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ABSTRACT

Over the past three decades, considerable amount of research efforts have been
undertaken in order to develop a mathematical model for a three-phase fluidised-bed
biofilm reactor (TPFBBR). Although biofilm properties such as biofilm thickness
and its density are allowed to vary with biofilm growth in the model to simulate the
real TPFBBR system, they are assumed to be constant in the majority of models
developed for a TPFBBR. The main goal of this thesis is to develop mathematical
models incorporating dynamic biofilm growth for a TPFBBR using three different
modelling approaches such as a mechanistic model, a neural network model, and an

intelligent hybrid model with a neurofuzzy model.

This thesis consists of three parts. Firstly, a dynamic biofilm growth model, which
reflects the variation of biofilm thickness and its density in time, is developed. This
model is derived from a biomass balance equation and is solved by the method of
characteristics. The biofilm detachment model is proposed and incorporated within
the dynamic biofilm growth model. The dynamic biofilm growth model with
detachment is then combined with a reaction-diffusion model and reactor model to
form an integrated model of a TPFBBR. Simulation method of integrated model
incorporating the dynamic biofilm growth model is developed. It is observed that
results predicted are in good agreement with experimental data and the integrated

model proposed provides a valuable tool to predict performance of a TPFBBR.

Secondly, the sequential neural network model, which is composed of two parts,
namely, the neural process estimator and the neural process predictor, is developed to
describe the task of process estimation and prediction for a TPFBBR. In order to
implement the sequential neural network model, multilayer feedforward neural
network (MFNN) with cascaded-correlation (C-C) learning and extended Kalman
filtering (EKF) learning, and generalized regression neural network (GRNN) are

used. Results shows that the sequential neural network model has the feasibility as
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intelligent estimators and dynamic predictors and gives considerably good results in

process estimation and prediction for a TPFBBR.

Finally, this thesis shows how a combination of both mechanistic and empirical
modelling approaches, called a hybrid model, can be implemented and utilised for
modelling a TPFBBR. The neurofuzzy model as an empirical part of hybrid model is
used to estimate the variation of the biofilm thickness and biofilm density, and is
combined with mechanistic model-based reaction-diffusion and axial-dispersion
models to predict the dynamic behavior and performance of a TPFBBR according to
the variation of biofilm density and biofilm thickness. This hybrid modelling
approach due to its flexibility shows a unified framework through incorporation of
strong points of both mechanistic and empirical models, and provides a new
modelling framework with a great potential to be applied to other types of biofilm

reactors.
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Chapter 1

Introduction

1.1 INTRODUCTION

Biofilms, which are a matrix of cells and cellular products attached to a solid surface, are
well known to have a great potential to remove organic matter from wastewater. Biofilm
systems are complex as a results of a combination of factors, such as bacterial growth,
substrate consumption, attachment, external-internal mass transfer of substrate, cell
death, detachment, the structure of the support particle, and competition between
bacterial species: all of which play a significant role in the overall capacity of the
biofilm process. A three-phase fluidized-bed biofilm reactor (TPFBBR) has received
considerable attention for use in aerobic wastewater treatment. Generally, a TPFBBR
has a number of advantages over suspended-growth systems such as the activated-sludge
process. The most important feature of a TPFBBR is that high biomass concentration
can be retained in the reactor as biofilms on the support particles, which leads to high
reaction rates at low hydraulic retention times. In addition, a TPFBBR has an improved
resistance to the change of environmental conditions, more resistance to toxic chemicals

and heavy metals, and better process stability relative to suspended-growth systems.



Chapter 1. Introduction 2

Because of these advantages, a TPFBBR has been demonstrated to outperform other

reactor configurations used in wastewater treatment (Lee et al., 1979).

It is necessary to characterise the biofilm properties in order to enhance understanding of
the complexities of biofilm processes and to properly design and control a TPFBBR.
The biofilm thickness and biofilm density are commonly used to help characterise the
biofilm growth on the support particles, and are widely applied for macro-scale biofilm
modelling and design purposes in a TPFBBR. Several biofilm models have been
developed in which substrate transport to consumption by the biofilm is described
(Atkinson, et al.,, 1967, Atkinson & Daoud, 1970; Lamotta, 1976; Williamson &
McCarthy, 1976; Rittmann & McCarty, 1981). In the majority of those models, the
biofilm properties such as biofilm thickness and its density were assumed to be constant.
Hence, the development of mathematical models incorporating dynamic biofilm growth
which reflects the variability of biofilm thickness and biofilm density as a function of
time is necessary for design, optimisation, and control of a TPFBBR. This thesis is
mainly concerned with the development of a mathematical model incorporating the

dynamic biofilm growth for a TPFBBR.

Several modelling approaches are available for deriving the desired process model.
There are fundamentally two different modelling approaches that form the basis of
process models, namely a mechanistic approach and an empirical approach. Mechanistic
models, usually expressed in the form of differential equations, are based on the physical
and (bio)chemical phenomena occurring within a process. In other words, the
development of a mechanistic model is mainly driven by a priori knowledge of the
relevant mechanism and from first principles (chemical and physical laws, mass
balances, and so on). Mechanistic models of wastewater treatment processes are
generally developed from application of reactor engineering principles, ie., they

combine expressions representing the intrinsic kinetics and transport events with mass
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balance equations describing the characteristics of the particular physical system under

consideration (Grady, 1983).

In contrast, empirical models simply relate operating input and output variables to each
other and do not require a priori knowledge of the physical and (bio)chemical taking
place within the process. In the present context, they are characterised by fewer
parameters for the description of data compared to the mechanistic model and are
derived applying statistical techniques to fit empirical functions to fit the input-output
data. Such black box descriptions from pilot plant data are quite useful for design.
Recently, artificial neural network (ANN) techniques as black box modelling tools have
widely been used for many applications in robotics, electronic processes, and chemical
and biochemical processes. The main advantages of using ANNs in process modelling
are: (1) it has the ability to learn complex nonlinear relationships with limited prior
knowledge of the process structure (2) it can perform inferences for an unknown

combination of input variables (Hong et al., 1998).

As an alternative to overcoming the weak points of both mechanistic and empirical
models, a so-called hybrid model (grey box model), which is a combination of
mechanistic and empirical models, has recently been introduced (Psichogious & Ungar,
1992; Tompson & Kramer, 1994). In a hybrid model, part of the poorly and inaccurately
known processes are modelled by the empirical model, and apart of the behaviour of the
known processes are modelled mechanistically. ANNs are particularly attractive in a

hybrid model to obtain the best possible description of processes.

The main goal of this thesis is to develop mathematical models incorporating dynamic
biofilm growth for a three-phase fluidised-bed biofilm reactor (TPFBBR), based on

these different modelling approaches outlined above:
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1) a mechanistic model incorporating dynamic biofilm growth model
with detachment,

2) asequential neural network model, and

3) an intelligent hybrid model, combined with a neurofuzzy process

estimator.

Three different modelling approaches are applied to estimate time progressions of
biofilm thickness and biofilm density and to predict the dynamic changes in

performance of a TPFBBR.

1.2 THESIS OVERVIEW

This thesis consists of seven chapters.

Chapter 2: This chapter serves as a general overviews of the three-phase fluidised-
bed biofilm reactor (TPFBBR). First, I give the some background of a TPFBBR.
Second, hydrodynamics of a TPFBBR including flow regime, phase holdups,
mixing characteristics, mass transfer processes are described. Finally, a brief
description of biofilm formation and biofilm characteristics taking place in a

TPFBBR is presented.

Chapter 3: This chapter presents the experimental system and experiment methods.

Chapter 4: The main aim of this chapter is to develop the dynamic biofilm growth
model which is able to reflect the simultaneous variability of biofilm thickness and
biofilm density as a function of time, based on the mechanistic modelling

approach. The biofilm detachment model is also proposed. This dynamic biofilm



Chapter 1. Introduction

growth model with detachment is combined with a reaction-diffusion model and

reactor model to form an integrated model of a TPFBBR.

Chapter S: The purpose of this chapter is to describe the application of neural
network process modelling approach for modelling of the dynamic change of the
biofilm thickness and biofilm density and the prediction of dynamic performance
of a TPFBBR. The following three-different types of neural network are

implemented:

. multilayer feedforward neural network (MFNN) with cascaded-
correlation (C-C) learning algorithm

2. multilayer feedforward neural network (MFNN) with extended Kalman
filtering (EKF) learning algorithm

3. generalized regression neural network (GRNN).

Using the above neural network frameworks, the sequential neural network model
is developed to describe the task of process estimation and prediction for a
TPFBBR.

Chapter 6: As an alternative to the mechanistic model presented in chapter 4 and the
neural network model presented in chapter 5, the main objective of this chapter is
to develop the intelligent hybrid model, which is a combination of the mechanistic
and empirical models of a TPFBBR. The neurofuzzy model is developed to work
as process estimators to estimate variations of the biofilm thickness and biofilm
density based on the available measurement variables. This neurofuzzy model is
combined with a reaction-diffusion model and axial-dispersion model to explore
the intelligent hybrid model which can predict the dynamic behavior and

performance of a TPFBBR.
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Chapter 7: The conclusions and summary of the main issues considered in this thesis
are drawn in chapter 7. Applicability of models developed in this thesis is

discussed.

1.3 CONTRIBUTIONS OF THIS THESIS

The main contributions of this thesis to the filed of mathematical modelling of a

TPFBBR can be summarised as follows:

Derivation of new dynamic biofilm growth model: Based on a mechanistic modelling
approach, the dynamic biofilm growth model incorporating biofilm detachment,
which is derived from biomass balance equation and is able to reflect the
simultaneous variability of biofilm thickness and biofilm density as a function of

time, is developed.

Development of integrated model: By combining the newly developed dynamic
biofilm growth model with a reaction-diffusion model and reactor model, the

integrated model for a TPFBBR is developed.

Development of sequential neural network model: Using a neural network modelling
approach, the sequential neural network model having the neural process estimator
and the neural process predictor is developed to estimate the dynamic change of
the biofilm thickness and biofilm density and to predict the dynamic performance

of a TPFBBR.

Development of intelligent hybrid model: In order to provide a new comprehensive
model for modelling the dynamics of a TPFBBR, the intelligent hybrid model is

developed. It consists of two parts including the neurofuzzy model, which serves
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as a process estimator of difficult-to-model process variables, and the mechanistic

models, which represent the known mechanistic knowledge of TPFBBR processes.

Development of computer programs: To numerically implement the modelling
approaches proposed in this thesis, the simulation software written in FORTRAN

for chapter 4, the sequential neural network programs written in C"" for chapter 5,

™

and the computer program written in MATLAB ™ with Matlab external interface

engine for FORTRAN for chapter 6 are developed.



Three-Phase Fluidised-Bed
Biofilm Reactor (TPFBBR) -
Background

2.1 THREE-PHASE FLUIDISED-BED BIOFILM
REACTOR (TPFBBR)

Three-phase fluidization is an operation used to bring into contact gas, liquid, and
solid particles. The solid particles are fluidised by upflow liquid, which is the
continuous phase, and cocurrent gas bubbles. This three-phase fluidised-bed reactor
(TPFBR) has received great attention in the past three decades because of its
effectiveness in chemical processes such as hydrodesulfurfization of oil, Fisher-

Tropsch synthesis, catalytic oxidation, and cracking of hydrocarbons.

An illustration of a TPFBBR is given in Fig. 2.1. The liquid and gas phases pass

through the reactor upward, and keep the solid particles in suspension, consisting of
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particles generally ranging from micrometers and millimeters. The fluid phases leave
at the top of the reactor while the solid phase remains in the reactor in the forms of a
fluidised layer. The characteristics of a three-phase fluidised-bed reactor (TPFBR)
have been reviewed by Ostergaard (1968), Epstein (1981), and Muroyama & Fan
(1985).

fas
AR
Leve! of
Vuideed bed
s ~
Product

. ¢ o1 Catalystin
© 3 | suspension

cv b Gas bubbles

Ml T H

Liquid

Figure 2.1. The three-phase fluidised-bed reactor (TPFBR).
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Recently fluidised-bed biofilm reactors (FBBR), either the two-phase (bioparticle-
liquid) or the three-phase (gas-liquid-bioparticle), have been considered as one of the

most efficient fixed film-type bioreactors for wastewater treatment.

A schematic of a TPFBBR is shown in Fig. 2.2. The influent wastewater enters the
reactor through a liquid distributor and air is sparged through a porous metal disk at

the bottom of the column reactor.

Feed
Tank

& ,_\,'
G /\ -~ Air diffuser
// a
»
Arr -
Liglid- -
4--?!""" (; o

Figure 2.2. The three-phase fluidised-bed biofilm reactor (TPFBBR) system.
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Solid support materials, such as sand, activated carbon or synthetic materials which
provide for biofilm growth, are placed in the reactor through which wastewater is
passed upflow with sufficient liquid velocity or air velocity to fluidise the particles.
The particles fluidise when the velocity of a fluid stream upward through a bed of
particles is sufficiently high, and the drag force on a particle can thus overcome the
gravitational force of a particle. The biofilms grow on support particles as attached
biomass surrounding each of the support particles. As the wastewater contaminants
pass by the bioparticles covered by biofilms, they are removed from the wastewater

through adsorptive and biochemical mechanisms.

The first application of fluidized bed biofilm reactor was in the area of nitrification
and denitrification of wastewater treatment or organic wastewater treatment (Jeris &
Owens, 1975, Scott & Hancher, 1976; Mulcahy et al., 1980; Shieh, 1980; Shieh et
al., 1981). Jeris & Owens (1975) reported a successful practice of a pilot-scale
denitrification fluidised bed bioreactor. They stated that the pilot-scale FBBR
consistently produced greater than 99 percent removal of the influent nitrogen in less

than 6.5 min at a flux rate of 8.16 m*/d/m*  Andrew & Tien (1981) investigated the

FBBR involving simultaneous biological and activated carbon treatment of organic
wastewater treatment. The advantages of fluidized bed biofilm reactors for
denitrification in comparison with packed-bed biofilm reactors or other suspended
growth treatment processes such as activated-sludge process include superior

performance and no clogging,

In comparison to packed-bed biofilm reactor consisting of immobilised cells, the
fluidised bed reactors have the advantage of good solid-fluid mixing and minimal
pressure drop. In real application of a FBBR, the very high rates of volumetric
loading rates for wastewater treatment have been obtained since the high biologically
active surface area is available and the high biomass concentration can be
maintained. It is known that the average biomass concentration in a FBBR ranges
between 10000 mg// and 50000 mg// and is 10 or 40 times greater than that in

conventional suspended growth systems (Table 2.1). Because of the high biomass
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concentration, a FBBR gives a 200-500 percent reduction in reactor volume when
compared to other fixed film processes such as tricking filters and rotating biological
contractors (RBC) and suspended growth systems. Another benefit of FBBR is
upgrading an existing wastewater treatment plant can be accomplished simply by

adding additional fluidised-bed biofilm reactor units.

Recently, a three-phase fluidised-bed biofilm reactor has been for biological
degradation of phenol (Holladay et al., 1978; Lee et al., 1979; Wisecarver & Fan,
1989; Fan et al., 1987). Holladay et al. (1978) reported high phenol degradation rates
for a synthetic phenol wastewater. They compared phenol degradation in stirred-
tank, packed-bed and fluidized-bed rectors. Their results showed that although a high
phenol-bearing wastewater could be treated in the stirred-tank reactor, this treatment
method required the largest reactor volume because of the long retention times. The
highest degradation rate and shortest retention time was observed for the fluidized-

bed bioreactor.

The advantages of a three-phase fluidised-bed biofilm reactor can be summarised as
follows (Ryhiner et al., 1988):

. fluidisation is created by the gas velocity;
2. liquid recycle is not needed,

3. oxygen transfer occurs throughout the reaction zone.

Some disadvantages of the FBBR have been reported (Lee et al., 1979; Tzeng,
1991):

I difficulty in obtaining good liquid-solid disengagement,

2. not suitable for treating wastewater containing compounds requiring long
retention times,

3. exhibiting relatively fluctuating operation at high bed expansien

conditions.
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In a TPFBBR, the decrease in biofilm density with increasing biofilm thickness is
significant in the operation of a TFBBR. This is because stratification takes place in
the reactor and less dense bioparticles with thicker biofilms tend to concentrate at the
top of the reactor. This can lead to an increase in bed expansion (the volume of voids
increases). As the bed expansion continues, the less dense particles with thicker
biofilms may be washed out and it causes the reduction of TPFBBR performance.
Thus it is necessary to implement control mechanisms on the biofilm thickness of
bioparticles in order to maintain a satisfactorily treatment efficiency for a long-term

operation (Tzeng, 1991).

Table 2.1. Comparisons of biomass concentration among biological processes (Perry,

1996).
Process MLSS Surface area
(mg/) (m*/nm’)
Activated sludge 1500-3000 -
Pure oxygen activated sludge 2000-5000 -
suspended growth nitrification 1000-2000 -
Trickling filter - 3.5-15
RBC - 9-13
FBBR-CBOD removal 12000-20000 260-400
FBBR-nitrification 8000-12000 250-380
FBBR-denitrification 25000-40000 250-380

2.2 HYDRODYNAMICS OF TPFBBR
2.2.1 Flow Regimes

As a first approximation, a TPFBR could be described as a bed fluidised by the
liquid which the gas phase flows as in a bubble column. This is substantially true if
the liquid velocity is relatively high and the gas velocity remains low. By contrast, if

the gas velocity is high and the liquid velocity is low, this situation is totally
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different, with the appearance of pulsed flow. For intermediate gas and liquid

velocities, a progressive passage can be observed from the fixed bed to the

completely fluidised bed. These situations are shown in Fig. 2.3.
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Figure 2.3. Flow pattern in a three-phase fluidized-bed reactor. (1) Fixed bed (2)

Pseudo liquid/solid fluidised bed (3) Partially fluidised bed (4) Pulsed
bed (5) Fluidised bed (Trambouze et al., 1988).

2.2.2 Minimum Fluidization Velocity

The minimum fluidization velocity ({/,, ) is the basic design parameter in a

TPFBBR. There are a number of empirical correlations reported in the literature for

estimating {/, .. Some of them are listed in Table 2.2.



Chapter 2. Three-Phase Fluidised-Bed Biofilm Reactor - Background 15

Table 2.2. Summary of empirical equations for M.F. velocity.

i oo
Ermakova et al. (1970) }{;ﬂ’“— =1-¢ -05U,;"
" kmy
Begovich and Watson (1978), 1 Re,, = 5120 10" 4r 2 Fr, """
. Ulmf 70436, 0227 3458 -0.305
Begovich and Watson (1978), 2 T 1-1622U " u, " d " (p, = p1)
"l
COSta et al ( 1986) l/]b"f - ()9()9 % 10-4{77}:20.328(éi‘n)!,ﬂse(p‘g ___/)[)0.865 [)70 0421{1”0 KAM
Ulﬂd‘ oy r-0327 0227 30213 -0.423
Song et al. (1989) oo 1-375U0 '’ ™d) ™ (p, — p))
< dmf
(U, = liquid velocity at minimum liquid-solid fluidisation)

Recently, Zang et al. (1995) found that especially for low gas velocity, the Gas-
Perturbed Liquid model, together with the approximate equation for «,,(Eq. 2.1),

showed almost a good agreement with the experimental data as the best available

empirical equation for {/,, ., and the advantage of correctly reducing to the Wen-Yu

correlation (1966) for minimum two-phase fluidization as the gas velocity goes to

zero. The minimum fluidization velocity ({/,,) based on Gas-Perturbed Liquid

model is given by

U ey -, )\ N X I-¢,,
= LTl (42_86(—%1«’”“)} +0.5715¢e,,(1-a,,) Ay -42‘86(——43—"“"1“)‘2
Hy, -

Reh} I

(2.1)

where Re,, is liquid Reynolds number at minimum three-phase fluidization, s, is
the viscosity of liquid, p, is the density of liquid, d,, is the particle diameter, &,

is the bed porosity at minimum fluidization velocity, e, . is the gas holdup on solid-

mf’
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free basis, ¢ is the particle shape factor (0.906), and Ar, is the liquid Archimedes

number. @, can be computed from the following correlation (Yang et al., 1993)

_0.16 m{i (2.2)

a,, = e
" e, U+l

where U/, , U, are superficial liquid velocity and gas velocity, respectively.

2.2.3 Pressure Drop and Phase Holdups

The pressure drop across the TPFBR is important because pumping costs could be a
significant part of the total operating cost. Various transport variables such as gas-
liquid and liquid-solid mass transfer coefticients can be correlated to the pressure
drop using the analogy between mass and momentum transfer processes. The

pressure drop due to the bed alone, AP is calculated simply on the basis of the static

pressure:
(=AY =glepr + e, + 6,050, (2.3)

where p;, p,, ps are the density of gas, liquid, and solid, respectively and &, &, &,

are the gas, liquid, and solid holdup, respectively. #, is the fluidised bed height and

g is the gravitational acceleration.

The performance of a TPFBR is highly influenced by the hydrodynamic properties
such as the phase holdups. For example, the design of a TPFBR depends on the
expansion or contraction of the fluidised bed. The bubble size, gas residence time,
and consequently the gas-liquid mass transfer are influenced by the phase holdups.

The overall phase holdups in a TPFBR can be obtained through the following

equations:
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&+e, +e =i (2.4)
M. 2.5)
(Hu ap :l)S)

where a, is the surface area per unit volume of solids and M _is total weight of solid

particles.

The individual phase holdups in a TPFBR have been investigated by Kim et al.
(1975), Armstrong et al. (1976), and Bhatia et al. (1972). In the conventional studies
on phase holdups and bed porosity, overall values have been obtained through the
pressure profile along the fluidised bed, the total amount of solid particles, and the
continuity of the three phases. In order to obtain information on local phase holdups,
in situ measuring probes have been used in various studies (Begovich & Watsons,
1978a). It is inevitable that the hydrodynamics of the fluidised bed is somewhat
disrupted by an in situ measuring device. Therefore, one has to be cautious in the
design of in situ probes so that the disturbance to the hydrodynamics can be
minimised (Lee & de Lasa, 1987). In any case, the results obtained from in situ probe
measurements indicate that there are variations of phase holdups in both the axial and

radial directions in a TPFBR, particularly in the top section of the bed.

2.2.4 Gas-Liquid Mass Transfer

The mass transfer can play an important role in the determination of overall reaction
rate in a TPFBR, particularly for biological reaction. The rates of mass transfer steps

are dependent on the hydrodynamic properties of a TPFBR.

Measurements of gas-liquid mass transfer have usually assumed a plug flow model
as a basis. With these conditions, several correlations have been established to
calculate the volumetric gas-liquid mass transfer coefticient (Ostergaard & Fosbel,

1972; Lee & Worthington, 1974; Robinson & Wilke, 1974). Ostergaard & Fosbel
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(1972) reported that the gas-liquid volumetric mass transfer coefficient (K@) in a
TPFBR varies considerably with the axial distance from the gas distributor. In

addition, K,a varies with the particle size. For example, shallow beds containing

large particles exhibit particularly high gas-liquid mass transfer rates. Alvarez-

Cuenca et al. (1983) obtained that at high gas velocity, K,a was the highest in the

region between the dense bed region and the dilute bed region.

Studies of gas-liquid mass transfer may involve the measurement of the interfacial
area (a). Lee & Worthington (1974) measured the volumetric gas-liquid transfer
K,a and the interfacial a, separately. In their experiment, the mass transfer was
found to increase with an increase in the bubble size. They showed that K,a varies

linearly with &, . The volumetric mass transfer coefficient K, depends on the gas

velocity, sparger design and is sensitive to the physico-chemical properties,
particularly, those which promote or prevent coalescence. In addition, the column

diameter has some intluence if it is small. In a TPFBR, K,a can be affected by the

presence of solids. Some authors (Kato et al., 1972; Nuguen-Tien & Deckwer, 1981)

indicate that the degree of influence of suspended particles on K,a depends on the

particle concentration, the particle size, the liquid-solid density difference, the
geometrical sizes and the operating conditions of the reactor (i.e., gas and liquid

velocity). At high liquid velocities and low gas velocities, the K,a values are slightly

higher than those without the presence of solids (Nuguen-Tien & Deckwer, 1981).

Kato et al. (1972) showed that for higher solid concentration a steep decrease in K,a

was found which was caused by a decrease in a. Dhahuka & Stepanek (1980a)
reported that with an increase in particle size, K,a decreased because of a decrease

ina.

Most reported studies for the estimation of K,a in a three-phase fluidized-bed have
used particles with densities ranging over 2000 kg/m® while most TPFBBR use

particles with densities ranging up to 1300 kg/m®. So the direct application of the
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correlations for K,a developed for dense particles requires the care if used for a

TPFBBR which normally uses low density particles. Recently, Nore et al. (1992)
studied hydrodynamics, gas-solid and liquid-solid mass transfer with in a TPFBBR

with the low density ranging from 1300 to 1700kg/m3. They found that with the
particle density ranging from 1300 to 3000kg/m’in a TPFBBR, K,a increased

strongly when the gas velocity was increased and less strongly when the liquid

velocity was increased. They suggested the following correlation for K,a :

; SR it 54 ).s'; v
K, a = 4766( 2Ly 0y Ly + (2.6)
& 2

where p, is the density of the particle and p, is the density of liquid.

2.2.5 Liquid-Solid Mass Transfer

Just as in the case of gas-liquid mass transfer, the liquid-sold mass transfer step may
play an important role in the performance of a TPFBR for chemical or biological
reactions. The structure of the biofilm tends to slow the transport of substrate through
the biofilm and therefore, the substrate concentration surrounding the
microorganisms within the biofilm is less than that in bulk liquid. Thus the mass
transport properties of the biofilm are of critical importance in assessing the overall
performance of a FBBR.

Substrate conversion in a FBBR can be described by the following steps, as shown in

Fig. 2.4, (LaMotta, 1976):

1) Transport of substrate from the bulk liquid to the liquid-biofilm interface
(external mass transfer);
2) Transport of substrate with the biofilm (internal mass transfer), and

3) Substrate conversion reactions with the biofilm.
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Step 2) and 3) take place simultaneously and thus neither can be said to control while
step 1) occurs in series with steps 2) and 3). For intrinsic reaction rates with positive
dependence on substrate concentration (i.e., Monod kinetic), the gradients
established by step 1) and 2) decrease the observed reaction rate by decreasing

intrabiofilm substrate concentration (Shieh & Keenan, 1986).

In order to describe mass transport from the bulk liquid to the surface of the support
particle and reaction at that position, the Nersut diffusion layer and a stagnant film

theory have widely been used and lead to the following equation for the flux /7 of

substrate from the bulk liquid to the interface, as shown in Fig. 2.4:

Fy =k (Co=C) (2.7)

s

where ("' and (’} are the substrate concentrations at the interface and in the liquid,

respectively, and &, is the liquid-solid mass transfer coefticient.

Liquid Phase

Stagnant film or boun

|
I

hY

Figure 2.4. Illustration of mass transfer processes in a FBBR.
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An analytical solution for &, is possible for the ideal case of a single sphere at rest in

an infinite stagnant fluid. &, is then given by:

k, =20 (2.8)

s .
where D, is the molecular diffusivity in liquid.

For the general case of mass transfer between a moving fluid and a spherical particle,
the Sherwood number, S$4, Schmidt number, Sc¢, Stanton number, S7, and Froude
number, I, relate the physical properties of the system to the mass-transfer
coefficient and are more often used (Brodkey & Hershey, 1988). These correlations
are most often expressed in terms of dimensionless numbers, often in the form of a

power series.

k. d,
Sh = % (2.9)
Se = ﬁ)— (2.10)
L m
5t = Kus® (2.11)
U,
Fr = U (2.12)

In general, steady-state theories for the liquid-solid mass transfer are largely
classified into two categories; those based on the terminal velocity-slip velocity
approach and the others based on Kolmogoroff's theory. In the terminal velocity-slip
velocity approach, the steady slip velocity between solid and liquid is used in the
correlation for the Sherwood number. Based on this theory, the experimental data for

the liquid-solid mass transfer coefficient (k) are often correlated by a dimensionless

equation of the form,



Chapter 2. Three-Phase Fluidised-Bed Biofilm Reactor - Background 22

Sh=20+ad8c'’Re'? (2.13)

The value of the constant « reported in the literature lie between 0.03 and 1.0 (Shah,
1979). A review of the data of Rowe & Claxton (1966) on the Reynolds number
range 20 through 2000 indicates that a =0.76 for liquids.

Beek (1971) developed a more general correlation of liquid-solid mass transfer
coefficient within a fluidised-bed based on the data of several researchers. The

correlation of Beek is
St Sc** = (0.81+0.05)Re™®” (2.14)

Kolmogoroff's theory is based on the length scale of the micro-scale eddies, which is

defined as

3\,%
= (V[_J (2.15)

and the velocity scale is defined as
1/
v, = (V)4 (2.16)

where /2 is the local energy dissipation rate per unit mass. From the stochastic
behavior of the fluid flow around the suspended particle and Kolmogoroft's theory of

isotropic turbulence the following relationship for the Reynolds number can be

derived (Shah et al., 1982)

(2.17)
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where c*represents a dimensionless constant and /, is a characteristic length, for

instance, the suspension height. By using Kolmogoroff's theory, the energy
dissipation rate in TPFBR can be calculated from the pressure drop experienced by

the gas flow rate. The energy input P’ is approximated by
P =Ubp =U,pgeH, (2.18)

where Ap is the pressure drop in the bed. Therefore the specific energy dissipation

rate, /2, can be calculated as,
E=U.g (2.19)

Information in the literature pertaining to liquid-solid mass transfer in related
systems, such as two-phase FBBR is fairly comprehensive. Little is known, however,
about liquid-solid mass transfer in a TPFBBR. Arters & Fan (1984) developed the
liquid-solid particle mass transfer coetticient in a TPFBR. They employed cylindrical
particles of benzoic acid which were fluidised with water and air. Their results
showed that liquid-solid mass transfer in a TPFBR is higher than that in a two-phase
fluidised bed at a given liquid velocity. Furthermore, the Sherwood number (S§4) for

k, increase with increasing gas velocity. Liquid-solid mass transfer in a TPFBR

appears to be relatively independent of the liquid velocity, as has been noted for a

two-phase fluidised bed reactor. The correlation of Arters & Fan for 4, is given as

03
k LJ’ 06D 5 0322 Tsp T
Sh = _;) 2= 0.228(1+0.0826Re' ™ )Ga" 'c“(—p & ’1’5) (2.20)
e

m

and the Gallileo number (Ga) is defined as

g3 o2
(‘/.\';J a( ).f . ‘g
2

Ga = - (2.21)
Hy
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where D, is molecular diffusivity in liquid and p,, is density of particle.

Recently, Nore et al. (1992) studied hydrodynamics, gas-solid and liquid-solid mass
transfer with in a TPFBBR with the low density ranging from 1300 to 1700 kg/m’ .
In their studies, increasing the gas velocity increased &, , especially at low gas

velocities for low particle densities and the liquid velocity had almost no effect on

liquid-solid mass transfer coefticient. Nore et al. correlation for estimation of

with good prediction of the 250 values measured are

0.43

/7 2

ky, =1.10 ((——) 4, atl, =0
&

(2.22)

0051

J

k,S:oA197£i1:J d,"" atll, =0
&

Typical range for k, with d =I 130kg/m’ were varying from about 0.0003 to

0.0013 cm/s .

2.2.6 Mixing
Gas Mixing

Mixing of the gas phase is due to the fact that the gas bubbles have different
velocities associated with their size. It appears that backmixing increases with rising
gas flow rates, and with decreasing particle size. However, this could be ignored as a
first approximation (Muroyama & Fan, 1985). Michelsen & Ostergaard (1970)
reported that the determination of axial dispersion was difficult since the axial-
dispersion model was proven to be unsuccessful in accounting for the gas phase
mixing in system which rapid coalesce. In such a system, a negative dispersion
coefficient was observed. Furthermore, accurate determination of the axial dispersion

coefficient for the gas phase is difficult for beds with large particles. In TPFBR or
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TPFBBR, plug flow can often be assumed for the gas phase. Appreciable
backmixing, however, may occur in the liquid phase, especially for beds with fine
particles in cocurrent TPFBR or TPFBBR. The backmixing of the liquid and solid
particles in such a bed is primarily caused by the rising motion of coalesced large

bubbles (Muroyama & Fan, 1985).

Liquid Mixing
The axial-dispersion model with a single value of the axial-dispersion coefficient to
characterize the whole bed has been most commonly used to describe liquid mixing

in TPFBR (Ostergaard, 1968; Ermakova et al., 1973; Shah, 1979) or TPFBBR
(Wisecarver & Fan, 1987, Petersen & Davison, 1995).

The various correlations for calculating /-, have been developed by some authors

(Joshi, 1980; Muroyama et al., 1978, Kim et al., 1992). The reported data on the
axial liquid dispersion coefticient /2, indicate that /2, depends on the gas velocity,

the liquid properties, and bed diameter. The influence of the liquid phase properties
is not clearly understood (Shah, et al., 1982). Davison et al. (1977) showed that,

depending on the liquid flow rate, the axial dispersion coefficient (%, ) of the liquid

retains a value between bout 40 and 120¢m’/sec in the dispersed bubble flow

regime; in the coalesced bubble flow regime, /2, retains very high values, varying

from 200 to 400 ¢m’ /sec .

Joshi (1980) proposed a unified correlation of the axial liquid mixing in gas-liquid

two phase columns and three-phase fluidized beds. His correlation has the form:

E, =029, +F.)D, (2.23)

where £, isin m*/sec, D, inm,and I, in m/sec. V. can be calculated by:
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1

/ 3. , 13
V=13 1{5;1){(4; A S N | &-Qi--f,,” (2.24)
) ELPs T EL0 et & ‘

Here, U, (/,,U, andV,  arein m/sec,and p, and pg arein kg/m.

Kim et al. (1992) found that £, increases with increasing gas and liquid velocities in
three-phase fluidized beds of small particles whereas the effect of liquid surface
tension and liquid viscosity on /, are found to be small. They also showed that F,

decreases with increasing particle size and it sharply increases with increasing

column size. They proposed the correlation

d {! \1.l'~r.\ [TR)
Pe, =21 22019 Y Y (2.25)
ok D)o, U,

4
Studies on the backmixing characteristics of liquid have been reviewed by Fan &

Muroyama (1985). They recommend the equation of Kim et al. (1992) for the

estimation of /2, in a TPFBR since their correlations cover a wide range of literature

data.

Solid mixing

One of the characteristics of a TPFBR or TPFBBR of low-density particles which
most distinguish them from those of high-density particles 1is the axial
nonhomogeneity of the holdup of the phases. This nonhomogeneity of the axial
phase holdups is also true in TPFBBR. In a TPFBBR, the decrease in bioparticle
density with increasing biofilm thickness on support particles is significant in the
operation of a TPFBBR. Thus with the bed, nonhomogeneous distribution take place
and the less dense bioparticles with thicker biofilms tend to locate at the top of the
reactor. Fig 2.5 shows the typical solid holdup distribution in a TPFBR containing

low-density particles.
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Figure 2.5. Axial solid distribution in a TPFBR (Tang & Fan, 1989).

An investigation of solids mixing in a TPFBR was conducted by Fan et al. (1982),
Fanet al (1984), and Tang & Fan (1989). Fan et al. (1982) showed that the degree of
particle segregation decreases sharply with an increase in the gas velocity. The
degree of the solid mixing, however, would be expected to be lower than that of the
liquid mixing in a TPFBR (Tang & Fan, 1989). Tang & Fan (1989) examined the
solid mixing in a TPFBR containing low-density particles and developed a
mechanistic model with axial solid dispersion coefticient /2. They found that in the
dispersed bubble regime (high gas velocity), gas velocity has only a slight effect on
the axial solid holdup distribution. The solid dispersion increases significantly with a
decrease in the liquid velocity, corresponding to a transition from the dispersed to the
coalesced bubble regime. Tang & Fan (1989) proposed the following correlation for

estimating axial solid dispersion coefficient £, which is expressed as a function of

particle terminal velocity and gas velocity:



Chapter 2. Three-Phase Fluidised-Bed Biofilm Reactor - Background 28

Eg=0.080U5 U, (2.26)

where U, is the terminal falling velocity of a single particle in an infinite liquid
medium. The Eq. (2.26) can be used to estimate % ina TPFBR of particles with U

ranging from 0.025 to 0.055 m/s and operate in the dispersed bubble regime.

2.3 BIOFILM CHARACTERISTICS IN A TPFBBR

2.3.1 Biofilm Formation

Microorganisms, primarily bacteria, exhibit a tendency for adsorbing to and
colonising surfaces submerged in aquatic environments. The immobilized cells grow,
reproduce, and produce extracellular polymeric substance (EPS) in the development
of a biofilm. Bryers & Characklis (1982) suggested the process of biofilm
development on the support particles occurring in a biofilm reactor and described the

net results of the following transport and biological processes:

1. Adsorption of dissolved organics at the surface of particles
Transport of microbial particles to the surface
Microorganisms adhesion to the surface biofilm production

Biofilm growth

A e

Biofilm detachment

In step 4, biofilm production is the net accumulation of attached material due to
cellular reproduction and microbial production of extracellular polymers. During the
biofilm development, portion of biofilm peels away from the particle surface and is
entrained in the liquid flow. There exist two mechanisms: 1) detachment 2)
sloughing. Detachment is a process of continuous biofilm removal and is highly

dependent on hydrodynamic conditions (Peyton & Characklis, 1993). Sloughing,



Chapter 2. Three-Phase Fluidised-Bed Biofilm Reactor - Background 29

however, appears to be a random, massive removal of biofilm attributed to

oxygen/nutrient limitations deep within the biofilm (Bryers & Characklis, 1982).

Decreasing
_ lagphase | Exponential growth rate Plateau

L

Biofitm

Time

Figure 2.6. Biofilm deveopment processes.

In summary, biofilm development on the support particles is a dynamic process
influenced by microbial attachment and detachment processes and growth. Many
researches (Rittmann, 1982; Chang et al., 1991; Peyton & Characklis, 1993; Trinet et
al., 1991; Tijhuis et al., 1994; Gjaltena et al., 1995) have focused on the
understanding of biofilm detachment during biofilm formation in fluidised bed
biofilm reactor or biofilm airlift suspension (BAS) reactor because the performance

of biofilm process is related to the biomass amount on support particles.

It has been known that many factors affect biofilm formation in a fluidised-bed

biofilm Reactor (FBBR). Shieh & Keenan (1986) summarise the following factors
affecting biofilm formation in a FBBR:
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1. Microbial type and Species

Support particle surface characteristics
Polysaccharide materials
Hydrodynamic conditions

Substrate characteristics and concentration

S

Environmental conditions.

2.3.2 Biofilm Characteristics

Substrate removal processes occurring in the biofilm reactor is the result of
simultaneous interaction between the transport process of substrate within biofilm
and the substrate conversion processes to biomass by biochemical reaction.
Generally, biochemical reactions in a biofilm reactor are expressed on the basis of a
unit of biomass. The removal rate of substrate, for example, is expressed as the mass
of substrate removed per unit time per unit of biomass while the rate of biomass
accumulation by the substrate conversion process to biomass is expressed as the
amount of biomass accumulated per unit time per unit of biomass present. In order to
form these processes mathematically, the biofilm thickness and biofilm density are
widely used for modelling the physical characteristics of biofilm reactor because the
mass of biofilm present in biofilm rector can be expressed as a function of the

biofilm thickness and biofilm density.

Biofilm Thickness

Biofilm thickness is one of the most important parameters in biofilm reactor because
it represents the total accumulation of biomass in the reactor. Biofilm thickness, the
perpendicular distance from the substratum to the biofilm-bulk liquid interface, has
been used to determine the distance through which substrates and nutrients must

diffuse to fully penetrate a biofilm.
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When considering biofilm thickness, it is important that a distinction be made
between the total biofilm thickness and the active biofilm thickness (Grady Jr,
1983). It is meant that a thick biofilm does not guarantee a greater substrate removal
rate compared to that of a thin biofilm. It has been known that the substrate removal
rate increases with increasing biofilm thickness up to a certain thickness, beyond
which it remains constant. When the biofilm thickness is less than a critical value,
commonly referred as optimum biofilm thickness, the entire biofilm is active. As the
biofilm thickness exceeds the optimum biofilm thickness, only that portion of the
biofilm is active. As a result, increase in biofilm thickness beyond the optimum
Bioﬁ]m thickness will not induce a corresponding increase in observed substrate
removal rate (Grady Jr., 1983; Shieh & Keenan, 1986; Truelar & Characklis, 1982).
Truelar & Characklis (1982) also found that the value of active biofilm thickness

increased as the substrate concentration in the liquid phase increased.

In a TPFBBR, large biofilm thickness by excessive accumulation of biomass on
support particles is not desirable and it leads to a greater bed height increase which
reduces the bed stability at a given operating conditions. In extreme cases, washout
of bioparticles from the reactor could occur and it causes the loss of performance of a
TPFBBR. In order to properly operate a TPFBBR and maximise the performance of
a TPFBBR, control of biofilm thickness is required. The biofilm growth in a
TPFBBR is generally slow since 70-90% of biomass is continuously being detached
from the support particles during the biofilm formation (Hong et al, 1998; Gjaitema
et al, 1995). The biofilm detachment is very significant because this affects directly

the amount of biomass and ultimately the performance of a TPFBBR.

Biofilm Density

The biofilm density is an another important parameter in a biofilm reactor because
the substrate removal rates are related to the biomass present. The biofilm density
must be coupled with the biofilm thickness and included in any mathematical model

when calculating the accurate reaction rate.
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The biofilm density is generally expressed in terms of the dry weight of biomass of
the biofilm per unit volume of wet biofilm. The biofilm density obtained in a
TPFBBR generally had higher values to those from a two-phase FBBR or from other
biofilm reactors because turbulence and particle-particle interactions enable the
biofilms to be denser. Table 2.3 summarises the steady-state biofilm thickness and

biofilm density data determined from several biofilm reactors.

Table 2.3. Steady-state biofilm density and biofilm thickness values from different
types of biofilm reactors.

Bi i .

B]iggiﬁ %el ]i?Lfei Reactor Type Substrate Reference
X1=50 mg[en’ Municipal | Tomlinson et al.

Tubular reactor

L,=100 pm wastewater (1960)
X[ =50 mg/cm’ RBC Industrial Paolini et al.
L,=1100-3800 zzm wastewater (1979)
X7 =48 mg/cm—;‘mw“ ﬂml\jlunici "

a . ) pal Shieh et al.
L,=113 pm two-phase FBBR wastewater (1981) 4

- U i

X7 =81 mg[cn’ Wisecarver & :
L,=59.8 yom TPFBBR Phenol Fan (1989)
X7=141 mg/cnm’® | Livin

a gston &
L =23 um TPFBBR Phenol Chase (1989)
X7=30 mg/cm?’ S - Hirata et al.
L, =181 am TPFBBR Phenol (1982)

( X7 = biofilm density, L, = biofilm thickness)

Hoehn & Ray (1973) first reported that the biofilm density varies with the biofilm
thickness and reaches a maximum value at a thickness consistent with the active
biofilm thickness. Shieh et al. (1981) observed a profound dependence of biofilm
density on biofilm thickness in a two-phase FBBR for denitrification of municipal
wastewater. Fan et al. (1987) and Tanyolac & Beynenal (1997) found that as the

biofilm thickness increased, the biofilm density increased up to a maximum value,
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started to decrease with increasing biofilm thickness, and finally reached a minimum
value. Therefore, in order to evaluate a true performance of a TPFBBR or a biofilm
reactor, a mathematical model is required to include the relationship between biofilm
thickness and biofilm density since the performance of a TPFBBR or a biofilm

reactor depends on the biofilm thickness and biofilm density.

Recently researches have investigated through micro-scale observation technique
(e.g., the microelectrode or micro-slicing techniques) to enhance the understanding
of the complexities of biofilm structure, that is the influence of biofilm structure on
transport and transformation processes in biofilms (Zang & Bishop, 1994a; Zang &
Bishop, 1994b; Bishop et al., 1995). Their results from direct experimental evidence
showed that the biofilms have a non-uniform spatial distribution of biofilm
properties, which conflicts with the a priori assumption of many biofilm growth
models, that is a uniform spatial distribution of biofilm properties. The structure of
biofilms can be highly stratified, and therefore, biofilm density, porosity, pore
structure, and the composition of the microbial community can be quiet different in
each layer. Bishop et al. (1995) showed that the biofilm density of a top layer and a
bottom layer can be 5-10 times different and the rate of biofilm density increase with
biofilm depth is greater for thin biofilms than for thick biofilms. It is known that the
density with biofilm depth is the result of competition and drainage. As a result of
the change of density in biofilm, the porosity also has a spatial distribution within the
biofilm. Because of these distributions of biofilm density and porosity, both
tortuosity and effective diffusivity change with biofilm depth. Zang & Bishop
(1994b) showed that for biofilm with porosity of 0.84-0.93 in the top layers and 0.58-
0.67 in the bottom layer, tortuosity factors increase approximately from 1.115 in the
top layer to 1.6 in the bottom layer. Although the information from the micro-scale-
based observations is quite useful and practical, it is still difficult to incorporate it
into macro-scale-based mathematical models. Averages values of biofilm thickness,
biofilm density, and effective diffusivity are still widely used for macro-scale-based

modelling and design purposes.



Chapter 3

Experimental Methods

3.1 INTRODUCTION

The basic objectives of the experimental work are:

* To obtain the value of variables needed as input to the mathematical model
presented in chapter 4, 5, and 6.
* To obtain dynamic performance data of a TPFBBR which can be used to evaluate

the mathematical model proposed in this thesis.

3.2 EXPERIMENTAL
3.2.1 Reactor

Three laboratory-scale three-phase fluidized-bed biofilm reactors with identical
dimensions were constructed and operated under different operating conditions to
obtain the dynamics of the biofilm growth after startup. A diagram of the TPFBBR is
illustrated in Fig. 3.1. The major components of each TPFBBR include reactor, gas-

liquid separator, air and liquid distributor, feed pumps, and feed and effluent tanks.
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The reactor was made of plexiglass and was of 4.4 cm 1D and, with six sampling
ports installed along the bed height to obtain both liquid and bioparticle samples. The
bottom of the bed was conical in shape which was employed to promote even
distribution of the incoming wastewater. The enlarged section with 6.6 cm ID and 25
cm height was fitted at the top of the bed to provide better liquid-bioparticle
separation. The total reactor volume was 1200 mL. Air sparged through a porous
metal disk, which covered the bottom cross section, at rates which caused
fluidization of the support particles without any liquid flow. The average pore size of

a porous metal disk is 13 s#n . The pH was controlled between 6.7 and 6.9, and the

temperature held at 21° C. The dissolved oxygen was monitored with an electrode.

3.2.2 Startup and Operation of a TPFBBR

Initially, 15% of reactor volume was filled with clean activated carbon particles
(settled volume %). Activated mixed culture corresponding to 5% of reactor volume
was then added to the TPFBBR containing synthetic wastewater with the phenol
concentration of 200 mg/l. The TPFBBR was fluidized by upward air flow and was
operated in a batch mode for a few days to allow the buildup of active microbial cells
on activated carbon particles. The operation was switched to a continuous mode. The
inlet phenol concentration was maintained between 150 mg// and 200 mg/I during all
experimental runs but the liquid and air velocity were varied to obtain the
information for dynamic growth of biofilm under different runs. The pH was
controlled to between 6.7 and 6.9, and the temperature was held at 21° C. The
dissolved oxygen was monitored with an electrode. All measurements of biofilm
growth on support particles were conducted at 12 hours intervals. The operating
conditions of the experimental runs performed in this study are summarised in Table

3.1
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Table 3.1. Experimental conditions.

Air Liquid Inlet phenol
Particle size .
Run velocity velocity concentration
(aem) X
(cm/sec) (cm/sec) (mg/cnr )
1 275 036 0.062 150-200
2 400 036 0.023 |  155-185
3 570 0.842 0.078 147-183 B
4 570 048 0.066 “151-196
5 600 0.73 0.08 151-190
6 600 0.42-0.7 0.057 143-176
7 710 09 0.03 148-184
8 710 1.2 0.03 155-193

3.2.3 Microorganisms and Culture Medium

The biofilm formed on the support particles was a mixed culture which is
predominately Psewdomonas putida and Alcaligenes eutrophus (Bhamidimarri,
1987). This mixed culture was then conditioned to a synthetic growth medium
containing phenol as the sole carbon and energy sources. The composition of the
synthetic growth medium is shown in Table 3.2. The synthetic growth medium was
diluted to yield the desired phenol concentration with fresh distilled water for each

experimental run.

Cell suspensions for inoculations were made by mixing the freeze dried stock culture
(about a quarter teaspoon) with S0 mL of the synthetic growth medium at a defined
phenol concentration. It was incubated at 21° C in 250-mL shake flasks on a rotary
shaker at 250 rpm for 24 h. To ensure sufficient oxygen supply the flasks were fitted
with lids with holes. After this period, the mixture was left for the filler material to

settle. 10 mL of the supernatant liquid was transferred into 40 mL fresh medium and
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incubated as earlier. The last step was repeated twice before the culture was regarded

as well established.

Table 3.2. Composition of synthetic growth medium.

Component Concentration (mg/l)
KHZPO4 420
K,HPO4 375

(NH.):804 244
NaCl 30
CaCl2H,0 30
MgSO4 7H,0 30
FeCl,H,0 4.6
CsHsOH Varying

3.2.4 Analytical Methods

Phenol Assay

Phenol concentration was measured spectro-photometrically by monitoring the

optical density 274 nm with a spectrophotometer (Phillips PU 8625 UV/VIS,

Cambridge, England) equipped with quartz sample cells. This direct method, without

protracted sample preparation, could be employed because the aromatic ring of the

phenol molecule absorbs UV light. The data collected were then converted from the

optical density to concentration units using a previously prepared calibration curve.

Suspended Biomass Concentration

Suspended biomass concentration was measured by determining the optical density

of the culture broth. This was done using a spectrophotometer (Phillips PU 8625



Chapter 3. Experimental Methods 39

UV/VIS, Cambridge, England) at a wavelength of 620 nm equipped with quartz

sample cells.

Biofilm Thickness

The biofilm thickness was measured with the help of microscopy (Olympus CHA,
Olympus Corp., USA) with a previously calibrated eyepiece with ocular scale. For a
representative value, the biofilm thickness of each bioparticle was measured at four
locations around the bioparticles per sample. To obtain the average biofilm thickness
through the height of reactor, at least total 200 bioparticles were taken from 6

sampling ports and measured at 12 hour intervals.

Biofilm Density

The biofilm density is expressed in terms of the dry weight of biomass of the biofilm
per unit volume of wet biofilm. The biofilm density was measured in accord with a
dry weight measurement based on Tang et al. (1987). The weight of the attached
dried biomass plus that of the support particles was measured by drying the
bioparticles (at 100° C for 24 hours) taken from the each sampling port. The biofilms
were then removed by NaOH, solution from the support particles. The clean support
particles were then washed, dried at 100° C for 24 hours, and weighted. The dry
biomass weight was obtained by subtracting the weight of dried support particles
from the weight of the dried bioparticle. Finally, the biofilm density was estimated

using the following equation:

L oW (3.1)
“ T wiofd, 20, Y —di | N

xp

-

where X/ is the biofilm dry density, d,,, the diameter of support particles, N, the
total number of support particles in the sample, L., the biofilm thickness, and W, ,

the dried biomass.



Chapter 4

Mechanistic Model for a TPFBBR
Incorporating Dynamic Biofilm
Growth

4.1 INTRODUCTION

Several mechanistic model-based biofilm models have been developed in which the
substrate transport to consumption by the biofilm is described. In the majority of these
models, biofilm properties such as biofilm thickness and biofilm density were
assumed to be constant (Atkinson, et al., 1967; Atkinson & Daoud, 1970; Lamotta,
1976; Williamson & McCarthy, 1976; Rittmann & McCarty, 1981). Although steady-
state biofilm models for growing biofilms can be quite satisfactory for design
purposes, they may insufficient to describe the start-up phases and the dynamic
responses to the changing conditions in the systems. These models describe neither
the variation in biofilm thickness nor its density in time. Thus a dynamic biofilm
growth model reflecting the variability of biofilm thickness and its density as a
function of time is necessary for design, optimisation, and control of a TPFBBR. Net
biofilm growth rate depends highly on biofilm detachment rate. Therefore,

information on the biofilm detachment is required because the performance of biofilm
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process is dependent on the quantity of biomass amount on support particles.

However, biofilm detachment processes are the least studied and understood.

The aim of this chapter is to develop an integrated model incorporating dynamic
biofilm growth for a TPFBBR by taking a mechanistic modelling approach. First, the
dynamic biofilm growth model is developed which is able to reflect the simultaneous
variability of biofilm thickness and biofilm density as a function of time, derived from
a biomass mass balance equation. A biofilm detachment model 1s also developed as a
function of shear loss and attrition. Using the method of characteristics to arrive at a
solution for propagation of biofilm thickness and biofilm density in time, the dynamic
biofilm growth model with detachment is proposed. In order to form the integrated
model, the dynamic biofilm growth model with detachment is combined with a
reaction-diffusion model and reactor model to predict the dynamic change of
performance in a TPFBBR according to the variation of biofilm thickness and biofilm
density. The experimental data are compared with simulation results to show the

effectiveness of integrated model and dynamic biofilm growth model developed.

4.2 OVERVIEW OF BIOFILM GROWTH MODEL
4.2.1 Steady-State Biofilm Growth Model

Many steady-state biofilm models describing substrate concentration profiles over
biofilms have been developed. In many of these models, zero or first-order kinetics
were assumed so that analytical solutions were available (Atkinson, et al., 1967;
Atkinson & Daoud, 1970; Williamson & McCarty, 1976; La Motta, 1976; Dalli &
Chau, 1987; Rittmann & McCarty, 1981; Harremoes, 1982). However, numerical

solutions were obtained (Wanner & Gujer, 1982).

Rittmann & McCarty (1981) modelled biofilm thickness by assuming that a steady-
state biofilm model is one in which growth would just be balanced by cellular decay.
Later, Rittmann (1982) extended his model to incorporate biofilm detachment which

depended on the biofilm thickness and mass as well as upon the shear stress. Andrew



& Tien (1981) developed a biofilm growth model which is similar in concept to the
biofilm model of Rittmann. Howell & Atkinson (1974) proposed a biofilm model in
which the biofilm thickness increased over time by assuming that no continual
detachment occurred so substrate removal would result in accumulate cell mass. In the
steady-state biofilm models, the biofilm thickness is assumed to be constant and the
biomass distribution over the entire biofilm is also assumed to be homogeneous. In
reality, the biofilm thickness and biofilm density are not constant over time, and the
biofilm density is not constant over the entire biofilm (Masuda et al., 1992; Zang &
Bishop, 1994a; Zang & Bishop, 1994b; Bishop et al., 1995). Gradients develop

because the growth rate is dependent on the local substrate concentrations.

The major limitation of the steady- state biofilm models are: (1) that the biofilm
thickness of the steady-state biofilm model must be known; and (2) only the steady-
state is described, which means that it does not give insight into the response of the
processes to change (Wijffels & Tramper, 1995). However, steady-state models
provide descriptions of biofilm processes in the case of thick biofilms, in which the
penetration depth of substrate is smaller than the biofilm thickness. In this case,
accurate information about the total thickness of the biofilm for determination of the
capacity is not important. In the case of thinner biofilms formed in a TPFBBR,
however, the biofilm thickness is a key parameter to contribute to the reactor

performance.

4.2.2 Dynamic Biofilm Growth Model

In the dynamic biofilm growth models, the biofilm thickness and biofilm density will
increase or decrease as a function of time. The consideration of the varying biofilm
thickness and its density in the biofilm is essential to study the dynamics of biofilm
reactors. Modelling of the dynamic biofilm growth has been attempted by several
investigators (Benefield & Molz, 1985; Wanner & Gujer, 1986; Jones et al., 1993;
Wijffels et al., 1989; Wijffels et al., 1991).



In dynamic biofilm growth models reported in the literature, the biofilm thickness or
biofilm density was restricted to a maximum or minimum. If growth is not assumed to
be restricted, or if no biofilm is removed, the biofilm will become infinitely thick. As
this is not realised in practice, some modellers introduce restrictions such as no growth
to a maximum biofilm thickness (Toda & Sato, 1985; Jones et al., 1993) or the
assumption that there is biofilm loss at the maximum thickness (Benefield & Molz,
1985; Wanner & Gujer, 1986). In practice, even though the biofilm thickness and
biofilm density can vary simultaneously by several orders of magnitudes and exhibit
temporal variations quite different from their long-time or steady-state patterns, most
of the above models do not describe a simultaneous change of biofilm thickness and

biofilm density in time.

4.3 DYNAMIC BIOFILM GROWTH MODEL

The dynamic biofilm growth model presented here is based on the following

assumptions:

e Growth is limited by a single substrate and all other nutrients are present in
€XCess.

e Various species of microorganisms present in the biofilm can be described as
homogeneous biomass.

e Properties of biofilm change only in the direction perpendicular to the
biofilm-support particle interface.

e Axial gradients of biofilm thickness are not significant.

¢ Growth mechanisms of suspended cells and attached cells are assumed to be
identical.

e Biomass within the biofilm is uniformly distributed.

This model is based on a one-dimensional conservation law for the biomass in the

biofilm. A mass balance may be written for a differential volume element A-AL, of

the biofilm (Fig. 4.1).
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o X/ (L,,
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L s, ] (4.1)

where X"f'(Lf ,1) 1s the biofilm density based on dry weight of biomass as function of
time ¢ and biofilm thickness AL, . F,(L,, 1) is the flux of biomass, and Ry is the rate
of change of biofilm density. By dividing Eq. (4.1) by A-AL, and taking the limit as

these dimensions go to zero, we have
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Figure 4.1. Schematic of biofilm growth with a volume element of biofilm.

The biofilm is assumed to consist of a liquid phase and a solid phase. Biofilm liquid

phases generally amounts to about 80% of the biofilm volume. It is assumed that as
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the metabolic reaction in the biofilm increases, there is an increase in the amount of
biomass at the end of a finite time interval which causes an increase in the biofilm
solid phase. Biofilm thickness can be considered to change to accommodate the
change in the biofilm solid phase and in the biofilm liquid phase. It is also assumed
that although the biomass accumulates on the support particles, the biofilm density
decreases since the volume expansion of the biofilm results in the decrease in the
biofilm solid phase. The flux of biomass that leads to the change of the biofilm

thickness can be expressed as
Fo(L,n)=U(L,.nHX](L,.1) (4.3)
Substitution of Eq. (4.3) into Eq. (4.2) leads to

axX (L. .y 3
A WL DX (L, =R, 4.4
UL, XL )= R, (44)

f

From the assumption of uniform distribution of biomass, the one-dimensional mass
balance equation, which models the biofilm growth as function of time and biofilm

thickness, can be expressed as

OX (L, ¢ dX (L, .t
__Hhi’_(__’_}JrU{LP;);”(-_f_): R, (4.5)
d ! ' alL,

The growth kinetics of biofilm is assumed to follow Monod kinetic. The expression

for the specific growth rate is thus:

- u, C’ _
u(Cly=—mas (4.6)
“ K, +C!

where u is the specific growth rate, u the maximum specific growth rate, K, the

max ’
Monod constant for substrate. By assuming Monod kinetics, the rate of change of

biofilm density can be expressed as
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Ry =—(u-X/(L,.1)~R,) (4.7)

where R, is the biofilm detachment rate which considers the transfer of biomass from

the biofilm phase to the liquid phase.

4.3.1 Detachment Model

4.3.1.1 General Overview of Biofilm Detachment Model

The biofilm detachment is the entrainment of cells from an existing biofilm into the
bulk liquid and is the primary process that balances cell growth in a biofilm (Peyton &
Characklis, 1993). The biofilm detachment is a complicated function involving several
variables, which take into account the hydrodynamics of the liquid and gas flow at the
biofilm surface and the biofilm morphology and heterogeneity.

In principle, the biofilm detachment coefficient (/) can be expressed in terms of the

de

characteristics of the biofilm, the support particle, and the hydrodynamic variables

likely to affect detachment
by =f(X[.L,.C .U Uy (4.8)

where C is the particle concentration in the reactor.

The biological process performances depend on the biomass amount in a reactor. This
is especially true for biofilm process, in which high volumetric loading rates or low
effluent concentrations are associated with the ability to accumulate a large biofilm
mass in the reactor. The biofilm mass accumulating on support particles is dependent
on substrate utilisation, biofilm growth, decay, and biofilm detachment. For design
and operation purposes, a model must predict the amount of biomass in a biofilm
reactor. Therefore, among the mechanisms controlling biofilm reactor performance,

detachment process is one of the least studied and understood. One commonly applied
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biofilm detachment model assumes a first-order dependence on biofilm thickness and

mass (Chang & Rittmann, 1988).
Rn’(' = b.’-’f'X({ Lf (49)

Others have postulated that shear loss rate i1s a power law (Bakke et al., 1984) or

second-order function of biomass (Bryers, 1984). For example,
R, =b, (XL, (4.10)

Wanner and Gujer (1986) have used that biofilm shear loss rate was a second-order
function of biofilm thickness in multispecies population dynamics. Based on an
analysis of limited data, Rittmann (1982) suggested

Rr/(' =0

e

Xaf L"-z_o_ﬁg (4 11 )

where 7 1s the shear stress.

A first-order dependence on shear stress of the form (Bakke et al., 1990)

R, =b,X/T (4.12)

has also been proposed. Speitel and DiGiano (1987) suggested that growth rates in the

biofilm influence shear loss rates and have proposed as expression of the form

R, =(h +baL, (4.13)

where b_ is the biofilm shearing coefficient and &, is the dimensionless parameter
describing the biological aspects of shearing.

Trinet et al. (1991) suggested the correlation of factors affecting biofilm detachment
rate by using multiple regression analysis in a TPFBBR. Chang et al. (1991) also
showed the statistical correlation of factors affecting detachment rate in liquid-

fluidized bed. Peyton and Characklis (1992) proposed that the detachment rate should
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be proportional to the product of the substrate utilization, biomass yield, and biofilm

thickness and have proposed as expression of the form

0

R(h' = "l}r."r Z(C‘:” - C\{ )Y\"LI (4 | 4)

where Q is the flow rate, A is the surface area of the reactor, C" is the inlet substrate

RY

concentration, CI is the substrate concentration in the reactor, and Y, is the yield

coefficient.

Recently, Peyton and Characklis (1993) also showed that the detachment rate is
independent of shear stress, but is dependent on the cellular production rate and have

proposed as expression of the form:

R, =b,uX! L, (4.15)

4.3.1.2 Important Parameters Influencing Detachment in a TPFBBR.

0.58

Rittmann (1982) suggested that there is a strong relation of b, to 7 in an annular

reactor. But for a two-phase FBBR, Chang et al. (1991) showed that the effect on
detachment rate of liquid shear stress (7 ) was not significant and for a three-phase

FBBR. Trinet et al. (1991) also founded that the range of 7 (approximately 9.5
dyne/cm:) was too small to distinguish any effects of 7 on biofilm detachment.
Bhamidimarri and See (1990) showed that shear stress required for balancing
detachment with growth for a phenol degrading biofilm was 19.2 N/mz in a rotating

cylinder bioreactor. Duddrige et al. (1982) on the other hand reported that a significant

biofilm detachment attached to stainless steel occurred at shear stress above 100-120
dyne/cm2 . Therefore, as the liquid shear stress, 7 present in a TPFBBR is too small

to detach the biofilm on the support particles, the effect on detachment of 7 may be

thought to be not significant. Gjaltema et al. (1995) presented a preliminary survey of



Chapter 4. Mechanistic Model of TPFBBR incorporating Dynamic Biofilm Growth 49

factors affecting biofilm detachment in three-phase biofilm airlift loop reactors. These
factors are summarised in Table 4.1. The study of Gjaltema et al. (1995) demonstrated
a strong positive relationship between the biofilm detachment rate and the
concentration of clean support particles, and between the biofilm detachment rate and
the roughness of clean support particles. This study also showed that the biofilm
detachment at lower superficial air velocity was not significantly different, but the
detachment at higher superficial air velocity was considerably higher. A similar
relationship has been observed by Tijhuis et al. (1994) for developing biofilms in a
BAS reactor. In a recent study on the effect on biofilm accumulation due to air
velocity, Tavares et al. (1996) showed that biofilm accumulation decreases when gas
velocity increases. The air velocity therefore is demonstrated to be an important
operational variable for biofilm characteristics and biomass accumulation in a

TPFBBR.

Table 4.1. Summary of qualitative effects of tested parameters on detachment

(Gjaltemaet al., 1995).

Pellet morphology
Pellet diameter
Bare carrier roughness
Bare carrier concentration

Flow regime

Superficial air velocity

Reactor geometry

Bottom clearance

Parameter Effect
Biomass decay negligible
Biofilm pellet batch not clear
Biofilm storage time not clear

no effect observed, data limited

no effect observed, data limited
important
important
important

within one flow regime on
effect observed, data limited

important

no effect

[
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In the research into the damage due to liquid shear, turbulence, and particle-particle
interactions, Croughan et al. (1988) showed that damage due to the interactions
between particles and turbulent eddies was most important at lower support particle
concentration; particle-particle interactions alone dominated at higher particle
concentration. In a study of investigating biofilm detachment in three-phase fluidized-
bed biofilm reactor, Trinet et al. (1991) also observed that increased particle-particle
attrition, which is proportional to particle concentration, and increased air turbulence
described by Re (Reynolds number), caused the biofilms to be denser and thinner. The
detachment rate increased as particle concentration and Re increased. It has also been
known that the detachment strongly increased with increase in the liquid velocity. The
liquid turbulence may influence the erosion process, in which biofilm is continuously
removed from the surface of biofilm in addition to attrition process. Therefore, as
mentioned in Tijhuis et al. (1994) the detachment in the biofilm airlift system (BAS)
reactor and the two- or three-phase FBBR are most probably governed by particle-
particle interactions because the support particle concentration is generally high,
whereas in the rotating drum reactor other mechanisms, notably liquid shear stress, are
dominating detachment. The biofilm density obtained in a TPFBBR generally had
higher values to those from two-phase FBBR because turbulence and particle-particle
interactions render the biofilms to be thinner and denser. This is probably due to the
fact that cells in the biofilms developed in a TPFBBR pack more tightly and due to
considerably higher erosion force attrition forces. In conclusion, the attrition effect
due to particle-particle interactions and erosion forces caused by superficial air and
liquid velocities must be taken into account in developing a model for biofilm

detachment of a TPFBBR.

4.3.1.3 Detachment Model Formulation

The detachment rate in a TPFBBR will be expected to be a positive function of
erosion force caused by liquid turbulence and gas turbulence. This erosion effect at the
biofilm surface affects the biofilm accumulation and therefore is related to the solid
holdup and the bed expansion characteristics because the change of biofilm

accumulation (such as biofilm thickness) influences strongly the solid holdup and bed
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expansion. Furthermore, different solids holdup (or bed expansion) may affect the
detachment rate. Meanwhile the solid holdup is strongly related to the attrition effect
due to particle-particle interactions. Generally the effect of attrition effect on the
detachment was described as the support particle concentration present in the reactor
(Chang et al., 1989, Trinet et al., 1991). A large particle concentration indicates
greater particle-particle attrition and it also corresponds to less liquid turbulence. This
support particle concentration is closely dependent on the solids holdup, which
decreases with increase in the superficial liquid velocity and on the bed turbulence,
which causes random movement of the support particles and influences particle-to-
particle contacts. The attrition effect on the detachment is proportional to the liquid
velocity resulting in turbulence and inversely proportional to the solid holdup in a

TPFBBR.

Traditionally the solid holdup (or bed expansion characteristic) has not been
considered in the detachment models. In this chapter, the particle concentration
resulting in the attrition is defined as the solids holdup. Therefore it may be suggested
that major variables to be considered for the description for biofilm detachment in a
TPFBBR are the particle concentration as function of the solid holdup, and turbulence
due to superficial gas and liquid velocity. Since the shear stress is thought to be poorly
suited for studies on the erosion effect for the detachment in a TPFBBR (Tijhuis et al.,

1994; Huang et al.,, 1996), the concept of a velocity gradient (V) employed by

Amirtharajah (1978) is introduced to describe the turbulence resulting in the erosion
force and the attrition. Amirtharajah introduced the concept of a velocity gradient in a

fluidized bed first suggested by Camp (1964) and it is defined as

k,

V. =0.5(—2) (4.16)

4.0,

where V is the velocity gradient, E,, the energy dissipation rate, g, , the liquid

dynamic viscosity, and Q, , the liquid volume.



Chapter 4. Mechanistic Model of TPFBBR incorporating Dynamic Biofilm Growth 52

The frictional pressure gradient (AP ) in a fluidized bed, which is equal to the weight
of solids per unit volume of the bed corrected for the pseudo-homogeneous fluid
buoyancy, is given by the Ergun equation (1952) applied to the liquid-solid system.

Hence,

dP
AP =| ——— | =¢_ -
( (IZ ]f S (pbp p[, ) 8

(4.17)

2

150U, p, €] I5U  pue

dbpz (l_—gx)3 dbp (l__‘gv)3

The Ergun equation assumes that the gas and the liquid together behave as a
homogeneous fluid with no relative motion between them. Such an assumption is at
best valid only for very small gas/liquid velocity ratios and correspondingly small gas
bubbles. The energy dissipation rate ( £, ) can be computed from multiplication of the

frictional pressure gradient by the liquid flow rate.

EF’ = g-‘ H(‘ {lobp - pf)g ‘AUI, (4]8)

where H, is the expanded height, A, the surface area of bed.

In summary the biofilm detachment coefficient can be formulated by

(4.19)

where b, is the biofilm detachment coefficient, ¥, a constant, Re,, Reynolds

number as a function of the superficial gas velocity, € , the particle concentration as

A

a function of the solids holdup. The biofilm detachment rate ( R, ) can be described as

7 N
Vi, Re,

th_ = bﬂ,{,X:‘ lLr f) = {f/

X)L, (4.20)

5
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4.3.2 Biofilm Growth Model Incorporating Detachment

Wanner and Gujer (1986) proposed that the expansion velocity of biofilm thickness
may be expressed as a linear function of the specific growth rate and biofilm
thickness. It follows from this that the shrinkage velocity of biofilm thickness due to
detachment is proportional to the increase in biofilm thickness and is a function of
biofilm detachment coefficient. Therefore, the rate of change of biofilm thickness can

be described as

UL, 1) L, L —b L
cea ) =——=H1L, — b,
/ dt fooTet (4.21)

= ul,

where u is the net specific growth rate.

The net change rate of biofilm density can therefore be formulated as

R, =—(X!'(L,.» *!)‘I{,Xj (L,.t)
_ ' (4.22)
=-uX (L, .0

Substituting Eq. (4.21) and (4.22) into Eq. (4.5) leads to the resulting mass balance

equation for the biofilm growth.

O XLy - 9 X(L,.0)
S L,
J 1 oo, (4.23)
=—uX/(L,.0)

Let us introduce a new time variable, T by taking

dt I

= 4.24)
(IT u (

This transformation converts Monod kinetic to first-order kinetic in the new time

frame and with this substitution gives



Chapter 4. Mechanistic Model of TPFBBR incorporating Dynamic Biofilm Growth 54

f f
X, i, 8% o _x (4.25)

o7 oL, ¢

This first-order partial differential equation can be solved by the method of
characteristics (Aris & Amundson, 1973; Hunter & Asenjo, 1990), by parameterizing

T, L,. , and X({ as arbitrary function of a dummy variable A. Let us choose

] L.
ar o & L, (4.26)
dA dA :
f o X/ !
which are the coefficients of - and “-, respectively. Expanding ——~ by
o7 Y L,
the chain rule in terms of T(4) and L, (A) gives
dX! @ X! dr +9 X/ dL,
dA T dA o L, dAi
. 9. , (4.27)
X .
— a_+Lf ,,__H_){_"_u—..Xa’
o7 ) L,
Solving for L, , T, and Xj as functions of A, gives
T=T,+4 (4.27a)
L = L‘,“exp(/l) (4.27b)
X=X/ exp(-4) (4.27¢)

The new time variable T"denotes time, so 7, = 0. Application of Eq. (4.27) could lead

to an infinitely low biofilm density and high biofilm thickness. As this is not realized

in practice, the following constraints are added to this equation.
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<L, (4.28a)

X! <x/<x! (4.28b)

fimal

where X“’f cand L, are the observable final biofilm density and maximum biofilm

thickness. Finally the solution X/ and L, may be recast in terms of real time r by

substituting equation (4.24).

Vs Re,
L, = L,“cxp((u—y/T) -1) L <L SL,;M (4.29)

s

f f Vfi Rc' f f
X:‘l’ = X:‘! exp(_{” = y/ £ ) ’ r) Xr: S Xﬁ S Xf.f ] (4.3O>
mas 8 max ferial

3

Eq. (4.29) and Eq. (4.30) shows that the biofilm thickness between L, and L, + AL,
increases exponentially, so that biofilm density at each biofilm thickness decreases
exponentially toward its final value. The dynamic biofilm growth model presented

here can describe simultaneously the change of biofilm thickness and biofilm density

in time.

4.4 REVEIW OF MATHEMATICAL MODELLING
OF A TPFBBR

The modelling of a liquid-solid, two-phase FBBR has been attempted by several
investigators (Mulcahy, 1978; Ying and Weber, 1979; Shieh, 1980; Mulcahy et al.,
1981). The microbial growth kinetics considered in the above models were assumed to

be either zero-order or first-order, or Monod kinetics.

In the case of a TPFBBR, Park et al. (1984) presented a model for a TPFBBR for
penicillin production which utilized substrate inhibition kinetics. However, they

considered only the limiting cases of complete mixing and plug flow, and the liquid-
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solid mass transfer resistance was neglected. Tang & Fan (1987) developed a model
for a draft-tube TPFBBR for phenol degradation which considered doubled - substrate
limiting kinetics, with Haldane type substrate inhibition kinetics for the phenol and
Monod kinetics for oxygen. In their model, the liquid and solid phases in the reactor
were assumed to be completely mixed due to the large degree of internal circulation
within the draft-tube TPFBBR. Wisecarver & Fan (1989) presented a model for a
conventional TPFBBR for a phenol degradation that used double-substrate-limiting
kinetics. The model they presented included the effect of gas-liquid and liquid-solid
mass transfer, axial dispersion of the liquid phase, and simultaneous diffusion and
reaction with the biofilm. However, they assumed that the solids were well mixed and
steady-state growth conditions were maintained, implying that the concentration on
the surface of the biofilm was constant throughout the reactor. These assumption,
together with the assumption that the axial dispersion coefficient was constant
throughout the reactor, allowed them to develop an analytical solution for the bulk
fTuid concentration profile though the biofilm to determine the surface concentration.
Then, using a material balance, they determined the reactor exit concentration.
Livingston and Chase (1989) also presented a model for draft-tube TPFBBR for
phenol degradation which considered double-substrate limiting kinetics, but, did not
include gas phase material balance in their model. Recently, Petersen and Davison
(1995) developed a model of tapered-bed TPFBBR to convert glucose to ethanol. In
their model, the concentration profiles in the bulk fluid were determined as a function
of the axial-bed position. To do so, a dispersed-plug flow model was employed. They
did not account for the fact that the dispersion coefficient was a function of the flow
rate of the gas through a cross section of the bed and that the bed might not have a

constant cross section but rather be tapered.

4.5 INTEGRATED MODEL DEVELOPMENT

The integrated model for TPFBBR presented here is divided into three submodels:

e The Biofilm Growth Model, which considers accumulation of biomass

and expansion or shrinking of the biofilm thickness through metabolic
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reaction by microorganisms attached to support particles and biofilm
detachment.

e The Reaction-Diffusion Model, which considers a simultaneous intra-
biofilm reaction-diffusion.

e The Reactor Model, which considers axially dispersed transport of

substrate and suspended biomass as a function of bed height.

4.5.1 Reaction-Diffusion Model

The concentration profiles of substrate describing the simultaneous transport and

removal within the biofilm, C/, lead to the following equations.

i 2~ f r ! _
0 ¢ =D, ’ C P 2[00 L G XI(L,.0) (4.31)
d 1 loLlr LloL Y, K +C/

where L is the radial position within the bioparticle, D,, is the effective diffusion

Y

coefficient in the biofilm, Y, is the growth yield coefficient of substrate, K is the

saturation constant of substrate, u,,, 1s the maximum specific growth rate, L, is the

X

biofilm thickness, and X/ is the biofilm density.

Eq. (4.31) is subject to boundary conditions specifying a zero intraparicle substrate
concentration at the start of the experiment, substrate transfer from the liquid phase to
the biofilm based on a liquid-solid mass transfer coefficient (under conditions of time-
dependent substrate concentration in the liquid phase) and no substrate flux at the

centre of the support particle. Thus,

* =0 at L=0

Q)
v ™

c!
D, 5 L =k, (C,-C!) at L=L, (1) (4.32)

C/HL, 0 =0 at1=0
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where k. is the liquid-solid mass transfer coefficient and C. is the phenol

concentration in the liquid phase.

4.5.2 Reactor Model

In a three-phase fluidised-beds, the gas phase may often be assumed to be plug flow.
Appreciable backmixing, however, may occur in the liquid phase, especially for beds
of small particles in concurrent three-phase fluidization. The backmixing of the liquid
and solid particles in such a bed is primarily caused by the rising motion of coalesced
large gas bubbles. An axial dispersion model has been most commonly used to
describe the backmixing behaviour of the liquid phase and to simulate substrate

removal in a TPFBBR (Wisecarver & Fan, 1989; Petersen & Davison, 1995). A mass

balance for substrate in the liquid phase, C!, yields the following equations.

J C! (Z,n) _

22 U, 0C kae,
ot '

E Bt S N T oL o 4.33
Loz & 0Z g (€ =€) (4.33)

The corresponding boundary and initial conditions for C' are

9 €10,

U,CH0,n~¢E, =U,C" at Z=0

9 Ci(H.1) _
JZ
Cl(z0)=C!, att=0

0 atZ=H (4.34)

where C! is the phenol concentration in liquid phase, Z is the axial distance from the
bottom of bed, E, is the axial dispersion coefficient, U, is the superficial liquid
velocity, &, is the liquid holdup, &, is the solid holdup, a, 1s the biofilm surface area
per unit volume of solids, C!" is the inlet phenol concentration, and k,, is the liquid-

solid mass transfer coefficient.
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The Danckwerts conditions express the phenomenon that, at the entrance, the rate by
which the substrate is fed in the reactor is equal to the rate at which it crosses the Z=0
plane through combined convection and diffusion. The zero gradient condition at the
exit expresses the fact that no substrate conversion can take place outside of a
TPFBBR. While the biofilm growth model and reaction-diffusion model are linked

through biofilm thickness and biofilm density, the reaction-diffusion model and

reactor model are also coupled through C'.

4.5.3 Hydrodynamic Parameters

In order to simulate the performance of a TPFBBR, estimation of the phase holdups,
gas-liquid and liquid-solid mass transfer coefficients, the liquid phase axial dispersion
coefficient, the minimum fluidization velocity, and the expanded bed height under
various conditions are essential. These hydrodynamic parameters are closely linked to
the characteristics of biofilm (such as the biofilm density and its thickness). As the
biofilm grows on the support particles, the characteristics of biofilm are changed and
influence the hydrodynamic conditions of the bed. Once the biofilm thickness is
predicted in the dynamic biofilm growth model with the biofilm detachment, the

diameter of the biofilm-covered particle is given by

d,=d, +2L, (4.35)

hp

where d,, and d , are the diameter of the clean and biofilm-covered particle,

respectively. Then the density of the biofilm-covered particle can be estimated from

the following equation

{!H L8
php = pbn + (p_\'lrj - phll') ( f.! } (4'36)
{

£y

where p, = is the biofilm-covered particle and p,, 1s the density of the clean particle.



The wet density of biofilm ( p, ) can also be calculated from the following equation

(Mulcahy, 1978)

pl?
W =P, T (4.37)
Piw = Pu {1000-0.8)

where p, is the density of liquid and p, is the density of the biofilm. In Eq. (4.37),

0.8 means the ratio of volatile to total biofilm solid.

4.5.3.1 Axial-Dispersion Coefficient

The axial-dispersion model used for estimation of substrate gradient as function of bed
height can be applied for Reactor Model in a TPFBBR. In the axial-dispersion model,
the axial-dispersion coefficient (£, ) describing the backmixing behaviour of the
liquid phase is very important and many correlations for E, have been suggested
(Kato et al., 1972; Kim et al., 1975; Kim et al., 1992). To predict E, , the correlation
given by Kim et al. (1992) is used in this work since their correlations cover a wide
range of literature data and can be applied for a TPFBBR with small, low density
particles. Generally, E, increases with increasing gas and liquid velocities in three-
phase fluidized beds of small particles whereas the effect of liquid surface tension and
liquid viscosity on E, are found to be small. E, decreases with increasing particle

size and it sharply increases with increasing column size (Kim et al., 1992)

j ) ] !'i 106 1.0%
Pe, = LEL BT e R S (4.38)
oy D

where Pe, is the Peclet number.

4.5.3.2 Liquid-Solid Mass Transfer Coefficient
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The liquid-solid mass transfer resistance between the liquid phase and the surfaces of
biofilms has been regarded as negligible in most of the mathematical modelling for a
FBBR (Ying & Weber, 1979; Mulcahy et al., 1981; Park et al., 1984). However,
neglecting this resistance may significantly affect the accuracy of the evaluation of the
rate of overall substrate removal rate when the substrate loading is low. Tang & Fan
(1989) found that larger than 15% error in phenol biodegradation rate was obtained if

the liquid-solid mass transfer coefficient ( k, ) was neglected. Most reported studies for
the estimation of k, in a three-phase fluidized bed have used particles with densities
ranging from 2000 to 2800kg/m3 while most TPFBBR use particles with densities
ranging up to 1300kg/m3 . The results of Arters & Fan (1986) showed that &, in a

three-phase fluidized bed increased with increasing gas velocity and was independent
of liquid velocity. It was also independent of particle size at low gas velocities, but
positively dependent on particle size at high gas velocities. Recently, Nore et al.

(1992) studied hydrodynamics, gas-solid and liquid-solid mass transfer with in a
TPFBBR with the low density ranging from 1300 to 1700kg/m3. In their studies,
increasing the gas velocity increased k., especially at low gas velocities for low

particle densities and the liquid velocity had almost no effect on the liquid-solid mass

transfer coefficient. Nore et al. correlation for estimation of &, with good prediction

of the 250 values measured are

(143
)Ir Al
ky, = u{}[iJ 4, at Uy =0
ge’
SRAT)
U,f nrs
k. =0.197] —& dhp at U, =20 (4.39)
ga’

Typical range for k, with d  value of 1130/<g/m3 varied between 0.0003 and

0.0013 cm/s.
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4.5.3.3 Phase Holdups

When injecting gas into liquid-solid fluidized bed. rising bubbles within the gas phase
changes the hydrodynamic behaviour and two important variables affected by the gas
injection which are the gas holdup and the liquid backmixing. The accurate estimation
of phase holdups in a TPFFBR is very important because the solids holdup reflects the
bioparticle concentration, and also the gas holdup and liquid holdup influence mass
transfer. Thus, the performance of a TPFBBR is highly influenced by the phase
holdups. The phase holdup behavior in a TPFBBR is dependent on the following

factors:

Biofilm properties, such as thickness, density, and surface roughness.
e Particle properties, such as size, density, and wettability.

¢ Fluid properties, such as gas and liquid velocities, surface tension, and
viscosities.

e Reactor properties, such as bed geometry

The overall phase holdups in a three-phase fluidised-bed can be obtained through the

following equations

AP = He (g(pl, + Egp(; +g\\‘p/7/)) g
gl +€;{ + g\ =1

(4.40a,b)

where AP is the pressure drop across the bed, H, is the expanded bed height, p 1s

the density of gas, and g is the gravitational acceleration.

The method of phase holdup measurement is based on the assumption of a
homogeneous tluidized bed. In other words, it is assumed that there is no axial or
radial variation of phase holdup. In reality, there are significant variations of phase
holdups in a TPFBBR, particularly at high fluidizing velocities (Lee & de Lasa, 1987;
Tang & Fan, 1989). In addition, when high fluidizing velocities are used the surface of
the fluidized bed becomes ambiguous and fluctuant. In this case a higher level of error

may result in the use of Eq. (4.40).
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The hydrodynamic models so far presented to assess the holdup behaviour can
generally be described by the wake model, which takes into account the role of the
wake behind the bubble (Ostergaard, 1968). In the wake model, the role of the wakes
behind the gas bubbles in the liquid flow is mathematically formulated to elucidate the
solid holdup (or bed expansion) and the liquid holdup behaviour. The wake concept
considers the three-phase fluidized bed to be composed of: (1) the gas bubble region,
(2) the wake region, and (3) the liquid-solid fluidization region. The various
correlations for phase holdups based on the wake model have been developed
(Ostergaard, 1968; Bhatia & Epstein, 1974a; Darton & Harrison, 1976). The
differences among these correlations lie in the assumptions made in the model for the
solids concentration in the wake region, the correlations for the bed porosity in the
liquid-solid fluidization region, and the correlations for the gas holdup or bubble
velocity. There are some uncertainties, however, regarding the wake structures and the
values of the parameters required in this approach. On the other hand, purely empirical
correlations for the individual phase holdups has also been developed by many authors
(Ostergaard & Michelsen, 1969; Dakshinamurty et al., 1971; Kim et al., 1972, 1975;
Soung, 1978; Begovich & Watson, 1978a; Kato et al., 1981; Lee & de Lasa, 1987).
Since the gas and liquid velocities can be considered constant in present work, average

values for the phase holdups may also be used.

In order to estimate the phase holdups in this study, the purely empirical correlations
suggested by Begovich & Watson (1978a) are chosen because of the large data base
from a wide variety of particles which they used for their correlation. The gas and

solids holdup are estimated from the following correlations, respectively.

£, = (0.04820.010) Ul‘o.niovozxdpomxioole‘fo.uzsmoxx (4.41)

e, =1-03710,""'U,"" (p,, - p) ", ", D (4.42)

“bp ¢

The liquid holdup and bed porosity can also be calculated from
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E=l-¢, —€
‘ £ (4.43a,b)
E=1-¢,

The solids holdup influences the biofilm specific surface area («,), and it can be

estimated as

a,=—= (4.44)

4.6 RESULTS AND DISCUSSION

4.6.1 Computer Program

The coupled biofilm growth, reaction-diffusion, and reactor models represent two
ordinary differential equations (ODEs) and a set of second-order partial differential
equations (PDEs). These equations can not be solved analytically because the above
models consist of PDEs with nonlinear reaction terms. Therefore, numerical
techniques must be employed. Typical numerical techniques are available for solving
these types of PDEs dependent on spatial variables and a time variable, including
finite difference method (FDM) and the method of weighted residuals. Typically,
FDM has been extensively applied to obtain numerical approximation for the biofilm
processes (Ying & Weber, 1979; Wang & Tien, 1984; Tang & Fan, 1987). Among
several methods of weighted residuals, the orthogonal collocation technique
developed by Villadsen & Stewart (1967) has also used to solve PDEs for biofilm-
reactor models (Kim et al., 1978; Speitel et al., 1987; Livingston & Chase, 1989;
Huchinson & Robinson, 1990). It is difficult to determine which of these techniques is
best suited. This is because the numerical stability and convergency properties not
only depend on the nature of the equations, but also are strongly influenced by the
parameter values. For example, in a practical application for a TPFBBR, if the
solution to the problem has a steep gradient such as the substrate gradients within the
biofilm, FDM is more appropriate since functions with steep gradients are better

approximated by FDM than by the orthogonal collocation method. On the other hand,
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if the solution does not have a steep gradient like substrate gradient in the liquid
phase, the orthogonal collocation method is preferred for spatial approximation. It can

also be computationally faster and more accurate than FDM.

In this work, a moving-grid method developed by Furzeland et al. (1990) is used to
solve nonlinear time-dependent PDEs having solutions with steep gradients in space
and time. This method is based on a Lagrangian description of the PDEs and a
smoothed equidistribution principle to define the grid positions at each time level. It
has been coupled with the method of lines to form a semi-discrete approximation of
the original PDEs by providing centered differencing in the spatial variables. The
original PDEs by using a spatial discretization method, are then transformed into a
system of the differential algebraic equations (DAEs). The resulting nonlinear systems
of DAESs are solved to obtain a numerical solution to the original PDEs by DASSL
solver (Petzold, 1983), which is an excellent algorithm for all stiff problems. In this
study, the numerical solution is developed by Fortran language using Microsoft

FORTRAN Powerstation™ 4.0.

4.6.2 Computer Simulation Scheme of Integrated Model

Once the biofilm thickness and biofilm density at a given time are known through Eq.
(4.29) and Eq. (4.30), substrate distribution inside the biofilm can be calculated and

the substrate concentration in the liquid phase can also be calculated within a single

time step. Starting with initial values for X/ and L,, these results in substrate

concentration profiles in the biofilm and substrate concentration gradients in the liquid
phase. The basic design methods of a TPFBBR have been proposed as shown in Fig.
4.2 and all simulations carried out by this method. All parameters used in the

simulation were obtained from the literature and are summarized in Table 4.2.
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Table 4.2. Values of parameters used in simulation.

Parameters Vahlue Reference

U 7.2X 10—6 SWI The pl‘esent work
Yy, 0.38 The present work
K, 0.009.1 mg/c;z3 B The pl‘esent work
Psp 1.4 mg/cm3 -
dg, Varying -
- | R | ‘Worden & Donaldson
D 0.275x10cm* / s
(1987)
7{? T 74 .('.'nl .. o - T
D(,' 0 .Cm — . : ——
U, 0.08 cm/s -
U . 0.73 cm/s -

c 0.2 mg/cm3 -
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Figure 4.2. Design and simulation method for a TPFBBR.
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4.6.3 Model Simulation Results

To investigate the validity of an integrated model incorporating dynamic biofilm
growth model, simulation results were compared to the experimental data. Several sets
of operating conditions were examined as shown in Table 3.1 having a variety of air

velocity, liquid velocity, inlet phenol concentration, and particle size.

Table 4.3. Operating conditions for model simulations.

. o
Run1 Run 2 Run 3 Run 4
BT —— SR O N
570 570 710 275
(pm)
L —mb_c‘it? S DR U I
0.48 0.842 1.2 0.36
(cm/sec)
_ Liq — \%TGEE? I N R R R
; 0.066 0.078 0.03 0.062
(cm/sec)

First, the dynamic biofilm growth model with detachment was evaluated by
comparing simulations with the experimental data. Fig. 4.3-4.6 compared the
simulation results of the dynamic biofilm growth model and experimental data for
biofilm thickness and biofilm density. In our dynamic biofilm growth model, the
average biofilm thickness needs to be restricted to a maximum value while the
average biofilm density has to be limited in a minimum value (Eq. (3.29) and Eq.
(3.30)3. Table 4.4 shows the boundary conditions used in dynamic biofilm growth
model for each simulation. In Table 4.4, the values of biofilm detachment coefficient
are estimated by the parameter estimation technique using the Levenberg-Marquardt

optimisation algorithm.

Through Fig. 4.3-4.6, we describe the case of Fig. 4.3 since the time variation of
biofilm thickness and biofilm density for each set of operating conditions has nearly

the same pattern, but maximum biofilm thickness and minimum biofilm density are
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different. Fig. 4.3. depicts a typical time progression of the average biofilm thickness

and biofilm density with the simulation result of dynamic biofilm growth model.

Table 4.4. Boundary conditions for each biofilm growth model simulation.

Run 1 Run 2 Run 3 Run 4
Biofilm | 101 value 13 1l 17 738
Thickness | _ —— NV Y R
(Lm) Finial Value 165 150 230 100.5
Biofilm | . vale | 133 174 285 198
Density | _._ . — N R ]
(mg/cnf ) Finmial Value 25 20 329 31.6
Detachment Coefficient 0.0719 0.063 0.068 0.065
e —_ e oo i

Data for Fig. 4.3 are taken from operating run 1 (see Table 4.3) at an air velocity of

0.48 cm/sec, a liquid velocity of 0.066 c¢m/sec, and a particle size of 570 gm . From

Fig. 4.3, the lag phase (within 50 hours after startup) of the growth of biofilm on the
support particles after startup of the TPFBBR is observed. This lag time could be due
to adsorption of dissolved organics and microbial cells onto the surface of the support
particle, and the irreversible attachment of microorganisms to the support surface and
growth of the biofilm to a measurable thickness. In the initial stage, a small and
uniform biofilm of detectable thickness could be observed on the edges of support
particles and the biofilm grows as dense, thin, uniformly distributed biomass matrix
which lacks the voids present in the thick biofilm. After the lag phase, the biofilm
thickness increased rapidly and then levelled off at approximately 150 gm from 380
hours of operation. During the initial stage of biofilm formation (startup - 70 hours),
the increased biofilm thickness observed causes an increase of biofilm density upto

certain value, although this phenomena was not observed during early stages of the
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biofilm. From 70 hours after startup, as the biofilm grows on the support particle, the
biofilm density decreased with the increasing biofilm thickness and levelled off at

approximately 25 mg/ent’, corresponding to 150 gm of the biofilm thickness.

It is evident from Fig. 4.3-4.6, the biofilm density is greatly influenced by the biofilm
thickness. The biofilm density decreased rapidly during the period of increasing
biofilm thickness ranging from approximately 30 #mto 110 4m and stabilised in the
range between 20 and 50 mg/cm’. It is clear that the observed decrease in biofilm
density with increasing biofilm thickness was significant and there exists the inverse
relationship between biofilm thickness and its density during the formation of biofilm
growth. Our experimental results are in accordance with several other literature
reports (Hoehn & Ray, 1973; Fan et al., 1987; Zang et al., 1995; Tanyolac & Beyenal,
1997).

From Fig. 4.3-4.6, the biofilm formation in a TPFBBR is slow since the 60 - 90% of
biomass was detached continuously from the support particles. Table 4.4 shows
biofilm detachment coefficient values used in dynamic biofilm growth model.
Dynamic biofilm growth model is able to predict the variation of biofilm density with
increasing biofilm thickness. Using Eq. (4.29) and Eq. (4.30) of dynamic biofilm
growth model, high biofilm density for thin biofilms and low biofilm density for
thicker biofilms was predicted. Fig. 4.3-4.6 show that dynamic biofilm growth model
gives good predictions of biofilm density for biofilm thicknesses greater than 15-

20um and describes the inverse significance of relationship between biofilm

thickness and biofilm density during the biofilm formation stages.

Despite the relative mathematical simplicity of the proposed dynamic biofilm growth
model in a TPFBBR, the model predictions agree well with experimental data for
biofilm thickness and biofilm density. The ability of the dynamic biofilm growth
model to describe the time variation of biofilm thickness and biofilm density indicates
the soundness of the dynamic biofilm growth model and its usefulness for micro-

scale-based modelling of a biofilm reactor.
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Figure. 4.3. Time progression of the average biofilm thickness and biofilm density

(U, =0.066 cm/sec, U;=0.48 cm/sec, d =570 um).
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The biofilm thickness and its density predicted by the dynamic biofilm growth model
are coupled with the reactor model and reaction-diffusion model as parameters of
theirs (see Fig. 4.2). These biofilm thickness and biofilm density are also used for the
estimation of some parameters such as the axial dispersion coefficient (Eq. (4.38)), the
liquid-solid mass transfer coefficient (Eq. (4.39)), and the phase holdups (Eq. (4.41)-
Eq. (4.43)).

The phenol concentration profiles in the liquid phase as a function of bed height at
different times under two different sets of operating conditions, are predicted from the
reactor model. These are shown in Fig. 4.7 and Fig. 4.8. It can be observed that the
prediction of phenol concentration profiles as a function of bed height at the different
times agrees well with the experimental data. As shown in Fig. 4.7-4.8, during the
biofilm growth after startup, the phenol removal rate and phenol concentration profiles
as a function of the bed height vary over wide ranges along with corresponding
variations in biofilm thickness and biofilm density. When the axial-dispersion model-
based reactor model is applied to predict the axial concentration profile in the liquid
phase, it predicts that the concentration at the entrance of the reactor is much lower
than the inlet concentration because of boundary condition given in Eq. (4.34) which
describe a large degree of backmixing in the liquid phase. The actual axial phenol
concentration profile drops off sharply from the bottom of the reactor to 40 cm of the
bed height. Since near the bottom of the reactor where there is strong mixing caused
by the air and liquid flow, this potion of the reactor acts as a completed-mixed type
reactor and much of the bioparticle is located in this area. Thus, a significant phenol
removal takes place on approximately 50 % area of the total bed height from the
bottom of the.reactor. The axial phenol concentration profiles did not change
significantly from 50 c¢m of the bed height to the top of the bed height and were
essentially constant. Because near the top of the reactor where there is little mixing,
this portion of the reactor can be considered as plug-flow type reactor. The phenol

removal in this portion of the reactor is limited.

The integrated model proposed performs well in predicting the phenol concentration

profiles with dynamic biofilm growth model and an understanding the dynamic
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behavior of TPFBBR process. It is demonstrated that the integrated model with

dynamic biofilm growth model provides a new comprehensive model for modelling

the dynamics of a TPFBBR.
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Figure 4.7. The substrate concentration profiles in the liquid phase as a function of bed
height at the different times (U, = 0.078 cm/sec, U;= 0.842 cm/sec,

d,, =570 um).
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In order to illustrate the dynamic behavior of TPFBBR predicted by the simulation, 3-
dimensional plots of the phenol concentration profile as a function of bed height and

time are presented in Fig. 4.9-4.10.
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Figure 4.9. 3-D plots of phenol concentration profile as function of bed height and
time (U, =0.078 cm/sec, U;=0.842 cm/sec, d,, =570 um).
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4.7 CONCLUSIONS

The dynamic biofilm growth model, which reflects the variation of biofilm thickness
and its density in time, is derived from a biomass balance equation. The biofilm
detachment model is also proposed. In order to arrive at a solution of a dynamic
biofilm growth model, the method of characteristic is used. In our biofilm growth
model with detachment, the biofilm thickness and its density can be predicted at a
given time. It can be seen that the results predicted using this dynamic biofilm growth
model, which accounts for varying biofilm thickness and its density in time, are in

good agreement with experimental data.

The proposed biofilm growth model with detachment was coupled to a reactor model
and a reaction-diffusion model to form an integrated model of a TPFBBR. An
integrated model is developed to describe the dynamic behaviour of a TPFBBR during
biofilm formation and an integrated design method for a TPFBBR is projected based
on the model presented. Simulation results of integrated model incorporating the
dynamic biofilm growth model indicate that biofilm density and biofilm thickness are
the main design parameters in a TPFFBR. The proposed integrated model provides a
valuable tool to predict performance in a TPFBBR and to develop the optimal control

strategy.



Chapter 5

Sequential Neural Network Model
for a TPFBBR

5.1 INTRODUCTION

Even though the integrated model incorporating dynamic biofilm growth developed
in Chapter 4 is biochemically significant and can be satisfactory for design purposes,
there are weak points in applying this to real-world process modelling and control.
These weaknesses include: (1) dynamic biofilm growth on the support particles
includes a large number of complex and highly interacting biochemical, transport
and hydrodynamic phenomena, and the knowledge to give mechanistic description
for biofilm growth is still limited and poorly known, (2) this model requires the
specification of a large number of parameters, many of which are difficult to
measure, (3) a large number of parameters included in this model need to respecify
parameter values for different operational conditions, and (4) this model requires

time-consuming computation procedures.
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As an alternative to mechanistic models, there has been a major research interest in
artificial neural network (ANN), a powerful tool for nonlinear modelling and process
control. ANN offers the distinctive ability to learn complex relationships without
requiring the mechanistic knowledge about processes. Therefore, it has a great
potential in areas such as biological processes where complex and poorly known
mechanisms have to be treated. ANN has been successfully used as a process
variable estimator for unknown (or unmeasured) variables and a process prediction
tool in bioreactor modelling applications (Thibault et al., 1990; Linko & Zhu, 1991;
Breusegem, 1991; Simutis et al., 1993; Morris et al., 1994).

The purpose of this chapter is to describe the application of neural network process
modelling approach for modelling the dynamic change of the biofilm thickness and
biofilm density and for predicting the dynamic performance of a TPFBBR. First, the
basic concepts of neural networks are introduced for nonlinear process modelling
based on input-output data. Second, the most common multilayer feedforward neural
network (MFNN) is described with the standard backpropagation learning
algorithms. Third, the different leanings such as cascaded-correlation (C-C) learning
and extended Kalman filtering (EKF) learning for MFNN and generalized regression
neural network (GRNN) are briefly discussed. Fourth, the sequential neural network
model, which is composed of two parts, namely, the neural process estimator and the
neural process predictor, is developed to describe the task of process estimation and
prediction for a TPFBBR. Finally, experimental data taken from a laboratory-scale
TPFBBR is used to demonstrate the power of the proposed sequential neural network
model. This shows the feasibility of using sequential neural network model as
intelligent estimators and dynamic predictors. It is demonstrated that the sequential
neural network model gives considerably good results in process estimation and

prediction for a TPFBBR.
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5.2 BASICS OF ARTIFICIAL NEURAL
NETWORKS

5.2.1 What is an Artificial Neural Network (ANN)?

An artificial neural network is a parallel, distributed information processing structure
consisting of processing elements (which can process a local memory and can carry
out localised information processing operations) interconnected via unidirectional
signal channel called comnnections. Each processing element had a single output
connection that branches ("fan out") into as many collateral connections as desired,
each carries the same signal - the processing element output signal. The processing
element output signal can be of any mathematical type desired. The information
processing that goes on within each processing element can be defined arbitrarily
with the restriction that it must be completely local; that is must depend only on the
current values of the input signals arriving at the processing element via imprinting
connections and on values stored in the processing element's local memory (Heicht-

Nielsen, 1988).

The neural networks are used for two main tasks in engineering applications: 1)
Junction approximation and 2) pattern classification. In function approximation, the
neural network is trained to approximate a mapping of its inputs and outputs. Many
neural network models have been proved as universal approximators, i.e., the
network can approximate any continuous function arbitrary well. The pattern
classification application can be regarded as a specific case of the function
approximation. The mapping is done from the input space to a finite number of

output classes.

Currently, there have been a wide variety of neural networks that are being studied.
Based on characteristics, such as the class of inputs, the method of training, and
weight updating procedures, these networks can be classified as shown in Table 5.1.
Kohonen (1990) classified neural network architectures into three categories

depending on model of the nervous system (Fig. 5.1). In Fig. 5.1, feedforward
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networks transforms sets of input signals into sets of output signals. The desired
input-output transformation is usually determined by external, supervised adjustment
of the system parameters. In feedback networks (recurrent), the input information
defines the initial activity state of a feedback system. After state transitions, the
asymptotic final state is identified as the outcome of the computation. In competitive,
unsupervised or self-organizing category cells (neurons), the neighbouring cells
(neurons) in the network complete in their activities and develop iteratively specific

detectors for different input signal patterns.

Input
:‘_ ___________
desired output desired output
Feedforward network Feeback network Unsupervised

Figure 5.1. Neural network models (dotted line illustrates the training scheme).

Of all the available neural networks, the multilayer feedforward neural network is
widely used for the application of chemical and bioprocess engineering. This thesis
focuses on the application of the type of the multilayer feedforward neural network
(MFNN) to a TPFBBR. Table 5.1 summarises the categorisation of some neural

networks used widely in many engineering applications.
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Table 5.1 Categorisation of some neural networks.

NEURAL NETWORK | LEARNING | STRUCTURE USAGE

classification
Multilayer perceptron supervised feedforward function

approximation

classification

Radial basis function supervised or .
' feedforward function
network unsupervised o
approximation
Self-organizing map unsupervised feedforward classification

Learning Vector

o supervised feedforward classification
Quantization (LVQ)

5.2.2 An Artificial Neural Network as a Process Modelling
Tool

In order to properly optimize and control a process, it is necessary to develop a good
mathematical model. Since most of the advanced control approaches are based on a
mathematical model of the processes under consideration and the optimal operating

strategies can be by simulating using the process model under different conditions.

For process modelling, the best possible model is a mechanistic model which
consists of a set of differential equations which define the relationship between input
variables and output variables. A mechanistic model, however, is either too difticult
to formulate or too difficult to solve the resulting set of equations in many cases. To
be more specific, models in mathematical modelling of biofilm growth are
formulated involving either Monod's kinetics or one of its modified expressions such

as Haldane expression reflecting product inhibition or substrate inhibition or both. If]
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however, kinetic expressions for on-line interpretation and simulation of biological
processes are desired, these mechanistic models require too detail information about
the process to be applicable. Moreover, it is likely that model parameters should be
specified and updated to obtain an agreement between actual and predicted value.
Other drawbacks are that the development of good kinetic or process model usually
requires very time-and money-consuming tasks because the necessary knowledge to
give a mechanistic description for a specific (bio)chemical process is usually limited

and are still poorly understood (Saxen & Saxen, 1996).

As an alternative to a mechanistic model, there has been major research interest in
artificial neural networks (ANNs), a powerful tool for nonlinear modelling and
process control. The main advantages of using ANNs in process modelling are: (1) it
has the ability to learn complex nonlinear relationship with limited prior knowledge
of the process structure and (2) it can perform inferences for an unknown
combination of input variables (Hong et al., 1998). So ANNs are prime candidates
for use in dynamic process modelling for the representation of nonlinear processes.
Due to the advantages of a neural network, a number of researchers have
successfully applied a neural network based modelling approach to wastewater
treatment processes. Capodaglio et al. (1991) identified an ANN model for the
simulation and forecasting of the sludge bulking based on sludge volume index (SVI)
in full-scale activated sludge process. Collins & Ellis (1992) applied a neural
network model to the prediction of a required chemical dosage in a wastewater
treatment plant. Tyagi & Du (1992) used a neural network to predict the effect of
heavy metals in the performance of the activated sludge process. Zhao et al. (1997)
demonstrated a hybrid model, which consists of a simplified process model and an
ANN, for developing a dynamic model of a sequencing batch reactor. In their hybrid
model, the outputs of the trained ANN compensated for the output errors of the
simplified process model. Karim and Rivera (1992) reviewed the application of ANN

in bioprocess state estimation.

The multilayer feedforward neural network (MFNN) seems to be a very attractive

choice when neural networks are used for process modelling and control purposes.
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This is because it has been theoretically proven that the MFNN can approximate any
continuous function arbitrarily well provided that enough neurons are used
(Cybenko, 1989). However, in order to obtain a valid model of the process, neural
networks, in general, require a large number of training and test data, even for a
moderate number of model parameters (the weight and biases). A more detailed
discussion of this issue can be found in Baum & Haussler (1989). Another
disadvantage is that neural networks are non-parametric models. In a non-parametric
model, the model parameters (the weights and biases in the MFNN) usually have no

interpretation in relation to the process to be modelled.

5.2.3 Multilayer Feedforward Neural Networks (MFNN)

The multilayer (3-layer) feedforward neural network consists of one input layer, one
or more hidden layers, and one output layer. The general structure of multilayer (3-
layer) feedforward neural network is given in Fig. 5.2. The first layer, the input layer,
is strictly a preprocessing layer that simply distributes the input to the next layer. It
does not perform, as subsequent layers do, a nonlinear transformation of its input
data. An output layer delivers the output from the neural network. In between these
two layers, there could be several layers called "hidden layers". Input and out data
vectors are scaled from O to | and scaled data are fed into the neural network at the
input layer. Each of these layers consists of neurons (or processing elements), which
are represented by the circle in Fig. 5.2. All the neurons in one layer are connected to
all neurons in the following layer by a set of unidirectional weights (represented by
the lines in Fig. 5.2). In addition to the regular neurons, there are bias neurons which
provide a constant input of unity. Bias neurons are connected to all the neurons in the
hidden and output layers through a set of bias weight. Since there is only one forward
path for the flow of information, these networks are called feedforward neural

network.
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Bias

Figure 5.2. Architecture of the multilayer feedforward neural network (MFNN).

Typical neuron performs two functions: a weighted linear combination of its input
component (activity) and a nonlinear transformation of this activity value. A single
neuron extracted from the /" layer is also depicted in Fig. 5.2. The input to this
neuron consists of the N-dimensional vector X; and a unit bias. Each input is
multiplied by a weight which denotes connections between neuron / in the previous

layer and neuron j in the layer /. The products are summed up to give the activation

potential (or activation state) s :

s = ZJ wix! '+ u-’fy (5.1)

I

The output of the ;' neuron in layer /, ()ulj is then calculated as the nonlinear

activation functions such as sigmoid function.

1

Out = f(s)) = - (5.2)

]

l+e
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There are several types on non-linear activation functions. Differentiable, non-linear
activation functions can be used in networks trained with backpropagation. The most

common are the logistic function and the hyperbolic tangent function (Fig. 5.3).
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Figure 5.3. Common activation functions used in neural network.

Generally, the number of neurons in the input and output layers is determined by the
number of input and output variables involved in the problem. The number of
neurons in the hidden layer(s) is related to the converging performance of the output
error function during the process. The optimal number of neurons was determined by
trial and error. Too few hidden neurons limits the ability of the neural network to
model the process, and too many hidden elements may allow too much freedom of
the weights to adjust and results in the noise present as the data base used as the
training. The determination of the architecture of neural networks is a time-
consuming task when applying ANN to a new problem. In order to overcome these
problems, genetic algorithms (GAs) have been used to develop the architecture of an

ANN (Goldberg, 1989; Miller et al., 1989; Whitely et al., 1990; Maniezzo, 1994).
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5.2.4 Backpropagation (BP) Training Algorithm

The knowledge required to map input into an appropriate output is embodied by the
weights. Initially, the weights appropriate to a given problem domain are unknown.
Until a set of applicable weights is found the network has no ability to deal with the
problem to be solved. The process of finding a useful set of weights is called
training. Training begins with a training set consisting of specimen input with
associated outputs that represents a correct prediction. The existence of a specific
desired output for each of the training set vectors at least to within some defined
error limit. Training the network involves moving from the training set has to teach
it. If the training set is good and the training algorithm is effective, the network
should then be able to correctly predict inputs not belonging to the training set. This
phenomenon is termed generalisation. Thus we see that the application of neural
network to a specific problem involves two distinct phases. During the training
phase, the network weights are adapted to reflect the problem domain as shown in
Fig. 5.4(a) at the left. In the second phase (prediction phase), the weights have been
frozen and the network when presented with the test data calculates a predicted

value. This is illustrated in Fig. 5.4(b).

The neural network is provided with a training set of input vectors each with a

desired output vector, {(x,,d,),(x,.d,),...., (x,.d,)}. For given X, the difference

between the desired output and the actual output of the network is the error
e=d(n)- y(n) (5.3)

The total squared error over the training set is thus given by

J= ie;‘:e” (5.4)

e
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A backpropagation algorithm, which is a typical supervised learning algorithm, is
one of the simpler members of a family of training algorithms, collectively termed
gradient decent. This algorithms was first described by Werbos (1974), and
introduced by Rumelhart et al. (1986) as a useful and versatile training algorithm for
multilayer feedforward neural network. The objective of training is to determine the

set of weights W which minimises the cost J subject to constraint of the network

topology.

After each presentation of a sample from the training set, the weights are adapted

according to

de'e

oW

AW = -4V = -4 (5.5)

T

3) 24

where is the instantaneous error gradient corresponding to the current input

ow
pattern, and g controls learning rate which governs the distance traveled in the
direction of the negative gradient when the step in weight space taken. Eq. (5.5)

. . 1 . . . .
states that the change in each weight w; will along the negative gradient leading to a

steep descent along the local error surface.

The task now is to convert Eq. (5.5) into a difference equation suitable for use in a

oele

computer implementation. To accomplish this, the partial derivative - s
(@,

evaluated corresponding to each weight in the network. The chain rule is applied to

calculate the gradient with respect to a weight w; :

- T S A )
ge e oee O ¢
= L= 8 Out] ! (5.6)

! !
ow oy owl
i )

f
f

. 7.
where the error signal ¢ is defined as:
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RS TR
szl (5.7)

Recall sj which is defined in Eq. (5.1), is the summing junction which the weight
interest feeds, and Owt™", which is defined in Eq. (5.2), represents the change in
neural activation state sj due to change in w;. This leads to the weight update

equation:

Aw! = =] Out] (5.8)

The backpropagation algorithm provides two rules for calculating the error signal 5}’

of a neuron, depending on whether the neurons is in the output layer or in a hidden

layer.

LV aee
§helll
s
~oTo Gthat
_ e ﬂ)_’i}i (5.9)
i Py
(()uz} s
= T
i ¢
=—— 1'(s)
34 :

To evaluate ('3ere/('3()mf in Eq. (5.9), the two cases must be considered individually:
1. The destination is an output neuron.
2. The destination is a hidden neuron.

For a destination neuron in the output layer we have direct access to the error ¢’ ¢ as

a function of ()utj“ . Therefore we write:
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‘e’ ¢ a :
7y L)
Hd . Y
_ 5 f(_f; B (5.10)
4
=-2¢

Substituting into Eq. (5.9) yields

8t =2e f(s") (5.11)

!

Calculating 5; for destination neurons in hidden layers is made a bit more

complicated by the fact that there is no explicit desired response for each neuron. So

we cannot differentiate the error function directly. We note, however, that ¢’e is

1

influenced through sII indirectly through all node values s’, in the next layer. We

must once again apply the chain rule to obtain:

T
! A oe’e
o= —
(?.\‘].
o (5.12)
Z e e ('YSJ
TLa g A
ARG

The summation is taken over all branches that neuron i in layer / feeds. Note that

AYAR! FER PN i
(s’ TS0,

~el Y
s AOut, s (5.13)
=, f(s)

.. . ~, T,/ . . .
Next make the critical observation that ¢¢ ‘/i 1. - Making these substitutions leads
€N
/' E

to the relation
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8 = ST 8w .14

This is a recursive formula in which previously calculated & terms are

backpropagated through connecting synapses. The equations for backpropagation are

summarised as follows:

Aw, = -8, Out] (5.15)
Ll 2e 1 (s)) =1
(3)_ = Jf»' (S;l' )Z ()\J{-]lt,;li l S [ S l, _ l (5 ] 6)

For the bias weight w; , note that @' =1 in Eq. (5.15)

The overall process of backpropagation learning including both the forward and
backward pass is presented in Fig. 5.5. To apply the backpropagation algorithm the
network weights must first be initialised to small random values. It is important to
make the initial weights "small". Choosing initial weights too large will make the
network untrainable. After initialisation, training set vectors are then applied to the
network. Running the network forward will yield a set of actual values. The
backpropagation can then be utilised to establish a new set of weights. The total error
should decrease over the course of much such iteration. If it does not, an adjustment
to the training parameter 4 may be required. One full presentation of all the vectors
in the training set is termed an epoch. When the weights approach values such that
the total network error, over a full epoch, falls below a pre-established threshold, the

network is said to have converged.

The backpropagation (BP) algorithm is a general method for iteratively solving a
multilayer perceptrons' weights and biases. It uses a steepest descent technique which
is very stable when a small learning rate is used, but has slow convergence

properties. Several methods for speeding up BP have been used including
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momentum (Rumelhart et al., 1986) and variable step-size control methods (Franzini,
1987, Fahlman, 1988). Clearly, many practical and theoretical issues must be
addressed to fully understand the training process and neural networks. A detailed
coverage of all topics is beyond the scope of this chapter. Excellent reviews on

topology of neural networks and learning algorithms are presented by Haykin (1994).
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Figure 5.5. Backpropagation flow chart.
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5.2.5 Cascade-Correlation (C-C) Algorithms

Two problems are associated with the standard BP algorithm. Firstly, appropriate
learning parameters need to be chosen. Their tuning is not trivial. Secondly, the
convergence speed of the training process is slow, which is the weakest point of BP
algorithm. In order to overcome these problems, the cascade-correlation algorithm
(C-C) has been introduced by Fahlman & Lebiere (1991) in order to find suited
MFNN structures and to decrease the training effort for complex learning tasks by

splitting them into a number of independent subtasks.

C-C algorithm is characterised as a constructive learning rule. C-C algorithm begins
with minimal network, consisting only of an input and an output layer, then
automatically trains and adds new hidden units one by one, creating a multilayer
structure. Once a new hidden unit has been added to the network, its input-side
weights are frozen. This unit then becomes a permanent feature-detector in the
network, available for producing outputs or for creating other, more complex feature

detectors (Fahlman & Lebiere, 1991).
The C-C algorithm is demonstrated in the following way:

I. C-C algorithm starts with a minimal network consisting only of input and an
output layer. Both layers are fully connected.

2. Train all the connections ending at an output unit with a usual learning
algorithm until the error of the network no longer decreases.

. Generate the so-called candidate units. Every candidate unit is connected

(U]

with all input units and with all existing hidden units.

4. Try to maximise the correlation between the activation of the candidate
units and residual error of the network by training all the links leading to a
candidate unit. The training is stopped when the correlation scores no longer
improve.

5. Choose the candidate unit with the maximum correlation, freeze its

incoming weights and add it to the network. Loop back to step 2.



Chapter S. Squential Neural Network Model for a TPFBBR 100

6. This algorithm is repeated until the overall error of the neural network falls

below a given value.

The form of the cascaded-correlation network is shown in Fig. 5.6. The C-C
algorithm has several advantage over existing algorithms: it learns very quickly, the
network determines its own size and topology, it retains the structures it has built
even if the training set changes, and it requires no backpropagation of error signals

through the connections of the network (Fahlman & Lebiere, 1991).

Outputs Y1 Y,
H,
Hidden
units
H,
Inputs I
X, '| M
X, - i ———r
Xo .’ . n——

Figure 5.6. The architecture of the neural network trained with C-C after
2 hidden units have been added. White squares represent
weights which are trained and then frozen, while the black
squares show weights which are retrained after the addition
of each hidden unit. Hidden unit H; is added first, and then
hidden unit H,, and so on (Fahlman & Lebiere, 1991).
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5.2.6 Extended Kalman Filtering (EKF) Learning
Algorithm

In order to overcome weak points of backpropagation learning algorithms, the
extended Kalman filtering (EKF) algorithm has also been introduced as a learning
method for training the weights in a MFNN (Singhal & Wu, 1989; Palmieri et al.,
1991, Lange & Hirzinger, 1995) or a recurrent MFNN (Puskorius & Feldkamp,
1994).

Basically, a Kalman filter is a set of mathematical equations that provide an efficient
recursive solution of the least-squares method. This is very powerful in several
aspects: it supports estimation of past, present, and even future states, and it can do
so even when the nature of the modelled system is unknown. The extended Kalman
filtering (EKF) algorithm applies the standard (linear) Kalman filter to nonlinear
systems with additive white noise by continually updating a linearisation around the
previous state estimate. The EKF learning algorithm to training a MFNN considers
the weights of the MFNN to be states, and the desired outputs of the neural network
to be the observations within a discrete state space transition framework. To use an
EKF learning algorithm, a state space representation of the neural network is
formulated and the resulting state space model is augmented by the weight vector

W . Therefore,

Wk +1)=¢W(k),k)+w@(c,k): System model (5:17)
Y (k) =w(W (k),k)+v(c k) Measurement model (5.18)

where W is a vector consisting of all the weights and biases in the neural network, ¥
the output of the neural network, and the iteration k& corresponds to the presentation
of the kth pattern. @(¢,k) and v(g, k) represent the process and measurement noise ,
respectively. In Eq. (5.17), the nonlinear function, ¢(e), relates the state at step & to

the state at step &+ /. The nonlinear function, w(e), in Eq. (5.18) relates the state,

W(k), to the measurement, Y(k).



Chapter 5. Squential Neural Network Model for a TPFBBR 102

The equation for the EKF learning algorithm fall into two steps: (1) time update
equations which are responsible for projecting forward the current weight (state) and
error covariance estimates to obtain a priori estimates for the next time step, and (2)
measurement update equations which are responsible for the feedback - i.e. for
incorporating a new measurement into a priori estimate to obtain a posteriori

estimate.

Using the preceding models for the system and the measurement, methods for

updating the estimate of the weights (system state) can be derived as followings:

G(k)y= P (K)H (k)[H (k)P (k)H (k) + & (k)] (5.19)
W (k)= a (k) + G (k)Y (k) ~ V/(W‘(/(),k)] (5.20)
P (k)= P (k)-Gk)H (k)P (k) (5.21)
where
Hk)= V/T (WN* (k),k) = ﬂyiwfﬂ)ﬁ/il (5.23)

ow (k)

where W (k) is the Kaman filter estimate of the weight vector W at step &, P(%k) is an

error covariance matrix which is used to model the correlation or interaction between
each pair of weights in the neural network, (G(k) is called the Kalman gain matrix
which is computed at each step and is used to update the weight vector W and error
covariance matrix P, and H(k) is the gradient matrix resulting from linearising the

neural network.

In Eq. (5.19)-(5.23), the symbol, +, represents the step just prior to performing the
updates, and the symbol, -, represents the time just after the updates.
In Eq. (5.19), o? is the variance of the measurement noise and is given as

followings:
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c* = Elv-v) (5.24)

The propagation equations of the system state from k to A+ / are given by

WG+ 1) = I (k) (5.25)
P(k+1) =P (k) +Q(k) (5.26)

(k) is the covariance matrix of the stochastic changes of the parameters and is

described by
0k) = E{w- " }= I q(k) (5.27)

where / is identity matrix and ¢ is slowly changing in relation to the propagation

time.

In order to implement the EKF learning algorithm, the initial conditions at step A=#
must be specified, namely, W (0) and P(0). The initialisation of weight vector is set
randomly, except for the output layer where the parameters are set to zero, and the

matrix F(0) 1s initialised as a diagonal matrix with the large diagonal components

such as 500. The learning parameters g and o’ of the EKF have to be adapted in

each epoch, and are estimated by the method which is proposed by Lange &

Hirzinger (1995). ¢ is estimated by the mean error as followings:

.

o~

o = 0,1%}-2(}/(;:)—;{;@ (;’r),n))h (5.28)

[

The change of the optimal values W(k) due to changing linearisation of Eq. (5.23) is
calculated by
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0.01

q= I (W”W;zcz)T(W”Wazd) (5.29)

This change is assumed to occur from one epoch to another and thus weights the
differences of the estimated value between epochs. So Eq. (5.23) is executed only at

the end of every epoch, otherwise replaced by g=0.

5.2.7 Generalized Regression Neural Network (GRNN)

The Generalized Regression Neural Network (Specht, 1991) is a feedforward neural
network best suited to function approximation tasks such as system modelling and
prediction. The GRNN is composed of four layers. The first layer is the input layer
and is fully connected to the pattern layer. The second layer is the pattern layer and
has one neuron for each input pattern. This layer performs the same function as the
first layer radial basis function (RBF) neurons: its output is a measure of the distance
the input is from the stored patterns. The third layer is the summation layer and is
composed of two types of neurons: S-summation neurons and a single D-summation
neuron (division). The S-summation neuron computes the sum of the weighted
outputs of the pattern layer while the D-summation neuron computes the sum of the
unweighted outputs of the pattern neurons. There is one S-summation neuron for
each output neuron and a single D-summation neuron. The last layer is the output
layer and divides the output of each S-summation neuron by the output of the D-

summation neuron. A general diagram of a GRNN is shown in Fig. 5.7.

The GRNN is based on nonlinear regression theory, a well-established statistical
technique for function estimation. By definition, the regression of a dependant
variable Y on an independent variable X estimates the most probable value for X,
each with a corresponding value for Y (X and Y are, in general, vectors). Note that Y
may be corrupted by additive noise. Despite this the regression method will produce

the estimated value of Y which minimises the mean-squared error.
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Input Pattern Summation  Output
Layer Layer Layer Layer

Figure 5.7. Generalized Regression Neural Network.

GRNN is based upon the following formula:

[ rorxeryay
E[Y | X] ===

[ reerar

where } is the output of the estimator, X is the estimator input vector, <[} | X]is the
expected value of output, given the input vector X, and f(X,V) is the joint
probability density function (PDF) of X and Y.

In essence, GRNN is a method for estimating f(X,}), given only a training set.
Because the PDF is derived from the data with no preconceptions about its form, the
system is perfectly general. There is no problem if the functions are composed of

multiple disjoint non-Gaussian regions in any number of dimensions, as well as those
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of simpler distributions. The probability estimator f(X,Y) 1s based upon the

following equation:

e W.Liexp{,g{;zzjzingexp{“ﬁ%gJ (5.31)

(y s (P21) 2
(2m) " 20

where #'is the input training vector, 1’ is the desired output corresponding to ', p

is the dimension of the input vector .X, and o is a constant controlling the size of the

receptive region. Substituting the joint probability estimator .;\’(X,Y) in Eq. (5.31)
into the conditional mean Eq. (5.30), and interchanging the order of integration and
summation yields the desired conditional mean, designated ?(X), The output of a

GRNN is the conditional mean given by:

i Y exp( — -D’_-z ]
$y -\ 27 (5.32)

Souf - |
i 20° J

where D’ = (X —u,) (X —u,)which represents the squared distance between the
input vector X and the training vector #. When the smoothing parameter o is made
large, the estimated density is forced to be smooth and in the limit becomes a

multivariate Gaussian with covariance o>/ . On the other hand, a smaller value of &

allows the estimated density to assume non-Gaussian shapes.

Note that Eq. (5.32) is identical to the radial basis function (RBF) with
normalisation, except that the desired values are used for the weight the output
network. Also, the resulting neural network topology is identical to the normalised
RBF neural network. The major difference lies in the way that in GRNN, instead of

training the weights, one simply assigns to the weight the desired value directly from

the training set associated with input training vector #' and its corresponding output
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vector Y. Note that the calculation of the Gaussian is performed in the pattern layer,
the multiplication of the weight vector and summations are performed in the

summation layer, and the division is performed in the output layer.

The GRNN learning phase is similar to that of a probabilistic neural network (PNN).
It does not learn iteratively as do most ANNSs. Instead, it learns by storing each input
pattern in the pattern layer and calculating the weights in the summation layer. The
equations for the weight calculations are given below. The pattern layer weights are

set to the input patterns.

W =u’ (5.33)

The summation layer weights matrix is set using the training target outputs.
Specifically, the matrix is the target output values appended with a vector of ones

that connect the pattern layer to the D-summation neuron.

W = [Y“ ones] (5.34)

s

5.3 SEQUENTIAL NEURAL NETWORK MODEL

To develop a neural network-based model describing the process dynamics in a
TPFBBR, the sequential neural network as shown in Fig. 5.8 is developed. The
sequential neural network presented here is composed of two parts: (1) the neural
process estimator and (2) the neural process predictor. In Fig. 5.8, the first neural
network serves as the neural process estimator, receives as inputs the measured
variables, and provides the estimation of the one-step-ahead biofilm thickness and
biofilm density. Because of the important of biofilm thickness and biofilm density as
a process variable in a TPFBBR it is important that an accurate process estimator be
developed. This neural process estimator is a typical example of a general technique

in process control called inferential estimation, where an estimate of primary
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variables (biofilm thickness and biofilm density), which is difficult or expensive to
measure, can be inferred from the cheap and more readily available secondary
variables such as suspended biomass concentration and dissolved oxygen

concentration.

To be more specific, on-line monitoring and estimation in biological processes have
attracted considerable interest during the past decade (Bastin & Dochain, 1990).
However, on-line monitoring and estimation of a wide range of biomass
concentration in a suspended growth system, or biofilm thickness and biofilm density
in a biofilm reactor are considered a difficult task due to lack of reliable techniques.
Thus the control policies of most bioreactors including a biofilm reactor are based on
the use of off-line analysis for process supervision. In the case of a fluidised-bed
biofilm reactor, this off-line method requires the removal of bioparticles as a sample
from the reactor, and a number of samples to obtain the desired measurement
accuracy. Most significantly, the limitation of the sampling frequency to reduce loss
of solid particles from the reactor or to minimise potential for contamination in case
of pure culture systems causes the process engineer to react slowly to any
undesirable condition and process disturbance. Therefore, through the oft-line
measurement, it may be impossible to have enough information to develop the
monitoring strategies and high performance control system necessary for the reactor
efficiency improvement. Recent years there has been development of the so-called
software sensor, which can be defined as an algorithms for the on-line estimation of
the state variables and the parameters which are not measurable or determinable in
real time based on the related measurable data (Bastin & Dochain, 1990). The main
role of the neural process estimator, which acts as an intelligent software sensor, is to
estimate the future dynamic behavior of process variables such as the biofilm

thickness and biofilm density.

The outputs of the neural process estimator subsequently form of part of the inputs
for the second neural network. To be more specific, the second neural network can
be regarded as the neural process predictor capable of predicting the output

concentration using the estimated biofilm thickness and biofilm density. The main
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role of the neural process predictor is to forecast the future dynamic behavior of a

process. This is necessary for optimal process supervision and control.

5.3.1 Criteria for Validation of Neural Network Model

In order to evaluate prediction accuracy of the neural network model, it is necessary

to use various model validation techniques. The neural network model can be

evaluated only by comparing it's output sequence [}(n), t=12,..,N] to the actual

data [ y(n), 1 =1,2,..., N], for the same set of inputs.

For a neural network model with a set of estimated parameters (& }, the most widely
used criterion to evaluate the prediction accuracy of neural network model is the

Root-Mean- Squared Error (RMSFE) defined as

'Z(y(fo—}(&n))

RMSE = -2 : = (5.35)

The Mean Squared Error (MSE) is also used, and defined as

N

Z(y(u)—}(&mj

MSE = ) S (5.36)
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Figure 5.8. Architecture of the sequential neural network model

(X7 (k +1) = one-step-ahead biofilm density, L, (k +1)= one-step-ahead biofilm thickness, 7 = time delay).
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An alternative criterion for model evaluation is the coefficient of determination R°. R’
coefficient is a ratio of the variation explained by the neural network model to the

variation of the data. It is a relative measure defined as follows

N A . S N
2 ()= y(my’ RO
)=z . where y :LNM (5.37)

S () - y(m))?

The value of R” varies between 0 and 1, where a value of | indicates a perfect model.

The correlation cocefficient measures how well the network prediction trend with the
targets in the training set. The range of the correlation coefticient is from -1 to 1. The
closer the coefficient is to I, the more accurate the predictions. The closer to O (or
below), the less accurate and more random the predictions become. This plot often
trends opposite the RMSE, the correlation increases as RMSE decreases. It can,
however, be more informative because it uses an absolute scale to better quantifies
the agreement (1 is perfect linear correlation, O is random). The extreme targets and
predictions are the most heavily weighted in the calculation of the correlation

coefticient (for binary output types all cases are at extremes).

Generally, the error history plot on the training set can be monitored to determine the
rate of network learning and it can be used to determine when learning has reached
its maximum level. Other interesting information can be derived from the training
and test set error history. It is common to find long "plateaus" in the error level
where no significant learning takes place. This behavior is particularly common
when multiple hidden layers are being employed. This indicates that the network is
trying to "figure out" certain input/output relationships. Plateaus are often followed
by steep descents in the training error, yielding accelerated periods of learning. It is

important that "plateau” conditions are not mistaken for a converged network.
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The error history plot on the test set is used for overtraining analysis and helps
determine how well the network generalises learned information. This error depicts
how well the network predicts cases not used in the training process. Unfortunately,
the difference between an error on the training set and an error on the test set can be

due to various reasons (lkonen, 1996):

1) the noise in the training data has been captured by the model
2) the statistical properties of training an data sets are not similar,
3) or the training data not contain enough information in order to

determine all the parameters.

With many real industrial processes including the TPFBBR data presented here, it is
not possible in practice, to collect two data sets of good quality (as it would become

very expensive). That makes the separation of facts 1) and 2) difficult.

5.4 RESULTS AND DISCUSSIONS
5.4.1 Data Sets

In this chapter, sequential neural network modelling was tested using two data sets
collected by experiments in chapter 3. Table 5.2 shows the details of two data sets
used for the sequential neural network modelling. Historical data on biofilm
thickness, biofilm density, suspended biomass concentration, dissolved oxygen
(D.O.) concentration, and inlet phenol concentration were collected and split into two
parts. A training set including 70% of the data was used to train a neural network. A
test set including the remaining 30% was used to test the trained neural network in
order to how well the network generalises or predicts on unseen data not used during

training,

5.4.2 Data Transformation
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First, the influence of the data transformation in neural network modelling was
investigated. Raw data generated from a real process or simulation model consists
generally of many variables such as concentration, pressure, temperature, flow rate,
etc. Each of these variables is measured in different units having different
magnitudes. If raw data are fed into a neural network, then variables having a larger
magnitude are given unequal importance due to the nature of the weight update

procedure.

Table 5.2. Operating conditions.

Data Set 1 Data Set 2
No. data 41 No. data 45
Max. inlet Max. inlet
phenol 190.4 (mg/) phenol 176.8 (mg/!l)
concentration concentration
Min. inlet o 17 Min. inlet )
phenol 151.9 (mg/l) phenol 143.3 (mg/l)
concentration concentration
o T _ 0.42-0.7 |
Gas Velocity 0.73 (emss) | Gas Velocity
(cm/s)
Particle size 600 an Particle size 600 pm
Temperature 21°C Temperature 21°C

In order to give equal weightage to all the variables, representative input and output
data used to teach the neural network are scaled into a range of O to | (in case of the
sigmoid activation function, between 0.1 to 0.9 due to the limitation of the sigmoid

activation function). The simplest method is to scale all the data between 0 and 1 by
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using the maximum and minimum values of the variables as scaling constants. For

example, if X(n) [n=1, 2, 3, ===, N] is an input sequence, then scaled values, X,(?) are
X(n)-X
X (n) = X(") emop=1.23...N (5.38)

On the other hand, sometimes transforming data other than the data scaling method
reduces the ability of the system to learn. Some trail and error may be appropriate, or
perhaps you might provide a number of alternative forms of the same variable to the

neural network.

In this work, a continuous transformation was employed. The general form of a

continuous transformation is:
yeE=s, flsx+0Y+0, (5.39)

where x is a raw data, y is a transformed data, f is a continuous function, s,,0,

implement an inner scaling of the raw data to map it to an optimal sub-domain of f,

and s,,0, implement an outer scaling so that y lies within a suitable range for the

neural network. Each transformation is identified by its continuous function f, which
can be any one of the following: (1)' Identify function', (2) 'Natural logarithm
function' (log(x)), (3) 'Log of Log' (log(log(x)}, (4) 'Exponential function' (exp(x)),
(5) 'Exponential of Exponential' (exp(exp(x)), (6) 'Square function' (x° ), (7) 'Fourth
Power function' (x”), (8) 'Square root function' (\/.;), (9) 'Fourth root function' (“{/;),
(10) 'Inverse function' (//x), (11) 'l/(Square function)’, (12) 'l/(Fourth Power
function)', (13) 'l/(Square root function). (14) 'l/(Fourth root function)’, (15)
'Hyperbolic tangent function' (tenh(x)}, (16) Log (x/(1-x)).

In order to find the influence of the data transformation for the performance of the
neural network, the process estimator and process predictor were performed

separately using data set 1. The results of transformation functions for each input
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used in neural process estimator are shown in Table 5.3. Fig. 5.9(a)-(b) shows the
comparisons between estimation result in the case with a data transformation used as
inputs to the neural network and estimation results in the case with raw data as input.
From Table 5.4, comparing these RMSE function values, it can be seen that the
estimation error is less than 30 % as much in the case where the raw data set was
used. As it can be seen from Fig. 5.9(a)-(b), the coupling of the MFNN with data
transformation yields an improvement of simulation results. This is true particularly

in the case where there is noise in the data set.

Table 5.3. Continuous data transformation function used in the
neural process estimator.

Variables Transformation function used j
L, (k) (output) Natural logarithm function
X7 (k) (output) “IW/TSHquare root function) o
L, (k-]}u(?nput) i Log (x/(1-x))
L, (k-2) (input) Log(q;?}jxr—
X7 (k-1) (input) 1/(Square root function)
X (-2)Gnput) | LogofLog
i X! (k-1) (input) ) 1/(Square "f{mction) 1
---~——-—-~-mﬂ(i:?/;. /) (input) h Squarqemfar;gti*oni o

When the simulation is carried out with the raw data and the data scaling method
only, the topology of the MFNN is 6-7-2. But in case of the simulation with
continuous data transformation, the MFNN with 12-9-2 is employed. Transformation

functions for each input used in process predictor shown in Fig. 5.9(c), is also shown
in Table 5.5.
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From Fig. 5.9(a)-(c), comparing simulation results, it can be seen that the prediction
accuracy where the data scaling method only was used is as much as same in the case
where the continuous transformation was used. The continuous transformation
method does not provide a significant advantage over the data scaling method for the
data set used here. Thus for the sake of simplicity of the neural network, the entire
neural network modelling presented here has incorporated only the scaling data
method for data transformation since the continuous transformation causes the large

topology of the neural network over the data scaling method.

Table 5.4. RMSE comparisons between data transformation
and raw data for neural process estimator and

predictor.
Neural _ Neural
Estimator Predictor
RMSE
RMSE RMSE
‘ (eftluent
(biofilm (biofilm
. . phenol
thickness) density)

concentration)

MFNN  with no

] 5.41 4.66 4 88
data transformation
MFNN with data
, 4.09 3.10 3.041
transformation
MFNN with scale
3.76 3.66 2934

data only
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Table 5.5. Continuous data transformation function used in the
neural process predictor.

Variables Transformation function used
' (k) (output) Square function
N Co (k-1) (inputh)w mmmmm B Square function )
C" (k-2) (input) o Mwl;;;érbolic tangent functionM
(T.'i::;’h(k-_?) (input) .g(‘];are function
L, (k-1) (input) Log (x/(1-x)}).
L2 Gnpuy | Log (v/(1-))
X7 (D) Gnput) | /(Square root function)
X! (k-2) (in;lﬂa Natural logaaggl?&;ct;(;——
X/ (k—ﬂbw zinput) Hyperbolic tangent functio
X7 (k-2) (input) Hyperbolic tangent function
C" (k-1) (input) - I/(Square function) h
C” (k-2) (input) I /(Square function)
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Figure 5.9. Comparison ol prediction results between modelling with data
transformation and raw data for neural process estimator (data set 1):
(a) biofilm thickness (b) biofilm density.
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Figurc 5.9(c¢). Comparison of prediction results between modelling with data
transformation and raw data [or ncural process predictor (data
set 1).

5.4.3 Neural Process Estimator

When the ncural process estimator was applicd to data sets 1 and 2, the past biofilm
thickness, biolilm density, suspended biofilm density, inlet phenol concentration, and

dissolved oxygen concentration arc used as inputs to the process estimator.

The data set 1 are written in { L, (k), X/ (k), L, (k-1), L, (k-2), X7 k-1, X/ (k-2),
Xi(k-l), C.:"(k-l)}. Output L, (k) and Xaf(k) arc the onc-step ahcad biolilm
thickness and biofilm density, respectively. The past L, (k-1), Lf (k-2), Xaf (k-1),
and X u’ (k-2) arc used as inputs to the nctwork. X i(k—l) the suspended biomass

concentration, C” (k-1) the inlet substrate concentration arc also used as inputs.
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Even though the superficial liquid velocity and gas velocity affect the variation of the
biofilm thickness and biofilm density in a TPFBBR, they were not used as inputs
since they were essentially constant at any point of each operating condition in data
set 1. Thus, the information they contain would not contribute towards estimating
biofilm thickness and biofilm density and prediction for effluent phenol
concentration. Unlike the data set 1, the superficial gas velocity was changed from
0.42 em/s to 0.7 cm/s at 336 hours after startup. For modelling using data set 2, the

gas velocity was considered to be the input.

The output from the neural network process estimator for data set 1 is shown in Fig.
5.10 (a)-(b). For MFNN with cascaded-correlation (C-C) learning with data set 1, the
neural network employed 6 inputs and 1 hidden layer with 7 logistic neurons. And
there were 2 output neurons using the logistic transfer function. This process
estimator closely follows the measured patterns, giving an RMSE of 3.761 on the
estimation of biofilm thickness for data set 1, as well, the estimation on the

estimation of biofilm density is acceptable (RMSE= 3.662).

For MFNN with extended Kalman filtering (EKF) learning, the topology of neural
network was the same as that of MFNN with C-C learning. The RMSE results are
3.692 on the estimation of biofilm thickness and 2.899 on the estimation of biofilm
density, respectively. For GRNN as the process estimator, the RMSE's for the
biofilm thickness and the biofilm density were 3.601 and 2.982, respectively. GRNN
used as neural process estimator employs 6 inputs, 2 hidden layers, and 1 output. The
first hidden layer, the pattern layer has 30 neurons. The second hidden layer, the

summation layer, has 3 neurons.

The same procedure as that adopted for data set 1 was applied to data set 2. The
neural networks were tested on the overall 45 data points. The results of an one-step
ahead estimation are shown in Fig. 5.11(a)-(b). The topology of MFNN with C-C
learning and EKF learning was 7-10-2, i.e., 7 input neurons and one hidden layer
with 10 logistic neurons, and two output neurons using the hyperbolic tangent

transfer function. For the topology of the GRNN, GRNN employs 7 inputs, 2 hidden
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layers, and | output. The first hidden layer, the pattern layer has 33 neurons. The

second hidden layer, the summation layer, has 3 neurons.

Table 5.6 shows the comparisons of RMSE for each neural network used for neural
process estimator. From Table 5.6, RMSE with data set | was a little lower than that
with data set 2. From Table 5.6, the performance of MFNN with C-C learning,
MFNN with EKF learning, and GRNN is similar but the GRNN estimate relatively
more accurate than that by MFNN. The estimated biofilm thickness and biofilm
density with three different types of neural networks have proved to be consistent

with the experimental data.

Table 5.6. RMSE results of the neural process estimator for data set | and 2.

RMSE of Data Set 1 RMSE of Data Set 2

Biofilm Biofilm Biofilm Biofilm

Thickness Density Thickness Density
MFNN C-C 3.761 3.662 S.111 5231
MFNN EKF 3.692 2.899 4.539 5.135
GRNN 3.601 2.982 4.400 4755
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Figurc 5.11(b). Results of the neural process estimator for the biolilm density using
data set 2.
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5.4.4 Neural Process Predictor

The biofilm thickness and biofilm density, which are outputs of the neural process
estimator, are subsequently fed into the neural process predictor to form of part of the
inputs. Past effluent phenol concentration, suspended biomass concentration, and

inlet phenol concentration are also served as inputs for the neural process predictor.

The data set | and 2 are written in { C™ (k), C™ (k-1), C (k-2), C (k-3), L, (k-
D, Ly(k-2), X[(k-1), X (k-2), X[ (k-1), X/ (k-2), C7(k-1), )" (k-2)}. Output
C* (k) is the one-step ahead effluent phenol concentration. The past ' (k-1),
7 (k-2), and C*(k-3) are used as inputs to the network. L, biofilm thickness,

X! biofilm density, X/ the suspended biomass concentration, and (' the inlet

substrate concentration are also used as inputs. The topologies of each type of neural

network for the neural network predictor are given in Table 5.7.

Table 5.7. Topologies of each neural network.

Process Estimater P ocess Predictor
: _ data set | 6-7-2 11-11-1
MFNN C-C _
data set 2 7-10-2 1 1-9-1
data set | P 6-7-2 lmtulul“-l
MFNN EKF . I
data set 2 7-10-2 1 1-9-1
data set | 6-30-3-2 1 1-36-5-1
GRNN o . I
data set 2 7-33-3-2 1 1-38-4-1

Table 5.8 also collects the RMSE results of the MFNN, GRNN for data set 1-2. Fig.
5.12 (a)-(d) show the plots of measured values as well as the curves predicted by the

process predictor. Good correlation exists between the measured and predicted for
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both MFNN with EKF learning and GRNN. It is demonstrated that the neural

process predictor serve as good predictors and at the same time provide a valuable

information on dynamic performance of a TPFBBR which is difficult to be modelled

and to be predicted.

Table 5.8. The comparison of RMSE for MFNN with EKF and GRNN
(RMSE,;, = RMSE of training set, RMSE,4 = RMSE of testing set).

Data Set 1

MENN EKF

Data Set 2

GRNN

MFNN EKF

GRNN

Process Predictor

Process Predictor

Process Predictor

Process Predictor

RMSEq, 2.738 2.79 1.538 | 344
RMSE 3131 3.64 2.495 1.877
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Figure 5.12(a). Results of the neural process predictor (MFNN with EKF) using data

set |.
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Figure 5.12(d). Results of the neural process predictor (GRNN) using data set 2.

During the startup phases in a TPFBBR, the modelling results using sequential neural
network demonstrate that the modelling technique using a GRNN and MFNN
provides a valuable tool for predicting the outputs with high levels of accuracy and

for understanding the dynamic behavior of processes.

5.5 CONCLUSIONS

A process engineer, who is faced with characterisation or prediction of the process
behavior, has to model the considered process. But the derivation of a proper
mathematical model to describe a complex bioprocess is usually quite difficult,

particularly for a biofilm reactor, such as a TPFBBR.

Neural networks offer an alternative to solve this problem since it does not require

any a priori knowledge about the structure of the relationships that exist between
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important variables. All that is required is to give the neural networks the necessary

information and to let it learn by representative examples.

The sequential neural network model presented here is composed of two parts. The
first part, the neural process estimator, can serve as a nonparametric approximator to
estimate dittficult-to-model process variables such as biofilm thickness and biofilm
density with the available measured variables. The second part, the neural process
predictor, can predict the dynamic change of performance of the TPFBBR based on
the estimated biofilm thickness and biofilm density by the neural process estimator,

and other measured variables.

We consider three types of the neural networks, which are MFENN with C-C learning,
MFNN with EKF learning, and GRNN, to develop the sequential neural network
model with two different operating data sets. It has been shown that the neural
process estimator component of the sequential neural network models are capable of
capturing the nonlinear relationship between process variables such as biofilm
thickness and biofilm density and process input variables with no prior knowledge
about the complex biofilm growth behavior occurring in a TPFBBR. The neural
process predictor component of the sequential neural network can also predict the
effluent phenol concentration with high level of accuracy, which is difficult to be
captured by existing mechanical models. Thus, the sequential neural network model
performs well in modelling the dynamics of the complex TPFBBR, not only in the

training phase but also in the testing phases.

It can be concluded that instead of the complex TPFBBR model consisting of a
dynamic biofilm growth model, reaction-diffusion model, and reactor model, the
sequential neural network modelling approach proposed here provides a good
alternative to describe the dynamic behavior of a TPFBBR and has the potential to be
successfully implemented within a control strategy. Finally, the modeling approach

presented here is readily applicable to a variety of other complex processes.



Chapter 6

Intelligent Hybrid Model with a
Neurofuzzy Process Estimator for a
TPFBBR

6.1 INTRODUCTION

The mechanistic model developed in Chapter 4 and the artificial neural network
model developed in Chapter 5 have drawbacks. Real biological processes such as
TPFBBR, are strongly characterized by nonlinear dynamics and are usually complex
and poorly known. Therefore, formulating an accurate model based on a mechanistic
approach requires very time- and money-consuming tasks. An artificial neural
network modelling approach, on the other hand, is mainly data driven and the
resulting model is not believed to have any exploration properties. Therefore, data
used for neural network-based modelling should cover the whole domain of interest

in order to avoid the danger of exploration when using the model. It is very difficult
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to extract structural knowledge for the processes under consideration and the

empirical approach highly is criticised as a scientific approach.

In order to overcome the weak points of both the mechanistic and neural network
models, a so-called hybrid model, which is a combination of a mechanistic and
empirical model has recently been introduced (Psichogious & Ungar, 1992; Su et al.,
1992; Tompson & Kramer, 1994; van Can et al., 1997). In a hybrid model, a part of
the poorly and inaccurately known processes are modelled by an empirical model
such as ANN or neurofuzzy system, and the behaviour of the known processes is

modelled mechanistically.

In a TPFBBR, processes associated with the diffusive transport of substrate with the
biofilm from the liquid phase and processes associated with the axially-dispersive
transport of substrate in the liquid phase are usually more accurately known than
processes associated with dynamic biofilm growth on the support particle and the
kinetics of conversion of substrate in the biofilm. The main goal of this chapter is to
develop the intelligent hybrid model for a TPFBBR because the hybrid model based
on a combination of both known mechanistic and empirical knowledge and empirical
data in a TPFBBR, may be reliable, and offers potential advantages for practical
application. In the intelligent hybrid model presented, the neurofuzzy model is used
to model the unknown process of dynamic biofilm growth on the support particle,
combined with the known processes such as the axial-dispersion and reaction-
diffusion models to build the intelligent hvbrid model of a TPFBBR. In this work, we
first focus on developing the neurofuzzy model as process estimators to estimate the
variation of the biofilm thickness and biofilm density based on the available
measurement variables. Next, we aim to explore the intelligent hybrid model, which
is the concept of combining the neurofuzzy model for estimating the biofilm
thickness and biofilm density with mechanistic models to predict the performance of
a TPFBBR. In our hybrid model, the neurofuzzy model is combined with a reaction-
diffusion model and axial-dispersion model to show the dynamic behavior and

performance of a TPFBBR according to the variation of biofilm density and biofilm
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thickness. It is demonstrated that this intelligent hybrid model provides a valuable
tool for understanding the dynamic behavior and a comprehensive dynamic model of

a TPFBBR.

6.2. FUZZY SYSTEM
6.2.1. Fuzzy Sets

A fuzzy system is used to represent the imprecision found in natural language. To
describe this, Zadeh (1973) introduced the concept of a fuzzy set. Fuzzy sets

represent vague description of objects i.e. tall, small, cold, bright, etc.

For conventional sets, rigid membership requirements are imposed upon the objects
within the set. An object is a member of a set to degree O (not in the set at all) or |
(completely in the set). For example, the set of TALL men could be defined to be all
men 6 feet or taller (Fig. 6.1). As shown in Fig. 6.1, the conventional set classifies a
man as either TALL, or not TALL at all. There is no middle ground. In contrast,
fuzzy sets have more flexible membership requirements that allow for partial
membership in a set. A man 6 feet tall is a member the fuzzy set TALL to degree 0.5
(Fig. 6.1). A man 5 feet 6 inches tall is TALL to degree 0.25, a man 6 feet 6 inches
tall is TALL to degree 0.75.

Conventional set

Fuzzy Set

1 1
5 = - 5 2
S 3 TALILL 8 g
[y o . =
Bl = By =
L - a0 =
P =
0 0

6’ 506 T

Figure 6.1. Conventional Sets vs. Fuzzy Sets.



Mathematically, a fuzzy set, A, is a function defined on the universe of discourse, X,

given by:

i, (x): X —10,1] (6.1)

where A is the linguistic variable (or fuzzy label) describing the variable x. The
universe of discourse of a variable is its range and can be either continuous or
discrete. u,(x) represents the membership function, x belonging to the fuzzy set A.
In general, the shape of a membership function depend on the application and can be

trapezoidal, bell-shaped, triangular, or Gaussian, etc as shown in Fig. 6.2.

trapmi gbelimf timf  gaussmf gauss2mf

i (X}

0571

Figure 6.2. Different shapes of membership functions.

Fig. 6.3 illustrates one example of the discourse for the linguistic variable

temperature. Linguistic values, which define these variables, are: Cold, Warm, and

Hot.

1 OA Cold Warm Hot
Uy
.
° 15 25 35 '

Temperature °C

Figure 6.3. Typical fuzzy set for temperature.
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6.2.2 Fuzzy Inference System

To construct a fuzzy system we have to describe mapping from one universe of
discourse to another and this can be achieved using fuzzy algorithms. Fuzzy IF-
THEN rules (or fuzzy implication statements) can be used to describe part of such a
mapping and a collection of rules from an algorithms. Depending on the encoding
method of a fuzzy algorithm, several fuzzy-rules-base systems can be distinguished:
linguistic fuzzy model (Mamdani, 1977), fuzzy relational model (Pedrycz, 1983),

Takagi-Sugeno model (Takagi & Sugeno, 1985).

In fuzzy inference system (or fuzzy-rules-base system), every fuzzy rule has a two

parts:

e antecedent part(premise), expressed by: 1§ -

e consequent part, expressed by: THEN -+

The antecedent part is the description of the state of the system which should turn on
the rule, and the consequent is the action that the operator who controls the system
must take. Consider the following example of dealing with a problem of a high
effluent BOD based on linguistic fuzzy model:

acdeuedea
-

S S ——

I (EBOD is Large) AND(IESS is Smali) THEN (AWSFR is Negative Large) (6.2)

where EBOD is effluent BOD, ESS is effluent suspended solid concentration, and
AWSEFR is change in the waste sludge flow rate. In this example, EBOD, ESS, and
AWSFR are linguistic variables, and Small, Large, and Negative Large are linguistic
values (or fuzzy labels) that are characterised by appropriate membership functions.
The linguistic values ‘Small’, T.arge’, and Negative Large’ have a certain degree of
vagueness and fuzziness. This fuzziness can be described by membership functions

which can assume different curves, e.g. straight lines, bell-shaped, Gaussian, and so

forth (Fig. 6.2).
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Most fuzzy inference system use production rules to represent the relation among the
linguistic variables and derive actions from the inputs. The computation of fuzzy

rules is called fuzzy rule inference that is a calculus consisting of two main steps:

(1) aggregation step - the antecedents are evaluated using membership
functions to belief levels,

(2) composition step - the antecedents are then combined using fuzzy
operator (such as T-norm and T-conorm) to produce the final output

activation level.

The antecedent of the fuzzy rule is formed from the intersection (the fuzzy and
operation) of the univariate linguistic statements, which can be represented by a
multivariate fuzzy set. Via the fuzzy implication operator (IF:- THEN --+) individual
rules map the multivariate fuzzy set into the rules consequence. A complete rule base
is produced from the wunion (performed by the fuzzy or operator) of all the fuzzy

rules.

To implement a fuzzy system (or controller), the functions that performs the logical
fuzzy operations, and, IF - THEN--, and or have to be defined. There are many
ways to define the fuzzy implication and the fuzzy operator and. Nearly, 40 distinct
fuzzy implication functions have been described in the literature (Lee, 1990).
Generally, intersection operators are called T-norms and union operator called T-
conorms. These norms provide a wide range of suitable functions but the most often
used operations are the min and product operator for and operator, and the max and

sum operator for or operator. They are shown in Table 6.1.

For example, suppose that we defined two fuzzy sets by their memberships #, and
1, which have triangular shape (dotted lines on Fig. 6.4a). The application of T-

norm gives the fuzzy set A and B which is represented by its membership function
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U, ..qp(X)(solid line on Fig. 6.4(a)). The application of T-conorm on these fuzzy sets

gives the fuzzy set represented with solid line on the Fig. 6.4.

Table 6.1. The most popular logical fuzzy operators.

o min: u,(x)and u,(x) =min {u,(x),u,(x)}
T-norms | e algebraic product: u,(x)and u,(x) =u,(x)*u,(x)
bounded product: u,(x)and u,(x) =max(0, u, (x)+u,(x)-1

e max: u,(x)or uy(x)=max {u,(x),u,(x)}

e algebraic sum: u,(x)or uy,(x)=u,(x)+it, (x)-1,(x)*u,(x)
T-conorms . ‘
e disjoint sum: u,(x)or u,(x)=

max {min(u,(x),l-u,(x)), min(l- u,(x),u,(x)}}

e material implication:

Fuzzy Uy g()=1,(x)>uy(x)=not(u,(x))oru,(x)
Implication | e  propositional calculus:
Wy p(X) = U, (X) =1y (x)=not (u, (x)yor(u,(x)and u,(x))

A
Fy i A
u u
”.-l i R(‘r-}
. — - : >
Triangular norm Triangular conorm
min operator max operator

(a) (b)

Figure 6.4. Graphical representation of a fuzzy operator.
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Every fuzzy system (or fuzzy controller) is composed of four principal blocks as
shown Fig. 6.5 (Jang, 1993):
e knowledge base (rules and parameters for membership functions)
e decision unit (inference operations on the rules)
e fuzzification interface (transformatien of the crisp inputs into degrees of
match with linguistic variables)
e defuzzification interface (transformation of the fuzzy results of the

inference into a crisp output)

In many engineering applications, the inputs and outputs are numerical values, rather
than fuzzy sets. To deal with this, the fuzzy system must be equipped with

conversion interfaces, so-called fuzzification and defuzzification units, as shown in

Fig. 6.5.
Knowledge Base

i Input Nit.l’llbtl"ihl]) . i i ()utput Munbuship

i .| Rules | |

Functlons P [ Fuctxons |

g — S S ‘I

Fuzzification | Fuzzy Inpul(\ De.c1510n . ;I‘zzy )ulpu{si Defuzzification i
. Interface . . Making Unit i Interface |
! J| ) (Rule Evaluatlon) !
i — S — L |
Fuzzv Infi erence Engme
Input

Process

Figure 6.5. General structure of fuzzy inference system.

The fuzzy inference engine of the system from Fig. 6.5 is represented on the Fig. 6.6.
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Linguistic Rules
I x=A, and y=B,
then 7=C,

1
|
i

If x=A, and y=B.

R« b 'g then 7=C, / ‘-. ; . Z
Fuzzification -t _ z ¢ Defuzzification h
y J .\'\_ ,/;r i .

’ It x=A, and y=B_ I

_,,{ then 7=C,

Figure 6.6. General structure of fuzzy inference engine.

In fuzzification unit, input values are considered as fuzzy singletons and membership
grades of all fuzzy propositions in the rule antecedents are evaluated. Fuzzification
means using the membership functions of linguistic variables to compute each term’s
degree of validity at a specific point of the process. When a fuzzy rule fires
(activates), it fires to a certain degree of depending on the belief level in each
antecedents are evaluated in the premise of the rule. The antecedents are evaluated
using membership functions to belief levels, which are then combined using fuzzy
operator (T-norm and T-conorm) to produce the final output activation level. Finally,
the output activation level is used to either scale or clip the fuzzy output set. Clipping
the output is called Max-Min inference, and scaling the output is called Max-Dot
inference. There are a number of fuzzy inference engines, but the most cited in the

literature (Jang, 1993) are:

1. Max-Dot method (type 1). The final output membership function for each output
is the union of the fuzzy sets assigned to that output in a conclusion after

scaling their degree of membership values to peak at the degree of
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membership for the corresponding premise (modulation by clipping)

(Zimmermann, 1990).

2. Max-Min method (type 2). The final output membership function is the union of
the fuzzy sets assigned to that output in a conclusion after cutting their degree
of membership values at the degree of the corresponding premise (linear
modulation). The crisp value of output is, most usually, the center of gravity

of resulting fuzzy set (Lee, 1990).

3. Takagi and Sugeno’s method (type 3). Each rule’s output is a linear
combination of input variables. The crisp output is the weighted average of

each rule’s output (Takagi & Sugeno, 1985).

See Fig. 6.7 for an example of both Max-Min and Max-Dot methods of fuzzy
inference engine. The higher the output activation level of for true, the more it will
contribute to the combined output of all the rules. Once all of the fuzzy output sets
have been computed, they are summed or unioned together to produce the combined

fuzzy output set (Fig. 6.8).

How do fuzzy rules produce final output? The result produced from the evaluation of
fuzzy rule is, of course, a fuzzy set, which may be the sum or union of many fuzzy
sets, with each rule that fired contributing a piece of the final output set. This fuzzy
set is then converted into a single output value by a process known as defuzzification.
Several defuzzification methods have been developed: (1) The Center of Maximum
(CoM), (2) The Mean-of-Maximum (MoM), and (3) The Center-of-Area (CoA)
methods. The most common method of defuzzification is the center of gravity (or
centriod) method. In centroid method, the output value is equal to the weighted
average of the positions of the centroids of output membership functions weighted by

their actual membership grade (Fuller, 1995)
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Figure 6.8. Max-Dot interface with unioned and summed results.
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6.2.3 Takagi & Sugeno (TS) Fuzzy Model

Takagi and Sugeno (1985) developed a hybrid modelling technique designed to
combine conventional and fuzzy modelling. The resulting model, called TS model is

represented by a series of fuzzy rules of the form:
IF (XisA') THEN (y=f.(x) (6.4)

where f;(x,), defined on x; € X, is a local model used to approximate the response
of the system in the region of the input space represented by the antecedent. The
function f(x,) are often chosen as affine linear forms y, =a’ x +b,, where a, is a
parameter vector b, is a scalar offset.

The overall output of TS model is calculated as a weighted average of the rule

contributions:

p
ZMA; (X)) fi(x)
!

.\'. =

NE S — (6.5)
ZMAI (X)
i=1

where K is the number of rules and «, is the membership degree of the ™ rule

antecedent. For a=0, the TS model is equivalent to the linguistic model with
singleton consequence. Adaptive-neural-network-based fuzzy inference system
(ANFIS) developed by Jang (1993) is one of the most popular approaches to

neurofuzzy modelling and is based on this type of fuzzy model structure.

6.3 NEUROFUZZY MODELLING

6.3.1 Contact Points of Fuzzy System and Artificial Neural
Networks
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The knowledge of artificial neural networks (ANNs) has been developed greatly in
the recent years. Due to its strong nonlinear mapping and learning abilities, the
application of ANN to modelling wastewater treatment processes has been successful

(Capodaglio et al., 1991: Cote et al., 1995; Du et al., 1995; Zhao et al., 1997).

For dynamic process modelling, the neural networks-based model can be thought of
as the nonlinear counterpart to ARMA (AutoRegressive Moving Average) models.
The main advantages of using ANNS in process modelling are: (1) it has the ability to
learn complex nonlinear relationship with limited prior knowledge of the process
structure (2) it can perform inferences for an unknown combination of input
variables (Hong et al., 1998). So ANNs are prime candidates for application in
dynamic process modelling for the representation of nonlinear processes. However,
analysis of the trained neural networks is difficult since these models appear as
black-box models. Neither is it possible to extract structural knowledge for the
process under consideration from the trained neural networks, nor is it easy to
determine a suitable topology of the ANNs for a special problem and to set the

parameters of the learning algorithms.

On the other hand, since Zadeh’s first pioneering paper (Zadeh, 1965), there have
been fuzzy modelling attempts to combine numerical and symbolic processing into
one framework. Fuzzy modelling is knowledge-based system consisting of linguistic
IF-THEN rules that can be constructed using the knowledge of human experts in the
given field of interest. Fuzzy modelling also utilises universal approximators that can
realise nonlinear mappings. These features allow qualitative knowledge to be
combined with quantitative data in complementary ways (Babuska & Verbrunggen,
1996). Compared to other nonlinear approximation techniques (such as ANNSs),
fuzzy modelling provides a more transparent representation of the nonlinear systems
and appears very useful when the responses to change in manipulated variables are
nonlinear or when there is a lack of well-defined mathematical model. However, as
system complexity increases, reliable fuzzy rules and membership functions used to

describe the systems behaviour are difficult to determine. Furthermore, due to the
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dynamic nature of biological process such as activated sludge process, fuzzy rules
and membership functions must be adaptive to the changing environment in order to
continue to be useful. The quality of fuzzy modelling can be significantly influenced
by changing shapes of membership functions and fuzzy rules. Thus methods for
performing the adjustment of membership functions and modification of fuzzy rules

are necessary.

The advantages of ANN in compensating for the weak points of fuzzy system, and
the advantages of fuzzy systems in compensating for weak points of ANN are shown
in Fig. 6.9. This mutual improvement is achieved by combining fuzzy system and
ANN (Fig. 6.9), and this new method is called neurofuzzy modelling (or fuzzy neural
network). As shown in Fig. 6.9, the aim of neurofuzzy system is to combine
collectively the benefits of both fuzzy system and ANN. Simply, the given system is
expressed as linguistic fuzzy expressions and learning methods of ANN are used to
learn the system. Furthermore, the neurofuzzy system can prevent the knowledge
acquired through learning based on the fuzzy knowledge from being thrown into a
black box. In addition, neurofuzzy system is also capable of extracting fuzzy
knowledge from numerical data since they allow incorporation of both numerical and

linguistic data into the system.

Generally, these neurofuzzy systems have the following features (Jin et al., 1995):

l. A fuzzy system is used to create a relevant perception perspective, which
possesses very clear physical meanings.

2. All the fuzzy rules are expressed by a group of weights of an ANN and can be
adjusted in a more effective way.

3. The nonlinear characteristic of the ANN endows the fuzzy model greater

abilities to describe a given complex system.
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6.3.2 Background of Neurofuzzy Systems

As described in the previous section, to overcome inherent drawbacks with fuzzy
system (Fig. 6.9), namely, the choice of appropriate fuzzy IF-THEN-rules and
membership function, and the lack of learning function in order to tune these in order
to improve the quality of modelling, recently many researchers have focused on the
so-called neurofuzzy modelling and control. A number of different schemes have
been developed, such as the adaptive-neural-network-based fuzzy inference system
(ANFIS) (Jang, 1993), neural networks with fuzzy weight (Buckley & Hayashi,
1994), neuro-fuzzy adaptive models (Brown & Harris, 1994), and fuzzy neural
network (Nack and Kruse, 1996). Generally, the neurofuzzy systems can be divided

into two groups:

1. Neural network based fuzzy inference system (NNFIS)
2. Fuzzy neural network (FNN)

The objective of NNFIS is to incorporate neural concepts, such as learning and
parallelism, into fuzzy inference systems. The architecture of the systems is parallel,
and they exploit the same learning algorithms, which are used with neural networks.

In the FNN (Pedrycz, 1992; Gupta & Rao, 1994), the fuzzy ideas are incorporated
into neural networks. The FNN consists of two components: a fuzzy system and an
ANN. the fuzzy system can be either a fuzzy inference block which converts
linguistic information for the neural network or the neural network can drive the
fuzzy inference block. The only NNFIS is considered as the neurofuzzy system and
studied in more detail in this thesis. Table 2 shows some examples of the neurofuzzy

systems used in several recently introduced NNFIS.

Simutis et al. (1993) showed the application of fuzzy-aided neural network for real-
time state estimation and process prediction in the alcohol formation step of
production-scale beer brewing. Ye et al. (1994) applied the neurofuzzy system with a

five layer neural network for the control of fed-batch cultivation of recombinant
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Escherichia coli. In their application, the change in pH of the culture broth and the
specific growth rate were used as inputs to neurofuzzy system to calculate the
glucose feeding rate. They demonstrate that a feedforward-feed- back control
strategy with neurofuzzy system is a promising control strategy for the control of
high cell density cultivation and high expression of a target gene in fed-batch

cultivation of a recombinant strain.

ANN | Fuzzy

. allow qualitative knowledge
to be combined with quanti-
tative data

lrong poin

{. learning is available
2. can easily handle
numerical data

[xe]

. provide a more transparent
representation of the syst-

(4115

1. adjustment of membership

1. extracting knowledge is
difficult
2.high-speed learning is difficult

functions is difficult
2. modification of fuzzy rules is
difficult

Neurofuzzy System

. combining linguistic expression of fuzzy
with ANN learning
2. allow incorporation of both numerical and
linguistic data
3. easy extraction of fuzzy knowledge from
numerical data
4. high-speed learning is available

Figure 6.9. The main advantages of the neurofuzzy system.
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Table 6.2. Some examples of the neurofuzzy systems.

Antecedent Censequent .
Neurofuzzy L Rule . Defuzzifi-
membership | Partitioning membership
system connectives cation
functions functions
Horikawa et ) . . WA,
al. (1992) bell-shaped adaptive grid | and/product singleton or Tsukamoto
monotonic
Nack & Tsukamooto’s adantive orid and/mi Tsukamooto’s Tsukamot
Kruse (1993) monotonic adaptive gf and/min monotonic SURAMOLO
Jang (1993) bell-shaped adaptive grid | and/product snilglclpn: or WA
© functional
Lin & Lee X A . and/min RTIC
(1991) bell-shaped adaptive grid or/max bell-shaped COA,WA
Niec &
Linkens bell-shaped Cluster and/product Singleton WA
(1993)
Berenji &
Khedhar Triangular adaptive grid | and/soft-min triangular MOM
(1993)
Wang &
Mendel bell-shaped radial and/product singleton WA
N T T £

6.3.3 The Architecture of the ANFIS Neurofuzzy System

One of the interesting architectures for a neurofuzzy system (Table 6.2) is ANFIS
(Adaptive Neural Fuzzy Inference System) which is functionally equivalent to
Takagi and Sugeno’s method described in the previous section (Jang, 1993). To
describe ANFIS, let us consider a system which has two inputs x and y and only one

output z. In addition, the rule base contains only two fuzzy rules.

Rule 1:IF x is A} and yis B, THEN 7;=a;x+by



(6.6)
Rule2: TF xis A> and vy is Bo THEN zx=ua0x4bay
The firing levels of the rules are computed by
o = A (X)X B (y,) 6.7)

o, = A, (x,) X B,(y,)

where can be modelled by any continuous T-norm (Table 1), e.g. product T-norm

a, = A(x) A B ()

(6.8)
o, = A, (x5) A By ()
then the individual rule outputs are derived from the relationships

LA, by, 2, = aax, by (6.9)

and the crisp control action is expressed as

&, + &2,
o e ﬁ] o+ )8:33 (6.10)

o, + o,

where [, and f, are the normalised values of e, and &, with respect to the sum

(0!1 +a2)3 l-e.

=X = (6.11)

oo+ a,

The ANFIS, a hybrid neural net computationally identical to Takagi & Sugeno type

of fuzzy reasoning is shown in the Fig. 6.10.
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Figure 6.10. The architecture of the ANFIS neurofuzzy model.

e Layer 1. Fuzzification
This layer consists of linguistic variables. Each neuron in this layer
represents an input membership function of the antecedent of a fuzzy
rule. The crisp inputs x, and y, are fuzzified by using membership
functions of the linguistic variables A, and A,. It is very important that

node functions have to be differentiable, and we choose a bell-shaped

membership function

A {ir) = exp| - _;.(m)z}
. (6.12)

B (1) = exp| ~—A{ )3}
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to represent the linguistic terms, where, {a”, a,, by, b,'z} is the
parameter set. As the values of these parameters change, the bell-shaped
functions vary accordingly, thus exhibiting various forms of membership

functions on linguistic labels A; and B, .

Layer 2. Rule nodes

Second layer contains one node per each fuzzy IF-THEN rule. Each rule
node performs connective operation between rule antecedents (IF-part).
In other words, each node computes the firing strength of the associated
rule. Usually, the min or the product (see Table 1.) is used as
intersection and. The union or is usually done max operation. The output

of the top node is

o = A Q)X By = A ()~ Bi{y,) (6.13)

and the output of the bottom node is

2y = AL X By(v,) = 0 = A(x) A By (v, (6.14)

Both nodes in this layer are labelled by T, because we can choose other

T-norms for modelling the logical and operator. The nodes of this layer

are called rule nodes.

Layer 3. Normalization

Every node in this layer is labelled by N to indicate the normalization of
the firing levels. The output of top neuron is the normalized (with respect

to the sum of the firing levels) firing level of the first rule

g = (6.15)
o+
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and the output of the bottom node is the normalised firing level of the

second rule

g, =—= (6.16)

e Layer 4. Consequence layer
This layer gives the consequent part of the rule. In this study the output of
top node is the product of the normalised firing level and the individual

rule output of the first rule
Bz = Bilax, + by (6.16)

The output of top node is the product of the normalised firing level and

the individual rule output of the first rule
Bz, = fuluny, +hv) (6.17)

e Layer S. Summation
Single node in this layer computes the overall system output as the sum of

all incoming signals:

[2 A SN 7 SOuN
G =3 = B+ Bz (6.18)
o

6.3.4 Hybrid Learning Algorithms of the ANFIS

Generally the purpose of the learning in the neurofuzzy system can be summarised as

(Takagi & Lee, 1992):
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1. deciding number of fuzzy rules,
deciding shape of the membership functions,
deciding consequent parameters,

deciding number of the input variables,

SR e

deciding fuzzy reasoning method.

(1) and (2) correspond to deciding how to cover the input space. They are highly
dependent on each other. (3) corresponds to determining the coefficients of the linear
equation in the case of the Takagi & Sugeno’s type model or determining the
consequent part membership functions in the case of Mamdani model (Mamdani,
1974). Table 6.3 shows some of learning schemes used in several recently introduced
neurofuzzy systems. Their training methods differ very much from each other and no

comparison of methods have been presented.

The ANFIS architecture consists of two trainable parameter sets:
1. The antecedent membership function parameters.

2. The polynomial parameters, also called the consequent parameters.

Each ANFIS training epoch, using the hybrid learning rule, consists of two passes.
The consequent parameters are obtained during the forward pass using a least-
squares optimisation algorithm and the premise parameters are updated using a
gradient descent algorithm. During the forward pass all node outputs are calculated
up to layer 4. At layer 4 the consequent parameters are calculated using a least-
squares regression method. Next, the outputs are calculated using the new
consequent parameters and the error signals are propagated back through the layers
to determine the premise parameter updates. The consequent parameters are usually
solved for at each epoch during the training phase, because as the output of the last
hidden layer changes due the backpropagation phase, the consequent parameters are
no longer optimal. Since the singular value decomposition (SVD) is computationally
intensive, it may be most efficient to perform it every few epochs versus every

epoch.
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Table 6.

3. Learning schemes of neurofuzzy system.

Neurofuzzy system

Premise learning Censequent Learning

Horikawa ct al.
(1992)
Nack & Kruse
(1993)

Jang (1993)

Lin & Lee (1991)

Nie & Linkens
(1993)
Berenji & Khedhar
(1993)
Wang & Mendel
(1992)

Adding of
new fuzzy
sets or fuzzy
rules during

learning

gradient descent

fuzzy gradient descent

gradient descent least-square method
SOM, initial learning gradient descent

modified SOM gradient descent

gradient descent

orthogonal least squares method (OLS)

No

No

No

Yes

Yes

No

OLS
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6.4 INTELLIGENT HYBRID MODELLING FOR A
TPFBBR

6.4.1 Reaction-Diffusion Model

The concentration profiles of substrate describing the simultaneous transport and

removal within the biofilm are represented by the following equation

JC’ 0°C! 2(acC/
C,| =D, Cj i d C ! M}( (L”z) (6.19)
Jt oL L|lOL Y/ K. +C!/

where the boundary conditions of Eq. (6.19) are:

JdC/

~-=0 tL=0
37 a

a _ I _
C (L, ,00=0 atr=0

6.4.2 Axial-Dispersion Model

In three-phase fluidised-beds, the gas phase may often be assumed to be plug flow.
Appreciable backmixing, however, may occur in the liquid phase, especially for beds
of small particles in concurrent three-phase fluidization. The backmixing of the
liquid and solid particles in such a bed is primarily caused by the rising motion of
coalesced large gas bubbles. An axial dispersion model has been most commonly
used to describe the backmixing behaviour of the liquid phase and to simulate
substrate removal in a TPFBBR (Wisecarver & Fan, 1987; Petersen & Davison,

1995). A mass balance for substrate in the liquid phase yields the following equation
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o Cl(zZ, ! S oka £ _
ﬂjﬁ _;Ja_u_if_ﬁ.a(~'m w4 - (6.21)
dt "dZ g JZ £

v K

where corresponding boundary and initial conditions for above equation are

!
U,C(0,1) - 51E:,%(M =U,C" atZ=0
!
9CH Cé(g’flzo at Z=H (6.22))

C:(Z’O) = C.io at £=0

In order to simulate the performance of a TPFBBR using the axial-dispersion model,
estimation of the phase holdups, gas-liquid and liquid-solid mass transfer coefficient,
the liquid phase axial dispersion coefficient and the expanded bed height under

various are required.

In the axial-dispersion model, the axial-dispersion coefficient ( £, ) describing the
backmixing behaviour of the liquid phase is very important and several correlations
for E, have been suggested. To predict F, . the correlation of Kim et al. (1992) is

used since their correlation covers a wide range of literature data and can be applied

to a TPFBBR with small, low-density particles.

L6t ¢ 4 0E
Pe, = b 20.19 Dy} [_Us (6.23)
Lk D] lU, +U,

Recently, Nore et al. (1992) studied hydrodynamics, gas-solid and liquid-solid mass
transfer in a TPFBBR with particle densities ranging from 1300 to 1700 kg/m3 . In
their studies, increasing the gas velocity increased k,, especially for low particle

densities and the liquid velocity had almost no effect on liquid-solid mass transfer
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coefficient. Nore et al. (1992) estimated k, satisfactorily using the following

correlations

0,43
k,_.,:x.io(-(i&} 4, ;=0 (6.24a)
f';‘
U 0.051
k,_(=0.197[-£‘-) d,""" atlU; 20 (6.24b)
gL

In order to estimate the phase holdups in this study, the purely empirical correlations
suggested by Begovich & Watson (1978a) are chosen because of the large data base
from a wide variety of particles which they used for their correlation.

The gas and solid holdup are estimated from the following correlations, respectively.

fg = (0048 i‘OOIO)UIO 7240 028(1 0 )68i0.()61D -0.125+0.088 (625)

Id C

8\. e 037 IULO 27}UGO 041 (p/?p _ ,DL)"O 3]6(1 v(lZ()SﬂL(),()SSD‘~()..33 (626)

bp ¢
The liquid holdup and bed porosity can also be calculated from

E, = 1 — & — E
I 14 3 (6-27a’b)
E=1-¢,

The solids holdup influences the biofilm specific surface area (a3}, which can be

estimated by

a4 =-— (6.28)
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6.4.3 Intelligent Hybrid Model for a TPFBBR

Generally, a hybrid model, as shown in Fig. 6.11, may be divided into two
categories: (1) serial hybrid model (2) parallel hybrid model.

In serial hybrid models (Psichogious & Ungar, 1992; Tompson & Kramer, 1994;
Schubert et al., 1994), the empirical model such as ANN and neurofuzzy model is
placed in series with a mechanistic model, as illustrated in Fig. 6.11(a). Psichogious
& Ungar (1992) and Schubert et al. (1994) proposed a serial approach in modelling a
fermentation process. The neural network component of the hybrid model estimated
the biomass concentration and the specific growth rate, which was input into the

component mass balances.

X Neural Network or Mechanistic Y
e
Neurofuzzy Model Model

(a)
X | Neural Networkor { £ ( ™Y
"| Neurofuzzy Model | j-/:
s ~
Mechanistic ‘ residual
Model ‘
S e
(b)

Figure 6.11. Type of the hybrid model; (a) Serial hybrid model (b) Parallel hybrid
model (Tompson & Kramer, 1994).



Chapter 6. Intelligent Hybrid Model for a TPFBBR 156

In parallel hybrid models (Cote et al., 1995; Zhao et al., 1997), as illustrated in Fig.
6.11(b), the ANN or neurofuzzy model is placed in parallel with a mechanistic
model. The ANN or neurofuzzy model is in fact an error model, which should model
the difference between the output of a mechanistic model and real output of the
process. In a parallel hybrid approach, the output of the ANN (or neurofuzzy model)
and mechanistic model are combined to determine the total model output. The ANN
or neurofuzzy component of the hybrid model is trained on the residual between the
process data and the mechanistic model to compensate for any uncertainties that arise

from the inherent process complexity (Tompson & Kramer, 1994).

Cote et al. (1995) showed the parallel approach on real-time data of activate sludge
process. Zhao et al. (1997) demonstrated a hybrid model, which consists of a
simplified process model and an ANN, for developing a dynamic model of a
sequencing batch reactor (SBR). In their hybrid model, the outputs of the trained
ANN compensated for the output errors of the simplified process model. The hybrid
model output of the final predictions of the process states was obtained by summing
of the outputs from the simplified process model and ANN. In these two cases, the

hybrid model showed better interpolation than the black box ANN model.

In general, the biofilm growth mechanism in a TPFBBR is quite complex and often
involves nonlinear expressions such as Monod or Haldane kinetics. The development
of reliable biofilm growth model based on mechanistic model is extremely difficult
and the application of hybrid model offers a logical alternative. The plot of the
implementation of the serial hybrid model is given in Fig. 6.12. In our case, the
hybrid model consists of two parts including a neurofuzzy model, which serves as a
process estimator of difficult-to-model process variables (such as biofilm thickness
and biofilm density), and a mechanistic model, which represents a mechanistic

knowledge of process system by using differential equation.

The neurofuzzy model component of the hybrid model serves as a process estimator

and receives as inputs certain measured variables and provides a prediction of the
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Figure 6.12. The structure of hybrid model presented for a TPFBBR ( L, = estimated

biofilm thickness, Xf = estimated biofilm density).
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one-step-ahead biofilm thickness and biofilm density which are difficult to measure.
The main role of a neurofuzzy process estimator is that it can serve as good
numerical estimators and at the same time can provide qualitative information about
the complex biofilm growth which is difficult-to-model and difficult-to-measure. The
outputs of neurofuzzy model serves as parameters for reaction-diffusion model and
axial dispersion model, which produces the substrate concentration profiles within
the biofilm phase and the substrate concentration profiles in the liquid phase as a
function of bed height at the different times respectively. The combination of these
different modelling approaches yields complete intelligent hybrid model for a

TPFBBR.

The resulting hybrid model can be considered a structured neurofuzzy model which
contains some known parts, in this case reaction-diffusion model and axial-
dispersion model. Alternatively, There may be thought of as mechanistic models
which contain process parameters whose dependence on process variables is
modelled by a neurofuzzy model. This hybrid model has the advantage of the short
development time of data-driven empirical model with extrapolation properties of
knowledge-driven mechanistic model since they require less data than when a
empirical model is used alone. Also less a prior knowledge about a complex biofilm

growth mechanism is required than when a mechanistic model is used alone.

6.5 RESULTS AND DISCUSSION

6.5.1 Results of Neurofuzzy Estimator

Biofilm Thickness Estimation

A total of 41 data sets were compiled from a TPFBBR described in chapter 3. The
data was split into two sets: (1) a training set including 70% of the data, and (2) a test

set including the remaining 30%.
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The data for biofilm thickness estimation are written in { Y(k), Y(k-1), Y(k-2), Y(k-
3), Y(k-4), Ul(k-1), Ul(k-2), U2(k-1), U2(k-2), U3(k-1), U4(k-2), k=1, 41}. Output
Y(k) represents the one-step ahead biofilm thickness. The current and past biofilm
thickness (Y(k-1), Y(k-2), Y(k-3), Y(k-4)}, and the current and past biofilm density
(Ul(k-1), Ul(k-2)) are used as inputs to the neurofuzzy estimator. The current and
past suspended biomass concentration (U2(k-1), U2(k-2)), and the current and past
inlet substrate concentration (U3(k-1), U3(k-2)} are also used as inputs. Neurofuzzy
process estimator has 1 output and 10 inputs for the estimation of biofilm thickness,

as shown Fig. 6.13.

When the neurofuzzy model (or fuzzy model) is applied to a specific problem, the
process of identifying a model is necessary. The identification process of a
neurofuzzy model is generally divided into structure identification and parameter
identification. The former means the combination of the input variables and the
number of the membership functions in the premises and consequences. The latter
identifies the parameters in both the premises and consequences. The characteristics
of a neurofuzzy (or fuzzy) model depend heavily on the structures rather than on the
parameters of the membership functions (Horikawa et al., 1992). So the selection of
the structures is only done once in the process. There exists no a general rule of
thumb for finding the best structure for the neurofuzzy model and determining the
No. of the MF given in the input-output data. They are chosen empirically by trial

and error method.

In order to eliminate the trial and error process for finding the best structure of the
neurofuzzy model, the following heuristic searching algorithm is implemented in the

neurofuzzy computer program:

Step I: Determine the number of membership function (MF) being assigned to
each input variables. Let us start with MF=2.
Step 2: Search possible input combinations from the considerable input variables

(in our case, 10 variables). Let us start to search for 2 input combination.



Step 3: For each combination, the neurofuzzy model is tested with the data set
until one epoch. Check the performance of model based on the RMSE
(Eq. (5.32)) for each case.

Step 4: Then find a neurofuzzy model with the least RMSE value and save it.

Step 5: Increase the number of input variable combination. Repeat step 2 to step
4 until finishing 4 input variable combination.

Step @: Change the number of MF. Repeat step 2 to step 5.

Step 7: The search is stopped if the number of MF reaches at 4.

Step 8: Finally comparing the each case saved in step 4, find the best structure of

the neurofuzzy model, and run it.

The outline of the heuristic searching algorithm is shown in Fig. 6.13. Figure 6.14(a)-
(b) represent some of result plots from the heuristic searching algorithm during the
process of structure identification when MF=3. The some results of the process of
structure identification using the above algorithms are shown Table 6.4. From Table
6.4, the number of membership functions assigned to each input of the neurofuzzy
model for the estimation of the biofilm thickness (data set 1) was changed from 2 to

5.

In Table 6.4, the structures, which have marked (#), are selected as a best structure in
each number of MF. The structure marked (*) is chosen as the best structure over all
possible structures. Table 6.4 shows that the best structure of neurofuzzy model over
biofilm thickness (data set 1) has Y(k-2) Y(k-4) U2(k-1) U3(k-1) when MF=3.
Because the number of MF assigned to each 4 input variable is 3, so the rule number
of is 81. The neurofuzzy model used here contains a total of 441 fitting parameters,

of which 36 premise parameters and 405 are consequent parameters.
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Table 6.4. Identification results for structure of neurofuzzy models using the heuristic
searching algorithm over biofilm thickness (data set 1).

No. of Mg | No-of Inputs Selected
‘ Input _ RMSE
y(k-2) ul(k-2) 8.9811
y(k-3)ul(k-1) 9.0401
2 y(k-1) u2(k-2) 9.1169
y(k-1)u2(k-1) 10.3131
2 (k-3 ul(k-2) - 11.2706
y(k-1) y(k-4) ul(k-1)(#) 7.5124
3 y(k-2) y(k-3) ul (k-1) 8.4514
y(k-1) y(k-2) ul(k-2) 11.4147
y(k-3) y(k-4) ul (k-2) 18.7352
| y(k-3) ul(k-2 16448
y(k-1)ul(k-1) 13.4890
2 y(k-4) u2(k-2) 17.6994
ke uaken) 180470
y(k-1) y(k-4) u2(k-2) 6.9856
y(k-1) y(k-3) u3(k-1) 8.5606
3 3 y(k-3) y(k-4) u2(k-2) 12.3625
y(k-1) y(k-4) u2(k-1) 12.5877
yik-2i y{k-41u2(k-1) 14.4230
y(k-2) y(k-4) u2(k-1) u3(k-1) (*) 4.6048
y(k-2) y(k-4) ul (k-1) u2(k-2) 5.9731
4 y(k-2) y(k-4) ul(k-2) u2(k-1) 6.4043
y(k-1) y(k-4) u2(k-1) u3(k-1) 6.7329
. ik yik-3pul(k-2) u2(k-1) 6.7858 |
y(k-2) y(k-4) u3(k-1) (#) 6.0912
4 ; y(k-1) y(k-3) u3(k-1) 6.6459
) y(k-1) y(k-2) u2(k-1) 9.3280
1 yik-1) y(k-2) ud(k-2) 11.8080
; y(k-1) y(k-4) u2(k-2) (#) 7.2390
s : y(k-1) y(k-2) u3(k-1) 8.3891
y(k-2) y(k-4) u3(k-1) 82223 |
R y(k-1) y(k-3) u3(k-1) 11.2386 |
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Fig. 6.15 represents the initial membership functions for cach variable before
lcarning, and Fig. 6.16 shows thc membership functions for cach variable after

lecarning. After reaching 156 cpochs, we have had RMSE for training = 3.961 and

RMSE for testing = 4.604.
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Figure 6.15. Initial membership functions for cach variable (data set 1).
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Figurc 6.18. Neurofuzzy model prediction of biofilm thickness with observed value:
(a) data sct 1 (b) data sct 2.



Fig. 6.18(a)-(b) shows the difference between the predicted value by a neurofuzzy
model and the observed value, and demonstrates the ability of a neurofuzzy estimator
to fit the rapidly growing biofilm thickness during the startup phase of a TPFBBR.
Generally, from Fig. 6.18(a), lag phase (within 50 hours after startup) of the growth
of biofilm on the support particles after startup of the TPFBBR is observed. This lag
time could be due to adsorption of dissolved organics at the surface of the support
particle, and the attachment of initial biofilm on the support particle. In this stage, a
small and uniform biofilm of detectable thickness could be observed on the edges of
support particles and the biofilm grows as dense, thin, uniformly distributed biomass
matrix which lacks the voids present in the thick biofilm. After the lag phase, the

biofilm thickness increased rapidly and then levelled off at approximately 135 um

from 600 hour. From the Fig. 6.18, the biofilm formation in a TPFBBR is slow since
the 60-90% of biomass was detached continuously from the support particles
(Tyjhuis, et al., 1994). It is demonstrated that the neurofuzzy estimator produces the
good simulation results and correctly identified even small change behavior in the

biofilm thickness during the lag phase.

Biofilm Density Estimation

The structure identification for estimating the biofilm density model was done in the
same manner as those used in the biofilm thickness prediction model. The data are
written in {Y(k), Y(k-1), Y(k-2), Y(k-3), Y(k-4), Ul(k-1), Ul(k-2), U2(k-1), U2(k-
2), U3(k-1), U4(k-1), k=1, 41}. Like the estimation of biofilm thickness, neurofuzzy

process estimator has 1 output and 10 inputs for the estimation of biofilm density.

The same procedure for finding the best structure of neurofuzzy estimator as that
adopted for the estimation of biofilm thickness was applied for the estimation of
biofilm density. Figure 6.19(a)-(b) represent some result plots from the heuristic
searching algorithm during the process of structure identification when MF=3. The

some results extracted from the heuristic searching algorithm during the process of
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structure identification are also shown Table 6.5. Table 6.5 shows that the best
structure of neurofuzzy model over biofilm density (data set 1) has Y(k-1) Y(k-2)
U2(k-2) U3(k-1). The neurofuzzy model used here contains 81 rules, with 3 MF
being assigned to each 4 input variable and total number of fitting parameters is 441
which consist of 36 premise parameters and 405 consequent parameters. Fig. 6.20(a)
represents the initial membership functions for each variable before learning, and

Fig. 6.20(b) shows the membership functions for each variable after learning.

The plots in Fig. 6.22(a)-(b) show the comparisons between the observed data and
neurofuzzy estimation of the biofilm density. Within 50 hours after startup (Fig.
6.22(a)), a small and uniform biofilm of detectable thickness could be observed on
the edges of support particles. In the meantime, we observed that the increased
biofilm thickness caused the increase of biofilm density to maximum value. This
stage 1s not a dominant process during the formation of the biofilm. From 50-70
hours after startup, as the biofilm grows on the support particle, the biofilm density
decreased in the increasing biofilm thickness and levelled off at approximately 12
mg/cm’, corresponding to 135 zm of the biofilm thickness.

Fig. 6.23 shows 3-D surface response curve of the biofilm density with time and
biofilm thickness. It is clear that there exists the inverse relationship between biofilm

thickness and its density during the formation of biofilm growth.

It can be seen that the results predicted using neurofuzzy estimator, which accounts
for varying biofilm thickness and its density in time, are in good agreement with the
observed values. It is demonstrated that the neurofuzzy process estimator serves as a
good numerical estimator and at the same time provides valuable information about

the complex biofilm growth which is difficult-to-model and difficult-to-measure.
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Table 6.5. Identification results for structure of neurofuzzy models using the heuristic
searching algorithm over biofilm density (data set 1).

No.of MF | o of Inputs Selected RMSE
Input
y(k-3)ul(k-1) 3.5247
y(k-2) u2(k-2) 49354
2 y(k-1) u3(k-2) 5.0637
y(k-2) ul(k-1) 5.1189
y(k-1) u2(k-1) 5.1495
y(k-1) y(k-4) ul(k-2) 9.0538
y(k-1) y(k-3) u2(k-1) 9.8118
2 3 y(k-3) y(k-4) ul(k-1) 10.4218
y(k-1) y(k-2) u3(k-2) 11.3029
L |yGenvdebuled 117064
y(k-3) y(k-4) ul(k-1) ul(k-2) (#) 3.0513
y(k-1) y(k-4) ul(k-2) u3(k-1) 3.7405
4 y(k-1) y(k-3) ul(k-1) u3(k-1) 3.7977
y(k-2) y(k-3) ul (k-1) u3(k-1) 4.1591
YYDl udkeD) 43565 ]
y(k-4) ul(k-2) 3.7592
y(k-2) u2(k-2) 9.4238
) y(k-3) u2(k-2) 14.3874
y(k-1) ul(k-1) 15.0360
_ydehukeD S L[
y(k-1) y(k-4) u2(k-2) 2.3497
y(k-3) y(k-4) ul(k-1) 3.9956
3 3 y(k-1) y(k-4) u3(k-1) 4.5744
y(k-2) y(k-4) ul(k-1) 4.8706
vik-13 vik-31u3(k-1) 6.1906
y(k-1) y(k-2) u2(k-2) u3d(k-1) (*) 1.9561
y(k-2) y(k-4) ul (k-1) u2(k-2) 22748 |
4 y(k-1) y(k-4) ul(k-2) u2(k-1) 2.3598
y(k-1) y(k-3) u2(k-2) u3(k-1) 2.3815
L yeh-1) w(k-4) u2ik-1) udk-1; 2.3932
y(k-1) u2(k-2) 16.1288
y(k-2) ul(k-1) 18.7777
2 y(k-3) ul(k-2) 38.6724
y(k-3) ul(k-1) 42.6744
4 | 3 y{k-4) ul (k-1) __65.3808
y(k-1) y(k-4) u3(k-1) (#) 22467
y(k-2) y(k-4) u3(k-1) 2.9422
3 y(k-1) y(k-4) u2(k-2) 3.1355
y(k-3) y(k-4) ul(k-1) 3.7554
vikel) ko4 ul (k1) 38833
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Chapter 6. Intelligent Hybrid Model for a TPFBBR 176

6.5.2 Predictions of Dynamic Performance using Hybrid
Model for a TPFBBR

The biofilm thickness and its density predicted by the neurofuzzy estimator are fed
into axial-dispersion model and reaction-diffusion model as parameters. The biofilm
thickness and biofilm density are also used for the estimation of some parameters
such as the axial dispersion coefficient (Eq. (6.23)}), the liquid-solid mass transfer

coefficient (Eq. (6.24)), and the phase holdups (Eq. (6.25)-(6.27)}.

The phenol concentration profiles in the liquid phase as a function of bed height at
the different times are shown Fig. 6.24 (data set 1) and Fig. 6.25 (data set 2). It can
be observed that the prediction of phenol concentration profiles as a function of bed
height at the different times agrees quite well with off-line measurement data. From
Fig. 6.25-6.26, during the biofilm growth after startup, the phenol removal rate and
phenol concentration profiles as a function of the bed height vary along with
corresponding variations in biofilm thickness and biofilm density. The axial phenol
concentration profile drops of f sharply from the bottom of the reactor to 30 ¢m of the
bed height since much of the bioparticle is located in this area. Thus, significant of
the substrate removal is taking place on approximately 35 % of the total bed height
from the bottom of the reactor. In order to visualise the dynamic behavior of
TPFBBR, the 3-dimensional plots of the phenol concentration profile as function of
bed height and time are shown in Fig. 6.26(a)-(b). Fig. 6.27(a)-(b) also shows the 3-

D plots of phenol concentration profiles within the biofilm.

The intelligent hybrid model used here performs well in predicting the phenol
concentration profiles with a neurofuzzy process estimator and understanding the
dynamic behavior of a TPFBBR process. It is demonstrated that the intelligent hybrid
model used here provides a new comprehensive model for modelling the dynamics

of a TPFBBR, which is the most complex reactor system to model.
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6.26(a). 3-D plots of phenol concentration profile as function of bed heights and time

(dataset 1).
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6.6 CONCLUSIONS

We developed an intelligent hybrid modelling approach with a neurofuzzy process
estimator to model a three-phase fluidised-bed biofilm reactor (TPFBBR). The
intelligent hybrid model presented here consists of two parts including a neurofuzzy
model, which serves as a process estimator of difficult-to-model process variables,
and a mechanistic model, which represents a known mechanistic knowledge of the

process system.

Here, the neurofuzzy part of the hybrid model was used to estimate the variation of
the biofilm thickness and biofilm density in time. The outputs of the neurofuzzy
process estimator subsequently form of part of the parameters for a mechanistic part
of the hybrid model. The axial-dispersion model and reaction-diffusion model, which
use the knowledge from the well-established general model, are used as the
mechanistic model part of the hybrid model to describe the dynamic behavior and to

predict the performance of TPFBBR system.

It i1s demonstrated that the intelligent hybrid model used provides a new
comprehensive model for modelling the dynamics of a TPFBBR, which is known to
be very difficult and complicated to model. The intelligent hybrid model performs
well in modelling the dynamic behavior of a TPFBBR over the observed data. This
intelligent hybrid model may be inexpensive, accurate, and reliable simultaneously,

and should therefore be of potential interest for practical application.

It can be concluded that the hybrid modelling presented here provide a new
framework scheme for modelling, estimation, and predicting other complex
biological processes, such as a biofilm reactor whose dynamics of the biofilm growth
are normally poorly known and can not easily be modelled. This approach therefore

permits analysis and control of complex biological processes and reactors.
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Conclusions
7.1 SUMMARY

This thesis presents new models of a TPFBBR based on several modelling
approaches. The issues we aimed to address include (a) developing the dynamic
biofilm growth model, which reflects variation of biofilm thickness and its density in
time, (b) implementing an integrated model incorporating dynamic biofilm growth to
describe the dynamic behaviour of a TPFBBR, (c) developing the sequential neural
network model as an alternative to tedious mechanistic models, and (d) developing
the intelligent hybrid model with a neurofuzzy process estimator as a new modelling

scheme.
Several conclusions can be drawn as a result of this research project. They are:

. In Chapter 4, based on a mechanistic modelling approach, the dynamic biofilm
growth model, which reflects variation of biofilm thickness and its density in
time, is derived from a biomass balance equation using the method of

characteristics. The biofilm detachment model is also proposed and incorporated
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within the dynamic biofilm growth model. In our biofilm growth model
incorporating detachment, the biofilm thickness and its density can be predicted
in one model at a given time. It can be seen that the results predicted using a
dynamic biofilm growth model, which accounts for varying biofilm thickness and

its density in time, are in good agreement with experimental data.

2. In Chapter 4, the dynamic biofilm growth model with detachment is combined
with a reaction-diffusion model and reactor model to from an integrated model of
TPFBBR. The integrated model developed can describe the dynamic behaviour
of TPFBBR. Simulation method of integrated model incorporating the dynamic
biofilm growth model is developed. It is observed that the prediction of phenol
concentration profiles as a function of bed height at the different times agrees

well with experimental data.

3. Chapter S yields the application of a neural network model, as an alternative to
complex mechanistic models of modelling of the dynamic change of the biofilm
thickness and biofilm density and to predict the dynamic performance of a
TPFBBR. To develop a model describing the process dynamics in a TPFBBR,
the sequential neural network model is developed. The sequential neural network
model presented here is composed of two parts. The first part, the neural process
estimator, can serve as a nonparametric approximator of difficult-to-model
process variables such as the biofilm thickness and biofilm density to estimate
the biofilm thickness and biofilm density with the available measurement
variables. The second part, the neural process predictor, can predict the dynamic
change of performance of the TPFBBR based on the estimated biofilm thickness
and biofilm density by the neural process estimator, and other measurement
variables. It is demonstrated that the sequential neural network modelling
approach proposed here provides a good alternative to describe the dynamic
behavior of a TPFBBR and has the potential to be successfully implemented
within a control scheme such as a nonlinear model predictive control (NMPC)

scheme.
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4. The results presented in Chapter 6 clearly show how the combination between
two different modelling approaches, referred to as a hybrid model, can be
coupled and utilised to model a TPFBBR. The intelligent hybrid model has a
neurofuzzy process estimator to model the complicated TPFBBR. The results
predicted using a neurofuzzy process estimator component of the hybrid model,
which accounts for varying biofilm thickness and its density in time, are in good
agreement with the observed values and thus the neurofuzzy process estimator
serves as good numerical estimators. The mechanistic model components
(reaction-diffusion model and axial-dispersion model) of the intelligent hybrid
model also perform well in predicting the phenol concentration profiles with a
neurofuzzy process estimator and an understanding the dynamic behavior of
TPFBBR processes. This hybrid modelling approach can be of potential interest

for practical applications and it suggests further work.

7.2 APPLICABILITY OF MODELS DEVELOPED
IN THIS THESIS

The purpose of this section is to summarise and advice on the applicability of the
modelling approaches implemented in this thesis. The different modelling

approaches implemented in this thesis are compared in Fig. 7.1.

At the early stages in the model development, which is characterised by a lack of
both empirical and mechanistic knowledge, an empirical modelling approach such as
the neural network model presented in chapter S will often be useful as a starting
point for more knowledge and eventually developing a mechanistic model. In
process modelling, the transparency of the process model is important because model
validation, model analysis, result interpretation, and application of the model are
strongly dependent on a transparency of the model. From the transparency's point of

view, the neural network modelling approach is often a black box that can not be

directly interpreted in terms of the system mechanisms for a TPFBBR due to lack of
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transparency. That is one major reason why the neural network model has only a

limited applicability.

&
Empirical
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Figure 7.1. Different modelling paradigms.

In contrast, process engineer with the neural network model can collect more data,
and end up in a state with more data and perhaps some improved mechanistic
knowledge. In addition, the neural network model is often more accurate than a
mechanistic model when the process is operating under similar conditions as when
the data were collected. This result is also found in this thesis. Furthermore, the
neural network model can be justified by the reduced time and effort required in
building the models in real-world modelling problems. Linear empirical input/output
models have been often used for model predictive control algorithms in some
industries (Johansen, 1994). In the near future, the growing demand for improvement
of process operation and supervision may require advanced controllers based on

nonlinear models to become standard. Thus, the sequential neural network model
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presented in Chapter S will have great advantages of applicability for the control of a

TPFBBR.

In general, the mechanistic model has contributed greater understanding of the
TPFBBR system, and is the ultimate goal of all model development of a TPFBBR.
The mechanistic model is generally applicable for a wider class of problems than the
empirical model due to the transparency of the model. Formulating an accurate
model based on a mechanistic approach, however, requires very time-and money-
consuming tasks since a deep understanding of the specific system mechanisms is
not always available and certain aspects of the system are not sufficiently well

understood.

Using the mechanistic modelling approach, the integrated model incorporating

dynamic biofilm growth is developed in Chapter 4, but an open question remains:

Does the dynamic biofilm growth model presented in Chapter 4 describe

the phenomena of biofilm growth completely?

Although considerable amount of research has been undertaken to describe the
biofilm growth on the support particles in a TPFBBR over the past three decades,
knowledge of the system is still limited due to the complex and often poorly known
nature of biofilm growth process. Most of mechanistic models for a TPFBBR are
steady-state models that do not consider the dynamic biofilm growth, but the
integrated model developed in Chapter 4 incorporates the biofilm growth as a
dynamic process. Therefore, our mechanistic model provides a realistic description
of a TPFBBR. As new phenomena for biofilm growth are discovered and more
process data become available, incomplete knowledge can be updated into our model

and our model can be improved.

Until recently, although both mechanistic and empirical models have strong points
which can compensate weak points of both, the hybrid model (semi-mechanistic

model, or semi-empirical model) has generally been avoided. A major reason for this
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may be that software tools with a power of high-speed computation have been
lacking. Along with the rapid improvement of computer technology, the hybrid
modelling approach has recently attracted considerable attention in process
modelling because of the increasing demand for nonlinear models to be applied in
advanced controller, diagnosis systems, supervision, and optimal design. The hybrid
modelling approach presented in Chapter 6 gives a model that is reasonably
transparent, and supports both the empirical and mechanistic modelling approaches
(Fig. 7.1). This is flexible in the sense that it may have different characteristics that

depend on

e model representation

e amount and quality of relevant knowledge

e amount of relevant data available

e level of transparency

e type of empirical models used with it, like neural network, neurofuzzy,
NARX (nonlinear autoregressive model with exogenous inputs), and
NARMAX (nonlinear autoregressive moving-average model with

exogenous inputs) etc.

For modelling complex problems such as a TPFBBR, the flexibility of a hybrid
modelling approach with its transparency is the major advantage because it is
characterised by a moderate combination of both mechanistic knowledge and
empirical data. Compared to the neural network modelling approach presented in
Chapter S, the hybrid modelling approach of Chapter 6 has the same ability to fit data
to an empirical model and provides greater transparency within the model. In
contrast, the hybrid model may be thought of as a mechanistic model which contains
process parameters whose dependence on process variables is modelled by an
empirical model, in this case a neurofuzzy model. Our hybrid model provides the
same level of model transparency as the existing steady-state models for a TPFBBR
and demonstrates how the limitation of the existing steady-state models for a

TPFBBR can be overcome.
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The hybrid modelling approach due to its flexibility provides a unified framework
through the incorporation of strong points for both mechanistic and empirical
models. In addition, it plays an important role as a bridge because incomplete
knowledge described by empirical models can be substituted with improved
knowledge and it may lead to a completely mechanistic model for a TPFBBR as the
mechanisms are better understood. The hybrid modelling approach presented in
Chapter 6 provides a new modelling framework with a great potential of applicability

to the other types of biofilm reactors.

This thesis represents a research effort on developing mathematical models
incorporating biofilm growth using three different modelling approaches. The
research findings bear importance to successful reactor design, operation,

supervision, and control of a TPFBBR for future industrial application.



NOMENCLATURE

A bed cross-sectional area (cm®)

a, biofilm surface area per unit volume of solids (¢m™')
Ar, liquid Archimedes number

b, biofilm detachment coefficient (sec™)

ol phenol concentration in the biofilm phase (mg/cm3 )
cr inlet phenol concentration (mg/cm’ )

C! phenol concentration in liquid phase (mg/cm®)

d,, bioparticle diameter (cm )

d, support particle diameter (cm)

D, reactor diameter (¢m )

D, molecular diffusivity in liquid.

Dy effective diffusion coefficient in the biofilm (c¢m* /sec)
E specific energy dissipation rate

E, axial-dispersion coefticient (cm* /sec)

L, energy dissipation rate

IO axial solid dispersion coefficient

fr Froude number

g gravitational acceleration

Ga Gallileo number

H bed height (¢m)

H expanded bed height (¢cm )
K inhibition constant of substrate
K.a gas-liquid mass transfer coefficient

k, liquid-solid mass transfer coefticient (cm/sec)
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K, saturation constant of substrate (mg/cm®)
L radial position within the bioparticle

L, biofilm thickness (cm )

Lf0 initial biofilm thickness (cm)

M,, total mass of bioparticles (mg)

AP pressure drop across the bed

Pe, Peclet number

R, detachment rate

Re Reynolds number

Re,,  liquid Reynolds number at minimum three-phase fluidization

Sc Schmidt number
Sh Sherwood number
St Stanton number

U(L,,1) velocity of the biofilm thickness change (cm /sec)

u(C!) specific growth rate of biofilm (sec™")

u net specific growth rate of the biofilm (sec™")

u_ maximum specific growth rate (sec™')

U, superficial liquid velocity (cm/sec)

U s minimum fluidization velocity

U,','ﬂf liquid velocity at minimum liquid-slid fluidisation

U, superficial gas velocity (cm/sec)

U, terminal falling velocity of a single particle in an infinite liquid medium
Vs velocity gradient

X/ biofilm density (mg/cm’® )

/X'f

a

maximum biofilm density (mg/cm3 )

max

Y, growth yield coefficient of substrate

Z axial distance from the bottom of bed
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Greek letters

a,, gas holdup on solid-free basis

&, gas holdup

& liquid holdup

&y bed porosity at minimum fluidization velocity
&, solid holdup

) viscosity of liquid

Py density of bioparticle (mg/cm®)

yo wet density of biofilm (mg/cm’ )
o density of gas

el density of liquid

Py density of support particle (mg/cm’)
T liquid shear stress ( dyne/cm® )
@ particle shape factor (0.900),
Superscrpts
f biofilm phase
[ liquid phase
in inlet
s surface of biofilm
Subscripts

s substrate
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Appendix A

Main FORTRAN program for a TPFBBR used in Chapter 4.

Ok ko ok ok Kook ok Kok K ok ok ok ok ok ok o Kok o K ok sk o K R K sk R R K o R K R SR KR KR KRR R (O

C* *C
C*  COMPUTER PROGRAM FOR THREE-PHASE FLUIDIZED BED *C
C*  BIOFILM REACTOR TO SOLVE HIYDRODYNAMIC MODEL, *C
C*  BIOFILM GROWTH MODEL.REACTION-DIFFUSION MODEL. *C
C*  AND REACTOR MODEL HAVING NONLINEAR TIME-DEPENDENT ~ *C
C*  PARTIAL DIFFERENTIAL EQUATIONS *C
c* *C
C* *C
C*  THIS PROGRAM USE THE FOLLOWING SUBROUTINE NAMED *C
C* 1 INTODE (FOR STIFF PROBLEM) *C
c* STIFF *C
c* JACOBN e
Ccx LUSKSB *C
c* LUDCMP *C
c* 2.ONEPDE INTERFACE *C
c* EQUATION e
C* BOUNDARY *C
c* DIFFUSION *C
C* *C

C* ONEPDE IS AN INTERFACE SUBSROUTINE WHICH USES CENTERED *C
C*  APPROXIMATIONS TO CONVERT ONE-DIMENSIONAL SYSTEMS OF *C
C*  PARTIAL DIFFERENCIAL EQUATIONS INTO A SYSTEM OF ORDINARY *C

C*  DIFFERENTIAL EQUATIONS. THIS ROUTINE IS INTENDED TO BE *C
C* USED WITH A ROUBST ODE INTEGRATOR, INTODE. *C
C* *C
C* *C
C* PROGRAMMER : YOON-SEOK HONG *C
C* Institute of Technology & Engineering *C
C* Massey University *C
C* *C

R R e P e S L L E L L L L L ELTO!
C
C MAIN PROGRAM FOR A THREE-PHASE FBBR.
C THIS PROGRAM IMPLEMENTS A BIOFILM GROWTIHH.REACTOR, REACTION-
C DIFFUSION MODELS.
C
INTEGER KMAXNX.NMAXN,NEQN
PARAMETER (KMAXX=300,NMAX=500)
INTEGER KMAX,KOUNT ,NBAD,NOK,NPDE,NPTS,KODE,IK
REAL EPS.HLFIMIN, X1, N2, XY
C
COMMON /PROB/KODE
COMMON /BIOI/DIASP,DIABP,DENBP,AP,SH.DM
COMMON /HYDROI/H,VOLR,DIAR,DENSP,DENL.,DENG,VISL,VISG
COMMON /HYDRO2/RGA.PE,UMF2.UMF3,FR,ARL
COMMON SIMULLUL UG ELRKUARGH RSHRLH.CIN
COMMON /SIMUL2/UMAX,EKS,RKS,RKO.DIFS,YXS,YNO,EFB,RLF.DENB,AB.RKI

COMMON /PATH/ KOUNT.X(KMAXX),Y(NMAX.KMAXX)
COMMON NRHS

COMMON /MESH/XN(15)

COMMON /COORD/ICORD

COMMON /SIZES/NPDE,NPTS

DIMENSION YSTARTI(15),YSTART2(15).YSTART3(15)
ENTERNAL INFILE,HYDRODYNAMICS.ONEPDE.STIFF

DO 1000 IK=1,3

KODE=IK

IF(KODE.EQ.1) GO TO 700
IF(KODE.EQ.2) GO TO 800
IKKODE.EQ.3) GO TO 900
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700 CONTINUE

C
C  DEFINE INPUT PARAMETRS OF ODE INTEGRATOR FOR REACTOR MODEL
C  (INITIAL TIME,FINAL TIME, TIME STEPSIZE et,al.)
C

NRHS=0

X1=0.0

X2=100.

EPS=1.0E-4

H1=0.05

HMIN=0.0

KMAX=100

DXSAVI=(X2-X1)/50.0
C
C  DEFINE INPUT PARAMETRS OF ONEPDE FOR REACTOR MODEL
C

ICORD=0

NPDE=1

NPTS=15

NVAR=15
C
C  OPENOUTPUT FILE
C

CALL INFILE(X1,X2,EPS.HI,HMIN,KMAX)
C
C  EXECUTE THE HYDRODYNAMIC MODEL OF THREE-PHASE FBBR.
C

CALL HYDRODYNAMICS
C
C DEFINE MESH AND INITIAL CONDITION FOR REACTOR
C

DX1=72/FLOAT(NPTS-1)

DO 50 K=1.NPTS

XX(K)=FLOAT(K-1)*DX1
C0=0.15
50 YSTARTI(K)=CO0

C

CALL INTODE(YSTARTI,NVAR,X1.X2,EPS.HI,HMIN,NOK,

* NBAD,ONEPDE,STIFF,DXSAVI,KMAX)
C

C  PRINT OUT OF RESULTS-TABLE HEADING FOR REACTOR MODEL.
C

WRITE(6,'(/5X.A.T52,16)") 'SUCCESSFUL STEPS: "NOK
WRITE(6,'(5X,A,T52,16)) 'BAD STEPS: "NBAD
WRITE(6.'(5X,A,T52.16)") 'FUNCTION EVALUATIONS: ""NRHS

WRITE(6.(5X,A,T52.16)) 'STORED INTERMEDIATE VALUES: 'KOUNT
WRITE(6,38)UL,UG,CIN,CO,RLF,RSH
DX1=72/FLOAT(NPTS-1)
DO 64 K=1,NPTS
XX(K)=FLOAT(K-1)*DXI
64 CONTINUE
WRITE(6.39)XX(1),XX(2),XX(3)-XX(4),XX(5).XX(6).XX(7),XX(8)
DO 65 1=1, KOUNT
WRITE(6.40)X(1),Y (1,D),Y (2,1), Y3,I),Y(4,1),Y (5.1).Y(6.1),
* Y(7.),Y (8.1
65 CONTINUE
WRITE(6,41)
WRITE(6,42)
WRITE(6,43)XX(9).XX(10),XX(1 1).XX(12),XX(13),XX(14).XX(15)
DO 66 1=1,KOUNT
WRITE(6,49)X(),Y(9,1),Y (10,1),Y (11.1),Y(12,1), Y (13,1),Y(14,]),
* Y(15.1)
66 CONTINUE
WRITE(6,45)
C
38 FORMAT(/18X,34H**** SIMULATION RESULTS TABLE **** //
*3X,40HTHE SUPERFICIAL LIQUID VELOCITY ~ UL=F7.4/
*3X,40HTHE SUPERFICIAL GAS VELOCITY UG=.F7.4/
*3X,40HTHE INLET SUBSTRATE CONCENTRATION CIN=,F7.4/
*3X.40HTHE INTIAL SUBSTRATE CONCENTRATION, C0=F7.4/
*3X.40HTHE BIOFILM THICKNESS RLF=,F7.4/

208
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[0

*3X,40HTHE SOLID HOLDUP RSH=F7.4
*//14X,51HCONCENTRATIONS AS A FUNCTION OF TIME AND BED HEIGHT/
*2X,75(1H-)/4X,5H TIME.2X.1HI,1X,22H  DISTANCE FROM THE ,
*1N,17HBOTTOM OF REACTOR)

39 FORMAT(/10N, IHI, 1X.8F8.2/2X,75(1H-))

40 FORMAT(/2X,F7.3,1X.1HL I N,8F8.4)

41 FORMAT(/2X.75(1H-))

42 FORMAT(/14X.5HCONCENTRATIONS AS A FUNCTION OF TIME AND BED HEIG
*HT/2X,75(1H-)/4X,5H TIME,2X1HI.INX,22H  DISTANCE FROM THE ,
*IN,17HBOTTOM OF REACTOR)

43 FORMAT(/11X,1H1,1X,8F8.4/2X,75(1H-))

44 FORMAT(/2N.F8.3,1X,1 HL.1N.8F8.5)

45 FORMAT(/2X,75(1H-))

ok ok ok ok ok ok ok ok ok ok kR ok ok ok ok sk Rk ok Rk ok ok Rk okok ok Rk ok ok ok ok ok ok Rk ok k

GO TO 1000

C

oNp]

oNoNoKe]

800 CONTINUE

DEFINE INPUT PARAMETRS OF ONEPDE FOR REACTION-DIFFUSION MODEL

ICORD=2
NPDE=1
NPTS=15
NVAR=15

DEFINE INPUT PARAMETRS OF INTEGRATOR FOR REACTION-DIFFUSION MODEL
(INITIAL TIME,FINAL TIME, TIME STEPSIZE et al.)

NRHS=0

X12=0.0

X22=50.

EPS2=1.0E-4

H12=0.003

HMIN2=0.0

KMAX=100
DXSAV2=(N22-X12)/50.0

DEFINE MESH AND INITIAL CONDITION FOR REACTION-DIFFUSION MODEL

DX2=0.00629/FLOAT(NPTS-1)

DO 100 1=1,NPTS
XX(I)=FLOAT(I-1)*DX2
B0=0.0

100 YSTART2(I)=B0

C

CALL INTODE(YSTART2,NVAR,X12,X22,EPS2,H12,HMIN2,NOK,
¥ NBAD,ONEPDE.STIFF,.DXSAV2,KMAX)

WRITE(6,'(/5X.A, T52,16)") 'SUCCESSFUL STEPS: ‘NOK
WRITE(6,'(5X,A,T52,16)") 'BAD STEPS: “"NBAD
WRITE(6,'(5X,A.T52,16)") 'FUNCTION EVALUATIONS: ,NRHS
WRITE(6,'(5X,A.T52,16)')'STORED INTERMEDIATE VALUES: 'KOUNT

PRINT OUT OF RESULTS-TABLE HEADING FOR REACTION-DIFFUSION MODEL

WRITE(6.140)

DX2=0.00629/FLOAT(NPTS-1)

DO 200 K=1,NPTS
XX(K)=FLOAT(K-1)*DX2

200 CONTINUE

WRITE(6,150)NN(15),NX(14),XX(13).XNX(12),NN(11).XNX(10),XX(9)
DO 210 I=1, KOUNT
WRITE(6,350)X(1), Y (15,), Y(14.0), Y(13,1),Y (12,), Y (1 L, 1),

* Y(10,1),Y(9,])

210 CONTINUE

WRITE(6.400)

WRITE(6,401)

WRITE(6,402)NN(8),XX(7).NN(6),XN(5), XN(4),XX(3),NX(1)
DO 220 I=1,KOUNT
WRITE(6,403)N(I), Y (8.1). Y (7.1).Y (6.1), Y(5,1),Y(4.1),Y (3.1), Y(1.I)

220 CONTINUE

209
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WRITE(6,404)
C

140 FORMAT(//14X,481HICONCENTRATIONS AS A FUNCTION OF TIME AND BIOFILM/
*¥2X,75(1H-)/4X,5H TIME,2X,1HI,1X,22H  DISTANCE FROM THE .
*1X,24HBIOFILM-LIQUID INTERFACE)

150 FORMAT(/11X,1 HI,1X,8F8.4/2X,75(11-))

350 FORMAT(/2X,F8.3,1X,1HI,1X,8F8.5)

400 FORMAT(/2X,75(1H-))

401 FORMAT(//14X,48HICONCENTRATIONS AS A FUNCTION OF TIME AND BIOFILM/
¥2X,75(1H-)/4X,5H TIME2X,1HI,1X,22H  DISTANCE FROM THE .
*IX.24HBIOFILM-LIQUID INTERFACE)

402 FORMAT(/11X, THI, 1 X.8F8.4/2X.75(1H-))

403 FORMAT(/2X.F8.3.1 X, 1HLI X,8F8.5)

404 FORMAT(/2X,75(1H-))
C*******************************************************************C
C
900 CONTINUE
C
C  DEFINE INPUT PARAMETRS FOR BIOFILM GROWTH MODEL
C

ICORD=2
NPDE=1
NPTS=15
NVAR=15

DEFINE INPUT PARAMETRS OF INTEGRATOR FOR BIOFILM GROWTH MODEL
(INITIAL TIME.FINAL TIME, TIME STEPSIZE et al.)

cooe

NRHS=0

X13=0.0

X23=15.

EPS3=1.0E-4

H13=0.1

HMIN3=0.0

KMAX=100
DXSAV3=(X22-X12)/50.0

DEFINE MESH AND INITIAL CONDITION FOR BIOFILM GROWTH MODEL

[oNoXe)

DX3=0.006/FLOAT(NPTS-I)
DO 405 I=1.NPTS
XX(D)=FLOAT(1-1)*DX3
B10=0.001
405 YSTART3(1)=B10
C
CALL ODE(YSTART3,NVAR,X13.X23,EPS3,HI3,HMIN3,NOK.
* NBABD,GROWTIH,STIFF,DXSAV3,KMAX)

WRITE(6,'(/SX.A,T52,16)") 'SUCCESSFUL STEPS: ""NOK
WRITE(6,'(5X,A,T52,16)") 'BAD STEPS: "NBAD
WRITE(6,'(5X,A.T52,16)") FUNCTION EVALUATIONS: ""NRHS
WRITE(6,'(5X,A,T52,16)") 'STORED INTERMEDIATE VALUES: 'KOUNT

PRINT OUT OF RESULTS-TABLE HEADING FOR BIOFILM GROWTH MODEL

[oNeNe!

WRITE(6,406)
DX3=0.00629/FLOAT(NPTS-1)
DO 407 K=1,NPTS
NXX(K)=FLOAT(K-1)*DX3
407 CONTINUE
WRITE(6.408)XX(1).XX(2), XX(3),XX(4),XX(5).XX(6),XX(7)
DO 409 1=1,KOUNT
WRITE(6,410)X(1),Y (1.1).Y (2.1).Y(3,1).Y (4.),Y (5,1,
* Y (6,1),Y(7.1)
409 CONTINUE
WRITE(6,411)
WRITE(6,412)
WRITE(6.413)XX(8).XX(9).XX(10),XX(1 1), XX(12).XX(13).XX(14)
DO 414 I=1,KOUNT
WRITE(6.415)X(1).Y (8,1),Y(9,1).Y(10,1),Y(11,1), Y (12,1),Y (13.1),
* Y (14.0)
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414 CONTINUE
WRITE(6.416)
C
406 FORMAT(//14X,48HCONCENTRATIONS AS A FUNCTION OF TIME AND BIOFILM/
*2X,75(1H-)/4X,5H TIME,2X, I HL1X,22H  DISTANCE FROM THE .
*1X,24HBIOFILM-LIQUID INTERFACE)
408 FORMAT(/ 11 X.THI, 1 X,8F8.4/2X.75(1H-))
410 FORMAT(/2X,F8.3,1 X, [ HL, 1 X.8F8.5)
411 FORMAT(’2X,75(1 H-))
412 FORMAT(//14X,48HHCONCENTRATIONS AS A FUNCTION OF TIME AND BIOFILM/
*2X,75(1H-)4X,5H TIME,2X, IHL,IX,22H  DISTANCE FROM THE,
*I X.24HBIOFILM-LIQUID INTERFACE)
413 FORMAT(/11X, 1HL.IX,8F8.4/2X,75(1H-))
415 FORMAT('2X,F8.3,1 X, 1HL1X,8F8.5)
416 FORMAT(/2X,75(111-))

el T e PR T LT

C END OF MAIN PROGRAM FOR A TPFBBR C
e L e e R e P LT e)
1000 CONTINUE

STOP

END

CCCCCCCCCrreecececececcecececececececececececececcececcecceccecccccccecccececcecececcececccce
C OPEN INPUT AND OUTPUT FILES FOR PARAMETRS USED IN SIMULATION C
CCCCCCCCCCCrreeeececececececccecececceccececcececcececcececcecececececececececcecceccecececececececececececece

SUBROUTINE INFILE(XI,X2,EPS,HI,HMIN,KMAX)
INTEGER KMAXX,NMAX,NEQN

PARAMETER (KMAXX=300,NMAX=500)

INTEGER KMAX.KOUNT.NRHS,NPDE.NPTS

REAL HLLHMIN,X1,X2,X,Y

COMMON /PATH/ KOUNT,X(KMAXX).Y(NMAX.KMAXX)
COMMON NRHS

COMMON /MESH/XX(15)

COMMON /COORD/ICORD

COMMON /SIZES/NPDE.NPTS

EXTERNAL PDE,STIFF,SETPC

CALL SETPC

C HEADING PRINTOUT
WRITE(6.10)
WRITE(6,11)
WRITE(6,13)

WRITING INPUT PARAMETRS OF ONEPDE FOR REACTOR MODEL

oNoNe!

WRITE(6,14)
WRITE(6.15)NRHS. X1,X2
WRITE(6,16)HI,HMIN,KMAX
WRITE(6,17)ICORD,.NPDE,NPTS

C

10 FORMAT(65(1 H*)/1 H* 63X, 1H*/
*  IH*18X,2SHNUMERICAL SOLUTION OF THE,20X, IH*/
*  [H*13X.38HMATHEMATICAL MODELLING FOR THREE-PHASE,
* 12X, 1H*/ 1H*,17X,29HFLUIDIZED BED BIOFILM REACTOR,
* 17X, 1H*/TH* 63X, 1H*/ TH* 63X, 1 H*)

11 FORMAT(IH* 63X, TH*/
*  1H*15X,33HTHIS PROGRAM USE ONEPDE INTERFACE, 15X, TH*/
*  IH*12X,40HAND A ODE's INTEGRATOR FOR STIFF PROBLEM,
*  TIN,TH*/1H*,63X, 1H*/ [H*,63X,1H*)

13 FORMAT(I H*,18X,27HPROGRAMMER : YOON-SEOK HONG,18X,1H*/
*  1H*63X,TH*/65(1H*))

14 FORMAT(/5X,37H*** INPUT DATAFOR ODE INTEGRATOR *#%i/)

15 FORMAT(5X,43HSTEPSIZE TO THE INITIAL TRIAL VALUE NRIS=14/
*  5X,43HINITIAL TIME STEP T1=F10.3/
*  5N,43HFINAL TIME STEP T2=,F10.3)

16 FORMAT(5X.43HA GUSSED FIRST STEPSIZE HI=E13.5/
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* SX,43HTHE MINIMUM ALLOWED STEPSIZE HMIN=EI3.5/
* SX,43HTHE NUMBER OF STEPS TO BE STORED  KMAX=15)

17 FORMAT(//5X,35H*** INPUT PARAMETERS FOR ONEPDE ***//

* 5X,43HCOORDINATE SYSTEM INDICATOR ICORD=,14/
* 5X,43HNUMBER OF PDE's NPDE-=.16/
* SX,43HNUMBER OF SPATIAL GRID POINTS NPTS=.16)

25 FORMAT(2X,3(F6.3.2X)}

26 FORMAT(2X.E11.4.2X,F6.3.2X.E11.4)
27 FORMAT(/2X,3(E11.4,2X))

28 FORMAT(/2X.2(E11.4))

30 FORMAT(2X,2(E11.4,2X))

3

1 FORMAT(2X.3(F7.4,3X))

32 FORMAT(2X.E11.4.2X.F7.1,2X.F4.1)

cC
cC

cC

C
C
C

RETURN
END

SUBROUTINE SETPC

CHARACTER OUTFIL*12

DATA OUTFIL/ )

WRITE(*,'(/1X,A\))' ENTER OUTPUT FILE NAME (e.g..OUTFILE.DAT):'
READ(*.'(BN.A))OUTFIL

OPEN UNIT 6 FOR QUTPUT

OPEN(6.FILE=QUTFIL)
WRITE(*,504)

504 FORMAT(///,10X,"*** PLEASE WAIT, RESULTS ARE DEVELOPING ***'/)

CcC
CcC
C
cC

[oNeoNe!

[oNoNe]

RETURN
END

CCCCCCCeeecececececececceccececcecececececececececececececececececececececececececececececce

HYDRODYNAMIC FOR THREE-PHASE FBBBR C
CCCCCeeecececececececececececececececececececececececececececececcececececececcececce
SUBROUTINE HYDRODYNAMICS
COMMON /BIO1/DIASP.DIABP.DENBP,AP,SH.DM
COMMON /HYDROI/H,VOLR.DIAR,DENSP,DENL.DENG,VISL,VISG
COMMON /HYDRO2/RGA,PE,UMF2,UMF3,FR,ARL
COMMON /SIMULIVUL,UG,EL,RKLA,RGH.RSH,RLH,CIN
COMMON /SIMUL2/UMAX.EKS.RKS.RKO.DIFS,YXS. YXO,EFB.RLF.DENB.AB.RKI

INPUT PARAMETRS FOR REACTION-DIFFUSION MODEL
UMAX=6.39E-5

YXS=0.4
YXO0=0.354

RKO=0.0001
RKI=0.113
EFB=0.064

DIASP=0.0710
RNP=224500.
DIFS=2.75E-6
DM=0.00000847

RLF=0.023
DENB=67.67

INPUT PARAMETERS FOR HYDRODYNAMICS

UL=0.03
UG=1.2

H=72.
VOLR=1144.
DIAR=42
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[oNeoXe!

[oNoNe) [oNoNoNe) [oNeoNe!

coe

oNoNoNe!

oo R R R R I I I Il o W o W o N e)

DENSP=1.4
DENL=1.
DENG=0.0012

WRITE VALUE OF PARAMETERS FOR SIMULATION

WRITE(6,48)
WRITE(6,41)UMAX,YXS,YXO
WRITE(6,42)RKS,RKO,RKI,EFB,RLF
WRITE(6.43)DIASP RNP
WRITE(6,44)DIFS,DENB,DM

WRITE(6,45)UL,UG
WRITE(6,46)H,VOLR,DIAR
WRITE(6,47)DENSP.DENL,DENG,VISL

DETERMINE BIOPARTICLE DENSITY

DIABP=DIASP+RLF*2.

DENBW=DENL+(DENB/(1000.%¥0.8))
DENBP=DENBW-+(DENSP-DENBW)*(DIASP/DIABP)*(DIASP/DIABP)*
*  (DIASP/DIABP)

DETERMINE THE O VERALL GAS-LIQUID MASS TRANSFER COEFFICINT
USING THE CORRELATION OF SHAH et al.(AICHE. J. 28,353(1982)).

RKLA=1.174%(UG/100.)*%0.82)
CALCULATE GALLILEO NUMBER AND LIQUID ARCHIMEDES NUMBER.

RGAP=(DIABP**3.)*(DENL**2.)
RGA=(980.62*RGAP)/(VISL**2)
ARL=((DIABP**3.)*DENL*(DENBP-DENL)*980.62)/VISL/VISL

CALCULATE FROUDE NUMBER
FR=UG/SQRT(980.62*DIAR)

CALCULATE MINIMUM FLUIDIZATION VELOCITY OF TWO-PHASE FBBR
USING THE CORRELATION PRESENTED BY WEN & YU (1966).

UMF2:+(VISL/DIABP/DENL)*(SQRT((33.7*33.7)+(0.0408*ARL))-33.7)

CALCULATE MIN. FLUIDIZATION VELOCITY OF THREE-PHASE FBBR
USING GAS-PERTUBED LIQUID MODEL PRESENTED BY ZANG et,al.(1995).

PHIS=0.906

EMF=0.4287
ZETA=1.61%(UG**0.72)*(DIABP**0.168)*(DIAR**(-0.125)VEMF
AA=42.86%(¢1.-EMF)/PHIS)*((1.-EMF)/PHIS)

BB=0.571 5*PHIS*EMF*EMF*EMF*(1 -ZETA)*(1.-ZETA)*(1.-ZETA)*ARL
CC=AA+BB
UMF3=(VISL/DIABP/DENL)*(SQRT(CC)}-42.86*(I.-EMF)/PHIS

DETERMINE THE AXIA- DISPERSION COEFFICIENT USING KATO's et al.
CORRELATION FOR LOW LIQUID VELOCITY OR KIM & KIM's CORRELATION
FOR HIGH LIQUID VELOCITY.

IF(UG.GE.5) GO TO 100
WRITE(6,50)
EL=UG*DIAR*(1.+8.*(FR**0.85)y/(13.*FR)
PE=UL*DIABP/EL
IF(PE.GE.1000)WRITE(6,51)
WRITE(6,52)
58 FORMAT(//2X, KATOs CORREALATION IS CONSIDERED SINCE LIQUID',
# VELOCITY IS LOW.)
51 FORMAT(2X.PECLET NUMBER IS HIGH. SO THE AXIAL DISPERSION',
* SHOULD NOT BE CONSIDERED.)

o
58]
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52 FORMAT(//2X.PECLET NUMBER IS LOW. SO THE AXIAL DISPERSION'.
* SHOULD BE CONSIDERED.")
GO TO 300

100 WRITE(6,53)

53 FORMAT(/5X.'Kim and Kim correlation could be considered',
* since liquid velocity is high.")
PE=20.19*({DIABP/DIAR)**1.66)*({UL/(UL+UG))1**1.03)
EL=DIABP*UL/PE
IF(PE.GE.1000)WRITE(6.51)
WRITE(6,52)

DETERMINE LIQUID-SOLID MASS TRANSFER COEFFICIENT USING
THE CORRELATION DEVELOPED BY ARTERS & FAN (1986).

[oNoNONe]

300 REG=UG*DIABP*DENG/VISG
SC=VISL/(DENL*DM)
EKS=0.228*(DM/DIABP)*(1.+0.0826*(REG**0.623)*(RGA**0.323)*
* (SC**0.4)*({(DENBP-DENL)/DENL)**0.3)
SH=EKS*0.5*DIABP/DIFS
IF(SH.GE.300) WRITE(6,54)
WRITE(6,55)

54 FORMAT(//2X."SHERWOOD NUMBER IS HIGH SUFFICIENT TO RENDER THE",
* EXTERNAL MASS TRANSFER RESISTANCE NEGLIBLE")

55 FORMAT(//2X,'SHERWOOD NUMBER IS NOT HIGH SUFFICIENT TO RENDER ",
*THE EXTERNAL MASS TRANSFER RESISTANCE NEGLIBLE")

CALCULATE GAS HOLDUP USING THE CORRELATION PRESENTED BY
BEGOVICH & WATSON(1978).

[oNoNeoNe!

RGH=0.048*(UG**0.072)*(DIABP**0.168)*(DIAR**(-0.125))

DETERMINE SOLID HOLDUP AND LIQUID HOLDUP

[oNeoNe]

RSH=1.-0371*(UL**0.271)*(UG**0.041)*(DENBP-DENL)**(-0.3106)}*
*(DIABP**(-0.268)y*(VISL**0.055)*(DIAR**(-0.033))
RLI1=1.-RGH-RSH

CALCULATE THE SPECIFIC SURFACE AREA OF BIOFILM-COVERED PARTICLE
AND OVERALL SURFACE AREA OF BIOPARTICLES IN REACTOR.

[oNoN®)

AB=6.*RSH/DIABP
AP=3.*VOLR*RSH/0.5/DIABP

WRITE RESULTS OF HYDRODYNAMIC MODELS

[oNoNe!

WRITE(6,61)
WRITE(6,62)DIABP.DENBP.RKLA,EKS AB,AP
WRITE(6,63)RGA,FR,ARL,UMF2,UMF3
WRITE(6,64)SH.PE,EL,RGH,RSH,RLH

C

40 FORMAT(//5X. 44H*** VALUE OF PARAMETERS USED IN MATHEMATICAL
*IX,9HMODEL *** /3X,58(1H-))

41 FORMAT(5X,30HMAXSIMUM SPECIFIC GROWTH
*/5X,4SHRATE OF BIOMASS UMAX=EI0.3
*/5X,4SHYIELD COEFFICIENT FOR SUBSTRATE YXS=F10.3
*/5X,4SHYIELD COEFFICIENT FOR OXYGEN YX0=,F10.3)

42 FORMAT(5X,4SHMONOD CONSTANT FOR SUBSTRATE RKS=.E10.3
*/5X,4SHMONOD CONSTANT FOR OXYGEN RKO=E10.3
*/5X,4SHINHIBITION CONSTANT RKI=,E10.3
*/5X.4SHVOID FRACTION OF BIOFILM EFB=,F10.3
*/5X,4SHBIOFILM THICKNESS RLF=F10.3)

43 FORMAT(5X.4SHDIAMETER OF SUPPORT PARTICLE DIASP=E10.3
*/5X,4SHNUMBER OF BIOPARTICLES INREACTOR ~ RNP=[E10.3)

44 FORMAT(5X,24HDIFFUSION COEFFICIENT OF

*/5X.45HSUBSTRATE IN BIOFILM DIFS=,E10.3
*/5X,4SHBIOFILM DENSITY DENB=.E10.3
*/5X.4SHMOLECULAR DIFFUSIVITY OF SUBSTRATE DM=,E10.3)
45 FORMAT(5X,45HSUPERFICIAL LIQUID VELOCITY UL=FI10.3
*/5X,4SHTHE SUPERFICIAL GAS VELOCITY UG=,F10.3)
46 FORMAT(5X,45SHREACTOR HEIGHT H=F10.3

*/5X,4SHREACTOR VOLUME VOLR=F10.3

214
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*/SX,45SHDIAMETER OF REACTOR DIAR=,F10.3)
47 FORMAT(5X.4SHTHE SUPPORT PARTICLE DENSITY DENSP=F10.3
*/5X,4SHTHE LIQUID DENSITY DENL=,F10.3
*/5X,4SHTHE GAS DENSITY DENG=,F10.3
*/5SX,45HTHE LIQUID VISCOSITY VISL=,F10.3

C

*/3X,58(1H-))

61 FORMAT(//12X,38 l1*** RESULTS OF HYDRODYNAMIC MODELS ***
*/3X,58(1H-))

62 FORMAT(5X,4SHTHE DIAMETER OF BIOPARTICLES DIAI3P=,F10.3
*/5X,4SHTHE BIOPARTICLE DENSITY DENBP=,F10.3
*/5X 4SHTHE GAS-LIQUID MASS TRANSFER COEFICIENT RKLA=,F10.3
*/5X,4SHTHE EXTERNAL MASS TRANSFER COEFFICIENT EKS=,EI10.3
*/5X.4SHTHE SPECIFIC SURFACE AREA OF BIOPARTICLE AB=,F10.3
*/5X,4SHTOTAL SURFACE AREA OF BIOFILM PHASE ~ AP=.F10.3)

63 FORMAT(5X,45SHTHE GALLILEO NUMBER RGA=FI10.3
*/SN.45SHTHE FROUDE NUMBER FR=,F10.3
*/5X,45HTHE LIQUID ARCHIMEDES NUMBER ARL=,FI10.3

*/5X,45HTHE MIN. 2-PHASE FLUIDIZATION VELOCITY UMF2=F10.3

*/5X,4SHTHE MIN. 3-PHASE FLUIDIZATION VELOCITY UMF3=,F10.3)
64 FORMAT(5X,4SHTHE SHERWOOD NUMBER SH=.FI10.3
*/SX,4SHTHE PECLET NUMBER PE=,E10.3
*/5X,4SHTHE AXIAL DISPERSION COEFFICIENT EL=E10.3
*/5X,4SHTHE GAS HOLDUP RGH=,F10.3
*/5X,4SHTHE SOLID HOLDUP RSH=F10.3
*/5X,4SHTHE LIQUID HOLDUP RLH=FI0.3
*/3X,58(1H-)}
RETURN

END
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Appendix B

Some routines for multilayer feedforward neural network (MFNN)
extended Kalman filtering (EKF) learning algorithm used in Chapter S.

/* File name: NNEKF.C */

-k

Main Program for a multilayer feedforward neural network (MFNN)
trained by extended Kalman filter(EKF) learning algorithm.

Y oon-Seok Hong

Institute of Technology & Engineering
Massey University

New Zealand

E-Mail: Y.S.Hong@massey.ac.nz

*/

# include <s /*FILE*/

# include < f*stremnp*/

#include <math.h> [*sqrt*/

# include <time.h> /*clock(), CLK_TCK*/

#ifndef CLOCKS PER_SEC

# ifndef CLK_TCK

# define CLOCKS PER SEC 1000000

i else

# define CLOCKS_PER_SEC CLK_TCK
# endif

# endif

# include "comnn.h"
# define  scanfl1(i0.il) while(scanf(i®,il ) = 1)
{

printf{"\7error in scanf, retry: ")\
scanf("%*s");

}
# define dprintfO(x,y) { fprintf(x.y), printf{y):
# define dprintf1(x,y,a) { tprintf(x.y,a); print{{y.a):
# define dprintf2(x,y,a,b) { fprintf(x,y,a,b); printf(y.a,b), }
# detne dprintf3(x,y,a,b,c) { fprintt(x,y,a,b,c); printf(y.a,b.c); }

# detine dprintf4(x,y,a.b,c.d) { fprintf(x,y,a,b,c,d); printf(y.a,b,c,d); }
# detine dprintf5(x,y,a.b,c.d,e) { fprintf{x.y,a,b,c,d,e); printf(y,a,b,c,d.e);}

# define abs(x) ((x) »=02(x) : (-(x)))

# define min(x,y)  ((x) <= (y) 2(x): (y))
# define max(xy)  ((x)>=(y)?2(x) : (v))
# define pii(i) M*(3+i)/2

void main()

{

COMNN nn(1};

FILE *1p,*fpl;

inti,).j1,)2,k jout,

char method[10];

clock tanfang,zeit,maxzeit:

tloat zeitsec,maxzeitsec;

float sys_err.fehl;

{loat eta,alpha;

float minin,maxin,mintar,maxtar,mintest,maxtest;
extern void net_read(FILE*. COMNN*);

extern void bp(FILE*,COMNN* clock t.float,tloat);
extern void bp_ekf(FILE*,COMNN*_clock t);

trained by
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extern void netz_out(float** float *** int* int);

fp - fopen("ekthet.log"."w").  /*Documentation file*/

dprintf0(fp,"
dprintfo(fp,"
dprintf®(fp,"
dprintfO(fp."
dprintf(fp,"
dprintfO(fp,"
dprintt¥(fp."
dprintfo(fp,"”
dprintfo(fp,"
dprintfo(fp,"
dprintf0(fp,"
dprintfO(fp,"
dprintfO(fp."

\n")
\n")
Neural Network trained by EKF Learning n")
\n")
March 10, 1998 \n")
\n")
Intitute of Technology & Engineering \n")
Private Bag 11222 \n")
Palmerston North \n")
New Zealand \n")
E-Mail: Y.S.Hong{@massey.ac.nz \n")
\n")
n")

/* Read network file and traing data, and dispaly*/

net_read(fp,nn); /*auch Testdaten*/

dprintf1(fp,"\nTraining of %d patterns\n",nn->npatterns)
dprintfO(fp, "Net structure "),
for(i=®; i<=nn->nlayers; i++)  dprintfl1(fp,"%2d ".nn->layer_size[i])

dprintf1(fp,"

= %d weights\n",nn->nweights)

/* Normalisation of data*/

for(k=0; k<'nn->npatterns_test; k++)

{
f

/* Normalisation of testing data */

or (i=0; i<nn->layer_size[®]; i++) /* normalise - input */

nn--in_test[k][i] =
( nn-=in_test[K][i] - nn->norm_in[i][®])/
( nn->norm_in[i][1] - nn->norm_in[i]{0]):
/* normalise -~ target */

for (i=0: i<nn->layer_size[nn->nlayers]; i++)

}

nn->target_test[k][i] = (an-target_test[k][i]
- nn-norm_tar[i][®])/

(nn->norm_tar[i][1] - nn->norm_tar[i][0]);

for(k=0; k<nn->npatterns; k++)

{

/* Normalisation of Training data */

for (1=0:i<nn->layer_size|®]; i++) /* normalise - input */

nn->n[K][i] = (nn->in[k][1]-nn->norm_in[i][®])/
(nn->norm_in[i][1] - nn-norm_in[i][(]);
/* normalise - target */

for (i=0; i<nn->layer_size[nn->nlayers]; i++)

¥

/*Checking o

nn->target[k]{i] = (nn->target[k]{i] - nn--norm_tar[i][®]) /

(nn->norm_tar(i][1] - nn->norm_tar|i][0]);

f normalisation*/

maxin=-10.;
minin=10.;
maxtest = -10.;
mintest = 10.;

for(k=0; k=nn->npatterns_test; k++)

for (i=0; i<nn-~layer_size[®]; i++)
{
it{(nn-=in_test[k]]i] <" minin)
minin = nn-=in_test[Kk][i];
if(nn-=in_test[k][i] > maxin)
maxin = nn-=in_test[k][i];



APPENDICES

for (=0 i< nn--layer_size[nn- -nlayers]: i++)

{
if(nn- target test[k][i] mintest)
mintest  nn- target_test[k][i]:
if{nn- target_test[k][i] - maxtest)
maxtest - nn- ~target test[Kk][i];
}

¥

if(nn- ‘npatterns test)
{
i{(minin~ -1.5) || (maxin -1.5) | (mintest: .05) | (maxtest. ~.95))
dprintfO(fp," 007")
dprintf4(tp,
"Min/max input %1.3f %] .3f; target %]1.3f %]1.3f for test\n",
minin,maxin,mintest,maxtest)

H

maxin = -10.;
minin=10;
maxtar  -10.;
mintar = 10.;

for(k=0; k< nn- npatterns; k++)

[
for (i=0:1 nn- layer_size[0]: i++)
{
if(nn- in{k][i]* minin) minin = nn- -in{k{[i];
if(nn- in[k][i] - maxin) maxin -- nn- ‘ink][i]:
}
for (i=0;1-nn- layer size[nn- -nlayers]; i++)
{
if(nn- target[k][i] - mintar) mintar = nn- target(k][i];
if(nn- target[k][i] - maxtar) maxtar - nn- target[k][i]:
H

}
if(tminin- -1.5) | (maxin -1.5) }| (mintar: .05) || (maxtar *.95))
dprintfO(fp,"007")
dprintt4(fp,
"Min/max input %1.3f %] .3f, target %]1.3f %]1.3f for training\n",
minin.maxin.imintar,maxtar)

/* Calculation before training */

sys_err = 0.0,
for(k=0; k* nn- ‘npatterns_test; k++)
{
for()=0; j nn- -layer size[®];j++)
nn- state[0][j] = no- -in_test[k](j):
for(jout=0; jout .nn- ‘layer_size[nn- ‘nlayers]: jout++)

{
netz_out(nn- state,nn- ‘weight.nn- ‘layer_size,
nn->nlayers),
sys _err += (nn- -target_test[k][jout]
- nn->state[nn- “nlayers]|jout]) *
(nn- -target_test|k][jout]
- nn-~state[nn- nlayers][jout});
}
}
if(nn- ‘npatterns test)
{

fehl -- 2. * nn- ‘norm tar[0][1] *
sqri(sys_err/

nn- npatterns_test /

nn- -layer_size[nn- ‘nlayers]);
dprintf1(fp,

"Rms-error before training 209.6f for test data\n",fehl)
dprintf1(fp,
"Error according to PROBEN] notation %9.3f for test data'\n",
sys_err/ nn- ‘npatterns_test /
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nn->layer size[nn- -nlayers] *
100 * (maxtest - mintest)};

}

sys_err = 0.0,
for(k=0; k< nn- ‘npatterns; k++)
{
for(j=0; j<nn- -layer size[®]. j++)
nn- ‘state[0][j] = nn- ‘in[k][j]:
for(jout=0; jout' nn-~layer size[nn- 'nlayers]; jout++)

{
netz_out(nn- ~state.nn- -weight,nn- -layer_size,
nn- nlayers);
sys_err = (nn- target|k][jout]
- nn- state[nn- nlayers][jout]) *
(nn- - target[k][jout]
- nn- state[nn- -nlayers][jout]):
}

}
fehl - 2. * nn- norm _tar[®][1] *
sqri(sys_err /
nn- 'npatterns /
nn- layer size[nn- nlayers]),
dprintf1({p,
"Rms-error before training %39.6f for training data\n".fehl)
dprintf1(tp,
“Erroraccording  %9.3f for training datan",
sys_err / nn- ‘npatterns /
nn- layer_size[nn- 'nlayers] *
100 * (maxtar - mintar)),

/* Training and error calculation */

nn->i_iter = 0; /*Counting the No. of iteration*/
nn->n_iter = 0;

strepy (method,"");
zeit= 0.,
while(l)

if(!stremp(method."bp") || !stremp(method."BP"))

{
dprintf0(fp." Training with backpropagation\n"),

printf("eta alpha ")
scanf1("%f",&eta);
scanf1("%f",&alpha);

fprintf(fp,"eta %f alpha %f\n".eta,alpha);

anfang = clock() - zeit;
maxzeit = maxzeitsec * CLOCKS PER_SEC + anfang + zeit;
bp(fp.nn,maxzeit.eta.alpha);
zeit = clock() - antang;
}
if(stremp(method."kf") || !stremp(method,"KF"))

{
dprintfO(fp,"Training with EKF Learning Alogirithm\n");
anfang = clock() - zeit;
maxzeit = maxzeitsec ¥ CLOCKS_PER_SEC + antang + zeit;
bp_ekf(fp.nn,maxzeit),
zeit = clock() - anfang;

}
/* Display training time */
zeitsec = zeit/ CLOCKS_PER_SEC;

if{nn-=1_iter)
dprintf3(fp,"Cpu-time in h.min.sec %2d.%02d.%02d\n",
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(int)zeitsec / 3600, ( (int)zeitsec % 3600) / 60,
(int)zeitsec % 60)

/* Display the training error after last iteration */

sys_err = 0.0:
for(k=0; k- nn- -npatterns_test; k++)
{
for(j=0; j<nn- layer_size[®]; j++)
nn--=state[0][j] = nn- -in test[k][j]:
for(jout=0: jout: nn- -layer_size[nn- ‘nlayers]; jout+)

{
netz out(nn-state,nn- weight,nn- -layer_size.nn- ‘nlayers),
sys_err - (nn- target_test[k](jout]
- nn- statefnn- ‘nlayers][jout]) *
(nn- -target_test[k][jout]
- nn- state[nn- “nlayers][jout]):
}
}
if(nn- npatterns_test && nn- 1_iter)
1

fehl 2. * nn- norm tar[®}{1] *
sqrt(sys_err/
nn- ‘npatterns_test /
nn- layer_size[nn- ‘nlayers]):
dprintf2(fp,
"Rms-error afier %3d iterations %9.6f for test data\n",
nn- -i_iter,fehl)

dprintf1(fp.
"Erroraccording %9.3f for test data\n",
sys_err / nn-. -npatterns_test/
nn- -layer_size[nn- ‘nlavers] *
100 * (maxtest - mintest)};
}

sys_err 0.0;
for(k==0; k' nn- npatterns; k++)
{
for(j=0:j nn~ layer size[0]; j++) /*Eingangsdaten*/
nn- -state[®](j] - nn- -in[k][j];
for(jout 0): jout: nn- -layer size[nn- nlayers]; jout++)

{
netz out(nn- statenn- -weight,nn- ‘layer_size,nn- nlayers):
sys_err - (nn- target[k][jout]
- nn- -state[nn- nlayers|fjout}) *
(nn- -target[k]{jout]
- nn- -state[nn- ‘nlayers]|jout])-
H
}
if(nn- -1 _iter)
{

fehl = 2. * nn- -norm_tar[®][1] *
sqrt(sys_err /
nn- npatterns /
nn- -layer_sizejnn- -nlayers]).
dprintf2(fp,
"Rms-error after %3d iterations  %9.6f for training data\n”,
m--1_iter,fehl)
dprintt1(fp,
"Error according to PROBENI notation %9.3f for training data\n”,
sys_err / nn- npatterns /
nn- ‘layer size[nn- -nlayers] *
100 * (maxtar - mintar)};

H

/* Ask for further computation */

fclose(fp);
fp = fopen("ekfnet.log","a").
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printf{"[How many iterations shall be executed until next prompt?\n");
printf{"(0 = end of training, storage of weights) ")
scanf1("%d".&nn->n_iter);

if{!nn->n_iter) break;

printf{"Max. cpu-time in s ")
scanf1("%f",&maxzeitsec);

printf("Training method (BP for backpropagation leaming or EKF learning) "):
scanfl("%s",method);

} Fwhile(1)*/

/* Save new weight and covariance matrix */
fp1 = fopen("ekfnet.wei","w"); /* Weight value */
fprintf(fpl,"weights\n");

for (j=1; ) <= nn->nlayers; j++) /* forall layers and weights *’
for (j1=0; )1 < nn->layer_size[j], j1++)

for (j2=0: j2 <" nn-layer_size[j-1]; j2++)
fprintf(fp1,"%13.10f\n", nn->weight{j}{j1][j2+1]):
fprintf{fp1,"%13.10fin", m->weight[j]{j1](0]);
}
fprintf{fp1,"end\n");
dprintfO(fp," Weights stored in nnekf.weiln")
fclose(tpl);

fpl = fopen("nnekf.ekf","wb");

fprintf(fpl."ekfin");

fwrite(nn->p,sizeof (float),nn->nweights*(nn->nweights+1)/2,fp1);
fprintf{fp1,"\nend\n"),

dprintf0(fp."Covariance matrix stored in nnekf.ekf\n")

fclose(fpl);

/* File name: BPEKF.C */

/%
Routine for extended Kalman filter(EKF) learning algorithm
This routine is called by NNEKF.c

Yoon-Seok Hong
Institute of Technology & Engineering
Massey University
New Zealand
E-Mail: Y.S.Hong@massey.ac.nz
*/

# include <
# include <
#include
# include <time.h>
# include <:math.h>
# include "comnn.h"

# define dprintf®(x,y) { fprintt{x,y): printf(y); H

# define dprintfl(x,y,a) { fprintf{x,y,a); printf(y,a). }

# define dprintf2(x,y,a,b) { fprintf(x.y,a.b); printf{y,a,b), }
# define dprintf3(x,y,a,b,c) { fprintf(x,y,a,b.c); printf(y,a.b,c); }
# define pii(i)  (i)*(3+i)/2

# define ACCURACY .000001

void bp_eki(FILE *fp, COMNN *nn, clock_t maxzeit)
1

extern void netz_out(float** float*** int*,int),
extern void netz_back(float** float*** float*** int* int,int,int);
extern int ekf(float* float* float,int,float* float,float*);
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tloat res,diffsig,q,test_err,sys_err,*** jacobi.,*weight_old,*pb;
float sigmin,psum jacobimax;

time_t datum;

int kit.1,11,11,j,j1,j2 jout,nsqrt;

int status;

JERRRRRRRE Initialising FFFFFFEER AR A KA FAFA KA A KA A A KA KK AR AR ]

jacobi -~ (float***) malloc((nn-nlayers+1)*sizeot{tloat**)y,
if{! jacobi) dprintfti(fp,”Error in malloc tor jacobi"007\n")

jacobi[®] = (float**) malloc(nn- ‘nstates*sizeof{float*)}:
if(!jacobi[0]) dprintt®(fp,"Error in malloc for jacobi[0]"007'\n"
jacobi[1] = jacobi[0];
for(i=2: 1< =nn- nlayers; i++)

jacobi[i] - jacobi[i-1] + nn- layer size[i-1];

jacobi[0][®] = (tloat*) malloc(nn- nweights*sizeof{float)):
if{(!jacobi[0][0])
dprintfO(fp,"Error in malloc for 'jacobi[0][0]\007\n")

for(i=2; i<= nn- ‘nlayers; i++) jacobi[i][®] = jacobi[i-1](0]
+nn- ‘layer_size[i-1] * (nn- -layer_size[i-2] +1);
for(i=1; 1 =nn->nlayers; i++)
for(j=1; j .nn- “layer_size[i]; j++)
jacobil[i][j] =jacobi[i][j-1] + mn- layer size[i-1]+1:

pb = (tloat*) malloc(nn- >nweights*sizeof{tloat)y.

i{(!pb) dprintf(fp,"Errorr in malloc for 'pb"007n")

weight_old - (tloat*) malloc(nn-~ ‘nweights*sizeof(float)),
if(!weight_old) dprintf®(fp,"Error in malloc for 'weight_old\007'n")

/* Training of neural network */
JHE R o ok Kok Kk ok ok oKk ok R ok ok KKK K K K o oK oK R KK oK oK KKK KKK ok ok oK oK K oK KKK KoK K Kk o R R ok ok ok ok K K ok

nsqrt  sqrt((double)nn- *npatterns).
q=.01.

jacobimax:- 0.;
for(i=0; i< nn- ‘npatterns; i++)
{
for(j=0; j- nn- ‘layer_size[®];j++)
nn- state[®][j] = nn-=in[i][j];
netz_out(nn- state,nn- ‘weight.nn- layer_size.nn- ‘nlayers);

for(jout=0; jout nn- ~layer_size[nn- ‘nlayers]: jout++)

netz_back(nn- state,nn- -weight,jacobi.
nn- -layer_size,nn- ‘nlayers.nn- nweights. jout);

for(j=1I; j* nn-nlayers; j++)
for(j1=0; j1<nn- layer_size[j]; j1++)
for(j2=0; j2< nn- layer_size(j-1];j2++)
if(jacobifj][j1][i2] * jacobi[j]|j1]1j2] - jacobimax)
Jacobimax = jacobi[j][j1][j2] * jacobi[j][i1][i2]-

}
}
for(kit=0: kit: nn- 'n_iter; Kit++) /*Iteration*/
{
sys err - 0.0;
for(i=0; i nn- ‘npatterns; i++) /*Training data*/
{

for(j=0; j- nn- ~layer_size[®]: j++)
nn- -state[®][j] -- nn- -in[i]{j]:
netz_out(nn---state.nn- ~weight,nn- ‘layer_size,nn- nlayers):

[S%)
[§S]
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for(jout=0; jout nn- ‘layer_size[nn- ‘nlayers|; jout++)
sys err += (nn- state[nn- nlayers]|jout]
- nn- target[i][jout]) *
(nn--state[nn- nlayersjfjout] - nn- target[ij[jout]);
}
dprintf2(1p,"%4d % 12.9f" kit.sqri({double)sys_err
/ nn-~layer_size[nn- ‘nlayers] / nn- »npatterns)

*2.* nn--norm_tar|0][1]);

if(nn- ‘npatterns_test)
{
test_err = 0.0;
for(i=0; 1 nn- mpatterns_test; i++) I*Testing data*/
{
for(4=0,) nn- layer_size[0]; j++)
nn->state]0][j] + nn- -in_test[i][j}:
netz_out(nn-»state.nn---weight,nn- -layer_size,nn- ‘nlayers);
for(jout=0; jout: nn- ‘layer_size[nn--nlayers], jout+-+)
test_err -:- (nn- state[nn- -nlayers][jout}
- nn- target testfi][jout]) *
(nn- -state[nn- nlayers][jout] - nn--target test[i][jout]):

¥
dprintf1(fp," %I12.9\n",sqrt({double)test _err
/nn-~layer_size[m- 'nlayers] / nn- npatterns_test)
* 2. * nn- norm_tar[0]{1]);

o
73
o

dprintfO({p."\n")

if(clock() -maxzeit) return:

sig =sys_ert/ nn- ‘npatterns / an- ‘layer_size[nn- nlayers] /10.;
psum- 0.;

for(i=0: i- nn- -nweights; i++) psum - sqrt({double)nn- -p[pii(i)]):
sigmin = ACCURACY * jacobimax * psum * psum;

it{sig < sigmin)  sig -+ sigmin;

memcpy(weight_old.&nn- -weight[1][0][0],nn- nweights*4):

- 0y
il 0.
/*Training*/

for(i=0; i* nn- ‘npatterns; i++)
tor(j=0: j<nn- layer_size[0].j++)
nn- state[0](j] = nn-- in[i1}}j};
netz_out(nn- “state.nn- ‘weight,nn- layer_size,nn- nlayers).

tor(jout=0: jout nn- ‘layer_size[nn- ‘nlayers]; jout++)
{
res = nn->target[il][jout] -
nn- state[nn- nlayers][jout]:
netz_back(nn- state,nn- “weightjacobi,
nn- layer size,nn- -nlayers,nn-:nweights,jout);

status - ekf{&nn- weight[1][0][0],&jacobi[1][0][0].res,
nn- ‘nweights,nn- p,sig,pb):
/*ekf korrigiert weight aufgrund vonjacobi und res*/

if(status)
{
fprintf(fp."ek f singular  ");
dprintf3(fp."sigma= %g, Psum= %g, Q= %g\n",
sig,psum ACCURACY + q * diff / nn- 'nweights)
'

}

il +=nsqrt;
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if(ail  +: nn- npatterns)
{

i+
il =i

ditt=10.;
for(i=0; i nn- ‘nweights; i++)
diff += (nn- -weight[1][0][i] - weight_old[i]) *
(nn- weight[1][0][1] - weight old[i]):
for(j=0: j nn- nweights: j++)

nn- p[pii())] += ACCURACY + q * diff/ nn- nweights:

nn- i oiter ¢ -

3
)

free(jacobi[0][0]):

free(jacobi[0]);
free(jacobi);
free(weight old);
tree(pb),

/* File name: EKF.C */

/*

Routine for extended Kalman filter
This routine is called by NNEKF.C

*/
/

# include <stdio.h> /*printf¥/
intekf{tloat *a, float *b, tloat res, int n, float *p, tloat s, {loat *pb)

i

/* Extended Kalman Filter (EKF)

a= estimation vector

b= Gradient vector

res= error of output

n= length of vector

p= P-Matrix

s=Sigma**2

pb =help vector of length n

In this program, the tollowing declaration are required:
tloat a[n].b{n],p[n*(n+1)/2},pb[n]

Examples:

n=100 !(declanation could be bigger)
s=.01 !(not 0)

a0=1.

po=100.

for(i==0; i<(n+)*n/2; i++)pli] = 0.,

for(i=0; i1<n; i++)
{ ali]=a®;

pl(i+3)*1/2]=p#;
}

float nenner.pbk,pbn,bi,rn,*pp.*ppp:
int i,k
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(89
N

* pb=p*b
*
pp = p:
for(k=0; k<n; k++)
{
pp =k

pbk = pp[®] * b[e];
tor(i=1; 1==Kk; i++)
pbk = pp[i] * bi];
ppp = &pplk];
for(i=k+1; 1<n; i++)
{
ppp = &pppli):
pbk += *ppp * bli]:

!
pblk] = pbk:

3
/*
Pp = p:
for(i=1; i<n; i++)
{
bi = blil;
pp+=i;
for(k=0. k<1, k++)
pblk] += pp[k] * bi:
}
*/ 1% nenner=s+bT *p *b
*/
nenner = s;
for(k=0; k<n; k++) nenner += b[k] * pb[k];
*/
*/
it{nenner < .1 * s)
{
printf{"EKF Learning singulaer: nenner= %10.3¢ %c\wn1" nenner,7);
return(1);
}

/* Correct the estimamted value and save b
1* a=a+p*b/nenner* res
*/
m = res / nenner;,
tor(k=0; k<n; kK++)
alk] +=pblk] * m;

/* Costection of covariance matrix
* p=p-p*b*bT *p/nenner

*

7

for(k=0; k<n; k++)

{
pbn = pb[k]/ nenner;
for(i=; i==k; i++)
pli] == pbn * pbli].
p+= k+1;
}
return(0);
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