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ABSTRACT 

Over the past three decades, considerable amount of research efforts have been 

undertaken in order to develop a mathematical model for a three-phase fluidised-bed 

biofilm reactor (TPFBBR). Although biofilm properties such as biofilm thickness 

and its density are allowed to vary with biofilm growth in the model to simulate the 

real TPFBBR system, they are assumed to be constant in the majority of models 

developed for a TPFBBR. The main goal of this thesis is to develop mathematical 

models incorporating dynamic biofilm growth for a TPFBBR using three different 

modelling approaches such as a mechanistic model, a neural network model, and an 

intelligent hybrid model with a neurofuzzy model. 

This thesis consists of three parts. Firstly, a dynamic. biofilm growth model, which 

reflects the variation of biofilm thickness and its density
· in time, is developed. This 

model is derived from a biomass balance equation and is solved by the method of 

characteristics. The biofilm detachment model is proposed and incorporated within 

the dynamic biofilm growth model. The dynamic biofilm growth model with 

detachment is then combined with a reactio -diffusion model and reactor model to 

form an integrated model of a TPFBBR. Simulation method of integrated model 

incorporating the dynamic biofilm growth model is developed. It is observed that 

results predicted are in good agreement with experimental data and the integrated 

model proposed provides a valuable tool to predict performance of a TPFBBR. 

Secondly, the sequential neural network model, which is composed of two parts, 

namely, the neural process estimator and the neural process predictor, is developed to 

describe the task of process estimation and prediction for a TPFBBR. In order to 

implement the sequential neural network model, multi layer feedforward neural 

network (MFNN) with cascaded-correlation (C-C) learning and extended Kalman 

filtering (EKF) learning, and generalized regression neural network (GRNN) are 

used. Results shows that the sequential neural network model has the feasibility as 
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intelligent estimators and dynamic predictors and gives considerably good results in 

process estimation and prediction for a TPFBBR. 

Finally, this thesis shows how a combination of both mechanistic and empirical 

modelling approaches, called a hybrid model, can be implemented and utilised for 

modelling a TPFBBR. The neurofuzzy model as an empirical part of hybrid model is 

used to estimate the variation of the biofilm thickness and biofilm density, and is 

combined with mechanistic model-based reaction-diffusion and axial-dispersion 

models to predict the dynamic behavior and performance of a TPFBBR according to 

the variation of biofilm density and biofilm thickness. This hybrid modelling 

approach due to its flexibility shows a unified framework through incorporation of 

strong points of both mechanistic and empirical models, and provides a new 

modelling framework with a great potential to be applied to other types of biofilm 

reactors. 
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Chapter 1 
Introduction 

1.1 INTRODUCTION 
Biofilms, which are a matrix of cells and cellular products attached to a solid surface, are 

well known to have a great potential to remove organic matter from wastewater. Biofilm 

systems are complex as a results of a combination of factors, such as bacterial growth, 

substrate consumption, attachment, external-internal mass transfer of substrate, cell 

death, detachment, the structure of the support particle, and competition between 

bacterial species: all of which play a significant role in the overall capacity of the 

biofilm process. A three-phase fluidized-bed biofilm reactor (TPFBBR) has received 

considerable attention for use in aerobic wastewater treatment. Generally, a TPFBBR 

has a number of advantages over suspended-growth systems such as the activated-sludge 

process. The most important feature of a TPFBBR is that high biomass concentration 

can be retained in the reactor as biofilms on the support particles, which leads to high 

reaction rates at low hydraulic retention times. In addition, a TPFBBR has an improved 

resistance to the change of environmental conditions, more resistance to toxic chemicals 

and heavy metals, and better process stability relative to suspended-growth systems. 
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Because of these advantages, a TPFBBR has been demonstrated to outperform other 

reactor configurations used in wastewater treatment (Lee et aI., 1979). 

It is necessary to characterise the biofilm properties in order to enhance understanding of 

the complexities of biofilm processes and to properly design and control a TPFBBR. 

The biofilm thickness and biofilm density are commonly used to help characterise the 

biofilm growth on the support particles, and are widely applied for macro-scale biofilm 

modelling and design purposes in a TPFBBR. Several biofilm models have been 

developed in which substrate transport to consumption by the biofilm is described 

(Atkinson, et aI., 1967; Atkinson & Daoud, 1970; Lamotta, 1976; Williamson & 
McCarthy, 1976; Rittmann & McCarty, 1981). In the majority of those models, the 

biofilm properties such as biofilm thickness and its density were assumed to be constant. 

Hence, the development of mathematical models incorporating dynamic biofilm growth 

which reflects the variability of biofilm thickness and biofilm density as a function of 

time is necessary for design, optimisation, and control of a TPFBBR. This thesis is 

mainly concerned with the development of a mathematical model incorporating the 

dynamic biofilm growth for a TPFBBR. 

Several modelling approaches are available for deriving the desired process model. 

There are fundamentally two different modelling approaches that form the basis of 

process models, namely a mechanistic approach and an empirical approach. Mechanistic 
models, usually expressed in the form of differential equations, are based on the physical 

and (bio )chemical phenomena occurring within a process. In other words, the 

development of a mechanistic model is mainly driven by a priori knowledge of the 

relevant mechanism and from first principles (chemical and physical laws, mass 

balances, and so on). Mechanistic models of wastewater treatment processes are 

generally developed from application of reactor engineering principles, i.e., they 

combine expressions representing the intrinsic kinetics and transport events with mass 
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balance equations describing the characteristics of the particular physical system under 

consideration (Grady, 1 983) .  

In  contrast, empirical models simply relate operating input and output variables to each 

other and do not require a priori knowledge of the physical and (bio )chemical taking 

place within the process. In the present context, they are characterised by fewer 

parameters for the description of data compared to the mechani stic  model and are 

derived applying statistical techniques to fit empirical functions to fit the input-output 

data. Such black box descriptions from pi lot plant data are quite useful for design. 

Recently, artificial neural network (ANN) techniques as b lack box model l ing tools have 

widely been used for many appl ications in robotics, electronic processes, and chemical 

and biochemical processes. The main advantages of using ANNs i n  process model l ing 

are: ( l )  it has the abi l ity to learn complex nonl inear relationships with l imited prior 

knowledge of the process structure (2) it can perform inferences for an unknown 

combination of input variables (Hong et al . ,  1 998) .  

As an alternative to overcoming the weak points of both mechanistic and empirical 

models, a so-called hybrid model (grey box model), which is a combination of 

mechanisti c  and empirical models, has recently been introduced (Psichogious & Ungar, 

1 992; Tompson & Kramer, 1 994). In a hybrid model, part of the poorly and inaccurately 

known processes are modelled by the empirical model, and apart of the behaviour of the 

known processes are modelled mechanistically. ANNs are particularly attractive i n  a 

hybrid model to obtain the best possible description of processes. 

The main goal of this thesis is  to develop mathematical models incorporating dynamic 

biofi lm growth for a three-phase fluidised-bed biofi lm reactor (TPFBBR), based on 

these different modell ing approaches outlined above: 
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1) a mechanistic model incorporating dynamic biofi lm growth model 

with detachment, 

2 )  a sequential neural network model, and 

3 )  an intelligent hybrid model, combined with a neurofuzzy process 

estimator. 

Three ditferent modelling approaches are applied to estimate time progressions of 

b iofi lm thickness and biofi lm density and to predict the dynamic changes in 

performance of a TPFBBR. 

1.2 THESIS OVERVIEW 

This thesis consists of seven chapters. 

4 

Chapter 2: This chapter serves as a general overviews of the three-phase fluidised­

bed biofi lm reactor (TPFBBR). First, I give the some background of a TPFBBR. 

Second, hydrodynamics of a TPFBBR including flow regime, phase holdups, 

mixing characteristics, mass transfer processes are described . Finally, a brief 

description of bioti lm formation and biofi lm characteristics taking place in a 

TPFBBR i s  presented. 

Chapter 3: This chapter presents the experimental system and experiment methods. 

Chapter 4: The main ai m of this chapter is to develop the dynamic biofi lm growth 

model which is able to reflect the simultaneous variabi l ity of biofilm thickness and 

biofilm density as a function of time, based on the mechanistic modelling 

approach. The biofi lm detachment model i s  also proposed. This dynamic b iofilm 
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growth model with detachment i s  combined with a reaction-diffusion model and 

reactor model to form an integrated model of a TPFBB R. 

Chapter 5: The purpose of this chapter i s  to describe the application of neural 

network process model l ing approach for modell ing of the dynamic change of the 

biofi lm thickness and biofilm density and the prediction of dynamic performance 

of a TPFBB R. The fol lowing three-different types of neural network are 

i mplemented : 

1 .  multilayer feedforward neural network (MFNN) with cascaded­

coo-elation (C-C) learning algorithm 

2. multilayer feedforward neural network (MFNN) with extended Kalman 

filtering (EKF) learning algorithm 

3. general ized regression neural network (GRNN) .  

Using the above neural network frameworks, the sequential neural network model 

is developed to describe the task of process estimation and prediction for a 

TPFBB R. 

Chapter 6: As an alternative to the mechanistic model presented in  chapter 4 and the 

neural network model presented in chapter 5, the main objective of this chapter i s  

to  develop the intelligent hybrid model, which i s  a combination of  the mechanistic 

and empirical models of a TPFBBR. The neurofuzzy model is developed to work 

as process estimators to estimate variations of the biofi lm thickness and biofilm 

density based on the avai lab le  measurement variables . Thi s  neurofuzzy model is 

combined with a reaction-diffusion model and axial-dispersion model to explore 

the intell igent hybrid model which can predict the dynamic behavior and 

performance of a TPFBBR. 
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Chapter 7: The conclusions and summary of the main i ssues considered i n  this thesis 

are drawn in chapter 7. Appl icabi l ity of models developed in  this thesi s  i s  

discussed. 

1.3 CONTRIBUTIONS OF THIS THESIS 

The main contributions of  this thesi s to the ti l ed of  mathematical model l i ng of a 

TPFBBR can be summarised as fol lows: 

Derivation of new dynamic biofilm growth model: Based on a mechani stic model ling 

approach, the dynamic  b iofil m  growth model i ncorporating biofil m  detachment, 

which i s  derived from biomass balance equation and i s  abl e  to reflect the 

s imultaneous variab i l ity of biofil m  thickness and biofi l m  density as a function of 

time, is  developed. 

Development of integrated model: By combining the newly developed dynamic 

b iofi lm growth model with a reaction-diffusion model and reactor model, the 

i ntegrated model for a TPFBBR is developed. 

Development of sequential neural network model: Using a neural network model l ing 

approach, the sequentia l  neural network model having the neural process estimator 

and the neural process predictor is developed to estimate the dynamic  change of 

the b iofil m  thickness and biofil m  density and to predict the dynami c  performance 

of a TPFBBR. 

Development of intelligent hybrid model: In order to provide a new comprehensive 

model for model l i ng the dynamics of a TPFBBR, the i ntel l igent hybrid model i s  

developed. I t  consists of two parts including the neurofuzzy model, which serves 
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as a process estimator of difficult-to-model process variab les, and the mechanistic 

models, which represent the known mechanist ic knowledge of TPFBBR processes. 

D evelopment of computer programs: To numerical ly implement the model l ing 

approaches proposed in this thesis, the simulation software written in FORTRAN 

for chapter 4, the sequential neural network programs written in e++ for chapter 5 ,  

and the computer program written in  MATLAB ™ with Matlab external interface 

engine for FORTRAN for chapter 6 are developed. 



Chapter 2 
Three-Phase Fluidised-Bed 
Biofilm Reactor (TPFBBR) -
Background 
2.1 THREE-PHASE FLUIDISED-BED BIOFILM 

REACTOR (TPFBBR) 

Three-phase fluidization i s  an operation used to bring into contact gas, l iquid, and 

sol id  particles. The soli d  particles are fluidised by upflow l iquid, which i s  the 

continuous phase, and co current gas bubbles. Thi s  three-phase fluidised-bed reactor 

(TPFBR) has received great attention in the past three decades because of its 

effectiveness in chemical processes such as hydrodesulfurfization of oil ,  Fisher­

Tropsch synthesis, catalytic  oxidation, and cracking of hydrocarbons. 

An i l lustration of a TPFBBR is  given in Fig. 2. 1. The liquid and gas phases pass 

through the reactor upward, and keep the sol id particles in suspension, consisting of 
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particles generally  ranging from micrometers and mi l l imeters. The fluid phases leave 

at the top of the reactor whi le  the sol id  phase remain s  in the reactor in the forms of a 

fluidised layer. The characteristics of a three-phase fluidised-bed reactor (TPFBR) 

have been reviewed by Ostergaard ( 1 968), Epstein ( 1 98 1 ), and Muroyama & Fan 

( 1 98 5) .  

level Qf 
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Figure 2 . 1 .  The three-phase fluidised-bed reactor (TPFBR). 
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Recently fluidised-bed biofi lm reactors (FBBR), either the two-phase (bioparticle­

l i qu id) or the three-phase (gas-liquid-biopaIiicle), have been considered as one of the 

most efficient fixed fi lm-type b ioreactors for wastewater treatment. 

A schematic of a TPFBBR is shown in Fig, 2,2, The influent wastewater enters the 

reactor through a l iquid distributor and air is sparged through a porous metal disk at 

the bottom of the column reactor. 

(J 

() 
( )  

Effluent 

Bubble 

o A' d'ffu -- Ir I ser 

Feed 
Tank 

Figure 2.2, The three-phase fluidised-bed biofilm reactor (TPFBBR) system, 
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Solid support materials, such as sand, activated carbon or synthetic materials which 

provide for biofil m  growth, are placed in the reactor through which wastewater i s  

passed upflow with sufficient l iquid velocity or  air velocity to  fluidise the particles. 

The particles fluidise when the velocity of a fluid stream upward through a bed of 

particles is sufficiently high, and the drag force on a particle can thus overcome the 

gravitational force of a particle. The biofi lms grow on support particles as attached 

b iomass surrounding each of the support particles. As the wastewater contaminants 

pass by the bioparticles covered by biofilms, they are removed from the wastewater 

through adsorptive and b iochemical mechanisms. 

The first application of flu idized bed b iofi lm reactor was i n  the area of nitrification 

and denitrification of wastewater treatment or organic wastewater treatment (Jeri s & 
Owens, 1 975; Scott & Hancher, 1 976; Mulcahy et aI . ,  1 980; Shieh, 1 9 80; Shieh et 

aI . ,  1 98 1 ). Jeris & Owens ( 1 975) reported a successful practice of a p ilot-scale 

denitritication fluidi sed bed bioreactor. They stated that the pilot-scale FBBR 

consistently produced greater than 99 percent removal of the influent nitrogen in  less 

than 6 . 5  min at a flux rate of 8 . 1 6  m3 Id/m2. Andrew & Tien ( 1 98 1 )  investigated the 

FBBR involving s imultaneous biological and activated carbon treatment of organic 

wastewater treatment. The advantages of fluidized bed b iofi lm  reactors for 

denitrification i n  comparison with packed-bed biofilm reactors or other suspended 

growth treatment processes such as activated-sludge process include superior 

performance and no clogging. 

In comparison to packed-bed biofilm reactor consisting of immobi l i sed cel l s, the 

fluidised bed reactors have the advantage of good sol id-fluid mixing and minimal 

pressure drop. In real appl ication of a FBBR, the very high rates of volumetric 

loading rates for wastewater treatment have been obtained since the high biological ly 

active surface area is available and the high biomass concentration can be 

maintained. It i s  known that the average biomass concentration in  a FBBR ranges 

between 1 0000 mgll and 50000 mgll and is 1 0  or 40 times greater than that i n  

conventional suspended growth systems (Table 2 . 1 ) . B ecause o f  the high biomass 
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concentration, a FBBR gives a 200-500 percent reduction i n  reactor volume when 

compared to other fixed fi lm processes such as tricking fi lters and rotating biological 

contractors (RBC) and suspended growth systems. Another benefit of FBBR i s  

upgrading an  existing wastewater treatment plant can be  accompl ished s imply by 

adding additional flu idised-bed biofi lm reactor units. 

Recently, a three-phase fluidised-bed biofi lm reactor has been for biological 

degradation of phenol (Holladay et aI., 1 978; Lee et al . ,  1 979; Wisecarver & Fan, 

1 989; Fan et al . ,  1 987). Holladay et al . ( 1 978) reported high phenol degradation rates 

for a synthetic phenol wastewater. They compared phenol degradation in stirred­

tank, packed-bed and fluidized-bed rectors. Their results showed that although a high 

phenol-bearing wastewater could be treated in the stirred-tank reactor, this treatment 

method required the largest reactor volume because of the long retention times. The 

highest degradation rate and shortest retention time was observed for the fluidized­

bed bioreactor. 

The advantages of a three-phase fluidised-bed biofilm reactor can be summarised as 

follows (Ryhiner et al . ,  1 988): 

1 .  fluidisation i s  created by the gas velocity; 

2 .  l iquid recycle i s  not needed; 

3. oxygen transfer occurs throughout the reaction zone. 

Some disadvantages of the FBBR have been reported (Lee et al . ,  1 979; Tzeng, 

1 99 1 ): 

1 .  difficulty in  obtaining good l iquid-solid  disengagement, 

2 .  not suitable for treating wastewater containing compounds requiring long 

retention times, 

3. exhib it ing relatively fluctuating operation at high bed expansIOn 

conditions. 
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In a TPFBBR, the decrease in b iofi lm density with increasing biofilm thickness i s  

significant i n  the oper
.
ation of  a TFBBR. This i s  because stratification takes place in  

the reactor and less dense bioparticles with thicker biofilms tend to  concentrate at the 

top of the reactor. This can lead to an increase in bed expansion (the volume of voids 

increases). As the bed expansion continues, the less dense particles with thicker 

biofi lms may be washed out and it causes the reduction of TPFBBR performance. 

Thus it is necessary to implement control mechanisms on the b iofi lm thickness of 

bioparticles in order to maintain a satisfactorily  treatment efficiency for a long-term 

operation (Tzeng, 1 99 1 ). 

Table 2 . 1 .  Comparisons of biomass concentration among biological processes (Perry, 
1 996) . 

P rocess MLSS Surface area 

(mgll) ( m2 / m3) 

Activated sludge 1 500-3000 -

Pure oxygen activated sludge 2000-5000 -

suspended growth nitrification 1 000-2000 -

Trickl ing fi lter - 3 . 5- 1 5  

RBC - 9- 1 3  

FBBR-CBOD removal 1 2000-20000 260-400 

FBB R-nitrification 8000- ] 2000 250-380  

FB B R -denitrifi cation 25000-40000 250-3 80 

2.2 HYDRODYNAMICS OF TPFBBR 

2.2.1 Flow Regimes 

As a first approximation, a TPFBR could be described as  a bed fluidised by the 

l iquid which the gas phase flows as in a bubble column. This is substantial ly true if  

the l iquid velocity i s  relatively high and the gas velocity remains low. By contrast, if  

the gas velocity i s  high and the liquid velocity i s  low, this situation i s  totally 
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different, with the appearance of pulsed flow. For intermediate gas and l iquid 

velocities, a progressive passage can be observed from the fixed bed to the 

completely flu idi sed bed. These situations are shown in Fig. 2 . 3 .  

CD 

Dense lOQtIS 

n.lI'" O.GIO Liquid Velocity 

Dilute WIlU 

Figure 2 . 3 .  Flow pattern in  a three-phase fluidized-bed reactor. ( l )  Fixed bed (2) 

Pseudo l iquid/sol id  fluidised bed (3)  Partial ly  fluidi sed bed (4) Pulsed 

bed (5) Fluidised bed (Trambouze et aI . ,  1 988) .  

2.2.2 Minimum Fluidization Velocity 

The minimum fluidization velocity ([llm!) i s  the basic design parameter in  a 

TPFBBR. There are a number of empirical correlations reported in  the literature for 

estimating [lInt!' Some of them are l isted in  Table 2 .2 .  
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Table 2 .2 .  Summary of empirical equations for M.F .  velocity. 

Ermakova et al. ( 1 970) 

Begovich and Watson ( 1 978), I 

Begovich and Watson ( 1 978), 2 

o 5U0075 .- . g 

R- ='!')} IO" A O.662!:;.0118 
e'n,f J. _ X r, rg 

U In!f 
== 1 1622U0436 0227 r5S( _ )

-0.305 
[I" -- g u, c P Ps PI 

'lnif 

1 5  

Costa et aL ( 1 986) u . = 6.969 X 104 U0328 (dvl ) \086 ( _ )0.865 1)�04Zu --OJJl 
''''' . g 'I" p __ Ps p, , I  

Song et al . ( 1 989) 
U

/nf!' == 1- 375[r0327 U0227 (r213( _ )--0.423 

[I" g i p  Ps p, 
.' lnif 

(U;�if = l iquid velocity at minimum l iquid-solid fluidisation) 

Recently, Zang et al. ( 1 995)  found that especially for low gas velocity, the Gas­

Perturbed L iquid model, together with the approximate equation for amI (Eq. 2. 1 ), 

showed almost a good agreement with the experimental data as the best available  

empirical equation for U1mf, and the advantage of correctly reducing to the Wen-Yu 

correlation ( 1 966) for minimum two-phase fluidization as the gas velocity goes to 

zero . The minimum fluidization velocity (U1m/) based on Gas-Perturbed Liquid 

model is  given by 

1 - 8 " 1 - 8 . 
42 . 86 nif + 0 . 57 1 5",.:.,3 (I-a )3Ar -42. 86

( nif) 
z ( ( )J� cjJ 'f'nif l1if 1 cjJ 

(2 . 1 )  

where Re1ny is  l iquid Reynolds number at minimum three-phase fluidization, fir i s  

the viscosity of l iquid, Pr i s  the density of l iquid, dhp i s  the particle d iameter, 811if 

i s  the bed porosity at minimum fluidization velocity, any i s  the gas holdup on solid-
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free basi s, r/> i s  the particle shape factor (0.906), and Atz i s  the l i quid Archimedes 

number. am! can be computed from the fol lowing correlation (Yang et al . ,  1 993)  

0 . 1 6  anIj· = -- ---"'---Em! [le; +[lr 
(2 .2) 

where [lr' [la are superficial l iquid velocity and gas velocity, respectively. 

2.2.3 Pressure Drop and Phase Holdups 

The pressure drop across the TPFBR i s  important because pumping costs could be a 

sign ificant part of the total operating cost. Various transport variables such as gas­

l i quid and l iquid-solid  mass transfer coefficients can be correlated to the pressure 

drop using the analogy between mass and momentum transfer processes. The 

pressure drop due to the bed alone, I1P is calculated simply on the basis of the static 

pressure: 

(2 . 3 )  

where PG' Pr' Ps are the density of gas, l iquid, and solid, respectively and E g' E[, Es 
are the gas, l iquid, and sol id holdup, respectively. He i s  the fluidised bed height and 

g i s  the gravitational acceleration. 

The performance of a TPFBR is highly influenced by the hydrodynamic properties 

such as the phase holdups. For example, the design of a TPFBR depends on the 

expansion or contraction of the fluidised bed. The bubble size, gas residence time, 

and consequently the gas-l i quid mass transfer are influenced by the phase holdups. 

The overall phase holdups in  a TPFBR can be obtained through the following 

equations :  
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(2. 4) 

(2. 5) 

where a p is the surface area per unit volume of solids and Ms i s  total weight of solid  

paliicles. 

The individual phase holdups in a TPFBR have been i nvestigated by Kim et al . 

( 1 975), Armstrong et al . ( 1976), and Bhatia et al .  ( 1 972). In the conventional studies 

on phase holdups and bed porosity, overall values have been obtained through the 

pressure profile along the fluidised bed, the total amount of solid particles, and the 

continuity of the three phases . In order to obtain i nformation on local phase holdups, 

in situ measuring probes have been used in various studies (Begovich & Watsons, 

1 978a). It i s  inevitable  that the hydrodynamics of the fluidised bed i s  somewhat 

d isrupted by an in situ measuring device. Therefore, one has to be cautious in the 

design of in situ probes so that the disturbance to the hydrodynamics can be 

minimised (Lee & de Lasa, 1 987). In any case, the results obtained from in situ probe 

measurements indicate that there are variations of phase holdups in both the axial and 

radial directions in a TPFBR, particularly in the top section of the bed. 

2.2.4 Gas-Liquid Mass Transfer 

The mass transfer can play an  i mportant role in  the determination of  overall reaction 

rate in a TPFBR, particularly for biological reaction. The rates of mass transfer steps 

are dependent on the hydrodynamic properties of a TPFBR. 

Measurements of gas-liquid mass transfer have usually assumed a p lug flow model 

as a basis .  With these conditions, several correlations have been establ ished to 

calculate the volumetric gas-l iquid mass transfer coefficient (Ostergaard & Fosbel, 

1 972; Lee & Worthington, 1 974; Robinson & Wilke, 1 974) . Ostergaard & Fosbel 
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( 1 972) reported that the gas-liquid volumetric mass transfer coefficient (K[a) in  a 

TPFBR varies  considerably with the axial d istance from the gas distributor. In  

addition, K1a varies with the particle size. For example, shallow beds containing 

large particles exhibit particularly high gas-liquid mass transfer rates. Alvarez­

Cuenca et al. ( 1 983)  obtained that at high gas velocity, K,a was the highest in the 

region between the dense bed region and the di lute bed region. 

Studies of gas-l iquid mass transfer may i nvolve the measurement of the interfacial 

area (a). Lee & Worthington ( 1 974) measured the volumetric gas-l i qu id  transfer 

K,a and the i nterfacial a, separately. In their experiment, the mass transfer was 

found to increase with an i ncrease in the bubble size. They showed that K,a varies 

l inearly with cg . The volumetric mass transfer coefficient K,a depends on the gas 

velocity, sparger design and i s  sensitive to the physico-chemical properties, 

particularly, those which promote or prevent coalescence. In  addition, the column 

diameter has some intluence if it is small. In a TPFBR, K1a can be affected by the 

presence of sol ids .  Some authors (Kato et aI . ,  1 972; Nuguen-Tien & Deckwer, 1 98 1 )  

indicate that the degree of influence of suspended particles on K/l depends on the 

particle concentration, the particle size, the liquid-sol id density d ifference, the 

geometrical sizes and the operating conditions of the reactor (i . e . ,  gas and l iquid 

velocity). At high l iquid velociti es and low gas velocities, the K1a values are sl ightly 

higher than those without the presence of sol ids (Nuguen-Tien & Deckwer, 1 98 1 ) . 

Kato et al . ( 1 972) showed that for higher sol id concentration a steep decrease in K1a 
was found which was caused by a decrease i n  a. Dhahuka & Stepanek ( 1 980a) 

reported that with an increase in particle size, K,a decreased because of a decrease 

111 a. 

Most reported studies for the estimation of K[a in a three-phase flu idized-bed have 

used particles with densities ranging over 2000 kg / m3 whi le most TPFBBR use 

particles with densities ranging up to 1300 kg / m3 . So the direct application of the 
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correlations for Kia developed for dense particles requires  the care if u sed for a 

TPFBBR which normally  uses low density particles. Recently, Nore et al . ( 1 992) 

studied hydrodynamics, gas-solid and l iquid-solid  mass transfer with in a TPFBBR 

with the low density ranging from 1300 to 1 700 kg / m3 . They found that with the 

particle density ranging from 1300 to 3000kg/m3 in a TPFBBR, K,a increased 

strongly when the gas velocity was increased and less strongly when the liquid 

velocity was increased. They suggested the fol lowing correlation for K,a : 

where Psp is the density of the particle and PL is the density of l iquid .  

2.2.5 Liquid-Solid Mass Transfer 

(2 .6) 

Just as in  the case of gas-l iquid mass transfer, the liquid-sold mass transfer step may 

play an important role in the performance of a TPFBR for chemical or biological 

reactions. The structure of the biofi lm  tends to slow the transport of substrate through 

the b iofi lm and therefore, the substrate concentration surrounding the 

microorganisms within the biofi lm i s  l ess than that in bulk l i quid .  Thus the mass 

transport properties of the biofi lm are of critical importance in assessing the overall 

performance of a FBBR. 

Substrate conversion in  a FBBR can be described by the fol lowing steps, as shown in 

Fig. 2 .4, (La Motta, 1 976): 

1 )  Transport of substrate from the bulk l iquid to the l iquid-biofilm i nterface 

(external mass transfer); 

2) Transport of substrate with the biofilm (internal mass transfer), and 

3) Substrate conversion reactions with the biofilm. 
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Step 2) and 3 )  take place simultaneously and thus neither can be said to control whi le  

step 1)  occurs i n  series with steps 2) and 3) .  For intrinsic reaction rates with positive 

dependence on substrate concentration (i . e . ,  Monod kinetic), the gradients 

establ ished by step 1) and 2) decrease the observed reaction rate by decreasing 

intrabiofi lm substrate concentration (Shieh & Keenan, 1 986). 

In order to describe mass transport from the bulk l iquid to the surface of the SUppOlt 

particle and reaction at that position, the Nersnt d[ffils'ion layer and a stagnant film 

theolJ! have widely been used and lead to the fol lowing equation for the flux }��. of 

substrate from the bulk l i quid to the i nterface, as shown in Fig. 2.4: 

}� = k1s(C; - C;) (2.7) 

where C� and C; are the substrate concentrations at the interface and i n  the l iquid, 

respectively, and k/s i s  the l iquid-sol id mass transfer coefficient. 

Figure 2.4. Illustration of mass transfer processes in a FBBR. 
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An analytical solution for kls i s  possible for the ideal case of a single sphere at rest in  

an infinite stagnant fluid .  k1s i s  then given by: 

k - 2l\, 
I -
S d,p 

(2 . 8) 

where Dm i s  the molecular diffusivity in  l iquid. 

For the general case of mass transfer between a moving fluid and a spherical particle, 

the Sherwood number, Sh, Schmidt number, Sc, Stanton number, St, and Froude 

number, Fr, relate the physical properties of the system to the mass-transfer 

coefficient and are more often used (Brodkey & Hershey, 1 98 8) .  These correlations 

are most often expressed in  terms of dimensionless numbers, often in  the form of a 

power senes. 

Sh = kl.,dsp 

Dm 
Sc = �  PLDm 

5' k1 ,5 t - -"-L · -

(lI, 
(le Fr = _· _·1-�gDc 

(2.9) 

(2. 1 0) 

(2 . 1 1  ) 

(2 . 1 2) 

In general, steady-state theories for the l iquid-sol id mass transfer are largely 

class ified into two categories; those based on the terminal velocity-sl ip velocity 

approach and the others based on Kolmogoroffs theory. In the terminal velocity-sl ip 

velocity approach, the steady sl ip velocity between soli d  and l iquid i s  used in  the 

correlation for the Sherwood number. Based on this theory, the experimental data for 

the l iquid-sol id mass transfer coefficient ( kls) are often correlated by a d imensionless 

equation of the form, 



- - - - - -- - -- ---------------------�- - - - - - -

Chapter 2. Three-Phase Fluidised-Bed Biofi lm Reactor - Background 22 

Sh == 2 .0  + a Sel ! 3  ReI 1 2 (2. 1 3 )  

The value of the constant a reported i n  the l iterature l ie  between 0 .03 and 1 .0 (Shah, 

1 979). A review of the data of Rowe & Claxton ( 1 966) on the Reynolds number 

range 20 through 2000 indicates that a =0.76 for l iquids. 

Beek ( l 97 1 )  developed a more general correlation of l iquid-sol id mass transfer 

coefficient within a fluidised-bed based on the data of several researchers. The 

correlation ofBeek i s  

S', Se2/3 == (O. S I ± O .05) Re -0 5 (2. 1 4) 

Kolmogoroffs theory i s  based on the length scale of the micro-scale eddi es, which i s  

defined as (V. 3 J)� 
17 =  -E (2. 1 5) 

and the velocity scale i s  defined as 

I '  
VI = (vE)74 (2. 1 6) 

where E i s  the local energy dissipation rate per unit mass. From the stochastic 

behavior of the fluid flow around the suspended particle and Kolmogorotrs theory of 

i sotropic  turbulence the following relationship for the Reynolds number can be 

derived (Shah et ai . , 1 982) 

Hi > 17 > d,p 
( � <I ) 1/2 

• }'.,dsp 
Re == e  --

v3 

• Edsp 
( <I ) 1/3 

Re = e -­v3 
(2. 1 7) 
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where c' represents a dimensionless constant and Hi i s  a characteri stic l ength, for 

instance, the suspension height. By using Kolmogoroff s  theory, the energy 

dissipation rate in TPFBR can be calculated from the pressure drop experienced by 

the gas flow rate. The energy input P ' i s  approximated by 

(2. 1 8) 

where t.p i s  the pressure drop in  the bed. Therefore the specific energy dissipation 

rate, E, can be calculated as, 

(2. 1 9) 

Information i n  the l iterature pertaining to l iquid-sol id  mass transfer in  related 

systems, such as two-phase FBBR i s  fairly comprehensive. L ittle i s  known, however, 

about l iquid-sol id mass transfer in a TPFBBR. Arters & Fan ( 1984) developed the 

l iquid-sol id partic le mass transfer coefficient in a TPFBR. They employed cylindrical 

particles of benzoic acid which were fluidised with water and air. Their results 

showed that l iquid-sol id mass transfer in a TPFBR is higher than that in a two-phase 

fluidised bed at a given l iquid velocity. Furthermore, the Sherwood number (Sh) for 

k1s increase with increasing gas velocity. Liquid-solid mass transfer i n  a TPFBR 

appears to be relatively independent of the l i quid velocity, as has been noted for a 

two-phase fluidised bed reactor. The correlation of Alters & Fan for kls i s  given as 

k d . .  ( - J0.3 5'h =:: � =:: 0 .228(1  + 0 .0826 Rel: 623 )Ga1l 323ScOA PSI' PL 
D g P m L 

and the Gal l i leo number ( Ga ) i s  defined as 

d3 p2g 
Ga = 

---,-sp_L_. 

PZ 

(2 .20) 

(2.2 1 ) 
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where 1\, is molecular diffusivity in l iquid and p"P is density of particle . 

Recently, Nore et al. ( 1992) studied hydrodynamics, gas-sol id and l iquid-sol id mass 

transfer with in a TPFBBR with the low density ranging from 1300 to 1700kg/m3 . 

In their studi es, i ncreasing the gas velocity increased kls ' especially at low gas 

velocities for low particle densities and the l iquid velocity had almost no effect on 

l iquid-sol id mass transfer coefficient. Nore et al. correlation for estimation of kls 

with good prediction of the 250 values measured are 

k = 1 10 

(
�JOA3 d 0.24 

Is ' hp E i ( JO OS I  k = 0 197 
UL d 0 1 7 

is ' bp E, 

(2.22) 

Typi cal range for kzs with dsp 1 130kg/m3 were varying from about 0.0003 to 

0.00 13 cmjs . 

2.2.6 Mixing 

Gas Mixing 

Mixing of the gas phase i s  due to the fact that the gas bubbl es have different 

velocities associated with their size. It appears that backmixing i ncreases with rising 

gas flow rates, and with decreasing particle size. However, this could be ignored as a 

first approximation (Muroyama & Fan, 1985). Michelsen & Ostergaard ( 1970) 

reported that the determination of axial di spersion was difficult s ince the axial­

dispersion model was proven to be unsuccessful in  accounting for the gas phase 

mixing in system which rapid coalesce. In such a system, a negative dispersion 

coefficient was observed. FUl1hermore, accurate determination of the axi al dispersion 

coefficient for the gas phase is difficult for beds with large particles. In TPFBR or 
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TPFBBR, plug flow can often be assumed for the gas phase. Appreciable  

backmixing, however, may occur in  the liquid phase, especial ly for beds with fine 

particles in co current TPFBR or TPFBBR. The backmixing of the l iquid and soli d  

particles in  such a bed i s  primari ly caused by  the rising motion of coalesced large 

bubbles (Muroyama & Fan, 1 985) .  

Liquid Mixing 

The axial-dispersion model with a single value of the axial-dispersion coefficient to 

characterize the whole bed has been most commonly used to describe l iquid mixing 

in  TPFBR (Ostergaard, 1 968;  Ermakova et al . ,  1 973 ; Shah, 1 979) or TPFBBR 

(Wisecarver & Fan, 1 987; Petersen & Davison, 1 995) .  

The various correlations for calculating EL have been developed by some authors 

(Joshi, 1 980;  Muroyama et al . ,  1 978 ;  Kim et al . ,  1 992). The reported data on the 

axial l iquid dispersion coefficient Er indicate that EL depends on the gas velocity, 

the liquid properties, and bed diameter. The influence of the l iquid phase properties 

is not clearly understood (Shah, et al . ,  1 982). Davison et al. ( 1 977) showed that, 

depending on the l iquid flow rate, the axial dispersion coefficient ( EL ) of the l iquid 

retains a value between bout 40 and 1 20 cm2 I sec in the dispersed bubble flow 

regime; in the coalesced bubble flow regime, EL retains  very high values, varying 

fJ-om 200 to 400 cm2 I sec . 

Joshi ( 1 980) proposed a unified correlation of the axial l iquid mixing in  gas-liquid 

two phase columns and three-phase fluidized beds. His correlation has the form: 

(2.23)  

where EL i s  in  m2 I sec , Dc i n  m ,  and T�: in m I sec . Vc can be  calculated by : 
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Here, lie;, II L , [l( and V;)«) are in m / sec , and PL and Ps are in  kg / m . 

26 

(2.24) 

Kim et aL ( 1 992) found that EL increases with increasing gas and l iquid velocities i n  

three-phase fluidized beds of  small particles whereas the efTect of  l iquid surface 

tension and l iquid viscosity on EL are found to be smalL They also showed that EL 
decreases with i ncreasing particle size and it sharply increases with increasi ng 

column size. They proposed the correlation 

(2.25)  

Studies on the backmixing characteristics of l iquid have been reviewed by Fan & 
Muroyama ( 1 985) .  They recommend the equation of Kim et al. ( I 992) for the 

estimation of EL in a TPFBR since their correlations cover a wide range of l iterature 

data. 

Solid mixing 

One of the characteristics of a TPFBR or TPFBBR of low-density particles which 

most dist inguish them from those of high-density particles is the axial 

nonhomogeneity of the holdup of the phases .  This nonhomogeneity of the axial 

phase holdups is also true in  TPFBBR. In a TPFBBR, the decrease i n  bioparticle 

density with increasing biofilm thickness on support particles is significant in  the 

operation of a TPFBBR. Thus with the bed, nonhomogeneous distribution take place 

and the less dense bioparticles with thicker biofi lms tend to locate at the top of the 

reactor. Fig 2 . 5  shows the typical solid holdup distribution in a TPFBR containing 

low-density particles. 
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Figure 2 . 5 .  Axial solid distribution in  a TPFBR (Tang & Fan, 1 989). 

An investigation of sol ids mixing in  a TPFBR was conducted by Fan et al. ( 1 982), 

Fan et aI . ( 1 984), and Tang & Fan ( 1 989). Fan et al. ( 1 982) showed that the degree of 

particle segregation decreases sharply with an increase in the gas velocity. The 

degree of the solid mixing, however, would be expected to be lower than that of the 

l iquid mixing in a TPFBR (Tang & Fan, 1 989) . Tang & Fan ( I 989) examined the 

sol id mixing in a TPFBR containing low-density particles and developed a 

mechanistic model with axial solid d ispersion coefficient Es . They found that in  the 

dispersed bubble regime (high gas velocity), gas velocity has only a sl ight effect on 

the axial  solid holdup d istribution. The sol id dispersion increases significantly with a 

decrease in  the l iquid velocity, corresponding to a transition from the dispersed to the 

coalesced bubble regime. Tang & Fan ( 1989) proposed the fol lowing correlation for 

estimating axial solid dispersion coefficient Es ,  which i s  expressed as a function of 

particle terminal velocity and gas velocity : 
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F ,  = 0 080 l1L34lf- 1 .22 �,JS . ' G  - 10 (2 .26) 

where Uto is the terminal fal l ing velocity of a single partic le in an infinite l iquid 

medium. The Eq .  (2.26) can be used to estimate Es in  a TPFBR of particles with Uto 
ranging from 0.025 to 0.055 mls and operate in  the dispersed bubble regime. 

2.3 BIOFILM CHARACTERISTICS IN A TPFBBR 

2.3.1 Biofilm Formation 

M icroorganisms, primari ly bacteria, exhibit a tendency for adsorbing to and 

colonising surfaces submerged in aquatic environments. The immobil ized cel l s  grow, 

reproduce, and produce extracellular polymeric substance (EPS) in the development 

of a bioti lm .  Bryers & Charackl i s  ( 1 982) suggested the process of biofilm 

development on the support particles occurring in a biofilm reactor and described the 

net results of the fol lowing transport and biological processes :  

1 .  Adsorption of dissolved organics at the surface of particles 

2. Transport of microbial particles to the surface 

3 .  M icroorganisms adhesion to the surface biofil m production 

4. Biofilm growth 

5 .  Biofilm detachment 

In step 4, b iofi lm production is the net accumulation of attached material due to 

cellular reproduction and microbial production of extracellular polymers. During the 

biofi lm  development, portion of biofi lm peels away from the particle surface and is 

entrained i n  the l iquid flow. There exist two mechanisms : 1 )  detachment 2) 

sloughing. Detachment i s  a process of continuous biofilm removal and i s  highly 

dependent on hydrodynamic conditions (Peyton & Charackl i s, 1 993) .  Sloughing, 
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however, appears to be a random, massive removal of biofi Im attributed to 

oxygen/nutrient l imitations deep within the biofi Im (Bryers & Charackl i s, 1 982). 
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Figure 2 .6 .  Biofilm deveopment processes. 

In summary, biofiIm development on the support particles is a dynamic  process 

influenced by microbial attachment and detachment processes and growth. Many 

researches (Rittmann, 1 982; Chang et a\ . ,  1 99 1 ;  Peyton & Charackli s, 1 993 ; Trinet et 

ai . ,  1 99 1 ;  Tijhuis et aI . ,  1 994; Gjaltena et a\ . ,  1 995)  have focused on the 

understanding of biofilm detachment during biofi lm formation in fluidised bed 

biofi Im reactor or biofiIm airl ift suspension (BAS) reactor because the performance 

of biofi Im process is related to the biomass amount on support particles. 

It has been known that many factors affect biofiIm formation in a flu id ised-bed 

biofilm Reactor (FBBR). Shieh & Keenan ( 1 986) summarise the fol lowing factors 

affecting biofilm formation in a FBBR: 
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1 .  Microbial type and Species  

2. Support particle surface characteristics 

3 .  Polysaccharide material s 

4. Hydrodynamic  conditions 

5. Substrate characteristics and concentration 

6. Environmental conditions. 

2.3.2 Biofilm Characteristics 

30 

Substrate removal processes occurring m the biofi lm reactor i s  the result of 

simultaneous i nteraction between the transport process of substrate within biofilm 

and the substrate conversion processes to  b iomass by biochemical reaction. 

General ly, b iochemical reactions in  a biofi lm reactor are expressed on the basis of a 

unit of biomass. The removal rate of substrate, for example, i s  expressed as the mass 

of substrate removed per unit time per unit of biomass while the rate of biomass 

accumulation by the substrate conversion process to biomass is  expressed as the 

amount of biomass accumulated per unit time per unit of b iomass present . In order to 

form these processes mathematical ly, the biofi lm thickness and biofi lm density are 

widely used for model l ing the physical characteristics of biofi lm reactor because the 

mass of biofi lm  present in biofi lm  rector can be expressed as a function of the 

b iofi lm thickness and biofi lm  density. 

Biofilm Thickness 

Biofi lm thickness is one of the most important parameters in biofilm reactor because 

it represents the total accumulation of b iomass in the reactor. Biofi lm  thickness, the 

perpendicular distance from the substratum to the biofilm-bulk l i qu id  interface, has 

been used to determine the di stance through which substrates and nutrients must 

diffuse to fully penetrate a biofilm. 



Chapter 2. Three-Phase Fluidised-Bed B iofilm Reactor - Background 3 1  

When considering biofi lm thickness, it is  important that a distinction be made 

between the total biofilm thickness and the active biofi lm thickness (Grady Jr . ,  

1 983) .  It is  meant that a thick biofi lm does not guarantee a greater substrate removal 

rate compared to that of a thi n  biofi lm.  It has been known that the substrate removal 

rate increases with increasing biofi lm thickness up to a certain thickness, beyond 

which it remains constant. When the biofi lm thickness i s  l ess than a critical value, 

commonly referred as optimum biofilm thickness, the entire biofilm is active. As the 

biofilm thickness exceeds the optimum biofi lm thickness, only that portion of the 

biofi lm is active. As a result, increase in biofilm thickness beyond the optimum 

biofi lm thickness wil l  not i nduce a corresponding increase in observed substrate 

removal rate (Grady Jr . ,  1 983 ;  Shieh & Keenan, 1 986; Truelar & Charackl i s, 1 982). 

Truelar & Charackl is ( 1 982) also found that the value of active biofi lm thickness 

increased as the substrate concentration in the l iquid phase increased. 

In a TPFBBR, large biofilm thickness by excessive accumulation of biomass on 

support particles is not desirable and it l eads to a greater bed height i ncrease which 

reduces the bed stab i l ity at a given operating conditions. In  extreme cases, washout 

of b ioparticles from the reactor could occur and it causes the loss of performance of a 

TPFBBR. In order to properly operate a TPFBBR and maxim ise the performance of 

a TPFBBR, control of biofilm thickness i s  required. The biofilm growth in a 

TPFBBR i s  general ly slow since 70-90% of biomass i s  continuously being detached 

hom the support particles during the biofilm formation (Hong et aI, 1 998 ;  Gjaitema 

et aI, 1 995) .  The biofi lm detachment is  very significant because thi s affects directly 

the amount of biomass and ultimately the performance of a TPFBBR. 

Biofilm Density 

The biofilm density is an another important parameter in  a biofi lm reactor because 

the substrate removal rates are related to the b iomass present. The biofi lm density 

must be coupled with the biofilm thickness and included in any mathematical model 

when calculat ing the accurate reaction rate. 
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The biofi lm density i s  generally expressed in  terms of  the dry weight of  biomass of 

the biofi lm per unit volume of wet biofi lm.  The biofilm density obtained in a 

TPFBBR general ly had h igher values to those from a two-phase FBB R  or from other 

biofi lm reactors because turbulence and particle-particle interactions enable the 

biofilms to be denser. Table 2.3 summari ses the steady-state biofilm thickness and 

biofilm density data determined from several biofilm reactors. 

Table 2 .3 . Steady-state biofi lm density and biofilm thickness values from different 
types ofbiofilm reactors. 

Biofilm Density & Reactor Type Substrate Reference 
Biofilm Thickness 

X� =50 mg/cm3 
Tubular reactor 

Municipal Tomlinson et al . 
L f = 1 00 f..011 wastewater ( 1 966) 

X� =50 mg/cm3 
RBC 

Industrial Paolin i  et al . 
Lf = 1 1 00-3 800 Jm1 wastewater ( 1 979) 

X [ =48 mg / cm3 
two-phase FBBR 

Municipal Shieh et al . 
Lf = 1 1 3  f..011 wastewater ( 1 98 1  ) 

X; =8 1 mg/cm3 
TPFBBR Phenol 

Wisecarver & 
Lf =59 . 8  pm Fan ( 1 989) 

X� = 1 4 1  mg/cm3 
TPFBBR Phenol 

L ivingston & 
Lf =23 JUn Chase ( 1 989) 

X� =30 mg/cm3 
TPFBBR Phenol 

Hirata et al . 
Lf = 1 8 1  f..011 ( 1 982) 

( X  � = biofi lm density, L f = biofilm thickness) 

Hoehn & Ray ( 1 973)  first reported that the biofilm density varies with the biofi lm 

thickness and reaches a maximum value at a thickness consistent with the active 

biofi lm thickness. Shieh et aI . ( 1 98 1 )  observed a profound dependence of biofi lm 

density on b iofilm thickness in  a two-phase FBBR for denitrification of municipal 

wastewater. Fan et al . ( 1 987) and Tanyolac & Beynenal ( 1 997) found that as the 

biofi lm thickness increased, the biofilm density increased up to a maximum value, 
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started to decrease with increasing biofi lm thickness, and final ly reached a minimum 

value. Therefore, in  order to evaluate a true performance of a TPFBBR or a biofi lm 

reactor, a mathematical model i s  required to include the relationship between biofilm 

thickness and biofilm density since the performance of a TPFBBR or a biofilm 

reactor depends on the biofi lm thickness and biofi lm density. 

Recently researches have investigated through micro-scale observation technique 

(e.g. , the microelectrode or micro-slicing techniques) to enhance the understanding 

of the complexities of biofi lm structure, that is the influence of biofi lm structure on 

transport and transformation processes in biofilms (Zang & Bishop, 1 994a; Zang & 
Bishop, 1 994b; B ishop et aI . ,  1 995) . Their results from direct experimental evidence 

showed that the biofi lms have a non-uniform spatial distribution of biofi lm 

properties, which confl icts with the a priori assumption of  many biofilm growth 

models, that is a uniform spatial distribution of biofi lm properties . The structure of 

biofi lms can be highly stratified, and therefore, biofilm density, porosity, pore 

structure, and the composition of the microbial community can be quiet different in 

each layer. B ishop et al .  ( 1 995) showed that the biofi lm density of a top layer and a 

bottom layer can be 5 - 1 0  times different and the rate of biofi lm density increase with 

b iofi lm depth is greater for thin biofi lms than for thick biofilms. It is known that the 

density with biofilm depth is the result of competition and drainage. As a result of 

the change of density in biofi lm, the porosity also has a spatial distribution within the 

biofi lm.  B ecause of these di stributions of biofilm density and porosity, both 

tortuosity and effective diffusivity change with biofilm depth. Zang & Bishop 

( 1 994b) showed that for biofilm with porosity of 0 . 84-0 .93 in the top layers and 0 . 5 8-

0 .67 in the bottom layer, tortuosity factors increase approximately from 1 . 1 1 5  in  the 

top layer to 1 . 6 in the bottom layer. Although the information from the micro-scale­

based observations is quite useful and practical, it is sti l l  difficult to incorporate it 

into macro-scale-based mathematical models .  Averages values of biofilm thickness, 

b iofi lm density, and effective diffusivity are sti l l  widely used for macro-scale-based 

model l ing and design purposes. 



Chapter 3 
Experimental Methods 
3.1 INTRODUCTION 

The basic obj ectives of the experimental work are: 

• To obtain the value of variables needed as input to the mathematical model 

presented in chapter 4, 5, and 6 .  

• To obtain dynamic performance data of a TPFBBR which can be used to evaluate 

the mathematical model proposed in this thesis. 

3.2 EXPERIMENTAL 

3.2.1 Reactor 

Three laboratory-scale three-phase fluidized-bed biofi lm reactors with identical 

dimensions were constructed and operated under different operating conditions to 

obtain the dynamics of the biofilm growth after startup. A diagram of the TPFBBR is 

i l lustrated in Fig. 3. 1 .  The major components of each TPFBBR include reactor, gas­

l iquid separator, air and liquid distributor, feed pumps, and feed and effluent tanks. 
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The reactor was made of plexiglass and was of 4.4 cm ID and, with s ix sampl ing 

ports instal led along the bed height to obtain both liquid and biopartic le samples. The 

bottom of the bed was conical in shape which was employed to promote even 

distribution of the incoming wastewater. The enlarged section with 6 .6  cm ID and 25 

cm height was fitted at the top of the bed to provide better l iquid-bioparticle 

separation. The total reactor volume was 1 200 mL. Air sparged through a porous 

metal disk, which covered the bottom cross section, at rates which caused 

fluidization of the support particles without any l iquid flow. The average pore size of 

a porous metal d isk i s  1 3 ,um .  The pH was control led between 6 . 7  and 6.9 ,  and the 

temperature held at 2 1  ° C. The dissolved oxygen was monitored with an electrode. 

3.2.2 Startup and Operation of a TPFBBR 

Initially, 1 5% of reactor volume was fi lled with clean activated carbon particles 

(settled volume %). Activated mixed culture corresponding to 5% of reactor volume 

was then added to the TPFBBR containing synthetic wastewater with the phenol 

concentration of 200 mgll. The TPFBBR was fluidized by upward air flow and was 

operated in a batch mode for a few days to allow the buildup of active microbial cell s  

on activated carbon particles. The operation was switched to a continuous mode. The 

inlet phenol concentration was maintained between 1 50 mgll and 200 mgll during al l 

experimental runs but the l iquid and air velocity were varied to obtain the 

informat ion for dynamic growth of biofilm under different runs. The pH was 

control led to between 6 . 7  and 6 .9, and the temperature was held at 2 1 ° C. The 

disso lved oxygen was monitored with an electrode. All measurements of biofilm  

growth on support particles were conducted at 1 2  hours intervals .  The operating 

conditions of the experimental runs performed in this study are summarised in Table 

3 . 1 .  
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Table 3 . 1 .  Experimental conditions. 

Air Liquid Inlet phenol 
Particle size 

Run velocity velocity concentration 

Cum )  
( mg/cm3 ) ( cm !  sec ) ( cm !  sec ) 

1 275 0 .36 0 .062 1 50-200 

2 400 0 .36 0 .023 1 5 5- 1 85 

3 570 0 . 842 0 .078 1 47- 1 83 

4 5 70 0 .48 0 .066 1 5 1 - 1 96 

5 600 0 .73 0 .08 1 5 1 - 1 90 

6 600 0.42-0 .7 0 .057 1 43- 1 76 

7 7 1 0  0 .9  0 .03 1 48- 1 84 

8 7 1 0  1 .2 0 .03 1 55 - 1 93 

3.2.3 Microorganisms and Culture Medium 

The biofilm formed on  the supp0l1 particles was a m ixed culture which i s  

predominately Pseudomonas putida and Alcaligenes eutrophus (Bhamidimarri, 

1 987) . This mixed culture was then conditioned to a synthetic growth medium 

containing phenol as the sole carbon and energy sources. The composition of the 

synthetic growth medium is shown in Table 3 .2 .  The synthetic growth medium was 

di luted to yield the desired phenol concentration with fresh dist i l led water for each 

experimental run. 

Cell suspensions for i noculat ions were made by mixing the freeze dried stock culture 

(about a quarter teaspoon) with 50 mL of the synthetic growth medium at a defined 

phenol concentration. It was incubated at 2 1 0  C in 250-mL shake flasks on a rotary 

shaker at 250 rpm for 24 h .  To ensure sufficient oxygen supply the flasks were fitted 

with l ids with holes. After this period, the mixture was left for the fi l l er material to 

settle. 1 0  mL of the supernatant l iquid was transferred i nto 40 mL fi-esh medium and 
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incubated as  earlier. The last step was repeated twice before the culture was regarded 

as well estab l i shed. 

Table 3 .2 .  Composition of synthetic growth medium. 

Component Concentration (mgA) 
-"'" _____ "'""�··N�·" .. • .. ·� ____ ·• •• ••• •• •• .. .-_ .... _-- ••• __ ·_ ... •• __ �_ .... N " .. _ .... •• __ A_ ... __ ••• .. •• .. �···· ..... • .... ,,-.....• -.. �,,-... 

KH2P04 420 

K2HP04 3 75 

(NH4hS04 244 

NaCl 3 0  

CaCh2H2O 3 0  

MgS04 7H2O 3 0  

FeChH20 4 .6  

C6HsOH Varying 

3.2.4 Analytical Methods 

Phenol Assay 

Phenol concentration was measured spectro-photometrical ly by monitoring the 

optical density 274 nm with a spectrophotometer (Phi l l ips  PU 8625 UV/VIS, 

Cambridge, England) equipped with quartz sample cells .  This direct method, without 

protracted sample preparation, could be employed because the aromatic  ring of the 

phenol molecule absorbs UV l ight. The data col lected were then converted from the 

optical density to concentration units using a previously prepared calibration curve. 

Suspended Biomass Concentration 

Suspended biomass concentration was measured by determining the optical density 

of the culture broth. This was done using a spectrophotometer (phil l ips PU 8625 
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UV IVIS, Cambridge, England) at a wavelength of 620 nm equipped with quartz 

sample cel ls .  

Biofilm Thickness 

The biofiIm thickness was measured with the help of microscopy (Olympus CHA, 

Olympus Corp . ,  USA) with a previously cal ibrated eyepi ece with ocular scale. For a 

representative value, the biofi lm thickness of each bioparticle was measured at four 

locations around the bioparticles per sample. To obtain the average biofiIm thickness 

through the height of reactor, at least total 200 bioparticles were taken from 6 

sampling ports and measured at 1 2  hour intervals .  

Biofilm Density 

The biofiIm density is expressed in  terms of the dry weight of biomass of the biofiIm 

per unit volume of wet biofilm.  The biofiIm density was measured i n  accord with a 

dry weight measurement based on Tang et al. ( 1 987). The weight of the attached 

dried biomass plus that of the support particles was measured by drying the 

bioparticles (at 1 00° C for 24 hours) taken from the each sampling port. The biofi Ims 

were then removed by NaOH2 solution from the support particles. The clean support 

particles were then washed, dried at 1 00° C for 24 hours, and weighted. The dry 

biomass weight was obtained by subtracting the weight of dried support particles 

from the weight of the dried bioparticle. Final ly, the biofilm density was estimated 

using the fol lowing equation: 

(3 . 1  ) 

where X! i s  the biofilm dry density, d,p ,  the diameter of support particles, N ,  the 

total number of support particles in the sample, Lf , the b iofiIm thickness, and Wb , 

the dried b iomass. 



Chapter 4 
Mechanistic Model for a TPFBBR 
Incorporating 
Growth 

4.1 INTRODUCTION 

Dynamic Biofilm 

Several mechani stic model-based biofil m  models  have been developed in which the 

substrate transport to consumption by the biofi lm is described. In the majority of these 

models ,  biofi lm properties such as biofi lm thickness and biofi lm  density were 

assumed to be constant (Atkinson, et aI . ,  1 967 ; Atkinson & Daoud ,  1 970; Lamotta, 

1 976; Wil l iamson & McCarthy,  1 976; Rittmann & McCarty, 1 98 1 ) . Although steady­

state biofi lm model s  for growing biofi lms can be quite satisfactory for design 

purposes,  they may i nsufficient to describe the start-up phases and the dynamic 

responses to the changing conditions in the systems. These model s  describe neither 

the variation in biofi lm thickness nor its density in time. Thus a dynamic biofi lm 

growth model refl ecting the  variabi l i ty of  biofi lm thickness and i t s  density as  a 

function of time is necessary for design, optimisation, and control of a TPFBBR. Net 

biofi lm growth rate depends highly on biofi lm detachment rate . Therefore, 

i nformation on the biofi lm detachment is required because the performance of biofi lm 
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process i s  dependent on the quantity of biomass amount o n  support particles .  

However, biofi lm detachment processes are the l east studied and understood. 

The aim of thi s  chapter is to develop an integrated model incorporat ing dynamic 

biofi lm  growth for a TPFBBR by tak ing  a mechan istic model l ing approach.  First, the 

dynamic biofi lm growth model is  developed which is able  to reflect the s imultaneous 

variabi l ity of biofi lm thickness and biofi lm density as a function of time, derived from 

a biomass mass balance equation. A b iofi lm detachment model i s  also developed as a 

function of shear l oss and attrition. Using the method of characteristics to arrive at a 

solution for propagation of biofi lm thickness and biofil m  density in  time, the dynamic 

biofi lm growth model with detachment is proposed. In order to form the integrated 

mode l ,  the dynamic biofi lm growth model with detachment is combined wi th a 

reaction-diffusion model and reactor model to predict the dynamic change of 

performance in a TPFBBR according to the variation of biofi lm thickness and b iofi lm  

density. The experimental data are compared with s imulation results t o  show the 

effectiveness of integrated model and dynamic biofi lm growth model developed. 

4.2 OVERVIEW OF B IOFILM GROWTH MODEL 

4.2.1 Steady-State Biofilm Growth Model 

Many steady-state biofi lm model s  describing substrate concentration profi les over 

biofi lms have been developed. In many of these models ,  zero or first-order k inetics 

were assumed so that analytical solutions were avail able (Atkinson, et al . ,  1 967; 

Atkinson & Daoud, 1 970; Wil l iamson & McCarty, 1 976;  La Motta, 1 976; Dal l i  & 

Chau ,  1 987; Rittmann & McCarty, 1 98 1 ;  Harremoes, 1 982). However, numerical 

solutions were obtained (Wanner & Gujer, 1 982) .  

Rittmann & McCarty ( 1 98 1 )  model led biofi lm thickness by assuming that a steady­

state biofi lm model is one in which growth woul d  just be balanced by cel lu lar decay . 

Later, Rittmann ( 1 982) extended h is  model to incorporate biofi lm detachment which 

depended on the biofil m  thickness and mass as wel l  as upon the shear stress. Andrew 
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& Tien ( 1 98 1 )  developed a biofi Im growth model which is s imi lar in concept to the 

biofi lm model of Rittmann .  Howel l  & Atkinson ( 1 974) proposed a biofi lm model in 

which the biofi lm thickness increased over time by assuming that no continual 

detachment occurred so substrate removal would result  in accumulate cel l  mass. In the 

steady-state biofi lm models ,  the b iofilm  thickness is assumed to be constant and the 

biomass distribution over the entire biofi lm is also assumed to be homogeneous .  In 

real ity, the b iofi lm thickness and biofi lm density are not constant over time, and the 

biofi lm density is not constant over the entire biofi lm (Masuda et aI . ,  1 992;  Zang & 

Bishop, 1 994a; Zang & B ishop, 1 994b; B ishop et aI . ,  1 995). Gradients develop 

because the growth rate is dependent on the local substrate concentrations. 

The major l imitation of the steady- state biofi lm mode l s  are: ( l )  that the biofi lm 

thickness of  the steady-state biofi lm  model must be  known ; and  (2) on ly  the steady­

state is described, which means that it does not give insight i nto the response of the 

processes to change (Wijffe ls  & Tramper, 1 995). However, steady-state models  

provide descriptions of biofi lm processes in  the case of thick biofi lms ,  in which the 

penetration depth of substrate is smal ler than the biofi lm  thickness. In this case, 

accurate information about the total thickness of the biofi lm for determination of the 

capacity is not important .  In the case of thinner biofi lms formed in a TPFBBR, 

however, the biofi lm thickness i s  a key parameter to contribute to the reactor 

performance. 

4.2.2 Dynamic Biofilm Growth Model 

In the dynamic biofi lm  growth models ,  the biofi lm thickness and biofi lm density wi l l  

increase or decrease as a function o f  time. The consideration of the varying biofi lm 

thickness and i t s  density i n  the  biofi lm i s  essential to study the dynamics of biofi lm 

reactors . Modell ing  of  the dynamic biofi lm growth has been attempted by several 

i nvestigators (Benefield & Molz, 1 985 ;  Wanner & Gujer, 1 986; Jones et al . ,  1 993;  

Wijffels et aI . ,  1 989; Wijffels et aI . ,  1 99 1 ). 
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In dynamic biofi lm growth model s reported in the l i terature, the biofi lm thickness or 

biofi lm  density was restricted to a maximum or min imum. If growth is not assumed to 

be restricted, or if no biofi lm is removed, the biofi lm wi l l  become infi ni te ly  thick. As 

thi s  i s  not real i sed in  practice, some mode l lers i ntroduce restrictions such as no growth 

to a maximum biofil m  thickness (Toda & Sato, 1 985;  lones et al . ,  1 993) or the 

assumption that there is biofi lm loss at the maximum thickness (Benefie ld & Molz, 

1 985 ;  Wanner & Gujer, 1 986) .  In practice, even though the biofi lm thickness and 

biofil m  density can vary simultaneous ly by several orders of magni tudes and exhibit 

temporal variations quite different from their long-time or steady-state patterns ,  most 

of the above models do not describe a simultaneous change of biofi lm thickness and 

biofil m  density in  time. 

4.3 DYNAMIC BIOFILM GROWTH MODEL 

The dynamic biofilm growth model presented here i s  based on the fol lowing 

assumptions: 

• Growth i s  l imi ted by a single substrate and all other nutrients are present i n  

excess . 

• Various species of microorganisms present i n  the biofi lm can be described as 

homogeneous biomass .  

• Properties of biofi lm  change only In the direction perpendicular to the 

biofi lm-support partic le  interface. 

• Axial gradients of biofi lm thickness are not significant. 

• Growth mechanisms of suspended cel l s  and attached cel l s  are assumed to be 

identical . 

• Biomass within the biofi lm i s  uniforml y  distributed. 

This model is based on a one-dimensional conservation l aw for the biomass in the 

biofi lm .  A mass balance may be written for a differential volume element A ·  IlLf of 

the biofi lm (Fig .  4. I ). 
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AM Cl X[ (L1 , t) 
f Cl t 

= A[Fx (Lt , Ok - Fx (Lf , t)1 L t 
+ A/'),.LrRx 

(4. 1 )  

where X/ (Lf , t) i s  the biofi lm density based on dry weight of biomass  as function of 

time t and biofi lm  thickness Mf . Fx (Lt , t) is the flux of biomass, and Rx i s  the rate 

of change of biofi lm  density. By dividing Eq. (4. 1 )  by A ·  Mf and taking the l imit as 

these dimensions go to zero, we have 

(4.2) 

L I Q U I D  P H A S E  

Figure 4 . 1 .  Schematic of biofi lm growth with a volume element of biofi lm .  

The biofi lm i s  assumed to cons ist of a l iquid phase and a so l id  phase. B iofi lm l iquid 

phases generall y  amounts to about 80% of the biofilm volume. It is assumed that as 
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the metabolic reaction in the biofil m  increases ,  there is an increase in the amount of 

biomass at the end of a fin ite time i nterval which causes an increase in the biofi lm  

sol id  phase. Biofi lm thickness can be  considered to change to accommodate the 

change in the b iofi lm sol id  phase and i n  the biofi lm  l iquid phase. It i s  also assumed 

that although the biomass accumulates on the support particles, the biofi l m  density 

decreases since the volume expansion of the biofi lm results in  the decrease i n  the 

biofi lm  sol i d  phase. The flux of biomass that leads to the change of the biofi lm  

thickness can be expressed as 

Fx (Lt , t) = V (Lt , t)X,; (Lt ' !) (4.3) 

Substitution of Eq . (4.3) i nto Eq. (4.2) leads to 

(4.4) 

From the assumption of uniform distribution of biomass, the one-dimensional mass 

balance equation, which models the biofi lm growth as function of time and biofi lm 

thickness, can be  expressed as 

(4.5) 

The growth kinetics of b iofi lm i s  assumed to fol low Monod kinetic .  The expression 

for the specifi c  growth rate is thus: 

. U Cl u (Cf ) = max s 
,. j . K, + C, 

(4 .6) 

where u i s  the specific growth rate, umax ' the maximum specific growth rate, K" the 

Monod constant for substrate. By assuming Monod kinetics, the rate of change of 

b iofil m  density can be expressed as 
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Rx = -(u · X/ (Ll , t) - Rde ) (4.7) 

where Rde is the b iofilm detachment rate which considers the transfer of biomass from 

the b iofi lm  phase to the l iquid phase . 

4.3.1  Detachment Model 

4.3.1 .1  General Overview of Biofilm Detachment Model 

The biofi lm detachment is the entrainment of cel l s  from an existing b iofi lm into the 

bulk l iquid and i s  the primary process that balances cell growth in a b iofi l m  (Peyton & 

Charackl i s , 1 993) .  The biofi lm  detachment i s  a complicated function involving several 

variables, which take into account the hydrodynamics of the l iquid  and gas flow at the 

biofi lm  surface and the biofi l m  morphology and heterogeneity. 

In principle, the biofi lm  detachment coefficient ( hde ) can be expressed in  terms of the 

characteristics of the biofi lm ,  the support particle , and the hydrodynamic variables 

l ikel y  to affect detachment 

(4 .8)  

where Cp i s  the particle concentration in  the reactor. 

The b iological process performances depend on the biomass amount in a reactor. This 

i s  espec ial l y  true for biofi l m  process, i n  which h igh volumetric loading rates or low 

effluent concentrations are associated with the abil ity to accumulate a l arge biofi lm  

mass in  the reactor. The biofi lm mass accumulating on support particles i s  dependent 

on substrate uti l isation, biofi lm  growth, decay, and biofi lm detachment. For design 

and operation purposes, a model must predict the amount of biomass in a biofi l m  

reactor. Therefore, among the mechanisms control l ing biofilm reactor performance, 

detachment process is one of the l east studied and understood. One commonly  appl ied 
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biofi lm  detachment model assumes a first-order dependence on biofi lm thickness and 

mass (Chang & Rittmann ,  1 988) .  

(4.9) 

Others have postulated that shear l oss rate i s  a power l aw (Bakke et aI . ,  1 984) or 

second-order function of biomass (Bryers, 1 984). For example, 

(4. 1 0) 

Wanner and Gujer ( 1 986) have used that biofi lm shear loss rate was a second-order 

function of biofil m  thickness in mult i  species popul ation dynamics.  Based on an 

analysis of l imited data, Rittmann ( 1 982) suggested 

R = h X f L . r058 
de de a j (4 . 1 1 ) 

where r i s  the shear stress . 

A first-order dependence on shear stress of the form (Bakke et aI . ,  1 990) 

b X i ,.-de a "  (4 . 1 2) 

has also been proposed. Speite l  and DiGiano ( 1 987) suggested that growth rates in  the 

biofi lm influence shear loss rates and have proposed as expression of the form 

(4. 1 3) 

where 17, i s  the biofi lm shearing coefficient and 17; i s  the dimensionless parameter 

describing the biological aspects of shearing. 

Trinet et a l .  ( 1 99 1 )  suggested the corre lation of factors affecting b iofi lm detachment 

rate by using multiple regression analysis in a TPFBBR.  Chang et a1 . ( 1 99 1 )  al so 

showed the statistical corre lation of factors affecting detachment rate in l iquid­

flu idized bed. Peyton and Charackl is ( 1 992) proposed that the detachment rate shou ld  
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be proportional to the product of the substrate ut i l ization, biomass yield, and biofi lm 

thickness and have proposed as  express ion of  the form 

(4. 1 4) 

where Q i s  the flow rate, A i s  the surface area of the reactor, C:n i s  the i nlet  substrate 

concentration, C; is the substrate concentration in the reactor, and Y, is the yield 

coefficient . 

Recently, Peyton and Charackl i s  ( 1 993)  also showed that the detachment rate is  

i ndependent of shear stress, but i s  dependent on the cel lu lar production rate and have 

proposed as expression of the form: 

(4. 1 5) 

4.3.1 .2 Important Parameters Influencing Detachment in a TPFBBR. 

Rittmann ( 1 982) suggested that there i s  a strong relation of bde to ,0 58 in an annu lar 

reactor. But for a two-phase FBBR, Chang et a1 . ( 1 99 1 )  showed that the effect on 

detachment rate of l iquid shear stress ( ,  ) was not significant and for a three-phase 

FBBR.  Trinet et  a1 . ( 1 99 1 )  also founded that the range of , (approximate ly 9 .5  

dyne; cm 2 ) was too small to dist inguish any effects of  , on biofi lm detachment. 

Bhamidimarri and See ( 1 990) showed that shear stress required for balancing  

detachment wi th growth for a phenol degrading  biofi lm was 1 9 . 2  N; m 2 i n  a rotating 

cyl inder bioreactor. Duddrige et a1 .  ( 1 982)  on the other hand reported that a s ignificant 

biofi lm detachment attached to stain less steel occurred at shear stress above 1 00- 1 20 

dyne; cm 2 
• Therefore, as the l iquid shear stress, , present i n  a TPFBB R  i s  too smal l 

to detach the biofi lm on the support particles, the effect on detachment Of f may be 

thought to be not significant. Gjaltema et al . ( 1 995) presented a pre l iminary survey of 
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factors affecting b iofi lm detachment in three-phase biofi lm air l ift loop reactors. These 

factors are summarised in Table 4 . 1 .  The study of Gjaltema et al . ( 1 995) demonstrated 

a strong positive relationship between the biofi lm  detachment rate and the 

concentration of clean support particles, and between the biofilm detachment rate and 

the roughness of c lean support partic les .  This study also showed that the biofi l m  

detachment at l ower superficial air velocity was not significantly different, but the 

detachment at higher superficial air velocity was considerably h igher. A s imi lar 

relationship has been observed by Tijhuis et a1 . ( 1 994) for developing  biofi lms i n  a 

BAS reactor. In a recent study on the effect on biofil m  accumulation due to air 

velocity, Tavares et al . ( 1 996) showed that biofi lm accumu lation decreases when gas 

velocity increases .  The air velocity therefore is demonstrated to be an important 

operational variable for biofi lm characteristics and biomass  accumulation in a 

TPFBBR. 

Table 4. 1 .  Summary of qualitative effects of tested parameters on detachment 

(Gj al tema et aI . ,  1 995) .  

Parameter Effect 
B iomass decay negl igible 

B iofi lm pellet batch not clear 

Biofi lm storage time not clear 

Pel let morphology no effect observed, data l imited 

Pel l et diameter no effect observed, data l imited 

Bare carrier roughness important 

Bare carrier concentration important 

Flow regime important 

Superficial air velocity 
within one flow regime on 

effect observed, data l imited 

Reactor geometry important 

Bottom clearance no effect 
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In the research into the damage due to l iquid  shear, turbulence, and particle-particle 

interactions, Croughan et al. ( 1 988) showed that damage due to the interactions 

between particles and turbulent eddies was most important at lower support particle 

concentration; particle-partic le  interactions alone dominated at higher particle 

concentration. In a study of i nvestigating  biofi lm detachment in three-phase fluidized­

bed biofi lm reactor, Trinet et  al. ( 1 99 1 )  a lso observed that i ncreased particle-particle 

attri tion, which is proportional to particle concentration, and increased air turbulence 

described by Re (Reynolds number) , caused the biofi lms to be denser and thinner. The 

detachment rate increased as particle concentration and Re increased. It h as also been 

known that the detachment strongly increased with increase in the l iqu id velocity. The 

l iquid turbulence may influence the erosion process, in which biofi lm is continuously 

removed from the surface of biofi lm in  addition to attrition process. Therefore, as 

mentioned in Tijhuis et a1 . ( 1 994) the detachment in the biofi lm airlift system (BAS) 

reactor and the two- or three-phase FBBR are most probably governed by particle­

particle interactions because the support particle concentration is general ly  high, 

whereas in the rotating drum reactor other mechan isms, notably l iquid shear stress, are 

dominat ing detachment. The biofi l m  density obtained in  a TPFBBR general ly  had 

h igher values to those from two-phase FBBR because turbulence and part icle-particle 

interactions render the biofi lms to be thinner and denser. This is probab ly  due to the 

fact that cel ls in the biofi lms developed in a TPFBBR pack more t ight ly and due to 

considerab ly  higher erosion force attrition forces. In conclusion, the attrition effect 

due to part icle-particle interactions and erosion forces caused by superficial air and 

l iquid velocities must be taken into account in developing  a model for biofi lm 

detachment of  a TPFBBR. 

4.3.1.3 Detachment Model Formulation 

The detachment rate in a TPFBBR wi l l  be expected to be a positive function of 

erosion force caused by l iquid turbulence and gas turbulence. This erosion effect at the 

biofi lm surface affects the biofi lm accumulation and therefore i s  related to the sol id  

holdup and the bed expansion characteristics because the chan ge of biofilm 

accumulation (such as  biofi lm thickness) infl uences strongly the sol id  holdup and bed 
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expanSIOn. Furthermore, different solids holdup (or bed expansion) may affect the 

detachment rate . Meanwhi le the sol id  holdup is  strongly rel ated to the attrition effect 

due to particle-particle i nteractions. General l y  the effect of attrition effect on the 

detachment was described as the support particle concentration present in the reactor 

(Chang et al . ,  1 989, Trinet et al . ,  1 99 1 ). A large particle concentration indicates 

greater particle-particle attrit ion and it also corresponds to less l iquid turbulence. This 

support partic le  concentration i s  closely dependent on the solids holdup, which 

decreases with increase in  the superfic ial l iquid velocity and on the bed turbulence, 

which causes random movement of the support particles and influences particle-to­

particle contacts. The attrit ion effect on the detachment is proportional to the l iquid 

velocity resul t ing in turbulence and inversely proportional to the sol id holdup in  a 

TPFBBR. 

Tradit ional ly  the soli d  holdup (or bed expansion characteristic) has not been 

considered in the detachment models .  In this chapter, the particle concentration 

result ing in  the attrition i s  defined as the sol ids holdup. Therefore i t  may be suggested 

that major variables to be considered for the description for biofi lm  detachment in a 

TPFBBR are the partic le  concentration as function of the sol i d  ho1dup, and turbulence 

due to superfic ial gas and l iquid velocity. S ince the shear stress i s  thought to be poorly 

suited for studies on the erosion effect for the detachment in  a TPFBBR (Tijhuis et aI . ,  

1 994; Huang e t  a I . ,  1 996), the concept o f  a velocity gradient ( VG ) employed b y  

Amirtharajah ( 1 978)  i s  i ntroduced t o  describe the turbulence resulting in the erosion 

force and the attrit ion. Amirtharaj ah introduced the concept of a velocity gradient in a 

flu idized bed first suggested by Camp ( 1 964) and i t  is defined as 

( 4. 1 6) 

where Vc i s  the velocity gradient, E p ,  the energy dissipation rate, ILL ' the l iquid 

dynamic viscosity, and QL ' the l iquid  volume. 
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The frictional pressure gradient ( M )  i n  a flu idized bed, which i s  equal to the weight  

of solids per unit  volume of the bed corrected for the pseudo-homogeneous flu id 

buoyancy, i s  given by the Ergun equation ( 1 952) applied to the l iquid-sol id system. 

Hence, 

;1P - (- dP J - ( - dZ f - Cs PhI' Pr ) g 

? ) 
1 50 Ur Il r  E \ �  + 1 .75 U L - PL CS 
d h /  0 - C, )  3 d hp 0 E , ) 3 

(4. 1 7) 

The Ergun equation assumes that the gas and the l iquid together behave as a 

homogeneous flu id with no relative motion between them. Such an assumption i s  at 

best val id only for very smal l gas/liquid velocity ratios and correspondingly smal l gas 

bubbles. The energy dissipation rate ( El' ) can be computed from multiplicat ion of the 

frictional pressure gradient by the l iquid flow rate. 

(4. 1 8) 

where HI' i s  the expanded height, A ,  the surface area of bed. 

In summary the biofi lm detachment coefficient can be formulated by 

(4. 1 9) 

where bde is the biofi lm detachment coefficient, 'If ,  a constant ,  Reg , Reynolds 

number as a function of the superficial gas veloci ty, E" the particle concentration as 

a function of the solids holdup. The biofi lm detachment rate ( Rde ) can be described as 

(4.20) 
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4.3.2 Biofilm Growth Model Incorporating Detachment 

Wanner and Gujer ( 1 986) proposed that the expansion velocity of biofi lm thickness 

may be expressed as a l inear function of the specific  growth rate and biofi lm 

thickness . I t  fol lows from this that the shrinkage velocity of biofi lm thickness due to 

detachment is proportional to the increase in biofi lm thickness and is a function of 

biofi lm detachment coefficient. Therefore, the rate of chan ge of biofi lm thickness can 

be described as 

(4 .2 1 )  

-

where u is the net specific  growth rate. 

The net change rate of b iofi lm density can therefore be formulated as 

(4.22) 

Substituting Eq. (4 .2 1 )  and (4.22) into Eq. (4.5 )  leads to the result ing mass balance 

equation for the biofi lm growth . 

(4 .23) 

-uXf (Lf , t) 

Let us introduce a new time variable, T by taking 

dt 
dT u (4.24) 

This transformation converts Monod kinetic to first-order kinetic in the new time 

frame and wi th this  substitution gives 
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a X,; + L a X; = -x f 
a T  f a L 

Cl 
t 

(4.25)  

Thi s  first-order partial differential equation can be solved by the method of 

characteristics (Ads & Amundson, 1 973 ;  Hunter & Asenjo, 1 990), by parameterizing 

T, Lt , and X!, as arbitrary function of a dummy variable A. Let us  choose 

dT dLt, - = 1 and -' = L 
dA dA J (4.26) 

a x 1 a x f a x f 
which are the coefficients of --'-' and --'-' , respectively. Expanding --'-' by 

a T  a �  a A 

the chai n  rul e  i n  terms of T( A) and Lf (A) gives 

dX f a  X f dT a X f dL 
_(_' = __ ,_, _ + __ '_' _,_I 
dA a T dA a L f dA 

= a X ,; + L 
a X !, = -X J 

a T t a L a 
J 

Solving for Lf ' T, and X!, as functions of A, gives 

T = To + A 

Lt 
= Lfoexp(A) 

X;; = X ';rna, exp( -A) 

(4.27) 

(4.27a) 

(4.27b) 

(4.27c) 

The new time variable T denotes time, so To = 0 . Appl ication of Eq. (4.27) cou ld  lead 

to an infi ni te ly  low biofi lm density and high biofi lm thickness . As this i s  not real ized 

in  practice, the fol lowing constraints are added to this equation. 
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L < L  < L  10 - / - i .. " 
(4 . 28a) 

(4.28b) 

where X !Ji"" and L/",,, are the observable  final biofi lm density and maximum biofi lm 

thickness. Final ly the solution X! and L/ may be recast i n  terms of real time t by 

substituting equation (4.24). 

VG Re 
L/ = L/oexp((u - Ij/  £ g ) · t) 

s 

Lr � L'f � Lr )0 )max 
(4.29) 

(4.30) 

Eq. (4.29) and Eq. (4.30) shows that the biofi lm thickness between L/ and L/ + &/ 

increases exponentially, so that biofi lm density at each biofi lm thickness decreases 

exponential ly toward its final value. The dynamic biofi lm  growth model presented 

here can describe simultaneously the change of biofi lm thickness and biofi lm density 

in time. 

4.4 REVEIW OF MATHEMATICAL MODELLING 
OF A TPFBBR 

The model l ing of a l iquid-sol id, two-phase FBBR has been attempted by several 

investigators (Mulcahy, 1 978 ;  Ying and Weber, 1 979; Sh ieh, 1 980; Mulcahy et aI . ,  

1 98 1 ) . The microbial growth kinetics considered in the above models were assumed to 

be either zero-order or first-order, or Monod kinetics. 

In the case of a TPFBBR, Park et al .  ( 1 984) presented a model for a TPFBBR for 

penici l l in production which uti l ized substrate inhibi tion kinetics. However, they 

considered onl y  the l imiting cases of complete mixing and plug flow, and the l iquid-



Chapter 4 .  Mechan istic Model of TPFBBR incorporating Dynamic Biofil m  Growth 56 

sol id mass transfer res istance was neglected. Tang & Fan ( 1 987) developed a model 

for a draft-tube TPFBBR for phenol degradation which considered doubled - substrate 

l imit ing kinetics, with Haldane type substrate inhibition kinetics for the phenol and 

Monod kinetics for oxygen .  In their model ,  the l iquid and sol id  phases in the reactor 

were assumed to be complete ly  mixed due to the large degree of i nternal circul ation 

within the draft-tube TPFBBR. Wisecarver & Fan ( 1 989) presented a model for a 

conventional TPFBBR for a phenol degradation that used double-substrate-l imit ing 

k inetics .  The model they presented included the effect of gas-l iquid and l i quid-sol id 

mass transfer, axial dispersion of the l iquid phase, and simultaneous diffusion and 

reaction with the biofi lm .  However, they assumed that the sol ids were wel l m ixed and 

steady-state growth conditions were mai ntained, implying that the concentration on 

the surface of the biofi l m  was constant throughout the reactor. These assumption, 

together wi th the assumption that the axial d ispersion coefficient was constant 

throughout the reactor, al lowed them to develop an analytical solution for the bulk 

flu id  concentration profi le  though the biofi lm to determine the surface concentration.  

Then ,  using a material balance, they determined the reactor exit  concentration . 

Livingston and Chase ( 1 989) also presented a model for draft-tube TPFBBR for 

phenol degradation which considered double-substrate l imit ing kinetics, but, d id not 

i nclude gas phase material balance in their mode l .  Recently, Petersen and Davison 

( 1 995) developed a model of tapered-bed TPFBBR to convert glucose to ethanol .  In 

their model ,  the concentration profi les i n  the bulk fluid were determined as a function 

of the axial -bed position . To do so, a d ispersed-plug flow model was employed. They 

did not account for the fact that the d ispers ion coefficient was a function of the flow 

rate of the gas through a cross section of the bed and that the bed might not have a 

constant cross section but rather be tapered. 

4.5 INTEGRATED MODEL DEVELOPMENT 

The i ntegrated model for TPFBBR presented here i s  div ided into three submodels :  

• The Biofilm Growth Model, which considers accumulation of biomass 

and expansion or shrinking of the biofi lm thickness through metabolic 
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reaction by microorganisms attached to support particles and biofi lm 

detachment .  

• The Reaction-Diffusion Model, which considers a s imultaneous intra­

biofi lm  reaction-diffusion. 

• The Reactor Mode), which considers axial l y  dispersed transport of 

substrate and suspended biomass as a function of bed height. 

4.5.1 Reaction-Diffusion Model 

The concentration profi les of substrate describing the simultaneous transport and 

removal within the biofi lm,  et , lead to the fol lowing equations.  

d ct s 

d t 
D
. [d 2e( +�(d er J� _ _ 

l- umaxe( .  X f (L . , t) 1.1 d L2 L d L Y K + C t a j X/S S S 
(4.3 1 ) 

where L i s  the radial position within the bioparticle,  D,{ i s  the effective diffusion 

coefficient in the biofi lm,  Yt/s i s  the growth yield coefficient of substrate, K, i s  the 

saturation constant of substrate, umax i s  the maximum specific growth rate, Lt i s  the 

biofi lm thickness, and X,; is the biofi lm density. 

Eq. (4.3 1 )  i s  subject to boundary conditions specifying a zero intraparic le substrate 

concentration at the start of the experiment, substrate transfer  from the l iquid phase to 

the biofi lm based on a l iquid-sol id  mass transfer  coefficient (under conditions of time­

dependent substrate concentration in  the l iquid phase) and no substrate flux at the 

centre of the support particle .  Thus,  

d C/ -_.1_. ::: 0 at L ::: 0 
d L  

D d C/ - k (C' 
- Cl ) L L ( ) 

.1/ d L 
-

I., s 
s at ::: j t 

e: (Lt ,0) 0 at t = 0 

(4.32) 
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where k[s i s  the l iqu id-sol i d  mass transfer coefficient and C; IS the phenol 

concentration in the liquid phase. 

4.5.2 Reactor Model 

In a three-phase fluidised-beds,  the gas phase may often be assumed to be plug flow. 

Appreciable backmixing, however, may occur in the l iquid phase, especial l y  for beds 

of small particles in concurren t  three-phase fluidization. The backmixing of the l iquid 

and sol id  particles in such a bed i s  primari ly  caused by the ris ing motion of coalesced 

l arge gas bubbles. An axial dispersion model has been most commonly  used to 

describe the backmixing behaviour of the l iquid phase and to simulate substrate 

removal in a TPFBBR (Wisecarver & Fan, 1 989; Petersen & Davison, 1 995). A mass 

balance for substrate in the l iquid phase, C; , yields the fol lowing equations.  

d (Z , t) 
== E _d_,:-

a t L 
a Z 2  

---'-- (C; - C;\ ) 
c{ 

The corresponding boundary and in it ial conditions for C; are 

U el (O ) E 
a CO, t) == u ei" 

L s , t - Cl L d Z L s 

a C; (H , t) 
= ° 

a z  

at z - o 

at Z H 

C; (Z,O) = C;o at t = ° 

(4.33) 

(4.34) 

where C; i s  the phenol concentration in l iquid  phase, Z i s  the axial d istance from the 

bottom of bed, EL i s  the axial dispers ion coefficient, UL i s  the superficial l iquid 

velocity, c{ i s  the l iquid holdup, Cs is the sol i d  holdup, ap i s  the biofi lm surface area 

per unit volume of sol ids, c;n is the i nl et phenol concentration, and kls is the l iquid-

sol id  mass transfer coefficient. 
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The Danckwerts conditions express the phenomenon that, at  the entrance, the rate by 

which the substrate is  fed in  the reactor i s  equal to the rate at which i t  crosses the 2=0 
plane through combined convection and diffusion. The zero gradient condition at the 

exit expresses the fact that no substrate conversion can take place outside of a 

TPFBBR.  While the biofi lm growth model and reaction-diffusion model are l inked 

through biofi lm thickness and biofi lm density, the reaction-diffusion model and 

reactor model are also coupled through C; . 

4.5.3 Hydrodynamic Parameters 

In order to simulate the performance of a TPFBBR, estimation of the phase holdups, 

gas-liquid and l iquid-sol id  mass transfer coefficients, the l iquid phase axial dispersion 

coefficient, the minimum fluidization velocity, and the expanded bed height under 

various conditions are essential. These hydrodynamic parameters are closely l inked to 

the characteri stics of biofi lm (such as the biofi lm densi ty and its thickness). As the 

biofi lm grows on the support particles, the characteristics of biofi lm are changed and 

influence the hydrodynamic conditions of the bed. Once the biofi lm thickness is 

predicted in the dynamic biofi lm growth model with the biofi lm detachment, the 

diameter of the biofi lm-covered particle is given by 

dbp d,p + 2 Lt (4.35)  

where dbp and d,
p 

are the diameter of the c lean and biofi lm-covered particle, 

respectively. Then the density of the biofi lm-covered particle can be estimated from 

the fol lowing equation 

(4 .36) 

where PhI' i s  the biofi lm-covered particle and PSI' i s  the density of the clean particle. 
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The wet density of biofi lm ( Pi"'. ) can al so be calculated from the fol lowing equation 

(Mulcahy, 1 978) 

P = P + ( Ph J hIV L 
1 000 . 0.8 

(4.37) 

where PL i s  the density of l iquid and Ph i s  the density of the biofi lm.  In Eq.  (4.37), 

0 .8 means the ratio of volat i le to total biofi lm sol id .  

4.5.3.1  Axial-Dispersion Coefficient 

The axi al-dispersion model used for estimation of substrate gradient as function of bed 

height can be appl ied for Reactor Model in a TPFBBR. In the axial-dispersion model ,  

the axial-dispersion coefficient ( EzJ describing the backmixing behaviour of the 

l iquid phase is very important and many correlations for EL have been suggested 

(Kato et al . ,  1 972; Kim et al . ,  1 975;  Kim et al . ,  1 992) . To predict EL ' the correlation 

given by Kim et al . ( 1 992) is used in thi s  work since their correlations cover a wide 

range of l iterature data and can be applied for a TPFBBR with smal l ,  low density 

particles. General ly, EL increases wi th increasing gas and l iquid velocities in three­

phase fluidized beds of smal l particles whereas the effect of l iquid surface tension and 

l iquid v iscosity on EL are found to be smal l .  EL decreases with increas ing particle 

size and i t  sharply increases with increas ing column size (Kim et al . ,  1 992) 

(4.38) 

where PeL i s  the Peclet number. 

4.5.3.2 Liquid-Solid Mass Transfer Coefficient 
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The l iquid-soli d  mass transfer resistance between the l iquid phase and the surfaces of 

biofi lms has been regarded as negligible in  most of the mathematical model l ing for a 

FBBR (Ying & Weber, 1 979; Mulcahy et al . ,  1 98 1 ;  Park et al . ,  1 984) . However, 

neglecting  th is  resistance may significantly affect the accuracy of the evaluation of the 

rate of overall substrate removal rate when the substrate loading is low. Tang & Fan 

( 1 989) found that l arger than 1 5% error in phenol biodegradation rate was obtained if 

the l iquid-sol id  mass transfer coefficient ( k,s ) was neglected. Most reported studies for 

the estimation of k,s i n  a three-phase fluidized bed have used particles with densities 

ranging from 2000 to 2800 kg / m' while most TPFBBR use particles with densities 

ranging up to 1 300 kg / m3 • The results of Alters & Fan ( 1 986) showed that kts i n  a 

three-phase flu idized bed increased wi th increasing gas veloc i ty and was independent 

of l i quid velocity . It was also independent of particle size at low gas velocities, but 

positively dependent on particle s ize at h igh gas velocities. Recently, Nore et al . 

( 1 992) studied hydrodynamics, gas-soli d  and l iquid-solid  mass transfer with in  a 

TPFBBR with the low density ranging from 1 300 to 1 700 kg /1173 . In their studies, 

increasing the gas velocity increased k/s ' especial l y  at low gas velocities for Iow 

partic le densities and the l iquid velocity had almost no effect on the l i qu id-sol id  mass 

transfer coefficient .  Nore et al . correlation for estimation of k,\ with good prediction 

of the 250 values measured are 

(4 .39) 

Typical range for k,s with dIP value of 1 1 30 kg/m3 varied between 0.0003 and 

0.00 1 3  cm/s o  
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4.5.3.3 Phase Holdups 

When injecting gas into l iqu id-sol id  fluidized bed, rising bubbles within the gas phase 

changes the hydrodynamic behaviour and two important variables affected by the gas 

injection which are the gas holdup and the l iqu id backmixing.  The accurate estimation 

of phase holdups in a TPFFBR is very important because the solids holdup reflects the 

biopartic le concentration, and also the gas holdup and l iquid holdup i nfluence mass 

transfer. Thus ,  the performance of a TPFBBR is highly influenced by the phase 

holdups. The phase holdup behavior i n  a TPFBBR is dependent on the fol lowing 

factors : 

• Biofi lm properties, such as thickness, density , and surface rou ghness .  

• Particle properties, such as size, density, and wettabi l ity. 

• Fluid properties, such as gas and l iquid velocities, surface tension, and 

viscosities. 

• Reactor properties, such as bed geometry 

The overall phase holdups i n  a three-phase fluidised-bed can be obtained through the 

fol lowing equations 

f..P = He (c/Pr + cr;PG + c\P1Je ) g 

c[ + c/: + Cs = 1 
(4.40a,b) 

where f.,.p i s  the pressure drop across the bed, He i s  the expanded bed height, Pc; I S  

the density of gas, and g i s  the gravitational acceleration. 

The method of phase holdup measurement is based on the assumption of a 

homogeneous fluidized bed. In other words, it is assumed that there i s  no axial or 

radial variation of phase holdup. In real i ty ,  there are significant variations of phase 

holdups in a TPFBBR, particular ly at h igh fluidizing velocities (Lee & de Lasa, 1 987 ;  

Tang & Fan, 1 989). In addition, when h igh fluidizing velocities are used the surface of  

the fluidized bed becomes ambi guous and fluctuant. In  this case a h i gher leve l  of  error 

may resul t  in the use of Eq. (4.40). 
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The hydrodynamic models so far presented to assess the holdup behaviour can 

general l y  be described by the wake model , which takes into account the role of the 

wake behind the bubble (Ostergaard, 1 968). In the wake model , the role of the wakes 

behind the gas bubbles in the l iquid flow is mathematical ly formulated to elucidate the 

sol id holdup (or bed expansion) and the liquid holdup behav iour. The wake concept 

considers the three-phase flu idized bed to be composed of: ( 1 )  the gas bubble region, 

(2) the wake region, and (3) the l iquid-solid  flu idization region. The various 

correlations for phase holdups based on the wake model have been developed 

(Ostergaard, 1 968 ; Bhatia & Epstein , 1 974a; Darton & Harrison, 1 976). The 

differences among these correlations lie in the assumptions made in the model for the 

solids concentration in the wake region, the correlations for the bed porosity in the 

l iquid-sol id flu idization region, and the correlations for the gas holdup or bubble 

velocity. There are some uncertainties, however, regarding the wake structures and the 

values of the parameters required in thi s  approach. On the other hand, purely empi rical 

correlations for the individual phase holdups has also been developed by many authors 

(Ostergaard & Michel sen, 1 969; Dakshinamurty et aI . ,  1 97 1 ;  Kim et aI . ,  1 972, 1 975 ;  

Soung, 1 978 ;  Begovich & Watson, 1 978a; Kato e t  aI . ,  1 98 1 ;  Lee & de Lasa, 1 987) . 

S ince the gas and l iquid veloci ties can be considered constant in  present work, average 

values for the phase holdups may also be used. 

In order to estimate the phase holdups in this study, the purely empirical correlations 

suggested by Begovich & Watson ( 1 978a) are chosen because of the large data base 

from a wide variety of particles which they used for their correlation. The gas and 

solids holdup are estimated from the fol lowing correlations, respectively. 

E = (0 048 + 0 0 1 0) U 0.72±0.028 , 0 1 68±0 061 D -O. 1 25±O.088 
R • _ . L (, 1'  c 

E .  = 1 - 0.37 1 U 0 27 1U 0 04 1  ( _ )-D. 3 1 6  , -0.268 0 055D -D OD 
.\ L G PhI' P L (, hp JL L c 

The l iquid holdup and bed porosi ty can also be calculated from 

(4.4 1 )  

(4.42) 
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E{ == I -lOg - Es 
E == I - E  s 

(4.43a,b) 

The solids holdup influences the biofi lm specific surface area ( a  p ) ' and it can be 

estimated as 

6 E, 
a == --< 

I' d hp 

4.6 RESULTS AND DISCUSSION 

4.6.1 Computer Program 

(4.44) 

The coupled biofi lm growth, reaction-diffusion, and reactor models represent two 

ordinary differential equations (ODEs) and a set of second-order partial differential 

equations (PDEs). These equations can not be solved analytical ly because the above 

models consist of PDEs with nonl inear reaction terms. Therefore, numerical 

techn iques must be employed. Typical numerical techniques are avai lable for solving 

these types of PDEs dependent on spatial variables and a t ime variable, including 

fin i te difference method (FDM) and the method of weighted residuals . Typical l y, 

FDM has been extensively appl ied to obtain numerical approximation for the biofi lm 

processes (Ying & Weber, 1 979; Wang & Tien, 1 984; Tang & Fan, 1 987). Among 

several methods of weighted residuals , the orthogonal collocation technique 

developed by Vil ladsen & Stewart ( 1 967) has also used to solve PDEs for biofi lm­

reactor models (Kim et al . ,  1 978 ;  Speitei et al . ,  1 987; Livingston & Chase, 1 989; 

Huchinson & Robinson, 1 990) . It i s  difficult to determine which of these techniques is 

best suited. This i s  because the numerical stabi l i ty and convergency properties not 

only depend on the nature of the equations, but also are strongly influenced by the 

parameter values. For example, in  a practical appl ication for a TPFBBR, if the 

solution to the problem has a steep gradient such as the substrate gradients within the 

biofi lm, FDM is more appropriate since functions with steep gradients are better 

approx imated by FDM than by the orthogonal collocation method. On the other hand, 
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i f  the solution does not have a steep gradient l ike substrate gradient in  the l iquid 

phase, the orthogonal collocation method i s  preferred for spatial approximation . It can 

also be computational ly  faster and more accurate than FDM .  

In this work, a moving-grid method developed b y  Furzeland e t  al . ( 1 990) i s  used to 

solve non l inear time-dependent PDEs having solutions with steep gradients in  space 

and time. Thi s  method is based on a Lagrangian description of the PDEs and a 

smoothed equidistribution principle to define the grid positions at each time level . It 

has been coupled with the method of l i nes to form a semi-discrete approx imation of 

the original PDEs by providing centered differencing in  the spatial variables. The 

original PDEs by using a spatial discretization method, are then transformed into a 

system of the differential algebraic equations (DAEs) . The result ing non l inear systems 

of DAEs are solved to obtain a numerical solution to the original PDEs by DASSL 

solver (Petzold, 1 983) ,  which is an excellent algorithm for al l stiff problems. In this 

study, the numerical solution i s  developed by Fortran language using M icrosoft 

FORTRAN Powerstation ™ 4.0. 

4.6.2 Computer Simulation Scheme of Integrated Model 

Once the biofi lm thickness and biofi lm density at a given time are known through Eq . 

(4 .29) and Eq. (4 .30), substrate distribution inside the biofi lm can be calculated and 

the substrate concentration in the l iquid phase can also be calculated within a s ingle 

time step. Starting with in itial values for Xi; and Lt , these results in substrate 

concentration profi les in the biofi lm and substrate concentration gradients in the liquid 

phase. The basic design methods of a TPFBBR have been proposed as shown in Fig. 

4.2 and al l simulations carried out by thi s  method. Al l parameters used in the 

s imulation were obtained from the l i terature and are summarized in  Table 4.2. 
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Table 4.2 .  Values of parameters used in simulation . 

Parameters Value Reference 

U max 7 .2 x 1 O-6 s- 1 The present work 

Yrfs 0.38 The present work 

K, 0.009 1 mg / cm3 The present work 

Ps!, 1 .4 mg/cm3 -

dsp Varying -

Worden & Donaldson 
D,! 0.275 x lO-5 cm2  I s 

( 1 987) 

H 74 cm -

Dc 4.4 cm -

VL 0.08 cm/s -

Vc 0.73 cm/s -

Cill 0.2 mg/Cln" -
s 
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Figure 4.2 .  Design and simulation method for a TPFBBR. 
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4.6.3 Model Simulation Results 

To i nvestigate the validity of an integrated model incorporating dynamic biofi lm 

growth model , simulation results were compared to the experimental data. Several sets 

of operating conditions were examined as shown in Table 3 . 1 having a variety of air 

velocity, l iquid velocity, in let phenol concentration, and particle size. 

Table 4.3 .  Operating conditions for model s imulations. 

Run 1 Run 2 Run 3 Run 4 

Particle S ize 
570 570 7 1 0  275 

( fl111 ) 
Air velocity 

0.48 0.842 1 .2 0.36 
( cm / sec ) 

Liquid Velocity 
0.066 0.078  0.03 0.062 

( cm /  sec ) 

First, the dynamic biofi lm growth model with detachment was evaluated by 

comparing simulations with the experimental data. Fig. 4.3-4.6 compared the 

simulation results of the dynamic biofi lm growth model and experimental data for 

biofi lm thickness and biofi lm density. In our dynamic biofi lm growth model , the 

average biofi lm thickness needs to be restricted to a maximum value while the 

average biofi lm density has to be l imited in a minimum value (Eq . (3 .29) and Eq. 

(3 .30» . Table 4.4 shows the boundary conditions used in dynamic biofilm growth 

model for each simulation. In Table 4.4, the values of biofi lm detachment coefficient 

are estimated by the parameter estimation technique using the Levenberg-Marquardt 

optimisation algorithm. 

Through Fig . 4.3-4.6, we describe the case of Fig. 4.3 since the time variation of 

biofi lm thickness and biofi lm density for each set of operating conditions has nearly 

the same pattern, but maximum biofi lm thickness and minimum biofilm density are 
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different. Fig . 4.3. depicts a typical time progression of the average biofi lm thickness 

and biofi lm density with the simulation result of dynamic biofi lm growth model . 

Table 4.4. Boundary conditions for each biofi lm growth model simulation. 

Run 1 Run 2 Run 3 Run 4 

Biofilm Init ial value 1 3  I I  1 7  7 . 8  
Thickness 

( Jim ) Finial Value 1 65 1 50 230 1 00.5 

Biofilm Initial Value 1 33 1 74 285 1 98 
Density 

( mg/cm3 ) Finial Value 25 20 32.9 3 1 .6 

Detachment Coefficient 0.07 1 9  0.063 0.068 0.065 

Data for Fig. 4.3 are taken from operating run 1 (see Table 4.3) at an air velocity of 

0.48 cm / sec , a l iquid velocity of 0.066 cm / sec , and a particle size of 570 pm . From 

Fig. 4.3,  the Jag phase (within 50 hours after startup) of the growth of biofi lm on the 

support particles after startup of the TPFBBR is observed. This lag time could be due 

to adsorption of dissolved organics and microbial cel ls onto the surface of the support 

particle, and the irreversible attachment of microorganisms to the support surface and 

growth of the biofi lm to a measurable thickness . In the ini tial stage, a smal l and 

uniform b iofi lm of detectable thickness could be observed on the edges of support 

particles and the biofi lm grows as dense, thin, uniformly di stributed biomass matrix 

which lacks the voids present in the thick biofi lm. After the lag phase, the biofi lm 

thickness increased rapidly and then levelled off at approx imately 1 50 Jim from 380  

hours of operation . During the in itial stage of biofi lm formation (startup - 70 hours) ,  

the increased biofi lm thickness observed causes an increase of biofi lm density upto 

certain value, al though th is phenomena was not observed during early stages of the 
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biofi lm. From 70 hours after startup, as the biofilm grows on the support particle, the 

biofi lm density decreased with the increasing biofi lm thickness and levelled off at 

approx imately 25 mgicm3, corresponding to 1 50 pm of the biofi lm thickness. 

It i s  evident from Fig. 4.3-4.6, the biofi lm density is greatly influenced by the biofilm 

thickness. The biofi lm density decreased rapidly during  the period of increasing 

biofi lm thickness ranging from approximately 30 pm to 1 1 0 pm and stabi l ised in  the 

range between 20 and 50 mgicm3. It is clear that the observed decrease in biofilm  

density with increasing  biofi lm thickness was significant and there exists the inverse 

relationship between biofi lm thickness and i ts density during the formation of biofi lm 

growth. Our experimental results are in  accordance wi th several other l iterature 

reports (Hoehn & Ray, 1 973 ;  Fan et al . ,  1 987 ;  Zang et al . ,  1 995 ;  Tanyolac & Beyenal , 

1 997). 

From Fig. 4.3-4.6, the biofi lm formation in a TPFBBR is slow since the 60 - 90% of 

biomass was detached continuously from the support particles. Table 4.4 shows 

biofi lm detachment coefficient values used in dynamic biofi lm growth model .  

Dynamic biofilm growth model i s  abl e  to predict the variation of biofi lm density with 

increasing biofilm thickness. Using Eq. (4.29) and Eq. (4.30) of dynamic biofi lm 

growth model ,  high biofi lm densi ty for thin biofi lms and Iow biofi lm density for 

thicker biofi lms was predicted. Fig . 4.3-4.6 show that dynamic biofi lm growth model 

g ives good predictions of biofi lm density for biofi Im thicknesses greater than 1 5-

20 pm and describes the inverse significance of relationship between biofilm 

thickness and biofi lm density during the biofi lm formation stages. 

Despite the rel ative mathematical simplicity of the proposed dynamic biofi lm growth 

model in a TPFBBR, the model predictions agree well with experimental data for 

biofi lm thickness and b iofilm density. The abi l ity of the dynamic biofi lm growth 

model to describe the time variation of biofi lm thickness and biofi lm density indicates 

the soundness of the dynamic b iofi lm growth model and its usefulness for micro­

scale-based model l ing of a biofi lm reactor. 
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Figure. 4.3 .  Time progression of the average biofilm thickness and biofilm density 

( V  L = 0.066 cm / sec , VG = 0.48 cm / sec , d,p = 570 Jim ). 
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( V  L = 0.078 cm / sec , VG = 0.842 cm / sec , d,p = 570 Jim ). 
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The biofi lm thickness and its density predicted by the dynamic biofi lm growth model 

are coupled with the reactor model and reaction-diffusion model as parameters of 

theirs (see Fig .  4 .2) . These biofi lm thickness and biofi lm density are also used for the 

estimation of some parameters such as the axial dispersion coefficient (Eq. (4 .38) , the 

l iqu id-sol id mass transfer coefficient (Eq . (4 .39» , and the phase holdups (Eq . (4.4 1 )­

Eq . (4.43 » .  

The phenol concentration profi les in  the l iquid phase as a function of bed height at 

different times under two different sets of operating conditions, are predicted from the 

reactor model . These are shown in Fig. 4.7 and Fig. 4 .8 .  It can be observed that the 

prediction of phenol concentration profi les as a function of bed height at the different 

times agrees wel l  with the experimental data. As shown in Fig .  4 .7-4 .8 ,  during  the 

biofi lm growth after startup, the phenol removal rate and phenol concentration profiles 

as a function of the bed height vary over wide ranges along with corresponding 

variations in  biofi lm thickness and biofi lm density. When the axial -di spersion model­

based reactor model i s  appl ied to predict the axial concentration profi le  in the l iquid 

phase, i t  predicts that the concentration at the entrance of the reactor i s  much lower 

than the i nlet concentration because of boundary condition given in  Eq. (4.34) which 

describe a large degree of backmixing in the l iquid phase. The actual axial phenol 

concentration profile  drops off sharply from the bottom of the reactor to 40 cm of the 

bed height .  S ince near the bottom of the reactor where there i s  strong mixing caused 

by the air and l iquid flow, this potion of the reactor acts as a completed-m ixed type 

reactor and much of the bioparticle is located in this  area. Thus, a significant phenol 

removal takes place on approximately 50 % area of the total bed height from the 

bottom of the , reactor. The axial phenol concentration profi les did not change 

significantly from 50 cm of the bed height to the top of the bed height and were 

essential l y  constant. Because near the top of the reactor where there i s  l i tt le mixing, 

this portion of the reactor can be considered as plug-flow type reactor. The phenol 

removal in this portion of the reactor i s  l imited.  

The integrated model proposed performs wel l i n  predicting the phenol concentration 

profi les with dynamic biofi lm growth model and an understanding the dynamic 
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behavior of TPFBBR process. It is demonstrated that the i ntegrated model wi th 

dynamic biofilm growth model provides a new comprehensive model for model l ing 

the dynamics of  a TPFBBR.  
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Figure 4.7 .  The substrate concentration profiles in  the l iquid phase as a function of bed 

height at the different times ( U  r = 0.078 cm / sec , U r; = 0.842 cm / sec , 

d,,, = 570 l1m ). 
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Figure 4 .8 .  The substrate concentration profiles in  the l iquid phase as a function of bed 

height at the different times. ( U  L = 0.03 cm / sec , U G = 1 .2 cm I sec , d,p = 
7 l 0 Jlm ). 
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In order to illustrate the dynamic behavior of TPFBBR predicted by the simulation, 3-

dimensional p lots of the phenol concentration profile as a function of bed height and 

time are presented in Fig . 4.9-4. 10. 
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Figure 4.9. 3-D plots of phenol concentration profile as function of  bed height and 

time ( UL = 0.078 cm / sec , Uc = 0.842 cm / sec , dsp = 570 j.lm ). 
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Figure 4. 1 0. 3-D plots of phenol concentration profile as function of  bed height and 

tirne ( UL = 0.03 cm / sec , UG = 1 .2 cm / sec , dsp = 7 1O j.1m ). 
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4.7 CONCLUSIONS 

The dynamic biofil m  growth mode l ,  which reflects the variation of biofi lm  thickness 

and its density in time, i s  derived from a biomass balance equation . The biofi lm 

detachment model i s  also proposed. In order to arrive at a solution of a dyn amic 

biofi lm growth model , the method of characteristic i s  used. In our biofi lm growth 

model with detachment, the biofi lm thickness and i t s  density can be predicted at  a 

given time . It can be seen that the results predicted using this  dynamic biofi lm growth 

model ,  which accounts for varying  biofi lm thickness and i ts density in time, are in  

good agreement with experimental data. 

The proposed biofi lm growth model with detachment was coupled to a reactor model 

and a reaction-diffusion model to form an integrated model of a TPFBBR. An 

integrated model is developed to describe the dynamic behaviour of a TPFBBR during 

biofi lm formation and an integrated design method for a TPFBBR is  projected based 

on the model presented. Simulation results of integrated model i ncorporating the 

dynamic b iofi lm growth model i ndicate that biofi lm  density and biofi lm thickness are 

the main design parameters in a TPFFBR. The proposed integrated model provides a 

valuable tool to predict performance in a TPFBBR and to develop the optimal control 

strategy. 



Chapter 5 
Sequential Neural Network Model 
for a TPFBBR 

5. 1 INTRODUCTION 

Even though the integrated model incorporating dynamic  biofi lm growth developed 

in Chapter 4 is biochemical ly significant and can be satisfactory for design purposes, 

there are weak points in applying this to real-world process modell ing and control .  

These weaknesses include: ( 1 )  dynami c  biofilm growth on the support particles 

includes a large number of complex and highly interacting biochemical, transport 

and hydrodynamic  phenomena, and the knowledge to give mechanistic description 

for biofi lm growth is sti l l  l imited and poorly known, (2) this model requires the 

specification of a large number of parameters, many of which are d ifficult to 

measure, (3) a large number of parameters included in this model need to respecify 

parameter values for different operational conditions, and (4) this model requires 

time-consuming computation procedures. 
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As an alternative to mechanistic models, there has been a major research interest in 

artificial neural network (ANN), a powerful tool for nonlinear modell ing and process 

control. ANN offers the dist inctive abi l ity to l earn complex relationships without 

requiring the mechanistic knowledge about processes. Therefore, it has a great 

potential in areas such as biological processes where complex and poorly known 

mechanisms have to be treated. ANN has been successfully used as a process 

variable estimator for unknown (or un measured) variables and a process prediction 

tool in bioreactor modell ing appl ications (Thibau lt et aI . ,  1 990; L inko & Zhu, 1 99 1 ;  

Breusegem, 1 99 1 ;  S imutis et aI . ,  1 993 ;  Morris et aI . ,  1 994). 

The purpose of this chapter i s  to describe the application of neural network process 

model l ing approach for modell ing the dynamic change of the biofilm thickness and 

biofilm density and for predicting the dynamic  performance of a TPFBBR. First, the 

basic concepts of neural networks are introduced for nonl inear process model l ing 

based on input-output data. Second, the most common multi layer Jee4forward neural 
network (MFNN) is  described with the standard back propagation l earning 

algorithms. Third, the different leanings such as cascaded-correlation (C-C) learning 

and extended Kalmanfiltering (EKF) learning for MFNN and generalized regression 

neural network (GRNN) are briefly discussed. Fourth, the sequential neural network 

model, which is composed of two parts, namely, the neural process estimator and the 

neural process predictor, is developed to describe the task of process estimation and 

prediction for a TPFBBR. Final ly, experimental data taken f1-om a laboratory-scale 

TPFBBR i s  used to demonstrate the power of the proposed sequential neural network 

model. This shows the feasibi l ity of using sequential neural network model as 

intel l igent estimators and dynamic  predictors. It is demonstrated that the sequential 

neural network model gives considerably good results in process estimation and 

prediction for a TPFBBR. 



Chapter 5 .  S quential Neural Network Model for a TPFBBR 

5.2 BASICS OF ARTIFICIAL NEURAL 
NETWORKS 

5.2 . 1  What is an Artificial Neural Network (ANN)? 

85 

An art?ficial neural network i s  a parallel, d istributed information processing structure 

consisting of processing elements (which can process a local memory and can carry 

out local ised i nformation processing operations) interconnected via unidirectional 

signal channel call ed connections. Each processing element had a single output 

connection that branches ("fan out") into as many col lateral connections as desired; 

each carries the same signal - the processing element output signal. The processing 

element output signal can be of any mathematical type desired. The information 

processing that goes on within each processing element can be defined arbitrarily 

with the restriction that it must be completely local; that i s  must depend only on the 

current values of the input signals arriving at the processing element via imprinting 

connections and on values stored i n  the processing element's local memory (Heicht­

Nielsen, 1 988) .  

The neural networks are used for two main tasks in  engineering appl ications :  1 )  

fimction approximation and 2) pattern class{fication. In function approximation, the 

neural network is trained to approximate a mapping of its i nputs and outputs. Many 

neural network models have b een proved as universal approximators, i. e. , the 

network can approximate any continuous funct ion arbitrary wel l .  The pattern 

classification appl ication can be regarded as a specific case of the function 

approximation. The mapping is done from the input space to a finite number of 

output classes. 

Currently, there have been a wide variety of neural networks that are being studied. 

Based on characteristi cs, such as the class of i nputs, the method of train ing, and 

weight updating procedures, these networks can be classified as shown in Table 5 . 1 .  

Kohonen ( 1 990) classifi ed neural network architectures into three categories 

depending on model of the nervous system (Fig. 5 . 1 ) . In Fig. 5 . 1 , feecf!orward 
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neMorks transforms sets of input signals into sets of output signals .  The desired 

input-output transformation is usual ly determined by external, supervised adjustment 

of the system parameters. In feedback networks (recurrent), the i nput information 

defines the i nit ial act ivity state of a feedback system. After state transitions, the 

asymptotic final state is i dentified as the outcome of the computation. In competitive, 

unsupervised or self-organizing category cel l s  (neurons), the neighbouring cel l s  

(neurons) i n  the network complete in  their activities and develop iteratively specific  

detectors for different input signal patterns. 

I nput 
ANN o� .. ... ... 

put Input ANN o� 
"' 1  ... 

-1 
.I [ 
L_� de;i�d �utpu 

� 

. - - - - -t desired 0 

Feedforward network Feeback network 
utput 

Unsupervised 

Figure 5 . 1 .  Neural network models (dotted l ine i l lustrates the training scheme). 

Of all the available neural networks, the multi layer feedforward neural network is 

widely used for the application of chemical and b ioprocess engineering. This thesis 

focuses on the appl ication of the type of the muIt i layer feedforward neural network 

(MFNN) to a TPFBBR. Table 5 . 1 summarises the categorisation of some neural 

networks used widely in many engineering appl ications. 
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Table 5 . 1 Categorisation of some neural networks. 

NKURAL NETWORK LEARNING STRUCTURE USAGE 

class ification 

Multilayer perceptron supervised feed forward function 

approximation 

classification 
Radial basis function supervised or 

feed forward function 
network unsupervised 

approximation 

Self-organizing map unsupervised feed fo rward classification 

Learning Vector 
supervised feedforward classification 

Quantization (L VQ) 

5.2.2 An Artificial Neural Network as a Process Modelling 
Tool 

87 

In order to properly optimize and control a process, it is necessary to develop a good 

mathematical model. S ince most of the advanced control approaches are based on a 

mathematical model of the processes under consideration and the optimal operating 

strategies can be by simulat ing using the process model under different conditions. 

For process model l ing, the best possible model is a mechanistic model which 

consists of a set of differential equations which define the relationship between input 

variables and output variables. A mechanistic model, however, i s  either too difficult 

to formulate or too difficult to solve the resulting set of equations in many cases. To 

be more specific, models i n  mathematical model l ing of biofi lm growth are 

formulated i nvolving either Monod's kinetics or one of its modified expressions such 

as Haldane expression reflecting product i nhibition or substrate i nhib ition or both . If, 
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however, kinetic expressions for on-line i nterpretation and simulation of  biological 

processes are desired, these mechanistic models require too detail information about 

the process to be appl icable. Moreover, it is l ikely that model parameters should be 

specifi ed and updated to obtain an agreement between actual and predicted value. 

Other drawbacks are that the development of good kinetic or process model usually 

requires very time-and money-consuming tasks because the necessary knowledge to 

give a mechanistic  description for a specifi c  (bio)chemical process is  usually l imited 

and are stil l  poorly understood (Saxen & Saxen, 1 996). 

As an alternative to a mechanistic model, there has been major research interest in  

artificial neural networks (ANNs), a powerful tool for nonlinear modell ing and 

process control. The main advantages of using ANN s in process model l ing are: ( 1 )  it 

has the abi l ity to learn complex nonlinear relationship with l imited prior knowledge 

of the process structure and (2) it can perform inferences for an unknown 

combination of input variables (Hong et aI . ,  1 998). So ANNs are prime candidates 

for use in dynamic  process modelling for the representation of nonl inear processes. 

Due to the advantages of a neural network, a number of researchers have 

successful ly appl ied a neural network based model l ing approach to wastewater 

treatment processes. Capodaglio et aI . ( 1 99 1 )  ident ified an ANN model for the 

simulation and forecasting of the sludge bulking based on sludge volume index (SVI) 

in ful l-scale activated sludge process. Coli ins & Elli s ( 1 992) appl ied a neural 

network model to the prediction of a required chemical dosage in a wastewater 

treatment plant. Tyagi & Du ( 1 992) used a neural network to predict the effect of 

heavy metals in the performance of the activated sludge process. Zhao et al. ( 1 997) 

demonstrated a hybrid model, which consists of a simpl ified process model and an 

ANN, for developing a dynamic model of a sequencing batch reactor. In their hybrid 

model, the outputs of the trained ANN compensated for the output errors of the 

simpl ified process model .  Karim and Rivera ( 1 992) reviewed the appl ication of ANN 

in b ioprocess state estimation. 

The mult i layer feedforward neural network (MFNN) seems to be a very attractive 

choice when neural networks are used for process model l ing and control purposes. 
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This is because it has been theoretically proven that the MFNN can approximate any 

continuous function arbitrarily well provided that enough neurons are used 

(Cybenko, 1 989). However, in order to obtain a val id model of the process, neural 

networks, in general, require a large number of training and test data, even for a 

moderate number of model parameters (the weight and biases). A more detail ed 

discussion of thi s i ssue can be found in Baum & Haussler ( 1 989). Another 

disadvantage is that neural networks are non-parametric models .  In a non-parametric 

model, the model parameters (the weights and biases in the MFNN) usually have no 

interpretation in  relation to the process to be modelled. 

5.2.3 M ulti layer Feedforward Neural Networks (MFNN) 

The muIt i layer (3-layer) feedforward neural network consists of one input layer, one 

or more hidden layers, and one output layer. The general structure of multi layer (3 -

layer) feedforward neural network i s  given in Fig. 5 .2 .  The first layer, the input layer, 

is strictly a preprocessing layer that simply distributes the i nput to the next layer. It 

does not perform, as subsequent layers do, a nonlinear transformation of its input 

data. An output layer delivers the output from the neural network. In between these 

two layers, there could be several layers cal led "hidden layers" . Input and out data 

vectors are scaled from 0 to 1 and scaled data are fed into the neural network at the 

input layer. Each of these layers consists of neurons (or processing elements), which 

are represented by the circle in Fig. 5 . 2 .  All the neurons in one layer are connected to 

all neurons in the fol lowing layer by a set of unidirectional weights (represented by 

the l ines in  Fig. 5 .2). In addition to the regular neurons, there are bias neurons which 

provide a constant input of unity . B ias neurons are connected to all the neurons in the 

h idden and output layers through a set of bias weight. S ince there is only one forward 

path for the flow of information, these networks are called feu/forward neural 
network. 
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Figure 5 . 2 .  Architecture of the mult i layer feedforward neural network (MFNN) .  

Typical neuron performs two functions: a weighted l inear combination of its input 

component (activity) and a nonlinear transformation of this activity value. A single 

neuron extracted from the lh layer is also depicted in  Fig. 5 .2 .  The input to this 

neuron consists of the N-dimensional vector X and a unit b ias .  Each input is 

multip l ied by a weight which denotes connections b etween neuron i in the previous 

layer and neuron j in the layer l. The products are summed up to give the activation 

potential (or activation state) s� : 

(5 . 1 ) 

The output of the /h neuron in  layer I, Out� is then calculated as the nonlinear 

activation functions such as sigmoid function. 

Out� = f(s� ) = 
1 

1 + e 
(5 .2) 
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There are several types on non-l inear activation functions. D ifferentiable, non-l i near 

activation functions can be used in  networks trained with backpropagation. The most 

common are the logistic function and the hyperbolic tangent function (Fig. 5 . 3 ) .  

f-typertxlIic Tang:nt Adivation 

x 

Figure 5 . 3 .  Common activation functions used in  neural network. 

General ly, the number of neurons in the input and output layers is determined by the 

number of i nput and output variables involved in the problem. The number of 

neurons in the hidden layer(s) is related to the converging performance of the output 

error function during the process. The optimal number of neurons was determined by 

trial and error. Too few hidden neurons l imits the abi l ity of the neural network to 

model the process, and too many hidden elements may al low too much freedom of 

the weights to adjust and results in the noise present as the data base used as the 

training. The determination of the architecture of neural networks is a time­

consuming task when applying ANN to a new problem. In order to overcome these 

problems, genetic algorithms (GAs) have been used to develop the architecture of an 

ANN (Goldberg, 1 989; Mil ler et aI . ,  1 989; Whitely et aI . ,  1 990; Maniezzo, 1 994) . 
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5.2.4 Backpropagation (BP) Training Algorithm 

The knowledge required to map input into an appropriate output i s  embodied by the 

weights. Initial ly, the weights appropriate to a given problem domain are unknown. 

Unti l  a set of appl icable weights is found the network has no abi l ity to deal with the 

problem to be solved. The process of finding a usefu l  set of weights is  called 

training. Training begins with a training set consist ing of specimen input with 

associated outputs that represents a correct prediction. The existence of a speci fic  

desired output for each of  the training set vectors a t  least to  within some defined 

error l imit .  Training the network involves moving from the training set has to teach 

it. If the training set is good and the training algorithm i s  effective, the network 

should then be able to correctly predict inputs not belonging to the training set . This 

phenomenon i s  termed generalisation. Thus we see that the application of neural 

network to a specific problem involves two dist inct phases. During the training 

phase, the network weights are adapted to ref1ect the problem domain as shown i n  

Fig. 5 .4(a) at the left. In the second phase (prediction phase), the weights have been 

frozen and the network when presented with the test data calculates a predicted 

value. This i s  i l lustrated in Fig. 5 .4(b). 

The neural network is provided with a training set of i nput vectors each with a 

desired output vector, {(xl ' dJ ), (x2 , d2 ), . . . .  , (xn , dJ} . For given X, the difference 

between the desired output and the actual output of the network is the error 

e = den) yen) (5 . 3 )  

The total squared error over the training set is  thus given by 

J (5 .4) 
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Figure 5 .4(a). The train ing phase ofMFNN. 
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Figure 5 .4(b). The prediction phase ofMFNN. 

Output 
Neuron 

Fixed Weights 
(obtained during 
training phase) 

Predicted 
Output 

93 



Chapter 5 .  Squential Neural Network Model for a TPFBBR 94 

A back propagation algorithm, which i s  a typical supervised learning algorithm, is  

one of the simpler members of a fami ly of training algorithms, col lectively termed 

gradient decent. This algorithms was first described by Werbos ( 1 974), and 

introduced by Rumelhart et aI . ( 1 986) as a usefu l  and versat i le training algorithm for 

multilayer feedforward neural network. The objective of training is to determine the 

set of weights W which minimi ses the cost J subject to constraint of the network 

topology. 

After each presentation of a sample from the training set, the weights are adapted 

according to 

1\ �W = -fi V  (5 . 5) 

h 
oeT e ,  

h 
' 

d' d
' 

h 
' 

w ere -- IS t e mstantaneous error gra lent correspon mg to t e current mput oW 
pattern, and fi controls learning rate which governs the distance traveled in  the 

d irection of the negative gradient when the step in weight space taken. Eq. (5 . 5) 

states that the change in  each weight w� wil l  along the negative gradient leading to a 

steep descent along the local error surface. 

The task now is to convert Eq. ( 5 . 5 )  into a difference equation suitable for use in a 

, , oeT e , 
computer implementation. To accompl i sh this, the partial denvatlve -- IS oW  
evaluated corresponding to each weight i n  the network. The chain rul e  i s  appl ied to 

calculate the gradient with respect to a weight w� : 

(5 .6) 

where the error signal S; i s  defined as: 
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(5 . 7) 

Recal l s� , which i s  defined in Eq. (5 . 1 ), is the summing junction which the weight 

i nterest feeds, and Oztt:-I ,  which i s  defined in Eq.  ( 5 . 2), represents the change in 

neural activation state s� due to change in w� . This leads to the weight update 

equation : 

(5 . 8 )  

The backpropagation algorithm provides two rules for calculat ing the error signal 8; 
of a neuron, depending on whether the neurons i s  in the output layer or i n  a hidden 

layer. 

( 5 .9) 

To evaluate oeT e/oOutf in  Eq. (5 . 9), the two cases must be considered individual ly :  

1 .  The destination is an output neuron. 

2 .  The destination i s  a hidden neuron. 

For a destination neuron in the output layer we have direct access to the error eTe as 

a function of Out j" . Therefore we write: 
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(5 . 1 0) 

Substituting i nto Eq. (5 .9) yields 

(5 . 1 1 ) 

Calculat ing 8; for destination neurons in  hidden layers i s  made a b it more 

complicated by the fact that there is no expl icit desired response for each neuron. So 

we cannot differentiate the error function directly. We note, however, that eT e i s  

influenced through s� i ndirectly through all node values S�+l i n  the next layer. We 

must once again apply the chain rule  to obtain :  

8' � acT e 
} (;),.1 

�., ) 
(5 . 1 2) 

The summation i s  taken over all branches that neuron i in  layer I feeds. Note that 

(5 . 1 3) 

Next make the critical observation that acT cl. I.+l ' Making these substitutions l eads I as} 
to the relation 
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(5 . 1 4) 

This i s  a recursIve formula in  which previously calculated 5 terms are 

backpropagated through connecting synapses. The equations for backpropagation are 

summarised as fol lows: 

1 =  L 
] :;:; I :;:; L - i  

For the bias weight w� , note that a: -l I in Eq . (5 . 1 5) 

(5 . 1 5) 

(5 . 1 6) 

The overall process of backpropagation learning including both the forward and 

backward pass is presented in Fig. 5 . 5 .  To apply the backpropagation algorithm the 

network weights must first be i nitialised to small random values. It is important to 

make the initial weights "smal l " .  Choosing in it ial weights too large wil l  make the 

network untrainable. After i nitial isation, training set vectors are then appl ied to the 

network. Running the network forward will yield a set of actual values. The 

backpropagation can then be util ised to establ ish a new set of weights. The total error 

should decrease over the course of much such iteration. If it does not, an adjustment 

to the train ing parameter Jl may be required . One full presentation of all the vectors 

in the training set is termed an epoch. When the weights approach values such that 

the total network error, over a ful l  epoch, fal l s  below a pre-establ ished threshold, the 

network is said to have converged. 

The backpropagalion (BP) algorithm i s  a general method for iteratively solving a 

multil ayer perceptrons' weights and biases. It uses a steepest descent technique which 

is very stable when a smal l l earning rate is used, but has slow convergence 

properties. Several methods for speeding up BP have been used i nclud ing 
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momentum (Rumelhart et aI . ,  1 986) and variable  step-size control methods (Franzini, 

1 987; Fahlman, 1 988). Clearly, many practical and theoretical i ssues must be 

addressed to ful ly understand the training process and neural networks. A detailed 

coverage of all topics is beyond the scope of this chapter. Excellent reviews on 

topology of neural networks and leaming algorithms are presented by Haykin ( 1 994). 
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5.2.5 Cascade-Correlation (C-C) Algorithms 

Two problems are associated with the standard BP algorithm ,  Firstly, appropriate 

l earning parameters need to be chosen, Their tuning i s  not trivial . Secondly, the 

convergence speed of the training process i s  slow, which i s  the weakest point of BP 

algorithm. In order to overcome these problems, the cascade-correlation algorithm 

(C-C) has been i ntroduced by Fahlman & Lebiere ( 1 99 1 )  in order to find suited 

MFNN structures and to decrease the training effort for complex learning tasks by 

splitting them into a number of independent subtasks, 

C-C algorithm is characterised as a constructive learning rule, C-C algorithm begins 

with minimal network, consisting only of an input and an output layer, then 

automatical ly trains  and adds new hidden units one by one, creating a multi l ayer 

structure, Once a new hidden unit has been added to the network, its input-side 

weights are frozen, This unit then becomes a permanent feature-detector in the 

network, available for producing outputs or for creating other, more complex feature 

detectors (Fahlman & Lebiere, 1 99 1 ). 

The C-C algorithm i s  demonstrated in  the fol lowing way : 

1 ,  C-C algorithm starts with a minimal network consisting only of input and an 

output layer. Both layers are ful ly connected, 

2, Train all the connections ending at an output unit with a usual l earning 

algorithm unti l  the error of the network no longer decreases, 

3 ,  Generate the so-cal led candidate units, Every candidate unit is connected 

with all input units and with all existing hidden units, 

4 ,  Try to maximise the con"elation between the activation of the candidate 

units and residual error of the network by training all the l inks leading to a 

candidate unit The training i s  stopped when the correlation scores no longer 

l mprove. 

S ,  Choose the candidate unit with the maXIl11Um correlation, freeze its 

incoming weights and add it to the network. Loop back to step 2 .  



Chapter 5 .  Squential Neural Network Model for a TPFBBR 1 00 

6. This algorithm i s  repeated unti l the overall error of the neural network fal l s  

below a given value. 

The form of the cascaded-correlation network is shown in Fig. 5 .6 . The C-C 

algorithm has several advantage over existing algorithms:  it learns very quickly, the 

network determines its own size and topology, it retains the structures it has bui lt 

even if the training set changes, and it requires no backpropagation of error signals 

through the connections of the network (Fahlman & Lebiere, 1 99 1 ) . 

Outputs Y I Y2 
\ I ! 

H2 
Hidden ( units 

HI 
( \. 

Inputs 1 X2 

� � : x ( I 

xo e I 
l 

Figure 5 .6 .  The architecture of the neural network trained with C-C after 

2 hidden units have been added. White squares represent 

weights which are trained and then frozen, while the black 

squares show weights which are retrained after the addition 

of each hidden unit. Hidden unit HI is added first, and then 

hidden unit H2, and so on (Fahlman & Lebiere, 1 99 1 ) . 
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5.2.6 Extended Kalman Filtering (EKF) Learning 
Algorithm 

lO l 

In  order to overcome weak points of backpropagation l earn ing algorithms, the 

extended Kalman filtering (EKF) algorithm has also been introduced as a l earning 

method for train ing the weights in a MFNN (S inghal & Wu, 1 989; Palmieri et al . ,  

1 99 1 ;  Lange & Hirzinger, 1 995) or a recurrent MFNN (Puskorius & Feldkamp, 

1 994) . 

Basically, a Kalman fi lter i s  a set of mathematical equations that provide an efficient 

recursive solution of the least-squares method. This i s  very powerful in several 

aspects: it supports estimation of past, present, and even future states, and it can do 

so even when the nature of the modelled system i s  unknown. The extended Kalman 

fi ltering (EKF) algorithm appl i es the standard (l inear) Kalman fi lter to nonli near 

systems with additive white noise by continual ly updating a l inearisation around the 

previous state estimate. The EKF learning algorithm to train ing a MFNN considers 

the weights of the MFNN to be states, and the desired outputs of the neural network 

to be the observations within a discrete state space transition framework. To use an 

EKF learning algorithm, a state space representation of the neural network is 

formulated and the resulting state space model i s  augmented by the weight vector 

W .  Therefore, 

W (k + I) = fjJ(W(k) ,k) + w(C;, k) : System model 

Y (k) = V/(W(k),k) + v(C;, k) : Measurement model 

(5 . 1 7) 

(5 . 1 8) 

where W i s  a vector consisting of all the weights and biases in  the neural network, Y 

the output of the neural network, and the iteration k corresponds to the presentation 

of the kth pattern. w(C;, k) and v(C;, k)  represent the process and measurement noise , 

respectively. In Eq.  ( 5 . 1 7), the nonlinear function, fjJ( -) , relates the state at step k to 

the state at step k+ l .  The nonlinear function, Wee) , i n  Eq. (5 . 1 8) relates the state, 

W(k), to the measurement, Y(k) . 
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The equation for the EKF learning algorithm fal l  into two steps :  ( 1 ) t ime update 

equations which are responsible for projecting forward the current weight (state) and 

elTor covariance est imates to obtain a priori est imates for the next t ime step, and (2) 

measurement update equations which are responsible for the feedback - i .e .  for 

incorporat ing a new measurement into a priori estimate to obtain a posteriori 
estimate. 

Using the preceding models for the system and the measurement, methods for 

updating the estimate of the weights (system state) can be derived as fol lowings: 

where 

A 

G(k) = P- (k)H T (k)[H (k)P- (k)HT (k) + () 2  (k)] 

W + (k) = W- (k) + G(k ) [Y(k) - v(W- (k), k)] 

P+  (k) = P- (k) - G(k)H(k)P· (k) 

H (k) ::: '1/ oi- (k), k ) ::: av(�- (k), k )  

aw (k) 

(5 . 1 9) 

( 5 . 20) 

( 5 . 2 1 )  

(5 .23)  

where W (k) i s  the Kaman filter estimate of the weight vector W at step k, P(k) i s  an 

error covariance matrix which i s  used to model the correlation or i nteraction between 

each pair of weights i n  the neural network, G(k) is cal l ed the Kalman gain matrix 

which is computed at each step and is used to update the weight vector W and error 

covariance matrix P, and H(k) i s  the gradient matrix resulting from l inearising the 

neural network. 

In Eq . ( 5 . 1 9)-(5 .23), the symbol, +, represents the step just prior to performing the 

updates, and the symbol, -, represents the time just after the updates. 

In Eq . (5 . 1 9), ()2 i s  the variance of the measurement noise and IS gIven as 

fol lowings :  
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The propagation equations of the system state from k to k+ 1 are given by 

W- (k + l) = week) 
P- (k + 1) = P+ (k) + Q(k) 

103 

(5 .24) 

(5 .25)  

(5 .26) 

Q(k) is the covariance matrix of the stochastic  changes of the parameters and is 

described by 

Q(k)  = E { w . wT } = 1 q( k ) (5 .27) 

where 1 i s  identity matrix and q i s  slowly changing in  relation to the propagation 

time. 

In order to implement the EKF learning algorithm, the initial conditions at step k=O 

must be specified, namely, W (0) and P(O) . The initialisation of weight vector is  set 

randomly, except for the output layer where the parameters are set to zero, and the 

matrix P(O) is init ial ised as a diagonal matrix with the large diagonal components 

such as 500.  The learning parameters q and (52 of the EKF have to be adapted in  

each epoch, and are estimated by the method which i s  proposed by Lange & 
Hirzinger ( 1 995) .  (52 is estimated by the mean error as fol lowings: 

(5 .28) 

The change of the optimal values W(k) due to changing l inearisation of Eq. (5 .23)  i s  

calculated by 
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0 . 0 1  f \  , \  T /\ f\ 
q = T(W -Wo1d ) (W - Woid ) (5 . 29) 

This change is assumed to occur from one epoch to another and thus weights the 

differences of the estimated value between epochs .  So Eq. (5 .23)  is executed only at 

the end of every epoch, otherwise replaced by q=O .  

5.2.7 Generalized Regression Neural Network (GRNN) 

The Generalized Regression Neural Network (Specht, 1 99 1 )  is a feedforward neural 

network best suited to function approximation tasks such as system model l ing and 

prediction. The GRNN is composed of four layers . The first layer is the input layer 

and i s  fully connected to the pattern layer. The second layer is the pattern layer and 

has one neuron for each input pattern. This layer performs the same function as the 

first layer radial basis function (RBF) neurons: its output i s  a measure of the distance 

the input i s  from the stored patterns. The third layer i s  the summation l ayer and i s  

composed of  two types of  neurons: S-summation neurons and a single D-summation 

neuron (division). The S-summation neuron computes the sum of the weighted 

outputs of the pattern layer whi le  the D-summation neuron computes the sum of the 

unweighted outputs of the pattern neurons. There is one S-summation neuron for 

each output neuron and a single D-summation neuron. The last layer i s  the output 

l ayer and divides the output of each S-summation neuron by the output of the D­

summation neuron. A general d iagram of a GRNN is shown in Fig. 5 . 7 . 

The GRNN i s  based on nonl inear regression theory, a well-estab l i shed statistical 

technique for function estimation. By definition, the regression of a dependant 

variab le  Y on an independent variabl e  X estimates the most probabl e  value for X, 

each with a corresponding value for Y (X and Y are, in general, vectors). Note that Y 

may be corrupted by additive noi se .  Despite this the regression method wil l  produce 

the estimated value of Y which minimises the mean-squared error. 
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Figure 5 . 7 . Generalized Regression Neural Network 

GRNN is based upon the fol lowing formula: 

Y ' f (X, Y)dY 
E[Y I X] == -=---=-----f"f (X, Y )dY 

105 

(5 .30) 

where Y i s  the output of the estimator, X i s  the estimator input vector, E[Y I X]  i s  the 

expected value of output, given the input vector X, and f(X, Y )  is the joint 

probab i l ity density function (PDF) of X and Y 

In essence, GRNN is a method for estimating f(X, Y ) , given only a training set. 

Because the PDF is derived from the data with no preconceptions about its form, the 

system i s  perfectly general. There is no problem if the functions are composed of 

multiple disjoint non-Gaussian regions in any number of dimensions, as well as those 
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f\ 
of simpler d istributions. The probabi l ity estimator f (X, Y) I S  based upon the 

following equation: 

I(X Y) = 1 , �".n  ex [_ (X - l/f CX - z/ )] ex [_ CY - Y i ) ] (5 . 3 1 )  . , 
(27r)(P+I)12cr(P< 1 ) n f:: p 

20-2 P 20-2 

where 11 ' i s  the i nput training vector, Y' i s  the desired output corresponding to u ' , P 
i s  the dimension of the input vector X, and 0- i s  a constant controlling the size of the 

f\ 
receptive region. Substituting the joint probabi l ity estimator f(X, Y) i n  Eq. (5 . 3 1 )  

i nto the conditional mean Eq. (5 . 3 0), and interchanging the order of integration and 

summation y ields the desired conditional mean, designated VCX) . The output of a 

GRNN i s  the conditional mean given by: 

(5 .32) 

where D; = (X - It, f (X - 11, ) which represents the squared distance between the 

input vector X and the training vector 11. When the smoothing parameter 0- is made 

large, the estimated density i s  forced to be smooth and in the l imit becomes a 

multivariate Gaussian with covariance ()2 J . On the other hand, a small er value of () 

allows the estimated density to assume non-Gaussian shapes. 

Note that Eq. (5 . 3 2) is  identical to the radial basis function (RBF) with 

normali sation, except that the desired values are used for the weight the output 

network. Also, the resulting neural network topology i s  identical to the normalised 

RBF neural network. The major difference l ies in the way that in GRNN, instead of 

training the weights, one simply assigns to the weight the desired value  d irectly fi'om 

the training set associated with input training vector u ' and its corresponding output 
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vector y i  . Note that the calcu lation of the Gaussian i s  performed in  the pattern layer, 

the multip l i cation of the weight vector and summations are performed i n  the 

summation layer, and the division is performed in the output layer. 

The GRNN learning phase is s imi lar to that of a probabi l i st ic neural network (PNN). 

It does not learn iteratively as do most ANNs. Instead, it learns by storing each input 

pattern in the pattern l ayer and calculating the weights in the summation l ayer. The 

equations for the weight calculations are given below. The pattern layer weights are 

set to the input patterns. 

(5 . 3 3 )  

The summation l ayer weights matrix I S  set usmg the train ing target outputs. 

Specifically, the matrix is the target output values appended with a vector of ones 

that connect the pattern layer to the D-summation neuron. 

W, = [yl ones] (5 .34) 

5.3 SEQUENTIAL NEURAL NETWORK MODEL 

To develop a neural network-based model describing the process dynamics in  a 

TPFBBR, the sequential neural network as shown in Fig. 5 . 8  i s  developed. The 

sequential neural network presented here is composed of two parts: ( I )  the neural 

process estimator and (2) the neural process predictor. In Fig. 5 . 8, the first neural 

network serves as the neural process estimator, receives as inputs the measured 

variables, and provides the estimation of the one-step-ahead biofi lm thickness and 

biofi lm density. Because of the important of biofi lm thickness and biofi lm density as 

a process variable in a TPFBBR it is important that an accurate process estimator be 

developed. This neural process estimator i s  a typical example  of a general technique 

in  process control cal led inferential estimation, where an estimate of primary 
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variables (biofi lm thickness and b iofi lm density), which i s  difficult or expensive to 

measure, can be  inferred from the cheap and more readi ly availab l e  secondary 

variables such as suspended b iomass concentration and dissolved oxygen 

concentration. 

To be more specific, on-line monitoring and estimation in  biological processes have 

attracted considerabl e  i nterest during the past decade (Bastin & Dochain,  1 990). 

However, on-l ine monitoring and estimation of a wide range of biomass 

concentration in a suspended growth system, or biofi lm thickness and biofilm density 

in a biofilm reactor are considered a difficult task due to lack of reliab le  techniques. 

Thus the control policies of most bioreactors including a b iofil m  reactor are based on 

the use of off- l ine analysi s for process supervi sion. In the case of a fluidised-bed 

biofilm reactor, this off-l ine method requires the removal of bioparticles as a sample  

from the reactor, and a number of  samples to obtain the desired measurement 

accuracy. Most significantly, the l imitation of the sampl ing frequency to reduce loss 

of solid  particles from the reactor or to minimise potential for contamination in case 

of pure culture systems causes the process engineer to react slowly to any 

undesirab le  condition and process disturbance. Therefore, through the off-l ine 

measurement, it  may be impossib le  to have enough i nformation to develop the 

monitoring strategies and high performance control system necessary for the reactor 

efficiency improvement. Recent years there has been development of the so-cal led 

sC!ftware sensor, which can be defined as an algorithms for the on-l ine estimation of 

the state variabl es and the parameters which are not measurabl e  or determinable  in 

real time based on the related measurable  data (Bastin & Dochain,  1 990) . The main 

role  of the neural process estimator, which acts as an i ntell igent software sensor, is  to 

estimate the future dynamic behavior of process variables such as the biofilm 

thickness and biofilm density. 

The outputs of the neural process estimator subsequently form of part of the inputs 

for the second neural network. To be more specific, the second neural network can 

be regarded as the neural process predictor capabl e  of predicting the output 

concentration using the estimated biofi lm thickness and b iofi lm density. The main 
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rol e  of the neural process predictor i s  to forecast the future dynamic behavior of a 

process. This i s  necessary for optimal process supervision and control . 

5.3 . 1  Cri te ria for Validation of Neural Network Model 

In order to evaluate prediction accuracy of the neural network model, it is  necessary 

to use various model val idation techniques. The neural network model can be 

1\ 
evaluated only by comparing it's output sequence [ yen), t = 1 , 2 ,  . . .  , N ]  to the actual 

data [y(n), t = 1 ,  2, . . .  , N ], for the same set of i nputs . 

" 

For a neural network model with a set of estimated parameters (f) , the most widely 

used criterion to evaluate the prediction accuracy of neural network model is the 

Root-Mean- Squared Error (RMSE.) defined as 

RMSE = 
�(y(n) - ;(0, 11)J2 

N 

The A1ean S'quared Error (A1SE) i s  also used, and detined as 

N ( t !\ )2 
MS'E = � yen) - y(O, n) 

N 

(5 . 3 5) 

(5 . 36) 
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Figure 5 . 8 .  Architecture of the sequential neural network model 

C X: (k + 1) = one-step-ahead biofilm density, La (k + 1) = one-step-ahead biofi lm thickness, n = t ime delay) . 
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An alternative criterion for model evaluation i s  the coefficient of determination R2 R2 

coefficient i s  a ratio of the variation explained by the neural network model to the 

variation of the data. It i s  a relative measure defined as fol lows 

N 1\ N 
L (y(n) - yen » 2 Ly(n) 

R2 :::: ..:.:.-.: _____ _ 

2 )y(n) - yen»�" 
where y :::: -,,-"�-,-l __ 

N 
(5 . 3 7) 

n�J 

The value of R2 varies between 0 and 1 ,  where a value of 1 indicates a perfect model . 

The correlation coelficient measures how well the network prediction trend with the 

targets in the training set. The range of the correlation coefficient is  from - 1  to 1 .  The 

closer the coefficient is to 1, the more accurate the predictions. The closer to 0 (or 

below), the less accurate and more random the predictions become. This plot often 

trends opposite the RMSE, the correlation increases as RMSE decreases. It can, 

however, be more informative because it uses an absolute scale to better quantifies 

the agreement ( 1  is  perfect l inear correlation, 0 is random). The extreme targets and 

predictions are the most heavily weighted in the calculation of the cOlTelation 

coefficient (for b inary output types all cases are at extremes). 

General ly, the error history plot on the training set can be monitored to determine the 

rate of network learning and it can be used to determine when learn ing has reached 

its maximum leve l .  Other interesting i nformation can be derived from the training 

and test set error hi story. It is common to find long "plateaus" i n  the error level 

where no significant learning takes place. This behavior is particularly common 

when multiple hidden l ayers are being employed. This indicates that the network i s  

tlying to  "figure out" certain input/output relationships. Plateaus are often followed 

by steep descents in the training error, yielding accelerated periods of learning. It is  

important that "plateau" conditions are not mistaken for a converged network. 
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The error history plot on the test set i s  used for overtraining analysis and helps 

determine how well the network generalises learned information. This error depicts 

how well the network predicts cases not used in the training process. Unfortunately, 

the difference between an error on the training set and an error on the test set can be 

due to various reasons (lkonen, 1 996) : 

1 )  the noise in  the training data has been captured by the model 

2)  the statistical properties of training an data sets are not simi lar, 

3 )  or the training data not contain enough information in order to 

determine all the parameters. 

With many real industrial processes including the TPFBBR data presented here, it i s  

not possible in  practice, to col lect two data sets of good quality (as i t  would become 

very expensive) . That makes the separation of facts I )  and 2) difficult . 

5.4 RESULTS AND DISCUSSIONS 

5.4.1  Data Sets 

In this chapter, sequential neural network model l ing was tested using two data sets 

collected by experiments in chapter 3 .  Table 5 . 2  shows the detail s  of two data sets 

used for the sequential neural network modelling. Historical data on biofilm 

thickness, biofi lm density, suspended biomass concentration, dissolved oxygen 

(D.O.)  concentration, and inlet phenol concentration were collected and spl it into two 

parts. A training set including 70% of the data was used to train a neural network. A 

test set including the remaining 30% was used to test the trained neural network in  

order to  how well the network generalises or  predicts on  unseen data not used during 

training. 

5.4.2 Data Transformation 
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First, the influence of the data transformation in  neural network modell ing was 

i nvestigated. Raw data generated from a real process or simulation model consists 

generally of many variables such as concentration, pressure, temperature, flow rate, 

etc. Each of these variables i s  measured i n  different units having different 

magnitudes. If raw data are fed into a neural network, then variables having a larger 

magnitude are given unequal importance due to the nature of the weight update 

procedure. 

Table  5 . 2 . Operating conditions. 

Data Set 1 Data Set 2 

No. data 4 1  No. data 45  

Max. in let Max. i nlet 

phenol 1 90 .4 (mgll) phenol 1 76 . 8  (mgll) 

concentration concentration 

Min .  in let Min .  inlet 

phenol ] 5 1 .  9 (mg/l) phenol 1 4 3 . 3  (mgll) 

concentration concentration 

0 .42-0 . 7  
Gas Velocity 0 . 73 (cmls) Gas Velocity 

(cm/�\') 

Partic le s ize 600 ;'011 Particle size 600 ;.on 

Temperature 2 1 °C Temperature 2 1 °C 

In order to give equal weightage to all the variables, representative i nput and output 

data used to teach the neural network are scaled into a range of 0 to 1 ( in case of the 

sigmoid  activation function, between 0 . 1 to 0 .9  due to the l imitation of the sigmoid  

activation function). The simplest method is to  scale a l l  the data between 0 and I by 
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using the maximum and minimum values of  the variables as  scal ing constants. For 

example, ifX(n) [n= l , 2, 3 ,  . . . . , N] is an input sequence, then scaled values, XlI) are 

XJn) = 
X(n) - Xmm , n = 1 , 2, 3 ,  . . . .  , N  
Xma,{ - Xmm 

(5 . 3 8) 

On the other hand, sometimes transforming data other than the data scaling method 

reduces the abi l ity of the system to learn. Some trail and error may be appropriate, or 

perhaps you might provide a number of alternative forms of the same variable  to the 

neural network. 

In this work, a continuous transformation was employed. The general form of a 

continuous transformation i s :  

(5 . 39) 

where x i s  a raw data, y is a transformed data, j is  a continuous function, s; , O; 

implement an inner scal ing of the raw data to map it to an optimal sub-domain ofj, 

and so ' 00 implement an outer scaling so that y l ies within a suitabl e  range for the 

neural network. Each transformation is identified by its continuous function /; which 

can be any one of the following: ( I )' IdentifY function', (2) 'Natural logarithm 

function' (log(x) , (3) 'Log of Log' (log(log(x) , (4) 'Exponential function' (exp(x) , 

(5)  'Exponential of Exponential ' (exp(exp(x) , (6) 'Square function' (x2 ), (7) 'Fourth 

Power function' (x\ (8) ' Square root function' ( � ), (9) 'Fourth root function' (�), 
( l 0) 'Inverse function' (I<'() , ( 1 1 )  ' l /(Square function)', ( 1 2) ' l /(Fourth Power 

function)', ( 1 3 ) ' I /(Square root function)" ( 1 4) ' 1 /(Fourth root function)', ( 1 5) 

Hyperbol ic tangent function' (tanh(x) , ( 1 6) Log (x!(J-x) . 

In order to find the influence of the data transformation for the performance of the 

neural network, the process estimator and process predictor were performed 

separately u sing data set 1 .  The results of transformation functions for each input 
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used i n  neural process est imator are shown in Table 5 . 3 .  Fig. 5 .9(a)-(b) shows the 

comparisons between estimation result in  the case with a data transformation used as 

inputs to the neural network and estimat ion results in the case with raw data as input. 

From Table 5 .4, comparing these RMSE function values, it can be seen that the 

estimation error is less than 30 % as much in  the case where the raw data set was 

used. As it can be seen from Fig. 5 .9(a)-(b), the coupling of the MFNN with data 

transformation yields an improvement of simulation results. This is true particularly 

in the case where there is noise in the data set. 

Table 5 . 3 .  Continuous data transformation function used in the 
neural process estimator. 

Variables Transformation function used 

L f (k) (output) Natural logarithm function 

X: (k) (output) l /(Square root function) 

Lr (k-l) ( input) Log (x/(l-x)) 

Lf (k-2) (input) Log (x/(J -x) 

X! (k-l) (input) l /(Square root function) 

X! (k-2) (input) Log of Log 

X:, (k-l) (input) l /(Square function) 

c;n (k-J) ( input) Square function 

When the simulation is carried out with the raw data and the data scaling method 

only, the topology of the MFNN is 6-7-2. But in case of the simulation with 

continuous data transformation, the MFNN with 1 2-9-2 is employed. Transformation 

functions for each i nput used in process predictor shown in Fig. 5 .  9( c), is also shown 

in Table 5 . 5 .  
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From Fig. 5 .9(a)-(c), comparing simulation results, it can be seen that the prediction 

accuracy where the data scaling method only was used is as much as same in the case 

where the continuous transformation was used. The continuous transformation 

method does not provide a significant advantage over the data scal ing method for the 

data set used here. Thus for the sake of simplicity of the neural network, the entire 

neural network modell ing presented here has incorporated only the scaling data 

method for data transformation since the continuous transformation causes the large 

topology of the neural network over the data scaling method. 

Table 5 .4 .  RMSE comparisons between data transformation 
and raw data for neural process estimator and 
predictor. 

Neural Neural 
Estimator Predictor 

RMSE 
RMSE RMSE 

(biofilm (biofi lm 
( effluent 

phenol 
thickness) density) 

concentration) 

MFNN with no 
5 .4 1 4 .66 4 . 88  

data transformation 

MFNN with data 
4 .09 3 . 1 0 3 . 04 1 

transformation 

MFNN with scale 
3 . 76 3 . 66 2 .934 

data only 
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Table 5 . 5 .  Continuous data transformation function used in the 
neural process predictor. 

Variables Transformation function used 

c�ut (k) (output) Square function 

c�ut (k-l) (input) Square function 

c�ut (k-2) (input) Hyperbolic tangent function 

C.�ut (k-3) (input) Square function 

L( (k-1) (input) Log (x/(J-x) . 
Lf (k-2) (input) Log (x/(J-x) . 
X,: (k-l) (input) l I(Square root function) 

X,: (k-2) (input) Natural logarithm function 

X! (k-1) (input) Hyperbolic tangent function 

X; (k-2) (input) Hyperbolic tangent function 

c;n (k-1) (input) l I(Square function) 

c;n (k-2) (input) l /(Square function) 

1 1 7 
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5.4.3 Neural Process Estimator 

1 1 9 

When the neural process estimator was applied to data sets 1 and 2, the past biofIlm 

thickness, biofilm density, suspended biofIlm density, inlet phenol concentration, and 

dissolved oxygen concentration are used as inputs to the process estimator. 

The data set 1 are written in { Lf (k), X! (k), Lf (k- l ) , Lf (k-2), X! (k- l ), X! (k-2), 

X : (k- l ), c;n (k- l ) } . Output Lf (k) and X! (k) are the one-step ahead biofilm 

thickness and biofilm density, respectively. The past Lf (k- l ) , Lf (k-2), X! (k- l ), 

and X! (k-2) are used as inputs to the network. X ! (k- l )  the suspended biomass 

concentration, c;n (k- l )  the inlet substrate concentration are also used as inputs. 
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Even though the superfici al l iquid velocity and gas velocity affect the variation of the 

biofi lm thickness and biofi lm density in a TPFBBR, they were not used as inputs 

since they were essentially  constant at any point of each operating condition in data 

set 1 .  Thus, the information they contain would not contribute towards estimating 

biofi lm thickness and biofilm density and prediction for eftluent phenol 

concentration. Unlike the data set 1 ,  the superficial gas velocity was changed from 

0 .42 cm/s to 0 . 7  cm/�\' at 3 3 6  hours after startup. For model l ing using data set 2, the 

gas velocity was considered to be the input. 

The output from the neural network process estimator for data set 1 i s  shown i n  Fig. 

5 . 1 0  (a)-(b). For MFNN with cascaded-correlation (C-C) learning with data set 1 ,  the 

neural network employed 6 inputs and 1 h idden layer with 7 logistic neurons. And 

there were 2 output neurons using the logistic transfer function . This process 

estimator closely fol lows the measured patterns, giving an RMSE of 3 .76 1 on the 

estimation of biofi lm thickness for data set 1 ,  as well ,  the est imation on the 

estimation ofbiofilm density is acceptable (RMSE= 3 .662). 

For MFNN with extended Kalman filtering (EKF) learning, the topology of neural 

network was the same as that of MFN N  with C-C learning. The RMSE results are 

3 .692 on the estimation of biofilm thickness and 2 . 899 on the estimation of biofi lm 

density, respectively. For GRNN as the process estimator, the RMSE's for the 

b iofi lm thickness and the biofilm density were 3 .60 1 and 2 .982, respectively .  GRNN 

used as neural process estimator employs 6 inputs, 2 hidden layers, and 1 output. The 

first hidden layer, the pattern layer has 3 0  neurons. The second hidden layer, the 

summation layer, has 3 neurons. 

The same procedure as that adopted for data set 1 was appl ied to data set 2 .  The 

neural networks were tested on the overall 45 data points. The results of an one-step 

ahead estimation are shown in Fig. 5 . 1 1 (a)-(b). The topology of MFNN with C-C 

learning and EKF learning was 7- 1 0-2, i . e. ,  7 input neurons and one hidden layer 

with 1 0  logistic neurons, and two output neurons using the hyperbolic tangent 

transfer function. For the topology of the GRNN, GRNN employs 7 inputs, 2 hidden 
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layers, and 1 output. The first hidden layer, the pattern layer has 3 3  neurons. The 

second hidden layer, the summation layer, has 3 neurons. 

Table 5 . 6  shows the comparisons of RMSE for each neural network used for neural 

process estimator. From Table 5 .6, RMSE with data set 1 was a l itt le lower than that 

with data set 2 .  From Table 5 . 6, the performance of MFNN with C-C learning, 

MFNN with EKF learning, and GRNN is simi lar but the GRNN estimate relatively 

more accurate than that by MFNN. The estimated biofi lm thickness and biofi lm 

density with three different types of neural networks have proved to be consistent 

with the experi mental data. 

Table 5 . 6 .  RMSE results of the neural process estimator for data set 1 and 2 .  

RMSE of Data Set 1 RMSE of Data Set 2 

Biofilm Biofilm Biofi lm Biofilm 
Thickness Density Thickness Density 

MFNN C-C 3 . 76 ] 3 .662 5 . 1 1 1  5 .23 1 

M FNN E K F  3 . 692 2 . 899 4 . 5 39  5 . 1 3 5  

GRNN 3 .60 1 2 .982 4 .400 4 .755  
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5.4.4 Neural Process Predictor 

The biofilm thickness and biofi lm density, which are outputs of the neural process 

estimator, are subsequently fed into the neural process predictor to form of part of the 

inputs. Past effluent phenol concentration, suspended biomass concentration, and 

in let phenol concentration are also served as inputs for the neural process predictor. 

The data set 1 and 2 are written in { C;11I1 (k), C;UI (k- l ), C,OUI (k-2), C;"I (k-3), Lt (k-

1 ), Lf (k-2), X: (k- l ), X: (k-2), x; (k- l ), X{ (k-2), c ;n (k- l ), c;n (k-2) } .  Output 

C;UI (k) is the one-step ahead effluent phenol concentration. The past C;JUt (k- l ), 

c;ut (k-2), and c;ut (k-3)  are used as inputs to the network. Lt  biofilm thickness, 

X: biofilm density, X { the suspended biomass concentration, and c;n the inlet 

substrate concentration are also used as inputs. The topologies of each type of neural 

network for the neural network predictor are given in Table 5 . 7 . 

Table 5 . 7 . Topologies of each neural network. 

Process Estimator Process Predictor 

data set 1 6-7-2 1 1 - 1 1 - 1  
MFNN CMC 

data set 2 7- 1 0-2 1 1 -9- 1 

data set 1 6-7-2 1 1 - 1 1 - 1  
MFNN EKF 

data set 2 7- 1 0-2 1 1 -9- 1 

data set 1 6-30-3-2 1 1 -3 6-5- 1 
GRNN 

data set 2 7-3 3 -3 -2 1 1 -3 8-4- 1 

Table 5 . 8  also coll ects the RMSE results of the MFNN, GRNN for data set 1 -2 .  F ig .  

S . 1 2 (a )-( d) show the plots of measured values as wel l as the curves predicted by the 

process predictor. Good correlation exists between the measured and predicted for 



Chapter 5 .  Squential N eural Network Model for a TPFBBR l25 

both MFNN with EKF learning and GRNN. It  i s  demonstrated that the neural 

process predictor serve as good predictors and at the same time provide a valuable 

information on dynamic performance of a TPFBBR which i s  difficult to be modell ed 

and to be predicted. 

RMSEtm 

RMSEt.<rt 

Table 5 . 8 . The comparison of RMSE for MFNN with EKF and GRNN 

(RMSEtI1l = RMSE of training set, RMSEt�t = RMSE of testing set) .  

Data Set I 

MFNN EKF GRNN 
Process Predictor Process Predictor 

2 . 73 8  2 . 79 

3 . 1 3 1  3 . 64 

� 1 60 
Q) 
� 
c 1 40 0 

'';:::; CO '-...., c 1 20 (l) f • • •  

0 C 0 0 
(5 1 00 c (l) .c 0.. 
...... 80 c (l) :::J :E ill 

60 
1 00 200 300 

T ime (hr) 

Data Set 2 

MFNN EKF 
Process Predictor 

1 . 5 3 8  

2 .495 

• Measured 
M FNN EKF 

400 500 

GRNN 
Process Predictor 

1 .344 

1 . 877 

F igure 5 .  1 2(a). Results of the neural process predictor (MFNN with EKF) using data 

set 1 .  
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During the sta11up phases in  a TPFBBR, the modell ing results using sequential neural 

network demonstrate that the modell i ng technique using a GRNN and MFNN 

provides a valuable tool for predicting the outputs with high levels of accuracy and 

for understanding the dynamic  behavior of processes. 

5.5 CONCLUSIONS 

A process engineer, who is faced with characterisation or prediction of the process 

behavior, has to model the considered process. But the derivation of a proper 

mathematical model to describe a complex bioprocess is usual ly  quite difficult, 

particularly for a biofi lm reactor, such as a TPFBBR. 

Neural networks offer an alternative to solve this problem since it does not require 

any a priori knowledge about the structure of the relationships that exist between 
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important variables. Al l  that i s  required i s  to  give the neural networks the necessary 

information and to l et it learn by representative examples. 

The sequential neural network model presented here is composed of two pa11s. The 

first part, the neural process estimator, can serve as a nonparametric approximator to 

estimate difficult-to-model process variables such as biofilm thickness and b iofi lm 

density with the available measured variables. The second part, the neural process 

predictor, can predict the dynamic change of performance of the TPFBBR based on 

the estimated biofi lm thickness and biofi lm density by the neural process estimator, 

and other measured variables. 

We consider three types of the neural networks, which are MFNN with C-C learning, 

MFNN with EKF learning, and GRNN, to develop the sequential neural network 

model with two different operating data sets .  It has been shown that the neural 

process estimator component of the sequential neural network models are capable of 

capturing the nonlinear relationship between process variabl es such as biofilm 

thickness and biofilm density and process input variables with no prior knowledge 

about the complex biofi lm growth behavior occurring in a TPFBBR. The neural 

process predictor component of the sequential neural network can also predict the 

effluent phenol concentration with high level of accuracy, which i s  difficult to be 

captured by existing mechanical models .  Thus, the sequential neural network model 

performs well in model l ing the dynamics of the complex TPFBBR, not only in  the 

training phase but also in  the testing phases. 

It can be concluded that i nstead of the complex TPFBBR model consist ing of a 

dynami c  biofilm growth model, reaction-diffusion model, and reactor model, the 

sequential neural network modell ing approach proposed here provides a good 

alternative to describe the dynamic behavior of a TPFBBR and has the potential to be 

successful ly implemented within a control strategy. F inally, the modeling approach 

presented here is readily appl icable  to a variety of other complex processes .  



Chapter 6 
Intelligent Hybrid Model with a 
Neurofuzzy Process Estimator for a 
TPFBBR 

6.1 INTRODUCTION 

The mechanistic model developed in Chapter 4 and the artificial neural network 

model developed i n  Chapter 5 have drawbacks. Real biological processes such as 

TPFBBR, are strongly characterized by non l inear dynamics and are usual l y  complex 

and poorly known . Therefore, formulating an accurate model based on a mechanistic 

approach requires very time- and money-consuming tasks. An art ificial neural 

network model l ing approach, on the other hand, is mainly data driven and the 

result ing model i s  not bel ieved to have any exploration properties. Therefore, data 

used for neural network-based mode l ling  should  cover the whole domain of interest 

in order to avoid the danger of exploration when using the model . It is very difficult  
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to extract structural knowledge for the processes under consideration and the 

empirical approach h igh ly is crit icised as a scientific  approach.  

In order to overcome the weak points of both the mechani stic and neural network 

models ,  a so-cal l ed hyhrid model, which is a combination of a mechanistic and 

empirical model has recently been introduced (Psichogious & Ungar, 1 992 ; Su et al . ,  

1 992;  Tompson & Kramer, 1 994: van Can et al., 1 997). In  a hybrid model , a part of 

the poorly and inaccurate ly known processes are model led by an empirical model 

such as ANN or neurofuzzy system, and the behaviour of the known processes i s  

model led mechan istical ly .  

In  a TPFBBR, processes associated with the diffus ive transport of  substrate with the 

biofi lm from the l iquid phase and processes associated wi th the axial ly-dispersive 

transport of substrate in  the l iquid phase are usual l y  more accurate ly  known than 

processes associated wi th dynamic biofi lm growth on the support particle and the 

kinetics of conversion of substrate in the biofi lm .  The main goal of thi s  chapter is to 

develop the inte l l igent hybrid model for a TPFBBR because the hybrid model based 

on a combination of both known mechan istic and empirical knowledge and empirical 

data in  a TPFBBR, may be rel i able, and offers potential advantages for practical 

appl ication. In the inte l l i gent hybrid model presented, the neurofuzzy model is used 

to model the unknown process of dynamic biofi lm growth on the support particle, 

combined with the known processes such as the axial-dispersion and reaction­

diffusion models  to bui ld the intelligent hyhrid model of a TPFBBR. In thi s  work, we 

first focus  on developing the neurofuzzy model as process estimators to estimate the 

variation of the biofi lm  thickness and biofi lm  density based on the available 

measurement variables .  Next, we aim to explore the intel l i gent hybrid mode l ,  which 

i s  the concept of combin ing the neurofuzzy model for estimating the biofi lm 

thickness and biofi lm density with mechanistic model s  to  predict the performance of 

a TPFBBR. In our hybrid model ,  the neurofuzzy model is combined with a reaction­

diffusion model and axial -dispersion model to show the dynamic behavior and 

performance of a TPFBBR according to the variation of biofi lm density and biofi lm 
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thickness .  It is  demonstrated that this i ntel l igent hybrid model provides a valuable 

tool for understanding the dynamic behavior and a comprehensive dynamic model of 

a TPFBBR. 

6.2. FUZZY SYSTEM 

6.2.1 .  Fuzzy Sets 

A fuzzy system is used to represent the imprecision found i n  natural l anguage. To 

describe this ,  Zadeh ( 1 973)  i ntroduced the concept of a fuzzy set. Fuzzy sets 

represent vague description of objects i .e .  tal l ,  smal l ,  cold, bright, etc. 

For conventional sets, rig id membership requ irements are imposed upon the objects 

within the set. An object is a member of a set to degree 0 (not in the set at al l )  or I 

(complete ly in the set). For example, the set of TALL men coul d  be defined to be a l l  

men 6 feet or taller (Fig .  6 .  I ) . As shown in Fig .  6. 1 ,  the conventional set  c lass ifies a 

man as either TALL, or not TALL at all .  There i s  no middle ground. In contrast, 

fuzzy sets have more flexible membership requirements that al l ow for partial 

membership in a set. A man 6 feet tall is  a member the fuzzy set TALL to degree 0 .5  

(Fig. 6 . 1 ) . A man 5 feet 6 i nches tal l is  TALL to degree 0.25 ,  a man 6 feet 6 i nches 

tal l i s  TALL to degree 0.75 .  

1 C onventional set 1 Fuzzy Set 

6' 5 '  6 ' 7 '  

Figure 6. 1 .  Conventional Sets vs. Fuzzy Sets. 
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Mathematical l y, a fuzzy set, A, i s  a function defined on the universe of discourse, X, 
given by :  

UA (x) : X --t [0, 1] (6. 1 ) 

where A i s  the l i nguistic variable (or fuzzy l abel) describing the variable x. The 

universe of discourse of a variable i s  its range and can be either continuous or 

discrete . uA (x) represents the membership function, x belonging to the fuzzy set A. 

In general , the shape of a membership function depend on the appl ication and can be 

trapezoidal ,  bel l -shaped, triangular, or Gaussian,  etc as shown in Fig. 6 .2 .  

Figure 6 .2 .  Different shapes of membership functions .
. 

Fig. 6.3 i l lustrates onc example of the discourse for the l inguistic variable 

temperature . Linguistic values, which define these variab les, are: Cold, Warm, and 

Hot. 

Cold Warm H ot 
1 .0 1------. 

O.o � ____________ w. ____ .. ____ � 
1 5  25 35 
Temperature °c 

Figure 6.3 .  Typical fuzzy set for temperature. 
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6.2.2 Fuzzy Inference System 

To construct a fuzzy system we have to describe mapping from one universe of 

d iscourse to another and this  can be achieved using fuzzy algorithms.  Fuzzy IF­

THEN rules (or fuzzy implication statements) can be used to describe part of such a 

mapping and a col lection of rules from an algorithms.  Depending on the encoding 

method of a fuzzy algorithm, several fuzzy-ru les-base systems can be distinguished: 

l inguistic fuzzy model (Mamdani ,  1 977), fuzzy rel at ional model (Pedrycz, 1 983) ,  

Takagi-Sugeno model (Takagi & Sugeno, 1 985) .  

In fuzzy inference system (or fuzzy-ru les-base system), every fuzzy rule  has a two 

parts :  

• antecedent part(premise), expressed by :  IF . . .  
• consequent part, expressed by: THEN . . .  

The antecedent part i s  the description of the state of the system which shou ld  turn on 

the rule ,  and the consequent is the action that the operator who controls the system 

must take. Consider the fol lowing example of deal ing  with a probl em of a high 

effl uent BOD based on l inguistic fuzzy model : 

F 
consc2t!cncc 

\ 

THEN (i1WSFR is Negative Large) (6 .2) 

where EBOO is  effluent BOO, ESS i s  effluent suspended sol id  concentration, and 

� WSFR is change in the waste sludge flow rate . In thi s  example, EBOO, ESS,  and 

� WSFR are l inguistic variables, and Smal l ,  Large, and Negative Large are l in guistic 

values (or fuzzy l abels) that are characterised by appropriate membership functions. 

The l inguistic values 'Smal l ', Large ', and Negative Large ' have a certain degree of 

vagueness and fuzziness. This fuzziness can be described by membership functions 

which can assume different curves, e . g. straight l i nes, bell-shaped, Gaussian, and so 

forth (Fig. 6.2) .  
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Most fuzzy inference system use production rules to represent the relation among the 

l ingu istic variables and derive actions from the inputs . The computation of fuzzy 

rules is cal led fuzzy rul e  inference that is a calculus consisting of two main steps : 

( 1 )  aggregation step - the antecedents are evaluated usmg membership 

functions to bel ief levels, 

(2) composition step - the antecedents are then combined usmg fuzzy 

operator (such as T-norm and T-conorm) to produce the final output 

act ivation leve l .  

The antecedent of the fuzzy rule i s  formed from the intersection (the fuzzy and 

operation) of the univariate l i nguistic statements, which can be represented by a 

multivariate fuzzy set. Via the fuzzy implication operator (IF . . .  THEN . . .  ) individual 

rules map the multi variate fuzzy set i nto the rules consequence. A complete rule  base 

is produced from the union (performed by the fuzzy or operator) of al l the fuzzy 

rules .  

To implement a fuzzy system (or control ler) ,  the functions that performs the logical 

fuzzy operations, and, IF . . .  THEN . . .  , and or have to be defined. There are many  

ways to  define the fuzzy implication and the fuzzy operator and. Nearly, 40 distinct 

fuzzy implication functions have been described in the l iterature (Lee, 1 990). 

General ly ,  intersection operators are called T -norms and union operator cal led T­

conorms. These norms provide a wide range of suitable functions but the most often 

used operations are the min and product operator for and operator, and the max and 

sum operator for or operator. They are shown in Table 6. I .  

For example, suppose that we defined two fuzzy sets by their memberships u A and 

uB which have triangu lar shape (dotted l i nes on Fig .  6 .4a) .  The appl ication of T­

norm gives the fuzzy set A and B which is represented by its membership function 
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UA and S (x) (sol id  l ine on Fig. 6.4(a» . The appl ication of T-con or m on these fuzzy sets 

gives the fuzzy set represented wi th sol id  l ine on the Fig. 6.4. 

T-norms 

T-conorms 

Fuzzy 
Implication 

u 

Table 6 . 1 .  The most popular logical fuzzy operators . 

• min : uA (x) and u B (x) =min { uA (X) , UB (x) } 

• algebraic product: u A ( x) and u B (x) = U;l (X) * UB (x) 

bounded product: U A (x) and U B (x) =max(O, HA (x) + Lt B (x) - 1  

• max: LtA (x) or uB (x) =max { uA (X) , UB (x) } 

• algebraic sum: uA (x) or uB (x) = U;\ (X) + ll B (X) - uA (X) * UB (x) 

• disjoint sum : uA (x) or uB (x) = 

max { min( u;\ (x) , l - uB (x» , min( l - u;\ (x) , uB (x» } 

• material implication :  
u A-)B (x) == U ;\ ( x )  ---7 uB (x) == not (u  A (x» or  U B ex) 

• propositional calculus:  
U ;\ c;B (x) == u ;\ (x) ---7 U B (x) = not (u  A (x» or (UA (x) and U B (x» 

Triangular norm 
min operator 

(a) 

Triangular conorm 
max operator 

(b) 

Figure 6.4. Graphical representation of a fuzzy operator. 
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Every fuzzy system (or fuzzy controller) i s  composed of four principal blocks as 

shown Fig.  6.5 (Jang, 1 993 ) :  

• knowledge base (rules and parameters for membership functions) 

• decision unit  ( inference operations on the rules) 

• fuzzification interface (transformation of the crisp inputs into degrees of 

match with l inguistic variables) 

• defuzzification interface (transformation of the fuzzy results of the 

inference into a cri sp output) 

In many engineering appl ications, the inputs and outputs are numerical values, rather 

than fuzzy sets. To deal wi th this, the fuzzy system must be equipped with 

conversion interfaces, so-called fuzzification and defuzzification units, as shown 111 

Fig. 6.5 .  

Knowledge Base 

I Input MO"!be<shiP j [RUle,
1 I Output M�mbe"hip 

FunctIOns FuctlOns 
-�--------.- ---

;." ; ',l'; xY",n , 

� ,  � ir  H '---._-

Fuzzification 
Fuzzy Inp�t I�- Decision 

Making Unit 
Fuzzy Outpu� Defuzzification 

Interface ,. (Rule Evaluation) ,.. Interface 

A �  Fuzzy Inference Engine 
- .--�.---��-�.--.-.� .-- -,-���-��-� 

Input Output "'" Process � 
Y';:\'T ii,il 

Figure 6.5 .  General structure of fuzzy inference system. 

. ----

The fuzzy inference engine of the system from Fig .  6.5 i s  represented on the Fig .  6.6 .  
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x 

y 
Fuzzification 

Linguistic Rules 

If x=Aj and y=B1 
then z=C 1 

If x=An and y=Bn 
then z:::C n 

Defuzzification 

w ·  n 

Figure 6.6 .  General structure of fuzzy inference engine. 
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In fuzzification unit, input values are cons idered as fuzzy singletons and membership 

grades of al l  fuzzy propositions in  the rule antecedents are evaluated. Fuzzi fication 

means using the membership functions of  l i nguis tic variables to compute each term's 

degree of  validity at a speci fic point of the process .  When a fuzzy rul e  fires 

(activates), it fires to a certain degree of  depending on the bel ief level in each 

antecedents are evaluated in the premise of the rule .  The antecedents are evaluated 

us ing membership functions to bel ief  leve ls ,  which are then combined using fuzzy 

operator (T-norm and T-conorm) to produce the final output activation leve l .  Final ly ,  

the  output act ivation level i s  used to  either scale or c lip the fuzzy output set. C l ipping 

the output i s  cal led Max-Min i n ference, and scal ing the output i s  cal led Max-Dot 

i n ference. There are a number of fuzzy inference engines, but the most c i ted in the 

l iterature (Jang, 1 993) are: 

1 .  Max-Dot method (type 1 ) . The final output membership function for each output 

is the union of the fuzzy sets assigned to that output in a conclusion after 

scal ing their  degree of  membership values to peak at the degree of 
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membership for the corresponding premIse (modulation by cl ipping) 

(Zimmermann,  1 990). 

2. Max-Min method (type 2). The final output membership function is the union of 

the fuzzy sets assigned to that output in a conclusion after cutting  their degree 

of membership values at the degree of the corresponding premise ( l inear 

modu lation) .  The crisp value of output is ,  most usual ly ,  the center of gravity 

of resu l ting fuzzy set (Lee, 1 990). 

3. Takagi and Sugeno's method (type 3). Each rule 's output is a l inear 

combination of input variables. The crisp output is the weighted average of 

each rul e 's output (Takagi & Sugeno, 1 985) .  

See Fig .  6.7 for an example of  both Max-Min and Max-Dot methods of  fuzzy 

i nference engine.  The h igher the output activation level of for true, the more it w i l l  

contribute to the combined output of al l the rules .  Once al l of  the fuzzy output sets 

have been computed, they are summed or unioned together to produce the combined 

fuzzy output set (Fig. 6.8) .  

How do fuzzy rules produce final output? The result produced from the evaluation of 

fuzzy rul e  is, of course, a fuzzy set, which may be the sum or union of many fuzzy 

sets, with each rule  that fired contributing a piece of the final output set. This fuzzy 

set i s  then converted into a single output value by a process known as defuzz!fication. 

Several defuzzification methods have been developed: ( 1 )  The Center of Max imum 

(CoM), (2) The Mean-of-Maximum (MoM), and (3)  The Center-of-Area (CoA) 

methods . The most common method of defuzzification i s  the center of gravi ty (or 

centriod) method. In centroid method, the output value is equal to the weighted 

average of the positions of the centroids of output membership functions weighted by 

their actual membership grade (Ful ler, 1 995) 
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I F  (EBOD i s  Large) AND (ESS 
is Small) THEN (WSFR is 

Negative Large) 

EBOD 

Max-Min Interface 

ESS 

Max-Dot Interface 
WSFR 

"lor."+O,,Q Large 

IF (EBOD is Medium) AND 
(ESS is Small) THEN (WSFR is 

Negative Small) 

��a:�_l±\gative Smali 

EBOD ESS WSFR 

Figure 6.7 .  Max-Min and Max-Dot Interface. 

Max-Dot Interface 

[l, Large � small 1� 
IF (EBOD is Large) OR (ESS is 1\ - - - - - - -\-. - - - - 7£\ __ Negative 

Small) THE N  (WSFR is / _\ _ _ _  /- _ 

Negative Large) L _� L_ 
EBOD ESS WSFR 

IF (EBOD is Medium) AND I./\�' Medium I�\ �n1a1I--rl. I\N
.
egative 

(ESS is Small) THEN (WSFR is / 
_ _ _ _  !_ _ _  _ \ 

Negative Small) L___ L__ · (sc:,,,... _'\ 

Combined resu:Ats of 
both rules 

-,,"" ':'\ 
WSFR 

EBOD ESS WSFR 

"o'ooed '::&. 
WSFR 

Summed ,e,;&' 
WSFR 

Figure 6 .8 .  Max-Dot interface wi th unioned and summed results .  
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(6 .3) 
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6.2.3 Takagi & Sugeno (TS) Fuzzy Model 

Takagi and Sugeno ( 1 985)  developed a hybrid model l ing  technique designed to 

combine conventional and fuzzy mode l l ing. The result ing mode l ,  called TS model i s  

represented by a series of fuzzy rules of the form: 

IF (X is AI ) THEN (y = f; (xJ) (6.4) 

where J;(x) , defined on Xi e X , i s  a local model used to approximate the response 

of the system in the region of the input space represented by the antecedent. The 

T . 
function J; (Xi ) are often chosen as affine l inear forms y, = ai X + hi ' where ai I S  a 

parameter vector b, i s  a scalar offset. 

The overal l output of TS model i s  calculated as a weighted average of the rul e  

contributions:  

K L.,uAI (X )f; Cx) 
v = -,-,i�=-,-l ____ _ 
. K 

LUA) (X ) i�J 

(6 .5) 

where K i s  the number of rul es and Lt 4  i s  the membership degree of the ith rule  " 

antecedent. For a=O, the TS model is equ ivalent to the l inguistic model with 

singleton consequence. Adaptive-neural-network-based fuzzy inference system 

(ANFIS) developed by Jang  ( 1 993) is one of the most popular approaches to 

neurofuzzy model l ing and is based on this type of fuzzy model structure. 

6.3 NEUROFUZZY MODELLING 

6.3.1 Contact Points of Fuzzy System and Artificial Neural 
Networks 
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The knowledge of artificial neural networks (ANNs) has been developed greatly in  

the recent years . Due to  i t s  strong nonl inear mapping  and learning abi l it ies, the 

appl ication of ANN to mode l l ing  wastewater treatment processes has been successful 

(Capodaglio et aI . ,  1 99 1 ;  Cote et aI . ,  1 995 ; Du et a! . ,  1 995 ; Zhao et aI . ,  1 997) .  

For dynamic process  model l ing, the neural networks-based model can be thought of 

as the non l inear counterpart to ARMA (AutoRegressive Moving Average) models .  

The main advantages of us ing ANNs in  process model l ing are : ( 1 )  i t  has the abil ity to 

learn complex nonl inear relationship with l imi ted prior knowledge of the process 

structure (2) it can perform inferences for an unknown combination of input 

variables (Hong et aI . ,  1 998). So ANNs are prime candidates for appl ication in  

dynamic process mode l ling for the representation of non  l inear processes. However, 

analysis of the trained neural networks is difficult s ince these models  appear as 

b lack-box model s .  Neither is it possible to extract structural knowledge for the 

process under consideration from the trained neural networks, nor is it easy to 

determine a suitable topology of the ANNs for a special problem and to set the 

parameters of the learning algorithms.  

On the other hand, since Zadeh's first pioneering  paper (Zadeh,  1 965),  there have 

been fuzzy model l ing attempts to combine numerical and symbol ic processing i nto 

one framework. Fuzzy model l ing is knowledge-based system consisting of l in gu istic 

IF-THEN rules that can be constructed using the knowledge of human experts in the 

given fie ld of interest . Fuzzy model l ing also u ti l i ses universal approx imators that can 

realise nonl inear mappings .  These features allow qual i tative knowledge to be 

combined wi th quantitative data in complementary ways (Babuska & Verbrunggen, 

1 996). Compared to other nonl inear approx imation techn iques ( such as ANNs),  

fuzzy mode l ling provides a more transparent representation of the non l inear systems 

and appears very useful when the responses to change in manipulated variables  are 

non l inear or when there is a l ack of well-defi ned mathematical model . However, as 

system complexity increases, rel i able fuzzy rules and membership functions u sed  to 

describe the systems behaviour are difficult  to determine. Furthermore, due to the 
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dynamic nature of biological process such as activated s ludge process, fuzzy rules 

and membership functions must be adaptive to the changing environment in order to 

continue to be usefu l .  The quality of fuzzy model l ing can be significantly influenced 

by changing shapes of membership functions and fuzzy rules .  Thus methods for 

performing  the adj ustment of membership functions and modification of fuzzy rules 

are necessary. 

The advantages of ANN in compensating  for the weak points of fuzzy system, and 

the advantages of fuzzy systems in compensating  for weak points of ANN are shown 

in Fig .  6.9. This mutual improvement is ach ieved by combin ing fuzzy system and 

ANN (Fig. 6 .9), and this new method is cal led neurofuzzy modelling (or fuzzy neural 

network). As shown in Fig. 6.9, the aim of neurofuzzy system is to combine 

col lectively the benefits of both fuzzy system and ANN. S imply, the given system is 

expressed as l inguistic fuzzy expressions and learning methods of ANN are used to 

learn the system. Furthermore, the neurofuzzy system can prevent the knowledge 

acquired through l earning based on the fuzzy knowledge from being  thrown into a 

black box . In addition, neurofuzzy system i s  also capable of extracting fuzzy 

knowledge from numerical data s ince they allow incorporation of both numerical and 

l inguistic data into the system. 

Generally ,  these neurofuzzy systems have the fol lowing features (Jin et aI . ,  1 995): 

1 .  A fuzzy system i s  used to create a relevant perception perspective, which 

possesses very clear physical meanings .  

2 .  All the fuzzy rules are expressed by  a group of  weights of  an  ANN and can be 

adjusted in a more effective way. 

3. The nonl inear characteristic of the ANN endows the fuzzy model greater 

abi l it ies to describe a given complex system. 
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6.3.2 Background of Neurofuzzy Systems 

As described in the previous section, to overcome inherent drawbacks wi th fuzzy 

system (Fig .  6.9), namely, the choice of appropriate fuzzy IF-THEN-rules  and 

membership function, and the l ack of learning function in  order to tune these in order 

to i mprove the quality of mode l l ing, recently many researchers have focused on the 

so-cal led neurofuzzy model l ing and control . A number of differen t  schemes have 

been developed, such as the adaptive-neural-network-based fuzzy inference system 

(ANFIS) (Jang, 1 993), neural networks wi th fuzzy weight (Buckley & Hayashi ,  

1 994), neuro-fuzzy adaptive models (Brown & Harris ,  1 994), and fuzzy neural 

network (Nack and Kruse, 1 996). General ly,  the neurofuzzy systems can be divided 

into two groups: 

1 .  Neural network based fuzzy inference system (NNFIS) 

2. Fuzzy neural network (FNN) 

The obj ective of NNFIS i s  to incorporate neural concepts, such as learning and 

parallel ism, into fuzzy inference systems. The architecture of the systems is paral le l ,  

and they exploit the same l earning algorithms, which are used with neural networks.  

In the FNN (Pedrycz, 1 992; Gupta & Rao, 1 994) , the fuzzy i deas are incorporated 

into neural networks .  The FNN consists of two components : a fuzzy system and an 

ANN. the fuzzy system can be either a fuzzy inference block which converts 

l inguistic information for the neural network or the neural network can drive the 

fuzzy i nference block. The only NNFIS is considered as the neurofuzzy system and 

studied in more detail in this thesis .  Table 2 shows some examples of the neurofuzzy 

systems used in several recently introduced NNFIS . 

S imutis et al . ( 1 993) showed the appl ication of fuzzy-aided neural network for real­

time state estimation and process prediction in the alcohol formation step of 

production-scale beer brewing.  Ye et al . ( 1 994) applied the neurofuzzy system with a 

five l ayer neural network for the control of fed-batch cultivation of recombinant 
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Escherichia coli. In their application, the chan ge i n  pH of the culture broth and the 

specific growth rate were used as inputs to neurofuzzy system to calculate the 

glucose feeding rate. They demonstrate that a feedforward-feed- back control 

strategy with neurofuzzy system is a promising control strategy for the control of 

h igh cel l  density cultivation and high expression of a target gene in fed-batch 

cultivation of a recombinant strain .  

ANN Fuzzy 

I .  learning is available 

. a l low qual i tative knowledge 

to be combined with quanti­

tative data 2. can easi ly  handle 

numerical data 2. provide a more transparent 

representation of  the syst-

1 .  extracting knowledge is 
difficult  

I . adjustment of membership 

functions is  d i fficult 

2.high-speed learning is difficult 2 .  modification of fuzzy rules is 
d ifficult 

Neurofuzzy System 
1 .  combining l i nguistic expression of  fuzzy 

with ANN learning 

2 .  a llow incorporation of both numerical and 

l i nguistic data 

3.  easy extraction of fuzzy knowledgc from 

numcrical data 

4.  h igh-speed learning i s  available 

Figure 6.9.  The main advantages of the neurofuzzy system. 
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Table 6.2.  Some examples of the neurofuzzy systems .  

Antecedent Consequent 
Neurofuzzy Rule Defuzzifi-membership Partitioning 

connectives 
membership 

cation system 
functions functions 

Horikawa et  
hel l-shaped adaptive grid and/product singleton or 

WA. 
a! .  ( 1 992) 

monotonic 
Tsukamoto 

Nack & TSllkamooto's 
adaptive grid and/mi n  

TSllkamooto 's 
Tsukamoto 

Kruse ( 1 993 )  monotonic monotonic 

Jang ( 1 993) hell-shaped adaptive grid andfproduct 
singleton, or 

WA 
functional  

Lin & Lee 
bell-shaped adaptive grid 

andfmin 
bel l-shaped COA,WA 

( 1 99 1 ) or/max 

Nie & 
Li nkens bel l-shaped Cluster and/product S ingleton WA 
( 1 993 ) 

B erenj i & 
Khedhar Triangular adaptive grid and/soft-min triangular MOM 
( 1 993) 

Wang & 
Mendel hell-shaped radial  and/product s ingleton WA 
( 1 992) 

(COA= Center of Area, W A= weighted average, MOM= Mean of Maximum ) 

6.3.3 The Architecture of the ANFIS Neurofuzzy System 

One of the i nteresting architectures for a neurofuzzy system (Table 6.2) is ANFIS 

(Adaptive Neural Fuzzy Inference S ystem) which is functional l y  equivalent to 

Takagi and S ugeno's method described in  the previous section (Jang ,  1 993) .  To 

describe ANFIS, let us consider a system which has two inputs x and y and only one 

output z. In addition, the rule base contains  only two fuzzy rules. 
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The firing  levels of the rules are computed by 

(Xl = � (xo ) x  RI (Yo ) 

(Xl = A2 (xo ) x  B2 ( yo )  
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(6.6) 

(6.7) 

where can be model led by any continuous T-norm (Table 1 ) , e .g .  product T-norm 

(Xl = Al (xo )  1\ BI ( Y 0 ) 
(X2 = A2 (xo ) 1\ B2 ( yo ) 

then the individual rule  outputs are derived from the relationships 

and the crisp control action i s  expressed as 

(6 .8) 

(6 .9) 

(6. 1 0) 

where /31 and /32 are the normal ised values of (Xl and (Xl with respect to the sum 

( at + a2 ) '  i . e .  

(6. 1 1  ) 

The ANFIS, a h ybrid neural net computational l y  i dentical to Takagi & Sugeno type 

of fuzzy reasoning is shown i n  the Fig. 6 . 1 0. 
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Input 

Xa 

Yo 

Fuzzification Rule 
Inference 

.................................... � 

layer 2 

Defuzzification Output 

layer 4 layer 5 
. . � •••••••••••••••••••••••••••••••••••••••••• u ••••••••••••••••••••••••••••••••••••••••••••••  

Figure 6. 1 0. The architecture of the ANFIS neurofuzzy mode l .  

• Layer 1 .  Fuzzification 

This l ayer consists of l i nguistic variables. Each neuron in  this layer 

represents an input membership function of the antecedent of a fuzzy 

rule .  The cri sp inputs Xo and Yo are fuzzified by using membership 

functions of the l inguistic variables Al and A2 • It is very important that 

node functions have to be differentiable, and we choose a bell-shaped 

membership function 

(6. 1 2) 
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to represent the l inguistic terms, where ,  {ail ' ai l '  hiP hi2 }  i s  the 

parameter set. As the values of these parameters change, the bell -shaped 

functions vary accordingly, thus exhibi ting  various forms of membership 

functions on l inguistic labels Ai and Ri . 

• Layer 2. Rule nodes 

Second layer contains one node per each fuzzy IF-THEN rule .  Each rule  

node performs connective operation between rule antecedents (IF-part). 

In other words, each node computes the firing strength of the associated 

rule .  Usual ly ,  the min or the product (see Table 1 . ) is used as 

intersection and. The union or is usual l y  done max operation .  The output 

of the top node is  

(6. 1 3 ) 

and the output of the bottom node is  

(6. 1 4) 

Both nodes in  this l ayer are label led by T, because we can choose other 

T-norms for model l i ng the logical and operator. The nodes of this layer 

are called rule nodes. 

• Layer 3. Normalization 

Every node in this l ayer is l abel led by N to i ndicate the normal ization of 

the firing levels .  The output of top neuron is the normalized (with respect 

to the sum of the firing  l evels) firing l evel of the first rul e  

aI 
PI ::::: --'---

al + a2 
(6 . 1 5) 
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and the output of the bottom node is  the normal ised firing  level of the 

second rule  

• Layer 4. Consequence layer 

(6. 1 6) 

This l ayer gives the consequent part of the rule .  In this study the output of 

top node i s  the product of the normal ised firing l evel and the individual 

rul e  output of the first ruJ e  

(6. 1 6) 

The output of top node is  the product of the normali sed firing  level and 

the individual rule  output of the first rule  

(6. 1 7) 

• Layer 5. Summation 

S ingle node in this l ayer computes the overall system output as the sum of 

all incoming signals :  

(6. 1 8) 

6.3.4 Hybrid Learning Algorithms of the ANFIS 

General ly the purpose of the learn ing in the neurofuzzy system can be summarised as 

(Takagi & Lee, 1 992): 
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1 .  deciding number of fuzzy rules, 

2. deciding shape of the membership functions, 

3 .  deciding consequent parameters, 

4 .  deciding number of  the input variables, 

5. deciding fuzzy reasoning method. 
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( 1 )  and (2 )  correspond to deciding how to cover the i nput space. They are highly 

dependent on each other. (3 ) corresponds to determining the coefficients of the l inear 

equation in the case of the Takagi & Sugeno's type model or determining the 

consequent part membership functions in the case of Mamdani model (Mamdan i ,  

1 974). Table 6 .3  shows some of learning schemes used in  several recently introduced 

neurofuzzy systems.  Their train ing methods differ very much from each other and no 

comparison of methods have been presented. 

The ANFIS architecture consists of two trainable parameter sets: 

1 .  The antecedent membership function parameters . 

2 .  The polynomial parameters, al so called the consequent parameters. 

Each ANFIS train ing epoch, us ing the hybrid learning rule,  consists of two passes. 

The consequent parameters are obtained during the forward pass using a least­

squares optimisation algorithm and the premise parameters are updated us ing a 

gradient descent algorithm.  During the forward pass all node outputs are calculated 

up to l ayer 4.  At l ayer 4 the consequent parameters are calculated using a least­

squares regression method. Next, the outputs are calculated us ing the new 

consequent parameters and the error s ignals are propagated back through the l ayers 

to determine the premise parameter updates. The consequent parameters are usual l y  

solved for at each epoch during  the train ing phase, because a s  the output o f  the last 

h idden layer changes due the backpropagation phase, the consequent parameters are 

no longer opt imal . S ince the singular value decomposition (SVD) i s  computat ional l y  

intensive,  i t  may b e  most efficient t o  perform it  every few epochs versus every 

epoch. 



Chapter 6. Inte l l i gent Hybrid Model for a TPFBBR 1 5 1  

Table 6 .3 .  Learning schemes o f  neurofuzzy system. 

Adding of 
new fnzzy 

Nenrofuzzy system Premise learning Consequent Learning sets or fuzzy 
rules during 

learning 
,,�-�--��,-,,".�-

Horikawa et  a!. 
gradient descent No 

( 1 992) 

N ack & Kruse 
fuzzy gradient descent No 

( 1 993) 

Jang ( 1 993) gradi ent descent l east-square method No 

Lin & Lee ( 1 99 1 )  SOM, i n i tia l  learni ng gradi ent descent Yes 

Nie  & Linkens 
modified SOM gradient descent Yes 

( 1 993) 

Berenji & Khedhar 
grad ient descent No 

( 1 993) 

Wang & Mendel 
OLS orthogonal least squares method (OLS) 

( 1 992) 
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6.4 INTELLIGENT HYBRID MODELLING FOR A 

TPFBBR 

6.4.1 Reaction-Diffusion Model 

The concentration profi les of substrate describing the s imul taneous transport and 

removal with in  the biofi lm are represented by the fol lowing equation 

d et ::: D 
. [ d 2e! + �(d et )j _ 

.

1 umaxe! X l (L t) (6 . 1 9) d t sf d L2 L d L Y K + Cl (/ f ' 
tls s s 

where the boundary conditions of Eq. (6. 1 9) are : 

d cr 
= 0  

d L  
at L = O  

d [ f  D" d 
L 

= k,s (C ,  - C, ) at L = Lr (t) 

e/ (Lt , 0) = 0 at t =: O  

6.4.2 Axial-Dispersion Model 

(6 .20) 

In three-phase fluidised-beds, the gas phase may often be assumed to be plug flow. 

Appreciable backmixing, however, may occur in  the l iquid phase, especiaJ I y  for beds 

of smal l  particles in concurrent three-phase flu idization . The backmixing of the 

l iquid and sol id  particles in such a bed is  primari l y  caused by the ris ing motion of 

coalesced l arge gas bubbles. An axial dispers ion model has been most commonl y  

used to describe the backmixing behaviour o f  the l iquid phase and t o  simulate 

substrate removal i n  a TPFBBR (Wisecarver & Fan, 1 987;  Petersen & Davison, 

1 995) .  A mass balance for substrate in  the l iquid phase yields the fol lowing equation 
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where corresponding boundary and in it ial conditions for above equation are 

U CI (O t) - E E  d C; (O, t) 
= U C" at 2 = 0 L s '  I L  d 2  L s 

d C; (H , t) == 0 
d Z  

at 2 == H 

C; (2 ,0) = C;o at t = 0 

(6. 2 1 )  

(6 .22» 

In order to simulate the performance of a TPFBBR using the axial -dispersion model ,  

estimation of the phase holdups, gas- l iquid and l iquid-sol id mass transfer coefficient, 

the l iquid phase axial d ispersion coefficient and the expanded bed height under 

various are required. 

In the axial-dispersion mode l ,  the axial-d ispersion coefficient ( EL ) describing the 

backmixing behaviour of the l iquid phase is very important and several correl ations 

for EL have been suggested. To predict EL ' the correlation of Kim et al . ( 1 992) is 

used since their correlation covers a w ide range of l i terature data and can be appl ied 

to a TPFBBR with smal l ,  low-densi ty particles .  

(6.23) 

Recent ly ,  Nore et al . ( 1 992) studied hydrodynamics, gas-sol id and l iqu id-sol id  mass 

transfer in a TPFBBR with partic le  dens ities ranging from 1 300 to 1 700 kg/m3 • In 

their studies, i ncreas ing the gas velocity increased kls ' especial l y  for low particle 

densities and the l iquid velocity had almost no effect on l iquid-soli d  mass transfer 
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coefficient .  Nore et al . ( 1 992) estimated kls satisfactoril y  using the fol lowing 

corre lations 

( JO.05 1 k :::: 0. 1 97 
VI, d 0. 1 7 

Is bp cL 

(6 .24a) 

(6 .24b) 

In order to estimate the phase holdups in this study, the pure ly  empirical correl ations 

suggested by B egovich & Watson (] 978a) are chosen because of the large data base 

from a wide variety of particles which they used for their correlation . 

The gas and soli d  holdup are estimated from the fol lowing correlations, respecti vely .  

C :::: (0.048 + 0  O l O)V 
0 72±0 028d 0 1 68±ll061D -0. 1 2S±0.088 g _ .  L {J C 

1 - O. 37 1V o 27 1 
V ,

0 04 1  ( _ )-0. 3 1 6 d -0.268 O.OS5 D -{J033 
E, L (, Pbp PL hp f.1L c 

The l iquid holdup and bed porosity can also be calculated from 

c = l - c - c  i g s 

c :::: I - E, 

(6.25) 

(6 .26) 

(6 .27a,b) 

The solids holdup influences the biofi lm specific surface area ( a  j) ' which can be 

estimated by 

6c 
a = -,\ 
p d"p 

(6 .28) 
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6.4.3 Intelligent Hybrid Model for a TPFBBR 

Generall y, a hybrid model ,  as shown in Fig. 6 . 1 1 , may be divided into two 

categories: ( 1 )  serial hybrid model (2) parallel hybrid model. 

In serial hybrid models (Psichogious & Ungar, 1 992; Tompson & Kramer, 1 994; 

Schubert et al . ,  1 994), the empirical model such as ANN and neurofuzzy model i s  

placed in  series with a mechanistic model , a s  i l lustrated in  Fig .  6. 1 1  (a). Psichogious 

& Ungar ( 1 992) and Schubert et a1 . ( 1 994) proposed a serial approach in mode l ling a 

fermentation process .  The neural network component of the h ybrid model estimated 

the biomass concentration and the specific growth rate, which was input into the 

component mass balances .  

x 

x 

Neural Network or 

Neurofuzzy Model 
z 

(a) 

Neural Network or 

Neurofuzzy Model 

Mechanistic 
Model 

(b) 

Mechanistic 
Model 

res idual 

y 

Figure 6. 1 1 .  Type of the hybrid mode l ;  (a) Serial hybrid model (b) Paralle l  hybrid 
model (Tompson & Kramer, 1 994) . 
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In parallel  hybrid models  (Cote et al . ,  1 995;  Zhao et al . ,  1 997), as i l lu strated i n  Fig. 

6. 1 1  (b), the ANN or neurofuzzy model is p laced in  paral le l  with a mechanistic 

mode l .  The ANN or neurofuzzy model is in fact an error model , which shou ld  model 

the difference between the output of a mechani stic model and real output of the 

process. In a paral le l  hybrid approach,  the output of the ANN (or neurofuzzy model )  

and mechani stic mode l  are combined to determine the total model output .  The ANN 

or neurofuzzy component of the hybrid model is trained on the residual between the 

process data and the mechanistic model to compensate for any uncertainties that ari se 

from the inherent process complexi ty (Tompson & Kramer, 1 994). 

Cote et al . ( 1 995) showed the paralle l  approach on real-time data of act ivate s ludge 

process .  Zhao et al . ( 1 997) demonstrated a hybrid model ,  which consists of a 

s impl i fied process model and an ANN, for developing a dynamic model of a 

sequencing batch reactor (SBR) .  In their hybrid model ,  the outputs of the trained 

ANN compensated for the output errors of the simplified process mode l .  The hybrid 

model output of the final predictions of the process states was obtained by summing 

of the outputs from the s impl ified process model and ANN. In these two cases, the 

hybrid model showed better interpolation than the black box ANN modeL 

In general , the biofi lm growth mechani sm in a TPFBBR is quite complex and often 

involves non l inear expressions such as Monod or Hal dane kinetics. The development 

of rel i able biofi lm growth model based on mechanistic model is extremely difficult 

and the appl ication of hybrid model offers a logical alternative. The plot of the 

i mplementation of the serial hybrid model is given in Fig .  6. 1 2. In our case, the 

h ybrid model consists of two parts i ncluding a neurofuzzy model , which serves as a 

process estimator of difficult-to-model process variables ( such as biofi lm thickness 

and biofi lm density), and a mechan istic model ,  which represents a mechanistic 

knowledge of process system by us ing differential equation. 

The neurofuzzy model component of the hybrid model serves as a process estimator 

and receives as inputs certain measured variables and provides a prediction of the 
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one-step-ahead biofi lm thickness and biofi lm density which are difficult to measure .  

The main  role of  a neurofuzzy process estimator i s  that i t  can serve a s  good 

numerical estimators and at the same time can provide qual itative information about 

the complex biofi lm growth w hich i s  difficult-to-model and difficult-to-measure . The 

outputs of neurofuzzy model serves as parameters for reaction-diffusion model and 

axial dispersion model ,  which produces the substrate concentration profi les within 

the biofilm phase and the substrate concentration profiles in  the l iquid  phase as a 

function of bed height at the different times respectively. The combination of these 

differen t  model l ing approaches yie lds complete inte l l igent hybrid model for a 

TPFBBR. 

The reSUlt ing h ybrid model can be considered a structured neurofuzzy model which 

contains  some known parts, i n  this case reaction-diffusion model and axial­

d ispersion model . Alternatively, There may be thought of as mechanistic mode ls  

which contain process parameters whose dependence on process vari ables i s  

model led by a neurofuzzy model . This  hybrid model has the advantage of the short 

development t ime of data-driven empirical model with extrapolation properties of 

knowledge-driven mechanistic model s ince they requi re less data than when a 

empirical model i s  used alone. Also less a prior knowledge about a complex b iofi lm 

growth mechanism is  required than when a mechanist ic model is used alone. 

6.5 RESULTS AND DISCUSSION 

6.5.1 Results of Neurofuzzy Estimator 

Biofilm Thickness Estimation 

A total of 4 1  data sets were compiled from a TPFBB R  described in chapter 3 .  The 

data was split into two sets : ( 1 )  a train ing set including 70% of the data, and (2) a test 

set including the remai ning 30%. 
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The data for biofi lm  thickness estimation are written i n  { Y(k), Y(k- l ) , Y(k-2) ,  Y(k-

3) ,  YCk-4), U I (k- I ) , U I (k-2), U2(k- l ), U2(k-2) ,  U3(k- J ) , U4(k-2) , k= l ,  4 1 } .  Output 

Y(k) represents the one-step ahead biofi lm  thickness. The current and past biofi lm 

thickness (Y(k- l ) , Y(k-2), Y(k-3) ,  Y(k-4» , and the current and past biofi l m  density 

(U I (k- I ) , U I (k-2» are used as inputs to the neurofuzzy estimator. The current and 

past suspended biomass concentration (U2(k - 1 ), U2(k -2)) ,  and the current and past 

i nlet substrate concentration (U3(k- I ), U3(k-2» are also used as i nputs. Neurofuzzy 

process estimator has 1 output and 1 0  i nputs for the estimation of biofi lm thickness, 

as shown Fig. 6 . 1 3 .  

When the neurofuzzy model (or fuzzy model )  i s  appl ied to a specific problem, the 

process of i dentify ing a model is necessary. The i dentification process of a 

neurofuzzy model i s  general l y  divided in to structure identi fication and parameter 

identi fication. The former means the combination of the i nput variables and the 

number of the membership functions in the premi ses and consequences .  The latter 

ident ifies the parameters i n  both the premises and consequences. The characteristics  

of a neurofuzzy (or  fuzzy) model depend heav i ly  on the structures rather than on the 

parameters of the membership functions (Horikawa et al . ,  1 992). So the selection of 

the structures i s  only done once in  the process. There ex ists no a general rule of 

thumb for finding the best structure for the neurofuzzy model and determin ing the 

No. of the MF given in the input-output data. They are chosen empirical l y  by trial 

and error method. 

In order to e l iminate the trial and error process for finding the best structure of the 

neurofuzzy mode l ,  the fol lowing heuristic searching algorithm is implemented in the 

neurofuzzy computer program: 

Step 1 :  Determine the number of membership function (M F) being assigned to 

each i nput variables. Let us start with M F=2. 

Step 2 :  Search possible i nput combinations from the cons iderable input variables 

(in our case, 1 0  variables) .  Let us start to search for 2 input combination.  
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Step 3: For each combination, the neurofuzzy model i s  tested wi th the data set 

until one epoch .  Check the performance of model based on the RMSE 

(Eq. (5 .32» for each case. 

Step 4:  Then find a neurofuzzy model with the least RMSE value and save it. 

Step 5: Increase the number of input variable combination. Repeat step 2 to step 

4 unti l  finishing 4 i nput variable combination . 

Step 6: Change the number of MF. Repeat step 2 to step 5 .  

Step 7: The search i s  stopped if the number of  MF reaches at 4 .  

Step 8 :  Finally comparin g  the each  case saved in  step 4 ,  find the best structure of 

the neurofuzzy model , and run it . 

The out l ine of the heuristic searching algorithm is  shown in  Fig. 6. 1 3 . Figure 6 . 1 4(a)­

(b) represent some of result plots from the heuristic searching algori thm during the 

process of structure identi fication when MF=3 . The some results of the process of 

structure i dentification using the above algorithms are shown Table 6.4.  From Table 

6.4, the number of membership functions assigned to each input of the neurofuzzy 

model for the estimation of the biofi lm thickness (data set 1 )  was changed from 2 to 

5 .  

I n  Table 6.4, the structures, which h ave marked (#), are selected as a best structure i n  

each number o f  MF. The structure marked ( * )  i s  chosen as the best structure over al l 

possible structures. Table 6.4 shows that the best structure of neurofuzzy model over 

biofi lm thickness (data set 1 )  has YCk-2) Y(kA) U2(k- l )  U3(k- l )  when MF=3. 

Because the number of MF assigned to each 4 input variable i s  3, so the rule number 

of i s  8 1 .  The neurofuzzy model used here contains a total of 44 1 fi tt ing parameters, 

of which 36 premise parameters and 405 are consequent parameters . 
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Figure 6 . 1 3 . Out l ine of the heuristic searching algorithm for neurofuzzy system. 
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Table 6 .4 .  Identification results for structure of neurofuzzy models  using the heuristic 
searching algorithm over biofi lm thickness (data set I ) . 

No. of MF No. of Inputs Selected 
Input RMSE 

y(k-2) u 1 (k-2)  8.98 1 1 
y(k-3 ) u 1 (k- l )  9 .0401 

2 y(k- l )  u2(k-2) 9 . 1 1 69 
y(k- l )  u2(k- 1 )  1 0.3 1 3 1  

2 y(k-3)  u I (k-2) 1 1 .2706 
yCk- l) y(kA )  u l (k- I )(#) 7 .5 1 24 

3 y(k-2)  y(k-3) u 1 (k- 1 ) 8.45 1 4  
y(k- l )  y(k-2) u 1 Ck-2) 1 1 .4 1 47 
y(k-3) y(kA) u I (k-2) 1 8 .7352 

y(k-3) u 1 (k-2 1 1 .6448 
y(k- I )  u I Ck - 1 ) 1 3 .4890 

2 y(k-4) u2(k-2) 1 7 .6994 
y(k- l )  u2(k- l )  1 8 .0470 
y(k- l )  y(k-4) u2( k-2) 6.9856 
y(k- I )  y(k-3) u3(k- l) 8 .5606 

3 
3 y(k-3)  y(k-4) u2(k-2) 1 2 .3625 

y(k- I )  y(kA) u2(k- l )  1 2 .5877 
y(k-2)  y(kA) u2(k- l )  1 4 .4230 
y(k-2) y(kA) u2(k- l )  u3(k- l )  (*) 4.6048 
y(k-2)  y(kA) u I (k- l )  u2(k-2) 5 . 97 3 1 

4 y(k-2)  y(kA) u l Ck-2) u2(k- l )  6.4043 
y(k- l )  y(kA) u2(k- 1 )  u3(k- l )  6.7329 
y(k-2) y(k-3 ) u 1 (k-2 )  u2(k- l )  6 .7858 
y(k-2)  yCk-4) u3(k- l )  (#) 6.09 1 2  

4 3 
y(k- l )  y(k-3) u3(k- 1 )  6.6459 
y(k- l )  y(k-2) u2(k- l )  9 .3280 
y(k- l ) y(k-2) u3(k-2) 1 1 .8080 

3 y(k- I )  yCk-4) u2(k-2) (#) 7 .2390 

5 y(k- l )  y(k-2) u3(k- l )  8 .389 1 
y(k-2 ) y(kA) u3(k- l )  8 .2223 
y(k- I )  y(k-3) u3(k- l )  1 1 .2386 
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Fig. 6. 1 5  represents the initial membership functions for each variable before 

learning, and Fig. 6. 1 6  shows the membership functions for each variable after 

learning. After reaching 1 56 epochs, we have had RMSE for training = 3.96 1 and 

RMSE for testing = 4.604. 

Initial MF 5 on y(k-2) 

0.5 

o i:-----�----.:J 
40 60 80 100 120 

Initial MF 5 on u2(k- l )  

1 00  200 300 

Initial MF 5 on y(k-4) 

40 60 80 1 00  1 :JJ 
Initial MF s on u3(k- l )  

1 20 1 30 1 40 150 

Figure 6. 1 5 _ In it ial membership functions for each variable (data set 1 ) . 
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Figure 6. 1 6. Membership functions after learning for each variable (data set 1 ) . 
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Figure 6. 1 7 . Plots of training and testing data distriubution on each input variable 
(data set l ) . 
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Figure 6. 1 8 . Neurofuzzy model prediction of biofilm thickness with observed value: 

Ca) data set 1 Cb) data set 2. 
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Fig. 6 . 1 8 (a)-(b) shows the difference between the predicted value by a neurofuzzy 

model and the observed value, and demonstrates the abi l i ty of a neurofuzzy estimator 

to fit the rapidly growing biofi lm thickness during the startup phase of a TPFBBR. 

General ly ,  from Fig. 6 . 1 8 (a), l ag phase (within 50 hours after startup) of the growth 

of biofi lm  on the support particles after startup of the TPFBBR is observed. Thi s  lag 

t ime cou ld  be due to adsorption of dissolved organics at the surface of the support 

particle, and the attachment of in i tial  biofi lm on the support part icle .  In this stage, a 

smal l and uniform biofi lm of detectable thickness could  be observed on the edges of 

support particles and the biofi lm grows as dense, th in ,  uniform ly  distributed b iomass 

matrix which l acks the voids present in the thick b iofi lm .  After the lag phase, the 

biofi lm  thickness increased rapidly and then levelled off at approximately  1 35 /lm 

from 600 hour. From the Fig. 6 . 1 8, the biofi lm formation i n  a TPFBBR i s  slow s ince 

the 60-90% of biomass was detached continuously from the support particles 

(Tijhuis ,  et aI . ,  1 994). It is demonstrated that the neurofuzzy estimator produces the 

good simulation results and correctly i dentified even small change behavior in the 

biofi lm  thickness during the lag phase. 

Biofilm Density Estimation 

The structure identification for estimating the biofi lm  density model was done in the 

same manner as those used in the biofi lm thickness prediction model .  The data are 

written i n  { Y(k), Y(k- I ), Y(k-2), Y(k-3) ,  Y(k-4), U I (k- I ) , U l (k-2), U2(k- I ), U2(k-

2),  U3(k- I ) , U4(k- I ), k= 1 ,  4 1  } .  Like the estimation of biofi l m  thickness, neurofuzzy 

process estimator has 1 output and 1 0  i nputs for the estimation of biofi lm  density. 

The same procedure for finding the best structure of neurofuzzy estimator as that 

adopted for the est imation of biofi lm  thickness was appl ied for the estimation of 

biofi ]m density. Figure 6 . 1 9(a)-(b) represent some result plots from the heuristic 

searching algorithm during the process of structure i dent ification when MF=3 . The 

some results extracted from the heuristic searching algori thm during  the process of 
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structure i dentification are also shown Table 6 . 5 .  Table 6 .5 shows that the best 

structure of neurofuzzy model over biofi lm  density (data set 1 )  has Y(k- l )  Y(k-2) 

U2(k-2) U3(k- I ) . The neurofuzzy model used here contains 8 1  rules, with 3 MF 

being  assigned to each 4 i nput variable and total number of fitt ing parameters is 44 1 

which consist of 36 premise parameters and 405 consequent parameters . Fig .  6 .20( a) 

represents the i ni t ial membership functions for each variable before learning, and 

Fig. 6.20(b) shows the membership functions for each variable after learn ing .  

The plots i n  Fig .  6 .22(a)-(b) show the comparisons between the observed data and 

neurofuzzy estimation of the biofi lm density.  W ithin 50 hours after startup (Fig. 

6 .22(a», a small and uniform biofi lm  of detectable thickness cou ld  be observed on 

the edges of support particles. In the meantime, we observed that the increased 

biofi lm thickness caused the increase of b iofi l m  dens i ty to maxi mum value. This 

stage is not a dominant process during  the formation of the biofi lm.  From 50-70 

hours after startup, as the biofi lm  grows on the support particle, the biofi l m  density 

decreased i n  the i ncreas ing biofi lm thickness and levell ed off at approx imately 1 2  

mglcm3, con-esponding to 1 35 flm of the biofilm thickness. 

Fig. 6.23 shows 3-D surface response curve of the biofi lm  density with t ime and 

biofi l m  thickness. It i s  c lear that there exists the i nverse relationship between biofi lm 

thickness and i t s  density during  the formation of biofi lm  growth. 

It can be seen that the results predicted us ing neurofuzzy estimator, which accounts 

for varying biofi lm  thickness and its density in time, are in good agreement with the 

observed values. It is demonstrated that the neurofuzzy process estimator serves as a 

good numerical estimator and at the same time provides valuable information about 

the complex biofi lm growth which is difficult-to-model and difficult-to-measure. 
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Figure 6. 1 9(a). The result plots of the heuristic searching algorithm for structure indetification for biofilm density using data set 

l (when MF=3): 2 input selection cases. 



8' .... 
V> q C () 
� (D 
s· 0-(D c. ::n 
fl 
0'. g 
8' .... 
g o ::n 
8 

RMSE 



Chapter 6 .  Intell i gent Hybrid Model for a TPFBBR 1 72 

Table 6 .5 .  Ident ification results for structure of neurofuzzy models  using the heuri stic 
searching algorithm over biofi lm densi ty (data set 1 ) . 

No. of MF No. of Inputs Selected RMSE input 
y(k-3) u l (k- I )  3 .5247 
y(k-2) u2(k-2) 4 .9354 

2 y(k- I )  u3(k-2) 5 .0637 
y( k-2) u 1 (k- I )  5 . 1 1 89 
y(k- l )  u2(k- l )  5 . 1 495 
y( k- l )  y(k-4) u I (k-2) 9.0538 
yCk- l )  y(k-3) u2(k- l )  9.8 1 1 8  

2 3 y(k-3) y(k-4) u l (k- I )  1 0.42 1 8  
yCk- l )  y(k-2) u3(k-2) 1 1 .3029 
yCk-2) y(k-3) u I (k- l )  1 1 .7064 
y(k-3) y(k-4) u I ( k- l )  u 1 (k-2) (#) 3 .05 1 3  
y(k- I )  y(k-4) u l (k-2) u3(k- l )  3 .7405 

4 y(k- I )  y(k-3) u 1 (k- I )  u3(k- l )  3.7977 
y( k-2) y(k-3) u 1 (k- I )  u3(k- l )  4 . 1 59 1  
y(k- l )  yCk-3) u 1 (k-2) u3(k- l )  4 .3565 
y( k-4) u l ( k-2) 3 .7592 
y( k-2) u2( k-2) 9.4238 

2 
y(k-3) u2(k-2) 1 4.3874 
y(k- I )  u I Ck- I )  1 5 .0360 
y(k- I )  u2(k- l )  1 7 .7762 
y( k- I )  y(k-4) u2(k-2) 2.3497 
y(k-3) yCk-4) u 1 C k- I )  3 .9956 

3 3 y(k- I )  y(k-4) u3(k- l )  4 .5744 
y( k-2) y(k-4) u I ( k- I )  4 .8706 
y( k- l) y (k-3) u3( k- l )  6. 1 906 
y(k- I ) y(k-2) u2(k-2) u3(k- l )  ( *) 1 . 956 1  
y(k-2) y(k-4) u 1 (k- l )  u2(k-2) 2 .2748 

4 y(k- I ) y(k-4) u l (k-2) u2(k- l )  2.3598 
y( k- l )  y(k-3) u2(k-2) u3(k- l )  2 .38 1 5  
y (k- I )  y(k-4) u2(k- l ) u3(k· I )  23932 
y( k- I )  u2(k-2) 1 6. 1 288 
y(k-2) u I ( k- l )  1 8 .7777 

2 y(k-3) u I (k-2) 38.6724 
yCk-3) u I (k- l )  42.6744 

4 y( k-4) u I Ck- l )  65 .3808 
y(k- I )  y (k-4) u3(k- l )  (#) 2 .2467 
y(k-2) yCk-4) u3(k- 1 )  2.9422 

3 y(k- I )  y(k-4) u2(k-2) 3 . 1 355  
y(k-3) y(k-4) u I Ck- l )  3 .7554 
y(k- I )  y(k-4) u l (k- I )  3 .8833 
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Figure 6 .20. Membership functions on each variable (a) before learning (b) after 
learning (data set 1 ) .  
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Figure 6.2 1 .  Plots o f  training and testing data distriubution o n  each input variable 
(data set 1 ) . 
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Figure 6.22. Neurofuzzy model prediction of bio film density with observed value: (a) 
data set l (b) data set 2 .  
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Figure 6.23. 3-D plot o f  time and biofilrn thickness on biofilrn density (data set 1 ). 
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6.5.2 Predictions of Dynamic Performance using Hybrid 

Model for a TPFBBR 

The biofi lm  thickness and its density predicted by the neurofuzzy estimator are fed 

into axial -di spersion model and reaction-diffus ion model as parameters . The biofi lm 

thickness and biofi lm density are also used for the estimation of  some parameters 

such as the axial d ispersion coefficient (Eq. (6 .23» , the l iqu id-sol id  mass transfer 

coefficient (Eq. (6 .24» , and the phase holdups (Eq.  (6.25)-(6.27» . 

The phenol concentration profi les i n  the l iquid phase as a function of bed height at 

the different times are shown Fig .  6 .24 (data set I )  and Fig. 6.25 (data set 2) .  It can 

be observed that the prediction of phenol concentration profi les as a function of bed 

height at the different times agrees quite well  wi th off- l ine measurement data. From 

Fig. 6 .25-6 .26, during the biofi lm growth after startup, the phenol removal rate and 

phenol concentration profiles as a function of the bed height vary along with 

correspondin g  variations in biofil m  thickness and biofi lm density. The axial phenol 

concentration profile drops off sharply from the bottom of the reactor to 30 cm of the 

bed height s ince much of the bioparticle is located in this area. Thus, s ignificant of 

the substrate removal is taking place on approximately 35 % of the total bed height 

from the bottom of the reactor. In order to vi sual i se the dynamic behavior of 

TPFBBR, the 3-dimensional plots of the phenol concentration profi le  as function of 

bed height and time are shown in Fig .  6 .26(a)-(b). Fig. 6.27(a)-(b) also shows the 3-

D plots of phenol concentration profi les within the biofi lm.  

The intel l i gent hybrid model used here performs wel l in predict ing the phenol 

concentration profi les with a neurofuzzy process estimator and understanding the 

dynamic behavior of a TPFBBR process. It is demonstrated that the intel l i gent hybrid 

model used here provides a new comprehensive model for model l ing the dynamics 

of a TPFBBR, which i s  the most complex reactor system to model . 
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6.6 CONCLUSIONS 

We developed an intel l igent hybrid model l ing approach with a neurofuzzy process 

estimator to model a three-phase fluidised-bed biofi lm reactor (TPFBBR) .  The 

intel l igent hybrid model presented here consists of two parts including a neurofuzzy 

mode l ,  which serves as a process estimator of difficult-to-model process variables, 

and a mechan istic model ,  which represents a known mechanistic knowledge of the 

process system. 

Here, the neurofuzzy part of the hybrid model was used to estimate the variation of 

the biofi l m  thickness and biofi lm density in time. The outputs of the neurofuzzy 

process estimator subsequent ly form of part of the parameters for a mechanistic part 

of the hybrid model .  The axial-dispersion model and reaction-diffusion model, which 

use the knowledge from the wel l -establ ished general mode l ,  are used as the 

mechanistic model part of the hybrid model to describe the dynamic behavior and to 

predict the performance of TPFBBR system. 

It i s  demonstrated that the intel ligent hybrid model used provides a new 

comprehensive model for model l ing the dynamics of a TPFBBR, which i s  known to 

be very difficult and complicated to model . The intell igent hybrid model performs 

wel l  in model l ing the dynamic behavior of a TPFBBR over the observed data. This 

intel l i gent h ybrid model may be inexpensive,  accurate, and rel iable simultaneously ,  

and should  therefore be of potential interest for practical appl ication. 

It can be concluded that the hybrid model l ing presented here provide a new 

framework scheme for model l ing,  estimation, and predicting other complex 

biol ogical processes, such as a biofi lm reactor whose dynamics of the biofi lm growth 

are normal l y  poorly known and can not easi ly  be model led. This approach therefore 

permits analysis and control of complex biological processes and reactors. 



Chapter 7 
Conclusions 
7. 1 SUMMARY 

This thesis presents new models of a TPFBBR based on several model l ing 

approaches. The issues we aimed to address include (a) developing the dynamic  

biofi lm growth model, which reflects variation of  biofilm thickness and its density in  

time, (b) implementing an integrated model incorporating dynamic b iofilm growth to 

describe the dynamic  behaviour of a TPFBBR, (c) developing the sequential neural 

network model as an alternative to tedious mechani sti c  models, and (d) developing 

the i ntelligent hybrid model with a neurofuzzy process estimator as a new modell ing 

scheme. 

Several conclusions can be drawn as a result of this research project. They are: 

1 .  In Chapter 4, based on a mechanist ic model l ing approach, the dynamic  biofilm 

growth model, which reflects variation of biofi lm thickness and its density in  

time, i s  derived from a b iomass balance equat ion using the method of 

characteristics. The biofi lm detachment model is also proposed and incorporated 
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within the dynamic  biofilm growth model .  In  our biofi lm growth model 

incorporating detachment, the biofilm thickness and its density can be predicted 

in one model at a given time. It can be seen that the results predicted using a 

dynami c  biofilm growth model, which accounts for varying b iofi lm thickness and 

its density in time, are in good agreement with experimental data. 

2 .  In  Chapter 4, the dynamic biofilm growth model with detachment is  combined 

with a reaction-diffusion model and reactor model to from an i ntegrated model of 

TPFBBR. The integrated model developed can describe the dynamic behaviour 

of TPFBBR. S imulation method of i ntegrated model i ncorporat ing the dynamic  

biofi lm growth model i s  developed. I t  i s  observed that the prediction of  phenol 

concentration profiles as a function of bed height at the different times agrees 

well with experimental data. 

3 .  Chapter 5 yields the appl ication of a neural network model, as an alternative to 

complex mechanistic models of modell ing of the dynamic  change of the biofilm 

thickness and biofilm density and to predict the dynamic  performance of a 

TPFBBR. To develop a model describing the process dynamics i n  a TPFBBR, 

the sequential neural network model is developed. The sequential neural network 

model presented here i s  composed of two palis. The first part, the neural process 

estimator, can serve as a nonparametric approximator of difficult-to-model 

process variables such as the biofi lm thickness and biofilm density to estimate 

the biofi lm thickness and biofi lm density with the avai lable m easurement 

variables. The second part, the neural process predictor, can predict the dynamic 

change of performance of the TPFBBR based on the estimated b iofilm thickness 

and biofilm density by the neural process estimator, and other measurement 

variables. It i s  demonstrated that the sequential neural network modell ing 

approach proposed here provides a good alternative to describe the dynamic 

behavior of a TPFBBR and has the potential to be successfully implemented 

within a control scheme such as a nonl inear model predictive control (NMPC) 

scheme. 
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4. The results presented i n  Chapter 6 clearly show how the combination between 

two different modell ing approaches, referred to as a hybrid model, can be  

coupled and uti l ised to model a TPFBBR. The intel l igent hybrid model has a 

neurofuzzy process estimator to model the comp l icated TPFBBR. The results 

predicted using a neurofuzzy process estimator component of the hybrid model, 

which accounts for varying biofi lm thickness and its density in time, are in good 

agreement with the observed values and thus the neurofuzzy process estimator 

serves as good numerical estimators. The mechanist ic model components 

(reaction-diffu sion model and axial-dispersion model) of the i ntell igent hybrid 

model also perform well in predict ing the phenol concentration profi les with a 

neurofuzzy process estimator and an understanding the dynamic  behavior of 

TPFBBR processes. This hybrid modell ing approach can be  of potential interest 

for practical appl ications and it suggests further work. 

7.2 APPLICABILITY OF MODELS DEVELOPED 

IN THIS THESIS 

The purpose of this section i s  to summarise and advice on the appl icab i l ity of the 

model l ing approaches implemented in this thesis .  The different modeIl ing 

approaches implemented i n  this thesi s  are compared in Fig. 7 . 1 .  

At the early stages in  the model development, which i s  characterised by a lack of 

both empi rical and mechanistic knowledge, an empirical model l ing approach such as 

the neural network model presented in  chapter 5 will often be usefu l  as a starting 

point for more knowledge and eventually developing a mechanistic model . In 

process model l ing, the transparency of the process model i s  i mportant because model 

validation, model analysis, result i nterpretation, and appl ication of the model are 

strongly dependent on a transparency of the model . From the transparency's point of 

view, the neural network modell ing approach i s  often a black box that can not be 

directly interpreted in  terms of the system mechanisms for a TPFBBR due to lack of 
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transparency. That i s  one major reason why the neural network model has only a 

l imited appl icab i l ity. 

Good 

-� r..J 
. ... 

I. 
. ... 

Q-
C � 

Poor 

Empirical 
Model 

Poor Mechanistic kn owled ge 

Figure 7 . 1 .  Different model l ing paradigms. 

Good 

In contrast, process engineer with the neural network model can coll ect more data, 

and end up i n  a state with more data and perhaps some improved mechanistic 

knowledge. In addition, the neural network model is  often more accurate than a 

mechanist ic model when the process i s  operating under s imilar conditions as when 

the data were col lected. This result is also found in this thesis .  Furthermore, the 

neural network model can be justified by the reduced time and effort required in  

building the models in  real-world model l ing problems. Linear empirical input/output 

models have been often used for model predictive control algorithms i n  some 

industries (Johansen, 1 994) . In the near future, the growing demand for improvement 

of process operation and supervision may require advanced controllers based on 

nonl inear models to become standard. Thus, the sequential neural network model 
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presented i n  Chapter 5 will have great advantages of applicabi l ity for the control of a 

TPFBBR. 

In general, the mechanist ic model has contributed greater understanding of the 

TPFBBR system, and is the ultimate goal of al l model development of a TPFBBR. 

The mechan istic model is generally appl icable for a wider class of problems than the 

empirical model due to the transparency of the model. Formulating an accurate 

model based on a mechanistic approach, however, requires very time-and money­

consuming tasks since a deep understanding of the specifi c  system mechanisms i s  

not always avai lable and certain aspects of  the system are not suffi ci ently wel l 

understood. 

Using the mechanistic  model l ing approach, the integrated model incorporating 

dynamic  b iofilm growth is developed i n  Chapter 4, but an open question remains: 

Does the dynamic biC?ftlm grmvth model presented in Chapter 4 describe 
the phenomena of Mofilm growth completely? 

Although considerable amount of research has been undertaken to describe the 

biofi lm growth on the support particles in a TPFBBR over the past three decades, 

knowledge of the system is stil l l imited due to the complex and often poorly known 

nature of biofi lm growth process. Most of mechanistic models for a TPFBBR are 

steady-state models that do not consider the dynamic biofi lm growth, but the 

integrated model developed in Chapter 4 incorporates the biofi l m  growth as a 

dynamic  process. Therefore, our mechanistic model provides a real istic description 

of a TPFBBR. As new phenomena for biofi l m  growth are discovered and more 

process data become available, incomplete knowledge can be updated i nto our model 

and our model can be i mproved. 

Unti l  recently, although both mechanistic and empirical models have strong points 

which can compensate weak points of both, the hybrid model (semi-mechanistic 

model, or semi-empiri cal model) has general ly been avoided. A major reason for this 



7. Conclusions 1 89 

may be that software tools with a power of high-speed computation have been 

lacking. Along with the rapid  improvement of computer technology, the hybrid 

model l ing approach has recently attracted considerable attention in process 

model l ing because of the i ncreasing demand for nonlinear models to be appl ied in  

advanced controller, diagnosis systems, supervision, and optimal design. The hybrid 

model l ing approach presented in Chapter 6 gives a model that is reasonably 

transparent, and supports both the empirical and mechanistic model l ing approaches 

(Fig. 7. 1 ) . This is flexible in the sense that it may have different characteristics that 

depend on 

• model representation 

• amount and qual ity of relevant knowledge 

• amount of relevant data available 

• level of transparency 

• type of empirical models used with it, l ike neural network, neurofuzzy, 

NARX (nonl inear autoregressive model with exogenous i nputs), and 

NARMAX (nonlinear autoregressive moving-average model with 

exogenous inputs) etc. 

For modelling complex problems such as a TPFBBR, the flexibi l ity of a hybrid 

model l ing approach with its transparency is the major advantage because it i s  

characterised by a moderate combination of  both mechani stic knowledge and 

empiri cal data. Compared to the neural network modell ing approach presented i n  

Chapter 5, the hybrid modell ing approach of  Chapter 6 has the same abi l ity to  fi t  data 

to an empirical model and provides greater transparency within the model . In 

contrast, the hybrid model may be thought of as a mechanistic model which contains 

process parameters whose dependence on process variables i s  modelled by an 

empirical model, in  this case a neuroflIzzy model .  Our hybrid model provides the 

same level of model transparency as the exi st ing steady-state models for a TPFBBR 

and demonstrates how the l imitation of the exi sting steady-state models for a 

TPFBBR can be overcome. 



7. Conclusions 1 90 

The hybrid model l ing approach due to its flexibi l ity provides a unified framework 

through the incorporation of strong points for both mechanistic and empirical 

models .  In addition, it plays an important role as a bridge because i ncomplete 

knowledge described by empirical models can be substituted with i mproved 

knowledge and it may l ead to a completely mechan ist ic model for a TPFBBR as the 

mechani sms are better understood. The hybrid model l ing approach presented i n  

Chapter 6 provides a new modelling framework with a great potential of  applicabi l ity 

to the other types ofbiofilm reactors. 

This thesis represents a research effort on developing mathematical models 

incorporating biofilm growth using three different modell ing approaches. The 

research findings bear importance to successful reactor design, operation, 

supervision, and control of a TPFBBR for future industrial appl ication. 



NOMENCLATURE 

A bed cross-sectional area ( cm2 ) 

ap biofi lm surface area per unit volume of solids ( cm-l ) 

Ar, l iquid Archimedes number 

bde biofi lm detachment coefficient ( sec-1 ) 

e; phenol concentration i n  the b iofi lm phase ( mg / cm3 ) 

c;n in let phenol concentration ( mg / cm3 ) 

C: phenol concentration in  l iquid phase ( mg / cm3 ) 

dbP bioparticle d iameter ( cm ) 

dsp support particle diameter ( cm )  

Dc reactor diameter ( cm ) 

Dm molecular diffusivity in l iquid.  

Dif effective diffusion coefficient in the biofilm ( cm2 I sec ) 

E specifi c  energy dissipation rate 

EL axial-dispersion coefficient ( cm2 I sec ) 

E p energy dissipation rate 

E axial sol id  dispersion coefficient s 

Fr Froude number 

g gravitational acceleration 

Ga Gal l i l eo number 

H bed height ( cm )  

He expanded bed height ( cm )  

K, inhibition constant of substrate 

K,a gas-l iquid mass transfer coefficient 

kZs l iqu id-soli d  mass transfer coefficient ( cm I sec) 



NOMENCLATURE 

K s saturation constant of substrate (mg / em3 ) 

L radial position within the bioparticle 

Lf biofi lm thickness ( cm )  

L i nitial biofilm thickness ( cm ) fo 
Mbp total mass ofb iopartic1es ( mg )  

I.1P pressure drop across the bed 

Pe Peclet number L 

Rd detachment rate 

Re Reynolds number 

Re1mf l iquid Reynolds number at minimum three-phase fluidization 

Se Schmidt number 

Sh Sherwood number 

SI Stanton number 

U (L f ' t) velocity of the biofilm thickness change ( cm / sec ) 

u(e:) specific growth rate ofbiofilm ( sec� l ) 

11 net specific  growth rate of the biofilm ( sec� l ) 

umax maximum specific growth rate ( sec- 1 ) 

UL superficial l iquid velocity ( cm / sec ) 

Ulm! minimum fluidization velocity 

U;�if l iquid velocity at minimum l iquid-slid fluidisation 

U G superficial gas velocity ( cm / sec ) 

U10 terminal fal l ing velocity of a single particle in  an infinite l iquid medium 

VG velocity gradient 

X!, biofilm density ( mg / em3 ) 

XL, maximum biofilm density ( mg / em3 ) 

Yxjs growth yield coefficient of substrate 

Z axial d istance from the bottom of bed 
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NOMENCLATURE 

Greek letters 
amf gas holdup on solid-free basis 

&g gas holdup 

&z l i qu id  holdup 

&111j bed porosity at min imum fluidization velocity 

&s solid  holdup 

JLL viscosity of l iquid 

Pbp density of b iopartic1e ( mg / cm' ) 

Pbw wet density ofbiofilm (mg / cm3 ) 

PG density of gas 

PL density of l iquid 

PIP density of support particle ( mg / cm3 ) 

T l iquid shear stress ( dyne/cm 2 ) 
rjJ particle shape factor (0.906), 

Superscrpts 
f biofi lm phase 

I l iquid phase 

in i nl et 

s surface of biofi lm 

Subscripts 
s substrate 
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Appendix A 

Main FORTRAN program for a TPFBBR used in  Chapter 4. 

C* * * * * * * ** * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * ** *C 
C* *C 
C* COMPUTER PROGRAM FOR THREE-PHASE FLUIDIZED BED *C 
C *  BIOFILM REACTOR TO SOLVE HYDRODYNAMIC MODEL, *C 
C *  B10FILM GROWTH MODEL,REACTION-DIFFUSION MODEL. *C 
C* A1\TD REACTOR MODEL HA VING NON LINEAR TIME-DEPENDENT *C 
C* PARTIAL DIFFERENTIAL EQUATIONS *C 
C* *C 
c· 
C* 
c· 
c· 
c· 
C* 
C* 
c ·  
c· 
c· 
c· 
c· 
c· 
c· 
c· 
c· 
c· 
C* 
c ·  
c ·  
C' 
c· 
c· 

THIS PROGRAM USE THE FOLLOWING SUBROlrfINE NAMED 
I . INTODE (FOR STIFF PROBLEM) 

STIFF 
JACOBN 
LUSKSB 
LUDC M P  

2.0NEI'DE INTERFACE 
EQUATION 
BOUNDARY 
DIFFUSION 

' C  
* C  
*C 
*C 
*C 
*C 
'C 
*C 
*C 
*C 
'C 
*C 

ONEPDE IS AN INTERFACE SUBSROUTINE WHICH USES CENTERED *C 
APPROXI MATIONS TO CONVERT ONE-DIMENSIONAL SYSTEMS OF 'c 
PARTIAL DlFFERENCIAL EQUATIONS INTO A SYSTEM OF ORDINARY *C 
DIFFERENTIAL EQUATIONS. THIS ROUfINE IS INTENDED TO BE *C 
USED WITH A ROUBST ODE INTEGRATOR. INTODE. *C 

PROGRAMMER : YOON-SEOK HONG 
Institute of Technology & Engincering 

Masscy Univcrsity 

*C 
*C 
*C 
*C 
*C 
*C 

C** * * ** * * * * * * * * * * * * * * * * ** ** *** * ** * * * * ** *** * * * * ** * ** * ** * ** * ** * * * * * * * * * * *C 
C 
C MAIN PROGRAM FOR A THREE-PHASE FBBR. 
C TIllS I'ROGRA'vl lMPLEMENTS A BIOFILM GROWTILREACTOR, REACTlON­
C DIFFUSION MODELS. 
C 

C 

c 

INTEGER K MAXX,NMAX,NEQN 
PARAMETER (KMAXX=300,NMAX=500) 
INTEGER I,K M AX,KOlJNT,NBAD,NOK,NPDE,NPTS,KODE,IK 
R EAI� EPS, H l ,lIMIN,Xl ,X2,X,Y 

COMMO;\l /PROB/KODE 
COMMON IBIO I /DIASP,DIABP,DENBP,AP,SH,DM 
COM MON IHY D RO I IH, VOLR,DlAR,DENSP,DENL,DENG, VISL, VISG 
COMMON IHYDR02/RGAPE,lIMF2.UMF3,FR,ARL 
COMMON fSIMULIfUL,UG,EL,RKLA,RGILRSH,RLH,CIN 
CO M MON /SI MUL2/UMfu'l:,EKS,RKS,RKO.Dl FS, YXS, YXO,EFB,RLF,DENB,ARRKI 
COMMON /l'ATH/ KOUNT,X(KMAXX),Y(NMAX,KMAXX) 
COMMON NRHS 
COMMON fMESH/XX( l S) 
COMMON ICOORD/ICORD 
COMMO;\l fSIZES/NPDE,t'WrS 
DIMENSION Y START l ( 1 5),YSTART2( l 5),YSTART3( 1 5) 
EXTERNAL INFILE,HYDRODYNAM ICS.ONEPDE,STIFF 

DO 1 000 IK=1 ,3  
KODE=IK 
IF(KODE.EQ. l )  GO TO 700 
I F(KODE.EQ.2) GO TO 800 
I F(KODE.EQ.3) GO TO 900 
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700 CONTINUE 
C 
C DEFINE INPUT PARAMETRS OF ODE INTEGRATOR FOR REACTOR MODEL 
C (INITIAL TIME, FINAL TIME, TIME STEPSIZE et,a l .)  
C 

C 

NRHS�O 
X 1 �0.0 
X2= 1 00. 
EPS= I .OE-4 
H I =0.05 
H MIN=O.O 
KM A.\:= 1 00 
DXSAV l =(X2-X l )/50.0 

C DEFINE INPUT PARAMETRS OF ONEPDE FOR REACTOR MODEL 
C 

C 

ICORD�O 
N PDE= I 
NPTS= 1 5  
N V AR= 1 5  

C OPEN OUTPUT FILE 
C 

CALL INFlLE(X I , X2,EPS.H I ,H MIN,KMAX) 
C 
C EXECUTE THE HYDRODYN AMIC MODEL OF THREE-PHASE FBBR. 
C 

CALL HYDRODYNAMICS 
C 
C DEFINE M ES H  AND INITIAL CONDITION FOR REA.CTOR 
c 

D X l  =72.1FLOAT(NPTS - I ) 
DO 50 K = l ,NPTS 

XX(K)=FLOAT(K-l )*DXl 
CO=0. 1 5  

50 YSTARTI (K)=CO 
C 

C 

CALL INTODE(YSTARTI ,NVAR, X l , X2,EPS,H I ,HMIN,NOK, 
* NBAD,ONEPDE,STIFF,DXSA V I  ,KMAX) 

C PRINT OUT OF RESULTS-TABLE H E ADING FOR REACTOR MODEL. 
C 

C 

W RITE(6,'(/5XAT52,16)') 'SUCCESSFUL STEPS: ',NOK 
WRITE(6,'(5X,A,T52,16),) 'BAD STEPS: '.NBAD 
WRITE(6,'(5X,A,T52,16)') 'FUNCTION EVr\LUA.TIONS :  '.NRHS 
W RITE(6,'(5X,A, 1'52,16),) 'STORED INTERMEDIATE VALUES:  '.KOUNT 
WRITE(6,38)tTL,UG,CIN,CO,RLF,RSH 
D X I  =72.1FLOAT(NPTS-I ) 
DO 64 K= I , N PTS 

XX(K)=FLOAT(K-l )*DXl 
64 CONTINUE 

W RITE(6,39)XX( I ),XX(2),XX(3 ).XX( 4 ),XX(5 ),XX(6).XX(7),XX(8) 
DO 65 I = l , KOUNT 

WRlTE(6,40)X(I), Y(  1 ,1), Y (2,1), Y(3,l), Y (4,1), Y(S,I), Y( 6, 1), 

Y (7.1), Y (8,1 )  
65 CONTIN1.JE 

W RlTE(6,4 1 )  
W RITE(6,42) 
WRITE(6,43)XX(9),XX(I O),XX(l 1 ).XX(l 2),XX( 1 3),XX( l 4).XX( l 5) 
DO 66 1 = I ,KOl!NT 

W RITE( 6,44)X(I), Y(9,1), Y ( 10,1), Y ( l l ,I), Y ( 1 2,1), Y ( 1 3,1), Y ( 1 4,1), 
Y( l 5,l) 

66 CONTINUE 
WRITE(6,45) 

38  FOR M AT(//1 8X,34H*** * SIMULATION RESULTS TABLE * * * * ,/1 
*3X,40HTHE SUPERFICIA.L LIQUID VELOCITY UIF,F7.4/ 
*3XAOHTHE SUPERFICIAL GAS VELOCITY UG�.F7.4/ 
*3X,40HTHE INLET S UBSTRATE CONCENTRATION CIN�,F7.41 
*3X,40HTHE INTIAL SUBSTRATE CONCENTRATION, CO =.F7.41 
*3 XAOHTHE BIOFILM THICKN ESS RLF=,F7.4/ 
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APPENDICES 

*3X,40HTHE SOLID HOLDUP RSH=, F7.4 
*11 1 4X,5 I HCONCENTRATIONS AS A FUNCTION OF TIME AND BED HEIGHTI 
*2X,75( I H -)/4X,5 H  TIM E,2X, I HI, I X,22H DISTANCE FROM THE , 
* 1 X, 1 7H BOTTOM OF REACTOR) 

· 39 FORMAT(/ I OX, I H I, I X,8F8.2I2X,75 ( I H-» 
40 FORMAT(/2 X,F7.3, I X, 1  HI, I X,8F8.4) 

4 1  FORM AT(I2X,75( I H-» 
42 FORM AT(11 1 4X,5 I HCONCENTRATIONS AS A FUNCTION OF TIME AND BED HEIG 

*HT/2X,75 ( 1  H-)/4X,5H TIME,2X, I HI, I X,22H DISTANCE FROM THE , 
* I X, 1 7HBOTTOM OF REACTOR) 

43 FORM AT(/I l X , 1  H I , I  X,8F8.4/2X,75( I H-» 
44 FORM AT(/2X, F8.3, I X, 1  HI, I X,8F8.5) 
45 FORM AT(/2 X, 75(1  H-» 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *C 

C 
GO TO 1 000 

800 CONTINUE 
C 
C DEFINE INPUT PARAMETRS OF ONEPDE FOR REACTION-DI FFUSION MODEL 
C 

C 

ICORD=2 
N PDE=I 
N PTS= 1 5 
N VAR= I S  

C DEFINE INPUT PARAMETRS OF INTEGRATOR FOR REACTION-DIFFUSION MODEL 
C (INITIAL TIME, FIN AL TIME, TIME STEPSIZE et at .) 
C 

C 

NRH S=O 
X I 2=0.0 
X22=SO. 
EPS2= 1 .0E-4 
H I 2=0.003 
H MIN2=0.0 
K M AX= I OO 
DXSAV2=(X22-X I 2)/SO.0 

C DEFINE M ES H  AND INITIAL CONDITION FOR REACTION-DIFFUSION MODEL 
C 

DX2=0.00629/FLOA T(NPTS- I )  
DO 1 00 I= I ,NPTS 

A'X(I)=FLOAT(I- l )*DX2 
BO=O.O 

l OO YSTART2(1)=BO 
C 

C 

C 

CALL INTODE(YSTART2, V AR,XI 2,X22,EPS2,H 1 2, HMIN2,NOK, 
* NBAD,ONEPDE,STIFF,DXSA V2,KM AA') 

WRlTE(6,'(lSX,A, TS2,16)') 'SUCCESSFUL STEPS: ',NOK 
WRlTE(6,'(SX,A, TS2, 16),) 'BAD STEPS: ',NBAD 
WRlTE(6,'(SX,A, TS2,16),) 'FUNCTION E VALUATIONS:  ',NRHS 
W RlTE(6,'(SX,A, T52,16),) 'STORED INTERMEDIATE VALUES:  ',KOUNT 

C PRlNT OUT OF RESULTS-TABLE HEADING FOR REACTION-DIFFUSION MODEL 
C 

WRlTE(6, 1 40) 
DX2=0.00629IFLOA T(NPTS - I )  
D0 200 K= I ,NPTS 

XX(K)=FLOAT(K - I  ) *DX2 
200 CONTINUE 

WRlTE(6, 1 50)XX(1 5),XX(\ 4),A'X( l 3 ),XX( 1 2),XX( I I ),XX( 1 0 ),XX(9) 

DO 2 1 0  1= I , KOU NT 

W RlTE(6,350)X(I), Y ( I S,I), Y( 1 4,1), Y( 1 3,1), Y ( 1 2,1), Y(I I , I), 
* Y( 1 0,l),Y(9,1) 

2 1 0  CONTINUE 
W RITE(6,400) 

WRlTE(6,40 I )  
W RlTE(6,402)XX(8),XX(7),XX(6),XX(5),A'X(4),XX(3),XX( I )  
DO 220 I= I , KOUNT 

WRITE(6,403 )X(I), Y (8,1), Y(7,1), Y(6,1), Y (S,I), Y( 4,1), Y(3,1), Y( I ,I) 
220 CONTINUE 
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W R ITE(6,404) 
C 

1 40 FOIUvIAT(1!1 4X,48HCONCENTRATIONS AS A FUNCTION OF TIME AND BIOFILMI 
*2X,7S ( lH -)/4X,SH TIME,2X, l HI , l X,22H DISTANCE FROM THE , 
* 1 X,24HBlOFILM-LIQUID INTERFACE) 

1 50 FORMATe/ l l X, l HI , l X,8F8.4/2X,7S( I H-» 
350 FORMAT(l2X,F8.3, 1 X, 1 HI,!  X,8F8.5) 
400 FORMAT(i2X,75( l H-» 
401 FORMAT(//1 4X,48HCONCENTRATIONS AS A FUNCTION OF TIME A"lD BIOFILM/ 

*2X,7S( 1 H-)/4X,5H TIME,2X, 1 HI, 1 X,22H DISTANCE FROM THE , 
* 1 X,24HBIOFlLM-L1QUID INTERFACE) 

402 FORMAT(Il I X, I HI, l X,8F8.4!2XJS( l H-» 
403 FORMAT(/2X,F8.3, I X, 1  H1, l X,8F8.5) 
404 FORMAT(/2X,75(l H-» 

C** * * * * * ** * ** * * * * ** * * * * ** * * * * * * * * ** * * * * ** * * * * * * * * ** * ** ** * * * * ** * * * * * *C 

C 
900 CONTINUE 
C 
C DEFINE INpln' pARAMETRS FOR B10FILM GROWTH MODEL 
C 

C 

ICORD�2 
NpDE=l 
N pTS= 1 5  
N VAR= I S  

C DEFINE INPUT pARAMETRS OF INTEGRATOR FOR B10FILM GROWTH MODEL 
C (INITIAL TlME,FINAL TIME, TIME STEPSrZE et al .)  
C 

c 

NRHS=O 
X I 3=0.0 
X23= I S .  
EpS3= 1 .0E-4 
H \ 3=O . 1  
J-lMIN3=0.0 
K M AX= l OO 
DXSAV3=(X22 -X I 2 )/50.0 

C DEFINE M ES H  AND INITIAL CONDITION FOR BlOFILM GROWTH MODEL 
C 

DX3=O.006/FLOAT(NpTS- I )  
DO 40S I = l ,NPTS 

XX(I)=FLOAT(l- 1 )*DX3 
B 1 O=O.OO I 

405 YSTART3(I)=Bl O  
C 

C 

C 

CALL ODE(YSTART3,N V AR,X1 3,X23,EPS3 , H I3,HMIN3,NOK, 
* NBAD,GROWTH,STIFF,DXSAV3,KMA.X) 

W RITE(6,'(/5 X.A,T52,16)') 'SUCCESSFUL STEPS: ',NOK 
W R ITE(6,'(5X,A, T52,16)') 'BAD STEPS : ',NBAD 
WRITE(6,'(5X,AT52,16)') 'FUNCTION EVALUATIONS: ',NRHS 
W R ITE(6,'(5X,A,TS2,16)') 'STORED INTERMEDIATE VALUES: ',KOUNT 

C PRINT OUT OF RESULTS-TABLE H E ADING FOR BiOFlLM GROWTH tvlODEL 
C 

W RITE(6,406) 
DX3=0.00629/FLOAT(NpTS- I )  
D O  407 Kco l , NPTS 

XX(K)=FLOAT(K-I )*DX3 
407 CONTINUE 

W RITE( 6,  4(8)XX( 1 ),XX(2),XX(3 ),XX( 4 ),XX( 5),XX( 6),XX(7) 
DO 409 l= l ,KOUNT 
W RITE(6,4 1 O)X(I),Y ( 1 ,1), Y (2,1),Y (3,1), Y (4.1), Y (5,1), 

* Y(6,l),Y(7,I) 
409 CONTINUE 

WRITE(6,4 1 1 )  
WRITE(6,4J 2) 
W RITE(6A1 3)XX(8),XX(9),XX(l O),XX( 1 1 ),XX( 1 2),XX(l 3),XX( 1 4) 
DO 4 1 4  I = I , KOUNT 
W RITE(6A 1 5)X(I), Y (8,1), Y(9,I),Y ( 10,1), Y ( 1 1 ,1), Y ( 1 2,1), Y ( 1 3,1), 
* Y ( 1 4J) 
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414 CONTINUE 
WRITE(6A I 6) 

C 
406 FORMAT(111 4X,4SHCONCENTRA TlONS AS A FUNCTION OF TIME AND BIOFILMI 

*2 X,75 ( l H-)/4X,SH TlME,2X, I HL l X,22H DISTANCE FROM THE . 
* l X,24HBIOFILM-L1QUID INTERFACE) 

408 FORMAT(I l I X, I HI, 1 X.8FS.4/2X,7S ( I H -)) 
4 1 0  FORMAT(i2X, F8.3. I X, I HI, I X.8F8.5) 
4 1 1 FORMAT(/2X,75(I H-)) 
4 1 2  FORMAT(1!l 4X,48HCONCENTRATIONS AS A FUNCTION OF TIME AND BIOFILMI 

*2X,7S( l H-)/4X,SH T1ME,2X, I HI, I X,221-1 DISTANCE FROM THE , 
* I X.24HBIOFILM-LIQUID INTERFACE) 

4 1 3  FORMAT(l I I X, l HI . I X,8FS.4/2X,75 ( I H-)) 
4 1 5  FORMAT(/2X,F8.3, l X, I Hl. l X,8F8.5) 
4 1 6  FORMAT(/2X,7S ( l Il-)) 

C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *C 
c END OF MAIN PROGRAM FOR A TPFBBR c 
C* * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *C 

1 000 CONTINUE 
STOP 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccCCCCCCCC 
C OPEN INPUT AND OUTPUT FILES FOR PARAMETRS USED IN S I M ULATION C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

C 

S UBROUTINE INFILE(X I ,X2,!.�PS, I I I , HMIN,KMAX) 
INTEGER K M A.,\:X,NM AX,NEQN 
PARAMETER (KMAXX=300,NMA.X=SOO) 
INTEGER KMAXKOIJNTNRHS,NPDE.NPTS 
REAL H I ,HMIN,Xl ,X2,X,Y 
COMMON IPATHI KOUNT,X(KMA.\:X),Y(NMA.\:,KMA,'\X) 
COMM ON NRHS 
COMMON IMESH/XX ( l 5) 
COMMON ICOORDIlCORD 
COMMON ISIZES/NPDE.NPTS 
EXTERNAL PDE,STIFF,SETPC 

CALL SETPC 

C HEADING PRINTOUT 
C 

C 

WRITE(6 , l O) 
WRITE(6, 1 1 ) 
W RITE(6, 1 3) 

C WRITING INPUT PARAMETRS OF ONEPDE FOR REACTOR MODEL 
C 

C 

W RITE(6, 1 4) 
WRITE(6, I S)NRHS, X I ,X2 
W RITE(6, 1 6)H I ,HMIN,KMAX 
WRITE(6, 1 7)ICORD.NPDE,NPTS 

1 0  FORMAT(65 (l H*)!I H* ,63 X , l H*! 
* I H*, 1 8X,25HNUMERICAL SOUrnON OF THE,20X, I H *1 
* I lI *, 1 3 X,38HMATHEMATICAL MODELLING FOR THREE-PHASE, 

1 2X, I Il */ I H*, 1 7X,29HFLUIDIZED BED B IOFILM REACTOR, 
1 7X, l H*/ I H* ,63X, 1 H */ I H* ,63X. l H *) 

I I  FORMAT(I H*,63X, I H*1  
* I H*, 1 5X,33HTHlS PROGRAlvl USE ONEPDE INTERFACE, 1 5X, I H *I 
* I H*, 1 2 XAOHAND A ODE's INTEGRATOR FOR STIFF PROBLEM, 

I IX, l H*I l H*,63X, l H *1 l  H *,63X, I H*) 
1 3  FORMAT(l II*, 1 8X,27HPROGRAMMER : YOON-SEOK HONG, 1 8X. 1 H *1 

• l H *,63X, I H *16S( l H *)) 
14 FORMAT(!15X,37H* * *  INPUT DATA FOR ODE INTEGRATOR '* */1) 
1 5  FORMAT(5X,43HSTEPSIZE TO THE INITIAL TRL·\L VALUE N R Il S=,I41 

5X,43HINITIAL TIME STEP T l =,FI O.31 
5X,43HFINAL TIME STEP T2=, F I O.3) 

16 FORMAT(5X,43I1A m fSSED FIRST STEPSIZE H l =. E 1 3.51  
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* 5X,43I-ITHE MINII\1UM ALLOWED STEPSIZE HMIN=.E IJ .S/  
5X,43HTHE NUMBER OF STEPS TO BE STORED KM�\:=,15) 

1 7  FORMAT(115X,35H * * *  INPUT PARAMETERS FOR ONEPDE *** 11 

* 5X,43HCOORDlNATE SYSTEM INDICATOR ICORD=,141 
5X,43HNUMBER OF PDE's NPDE=J6/ 
5X,43HNUMBER OF SPATIAL GRID POI1'\TS NPTS=,16) 

25 FORMAT(ZX,3(F6.3,2X» 
26 FORMAT(I2 X, E l 1 .4,2X,F6.3,2X,E I 1 .4) 
27 FORMAT(/2X,3( E I 1 .4,2X)) 
28 FORMAT(/2X,2(E I I A» 
30 FORMAT(2X,2(E l I A,2X» 
3 1  FORM AT(2X.3(F7A,3X» 
32  FORMAT(2X,E l l .4,2X,F7. 1 ,2X.F4. 1 )  

RETURN 
END 

CC 
CC 

SUBROUTINE SETPC 
CC 

C 

CHARACTER OUTFI L* 1 2  
DATA OUTFILI' 'I 
WRITE(*,'(I 1 X,AI)')' ENTER OUTPUT FILE N AME (e.g.,OUTFILE.DAT): ' 
READ(*,'(BN,A)')OUTFIL 

C OPEN UNIT 6 FOR OCTPUT 
C 

OPEN(6,FILE=OOTFIL) 
WRITE(*,504) 

504 FORMAT«((l, I OX:* * *  PLEASE WAIT, RESULTS ARE DEVELOPING * ** ',/) 
RETURN 
END 

CC 
CC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C HYDRODYNAl\1IC FOR THREE-PHASE FBBBR C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C 

SUBROUTINE H YDRODYNAMICS 
COMMON IBJO] /DIASP,DlABP,DENBP,AP,SH,DM 
COMMON IHYDROI /H, VOLR,DlAR,DENSP,DENLDENG, VISL, VISG 
COMMON IlIYDR02IRGA,PE,UMF2,{)MF3,FR,ARL 
COMMON ISIMULI /UL,UG,EL,RKLA,RGH,RSI I,RLH,CIN 
COMMON ISIM ULZlUMAX,EKS,RKS,RKO,DlFS, YXS, YXO,EFB,RLF,DENB./\B.RKI 

C INPUT PARAMETRS FOR REACTION-DIFFUSION MODEL 
C 

C 

UMAX=6.39E-5 
YXS=OA 
YXO=0.354 
RKS=0.0 1 0948 
RKO=O.OOO I 
RKI=O. 1 1 3 
EFB=O.064 

DlASP=0.07 1 0  
RNP=Z24500. 
DlFS= 2.7SE-G 
DM=O.00000847 

RLF=0.023 
DENB=67.G7 

C INPUT PARAMETERS FOR HYDRODYNAMICS 
C 

UL=0.03 
UG= 1 .2 

H=72. 
VOLR= 1 1 44. 
DlAR=4.2 
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C 

DENSP= 1 .4 
DENL= 1 .  
DENG=0.00 1 2  
VISL=O.O l 
VISG=O.OOO 1 8  
CIN=O. l 77 

C WRITE VALUE OF PARAl'vlETERS FOR SIMULATION 
C 

C 

C 

WRITE(6,40) 
WRITE(6,4 1 )UMAX,YXS,YXO 
WRITE(6,42)RKS,RKO,RKI,EFB,RLF 
W RITE(6,43)DIASP.RNP 
WRITE(6,44)DIFS,DENB,DM 

W RITE(6,45)UL.llG 
WRITE(6,46)H. VOLR.DIAR 
WRITE(6,47)DENSP.DENL,DENG, VISL 

C DETERMINE BIOI' ARTICLE DENSITY 
C 

C 

DIABP=DIASP+RLF*2. 
DENBW=DENL+(DENB/( I 000. *0.8» 

DENBP=DENBW-+(DENSP-DENBW)*(DIASP/DIABP)*(DIASP/DlABP)* 
* (DIASP/DlABP) 

C DETERMINE THE O VERALL GAS-LIQUID MASS TRA.l'\lSFER COEFFICINT 
C USING THE CORRELATION OF SHAH et al .(AICHE. J. 28,353( 1 982». 
C 

R KLA= 1 . 1 74*« UG/ l 00.)**0.82) 
C 
C CALCULATE GALLILEO NUMBER AND LIQUID ARCHIMEDES NUMBER. 
C 

C 

RGAP=(DlABP**3 .)*(DENL**2.) 
RGA=(980.62*RGAP)/(VISL**2) 
ARL=« DIABP**3 .)*DENL*(DENBP.DENL)*980.62)IVISLlVISL 

C CALCULATE FROUDE NUMBER 
C 

FR=UG/SQRT(980.62*DIAR) 
C 
C CALCULATE MINIMUM FLUIDIZATION VELOCITY OF TWO-PHASE FBBR 
C USING THE CORRELATION PRESENTED BY WEN & YU ( 1 966). 
C 

UMF2,'(VISLlDlABP ID ENL)*( SQRT( (33.7*33.7)+(0.0408* ARL) )-33.7) 
C 
C CALCULATE MIN. FLUIDIZATION VELOCITY OF THREE-PHASE FBBR 
C USING GAS-PERTUBED LIQUID MODEL PRESENTED BY ZANe; et,al . ( l 995). 
C 
c PHIS=0.906 
c EMF=0.4287 
c ZETA- 1 . 6 1  *(UG* *0.72)*(DIABP* *0 . 1 68)*(DIAR**(-0 . 1 25» /EMF 
c AA=42.86*« I . -EMF)/PHIS)*« I .-EivIF)/PHlS) 
c BB=0.57 1 5*PHIS*EM F* EM F*EMF*( 1 .-ZETA) * ( l .-ZETA)*( 1 .-ZETA)* ARL 

CC=AA�BB 
c UMF3=(VISLlDIABPIDENL)*(SQRT(CC» -42.86*(I . -EMF)/PH1S 
C 
C DETERMINE THE AXIA- DISPERSION COEFFICIENT USING KATO's cl al. 
C CORRELATION FOR LOW LIQUID VELOCITY OR KIM & KIM's CORRELATION 
C FOR HIGH LIQUID VELOCITY. 
C 

IF(UG.GE.S) GO TO 1 00 
WRITE(6,50) 
EL=UG*D1AR * ( 1 .  +8. *(FR**0.85» /( 1 3 .  *FR) 
PE=UL *DIABP/EL 
IF(PE.GE. I 0(0)WRITE(6,5 1 )  
WRlTE(6,52) 

50 FORMAT(112X,'KATOs CORREALATION IS CONSIDERED SINCE LIQUID'. 
* '  VELOCITY IS LOW.') 

5 1  FORMAT(/2X,'PECLET NUMBER IS HIGH, SO THE AXIAL DISPERSION', 
*, SHOULD NOT BE CONSIDERED.') 
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52 FORMAT(!/2X:PECLET NUMBER IS LOW, SO THE AXIAL DISPERSION', 
*, SHOULD BE CONSIDERED.') 
GO TO 300 

1 00 WRITE(6,53) 

C 

53 FORMAT(115X'Kim and Kim correlation could be considered', 
*, since l iquid velocity is high.') 
PE�20. 19* « D1ABP/DIAR)* *  1 .66)*« UL/(UL+UG» * *  1 .03) 
EL�DlABP*UL!PE 
I F(PE.GE. I 000)WRITE(6,5 1 ) 
WRITE(6,52) 

C DETERMINE LIQUID-SOLID MASS TRANSFER COEFFICIENT USING 
C THE CORRELATION DEVELOPED BY ARTERS & FAN ( 1 986). 
C 

300 REO�UG*DIABP*DENG/VISG 
SC�VISL!(DENL*DM) 

C 

EKS�0.228*(DM/DIABP)*( 1 .  +0.0826*(REG* *0 .623» *(RGA **0.323)* 
* (SC**0.4)*« (DENBP-DENL)/DENL)* *0.3) 
SH�EKS*0.5*DIABP/DIFS 
I F(SH.GE.300) WRITE(6,54) 
WRITE(6,55) 

54 FORMAT(112X:SHERWOOD NUMBER IS HIGH SUFFICIENT TO RENDER THE', 
* '  EXTERNAL MASS TRANSFER RESISTA'ICE NEGLlBLE') 

55 FORMAT(l12X:SHERWOOD NUMBER IS NOT HIGH SUFFICIENT TO RENDER " 
*'THE EXTERNAL MASS TRAN SFER RESISTAl\lCE NEGLlBLE') 

C CALCULATE GAS 1I0LDUP USING THE CORRELATION PRESENTED BY 
C BEOOVICH & WATSON(l 978). 
C 

RGH=0.048*(UG**0.072)*(DIABP* *0 . I (8)*(DlAR**(  -0. 1 25»  
C 
C DETERMINE SOLID HOLDUP Aj'lD LIQUID l-lOLDUP 
C 

c 

RSH= 1 .-0.37 1 *(t IL * *0.27 1 )*(UO* *0.04 1 )*« DENBP-DEN L)**(  -0.3 1 6» * 
* (D l ABP' *( -0.2(8» *(VISL * *0.05 5)*(DIAR **(  -0.033» 
RLl-I� 1 .-RGH-RSH 

C CALCULATE THE SPECIFIC SURFACE AREA OF BlOFlLM-COVERED PARTICLE 
C AND OVERALL SURFACE AREA OF B10PARTICLES IN REACTOR. 

AB= 6. * RSHiDIABP 
AP=3. * VOLR *RSl-IIO.5/D1ABP 

C 
C WRITE RESULTS OF HYDRODYNAMIC MODELS 
C 

C 

WRITE(6,6 1 )  
WRITE(6,62)DIABP,DENBP,RKLAEKS,AB,AP 
WRITE(6,63)RGA.FR,ARL,UMF2,UMF3 
WRITE(6,64)SH,PE,EL,RGH,RSH,RLH 

40 FORMAT(lf5X,44H*** VALUE OF PARAMETERS USED IN MATHEMATICAL 
* l X,9HMODEL ** */3X,58( l H-» 

4 1  FORMAT(5X,30HM,�"S IMUM SPECIFIC GROWTH 
*/5X,45HRATE OF B10MASS llMAX�,EI0.3 
*/5X,45HYIELD COEFFICIENT FOR SUBSTRATE YXS=,FI O.3 
* 15X,45HYIELD COEFFICIENT FOR OXYGEN YXO=,F IO.3) 

42 FORMAT(5X,45HMONOD CONSTANT FOR SUBSTRATE RKS=,E1 0.3 
*15X,45HMONOD CONSTANT FOR OXYGEN RKO�,E i O.3  
*/5X,45HINHIBITION CONSTANT RKI=,E I O.3 
*/5X,45 HVOID FRACTION OF BlOFILM EFB=,FiO.3 
*/5X,45HBIOFILM THICKNESS RLF=,F I O.3) 

43 FORMAT(5X,45HDlAMETER OF SUPPORT PARTICLE 
*f5X,45HNUMBER OF BIOPARTICLES IN REACTOR 

44 FORMAT(5X,24HDlFFUSION COEFFICIENT OF 

DIASP=,E IO.3 
RNP=,E 1 0.3) 

*/5X,45HSUBSTRATE IN B10FILM DlFS=, E I 0.3 
*/5X,45HBIOFILM DENSITY DENB=,EI O.3 
*/5X,45HMOLECULAR DIFFUSI VITY OF SUBSTRATE DM=,E i O.3)  

45 FORMAT(5X,45HSUPERFlCIAL LIQUID VELOCITY UL=,FI O.3 
*/5X,45HTHE SUPERFICIAL GAS VELOCITY UG=,FIO.3) 

46 FORMAT(5X,45 HREACTOR HEIGHT 11=,1' 1 0.3 
*/5X,45HREACTOR VOLUME VOLR=,Fi O.3 
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C 

*/5X,45HDIAMETER OF REACTOR DI AR=,FI O.3) 
47 FORMAT(5XASHTHE SUPPORT PARTICLE DENSITY DENSP=,F I O.3 

*15X,45HTHE LIQUID DENSITY DENL= ,F 10.3 
*/5X,45HTHE GAS DENSITY DENG=,F1 0.3 
*/5X,45HTHE LIQUID VISCOSITY VISL=,FI O.3 
*/3X,58(l H-» 

6 1  FORMAT(1i l 2X,38 II***  RESULTS OF HYDRODYNAMIC MODELS ***  
*!3X,58(l H-» 

62 FORMAT(5X,45HTHE DIAMETER OF BIOPARTICLES DIAI'3P=,F1 0.3 
*/5X,45HTHE BIOPARTICLE DENSITY DENr3P�,F l O.3 
*!5XASHTHE GAS-LIQUID MASS TRANSFER COEFICIENT RKLA=,F I O.3 
*/5X,4SHTHE EXTERNAL MASS TRA,1\JSFER COEFFICIENT EKS=,EI O.3 
*15X,45 HTHE SPECIFIC SURFACE AREA OF BIOPARTICLE AB=, F l O.3 
*ISX,45HTOTAL SURFACE AREA OF B10FIUvl PHASE AP=,FI O.3) 

63 FORMAT(5XASHTHE GALLlLEO NUMBER RGA=,FI0 .3  
*ISXASHTHE FROUDE NUMBER FR=, F l O.3  
*/5XA5HTHE LIQUID ARCHlMEDES NUMBER ARL=,FI O.3 
*/5X,45l-lTIIE MIN. 2-PHASE FLUIDIZATION VELOCITY UMF2=,F10.3 
*/5X,4SHTHE MIN. 3 -PHASE FLUIDIZATION VELOCITY UMF3=,F 1 0.3) 

64 FORMAT(5X,45HTHE SHERWOOD NUMBER SH=,FI O.3 
*/5X,45l-lTIIE PECLET NUMBER PE=,E IO.3 
*/5X,4SHTl-lE AXIAL DISPERSION COEFFICIENT EL=,E 1 0.3  
*15X,45HTHE GAS IIOLDUP RGH·=,F1 0.3 
*!5X,45 HTHE SOLID HOLD UP RSH=, F l O.3 
*/5X,45HTHE LIQUID HOLDUP RLH=,F IO.3 
*/3X,58( 1 H-» 
RETURN 
END 
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Appendix B 

Some routines for multi layer feed forward neural network (MFNN) trained by 
extended Kalman filtering (EKF) l earning algorithm used in  Chapter 5. 

/* File name: NNEKF. C */ 

Main Program for a multilayer feedforward neural network (MFNN) 
trained by extended Kaiman filter(EKF) learning algorithm. 

Y oon-Scok Hong 
Institnte of Technology & Engineering 
Massey University 
New Zealand 
E-Mail: Y.S.Hong(ci)miL5sey.ac.11Z 

*/ 

I! include ' stdio.h · i*FILE'/ 
J*strctnp*/ 

!*sqlt*/ 
include · .string.h · 

I! include ' math. h ·  
I! include ' time.h · /*clockO, CLK_TCK*!  
k ifndef CLOCKS_PER_SEC 
I! ifudefCLK TCK 
iI dcfme CU')CKS]ER_SEC 1 000000 

else 
# define CLOCKS _PEf,,_SEC CLK_TCK 
11 endif 
11 endif 

If include "cot11nn.h" 
11 define scanf1 (iO,i l )  while(scanf(iO,i l )  1= 1 )  

{ 

} 

printf("\7 error in scant: retry: "); \ 
scanf("%*s"); \ 

11 define dprintfD(x,y) { fprintf(x,y); printf(y); 
11 deJlne dprintf1(x,y,a) { lprintf(x.y.a); print1{y,a): } 

dellne dprintf2(x,y,a,b) { fprintt{x,y,a,b); printf{y,a,b); } 
define dprinttJ(x,y,a,b,c) { fprintl{x,y,a,b,c); printf(y,a,b,c): } 
define dprintf4(x,y,a,b,c.d) { fprintf(x,y,a,b,c,d); printf(y,a,b,c,d); } 

11 define dprintfS(x,y,a,b,c,d,e) { fprintf1,x,y,a,b,c,d,e); printf(y,a,b,c,d,e); } 

11 dellne abs(x) « x) = 0 ? (x) : (-(x» ) 
# define min(x,y) ( (x) . (y) ? (x) : (y) ) 
# define max(x,y) « x) (y) ? (x) : (y» 
# define pii(i) 0) * ( 3 + i ) i 2 

void maiuO 
{ 
COMNN nu[ 1 ]; 
FILE *fp,*fp l ;  
in! i,j,j l ,j2,kjout; 
char mcthod[ 1 01; 
clock _t anfang,zeit,maxzeit: 
tloat zeitsec,maxzeitsec: 
float sys _ cIT.fehl; 
110at eta,alpha; 
float minin,maxin,mintar,maxtar,mintest,maxiest; 
extern void ndJead(FILE*,COMNN*); 
extern void bp(FILE*,COMNN*,clock_t,lloat,tloat); 
exiern void bp _ ekf(FILE * ,COMNN* .clock _ t); 
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extern void netz�out(float* *,float * **,int*,int); 

fp {()pen("ekfnet.log", "w"); (*Documentation fil e*! 

dprintfD( fp,"  
dprintfD( fp," 
dprintfD(fp," 
dprintfD( fp, "  
dprintfD(fp," 
dprintfD( fp, " 
dprintfD(fp," 
dprintfD( fp," 
dprintfD( fp," 
dprintfD(fp," 
dprintfD(fp, " 
dprintfD(fp," 
dprintfD( Ip," 

In") 
In") 

Neural Network trained by EKF Learning 
In") 

March 1 0, 1 998 
In") 

lntitute of Technology & Engineering 
Private Bag 1 1 222 In") 
Palmerston North In") 
New Zealand 'm") 
E-Mail: Y.S .Hong(a)masscy.ac.!lz 

In") 
In") 

1* Read network file and traing data, and dispaly*1 

netJead(fp,nn); I*auch Testdaten*1 

dprinttl (fp, "lnTraining of %d patternsln" ,nn- 'npatterns) 
dprintfD(fp, "Net structure "); 

In") 

In") 

In") 

fOl'(i�O; i � nn-.nlayers; ill) dprinttl (fp,"%2d ",nn- 'layer�size[ i ])  
dprinttl (fp," %d weightsln",nn- nwei ghts) 

1* Normalisation of data * I 

for(k=O; k' nn- 'npalterns�test; kit) 
{ i* Normalisation of testing data *i 
for (i=O; i' nu- 'layer � size[O]; i++) f* normalise - ' input *1 

nn- i n�test [k ] [ i ]  = 
( nn- i n�test[k] [ i l  - nn- norm� in[ i ] [O])! 
( nn- 'norm�in[ i ] [ I ] - nn- 'l1orm�il1[ i l lO]);  

f* normalise - target *f 
for (i=0; i nn- ' layer�size[nn- 'nlayers]; i++) 

nn- tal'get � test[k 1 1  i 1 (Ill]- 'targeUest[k] [  i 1 
- nn- 'norm�tar[ i ] [O])  I 

(nn-'l1orm_tar[ i ] [ l ]  - nn- nornl�tar[ i ] [()]); 

for(k=O; k Illl- 'npalterns; k++) 
{ 1* Normalisation of Training data *f 
for (i=0; i 'l1n - 'layer�sizerO]; i++) 1* normalise - input *i 

nn- in[k] [ i ]  = (tm- 'in[k] [ i ] -nn- nort11�in l i ] [O])1 
( nn- nonnjn[ i ] [ l ]  - nn- nonll�in[ i J[())); 

1* normal ise - '  target * I 
far (i=O; i< nn- 'Iayer�size[nn- 'nlayers]; i++) 

nn- 'target[kl f i ]  (tUl- >targetlkl f i J  - nn- 'norm tar/i ] [O ]) ! 
(nn- 'norm_tar[i l l l ]  - nn- 'nann�tar[ i ] [O]); 

I'Checking af nannal isatian*! 

maxin = - 1 0. ;  
min in 1 0. ;  
maxtest = - 1 0. :  
mintest = 1 0. ;  

tor(k=O; k nn- 'npatterns �test; k++) 

{ 
for (i=O; i ' un- Iayer _ size[O) ;  i++) 

{ 
if{nn- in�test[kJ ! i ] ' minin) 

minin = nn- 'in�testrk] [ i ] :  
if(nIl- in�test[kJ [ i l  ' maxin) 

maxin n!l- in�tcst[kl l i ) ;  
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for (i=O; i <  nn-, layer_size[nn- 'nlayers];  i++) 

{ 
if(nn- target_ test[k] [ i ]  mintest) 

mintest nn- 'target_test[k] [ i J :  
if(nn- target test [k] [ i ]  ' maxtest) -

maxtest nn- >target test[k][  i j ;  

if(nn- 'npatterns tcst) 
{ 

il{(minil1> - 1 .5 )  1 1  (maxin 1 ,5 )  11 (minkst' ,05) 11 (maxtes( ,9S» 
dprintfD( fp, "1007") 

dprintf4(lp, 
"Min/max input %L3f %1 ,3 f; target %1 3f%1  31' for testln", 

minin,1ll3xin,mintest,maxtest) 

maxin = - 1 0, ;  
min in = 1 0, ;  
max1ar - 10, ;  
mint"lr = 1 0 , ;  

for(k=O; k' nn- npatterns; k++) 

for 0=0; i ' nn- Iayer_sizeIO] ;  i++) 

{ 
ii(nn- in(kJ[ i j ' minin) minin = nn- in(k/ [ i ! ;  
if(nn- in[k] [ i l  ' maxin) maxin nn- in [kl [ i J ;  

for (i=0; i : nn- Iayer _ size[nn- 'nlayers!; i++) 

{ 
i1{nn- target[kJ [ i J ' mintar) mintar = nn- 111rget[kJ! i J ;  
if(nn- target[k l [ i J  ' max1ar) max1ar nn- target[k] [ iJ ; 

} 
if« minin -1.5) I 1  (maxin 1 .5) 1 1 (mintar ,05) I I  (Illaxtar ' ,95» 

dprilltfD( fp, "1001" ) 
dprintl4(fp, 

"Min!max input % 1 3 f %1.3f; target %L3f %1 3 f for trainingln", 
mjnjn�111axin.lnintar,111ax1ar) 

/* Calculation before training */ 

sys_crr = 0,0; 
for(k=O; k' nn- 'llpatterns_test; k H) 

{ 
for(j=O; j" nn- 'layer , size[ 0] ;  j++) 

nn- 'state[OJUJ  = nll- 'ill,testfkJIj) :  
for(jout=O; jout ,nn- 'layer , size[ nn- 'nlayers] ;  jou!" +) 
{ 

netz _ ollt(nn- 'state,nn- 'weight,nn- 'layer_size, 
nn->nla yers); 

SYS ,elT += (nn- 'targct_tcst[kJlj olltj 
- nn- >statefnn- 'nlayerslliollt])  * 

(nn- 'targct=tcstlk J ljoutj 
nn- =stat.?[nn- nlayers J ljoutD; 

} 
} 
if(nn- 'npatterns test) 

{ 
fehl 2 ,  * nn- 'norm ,tar[O] [ I ] * 

sqrt(sys_err I 
nn- 'npatterns,test / 
nn- 'layer _ size[ nn- 'nlayers j); 

dprintf1 (fp, 
"Rms-eITor before training %9,6ffor test dataln",fehl) 

dprint.f1 (fp, 
"ElTor according to PROBEN l nok'ttion %9.3ffor test dak'tln", 

sys_cn' / nn- 'npatterns_tcst I 
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nn- >Iayer_size[nn- 'nlayers] * 
1 00 * (rnaxtest - minkst» ; 

sys _elT � 0.0; 
for(k�O; k' nn- 'npattems; k++) 

{ 
for(j' O; j'nn- Iayer _ size[O]; j++) 

nn- 'state/O]Ul = nll- ' in/kW]: 
for(jout�O; jout· nn- >Iayer _ size[nn- 'nlaycrs];  jout++) 

{ 
netz _ out(nn- >state,nn- 'weight,nn- 'layer_size, 

nn- 'nlayers); 
sys_eIT (nn- 'target[kWout) 

- nn- 'sulte[nn- nlayers][jout]) * 
(nn- target[k][joutJ 

- nn- 'state[nn- 'nlayersILioutJ); 

} 
} 
fehl 2 , ' nn- norm tar[O] [ 1 ]  * 

sqrt( s1's _ err / 

dprintfl (fp, 
n Rrns-error hefore training 

dprintf1 (fp, 

nll- ' npatterns / 
nn- 'Iayer ,size[nn- 'nlayers]); 

%9.6ffor training data\n",fehl) 

"Error according %9.3 f for training data \n", 

/* Training and elTor calculation * / 

nn- 'Uter 0;  
nn- 'n_iter = 0; 

strcp1'(llIethod, nn); 

zeit 0, ;  

while( l )  

{ 

sys_ err I nn- 'npattems 1 
IUl- 'laycr _ size[ nn- 'nlayers 1 * 
1 00 * (maXlar - rnintar)); 

I*Counting the No. of iteration*1 

if( !strcmp(llIethod,"bp") 1 1 ! strcmp(l11ethod,"BP"» 

{ 

} 

dprintlD(fp,"Training with backpropagation\n"); 

printf("eta alpha "); 
scanfl("%f',&eta); 
scanf1 ("%f',&alpha); 
fprintf(fp," eta %f alpha %f\n",eta,alpha); 

anfung c1ockO - zeit; 
maxzeit � llIaxzeitsec * CLOCKS_PER_SEC + anfang + zeit; 
bp(lp,IUl,maxzeit,eta,alpha); 
zeit = c1ockO - al11ul1g; 

i f{ ! strcmp(mcthod,"kf') 11 !strcmp(l11ethod,nKFn» 

{ 
dprintlD(fp,nTraining with EKF Leaming Alogirithl11\n"); 
allfallg c1ockO - zeit 
l11axzeit = llIaxzeitscc • CLOCKS_ PER_SEC + al11ul1g + zeit; 
bp _ ekf(fp,lln,llIaxzeit); 
zeit cl ockO - anlung; 

1* Display training time */ 

zeitsec zei t l  CLOCKS PER_SEC, 
if(l1n- 'Uter) 

dprintf3(fp,"Cpu-time in h,min.sec %2d,%02d.%02d\n", 
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(int)zcitsec 1 3600, ( (int)zeitsec % 36(0) 1 60, 
(int)zeitsec % 60) 

1* Display the training CITor after last iteration *1 

sys_ elT = 0.0; 
for(k=O; k· nn- 'npattcrns_test; k ++) 
{ 

for(l=O; j- nn- Iayer_ sizeJOJ ; j++) 
nn- ·state[Ollil  = IUl- in test[kllil ; 

for(jout=O; .iout' nn- 'Iayer _ size[nn- 'nlayersJ;  jouF+) 

{ 
netz out(nn- 'state,nn- -weight,nn- 'Iayer _ size,nn- 'nlayers); 
sys _ elT (nn- ·target_test[k ] [jout] 

} 
} 

- nn- 'stateJnn- nlayersllioutJ) * 
(IU1- target_ test[kJljout] 

- nn- stale[nn- 'nlayers] [joutlJ; 

if(nn- npattcrns_test && nn· 'Uter) 

{ 
fehl 2 .  * nn- nonll_tar[OH l l  * 

sqrt(sys _ err 1 
nn- 'npatterns _test 1 
nn- -Iayer size[nn- -nlayers]); 

dpril1tf2(fp, 
"Rms-error alter %3d iterations %9.6ffor test dahlIn", 

dprinttl (fp, 
"En'or according 

sys_crr 0.0 ;  

I1n" Uter,fehl) 

%9.3f for test data In ", 
sys _ elT 1 11Il- 'npattcrns _test I 
nn- ' Iayer_size[nn- 'nlayersl * 
l OO * (maxies! - mintest» ; 

for(k··O; k· IUl- npatlerns: k++) 
{ 
for(j=O; j  nn· layer_size[OJ; j++) I*Eingangsdaten*/ 

l1n- st1te[O j [j ]  nn- in[k][j ] ;  
for(jout ·0; jout· nn· ·layer_ size[nn· -nlayers]; jout++) 

{ 
netz out(l1n- 'state,l1n- ·weight,nn- ·layer _ size,nn- nlayers); 
sys_elT (nn· -target[k] liout] 

} 
} 
if(IU1- -i )ter) 

{ 

- nn· ·statc[nn- nlaycrsJrjoutJ) * 
( I1n- target[kJlioutJ 

• nn- state[nn- 'nlayerslljoutJ); 

fehl = 2 .  * nn- nofl11_1ar[Oj [ l j  * 
Sl]lt( sys _cn I 

1111- 'npatterns / 
nn· -layer _ sizeJ nn- nlaycrs]); 

dprintf2(fp, 
"Rms·cnor after %3d iterations %9.61'for (raining dataln", 

nl1- . i_ iter,fehl) 
dprinttl (fp, 

"Enor according (0 PROBEN I notation %9.3ffor training dataln", 
sys _ en I nn- 'npalterns ! 

1* Ask for fUlther computation * 1 

fclose(fp); 
fp = fopen("ekfnctJog","a"); 

1111- 'Iayer size[nn· 'nlaycrsl * 
l OO * (maxtar - mintar» ; 

220 
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printf{"lIow many iterations shall be executed until next prompt?ln"); 
printf("(O cnd oftraining, storage of weights) "); 
scanfl ("%d",&nl1- 'n_iter); 
if{ lnl1- 'n_iter) break; 
printf("Max, cpu-time in s "); 
scanfl ("%f',&maxzeitsec); 
printf("Training method (BP for backpropagation leaming or EKF teaming) "): 
scanfl ("%s",method); 

} /*whilc( l )*/ 

1* Save new weight and covariance matrix */ 

1'1' 1  = fopen("ekfnetwei","w"); /* Weight value * /  
1'printf(fp I ,  "weightsln"); 

for 0 = 1 ; j nn- 'nlayers; j++) /* for all layers and weights *1 
for 0 1  =0; j 1 nn- 'Iayer sizelj l;  j 1 ++) 
{ 

for 02=0: j2 ' nn- >layer size[i- I ]: j2++) 
fprintf(fp 1 , "% 1 3 ,  I Ol\n", nn- weightlj l li 1 ] [j2+ 1 D: 

fprintf(fp I ,  "%1 3 , 1 Ol\n", rul- 'weightLi JU 1 HOD; 

} 
fprintf{fp 1 ,  "cndln"); 
dprinttn(fj),"Wcights stored in nnckfweiln") 
fclose(ip I ); 

fpl fopen("nnekfekf', "wb"); 
fprintf( fp J ," ekfln ''): 
fwrite(nn- >p,sizeof(float),nn- , 'nweights*( nn- 'nweights+ 1 )/2, fp I) ;  
fprintf{fp J , "Inendln"); 
dprinttn(fp."Covariance matrix stored in nnekfekf\n") 
fclose(fp l ); 

/* File name: BPEKF.C */ 
1* 

Routine tor eX1ended Kalman filter(EKF) learning algorithm 
This routine is called by NNEKF,c 

Y oon-Seok Hong 
Institute of Technology & Engineering 
Massey University 
New Zealand 
E-Mail: Y.S.Hong(aimassey.ac.nz 

*/ 

it include " stdio,h ' 

it include ' stdlib,h ' 
11 include ' string,h ' 
it include ' . time,h ' 
I1 include ' math,h ' 
iI include "comnn,h" 

11 define dprinttn(x,y) { fprintl�x,y); printf{y); 
# define dprintfl (x,y,a) { fprintl�x,y,a); printf(y,a): } 11 define dprintf2(x,y,a,h) { fprintf(x.y,a,b); printf(y,a,b); } 
# define dprintf3(x,y,a,b,c) { fprintf(x,y,a,h.c); printf(y,a.b,c); } 
11 define pii(i) ( i)  * ( 3 + i ) ! 2 
# define ACCURACY ,000001 

void bp _ ekt(FILE *fp, COMNN *nn. clock_t maxzeit) 
{ 

extern void netz_out(tJoat**,float***,int*,int); 
exiem void netz , back(float* * ,float***,float * *  * jllt*,int,int,ill!); 
ex1cm int ckf(float*,tloat*,float, int,tloat*,tloaLt1oat*); 
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float rcs,diff,sig,q,test_ err,sys _err, ** *jacobi, *wei ght_ old, 'pb; 
float sigmin,psumjacobimax; 
time_t datum; 
int kit, i , i l , i ij,j l j2jout,nsqrt; 

int status; 

1* * *  * ** * * *  Initialising * * *  * * *  * * *  * * *  * * *  * ** * * * * * *  * * *  * * *  * * *  * * *  * ** !  

jacobi (l1oat** *) malloc((nn- 'nlayers+ 1 )*sizeof(float**» ; 
if{!jacobi) dprint1\J(fp,"Error in mal/oc for jacobi '1007In") 

jacobi [O]  = (Iloat**) mailoc(nn- 'IlStates*sizeoi{l1oat*» ; 
if( !jacobi[O]) dprintfO(fp,"EITor in malloc for Jacohi[0] '1007In") 
jacobi [ 1 ]  = jacobi [O] ;  
[or(i=2; i ' =nn- nlayers; i++) 

jacohi [ i ]  jacohi [ i- l ]  + nn- Iayer_size[i- l ] ;  

jacohi [O ] [O ]  = (l1oat*) mailoc(nn- nweights*sizeof�float» ; 
if(  !jacohi [O] [O])  

dprintfO(fp,"Error i n  malloc for 'jacobi [0] [0]'1007In") 

for(i=2; i< " 11l1- nlayers; i++ ) jacobi [ i ] [O ]  = jacohi [ i - l l lO] 
+ nn- 'Iayer_sizc[i - l ] * (nn- 'layer_ size[i-2 ] + I ); 

for(i= I ;  i ' =nn- <nlayers; i++) 
for(j= 1 ; ,i' ,tln- 'layer _ size [ i ] ;  j++) 
jacobi [ i ] [j ]  = jacobi [ i J li - l ]  + nn- Iayer size[ i - I ]  + I ;  

pb = (float*) malloc(nn- -nweights*sizeot�lloal) ; 
ii{!pb) dprintfO(fp,"EITorr in malloc for 'pb'1007In") 
weight_old (float*) malloc(nn- 'nweights*sizeof(lloat» ; 
ii{!weight_ old) dprintfD(fp,"Error in malloc for 'weight_old'1007In") 

!* Training of neural network *! 1** * * * * * ** * * * * * * * * * * ** * * * * * * * * * * ** * ** ** ** * * ** * * * * ** * * ** * * * * * ** * * * * * * * * * * * **/ 

nsqrt sqrt(( douhle )nn- 'npatterns): 
'1 = ,0 1 :  

jacobimax 0 . ;  
for(i=O; i' nu- 'npatterns; i++) 

{ 
for(j=O; j nn- 'Iayer_ size[O] ;  .1++) 

nn- 'state[ OJ lj I  IUl- -in[ i J lj l; 
netz _ cute 1111- 'state,nn- ·weight.nn- 'layer _ size,nn- 'nlayers); 

for(jout=O; .lout nn- -layer_size[nn- 'nlayers]: jout++) 
{ 

} 
} 

netz _ back(nn- 'state,nn- 'weight,jacobi. 
1111- 'Iayer_sizc,nn- '1l1ayers,nn- ·tlwcights.jout); 

for(j = I ;  j' nn- 'nlayers; j++) 
for(j 1 =0; j 1 < nn- layer_ sizeli ] ;  j 1 ++) 

for(j2=O; j2< nn- 'Iayer_sizeli - l  ] ; j2++) 
if(jacobili ] li l ] li2 ]  • jacohili ] li I ]Li2]  ' jacohimax) 

jacohimax = jacob iLi I li 1 J li2 ]  * jacobi lilli I JLj2] :  

for(kit=O: kit, nn- ' 11 _  iter; kit++) !·lteration*! 
( 

sys _ err 0.0: 
1'or(i=O; i ·  nn- 'llpatterns; i++) 

{ 
for(j=O; j !In- 'Iayer _ size[O] :  j++) 

i*Training data*! 

nn- >state[OJ lj ]  nn- in[ i J li l :  
netz_ oul(nn- > ·state,nn- ,weight,nn- 'Iayer _ size,nn- > 'nlayers): 
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} 

for(jout=O; j out' nn- 'layer , size[ nn- 'nlayers J ;  jout++) 
sys ,crr " =  (nn- 'state[ nn- nlayers l Liout] 

. nn- target[ i J ljoutl) * 
(nn->state[nn- 'nlayerslliout] - nn- 'target[ i lLiout]); 

dprintf2(fp,"%4d % l 2,9f',kitsqrt« double )sys _ err 
I nn->Iayer_size[nn- 'nlayersl I nn· >npatterns) 

* 2. * nn- >norm_tarIO] [ l ]); 

i fZnn- 'npatterns_test) 

{ 

else 

test_ err = 0,0; 
for(i=O; i' nn- npatterns test; i++) I'Testing data*1 

{ 
for(j =O; j nn- layer_size[OJ; j++) 

tuv'stateIO)Li )  nn- in_testl iH.i); 
netz_ out(nn- >s1.1te.!U1- " weight,nn- 'Iayer, size,nn- 'nlayers); 
[or(jout=O; jout, nn- 'layer _ sizelnn-=nlaycrs); joutH) 
test_err (nn- 'state[ nn· 'nlayers )Uoutj 

- nn- tmgd_testl i l lioutl) * 
(nn- 's1.1telnn- 'nlayers] Liout] - nn· 'target test[ i )Uout]); 

dprintn (fp," %1 2.9f\n",sqrt« double )test_ err 
! nn- >layer _ size[nn- ' nlayers) ! nn- 11patterns_test) 

* 2. * nn- 'norm_tarlO) 1 l  J); 

dprintfD(lp, "\n") 

if( clockO . maxzeit) return; 

sig = sys_ err I nl1· 'npatterns i nB- 'layer, size[nn- 'nlaycrsJ I I  0 . ;  

psum 0.;  
for(i=O; i '  nn- ·nweights; i++) psum sqli« doubk)nn- 'p[pii(i)]); 
sigmin = ACCURACY * jacobimax * psum * psum; 
itZsig < sigmin) sig sigmin; 

memcpy(weight_ old.&nn- ·weightl l ] [O][OJ,nn- 'nweights*4); 

11 0', 
i l  0' 

I*Training*1 

for(i=O; i '  nn- 'npatterns; i++) 
for(j=O; j< nn- ·layer _ size[O); j++) 

nn- 'state[OlUJ = IUl- in[i l l li l; 
nclz _ out(nn- >state,nn- weight,nn- hyer_ size,nll- 'Illayers): 

for(jout=O; jout nn- 'layer_size[ nn- 'nlayers]; j out++) 
{ 

res = nll- ·target[ i I Jljout) -
nn- state[ nll- nlaycrs Jljout) ; 

netz _ back(nn- state,ull- 'weight,jacobi, 
nll- ·layer _ size,nn- nlayers,nn- >oweights,jollt); 

SUltus ekl{ &nn- 'wei ghtl l ] [  0 J [  0 I ,&jacohi[ l J [  0] [  ° I,res, 
nn- 'l1weights,nB' 'p,sig,pb): 

I*ekf korrigierl weight aufgrund vonjacobi uud res*1 
if(status) 

{ 
fprintf(fp, "ekf singular "); 
dprintD(fp,"sigma= %g, I'sum= %g, Q= %gln", 
sig,psum,ACClJRACY + q • difll no- 'nweights) 

i 1 += nsqrt; 
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if{i l nn- 'npatterns) 
{ 

ditT� 0 , ;  

ii++: 
i l  � i i ;  

for(i�O; i nn- 'l1weight,; i++) 
diff +� (nn- weight [ l J lO ] [ i j - weight_old[ i ] )  * 

(nn- weight [ l J [O ] [ i j - wei ght oldl i \); 
for(i�O; j' on- nweights; j ++) 

tul- 'i iter 

Iree(jacobi [O ] [  0 ]); 
lr<le(jacobi[ 0]); 
iree(jacohi); 
frce(weight old); 
free(pb); 

/* File name: EKF.C */ 
i* 

nn- p[pii(j)j +� ACCURACY + q * d i ll! nn- nweights; 

Routine for extended Kalman filter 
This routine is called by NNEKF,C 

*1 

If include ', stdio,h ' I*print!"! 
int ekf{tloat *a, float oh, float res. int n. float *p, float s, float *ph) 
{ 
1* Extended Kalman Filter (EKF) 
/*  
1* 
1*  

/* 

/* 
1* 
1* 

a� estimation vector 
h� Gradient vector 
rcs� elTor of output 
n= length of vector 
p= P-Matrix 
s=Sigma**2 
ph =help vector of length n 

In this program, the following dechu'atioll are required: 
float a[n],b\n],p[n*(n+ 1 )!2J,pb [n ]  

i* Examples: 
/* 
/*  
/*  

n= l OO 
s=,O l 

1* aO= L  
i* pO= l OO, 

!(declanation could he higger) 
!(not 0) 

i* for(i'<O; i (n+ I)*ni2;  i++)p [ i ]  0:, 
i* 
i* for(i=O; i n; i++) 1* { a[ i ]=aO; 
i* p [(i+3)* ii21=pO; 
i* 
;*  
'. 

float nenner.pbk,pbn,bi,rn, 'pp, 'ppp; 
in! i,j,k: 
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1* 
*i 

1* 

pp � p; 
for(k�O; k' n; k++) 

{ 
pp k; 
pbk pp[O] * b[O] ; 
for(i� l ;  i �k; i++) 

pb � p '  h 

pbk pp[i ]  * b [ i ] ;  
ppp � &pp[k]: 
lor(i�k+ I; i '  n; i++) 

{ 
ppp = &ppp[ i ] ;  
pbk +� *ppp * b[ i ] ; 

} 
pb[k] � pbk; 

pp � p;  
for(i= I ;  j n; i ++) 

{ 
bi b lij; 
pp += i; 
for(k�O; k i; k++) 

pb[k] pp[k] * bi; 

'11* nenncr � s +  bT * P * b 
*1 

*1 
*1 

nenner = s; 
for(k=O; k n; k++) nenncr += b[k] * pblk]; 

ifrnenner ' . 1  * s) 

{ 
printf{HEKF Learning singulaer: nenner= % 1 0.3e %c\n",nenner,7); 
return(l); 

1* Correct the estimamted value and save h 
1* 
*1 

a a + p * b I nenner * res 

m res ! nenner� 
for(k',O; k n; k++) 

a rk] phlk] * m; 

1* COlTection of covariance matrix 
1* p = P - P * b * bT * P / nel1ner 
*/ 

for(k�O; k· 11; k++) 
{ 

pbn = pblkJ 1 nenner; 
for(i=O; i " ' k; i++) 

p li] -= phn * pb[ i ] ;  
P += k+ l ;  

return(O); 

225 
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