calcula-

tions lie outside the scope of this project. Due to the double extrapolations they

would most probably su�er from larger numerical inaccuracies than the di�erential

equation solver.

In Fig. 3.2 the case of V0 = 14~2/µ has the second largest numerical error.

In that case the scattering length is close to the zero-crossing (a3D
s ≈ 0.05L). It

is di�cult to compute it accurately from Eq.(3.16) where a di�erence of small

numbers needs to be taken. This e�ect is even more notable as a function of the

cut-o� distance in panel (b) in Fig. 3.2, where the error in the case of V0 = 14~2/µ

is at least one order larger at larger distances compared to other values of the

potential strength. Numerical rounding errors also explain the jumps in the cases

of V0 = −10~2/µ and V0 = 5~2/µ, which are the limit of the chosen accuracy.
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Figure 3.1: Relative error in the two-dimensional s-wave scattering length as
a function of the numerical precision p in panel (a), on the cut-o� distance r in
panel (b) and the boundary parameter ε in panel (c) for di�erent values of the
potential strength V0 in ~2/µ unit. The reference values a2D

s are computed with
parameters p = 11, r = 10L and ε = 10−6L. The numerical values of a2D

s can
be found in Table 3.1.
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Figure 3.2: Relative error in the three-dimensional s-wave scattering length as
a function of the numerical precision p in panel (a) and on the cut-o� distance
r in panel (b) for di�erent values of the potential strength V0 in ~2/µ unit.
The reference value a3D

s computed with parameters p = 11 and r = 10L. The
numerical values of a3D

s can be found in Table 3.2.
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3.3 Approximate expressions for Gaussian poten-

tial

3.3.1 Three-dimensional case

As it can be seen in the previous section, the numerical approach is accurate

in most cases but fails near the divergences of the scattering length. Here we

derive analytic approximations that can handle these numerically unstable regions.

An alternative derivation based on the Lippmann-Schwinger equation is given in

Appendix (C).

In order to derive suitable approximations we can make use of the fact that

the Gaussian potential decays rapidly to zero with increasing distance. Therefore,

contributions of the long range part of the wave function become negligible, when

they are multiplied by this potential. Considering the simplest case of three di-

mensions, u3D(r) can be approximated in the whole domain [0,∞) with the �rst

non-zero term of the Taylor expansion around r = 0, when it is multiplied by the

Gaussian potential (3.22) as

e−
r2

L2 u3D(r) ≈ e−
r2

L2 r . (3.23)

Substituting Eq.(3.23) into Eq.(3.15) at Erel = 0, we can obtain the di�erential

equation

− ~2

2µ

d2

dr2
ū3D(r)− V0

2L2
e−

r2

L2 r = 0 . (3.24)

The function ū3D(r) can be obtained by integrating Eq.(3.24) twice

ū3D(r) = c3D
1 + c3D

2 r +

√
πV0µ

4~2
erf
( r
L

)
, (3.25)

where erf(x) = (2/
√
π)
∫ x

0
exp(−t2)dt is the error function. The coe�cients in

Eq.(3.25) can be determined by considering the boundary conditions (3.18) as

c3D
1 = 0 , c3D

2 =
2− V0µ

~2

2L
.
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Examining these wave functions in the limit when r goes to in�nity and using the

fact that limr→∞ erf
(
r
L

)
= 1, if L is �nite, we obtained the following asymptotic

expression:

ū3D(r) ≈
2− V0µ

~2

2

(
r

L
−
√
π

2

V0

V0 − 2~2
µ

)
, r →∞ . (3.26)

Substituting Eq.(3.26) into Eq.(3.16), the approximate relations between the s-

wave scattering length and the parameters of the potential can be found as

ā3D
s

L
=

√
π

2

V0

V0 − 2~2
µ

. (3.27)

This approximate formula has a pole near the value of V0 where the Gaussian po-

tential well acquires the �rst bound state. It qualitatively describes the scattering

length near the singularity, but the position of the pole is inaccurate.

As can be seen in Fig. (3.3), further singularities appear when the potential

well becomes deeper and these correspond to additional bound states. Although

the approximation (3.27) includes only the �rst singularity, it can be su�cient for

the use as a pseudopotential for ultracold atoms if only the qualitative behaviour

of the scattering length in the presence of up to one bound state is of interest.

In order to reproduce the behaviour of the scattering length across a larger range

of potential lengths, we generalize Eq.(3.27) by explicitly introducing a variable

number of singularities in the following way:

a3D
s

L
≈

n∑
i=1

αi
V0

(V0 −Wi)
. (3.28)

Here, Wi and αi are numerically determined parameters.

The parametersWi are set to the values of V0 where the numerically determined

scattering length diverges (and changes sign). At these values of V0 weakly bound

states appear (see, e.g., Ref. [122], problem 90). For achieving a high accuracy

for approximations of the s-wave scattering length it is important to use accurate

values for these parameters (see the detailed description in Appendix B).
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Figure 3.3: Panel (a): Three-dimensional s-wave scattering length from the
numerical and the approximate expression. Panel (b): The di�erence between
the approximative and numerical scattering length values. The parameters of
the numerical simulations are set to p = 11 and r = 10L. The values of the
parameters for the approximative expressions can be found in Table 3.3 and few
examples for the numerical values of he s-wave scattering length can be found

in Table 3.4.

n Wn (~2/µ) α1 α2 α3 α4

1 2.68400465092 1.11942413969
2 17.7956995472 1.12031910105 0.378402820446
3 45.5734799205 1.12034867267 0.322141242778 0.332600792963
4 85.9634003809 1.12034897387 0.326461774698 0.135560767226 0.375312300726
ā3D
s 2

√
π/2 ≈ 0.8862269

Table 3.3: Numerical values of parameters for the three-dimensional approxi-
mate expression (3.28). The parameters of the analytically approximated scat-
tering length, ā3D

s , is determined from Eq.(3.27) using the ansatz ā3D
s /L =

α1V0/(V0 −W1).

The parameters αi are obtained by non-linear �tting of the approximate expres-

sion Eq.(3.28) to the numerically obtained scattering length. The �tting procedure

is performed on the intervals V0µ/~2 ∈ [0, 2.68] ∪ [2.69, 14] in order to avoid the

singularities. The values of the �tted parameters are shown in Table 3.3. As it can

be seen in Fig. 3.3, including even one additional singularity in the model greatly

improves upon Eq.(3.27) and qualitatively describes the �tted region. Each ad-

ditional �tting parameter further improves the relative accuracy by more than

one order of magnitude. In addition, the approximate formulas also dramatically

improve the approximation of a3D
s outside the �tted regime with each �tting pa-

rameter.
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V0/~2µ−1 numerical ã3D
s n

1 2 3 4
0.1 -0.0459382 -0.0466435 -0.0433213 -0.0454943 -0.0459089 -0.0459372
1.0 -0.6921927 -0.886227 -0.664739 -0.687801 -0.6919302 -0.6921844
2.68 -749.84048 3.49278 -749.143 -749.809 -749.83974 -749.84047
5 2.2512670 1.47704 2.41672 2.27079 2.2518534 2.2512698
10 1.0250876 1.10778 1.53011 1.04593 1.0246425 1.0250833

Table 3.4: Examples for the numerical values of the three-dimensional s-wave
scattering length in the units of L from Fig. 3.3.

3.3.2 One-dimensional case

We follow an analogous procedure for the three-dimensional case by approx-

imately solving the Schrödinger equation for large r. Although the form of the

one-dimensional Schrödringer equation is equivalent to the three-dimensional one

[Eq.(3.15)], the boundary conditions of Eqs.(3.17) and (3.18) di�er. This has the

consequence that the zeroth order term in the Taylor expansion of u1D(r) does not

vanish and thus we may approximate the di�erential equation as

− ~2

2µ

d2

dr2
ū1D(r)− V0

2L2
e−

r2

L2 = 0 . (3.29)

Equation (3.29) can be solved and provides the following approximate expression

for the wave function and the s-wave scattering length:

ū1D(r) = 1− V0µ

2~2

[
e−

r2

L2 +
√
πerf

( r
L

) r
L
− 1

]
, (3.30)

ā1D
s

L
=

1√
π

+
2√
π

~2

V0µ
. (3.31)

Comparing the obtained expression (3.31) with the three-dimensional result (3.27),

it can be seen that the �rst singularity in one dimension is located in the origin,

while in three dimensions it is displaced to a �nite value of attractive potential

strength. As every singularity indicates the creation of a new bound state, the

former statement is related to a well-known property: in one dimension there

is always a bound-state at any non-zero attractive potential, meanwhile in three

dimensions the bound state appears at some �nite potential strength.
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The approximate expression (3.31) can be further improved if we expand func-

tion u1D(r) in a Taylor-series around the origin. As we are interested in the

behavior of the singularity in the origin, we can consider the limit of V0 approach-

ing zero, where the coe�cients of the Taylor expansion can be determined (see

the detailed description in Appendix D). Examining the asymptotic properties of

the wave function we obtain the following approximate formula for the scattering

length:

¯̄a1D
s

L
=

√
2

π
+

2√
π

~2

V0µ
, (3.32)

which di�ers from Eq.(3.31) only in the constant o�set. This new expression �ts

better with the numerically obtained results, but it is still inaccurate at larger

absolute values of the potential strength. In analogy to the three dimensional

case [Eq.(3.28)], the accuracy of Eq.(3.32) can be further improved by including

additional singularities

a1D
s

L
≈

√
2

π
+

2√
π

~2

V0µ
+

n∑
i=1

αi
V0

(V0 −Wi)
, (3.33)

where the parameters Wi are obtained directly from the numerical solution of the

di�erential equation and the parameters αi are non-linearly �tted to the numerical

values in the interval [1,8]~2/µ.

A comparison of the approximate and the numerical results is shown in Fig.

3.4. Similarly to the three dimensional case the relative error from the numerical

solution gradually decreases with the number of the parameter pairs.

n Wn (~2/µ) α1 α2 α3 α4

1 8.6490975 0.52689372
2 30.106280 0.51419392 0.35899733
3 64.193333 0.51460375 0.20675606 0.36766012
4 110.88204 0.51459468 0.24033314 0.040512694 0.44420188

Table 3.5: Numerically determined parameters for the one-dimensional ap-
proximate expression in Eq.(3.39).
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V0/~2µ−1 numerical n
0 1 2 3 4

0.01 113.635079 113.63580 113.6351822 113.635085 113.635080 113.635079
1 1.84604750 1.9262637 1.856341600 1.84647555 1.84605596 1.84604759
3 0.85979335 1.1740109 0.889979118 0.86048843 0.85979610 0.85979330
5 0.24620007 1.0235603 0.290720055 0.24629609 0.24619224 0.24620007

8.64 -487.928498 0.9284840 -507.016304 -487.36624 -487.94067 -487.9285495

Table 3.6: Examples for the numerical values of the one-dimensional s-wave
scattering length in the units of L from Fig. 3.4.
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Figure 3.4: Panel (a): One-dimensional s-wave scattering length from the nu-
merical and the approximate expression. Panel (b): The di�erence between the
approximate and numerical values of the scattering length. The parameters of
the numerical simulations are set to p = 11, r = 10L. The parameter values for
the approximate expressions are tabulated in Table 3.5. The n = 0 approxima-
tion corresponds to Eq. (3.32). Examples for the numerical values of the s-wave

scattering length can be found in Table 3.6.

3.3.3 Two-dimensional case

In two dimensions the function Φ2D(r) is considered, where the corresponding

Schrödinger equation (3.6) at Erel = 0 and boundary conditions (3.7) provide the

following approximate di�erential equation:

− ~2

2µ

(
d2

dr2
+

1

r

d
dr

)
Φ̄2D(r) + V (r) = 0 . (3.34)

Solving Eq.(3.34) the radial function can be obtained as:

Φ̄2D(r) = 1 +
V0

4

[
Ei
(
−r2

)
− γ − 2 ln(r)

]
, (3.35)

where Ei(x) = −
∫∞
−x

e−t

t
dt is the exponential integral function. At large particle

separation the exponential integral function goes to zero, limr→∞ Ei (−r2) = 0,
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therefore Eq.(3.35) can be approximated with the following expression:

Φ̄2D(r) ≈ 1− V0µ

4~2

[
γ + 2 ln

( r
L

)]
, r →∞ . (3.36)

Using this asymptotic formula, the approximate expression of the s-wave scattering

length can be determined from Eq.(3.12) as

ā2D
s

L
= 2e

−3γ
2

+ 2~2
V0µ . (3.37)

A singularity appears again in the origin, like in the one-dimensional case, as a

consequence of the fact that any arbitrarily weak Gaussian potential well in two

dimensions has at least one bound state. In analogy to the procedure of Appendix

D in one dimension we can thus determine an improved prefactor to arrive at the

approximation

¯̄a2D
s

L
=
√

8e
−3γ
2

+ 2~2
V0µ . (3.38)

This approximate formula (3.38) is equivalent to the previously mentioned for-

mula of Doganov et al. [103], where Eq.(3.38) was derived in a di�erent manner

using perturbation theory. This expression is not very accurate at larger values

of potential strength and can be improved by including additional singularities in

the same manner as done previously to obtain

a2D
s

L
≈
√

8e
− 3γ

2
+ 2~2
V0µ

+
n∑
i=1

αi
V0

(V0−Wi) . (3.39)

We determined the parameters Wi with the numerical di�erential equation solver

and �tted the parameters αi on the interval V0 ∈ [1, 10]~2/µ.

The numerical and approximate values for the two-dimensional s-wave scatter-

ing length are shown in Fig. 3.5. In contrast to the one- and three-dimensional

results, the two-dimensional scattering length is always positive and single poles

occur not in the scattering length itself but in its logarithm. Similarly to the pre-

vious cases, increasing the number of �tted parameter pairs successively improves

the approximate values for the scattering length in and outside the �tted region.
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Figure 3.5: Panel (a): Two-dimensional s-wave scattering length from the
numerical and the approximate expression. Panel (b): The di�erence between
the approximative and numerical scattering length values. The parameters of
the numerical simulations are set to the followings: p = 11, r = 10L, and
ε = 10−6L. The values of the parameters for the approximative expressions can
be found in Table 3.7. The n = 0 approximation corresponds to Eq. (3.38). Few
examples for the numerical values of the the s-wave scattering length can be

found in Table 3.8.

n Wn (~2/µ) α1 α2 α3 α4

1 11.076903 0.33553384
2 35.081301 0.30476380 0.20423041
3 71.774188 0.30609585 0.10986740 0.19295017
4 121.10485 0.30605919 0.13171195 0.017845686 0.22077743

Table 3.7: Numerically determined parameters for the two-dimensional ap-
proximate expression in Eq.(3.39).

V0/~2µ−1 numerical n
0 1 2 3 4

0.3 925.454378 935.016279 926.323551 925.485608 925.455029 925.454387
1 8.47880838 8.79248407 8.50453845 8.47958092 8.47882030 8.47880849
4 1.60859601 1.96186838 1.62295275 1.60858611 1.60859142 1.60859598
8 0.651404324 1.52790463 0.63858761 0.65127400 0.65140946 0.65140429

10.5 0.005060049 1.43961176 0.00320657 0.00514485 0.00505813 0.00506007

Table 3.8: Few examples for the numerical values of the two-dimensional s-
wave scattering length in the units of L from Fig. 3.5.

3.4 Conclusion

We have introduced new approximate expressions for the s-wave scattering

length for a Gaussian potential in one, two and three dimensions. These may be

useful on their own or can improve the accuracy of a numerical determination of

the scattering length by providing the correct asymptotic behaviour near singu-

larities. The lowest level expressions can be obtained as simple parameter-free

approximations derived from the two-particle Schrödinger equation. They can
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qualitatively describe the singularity at the �rst bound state formation, where

numerical methods usually fail or provide inaccurate answers. In one and two

dimensions these expressions can be further improved analytically by examining

the weakly interacting limit, where the leading terms can be given exactly. More

accurate expressions generalize the simple formulas in a straight-forward way by

including additional singularities, where the unknown parameters are determined

from accurate numerical computations. The obtained formulae improve the accu-

racy for the whole region of the potential strength. In three dimensions where the

singularity due to the appearance of the �rst bound state appears at a �nite value

of the potential strength, the accuracy of this value crucially limits the obtainable

accuracy for the s-wave scattering length.

The Gaussian potential well has its main application for use as a pseudopoten-

tial in the description of ultra-cold atoms in the parameter regime between zero

interaction and the �rst non-trivial bound state. In this region the relative error

of the parameterized approximate formulas reach below 10−4 and thus provide

accurate, reliable, and simple formulae to connect the parameters of the Gaussian

potential to the s-wave scattering length.



Chapter 4

Are smooth pseudopotentials a good

choice for representing short-range

interactions?

4.1 Introduction

There is increasing interest in the theoretical description of multi-particle sys-

tems of interacting ultracold atoms thanks to the recent progress in experimental

realizations [23, 24, 28, 123, 124]. In particular we may expect exciting develop-

ments in microtraps [25, 29, 125] with tens of particles where accessing strongly-

correlated regimes of quantum-Hall-like physics seems feasible [30, 31, 126, 127].

The theoretical description of atom-atom interactions is signi�cantly simpli-

�ed at ultracold temperatures where details of the interaction potentials can be

neglected in favor of a single constant, the s-wave scattering length as, to de-

�ne a physical model with contact interactions [17]. Despite these simpli�cations,

the complexity of many-particle quantum mechanics still makes it a very di�cult

problem to solve, where exact solutions are only available in special cases in one

spatial dimension [33�35, 38, 69] or for up to three particles in a harmonic trap

[70, 74, 75].

A straightforward and general approach to representing the many-body problem

for computational treatment is to introduce a discrete and necessarily �nite basis

46
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of smooth single-particle wave functions from which a �nite but still potentially

very large Fock-space is constructed to represent the many-body Hamiltonian as a

matrix. Finding eigenstates and eigenvalues of the full matrix is known as exact di-

agonalization or full con�guration-interaction [71, 72, 128�131], but many di�erent

approximation schemes have also been followed [132]. In particular, standard ap-

proaches of ab initio quantum chemistry or nuclear physics like the coupled-cluster

[47] or multi-con�gurational self-consistent �eld theory [133] all can be formulated

in this language as they rely on an underlying single-particle basis. Also Monte-

Carlo (or other) approaches that rely on a lattice discretization of continuous

space fall into the same category [134], as the underlying single-particle space can

be represented as a discrete set of plane waves.

One of the complications in the numerical treatment of contact interactions with

basis set expansions stems from the non-analytic behavior of the wave function

at the point of particle coalescence. At this point, the appropriate Bethe-Peierls

boundary conditions demand a cusp in one spatial dimension, i.e. a point of non-

di�erentiability [33], in two dimensions a logarithmic divergence, and in three

dimension a 1/r divergence of the wave function [65, 68, 73]. While in one dimen-

sion a Dirac-δ function pseudopotential provides a well-de�ned model for contact

interactions, the convergence of basis set expansions is algebraic and painfully slow

[47, 135]. Basis set expansions in two and three dimensions diverge for bare con-

tact interaction [76, 77, 103] and basis-set-dependent renormalization procedures

have to be used in order to obtain convergent and correct results [77, 82�84]. In

the best case, renormalized contact interactions will lead to algebraic convergence

in the size of the �nite single-particle basis set [73, 134, 135].

Here, we consider a di�erent approach where the contact interaction is replaced

by a smooth �nite-range pseudopotential. This has the advantage that basis set ex-

pansions will converge exponentially for appropriately chosen single-particle basis

functions [89]. Speci�cally we will consider what the requirements are for the basis

set to reach the regime of exponential convergence and whether this approach is

feasible for multi-particle simulations. Examples of �nite-range pseudopotentials

used in the literature are the Troullier-Martins [85, 104], Pöschl-Teller [86, 105],
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and Gaussian potentials [87, 103, 106�111, 136�138], in addition to the square well

popular in di�usion Monte Carlo simulations[87].

When using �nite range pseudopotentials to represent short-range interactions,

an interpolation in the width of the pseudopotential should be done to the zero-

range limit [81]. In order to approach this limit, the length scale of the pseu-

dopotential should be signi�cantly smaller than other physically relevant length

scales of the problem, in particular the mean particle separation and length scales

imposed by external potentials. In order to reach a regime where the basis set

expansion converges exponentially, however, the basis set needs to resolve the

smallest length scale of the pseudopotential. At the same time, the large length

scales of the problem, i.e. the (Thomas-Fermi) size of the cold atom cloud, or size

of the container, also have to be represented by the basis set. This hierarchy of

length scales, typically spanning at least one but possibly several orders of magni-

tude presents a challenge for accurate numerical simulations. While the size of the

single-particle basis (quanti�ed by the number of single-particle functions M) is

determined by this hierarchy of length scales, the size of the full many-body prob-

lem also depends strongly on the number of particles N . Speci�cally for spinless

bosons, the size of the relevant part of Fock space is
(
N+M−1

M

)
, whereas for spin-1

2

fermions the total dimension is
(
M
N↑

)(
M
N↓

)
, where N↑ and N↓ are the number of up-

and down-spin particles, respectively.

In this work, we speci�cally consider ultra-cold fermionic atoms in a harmonic

oscillator trapping potential where the potential in one of the three trapping direc-

tions is so tight that the problem can be considered two-dimensional. We further-

more choose a Gaussian pseudopotential to model attractive s-wave interactions

between spin-up and spin-down particles [139]. For the underlying single-particle

basis we consider two cases:

(a) a basis that is de�ned by the single-particle eigenstates of the isotropic two-

dimensional harmonic trapping potential

(b) the same set of basis functions with scaled spatial coordinates by a scaling

factor γ
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Using the known properties of the harmonic oscillator eigenfunctions we show that

the basis set size M required to resolve the chosen length scale of the pseudopo-

tential lres scales as (l/lres)
4 where l =

√
~/mω is the harmonic oscillator length

scale of the trapping potential for case (a). The typical value of (l/lres) has been

examined in three-dimensions for the unitary regime with a di�usion Monte-Carlo

approach [87]. The zero-range limit can be achieved by choosing (l/lres) about

10−3− 10−4, which is also consistent with the rate of the length-scale of the phys-

ical atomic interaction potential and the typical length-scale of the trap [17].

Allowing the basis functions to be scaled by γ as in case (b) leads to an improved

scaling of (l/lres)
2 while still faithfully resolving the small length scale lres and a

�xed large length scale that is determined by the particle-number and interaction

strength. We provide estimates for these length scales and the required scaling

parameters. Numerical examples show the convergence of the ground state energy

for three fermions obtained by exact diagonalization with single-particle basis sets

of up to 231 Fock-Darwin orbitals. In order to compute the matrix elements

four dimensional integrals have to be calculated. The number of integrals to be

computed scales with the fourth power of the number of the basis functions. In

order to reduce the numerical e�ort of the integral calculations, a careful algorithm

based on recursion formulas was developed, which is described in Appendix F.

This chapter is organized as follows: After de�ning the Hamiltonian in Sec. 4.2

and introducing the methodology in Sec. 4.3, we discuss the main results of the

chapter in Sec. 4.4. Examples for the numerical convergence with a harmonic os-

cillator basis are presented in Sec. 4.4.1 before deriving analytical formulas for the

required minimum basis set size in Sec. 4.4.2 for the unscaled and in Sec. 4.4.3

for a scaled harmonic oscillator basis. The required scaling factor is estimated in

Sec. 4.4.4 where also numerical results for the scaled basis are presented. Impli-

cations of our �ndings for the feasibility of accurate computations of larger multi-

particle problems are discussed in Sec. 4.5. Two appendices de�ne the Fock-Darwin

orbital basis used (App. E) and detail the explicit formulas and the algorithm used

to compute the matrix elements (App. F).
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4.2 Hamiltonian

We consider ultracold fermions in a two-dimensional harmonic trap,

H = Hosc +

N↑∑
i

N↓∑
j

V (ri↑, rj↓) , (4.1)

Hosc =
∑
σ

Nσ∑
i

(
− ~2

2m
∇2
iσ +

mω2

2
r2
iσ

)
, (4.2)

where m is the mass of the fermions, ω is the harmonic oscillator strength, riσ is

the position of the i-th particle with the spin σ and V (ri↑, rj↓) is the interaction

potential between the fermions. Dividing the operatorHosc with ~ω, Eq.(4.2) takes

the form

Hosc

~ω
=

∑
σ

Nσ∑
i

(
− l

2

2
∇2
iσ +

1

2l2
r2
iσ

)
,

where l =
√

~
mω

is the harmonic oscillator length scale of the trapping potential.

The interaction between the particles is described with a Gaussian pseudopotential

V (ri↑, rj↓) = − V0

R2
e−

(ri↑−rj↓)
2

R2 . (4.3)

The parameters V0 (given in units of ~ω) and R (given in the units of l) control the

strength and width of the interaction potential, respectively. These parameters

can be converted to the s-wave scattering length with approximate formulas or by

direct numerical computation as is discussed in detail in Ref. [139].

4.3 Basis set expansion

For our numerical approach, we compute the ground state energy of a multiple

fermion system following the exact diagonalization approach. Starting from a

�nite single-particle basis of size M (i.e. with M spin-orbitals), the multi-particle
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wave function is expanded as a linear combination

|Ψ〉 =
∑
n
Cn|Φn〉, (4.4)

of states in the Fock basis

|Φn〉 =
M∏
i=1

(ĉ†i )
ni |vac〉, (4.5)

where n = (n1, . . . , ni, . . . , nM) and ni is the occupation number of the n-th single-

particle basis function (spin-orbital). The fermionic Fock states |Φn〉 (often re-

ferred to as Slater determinants) are constructed from the complete set of index

vectors n for �xed particle number N , with

N =
M∑
i=1

ni. (4.6)

The exact diagonalization approach (also referred to as full con�guration inter-

action) refers to considering the multi-particle Hamiltonian (4.1) with the chosen

particle-number content projected onto the basis of states (4.5) as a matrix and

�nding its eigenvalues and eigenvectors.

In this chapter we use a single-particle basis constructed from the spinful eigen-

states of the two-dimensional harmonic oscillator (4.2). The explicit form of the

basis functions used in the numerical procedure and the determination of the cor-

responding matrix elements are discussed in details in Appendices E and F.

For the numerical procedure we determine the ground state energy with a

matrix-free approach: Using a variant of the power method [93], we iteratively

rotate an initial state onto the ground state vector without having to construct

the matrix explicitly.
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4.4 Resolving the Gaussian pseudopotential

4.4.1 Unscaled harmonic oscillator basis

Figure 4.1 shows the ground state energy of three interacting fermions (two

spin-up and one spin-down) according to the Hamiltonian (4.1) after full diago-

nalization with a �nite Fock basis. We are using the Fock-Darwin form (E.1) of

the (unscaled) harmonic oscillator eigenfunctions of the single-particle Hamilto-

nian (4.2) up to shell n = 20, which yields up to M = 231 single-particle basis

functions. The maximum dimension of the Hilbert space for the three fermions in

the zero total angular momentum slot is approximately 1.6 × 105, which already

requires signi�cant computational resources for deterministic diagonalization.

For panels (a) and (b) in Fig. 4.1, the converged regime can be visibly reached.

The expected exponential convergence can be recognized from the insets, where

the energies at the in�nite basis-set limit are determined by a non-linear �t of the

last three data points. In these cases, the width of the pseudopotential R ≈ l

is close to the length scale of the trapping potential. Since the mean particle

separation in the harmonic trap will also be of the same order l, or even smaller,

this pseudopotential does not provide a useful approximation for the zero-range

contact interactions that are relevant for modeling experiments with ultra-cold

neutral atoms.

In the panels (c) and (d), R is about one-third and one-tenth of l respec-

tively, where achieving the converged regime is not possible with the considered

basis states. Althoughthe convergence seems exponentially fastt, the energies are

strongly a�ected by the errors of �nite-basis expansion. As will be seen in Sec.

4.4.3, for R = 0.3l the exact energies can be determined (Ec ≈ −62.38~ω), which

is signi�cantly di�erent from the energy, which is obtained from the results of

panel (c) in Fig. 4.1 (Ec ≈ −44.24~ω).

As the lowest energy values reached for each pseudopotential width R change

signi�cantly between the di�erent panels of Fig. 4.1, it is also apparent that R� l

is a necessary condition for a useful, convergent, approximation of the zero-range

limit. Even without more sophisticated analysis, it is apparent from the results
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Figure 4.1: Convergence of the ground-state energy for three fermions with
attractive Gaussian pseudopotential interactions in the unscaled harmonic os-
cillator basis. The energy from exact diagonalization in the �nite multi-particle
basis of Eq. (4.5) is plotted vs. the sizeM of the single-particle basis for Gaussian
pseudopotentials of di�erent widths R: (a) R = l, (b) R = 0.8l, (c) R = 0.3l and
(d) R = 0.1l, where l =

√
~/mω is the length scale of the harmonic trapping po-

tential. The insets in panels (a) and (b) show logarithmic plots of the same data
as the main graph and demonstrate that a regime of exponential convergence
is reached. The extrapolated limiting values of the energy Ec are obtained by
non-linear �tting of the exponential function Ae−BM +Ec to the last three data
points: (a) Ec = −4.19359~ω, (b) Ec = −7.93323~ω, (c) Ec = −44.2392~ω, and
(d) Ec = −63.1069~ω. The interaction strength ln(l/as) = 3.0 is kept constant
for all panels and the corresponding amplitude parameters V0 are determined
numerically following the procedure described in Ref. [139]: (a) V0 = 19.8237~ω,

(b) V0 = 19.6329~ω, (c) V0 = 18.2369~ω and (d) V0 = 13.024~ω.

of Fig. 4.1 that the necessary extrapolations the in�nite basis set (M → ∞) and

zero range (R→ 0) limit will be challenging to achieve.

4.4.2 Length scale resolution

Since we are using a smooth Gaussian pseudopotential, we should expect that,

for a su�ciently large basis set, the energy will converge exponentially to a limiting
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value with the size of the single-particle basis set. Indeed, it is well known that the

Fourier transform of a Gaussian function yields again a Gaussian, which decays, in

fact, faster than exponential in the tails. Sampling a Gaussian potential function

in momentum space should thus lead to at least exponential convergence, once the

basis set is large enough to sample the tails of the Fourier-transformed Gaussian

in momentum space. The necessary condition to reach this regime is that the

basis set can resolve length scales that are smaller than the length scale R of the

Gaussian.

We now use this argument as a motivation to consider the length scale resolution

of a two-dimensional harmonic oscillator basis. In order to keep the basis set

independent from the Hamiltonian of Eq. (4.2), we consider basis functions that

are eigenfunctions of a harmonic oscillator with frequency ω̃ and corresponding

length scale l̃ =
√

~/mω̃. For a one-dimensional harmonic oscillator, the p-th

excited state has a spatial extent that can be estimated by the classical turning

point xt:

(p+
1

2
)~ω̃ =

1

2
mω̃2x2

t , (4.7)

or xt =
√

2p+ 1 l̃. The set of M1D = p + 1 harmonic oscillator functions up to

the p-th excited states provides an approximately homogeneous sampling of the

interval [−xt, xt] at a length scale

lres =
2xt
M1D

=
2
√

2p+ 1

p+ 1
l̃. (4.8)

In order to connect this result to the number M of two-dimensional harmonic

oscillator basis functions, we construct the latter as a product basis (of Hermite

functions) with an energy cuto�. This yields

M =

i+j≤p∑
i,j=0

1 =
(p+ 1)(p+ 2)

2
. (4.9)
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We can thus relate the resolution length scale lres to the size of the basis and obtain

lres =
4
√√

8M + 1− 2√
8M + 1− 1

l̃, (4.10)

which can be solved for M to yield

M ≈ 32

(
l̃

lres

)4

, (4.11)

where lower order terms were neglected assuming l̃� lres.

Equation (4.11) provides an estimate for the size of the single-particle basis

needed to resolve a length scale lres. For the situation of Sec. 4.4.1 where l̃ =

l we can estimate the minimum size of the basis set to be able to resolve the

pseudopotential length scale R as

Mmin ≈ 32

(
l

R

)4

, (4.12)

i.e. the required basis set size increases rapidly when the length scale R (and thus

the range) of the pseudopotential is decreased.

Speci�cally, it means that reaching an exponentially convergent regime should

be quite achievable when the pseudopotential width is of the same order of mag-

nitude as the oscillator length l. For R = l and R = 0.8l we would require a

minimum of 32 and 78 single-particle basis functions, respectively, which means

about 16,000 and 200,000 Fock states for three fermions. This is consistent with

the numerical results of Fig. 4.1 obtained with up toM = 230 single-particle basis

functions.

In order to explore the physics of short-range interactions, however, we may

need to use narrower pseudopotentials. With modest choices of R = 0.3l and

R = 0.1l the number of required single-particle basis functions already increases

to about 4,000 and 300,000, respectively, corresponding to about 3 × 1010 and

1016 multi-particle basis function. In this case, even the storage of the wave func-

tion is very expensive as it would require 0.2 TByte and 100,000 TByte memory,

respectively. Although exploiting symmetries, using approximation schemes, or
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stochastic sampling techniques can reduce these requirements [50, 106], the quar-

tic scaling in Eq. (4.11) does not seem pleasant.

4.4.3 Scaled harmonic oscillator basis

The required size of the single-particle basis can be decreased by introducing

an appropriate scaling of the basis functions. The main idea is the the following:

Increasing the number of basis functions not only improves the resolution length

scale lres (by making it smaller) but also increases the largest length scale that

can be described by the basis, which is given by 2xt = 2
√

2p+ 1 l̃, i.e. through

the classical turning point. This means that the basis functions can be scaled

according to the basis set size while still resolving the largest length scale of the

problem (e.g. twice the Thomas-Fermi radius of a cold atomic cloud). Let us

denote this largest relevant length scale as γl, where γ is the dimensionless form

of this length scale in units of the length scale l of the trapping potential. Note

that γ is determined by the physical properties of the system (i.e. particle number,

interaction strength, etc.), and is thus independent of the basis set size. For the

required basis set length scale we then obtain

l̃ =
γ

2
√

2p+ 1
l . (4.13)

With Eq. (4.8) this yields lres = γl/(p + 1) and using Eq. (4.9) to solve for M we

obtain

M =
γ2

2

(
l

lres

)2

+
γ

2

l

lres

. (4.14)

Applying this result to the problem of resolving a Gaussian pseudopotential

with length scale lres = R and taking the leading term for l � R, we obtain the

revised relation for the minimum size of the single-particle basis

Mmin ≈
γ2

2

(
l

R

)2

, (4.15)
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when the length scale of the single-particle basis is optimally scaled with the size of

the basis set. Compared to the result (4.12) for the unscaled basis, the power-law

scaling of the required basis set size with the pseudopotential length scale R in

Eq. (4.15) is improved by two orders.

4.4.4 Estimating the interaction-dependent prefactor

As γl represents the largest length scale that has to be resolved by the single-

particle basis, i.e. the maximal spatial extent of the system, the factor γ depends

on the details of the Hamiltonian, which, for our example, are the particle number

content and the strength of the contact interaction. Although the exact value of

γ is di�cult to calculate we can estimate its value and present upper and lower

bounds from limiting cases that are simple to analyze.

Speci�cally for fermions with attractive short-range interactions as per Eq. (4.1),

the size of the trapped non-interacting gas cloud will provide an upper bound,

while a lower bound can be obtained from the strongly interacting limit where

fermion pairs form deeply bound composite bosons, while excess fermions remain

with little residual interactions.

Starting with the upper bound, we consider a non-interacting Fermi gas with

a possibly unequal population of spin-up and spin-down fermions. The largest

length scale is determined by the Fermi pressure of the majority component with

the quantum number pmajority along a single spatial dimension

γupper = 2
√

2pmajority + 1 . (4.16)

The parameter pmajority can be expressed in terms of particle number Nmajority by

considering Eq.(4.9) and using the information that only one particle can occupy

one spatial orbital from the same spin component to yield

γupper = 2

√√√√2

⌈√
8Nmajority + 1− 3

2

⌉
+ 1 , (4.17)

where dxe is the ceiling function [140].
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For strong short-range attractive interactions, pairs of spin-up and spin-down

particles form point-like e�ective bosons [67, 141]. The interactions between the

e�ective bosons are repulsive but vanish in the limit of strong attraction between

fermions. In this limit we thus obtain a non-interacting system where all of the

bosons occupy the lowest single-particle orbital. In the spin balanced system, the

largest length scale will thus be given by the length scale of the harmonic oscillator

trapping potential. This length scale provides a lower bound of the largest length

scale of the system as the e�ective repulsive interactions can only increase the

average particle-particle distance. We thus obtain a lower bound of

γsb
lower = 2 , (4.18)

where the index `sb' stands for the spin balanced case.

In the spin-imbalanced case, excess unpaired fermions from the majority com-

ponent are still present and they maintain Fermi pressure in the whole interaction

regime. Indeed, the excess fermions have weak repulsive interactions with the

e�ective bosons that also vanish in the strongly interacting limit (regarding the

original interactions between fermions) [67, 141]. Hence, the lower bound for the

largest length scale can be tightened by considering a non-interacting Fermi gas

of the excess fermions following the same argument as above. We obtain

γsi
lower = 2

√√√√2

⌈√
8 |N↑ −N↓|+ 1− 3

2

⌉
+ 1 , (4.19)

where the index `si' stands for the spin imbalanced case.

We can see from Eqs.(4.17) and (4.19) that the largest relevant length scale γl

increases with particle number. To leading order the bounds become

γupper ≈ 2 4
√

8Nmajority , (4.20)

γlower ≈ 2 4

√
8 |N↑ −N↓| . (4.21)

Comparing with the expression (4.15) for the minimum size of the single-particle

basis, we see that Mmin increases with the square root of the particle number
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(that is Nmajority and |N↑−N↓|, respectively), i.e. requiring a larger single-particle

basis for a larger particle number. We also see that the largest interaction de-

pendence of Mmin can be expected in the spin-balanced case, whereas Mmin will

approximately remain independent of interactions for large spin polarization (e.g.

polaron physics), where Nmajority ≈ |N↑ −N↓|.

For large particle numbers the large length scale γl is well approximated by

Thomas-Fermi theory as γl = 2RTF, where RTF is the Thomas-Fermi radius. In

Thomas-Fermi theory, the single-particle density n(r) is found from solving

µ0 = Vext(r) + µ[n(r)], (4.22)

where Vext(r) = 1
2
mω2r2 is the external potential, µ[n(r)] represents the chemical

potential at local equilibrium [from the equation of state µ(n) of the homogeneous

gas] and the constant µ0 is the chemical potential of the �nite system [17, 56, 62].

The Thomas-Fermi radius RTF is then the value of r where n(r) drops to zero.

For our case of a two-dimensional BCS mean-�eld theory yields a Thomas-

Fermi radius RTF that is independent of particle interactions [142], i.e. the result

(4.20). In the strongly interacting limit of the balanced Fermi gas, we may use

the known asymptotic form of the equation of state for a two-dimensional gas of

bosonic dimers [143, 144]

µ(n) = −2π~2

m

n

ln (a2
ddn)

, (4.23)

where the scattering length of bosonic dimers add is approximately add ≈ 0.55(4)as

[141, 145]. The Thomas-Fermi radius can be determined from Eq.(4.22). After

some algebraic manipulations we obtain

RTF ≈

√
a2
ddNd +

4πl4

a2
dd

ln

(
8πl4eγE+1

Nda4
dd

)
,

where Nd is the number of the bosonic dimers and γE is the Euler-Mascheroni

constant with approximate value of γE ≈ 0.577216. The resulting approximation

for the scaling factor γ is γ = 2RTF/l.
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Figure 4.2: Energy convergence in a scaled harmonic oscillator basis at R =
0.3l with di�erent values of the factor γ. For reference, we also show results
for the unscaled basis (green crosses) identical to Fig. 4.1(c). Panel (b) shows
a logarithmic representation of the same data as panel (a). The extrapolated
limiting value of the energy Ec is obtained by non-linear �tting of the exponential
function Ae−BM + Ec to the last three data points of the γ = 2

√
3 data with

Ec = −62.38392715~ω. V0 = 18.2369~ωl2 corresponding to ln(l/as) = 3.0.

In order to test the prediction of Eq. (4.15) for reduced requirements for the

size of a scaled single-particle basis we consider again the example of two spin-up

particles and one spin-down particle with attractive interactions. The upper and

lower bounds for γ can be easily calculated from Eqs.(4.17) and (4.19) to give

γupper = 2
√

3 and γlower = 2. The required minimum number of basis functions

Mmin from Eq. (4.15) then yields 20 and 60, respectively, for R = 0.3l [reduced

from Mmin = 4,000 for the unscaled basis according to Eq. (4.12)]. Similarly for

R = 0.1l the number decreases from 300,000 to 200�600 basis functions. In Fig. 4.2

we show the ground state energy for R = 0.3l with di�erent scaling factors γ. The

results demonstrate that the regime of exponential convergence can be reached

with the scaled basis, even though it was unattainable with the unscaled basis

with the available computational resources. The smallest scaling factors of γ = 2

and γ = 2
√

2 are seen to result in an (unphysical) energy bias. This can be

understood by the fact the the lower bound γ = 2 and γ = 2
√

2 underestimate the

system size and thus the scaled basis set does not cover the whole area occupied by

�nite particle density. Increasing the value of γ from the lower bound eliminates

the bias but also eventually leads to a reduced convergence rate. At the upper

bound (γ = 2
√

3) the computation is seemingly free of bias but convergence of

the energy is greatly improved compared to the unscaled basis set. Hence, we �nd
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that the upper bound can safely be used for the accurate determination of the

ground state energy.

4.5 Conclusion and outlook

In this work we considered the question whether smooth pseudopotentials are a

good choice for representing short-range interactions in numerical approaches that

rely on a Fock-state basis constructed from a �nite set of single-particle functions.

The combination of smooth pseudopotentials and an asymptotically complete set

of (smooth) single-particle basis functions promises exponential convergence. This

regime of exponential convergence can only be reached, however, if the basis set

is large enough to resolve the relevant length scales of the problem.

In order to isolate the e�ects of the single-particle basis we have used an exact

diagonalization procedure to capture the many-particle quantum physics. For an

example system of experimental interest (a two-dimensional harmonic trapping

potential with attractively-interacting fermions) we have derived simple expres-

sions for the required minimum size of the single-particle basis in order to resolve

a given pseudopotential length scale. The algebraic scaling of l1/4res can be improved

to l1/2res by scaling the basis set but remains algebraic with the required resolution

length scale. An additional algebraic scaling of the required basis set size is found

to apply to the particle number. With numerical example calculations for three

particles we could demonstrate that the exponential convergence regime could in-

deed be reached, albeit in a regime where the pseudopotential length scale is not

much smaller than the particle separation of length scale of the trapping potential.

In order to faithfully represent the physics of short-range interacting particles,

as is relevant for ultracold quantum gases of neutral atoms, it would be necessary to

reduce the length scale of the pseudopotential much further and extrapolate to the

zero range limit. Although such extrapolation has been demonstrated in few-body

systems using di�erent computational approaches [81], it does not seem feasible for

the current approach. Looking towards the treatment of larger particle numbers

and simultaneous extrapolation to the zero-range limit, one has to consider that

the bene�ts of asymptotically exponential convergence of the single-particle basis
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are counter-acted by the algebraically scaling requirements for the minimum size of

the single-particle basis, both with particle number and with the ratio of extremal

length scales that have to be resolved. A remaining alternative approach is to

replace the smooth pseudopotential by a renormalized contact interaction. This

has the advantage of removing the arti�cial length scale of the pseudopotential,

while at the same time the property of exponential convergence is lost and replaced

by algebraic convergence. Extrapolation to the limit of zero range interactions has

been successfully demonstrated for up to 66 fermions in three dimensions with an

auxilliary-�eld quantumMonte Carlo approach [134]. The transcorrelated method,

which will be discussed in the next chapter thoroughly, can further improve the

power-law scaling. Extending the applicability of this method to trapped systems

is a promising avenue for future work.



Chapter 5

Accelerating the convergence of

exact diagonalization with the

transcorrelated method: Quantum

gas in one dimension with contact

interactions

5.1 Introduction

In recent years there has been increasing interest in the experimental realization

of strongly correlated quantum gases with bosonic or fermionic ultracold atoms

[23, 146�149]. Their theoretical description is di�cult [62, 150] and e�cient nu-

merical methods are required to describe the system reliably and accurately. One

straightforward approach is to diagonalize the Hamiltonian in a Fock basis, i.e.,

a �nite basis of appropriately symmetrized products of single-particle wave func-

tions [47, 128, 130, 131, 151�154]. Besides the energy, this approach also provides

convenient access to the full wave function from which all system properties can be

computed. With the recently developed Full Con�guration Interaction Quantum

Monte Carlo method [50] it has become possible to solve much larger problems

than with conventional, deterministic approaches [51, 155, 156]. Nevertheless, the

63
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exact diagonalization in Fock space is computationally expensive as the size of

the many-particle Fock basis grows combinatorially with the number of particles

and the size of the single-particle basis. Moreover, the convergence towards ex-

act results with increasing the size of the single-particle basis is painfully slow for

short-range interacting ultracold atoms. Speci�cally, for a one-dimensional model

with δ function interactions, which models ultracold atoms in a tightly con�ning

trap [157], the energy converges to the exact result with an error that scales as

M−1 with a basis set of M plane waves, or M−1/2 with a basis set of harmonic-

oscillator eigenfunctions [47]. The reason for this slow convergence is the fact that

the short-range interaction induces a cusp into the many-body wave functions at

particle coalescence, i.e., whenever two particles meet [33, 157]. Mathematically,

the wave function belongs to the di�erentiability class C0, i.e., it is continuous

but its �rst derivative is discontinuous. Approximating such a shape of the wave

function by linear combinations of products of smooth single-particle functions is

highly ine�cient.

One possible way to improve energy estimates in a �nite basis set is to renor-

malize the parameters of the Hamiltonian [83, 84, 158]. This approach is closely

related to the concept of a running coupling constant in quantum �eld theory,

where the coupling constant depends on a momentum cuto� [159]. In two and

three-dimensional systems with contact interaction it is necessary to renormal-

ize the interaction constant with the basis size (momentum cuto�) in order to

avoid divergences. While this is not necessary in one dimension, adjusting the

interaction strength can still improve convergence properties [84]. The simplest

possibility is to adjust the interaction constant such as to yield the exact value

of the ground-state energy for two interacting particles from a calculation in the

truncated basis. We are not aware whether the improved convergence rate of a

many-body calculation has been determined before, but in Sec. 5.3 we report nu-

merical results for three and six fermions that indicate that the convergence rate

of the energy error improves by one order from M−1 to M−2. Renormalizing the

coupling strength based on an exactly solvable limit of the many-body problem

was proposed in Ref. [84] and the possibility of adjusting the dispersion relation
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of the kinetic energy part of the Hamiltonian in order to improve the convergence

rate was discussed in Refs. [134, 158] for two- and three-dimensional Fermi gases.

In a similar spirit as the renormalization of the coupling constant, a more elaborate

e�ective Hamiltonian approach has been used to speed up the convergence of few-

particle calculations in harmonic trapping potentials [72, 160]. Other approaches

to optimize the �nite-basis representation of the wave function have suggested

modifying the cuto� procedure for the exact diagonalization procedure [132], or

scaling the single-particle basis function [161].

A di�erent way to improve the convergence properties of a basis set expansion

is to use basis functions that explicitly depend on the interparticle distances in-

stead of a Fock basis [162�165]. However, the cost of the determination of the

matrix elements exponentially increases with the number of particles restricting

the applicability of the method to the few-particle regime.

The route that we follow in this work is to introduce a Jastrow factor eτ [166]

in order to capture the short-range behavior of the exact N -particle wave function

Ψ

Ψ(x1, x2, . . . , xN) = eτΦ(x1, x2, . . . , xN) , (5.1)

τ =
N∑
k<l

u(xk − xl) , (5.2)

where the correlation factor τ depends on the pairwise separation distances of

particles. The function u(x) is designed to describe important two-particle corre-

lations of Ψ while the function Φ is much smoother. Jastrow factors as in Eq. (5.1)

are frequently used in Variational and Di�usion Quantum Monte Carlo approaches

for ultracold atoms [145, 167�170], ab initio nuclear physics [171], the electronic

structure of atoms, molecules [172, 173], and solid-state materials [174, 175].

In this chapter we follow the transcorrelated approach [176], where the Jastrow

factor is folded into the Hamiltonian. Starting from the stationary Schrödinger

equation

ĤΨ = EΨ, (5.3)
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and using Eq. (5.1) we obtain the transcorrelated Schrödinger equation

e−τĤeτ︸ ︷︷ ︸
H̃

Φ = EΦ , (5.4)

where the transcorrelated Hamiltonian H̃ = e−τĤeτ is related to the original

Hamiltonian Ĥ by a similarity transformation and thus shares the same eigen-

value spectrum. The transcorrelated method has already been widely used for

computations of atomic, molecular [176�179] and solid-state properties [180, 181],

where typically the emphasis has been on �nding an optimized correlation factor

τ , while Φ is taken as a simple reference function with the correct particle ex-

change symmetry, e.g., a Slater determinant. Here, we follow the idea of Ref. [182]

where the function u(x) is designed to exactly reproduce the singular short-range

behavior of the exact wave function Ψ, while the transcorrelated function Φ is

expanded in a Fock basis. The transcorrelated Schrödinger equation (5.4) is then

solved as an exact diagonalization problem. Reference [182] demonstrated that

an improved convergence rate and highly accurate energies for the homogeneous

Coulomb gas could be achieved with this approach.

In the following, we concentrate on a one-dimensional quantum gas of bosons

or fermions with contact interactions. By constructing a correlation factor with an

appropriate cusp, we show that the smoothness of the transcorrelated wave func-

tion is improved by at least one order, i.e. from C0 to C1 where the �rst derivative

is continuous. For spinless bosons where the wave function is symmetric under

pairwise particle exchange, the transcorrelated wave function even improves fur-

ther to C2, i.e. the second derivative is continuous as well. The explicit and exact

form of the transcorrelated Hamiltonian is derived in real space, and in momentum

space in second quantization. Three-particle interactions occur as a consequence

of the similarity transformation. While a useful approximation is developed that

only requires evaluation of e�ective two-particle terms, it is also shown that con-

vergence to exact results for the energy can be achieved with a purely one- and

two-body e�ective Hamiltonian if the correlation factor is appropriately adjusted

with the basis set size. While the transcorrelated approach developed here is not
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restricted to ground states or the absence of trapping potentials, we speci�cally

consider the cases of the homogeneous gas of spin-1
2
fermions and spinless bosons

and compare with exact solutions based on the Bethe ansatz [33�35] 1.

This allows for easy benchmarking of our numerical results, which are presented

for the spin-1
2
Fermi gas in a plane-wave basis. We �nd that the convergence rate

of the energy error is improved by the transcorrelated method from M−1 to M−3

in a basis of M single-particle functions.

This chapter is organized as follows. After introducing the original Hamiltonian

with δ interactions and discussing the wave function cusp in Sec. 5.2.1, we construct

an appropriate correlation factor in Sec. 5.2.2 before deriving the explicit form of

the transcorrelated Hamiltonian in real space in Sec. 5.2.3. In Sec. 5.2.4 we show

that the correlation factor improves the smoothness of the wave function by one or

two orders before providing an analytical estimate for the convergence rate of the

energy in Sec. 5.2.5. Discussing the momentum space form of the transcorrelated

Hamiltonian in second quantization and a convenient approximation for the three-

body term in Sec. 5.2.6 concludes the theory part 5.2. Numerical results for

spin-1
2
fermions are presented in Sec. 5.3. After introducing the methods used in

Sec. 5.3.1, we present calculations of the energy error for two particles in Sec. 5.3.2,

for three particles in Sec. 5.3.3, and for six particles in Sec. 5.3.4 before concluding

in Sec. 5.4.

5.2 Theory

5.2.1 One-dimensional quantum gas with contact interac-

tion: cusp of the wave function

We consider a gas of N quantum particles of mass m in one spatial dimension.

Either a single or several spin �avors of bosons or fermions may be present. The

particles interact with a contact (zero-range) interaction, which can be represented

1Exact solutions are also available for inhomogeneous systems in the strongly interacting
limit, which could be used for further benchmarking in future work [36�39, 69].
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by a Dirac delta potential in the Hamiltonian

Ĥ = − ~2

2m

N∑
i=1

[
∂2

∂x2
i

+ V (xi)

]
+ g

∑
i<j

δ (xi − xj) , (5.5)

where xi is the spatial coordinate of the ith particle and V (x) a smooth external

potential. The external trapping potential V (x) does not change the singular

properties of the wave function, which are dominated by the contact interaction

term. For this reason, we will omit the potential V (x) for many examples, which

allows the comparison to exact solutions obtained by the Bethe ansatz, e.g. for

spinless bosons [33] and spin-1
2
fermions [34, 35]. Our transcorrelated approach

for improving the smoothness of the wave function, however, is not restricted to

the homogeneous system and the asymptotic convergence rates that we report in

this work are not a�ected by smooth external potentials.

The Hamiltonian (5.5) can be realized with ultracold atoms in a tightly con-

�ning wave-guide-like trapping potential [157]. The potential strength g can be

expressed through a one-dimensional scattering length a as

g = −2~2

ma
. (5.6)

The contact interaction can be also expressed as boundary condition for the wave

function at coalescence, i.e. when two particles meet [33]. Note that fermions only

feel the presence of the contact interaction term between di�erent spin �avors due

to the Pauli exclusion principle. Near the coalescence point the wave function

takes the form (in analogy to Refs. [65, 68, 158])

Ψ(x1, x2, . . . )
xij→0

= (a− |xij|) · (5.7)

· Aij(Xij, x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . ) +O(xij),

where xij = xi − xj is the relative and Xij = (xi + xj)/2 is the center-of-mass

coordinate relating to the pair with the ith and jth particles. The O(xij) term is

regular at coalescence. For fermions the function Aij(Xij, x1, . . . ) is equal to zero

if both particles i and j belong to the same spin �avor due to the Pauli exclusion
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principle, which also means that they do not feel the contact interaction. The term

a−|xij| in Eq.(5.7) describes a cusp in the wave function with a discontinuity in the

�rst derivative and a singularity in the second derivative. The wave function thus

belongs to the di�erentiability class C0. The cusp in the wave function further has

the consequence that the Fourier transform of the wave function to momentum

space has k−2 tails for large k and, thus, the single-particle momentum distribution

falls o� as k−4, as is well known for quantum gases in one dimension with contact

interactions [65].

5.2.2 Correlation factor for 1D system with contact inter-

action

In this work we follow a similar procedure to Ref. [182] and design the cor-

relation factor τ of Eq. (5.2) such that the boundary condition (5.7) is satis�ed

automatically. To this end it is su�cient to require the function u(x) to have the

form

u(x)
x→0
= u(0)− 1

a
|x|+O

(
x2
)
. (5.8)

This restriction is enough to obtain the correct boundary condition, which can be

seen by substituting Eq.(5.8) into the Jastrow factor

eτ =

( ∏
k 6=i,l 6=j

eu(xkl)

)
eu(0) e−

1
a
|xij |+O(x2ij)︸ ︷︷ ︸

1− 1
a
|xij |+O(x2ij)

. (5.9)

It is convenient to de�ne the correlation factor in momentum space to have the

correct large-k dependence and a simple cuto� for small k

ũ(k) =


2
ak2

if |k| ≥ kc ,

0 if |k| < kc ,

(5.10)

where the parameter kc sets an inverse length scale. The advantages of choosing

this speci�c form of the correlation factor will become fully clear in the following
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sections. An important feature is the free parameter kc, which controls the size of

the correlation factor and becomes important for suppressing three-particle con-

tributions in the transcorrelated Hamiltonian. The function u(x) can be obtained

by the inverse Fourier transform u(x) = (2π)−1
∫

exp(−ikx)ũ(k)dk, as

u(x) =
2

aπ

(
cos (kcx)

kc
+ x Si (kcx)− π

2
|x|
)
, (5.11)

where Si(x) is the sine integral function [183]. The function u(x) is found to be

smooth except at the origin. Considering the case when x is close to zero we obtain

the expression

u(x) =
2

akcπ
− 1

a
|x|+O

(
x2
)
, (5.12)

which satis�es the condition (5.8).

The Jastrow factor with u(x) from Eq.(5.11) is shown in Fig. 5.1. Close to

the coalescence point it resembles the absolute value function, as is expected from

Eqs.(5.7) and (5.9). It can be also read from these equations that the slopes of

the two sides of the absolute value function linearly depend on the inverse of the

scattering length. When the scattering length tends to in�nity the slope goes to

zero and the cusp disappears. This is the non-interacting limit.

The parameter kc adjusts the width of the Jastrow factor. As we choose larger

momentum cuto� in the momentum space it makes the function narrower in real

space.

The physically relevant information about the scattering length comes exclu-

sively from the cusp of the Jastrow factor near the coalescence point. The long-

range behavior is an artifact from the de�nition (5.10). Since the long-range part

of the correlation factor is smooth, however, it is easier to correct it with the Fock-

space expansion of the transcorrelated wave function Φ. Moreover, the long-range

part can be easily damped by increasing the parameter kc. In Sec. 5.3 we will

numerically examine the accuracy of the transcorrelated method and we will show

that it improves the e�ciency of the numerical approach.
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Figure 5.1: Jastrow factor exp[u(x)] with u(x) from Eq.(5.11). (a) Attractive
and (b) repulsive interactions with parameter values for as and kc as indicated.

5.2.3 Transcorrelated Hamiltonian in real space

The explicit form of the e�ective Hamiltonian in Eq.(5.4) can be determined

from the expansion

H̃ = Ĥ +
[
Ĥ, τ

]
+

1

2

[[
Ĥ, τ

]
, τ
]

+ . . . . (5.13)

The external and the particle-particle interaction potentials commute with the

function τ as they can be expressed as a function of the particle positions. The

only non-zero commutators come from the kinetic term, where only the �rst three

terms are di�erent from zero. Thus the expansion (5.13) terminates to yield

H̃ = Ĥ − ~2

2m

∑
i

[
∂2

∂x2
i

, τ

]
− ~2

4m

∑
i

[[
∂2

∂x2
i

, τ

]
, τ

]
.

The remaining commutators can be calculated analytically [176, 182],

H̃ = Ĥ −
∑
i

[
1

2

∂2τ

∂x2
i

+
∂τ

∂xi

∂

∂xi
+

1

2

(
∂τ

∂xi

)2
]
~2

m
. (5.14)

As it can be seen from the term ∂τ
∂xi

∂
∂xi

in the summation on the right-hand side,

the resulting e�ective Hamiltonian is not Hermitian. As a consequence, the left

and right eigenvectors are di�erent and connected by the linear transformation

|ΦL〉 = e2τ |Φ〉 ,
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where |ΦL〉 is the adjoint of the left eigenvector and |Φ〉 is the right eigenvector.

Since the transcorrelated transformation of Eq. (5.4) is a similarity transforma-

tion, the e�ective Hamiltonian H̃ nevertheless has the same real-valued eigenvalue

spectrum as the original (Hermitian) Hamiltonian Ĥ.

Properties such as correlation functions or expectation values of general oper-

ators can be expressed through the transcorrelated wave function as

〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

=
〈Φ|eτ Âeτ |Φ〉
〈Φ|e2τ |Φ〉

. (5.15)

Evaluating such expectation values involves high-dimensional integrals, which is

usually prohibitive in a Fock basis. If the correlation factor is small, however, one

can make use of the cumulant expansion

〈Φ|eτ Âeτ |Φ〉
〈Φ|e2τ |Φ〉

=〈Φ|Â|Φ〉c + 〈Φ|{Â, τ}|Φ〉c +
1

2
〈Φ|{{Â, τ}, τ}|Φ〉c + · · · , (5.16)

to obtain approximate results. Here {·, ·} is the anti-commutator and 〈Φ| · · · |Φ〉c
denotes the cumulant of operator products [184].

5.2.4 Smoothness of the transcorrelated wave function

The transcorrelated transformation improves the smoothness of the wave func-

tion, which eventually leads to faster convergence of the basis expansion. Here we

consider two interacting particles in a smooth and separable external potential,

where we will prove that the transcorrelated eigenfunction is at least C1, i.e. it

can be di�erentiated at least once with a continuous derivative. In the case of

additional even exchange symmetry of the wave function, the smoothness further

improves to C2, i.e. the second derivative of the wave function is also continuous.

This is an improvement to the eigenfunctions of the original Hamiltonian which

are only C0.
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We consider two particles, e.g. two bosons, or fermions in di�erent spin states,

and introduce the center-of-mass and relative coordinates

X =
1

2
(x1 + x2) , (5.17)

x = (x1 − x2) , (5.18)

respectively. For convenience, we assume that the smooth external trapping po-

tential V (x) is further separable, as it is the case for harmonic trapping potentials

frequently employed for ultracold atoms:

2∑
i=1

V (xi) = v(x) + V(X). (5.19)

It follows that the Hamiltonian of Eq. (5.5) can be written as the sum H =

HCOM +Hrel, with terms that only depend on either the center-of-mass or relative

coordinate, respectively. The Schrödinger equation (5.3) is thus solved with a

wave function of the form

Ψ(x1, x2) = χ(X)ψ(x), (5.20)

and eigenvalue E = ECOM + Erel. The equation for the center-of-mass motion is

free of singular operators and thus leads to a smooth wave function χ(X). The

equation for the relative motion, however, contains the particle-particle contact

interaction

[
− ~2

2m

∂2

∂x2
+ v (x) + gδ (x)

]
ψ = Erelψ. (5.21)

The wave function of relative motion ψ(x) is not smooth but rather has a cusp as

we discussed earlier in Sec. 5.2.1.

Since we are only interested in the smoothness properties at the particle coa-

lescence point x = 0, we may take the simpli�ed correlation factor

τ(x) = −1

a
|x| , (5.22)
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which has the same small-x expansion up to �rst order as the function of Eq. (5.11).

Applying the transcorrelated similarity transformation Eq.(5.4) with ψ(x) =

eτ(x)φ(x), the δ-function interaction term is eliminated. The transcorrelated equa-

tion (5.21) then can be written in the form

− ~2

2m

d2φ

dx2
=

~2

ma
S(x)

dφ
dx
− v(x)φ+ E ′φ , (5.23)

where a constant term from the �rst derivative of τ has been absorbed as a shift

in the energy E ′ = Erel + ~2/2ma2, and

S(x) =
d|x|
dx

=

1, x > 0 ,

−1, x < 0 .

(5.24)

In order to examine the smoothness of the function φ(x), we follow the idea of

Kato [185] by designing an elementary solution of d2

dx2 ,

G(x) =
|x|
2
ζ(x) , (5.25)

where ζ is a su�ciently smooth function that equals 1 for |x| ≤ 1 and 0 for |x| > 2.

Then we have

d2

dx2
G(x) =

δ(x), |x| < 1,

S(x)ζ ′(x) + |x|
2
ζ ′′(x), otherwise.

We apply a convolution with respect to G on both sides of Eq.(5.23)

G ∗
(

d2

dx2
φ

)
= −2G ∗

(
1

a
S(x)

dφ
dx
− m

~2
v(x)φ+

mE ′

~2
φ

)
,

and we �nd the leading singular term for φ

φ(x) = −1

a

∞∫
−∞

|x− y|ζ(x− y)S(y)φ′(y)dy + smooth part .
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Using partial integration we obtain an integral equation that depends on φ(x)

instead of its derivative

φ(x) =
1

a

∞∫
−∞

{
ζ(x− y)[S(y − x)S(y) + 2|x− y|δ(y)]+

+ |x− y|S(y)ζ ′(x− y)
}
φ(y)dy + smooth part.

By noticing that S(y − x)S(y) = 1 in the whole integration domain except (0, x)

or (x, 0) (depending on whether x > 0 or x < 0), we obtain

φ(x) =
2

a


xζ(x)φ(0)−

x∫
0

φ(y)ζ(x− y)dy + smooth part, x > 0,

−xζ(x)φ(0)−
0∫
x

φ(y)ζ(x− y)dy + smooth part, x < 0.

Hence, φ(x) is continuous. Since the singularity only takes place at x = 0, we can

simply take ζ(x) = 1 for small variables. Then we get the expressions for the �rst,

second and third derivatives (φ′ ≡ dφ/dx)

φ′(x) =
2

a

φ(0)− φ(x) + smooth part, x > 0,

−φ(0) + φ(x) + smooth part, x < 0,

(5.26)

φ′′(x) =
2

a

−φ
′(x) + smooth part, x > 0,

φ′(x) + smooth part, x < 0,

(5.27)

φ′′′(x) =
2

a

−φ
′′(x) + smooth part, x > 0,

φ′′(x) + smooth part, x < 0.

(5.28)

It follows from Eq. (5.26) that the �rst derivative φ′ is continuous and thus

the relative wave function is C1. Since the center-of-mass wave function χ(X) is

smooth, it follows that also the full wave function Ψ(x1, x2) of Eq. (5.20) is at least

C1.

Even stronger results follow when the wave function is known to be symmet-

ric under particle exchange, i.e. Ψ(x1, x2) = Ψ(x2, x1). This is manifestly the
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case when the particles are spinless bosons but also for the ground state of dis-

tinguishable particles if the Hamiltonian is symmetric (e.g. as well for fermions

with di�erent spin quantum numbers in the absence of spin-dependent terms in

the Hamiltonian). From the symmetry of Ψ it then follows that the relative wave

function is even, φ(x) = φ(−x), and, as a consequence, its �rst derivative is an odd

function. From Eq.(5.26) it can be seen that the �rst derivative is also continuous,

which means that it must have a node at the origin, i.e. φ′(0) = 0. Using this

fact it can be seen from Eq.(5.27) that the second derivative is continuous as well,

and the third derivative is the �rst one where a discontinuity may appear. In this

case of even particle exchange symmetry, the transcorrelated wave function is thus

C2, i.e. the smoothness has improved by two orders compared to the original wave

function Ψ(x1, x2).

These results derived for two particles can be expected to carry over to multi-

particle wave functions since the only singular term in the Hamiltonian is two-

particle interaction in the form of a Dirac δ. For spinless bosons the multi-particle

wave function is symmetric under the exchange of an arbitrary pair of particle

coordinates. Hence we expect the transcorrelated multi-particle wave function to

be C2 and thus have improved smoothness by two orders compared to the original

wave function. We have checked this property by explicitly constructing the two-

and three-particle wave functions of the Lieb-Liniger model of interacting bosons

in a one-dimensional box with periodic boundary conditions [33], and found that

the transcorrelated wave functions have continuous �rst and second derivatives

while the third derivatives are discontinuous.

For fermions the wave function has to be antisymmetric under the exchange of

fermions, which carries over to an antisymmetry of the spatial wave function under

exchange of two-particle coordinates with the same spin (like-spin pairs are thus

not a�ected by the δ interaction). Pairs of particles with opposite spin are a�ected

by the δ interaction but, for more than two (spin-1
2
) fermions, the wave function

is in general not symmetric under the exchange of the coordinates. Thus it is

expected that the transcorrelated wave function is C1 with a discontinuous second

derivative. We have explicitly constructed the ground-state wave function for three
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fermions (one spin-↑ and two spin-↓) in the Yang-Gaudin model of interacting

fermions in a box with periodic boundary conditions and veri�ed that the second

derivative of the transcorrelated wave function has a discontinuous jump at the

coalescence of di�erent-spin particles. We will discuss further numerical evidence

for the C1 nature of the transcorrelated three-particle wave function for fermions

in Sec. 5.3.3.

5.2.5 Convergence rate for ground-state energy

In the numerical procedure we have to truncate the many-particle Hilbert space

and work with a �nite basis. Let us consider the case where we truncate the

single-particle Hilbert space with a momentum cuto� kmax and otherwise perform

an exact diagonalization. We want to estimate the size of the error δE = E − Ea

that is made by replacing the exact energy E by the eigenvalue Ea obtained in the

truncated basis with cuto� kmax.

Let us write

H̃|Φ〉 = E|Φ〉, (5.29)

for the eigenvalue equation in full Hilbert space and

H̃PP |Φa〉 = Ea|Φa〉 (5.30)

for the approximate, truncated eigenvalue equation solved by the computer. Here,

we have introduced the truncated Hamiltonian H̃PP = PH̃P , where P is the

projector onto the N -particle linear space spanned by the Fock states constructed

from plane waves with momentum −kmax ≤ k ≤ kmax. Noting that H̃ is not

necessarily Hermitian and has a left eigenvector equation

〈ΦL
a |H̃PP = Ea〈ΦL

a |, (5.31)
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we may obtain an expression for the energy error δE from projecting Eq. (5.29)

onto 〈ΦL
a |. Simple manipulation yields

δE〈ΦL
a |Φ〉 = 〈ΦL

a |H̃PQ|Φ〉, (5.32)

where H̃PQ = PH̃Q and Q = 1 − P is the projector onto the complement of the

projected space, i.e. where at least one momentum is |k| > kmax. We may choose

〈ΦL
a |Φ〉 = 1 as a normalization condition for the approximate eigenstate and are

thus left with evaluating the overlap on the right-hand side of Eq. (5.32). Let us,

for simplicity, consider the situation of Sec. 5.2.4 of two-particles in the relative

motion frame and assume that the exact wave function decays with a power-law

Φ(k) ∼ k−α (5.33)

with an integer exponent α ≥ 1. Then we obtain

δE = 〈ΦL
a |H̃PQ|Φ〉 ∼

∫ kmax

k0

dp

∫ ∞
kmax

dqΦL
a (p)q−αH̃pq, (5.34)

where we have replaced the summation of momenta by integrals and the projection

operators determine the range of integration. We have applied a small momentum

cuto� k0, which is related to the inverse system size. The expression (5.34) is

general enough to apply both to the original exact diagonalisation problem of the

Hamiltonian (5.5) and to the transcorrelated Schrödinger equation (5.4).

5.2.5.1 Standard method

The original Hamiltonian (5.5) for two particles in the relative motion frame

can be written in momentum space with the matrix elements

Hpq =
~2p2

m
δpq + g , (5.35)

where the o�-diagonal term results from the short-range interaction and couples

any momenta equally. The diagonal term of the kinetic-energy does not contribute
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in Eq. (5.34) and we are left with

∫ kmax

k0

dp

∫ ∞
kmax

dqΦL
a (p)q−αH̃pq = k−α+1

max

g

α

∫ kmax

k0

dpΦL
a (p). (5.36)

Since the p integral is �nite, the scaling of the energy error becomes

δE ∼ k−α+1
max (5.37)

= k−1
max, (5.38)

where in the last equality we have used the result from Sec. 5.2.4 that α = 2 as a

consequence of the C0 cusp of the exact wave function with δ function interactions.

5.2.5.2 Transcorrelated method

In the transcorrelated approach, the δ function interaction is removed and re-

placed by the less singular operator S(x) d/dx as discussed in Sec. 5.2.4. The

matrix elements of the transcorrelated Hamiltonian in momentum space become

H̃pq =
~2p2

m
δpq + 2g

q sin2[L(p− q)/4]

p− q
. (5.39)

We want to use Eq. (5.34) in order to estimate the energy error,

δE ∼ 2g

∫ kmax

k0

dpΦL
a (p)q−α

q sin2[L(p− q)/4]

q − p
, (5.40)

where we omitted a minus sign as we interested only the absolute value of the error.

As the integrand is positive everywhere we can consider the following upperbound

sin2[x] ≤ 1,

δE ∼ 2g

∫ kmax

k0

dpΦL
a (p)F (α− 1), (5.41)

where the q-integral can be separately performed as

F (n) =

∫ ∞
kmax

dq
q−n

p− q
. (5.42)
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For integer-valued n ≥ 1 it is easy to show that F (n) has the series representation

F (n) =
∞∑
ν=0

pν

(n+ ν)kn+ν
max

(5.43)

In order to evaluate the p-integral in Eq. (5.41) it is relevant to estimate the p-

dependence of the left eigenfunction ΦL
a (p). Since the left eigenfunction of the

transcorrelated Hamiltonian does not bene�t from the removal of the cusp by

the Jastrow factor it will have the same asymptotics of the original relative wave

function, i.e. ΦL
a (p) ∼ p−2. Now the integral (5.41) can be done term by term for

the power series. The asymptotic scaling turns out to be dominated by the �rst

term, which gives

δE ∼ k−α+1
max . (5.44)

This is the same result as the expression (5.37) for the original short-range inter-

action, i.e. the scaling of the energy error is completely determined by the large-k

asymptotics of the wave function.

Speci�cally, for the smooth transcorrelated wave function of class C2 for the

case of completely symmetric wave functions (bosons or fermions with di�erent

spin quantum numbers only), we have α = 4 and thus the expected scaling of the

energy error with the momentum cuto� is

δE ∼ k−3
max. (5.45)

5.2.6 Transcorrelated Hamiltonian in second quantization

and three-body term

In the following we examine the homogeneous system in a discrete plane wave

basis. In order to examine the matrix elements of the transcorrelated Hamiltonian,
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let us rewrite Eq.(5.14) in second quantized form [182],

H̃ =
~2

2m

∑
kσ

k2 a†k,σ ak,σ +
∑
pqk
σσ′

TpqkΘσσ′ a
†
p−k,σ a

†
q+k,σ′ aq,σ′ ap,σ +

+
∑
pqs
kk′
σσ′

Qkk′Θσσ′a
†
p−k,σa

†
q+k′,σa

†
s+k−k′,σ′as,σ′aq,σap,σ , (5.46)

where a†k,σ create a one-particle plane wave state with momentum k and spin σ,

L is the length of the unit cell, and Θσσ′ = δσσ′ for bosons and Θσσ′ = 1− δσσ′ for

fermions. The tensors T and Q can be expressed explicitly with the correlation

factor,

Tpqk =
g

L
+

~2

mL

(
k2ũ(k)− (p− q)kũ(k) +

W (k)

L

)
,

W (k) =
∑
k′

(k − k′)k′ũ(k − k′)ũ(k′) , (5.47)

Qkk′ = −k
′kũ(k)ũ(k′)~2

2mL2
.

The summation in Eq.(5.47) contains in�nitely many terms. It can be evaluated

exactly. The results and derivations are detailed in the Appendix.

Treating the three-body term in the explicit calculation is cumbersome. In order

to improve the numerical e�ciency we approximated this term with an e�ective

two-body term. For the approximation we considered only the diagonal part of the

three-body term, where momentum exchanges are equal to each other (k = k′).

We can recognize the number operator (
∑

sσ a
†
sσ̄asσ̄). Its e�ect can be evaluated

in advance,

∑
pqsk
σσ′

QkkΘσσ′a
†
p−k,σa

†
q+k,σa

†
s,σ′as,σ′aq,σap,σ|Φ〉 =

∑
pqk
σ

QkkNσa†p−k,σa
†
q+k,σaq,σap,σ|Φ〉 ,

where Nσ = Nσ = N − 2 for bosons and Nσ = N − Nσ for fermions. This

approximation is very closely related to the Random Phase Approximation (RPA)

[186, 187]. The approximated Hamiltonian with only one- and two-body terms
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can be given in the form:

H̃ATB =
~2

2m

∑
kσ

k2 a†k,σ ak,σ +
∑
pqk
σ 6=σ̄

TpqkΘσσ′a
†
p−k,σ a

†
q+k,σ̄ aq,σ̄ ap,σ +

+
∑
pqk
σ

QkkNσa†p−k,σa
†
q+k,σaq,σap,σ , (5.48)

where the "ATB" index in the Hamiltonian stands for "approximate three-body."

In the two-particle case and in the limit when the system is noninteracting, this

approximation becomes irrelevant, because the three-body term does not have any

e�ects. This approximation introduces an uncontrolled bias in the calculations.

In the next section, we introduce a procedure, where this bias can be eliminated

in a controlled manner.

5.3 Numerical examinations

5.3.1 Methods and implementation

In this section we study numerically the homogeneous spin-1
2
Fermi gas in one

dimension with Hamiltonian of Eq. (5.5) with V (x) = 0 in a box of length L with

periodic boundary conditions (ring con�guration) for two to six particles. Exact

solutions for this system are available using the Bethe ansatz [34, 35], which we use

to calculate exact reference energies. We then diagonalize the original Hamiltonian

(5.5) and the transcorrelated Hamiltonian (5.48) with approximated three-body

terms. To this end we use a single-particle basis with M plane waves truncated

according to

|k| ≤ kmax ≡
M − 1

2

2π

L
, (5.49)

and construct the full multi-particle Fock basis with dimension
(
M
N↑

)(
M
N↓

)
, where

N↑ and N↓ are the spin-up and spin-down particle numbers. We then express

the Hamiltonian as a matrix in this �nite Fock basis and numerically obtain the

ground-state energy and eigenvector (often referred to as �exact diagonalization�).
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We also compare our results with the lattice renormalization approach [83, 84].

The truncated plane wave basis expansion discretizes real space by creating an

underlying reciprocal lattice. The lattice renormalization approach then adjusts

the potential strength g of the discretized δ interaction in order to recover the

correct scattering amplitude for two particles [83] or, equivalently, yield the correct

two-particle ground-state energy to leading order [84]. In order to apply this

approach, one simply replaces the interaction constant g in the Hamiltonian (5.5)

by the renormalized coupling constant

g̃ =
g

1 + g
g0

, (5.50)

where

g0 =
Mπ2~2

mL
≈ kmaxπ~2

m
. (5.51)

While the exact diagonalization of the Hamiltonian (5.5) in the Fock bases with

or without renormalized interaction strength can be calculated with any diagonal-

ization algorithm, the transcorrelated method has an additional complication due

to the non-Hermiticity of the transcorrelated Hamiltonian. We apply power itera-

tions to obtain the ground-state energy and eigenvector [91], which can be done for

non-Hermitian eigenvalue problems. The power method can be scaled to very large

Hilbert spaces with the stochastic implementation provided by the Full Con�gu-

ration Interaction Quantum Monte Carlo [50, 188]. Very recently, this approach

was combined with the transcorrelated method for the homogeneous electron gas

[182].

5.3.2 Two particles

The convergence of the energy with respect to the size of the single-particle

basis is shown in Figs. 5.2 and 5.3 for two particles (one spin-up and one spin-

down fermion or, equivalently, two spinless bosons) with attractive and repulsive

interactions, respectively. The two-particle system has the advantage that the

three-body interaction term in the transcorrelated Hamiltonian of Eq. (5.46) does
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functions M , on linear�log scale. �diag�: exact diagonalization of the Hamil-
tonian (5.5); �renorm�: with renormalized interaction constant of Eq. (5.50);
�tcorr�: transcorrelated Hamiltonian of Eq. (5.46); �kc� truncation parameter
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not contribute and thus the e�ects of the transcorrelated transformation on the

two-particle interactions can be studied in isolation without the need for further

approximations. The energy error δE ≡ E −EBethe is calculated as the di�erence

of the numerically obtained approximate value and the exact ground-state energy

value obtained from the Bethe ansatz [34, 35].

As we discussed eariler in Sec. 5.2.5 the energy is expected to converge polyno-

mially, hence, by using the identity of the logharimtic function the relation between

δE and M can be written in the following form:

log10

(
δE

~ω

)
= −b log10 (M) ,

where b is the convergence rate. Therefore, b can be given as a slope in a double

logharitmic scale. In Fig. 5.4 the energy obtained by exact diagonalization of the

original Hamiltonian of Eq. (5.5) in the truncated Fock basis (�diag�) is found to

converge linearly with the inverse numberM−1 of single-particle basis functions in

Figs. 5.4 and 5.5 for attractive and repulsive interaction respectively. This agrees

nicely with the theoretical prediction of Eq. (5.38) in Sec. 5.2.5.

The transcorrelated approach (�trcorr�) is seen to generally improve upon the

exact diagonalization results. From Sec. 5.2.5 we also may expect a faster con-

vergence rate of δE ∼ M−3 (since the two-particle ground-state wave function

is symmetric under particle exchange). From the numerical results presented in

Figs. 5.4 - 5.7 we see that this is the case asymptotically for basis sets that are

large enough to resolve the modi�ed singular feature of the transcorrelated wave

function. A more detailed description of these �gures, especially about the cuto�

procedure will be discussed in the next two subsections.

5.3.2.1 Correlation factor with �xed parameter kc

In Figs. 5.4 and 5.5 the data labeled with kc values are obtained with �xed

correlation factors and variable number of single-particle basis functions M . The

smallest value, kc = 2π/L, shows signi�cantly improved energy errors following

the power law δE ∼ M−3 for all considered basis set sizes M ≥ 5. Increasing

the correlation factor cuto� kc leads to an overall smaller correlation factor due to
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with attractive interaction (g = −10~2/mL): the error of the ground-state en-
ergy vs. the number of single-particle basis functions M on a log-log scale for
di�erent values of the kc parameter (�trcorr�). Exact diagonalization (�diag�)
and renormalized results (�renorm�) are shown for comparison (cf. Fig. 5.2).

�slope�: approximate exponent of �tted power-law δE ∼Mslope .

fewer Fourier components contributing, and an associated smaller length scale for

its real-space version u(x) of Eq. (5.11). Unsurprisingly, the smaller correlation

factors are less e�ective in reducing the energy error for the small (�xed-size) basis

sets. However, when the number of single-particle functions M is increased, all

curves collapse onto the same asymptotic power-law with δE ∼ M−3. From our

numerical data we �nd that the correlation factor is fully e�ective when kmax ' 3kc

for the attractive case of Fig. 5.4 and kmax ' 2kc for repulsive interactions as seen

in Fig. 5.5, where kmax = (M/2−1)2π/L determines the number of single-particle

functions M .

5.3.2.2 Correlation factor with sliding parameter kc

The observation that the correlation factor is fully e�ective when kmax is larger

than a value determined by kc suggests that it makes sense to adjust kc with

the size of the basis set M (or, equivalently, kmax), in order to �nd the smallest

correlation factor necessary, for given basis set sizeM , to fully reap the bene�ts of

the accelerated convergence of the transcorrelated approach. We thus introduce a
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as in Fig. 5.4.

way of scaling the correlation factor cuto� kc with the basis set size according to

kc = βkmax . (5.52)

A similar way of scaling the correlation factor with the size of the single-particle

basis set was previously suggested in Ref. [182] (with �xed β = 1) in order to

control the size of the three-body term in the transcorrelated Hamiltonian. We

will discuss this issue in Secs. 5.3.3 and 5.3.4. In Figs. 5.6 and 5.7 we show,

respectively, the energy error obtained with this approach for di�erent values of

β. Our data suggest that each value of β leads to a di�erent power-law, until the

value of β is small enough to reach the theoretical limit with δE ∼M−3. Reducing

the value of β further, does not change the power-law. We also see that di�erent

values of β are needed to reach the theoretical limit depending on the nature of

the interaction.

5.3.2.3 Comparison with the renormalization approach

Energies obtained with renormalized interaction strength according to Eq. (5.50)

are also shown in Figs. 5.2 - 5.7 for comparison. The renormalization method works



Chapter 5. Accelerating the convergence of exact diagonalization with the
transcorrelated method 88

-6

-5

-4

-3

-2

-1

 0

 1

 5  10  20  30  40  50 60  80 100

lo
g

1
0
 (

| 
E

-E
B

e
th

e
 |

 /
 [

 − h
2
 /

m
 L

2
 ]

 )

 M

diag, slope≈-1.0
renorm, slope≈-3.0

trcorr, kc=2π/L
trcorr, β=1, slope≈-1.7

trcorr, β=1/2, slope≈-2.7
trcorr, β=1/3, slope≈-3.0
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mate ground-state energy vs. the number of one-particle basis functions M in a
log�log plot. Legend labels as in Fig. 5.4. �β� parameter for scaled correlation

factor of Eq. (5.52).

well for estimating the ground-state energy for two particles, which is not surpris-

ing because the renormalized coupling constant is determined by comparison with

an exact solution to a two-particle problem. We here �nd that the energy error

scales again as δE ∼M−3. Even though the scaling is the same as the transcorre-

lated method, we �nd that the prefactors are di�erent (leading to di�erent o�-sets

of the curves in Figs. 5.6 and 5.7). It is interesting to note that the transcorrelated

approach works better than the renormalized one for attractive interactions but

worse for repulsive interactions. This is probably due to the Jastrow factor resem-

bling the bound-state wave function that dominates the ground state for attractive

interactions (see Fig. 5.1). Since the prefactor of the transcorrelated energy error

certainly depends on the details of the cuto� procedure used in Eq. (5.10), it could

probably be further reduced by optimizing this procedure.

5.3.2.4 Single-particle momentum density

In order to obtain information about the approximate wave function, we calcu-

late the single-particle momentum density

ρσ(k) = 〈a†k,σak,σ〉, (5.53)
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where the expectation value is taken with respect to the �nite basis set approx-

imation of either the original ground-state |Ψ〉 or the transcorrelated eigenstate

|Φ〉, respectively.

The results for two particles, shown in Fig. 5.8, are independent of the spin σ

and the sign of k. The momentum distribution of the original ground-state |Ψ〉

shows a clear power-law decay ∼ k−4 for almost the entire momentum interval

shown in the �gure. As discussed in Sec. 5.2.1, this behavior is expected, since

the momentum density contains the square of the wave function, which possesses

k−2 tails as a consequence of the cusp in real space [65]. The renormalization

method leads to the same power-law for the momentum density, since the analytic

properties of the wave function are not changed.

The momentum distributions of the transcorrelated ground-state |Φ〉 are seen

to decay much faster for large k and asymptotically converge to a power-law of

k−8. This observation is consistent with the analytic results about the smoothness

of the transcorrelated wave function of Sec. 5.2.4. Improving the smoothness (dif-

ferentiability class) of the real-space wave function by one order also decreases the

power-law of the large-k tail in momentum space by one order. Thus the C2 char-

acter of the transcorrelated two-particle wave function implies ∼ k−4 scaling of the
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Figure 5.8: Single particle momentum density ρ(k) for two particles with at-
tractive interactions g = −10~2/mL, with M = 139 on a log�log scale showing
the transition from the k−4 behavior of the original Hamiltonian to the k−8

asymptotics of the e�ective Hamiltonian as an e�ect of the correlation factor.
Legend labels as in Fig. 5.4. Asymptotic power-laws from approximate �ts to the
large-k tails as indicated. The data from exact diagonalization with the bare in-
teraction (�diag�) and renormalized interaction (�renorm�) are indistinguishable

on the scale of the plot.

wave function and thus ∼ k−8 scaling of the momentum density. The parameter

kc de�nes an inverse length scale characterizing the �size� of the correlation factor.

For larger length scales the correlation factor does not have any signi�cant e�ect

and hence the momentum density follows the original k−4 power-law for k < kc.

For smaller length scales (larger k) there is a transition region after which the

smoothing e�ect of the correlation factor on the transcorrelated wave function

becomes fully e�ective. In this regime of the smallest length scales (large k), the

short-range correlations are suppressed and the momentum density shows a 1/k8

decay.

Smaller correlation factors (corresponding to larger kc) reach the asymptotic

scaling at larger wave numbers, which is expected because the wavelength of the

basis functions needs to be small enough to resolve the features of the smaller

correlation factor in order to take advantage of the improved smoothness of the

wave function.

A remarkable feature of Fig. 5.8 is that the momentum density of the transcorre-

lated wave function for kc = 20π/L and kc = 40π/L coincides with the momentum
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Figure 5.9: Three fermions (two spin-up and one spin-down) with attractive

interactions g = −10~2/mL: the error of the ground-state energy vs. the num-
ber of one-particle basis functions M on a linear-log scale. The labels �diag�,
�renorm� and �tcorr� stand for the exact diagonalization, renormalization, and
transcorrelated approaches, respectively. The correlation factor cuto� kc is lin-

early scaled with M according to Eq. (5.52).

density of the original wave function accurately for the smaller values of k up to

critical value that is approximately given by kc. This means that the exact mo-

mentum density can be extracted from Eq. (5.15) for the small wave numbers

already from the �rst term of the expansion (5.16), i.e.

〈Ψ|a†kak|Ψ〉 ≈ 〈Φ|a
†
kak|Φ〉. (5.54)

Increasing kc will further increase the range of wave numbers (equivalently decrease

the length scale) over which the momentum density is accurately approximated.

5.3.3 Three fermions

In order to study the role of the three-body term and the e�ects of approxima-

tions we need to consider more than two particles. It is also interesting to study

the e�cacy of renormalizing the interaction strength in a multi-particle system,

as Eq. (5.50) was derived considering only two interacting particles.

We consider three spin-1
2
fermions with two spin-up and one spin-down particles

with attractive interactions. The energy error compared to the exact Bethe-ansatz
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solution for the various approximations is shown in Fig. 5.9. Here (and alson in

Figs. 5.2-5.16), the lines connecting data points are a guide to the eye only. Where

connecting lines are omitted in the logarithmic plot, a sign change of the error has

occurred, i.e. the approximate energy curve crosses the exact one. The energy

error from the exact diagonalization of the original Hamiltonian (5.5) is shown

for reference in Figs. 5.9 and 5.11a. As expected it follows the power-law scaling

∼ k−1. The approach of renormalizing the interaction strength for a given basis set

size by Eq. (5.50) is shown in Figs. 5.9 and 5.11a, and clearly demonstrates power-

law scaling ∼M−2. The convergence rate has decreased by one order compared to

the two-particle case. This can be understood by the fact that the renormalized

interaction strength was determined by solving a two-particle problem.

5.3.3.1 Correlation factor with �xed parameter kc: Bias from the ap-

proximation of the three-body term

Results from the transcorrelated approach with �xed cuto� parameter kc are

shown in Fig. 5.10. Since we are not including the full three-body terms in our
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Figure 5.11: Power-law convergence with sliding correlation parameter kc -

three fermions (two spin-up and one spin-down) with attractive interactions g =
−10~2/mL: the error of the ground-state energy vs. the number of one-particle
basis functions M in a log-log plot. Legend labels as in Fig. 5.9. The label �no
3-body� means that the three-body term was omitted from the transcorrelated
Hamiltonian Eq.(5.46), while for �ATB�-labelled data the three-body term is
approximated as per Eq.(5.48). Where these labels are not indicated the results
of the two approaches are indistinguishable from each other on the scale of this

plot.

diagonalization procedure, the results converge to a �nite value, which quanti-

�es the contribution of the neglected three body terms. It can be seen that the

approximate inclusion of the three-body term as per Eq. (5.48) (labelled �ATB�)

leads to smaller errors than the complete neglect of three-body contributions [�no

3-body�; Eqs. (5.46) and (5.47) with Qkk′ = 0]. By increasing the value of kc, the

three-body error decreases dramatically providing a more accurate approximation

for the energy. This can be understood as follows: increasing kc reduces the length

scale associated to the correlation factor and with it the range of the newly gen-

erated terms in the e�ective Hamiltonian, including the three-body term. In a

dilute gas, the signi�cance of the three-body terms thus diminishes.

5.3.3.2 Correlation factor with sliding parameter kc: Treatment of the

three-body term

We may expect that scaling the parameter kc of the correlation factor with the

size of the basis set as per Eq. (5.52) is a way to asymptotically eliminate the error

introduced by neglecting or approximating the three-body term and converge to
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exact results. Figs. 5.9 and 5.11 show that this is indeed the case (and a similar

observation was previously made in Ref. [182]). Data for di�erent values of the

scaling factor β in Eq. (5.52) all show algebraic convergence to the exact ground-

state energy. The numerically extracted power-law exponents vary, with generally

a smaller value of β resulting in faster convergence in the asymptotic (large M)

regime. As in the case for two particles in Fig. 5.6, the fastest convergence is

reached with β ≤ 1
3
yielding the approximate power law δE ∼ M−3. As seen

in Fig. 5.11b, decreasing the factor β below this value does not yield a further

improvement of the asymptotic power law, but on the other hand, leads to larger

errors for smaller basis sets (due to the smaller correlation factor being less e�ective

in capturing pair correlations). It is also seen from the data in Fig. 5.11 that the

approximate treatment of the three-body term (�ATB�) of Eq. (5.48) does not

change the asymptotic power law, or even the value of the energy error in the

asymptotic regime, but it does improve the energy error for smaller basis sets. We

conclude that the value of β = 1
3
and the inclusion of approximate three-body

terms gives the best performance.

5.3.3.3 Single-particle momentum density

The single-particle momentum density ρ↓(k) is shown in Fig. 5.12 and shows

similar features as seen in the two-particle case of Fig. 5.8. The original ground-

state wave function for three fermions leads to a ∼ k−4 algebraic decay of the

momentum density as in the case of two particles, or more generally, for the Bose

gas [65]. The transcorrelated ground-state |Φ〉, however, asymptotically decays

as ∼ k−6, which is slower by two orders than in the two particle case. This

observation suggests that the wave function has the di�erentiability class C1, i.e.

is less smooth by one order than the two-particle wave function. This result

provides further evidence for the conclusion of Sec. 5.2.4 that the transcorrelated

fermionic multi-particle wave function is C1.

The remarkable result from the numerical investigation of the three-fermion

system is that the ground-state energy convergence ∼M−3 is faster than expected

from the analytical estimates of Sec. 5.2.5.2. The analytical arguments as well
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Figure 5.12: Single particle momentum density ρ↓(k) for the minority spin
component for three fermions (two spin-up, one spin-down) with attractive in-
teractions of g = −10~2/mL and M = 139 on a log-log scale. Labels as in
Fig. 5.9. Asymptotic power laws from approximate �ts to the large-k tails as in-
dicated. The data from exact diagonalization with the bare interaction (�diag�)
and renormalized interaction (�renorm�) are indistinguishable on the scale of the

plot.

as the numerical analysis of the momentum density of the transcorrelated wave

function indicate that the large momentum asymptotics scale as Φ(k) ∼ k−3,

which, by Eq. (5.44), should lead to an energy error scaling as δE ∼ M−2. The

faster-than-expected convergence of the transcorrelated energy is well supported

by the data shown in Fig. 5.11 and comes as a pleasant surprise.

5.3.4 Six fermions

We also examined the spin-balanced six-particle system in order to study the

convergence properties for the larger particle number. Figs. 5.13 and 5.14 show

the convergence of the energy error for attractive and repulsive interactions, re-

spectively. As it can seen by using the sliding scaled correaltion factor kc with

β = 1/2, the transcorrelated method performs the best among the three methods.

The improvement is even more signi�cant in the attractive case, where in this scale

it can barely be di�erentiated from the exact curve.

In order to examine the convergence rate and the e�ect of the di�erent cuto�

procedures, the double logarithmic scale is applied in Figs. 5.15 and 5.15. The
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g = −10~2/mL: the error of the ground-state energy vs. the number of one-
particle basis functions M on a log-log scale. Labels as in Figs. 5.9 and 5.11.

results are largely consistent with the case of the three fermions. Exact diago-

nalization of the original Hamiltonian yields an M−1 convergence, as expected,

and also the convergence rate of M−2 for the renormalization approach has not

changed compared to three particles. This con�rms that the faster convergence of

the renormalization method in the two-particle system is a special case.

The transcorrelated approach with scaled correlation factor cuto� kc seems

a bit complicated for the smaller basis sets especially at attractive interactions

5.15, due to the several crossings of the exact energy value. However, at a larger

number of basis states, it can be seen that it converges algebraically towards

the exact ground-state energy, even though the three-body terms have been either

approximated or fully omitted. The two curves merge together at the scaling factor

of β = 1
2
showing the elimination of the bias from the calculations. This indicates

that the required β-factor for optimal convergence has no strong dependence on

the particle number. The six-particle results also con�rm the faster-than-expected

M−3 scaling of the transcorrelated approach that we already saw for the three-

particle and two-particle cases.
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5.4 Conclusion and outlook

We have constructed an e�ective Hamiltonian based on a transcorrelated trans-

formation that replaces the singular contact interaction by less singular, but non-

Hermitian terms, which also include arti�cial three-body interactions. We have

shown that an explicit treatment of the three-body terms can be avoided, while

nevertheless achieving fast convergence to the exact results by scaling the corre-

lation factor with the size of the single-particle basis. This scaling is controlled

with the parameter β through Eq.(5.52) and e�ectively reduces the error due to

neglected three-body terms when the basis set is increased by reducing the size of

the correlation factor. While small values of β will lead to the optimal asymptotic

scaling of the error for large basis sets, larger values will lead to improved bene�ts

of the correlation factor for smaller basis set but compromise the asymptotic scal-

ing beyond an optimal value. The optimal value of β was seen to depend weakly

on the sign of the interaction strength and may also depend on the value.

Including the full three-body terms would allow one to achieve unbiased results

for a Fock-space diagonalization even for �xed-size correlation factors. This could

potentially be useful for reducing the amount of correlation in the e�ective Hamil-

tonian, which may be bene�cial for the convergence of stochastic or approximate
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approaches. Our numerical results indicate that the transcorrelated method im-

proves the convergence of the energy from M−1 of the exact diagonalization of the

original Hamiltonian toM−3, whereM is the number of single-particle basis func-

tions. For two particles we could show that the faster convergence rate originates

in the improved smoothness of the transcorrelated wave function from C0 of the

original cusp-like wave function to C2. For more than two spin-1
2
fermions, where

the smoothness of the wave function improves only to C1, the convergence rate is

not yet fully understood.

We have also examined an alternative approach based on a simple renormaliza-

tion of the interaction constant. While not a�ecting the smoothness of the wave

function, this approach improves the convergence rate of ground-state energies by

one order to M−2.

Based on such promising results for the ground state of the one-dimensional

homogeneous gas, it will be interesting to examine the e�ciency of the transcorre-

lated approach in a trapped system or for excited states, where the presence of a

cusp at the two-particle coalescence causes slow convergence [47]. Due to the non-

Hermitian nature of the transcorrelated Hamiltonian, care must be taken when

choosing an appropriate excited state method, but projective operation based ap-

proaches [189, 190], for example, are well suited.

In future work we also would like to extend the treatment of the three-body

terms to include all six-index interaction terms, of which the explicit form is given

in Sec. 5.2.6. Using the exact expressions it is not necessary to adjust the cor-

relation factor cuto� with the size of the basis. Pontentially better results can

be expected by simply selecting the largest correlation factor in the calculations.

Moreover, we plan to investigate two- and three-dimensional systems, where the

singular behavior at the coalescence point is even more severe. Considering this

singularity in the correlation factor potenitally can greatly improve the conver-

gence behavior even more signi�cant than the improvements found in the present

study.



Chapter 6

Summary

In this thesis, we discussed methodological developments, which improved the

e�ciency of the Fock-space based approaches for ultracold atoms. The ine�-

ciency of most numerical methods stem from the combinatorial scaling of the

Hilbert space, thus we investigated the possibility to decrease the required num-

ber of single-particle basis functions and thus enable calculations for larger par-

ticle numbers and strong interaction regimes. For this, �rst, we considered the

smooth Gauss pseudopotential, which is known to converge exponentially fast in

the asymptotic limit with the number of single-particle basis functions. Then

we considered the transcorrelated method, where a similarity transformation was

applied to reduce the convergence rate.

For the Gauss pseudopotential, a numerical approach is necessary to determine

the s-wave scattering length. These techniques are generally inaccurate around

the zero-energy bound states, where the s-wave scattering length is singular. We

derived analytic expressions around these singularities, which accurately describe

the singular behavior but they are inaccurate for deeply bound and the unbound

states. Therefore, a general ansatz was considered, where applying a non-linear �t

for the numerical results far from the singularity provides an accurate description

for the whole attractive interaction regime.

Next, we had a closer look at the convergence properties of the Gauss pseudopo-

tential. Despite the exponentially fast convergence, using only a small number of

basis functions cannot resolve the �nite length scale of the Gauss potential. In this

100
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case, the �nite basis expansion of the Gauss potential is equivalent to the patholog-

ical bare Dirac-delta contact interaction. We investigated the minimal number of

single-particle basis functions, which can resolve the �nite-range of the potential.

We showed, through the example of few particles in a two-dimensional harmonic

trap, that the minimal number of single-particle harmonic oscillator basis func-

tions scales with (l/R)4, where l is the characteristic length scale of the trapping

potential and R is the length scale of the Gaussian potential. This can be reduced

to a (l/R)2 convergence rate by optimizing the length scale of the single-particle

basis functions. However, this scaling property makes the computation inacces-

sible for physically realistic short-range potentials, where the length-scale of the

system is several magnitudes larger than the length scale of the particle-particle

interaction.

In order to improve the slow convergence properties of the exact diagonaliza-

tion, we have applied the so-called transcorrelated approach. Instead of modify-

ing the potential itself, the wave function ansatz is improved by considering the

correct boundary conditions at the point of particle-particle coalescence with a

Jastrow-factor. In order to solve the Schrödinger equation, the Jastrow-factor is

transformed into the Hamiltonian with a similarity transformation. The obtained

transcorrelated Hamiltonian is not Hermitian and apart from one- and two-body

interactions contains a three-body interaction term as well. In order to improve

the e�ciency of the numerical implementation, we have suggested to approximate

the three-body term with an e�ective two-body term. The energy can still easily

be determined with imaginary time evolution. Although, the approximation of

the three-body term introduces an error in the calculations, it can be eliminated

by simultaneously decreasing the Jastrow-factor with increasing the size of the

single-particle basis set. We examined the homogeneous gas in one dimension.

In this case, the convergence of the energy is M−1, where M is the number of

single-particle plane-wave basis functions. Applying the well-known renormaliza-

tion approach the convergence can be increased to M−2, which can be further

improved to M−3 by the transcorrelated approach.

Comparing the obtained cubic convergence of the transcorrelated approach with
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an exponential convergence of the Gaussian potential we �nd that the later one

still performs better in the asymptotic limit. However, in practice to access the

exponentially fast converging regime the required number of single-particle basis

functions has to be extremely large, which is not accessible with the current com-

putational resources. The cubic convergence of the transcorrelated approach can

be accessible at least in the few-particle regime. Although we have only tested this

approach on a homogeneous gas, the convergence is expected to be the same for

an inhomogeneous gas in a trap, because the convergence is primarily determined

by the particle-particle interaction itself.



Chapter 7

Outlook

Based on the signi�cant improvement of the convergence behavior in the transcor-

related approach, we plan to continue the investigation in that direction. First, we

would like to analyze the e�ect of the three-body terms, which are approximated

by e�ective two-body terms in Sec. 5.2.6. There the correlation factor has to be

decreased simultaneously by the increasing number of single-particle basis func-

tions in order to eliminate the arti�cial bias from the calculations. Considering

the exact form of the three-body terms it is possible to consider an optimal �xed

correlation factor, which can improve the convergence properties.

Alternative improvement in our methodology can be the optimization of the

correlation factor itself. The correlation factor has to reproduce the cusp at the

coalescence point. As the long-range property of the wave function is unknown,

we would like to describe that part completely with the exact diagonalization ap-

proach. Therefore, the correlation factor is required to quickly decay to a constant

function to avoid any numerical di�culties. In Sec. 5.3 we considered the ho-

mogeneous system, where due to the plane-wave basis the correlation factor is

considered in momentum space. In this case, the correlation factor has a 1/k2 mo-

mentum tail, while for small momemtums it has to decay to a constant function.

The two limits are matched together with a simple cuto� in Sec. 5.2.2 providing

a simple way to evaluate the matrix elements. However, it introduces slowly de-

caying oscillations in the real space, which can lead to possible numerical artifacts

in the calculations. We plan to examine the e�ect of this oscillations and consider
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di�erent correlation factors, where the oscillation can be damped and the decay

can be accelerated.

A natural extension of this approach is to apply it to trapped inhomogeneous

systems. As the convergence rate at strong interactions principally determined

by the interaction between the particles, the convergence properties should be the

same for trapped and for homogeneous systems. Moreover, the implementation of

these systems should be straightfoward. Applying the plane-wave basis functions

it is only necesssary to derive matrix elements of the trapping potential. The

matrix elements of the particle-particle interaction described in Sec. 5.2.6 can be

directly applied to inhomogeneous systems as well.

Another possible generalization can be the extension to two and three dimen-

sions. While in one dimension at the coalescence point only the second derivative

of the wave functions diverges, in higher dimensions the wave function itself is

singular. Considering this singularity in the Jastrow factor, the convergence prop-

erties will potentially improve even more than in the one-dimensional case.

These methodological developments pave the way to describe reliably the strongly

correlated Fermi gases. They can give a deeper understanding of the present ex-

periments of ultracold fermions and can also suggest a parameter regime, where

the indications of the elusive strongly correlated systems (e.g.: fractional quantum

Hall e�ect, high-temperature superconductors) can be looked for. An alternative

more direct advantage comes from the universality of these systems at the uni-

tary regime. Improving these numerical approaches we can get a more accurate

values for the universal parameters (e.g.: Bertsch, contact parameters), which are

necessary to describe the physics of peculiar solid-state systems or neutron stars

[191].



Appendix A

Boundary conditions for the

scattering problem

For the case of simplicity we suppose a smooth non-singular interaction poten-

tial, which implies at least a second order smoothness of the wave function due

to the second derivative in the Schrödinger equation (3.6). However, the obtained

boundary conditions are correct for the more general class of potentials de�ned by

Eqs. (3.2) and (3.3), as well [192, 193].

In order to obtain the boundary conditions, let us multiply Eq.(3.6) by r2 and

consider the limit of r → 0 as

lim
r→0

[
− ~2

2µ

(
r2 d2

dr2
+ r(n− 1)

d
dr

)
ΦnD(r) + r2 (V (r)− E) ΦnD(r)

]
= 0 . (A.1)

Assuming to the potential and wave function are non-singular, the second term in

Eq.(A.1) goes to zero in the limit of r → 0. Therefore, it is enough to consider

only the following di�erential equation:

lim
r→0

[
− ~2

2µ

(
r2 d2

dr2
+ r(n− 1)

d
dr

)
Φa
nD(r)

]
= 0 , (A.2)
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where Φa
nD(r) is asymptotic solution of ΦnD(r) in the origin. Let us consider �rst

the two- and three dimensional cases, where we have the following solutions:

Φa
2D(r) = d2D ln(r) + c2D , (A.3)

Φa
3D(r) =

d3D

r
+ c3D . (A.4)

The parameters d2D, c2D, d3D and c3D are arbitrary constants. The functions ln(r)

and 1/r are singular at r = 0, which would provide a non-smooth wave function.

Moreover, in the kinetic part the second derivative would be a Dirac-delta function,

which cannot be compensated by the potential part in the Schrödinger equation

[192]. Hence, these irregular parts should be eliminated by setting the scalar

factors d2D and d3D to 0. Choosing the coe�cients cnD,1 and cnD,2 to 1, we obtain

the following boundary conditions:

Φa
2D(r) = 1 , Φa

3D(r) = 1 . (A.5)

In one dimension the parity is a good quantum number, which can be shown

by interchanging of r to −r in Eq.(A.2),

lim
r→0

[
− ~2

2µ
r2 d2

dr2
Φa

1D(−r)

]
= 0 . (A.6)

Matching Eq.(A.2) with Eq.(A.6), we �nd that ΦnD(r) can either be an even or

an odd function. The s-wave symmetry demands an even solution, and hence we

can choose a solution with

Φa
1D(r) = 1 , (A.7)

�xing the normalisation constant. Collecting the asymptotic solutions (A.5) and

(A.7) into one expression and calculating the derivative, we obtain suitable bound-

ary conditions for an arbitrary number of dimensions (1�3):

ΦnD(0) = 1 and Φ′nD(0) = 0 .
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Here, the �rst condition sets the norm of the wave function, while the second one

selects the correct symmetry in one dimension, and excludes the singular solutions

in two and three dimensions.



Appendix B

Accuracy of the s-wave scattering

length in three dimensions at the

singularity

In three dimensions the accuracy of the s-wave scattering length is limited

mainly by the accuracy of the position W1 of the �rst singularity. We determine

this position using the numerical di�erential equation solver by �nding the value

of V0 where the scattering length changes sign. The accuracy of this position can

be checked by increasing the accuracy of the calculation itself. We found that W1

can be determined with very good accuracy of 12 digits when p = 11.

The value ofW1 can in principle also be obtained by diagonalizing the Hamilto-

nian in a plane-wave basis and determining the value of V0 where the ground state

energy crosses zero, extrapolating to the limits of in�nite box size and basis set.

We found a value that is consistent with the result from the di�erential equation

solver to three digits of accuracy but were not able to reach higher accuracy with

the diagonalization procedure due to limitations of the extrapolation procedures.

Thus we have used values extracted from the di�erential equation solver for the

numerical results presented in this paper.

The s-wave scattering length is plotted with di�erent accuracy of W1 in Fig.

B.1. The parameters αi and the Wj (j > 1) are set according to Table 3.3 and are

kept unchanged. The poles with the minimums on the error curves correspond to
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Figure B.1: Importance of the location of the �rst pole on the accuracy of the
scattering length in three dimensions. Panel (a): s-wave scattering length from
the numerical and the approximate expressions. In the approximate expressions,
the scattering length is calculated with varying precision (ndigit decimal digits)
of the position of the �rst singularity W1. Panels (b) and (c): The errors of the
approximate and numerical values of the scattering length. V0 < W1 for panel
(b) and V0 > W1 for panel (c). Reference values for determining the zero points
of the x and y axes, respectively, are calculated by numerical calculations with
high level of accuracy (p = 15 for as; reference valueW1 = 2.684004650924~2/µ).

the crossing of the reference curve. The poles with the maximums come from the

inaccurate position of the singularity. Increasing the accuracy of W1 signi�cantly

improves a3D
s as well. In the main part of the paper ndigit = 12 decimal digits of

accuracy are used for W1, where the relative error is below 10−5, if the potential

strength is within W1 − 10−6~2/µ < V0 < W1 + 10−6~2/µ.



Appendix C

Alternative derivation of the

approximate expressions for the

s-wave scattering length

C.1 Three-dimensional case

Let us introduce new dimensionless variables

y = r/L, (C.1)

η = V0µ/~2, (C.2)

with which the Schrödinger equation (3.6) can be written in the following form

(
d2

dy2
+ 2y

d
dy

+ η exp(−y2)

)
Φ̃3D(y) = EΦ̃3D(y) . (C.3)

One can see from the de�nitions of the scattering length (3.10) and Eqs. (C.1),

(C.3) that the ratio as/L depends only on the single dimensionless parameter η.

In the following let us consider the E = 0 case in order to determine the s-wave

scattering length.
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The Schrödinger equation (C.3) can be transformed [with ũ3D(y) = yΦ̃3D(y)]

to the Lippmann-Schwinger equation [194],

ũ3D(y) = y − η
y∫

0

dx (y − x) exp(−x2)ũ3D(x) . (C.4)

The s-wave scattering length can be expressed with a simple form if we substi-

tute Eqs.(C.1) and (C.4) into Eq.(3.10),

a3D
s /L = c2/(c1 + 1) , (C.5)

where

c1 = −η
∞∫

0

dx exp(−x2)ũ3D(x) , (C.6)

c2 = −η
∞∫

0

dx x exp(−x2)ũ3D(x) . (C.7)

Let us solve Eq. (C.4) with iterations. In the �rst step, we consider η = 0 on

the right hand side,

ũ
(0)
3D(y) = y .

Substituting it into Eqs.(C.5)-(C.7) the zero-order approximation for the scattering

length can be obtained,

ā3D
s

L
= −
√
π

4

η

1− η
2

, (C.8)

which is equivalent to the analytical expression (3.27) in the main text.
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C.2 One-dimensional case

In one dimension the Lippmann-Schwinger equation and the approximate ex-

pression of scattering length are derived analogously to the three dimensional case,

ũ1D(y) = 1− η
y∫

0

dx (y − x) exp(−x2)ũ1D(x) , (C.9)

a1D
s /L = (c2 − 1)/c1 , (C.10)

with the same relations (C.6) and (C.7) for the constants c1 and c2 as in the three

dimensional case. The di�erence from the three-dimensional solution arises from

the di�erent boundary conditions (3.17) and (3.18).

We solve Eq.(C.9) iteratively. In the �rst step we consider ũ(0)
1D(y) = 1, from

which the �rst order wave function and zero-order scattering length can be ob-

tained,

ū1D(y) = 1− η

2

[
e−y

2

+
√
πy erf(y)− 1

]
, (C.11)

ā1D
s

L
=

2√
π

1

η
+

1√
π
. (C.12)

The �rst-order scattering length, obtained with Eq. (C.11), is given by

¯̄a1D
s

L
=

2√
π

1

η
+

√
2

π
+O(η) . (C.13)

Interestingly, the zeroth- and �rst-order term recover Eqs. (3.31) and (3.32) from

the main text.

C.3 Two-dimensional case

In two dimensions, the Lippmann-Schwinger equation for the function Φ̃2D(y),

obeying the Schrödinger equation (C.3), takes the form [195]

Φ̃2D(y) = 1− η
y∫

0

dx x ln(y/x) exp(−x2)Φ̃2D(x) . (C.14)
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Comparing its long-range asymptotics with the de�nition (3.10) and using Eq. (C.1),

we derive

a2D
s /L = e

c1−1
c2
−γ+log 2

, (C.15)

where

c1 = −η
∫ +∞

0

dx log(x) exp(−x2)Φ̃2D(x) , (C.16)

c2 = −η
∫ +∞

0

dx x exp(−x2)Φ̃2D(x) . (C.17)

Similar to the previous sections, the zero-order approximation for the scattering

length is obtained with the zero-order function Φ̃
(0)
2D(x) = 1,

ā2D
s /L = 2e

−3γ
2

+ 2
η . (C.18)

The �rst-order wave function, obtained with the �rst iteration, is given by

¯̃Φ2D(y) = 1− η

4

[
γ + 2 log(y)− Ei

(
−y2

)]
, (C.19)

where Ei(z) = −
∫∞
−z

e−t

t
dt is the exponential integral function. Substituting it into

Eqs. (C.16), (C.17) and using (C.15) gives us

¯̄a2D
s /L =

√
8e
−3γ
2

+ 2
η

+O(η) . (C.20)

As it can be seen the obtained Eqs.(C.18) and (C.20) are equivalent to Eqs.(3.37)

and (3.38) from the main text.



Appendix D

Derivation of approximate formula

(3.32) for the one-dimensional

s-wave scattering length

As we previously discussed in Appendix (A), the one-dimensional wave function

u1D(r) is even, hence, its power series expansion can be written in the following

form:

u1D(r) =
∞∑
k=1

bkr
2k . (D.1)

Substituting back Eq.(D.1) into Eq.(3.15), we got the following di�erential equa-

tion:

u′′1D(r) = −V0e
−r2

∞∑
k=1

bkr
2k , (D.2)

where b0 is chosen to one due to the boundary condition (3.17). Using the usual

Taylor-expansion identity as

bk =
1

(2k)!

d2ku1D(r)

dr2k

∣∣∣∣
r=0

,
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the parameters can be determined from Eq.(D.2) or its corresponding derivative

form as

bk = − V0

(2k)!

k−1∑
l=0

[(
2k − 2

2l

)
(2k − 2− 2l)! bk−l−1

d2k

dr2k
e−r

2

∣∣∣∣
r=0

]
.

Using the following identities of the Hermite-polynomials:

d2k

dr2k
e−r

2

∣∣∣∣
r=0

= H2k(0) = (−1)k
(2k)!

k!
,

parameter bk can be expressed as a linear combination of bm (m < k) as

bk =
V0

2k(2k − 1)

k−1∑
l=0

(−1)l+1 bk−1−l

l!
. (D.3)

With Eq.(D.3) all the bk-s can be determined, hence function u1D(r) can be given

explicitly in the power series form.

In order to determine the s-wave scattering length, function u1D(r) should be

examined in the asymptotic limit r →∞, which is di�cult to handle in Eq.(D.1).

However, a di�erent form of u1D(r) can be considered as

u1D(r) = 1 + V0c0 −−V0

(
e−r

2
∞∑
k=0

ckr
2k + d

√
π r erf (r)

)
, (D.4)

where ck and d are real coe�cients. Equation (D.4) satis�es the Schödringer

equation (3.15), if the coe�cients ck and d are chosen properly. We can make a

relation between Eqs.(D.2) and (D.4) by expanding in Taylor series of Eq.(D.4),

where we obtain the following relations:

b0 = −2c0 + 2c1 + 4d ,

b1 = 4c0 − 10c1 + 12c2 − 4d , (D.5)

bi+1 = 4ci − 2(4i+ 5)ci+1 + 2(i+ 2)(2i+ 3)ci+2 ,
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where i ≥ 1. Considering the asymptotic limit of r →∞ in Eq.(D.4), the scatter-

ing length can be determined as

u1D(r) ≈ −d
√
πV0

r − 1 + V0c0

d
√
πV0︸ ︷︷ ︸

a1Ds

 . (D.6)

As it can be seen in Eq.(D.6), a1D
s depends only two parameters: c0 and d. How-

ever, these parameters are determined through an in�nitely large system of linear

equations (D.5). The s-wave scattering length can be further separated to two

terms as

a1D
s =

2√
πV0

+
1 + V0c0 − 2d

d
√
πV0︸ ︷︷ ︸

a1Dsc

. (D.7)

Considering only the �rst few terms of the summation in Eq.(D.2), the ex-

plicit values of the parameters ck and d can be obtained assuming the following

expressions:

c0 =
1

2
+
∞∑
k=1

k!

2
bk , (D.8)

d =
1

2
+
∞∑
k=1

(2k − 1)!!

2k+1
bk . (D.9)

These statements can be proofed by induction. First, we suppose that Eqs.(D.8)

and (D.9) are true up to the �rst n-th terms as

c
(n)
0 =

1

2
+

n∑
k=1

k!

2
bk , (D.10)

d(n) =
1

2
+

n∑
k=1

(2k − 1)!!

2k+1
bk , (D.11)

where parameters c(n)
0 and d(n) gives back the original parameters c0 and d as n

goes to in�nity. Considering a �nite number of bk, Eq.(D.5) terminates with the
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following last two equations:

bn−1 = 4c
(n)
n−2 − 2(4n− 3)c

(n)
n−1 , (D.12)

bn = 4c
(n)
n−1 . (D.13)

Increasing n to n + 1bk, equations Eqs.(D.12) and (D.13) are supplemented with

additional terms as

bn−1 = 4c
(n+1)
n−2 − 2(4n− 3)c

(n+1)
n−1 + 2(2n− 1)nc(n+1)

n , (D.14)

bn = 4c
(n+1)
n−1 − 2(4n+ 1)c(n+1)

n , (D.15)

bn+1 = 4c(n+1)
n . (D.16)

Let us express c(n+1)
n in Eq.(D.16) and substitute back to Eqs.(D.14) and (D.15).

If we introduce the following notations:

b′n−1 = bn−1 −
(2n− 1)n

2
bn+1 , (D.17)

b′n = bn +
4n+ 1

2
bn+1 , (D.18)

then Eqs.(D.14) and (D.15) can be expressed in the following form:

b′n−1 = 4c
(n+1)
n−2 − 2(4n− 3)c

(n+1)
n−1 , (D.19)

b′n = 4c
(n+1)
n−1 . (D.20)

Therefore by recognizing the similarity between the expressions (D.19)-(D.20) and

(D.12)-(D.13) the equations (D.8) and (D.9) for c(n+1)
0 and d(n+1) can be extended

for the n+ 1 case as

c
(n+1)
0 =

1

2
+

n−2∑
k=1

k!

2
bk +

(n− 1)!

2
b′n−1 +

n!

2
b′n , (D.21)

d(n+1) =
1

2
+

n−2∑
k=1

(2k − 1)!!

2k+1
bk +

(2n− 3)!!

2n
b′n−1 +

(2n− 1)!!

2n+1
b′n . (D.22)

Substituting back Eqs.(D.17) and (D.18) into Eqs.(D.21) and (D.22), we obtain
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back Eqs.(D.10) and (D.11), but the sum goes until n+ 1 justifying Eqs.(D.8) and

(D.9).

Therefore, using Eqs.(D.8) and (D.9), the correction for the scattering length

(D.7) can be given explicitly in the following form:

a1D
sc =

1 +
∞∑
k=1

(
k!bk − (2k−1)!!

2k−1
bk
V0

)
√
π

(
1 +

∞∑
l=1

(2l−1)!!
2l

bl

) .

Considering the limit V0 → 0 the following identities can be derived from Eq.(D.3):

lim
V0→0

bk = 0 ,

lim
V0→0

bk
V0

=
(−1)k

2(2k − 1)k!
.

Using the expression above the a1D
sc can be expressed in the following simple form:

lim
V0→0

a1D
sc =

1√
π

(
1 +

∞∑
k=1

(−1)k+1 (2k − 3)!!

(2k)!!

)
=

√
2

π
,

where in the last equation we recognize the Taylor series of
√

1 + x at x = 1.



Appendix E

Fock-Darwin orbitals

In the main text of the paper, we discussed the convergence properties from an

analytic point of view, where a product basis of one-dimensional basis functions

provides an intuitive picture for the analysis. For numerical calculations it is more

advantageous to apply a set of orbitals that satisfy the symmetries of the system.

This helps to restrict the problem to a single irreducible representation of the

symmetry operator, which reduces the required number of the many-body basis

functions and thus the requirements for computer memory and CPU time.

We here use simultaneous eigenfunctions of the harmonic oscillator and the

angular momentum operator known as Fock-Darwin orbitals

Lϕn` = ~ ` ϕn` ,

where L is the angular momentum operator, ϕn` is the single-particle eigenfunction

function, n and ` are quantum numbers with non-negative integer and integer

values. The eigenfunction ϕn` can be easily given in polar coordinates,

ϕn,`(r,ϑ) =

√
n!

l̃2π(n+ |`|)!

(
r

l̃

)|`|
e−

(r/l̃)2

2 ei`ϑL|`|n
(
r2

l̃2

)
, (E.1)

where L|`|n (x) is the associated Laguerre polynomial.

In the numerical calculation the �nite single-particle basis set is chosen ac-

cording to the total quantum number n̄ = 2n + `, representing a �shell�. All
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single-particle orbitals are selected where n̄ is smaller or equal to a maximal value

n̄max.

The number M of spatial single-particle orbitals can be expressed with n̄max,

M =
(n̄max + 2) (n̄max + 1)

2
. (E.2)

In this paper the largest n̄max is 20, which corresponds to 231 spatial orbital. The

total number of the many-body basis functions for the three particles equal to

around 6× 106. Considering only those many-body states with projected angular

momentum of 0~, the computational space can be reduced about an order to

1.6× 105 basis functions.



Appendix F

Evaluation of the matrix elements

The matrix elements of the Hamiltonian can be evaluated according to the

Slater-Condon rules [98�100], which expresses them as a linear combination of

one-particle integrals

〈ϕn1`1|Hosc|ϕn2`2〉 =

∫
dr ϕ∗n1`1

(r) Hosc ϕn2`2(r) ,

and two-particle integrals

〈ϕn1`1ϕn2`2|V |ϕn3`3ϕn4`4〉 =

∫
dr1dr2 ϕ

∗
n1`1

(r1)ϕ∗n2`2
(r2)V (r1 − r2)ϕn3`3(r1)ϕn4`4(r2) .

The integrals are calculated with the single-particle basis described in Appendix

E. The explicit expression are given in the following sections.

F.1 Evaluation of one-particle integrals

The one-particle integral can be evaluated analytically providing an easily im-

plementable formula

〈
ϕn1`1

∣∣∣Ĥosc

∣∣∣ϕn2`2

〉
=
δ`1`2~ω

2

(
1 +

(
l̃/l
)4

(
l̃/l
)2 (2n1 + |`1|+ 1)δn1n2+

+
1− (l̃/l)4

(l̃/l)2

√
n1(n1 + |m1|)δn1,n2+1 +

1− (l̃/l)4

(l̃/l)2

√
(n1 + 1)(n1 + |m1|+ 1)δn1,n2−1

)
.
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F.2 Evaluation of two-particle integrals

First, let us transform out the unit length of the harmonic oscillator

〈ϕn1`1ϕn2`2 | −
V0/~ω
(R/l)2

e
− |r2/l−r1/l|

2

(R/l)2 |ϕn3`3ϕn4`4〉 =

=
l2

l̃2
〈ϕn1`1ϕn2`2 | −

V0/~ω
(R/l̃)2

e
− |r2/l̃−r1/l̃|

2

(R/l̃)2 |ϕn3`3ϕn4`4〉 ,

which transfers the dependence of the unit length to a scale factor. In the following

we consider only the remaining matrix element on the right hand side, where both

the basis function and the operator have the same unit length.

The direct evaluation of the matrix elements with the single-particle orbitals

ϕn` de�ned in Appendix E is numerically unstable. Therefore, the integrals are

calculated in Cartesian orbitals

φnxny(x, y) = χnx(x)χny(y) , (F.1)

χn(x) =
1√√
π2nn!l̃

e−
x2

2l̃2Hn(x/l̃) , (F.2)

where φnxny(x, y) is the two-dimensional and χnx(x) is the one-dimensional Carte-

sian function, and Hn(x) is the n-th order Hermite polynomial. The function

φnxny(x, y) can be used as a basis for expanding the single-particle basis ϕn` [196],

|ϕn`〉 =

nx+ny=2n+|`|∑
nxny

dn`nxny |φnxny〉 , (F.3)

where dn,`nx,ny is the Wigner's small d-matrix [60]. Then the two-particle integral in

the basis of ϕn` can be calculated with multiple unitary transformations

〈ϕn`ϕm`′ |V |ϕp`′′ϕq`′′′〉 = (F.4)

=
∑

nxnymxmy
pxpyqxqy

dn`∗nxnyd
m`′∗
mxmyd

p`′′

pxpyd
q`′′′

qxqy〈φnxnyφmxmy |V |φpxpyφqxqy〉 ,
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where the summation indices are restricted similarly to Eq.(F.3). Using Eq.(F.1)

the Cartesian integral can be separated according to the spatial variables

〈φnxnyφmxmy |V̂ |φpxpyφqxqy〉 = −V0l̃
4

πR2
Inxmxpxqx I

nymy
pyqy , (F.5)

where the tensor Inmpq can be given as

Inmpq =
1√

2n+m+p+q(n!)(m!)(p!)(q!)
·

·
∞∫

−∞

dx1

∞∫
−∞

dx2 Hn(x1)Hm(x2)Hp(x1)Hq(x2)e−(x21+x22)e−
(x1−x2)

2

R′2 ,

where R′ = R/l. Using the expansion of the Hermite polynomials

Hn(x)

2nn!
=

n∑
i

hni x
i ,

the tensor Inmpq can be expressed with the following summations:

Inmpq =δmod(n+m+p+q,2),0

n∑
i

p∑
k

m∑
j

q∑
l

hni h
p
kh

m
j h

q
l gi+k,j+l , (F.6)

ga,b =

∞∫
−∞

dx1

∞∫
−∞

dx2 x
a
1x

b
2 e
−(x21+x22)e−

(x1−x2)
2

R′2 . (F.7)

Although integral (F.7) can be evaluated analytically, the summation in Eq.(F.6)

contains the di�erence of large numbers, which decreases the numerical accuracy.

In order to improve the numerical determination, we expand ga,b as a sum of gr,0,

ga,b =
a+b∑
r=a

eabr gr,0 δmod(r,2),0 , (F.8)
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where mod(x, y) is the modulo function [197] and the coe�cients eabr can be ob-

tained with a recursive algorithm:

ea,br =
(b− 1)R′2ea,b−2

r + ea+1,b−1
r

2R′2 + 1
, (F.9)

ea,0a = 1 , (F.10)

ea−1,1
a =

1

2R′2 + 1
. (F.11)

The equations (F.9) � (F.11) can be derived with integration by parts from the

integral (F.7).

Let us substitute Eq.(F.8) into Eq.(F.6)

Inmpq =δmod(n+m+p+q,2),0

n∑
i

p∑
k

m∑
j

q∑
l

hni h
p
kh

m
j h

q
l

i+k+j+l∑
r=i+k

ei+k,j+lr gr,0 δmod(r,2),0 ,

(F.12)

where the obtained expression is still numerically unstable due to alternating signs

of the coe�cients hni and the increasing value of gr,0 with r. In order to alleviate

these numerical inaccuracies we extend the de�nition of the coe�cient ei+k,j+lr to

smaller indices of r,

ei+k,j+lr = 0 , if 0 ≤ r < i+ k . (F.13)

Hence, the summation in Eq.(F.12) can be reordered and all of the coe�cients can

be wrapped into the coe�cient Dr,

Inmpq =δmod(n+m+p+q,2),0

n+m+p+q∑
r=0

Dr gr,0 , (F.14)

Dr =
n∑
i

p∑
k

m∑
j

q∑
l

hni h
p
kh

m
j h

q
l e
i+k,j+l
r . (F.15)

The relation between the neighboring ga,0 can be determined with integration by

parts of the integral (F.7),

ga,0 =
(a− 1)(2R′2 + 1)

4R′2 + 4
ga−2,0 . (F.16)
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n1 `1 n2 `2 n3 `3 n4 `4 〈ϕn1`1ϕn2`2|V |ϕn3`3ϕn4`4〉
0 0 0 0 0 0 0 0 -0.248756219
4 2 15 -5 8 4 13 11 -0.005826144139
15 5 15 -7 15 -3 15 1 0.003990385223
20 0 20 0 20 0 20 0 -0.02335706042

Table F.1: Examples for the integrals at R/l̃ = 0.05 and at V0 = 1~ω.

The numerical accuracy of the summation in Eq.(F.14) can be increased if we apply

the relation (F.16) and evaluate coe�cient Dr starting from the largest index:

D̃r−2 =
(r − 1)(2R′2 + 1)

4R′2 + 4
D̃r +Dr−2, (F.17)

D̃n+m+p+q = Dn+m+p+q . (F.18)

The coe�cient D̃0 provides a simple expression for Eq.(F.12)

Inmpq =δmod(n+m+p+q,2),0 D̃0 g0,0 , (F.19)

where g0,0 can be determined by explicitly integrating the integral (F.7)

g0,0 =
R′√
R′2 + 1

. (F.20)

For determining the two-particle integrals on the computer, we use the following

algorithm: First, we determine the coe�cients ei+j+k+l
r with Eqs.(F.9)�(F.11) and

Eq.(F.13). After that, we calculate the coe�cients Dr and D̃r with Eqs.(F.15),

(F.17), and (F.18). Then the tensor Inmpq can be determined from Eqs.(F.19) and

(F.20), with which the two-particle integrals can be easily evaluated from Eqs.(F.5)

and (F.4). With the described algorithm the two-particle integrals are accurate at

least for the �rst eight decimal digits, where the maximal total quantum number

(2n + `) is set to 20 for the single-particle basis function ϕn`. Examples for the

numerical values of the integral can be found in Table F.1.
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Evaluation of the in�nite sum in

Eq.(5.47)

The in�nite summation is easier to evaluate if we make the substitutions k =

2πn/L, k′ = 2πn′/L and kc = 2πnc/L into the sum as

W

(
2πn

L

)
=

L2

a2π2

|n′|,|n−n′|≥nc∑
n′

1

n′
1

n− n′
, (G.1)

where the summation index is integer.

Let us �rst consider the case n = 0, where the sum is symmetric to the swap

of the sign of n′. Therefore, we can write Eq.(G.1) in the following way:

W (0) = − 2L2

a2π2

∞∑
n′=nc

1

n′2
. (G.2)

Using the identity of
∑∞

n′=1 = π2/6, we can expand Eq.(G.2) with �nite summa-

tions, as

W (0) = − 2L2

a2π2

(
π2

6
−

nc−1∑
n′=1

1

n′2

)
.

Now let us consider the case n > 0. If n < 2nc we get the following expression:

W

(
4πnc
L

>
2πn

L
> 0

)
=

L2

a2π2

(
−nc∑

n′=−∞

1

n′
1

n− n′
+

∞∑
n′=n+nc

1

n′
1

n− n′

)
, (G.3)
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which is supplemented by an additional term, if n ≥ nc, as

W

(
2πn

L
≥ 4πnc

L

)
=

L2

a2π2

(
−nc∑

n′=−∞

1

n′
1

n− n′
+ (G.4)

+
∞∑

n′=n+nc

1

n′
1

n− n′
+

n−nc∑
n′=nc

1

n′
1

n− n′

)
.

Let us consider �rst Eq.(G.3), and swap the sign of n′ in the �rst sum and

merge all the terms, where n′ is larger than n+ nc,

W

(
4πnc
L

>
2πn

L
> 0

)
=

L2

a2π2

(
−

n+nc−1∑
n′=nc

1

n′
1

n+ n′
+ (G.5)

+
∞∑

n′=n+nc

1

n′

(
1

n− n′
− 1

n+ n′

)
︸ ︷︷ ︸

2
n2−n′2

)
.

The digamma function ψ(x), can be used to simplify the sum above by using the

following identities:

∞∑
n′=a

1

n2 − n′2
=
ψ(a− n)− ψ(a+ n)

2n
, (G.6)

b∑
n′=a

1

n′
1

n+ n′
=
ψ(1 + b) + ψ(a+ n)− ψ(1 + b+ n)− ψ(a)

n
, (G.7)

which can be derived from the series expansion of the digamma function as

ψ(x) = −γ +
∞∑
l=0

x− 1

(l + 1)(l + x)
.

Using Eqs.(G.6) and (G.7), Eq.(G.5) can be written in the following form:

W

(
4πnc
L

>
2πn

L
> 0

)
=

2L2

a2π2n
[ψ(nc)− ψ(n+ nc)] . (G.8)

By using the following property of the digamma function:

ψ(x+ 1) = ψ(x) +
1

x
,
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equation (G.8) can be written in the following numerically treatable form:

W

(
4πnc
L

>
2πn

L
> 0

)
= − 2L2

a2π2n

n+nc−1∑
n′=nc

1

n′
.

In the case of n ≥ 2nc and n < 0, with a similar derivation, we got the following

expressions:

W

(
2πn

L
≥ 4πnc

L

)
= − 2L2

a2π2

(
1

n

n+nc−1∑
n′=nc

1

n′
− 1

2

n−nc∑
n′=nc

1

n′
1

n− n′

)
,

W

(
−4πnc

L
<

2πn

L
< 0

)
=

2L2

a2π2n

nc−n−1∑
n′=nc

1

n′
,

W

(
2πn

L
≤ −4πnc

L

)
=

2L2

a2π2

(
1

n

nc−n−1∑
n′=nc

1

n′
+

1

2

−nc∑
n′=nc−n

1

n′
1

n− n′

)
.

The asymptotic expression of W
(

2πn
L

)
for large n can be also given,

W

(
2πn

L

)
=

2L2

a2π2|n|
ln(|n|) + O

(
1

n2

)
, (G.9)

where we use the following asymptotic expression of the digamma function,

ψ(x) = ln(x) + O
(

1

x

)
.
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