Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

SAME
Structured Analysis Modelling Environment
The Design of an Executable Data Flow Diagram
and Dictionary System

A dissertation presented
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy in Computer Science
at Massey University

Thomas William George Docker

1989

The research reported in this thesis has been an investigation into the use of data
flow diagrams as a prototyping tool for use during the analysis of a sysiem. Data flow
diagrams are one of the three main tools of structured systems analysis (the other two
are a data dictionary, and some means for representing process' logic, such as
minispecs).

The motivation for the research is a perceived need for better tools with which
analysts and end-users can communicate during the requirements gathering process.
Prototyping has been identified by many researchers and practitioners as such a tool.
However, the output from the requirements analysis phase is the specification, which is
a document that should provide the framework for all future developments of the
proposed system (and should evolve with the system). Such a document should be
provably correct. However this is seen as an ideal, and the most that can be hoped for
is a document which contains within it 2 mixture of formality.

Executable data flow diagrams are considered to provide an environment which
serves both as a means for communication between analysts and end-users (as they are
considered relatively easy to understand by end-users), and as a method for providing a
rigorous component of a specification. The rigour comes from the fact that, as
demonstrated in this thesis, data flow diagrams can be given strict operational semantics
based on low level ('fine-grain') data flow systems. This dual focus of executable data
flow diagrams is considered significant.

Given the approach adopted in the research, executable data flow diagrams are
able to provide an informal, flexible framework, with considerable abstraction
capabilities, that can be used to develop executable models of a system. The number of
concepts involved in providing this framework can be small. Apart from data flow
diagrams themselves, the only other component proposed in the research is a system
dictionary in which the definitions of data objects are stored. Procedural details are de-
emphasised by treating the definition of data objects as statements in a single-
assignment programming language during the executon of a model.

To support many of the ideas proposed in the research, a prototype
implementation {(of the prototype tool) has been carried out in Prolog on an Apple
Macintosh. This system has been used to produce results that are included in this
thesis, which demonsirate the general soundness of the research.

I would like to thank Professor Graham Tate, my chief supervisor, who has
provided useful guidance and support over the time taken to carry out and report on the
research discussed here. I would also like to thank Professor Mark Apperley, who as
my second supervisor, provided assistance at a critical time in the production of this
thesis. As well as these, thanks go to Dr John Hudson and Chris Phillips for reading
various portions of this tome. Last, but not least, the support provided by all the
Dockers is much appreciated.

List of figures and tables

Chapter 1: Introduction
1.1 Motivation for the researchc.ooviiiiiiiii i
1.1.1 Methods, methodologies, tools, and techniques............cccounne
1.1.2 Formal specificatons, and formal methodscoooeiiininels
1.1.3 Informal, semi-formal, and formal..............coociiiiiin
1.1.4 Semi-formal techniques in the specification of requirements.........
1.1.5 Software development ENVirONMENLSvvevnivrnreneensereannnn..
1.1.6 The sofiware development process and the software life cycle

1.1.7 Models, executable models, and prototypes ...coovvveveviiianann.,
Prototypes, and prototypingcooveeiiiiieniiiioiaiaiciiiiininnn,
1.2 Objectives of the research. ... e
JONC T B s T o) e 12 L1 | D O O OO TP
1.4 Structure of the diSSETTAtON vvuvie v ineieit i icre e reranr e eaen s
Chapter 2: Structured systems analysis
2.1 INIOAUCHON «.uuett ettt et et e tr e e e neeeanraeaeriatrarennanns
2.2 Component 10018 Of SO A Lo it i e
2.3 Data flow dlagramms. ...vvieieriiii ittt et r e aes
2.3.1 An application hierarchy of data flow diagrams
2.4 Data dicionary

..

iv

xi

Vo T TS e NEe R USTL

10
12
13
14
14
16

CONTENTS v

2.4.1 Defining 4ata ObJeCS . oiriiiii it e e e e rann 24

Data structures and abstractionscoeeieiiiiiiiiiiiiiiiiiinn. 24

2.5 Process ransfommationsoii it 26

2.5.1 Structured English. . 26

2.5.2 Decision 1aDIeS . .ttt e e e e 28

2.5.3 DECISION tBES ..ttt intieniai et it et et ean e st et aaraaassarearannannsrnrns 28

2.6 Combining the 10018 .. .o e et eas 30

2.7 Using SSA in specifying requirementsooiievroiciiieiaiiciaanencnnnn 31
2.7.1 The positive features of data flow diagrams

for use in SPeCifying TEQUITSMIEILS ..ovviiii et iireneiernnnrennnenes 31

2.7.2 Common ways of misusing data flow diagrams.......cccceeeevennnne 32

Avoiding procedural details in data flow diagrams.................... 35

Avoiding contro!l and physical details in data flow diagrams......... 36

2.8 Adictionary as @ general TESOUITE .t uuvurvrerrneireittisieeernereseeasresennianeres 36

2.9 Executable data flow diagrams.....c.ooiiiiiiiiiie it aeas 38

2,10 SUIMIDIATY L. v vutin e tee e e e e ae ettt e ettt e s e aa e rarnneaenanaannnan 39

Chapter 3: Data flow systems 40

TR 1515 ¢oa b [+ 1 10' o U ORI 40

3.1.1 An initial classification, and some definitionS...cocvieeeeeeieencnns 41

3.2 Data-driven SYSIIMIS o vttt et etieirer ettt ite ettt e earareiaeearanes 42

3.2.1 Conditionals and I00DS ...c.vviiiieiieiii it e e as 45

3.2.2 Karp and Miller — a reference data-driven model..................o... 51

3.2.3 Fine-grain data-driven architecture featurescooeviiiiveinenns 52

Direct communiCalion........c.covuiveiii it ieiiariarancnennas 53

Packet COMMURICAIIONc..iuiiiii ittt renenes 53

Static and dynamic architeCtures......covve v viiieiiiaeaeeianensians 55

Erabling conditions and output conditionS..........c.c.cooieeieiniinans 60

Summary of fine-grain data-driven systermscccieeeevnneinns 61

3.3 Demand-driven SYSIEIMISutiin e i i it e raeaetnanaaenaaaneannreanan 63

3.3.1 String 1edUuCtiON. it e e 64

3.3.2 Graph reduCiON uu i i ieevereiisaraitrastaneetiearaaereisanesiaanns 65

3.3.3 Demand-driven systems and functional languages.................... 67

3.4 Data flow systems and data flow diagrams............ccoiviiiiieiiiiiiniiinians 68

3.4.1 Fine-grain data flow semantics applied to data flow diagrams....... 68

3.4.2 Input to output set mansformatons.oooiiiiiiiiiiiiiia 72

3.4.3 Treating data flow diagrams
and transformations independently........c.ooiiiiiiiiiiiiiciiiaenenes 73

3.5 SUMIMIATY ettt ittt e iatiatenen e rarasrratransseranenesansanrirransannsss . 74

CONTENTS vi

Chapter 4: The data-driven model in SAME 79
L S 6T (o4 L1 Tdo (o’ + EUOURR O 79

4.2 The operational semantcs of a simple
data flow diagram model(DFDM1), and its comparison

with the Karp and Miller data-driven model..........c.coociiviiviiiiniiinnnnnn.. 81
4.2.1 External entities and data StOTES........ccevvevniieecreesireernireesannans 84
EXIernal €RLIIES ..o oo ittt e e 84

DatQ S1OTES. ittt ettt 86

4.3 The operational semantics of DFDM2. ..o 87
4.3.1 Limited import and €XPOTL SEIS.....ccciiiiieeemmmmmniiiairrrenieeeeennnns 88
Limited IMDOYE SEES .. v ee it ii i e e it ae e e itiiasannnnes 88

Conditional generation of data flows and limited export sets 90

4.3.2 Composition and decomposition of group objectsc.c..co..el 93

4.4 Stuctural completeness of data flow diagramsccoceviiiiiiiiiiiiinnn.. 85
4.4.1 Swucturally complete data flow diagramscoevvevviiiiiennnnnnns 97

4.4.2 Strucmrally incomplete data flow diagramscoeeeeeiiiianne. 98

4.4.3 Invalid data flow diagramscooiiiieiiiivirieiiaiiereeeneeaeens 100

4.5 Levels of rtefinement. ..o e 100
4.5.1 Hierarchy of data flow diagramsc.ovvveevveiivnernnreiieeeniannens 101

4.5.2 PrOCESS SOIS cuierentit ettt i e et aee et a e aanaann 102

4.6 Applicationsinthetoplevel model........ooiiiiiiiiiiiiiii i ieeieaaees 103
4.7 Parallelismin the top level model.......oooiiiiii il 105
4.8 DeadloCK S ie it et e e aa e ranan 106
ERP RN Vvl o ok: 1o A OO P U T U PP PUPPRUPPPI 107
Chapter 5: The demand-driven model in SAME 108
T B 69145076 L (o (o] s RO O P TSP UU U OPUTPR 108
5.2 The Bgis IangUage ..o it et 109
5.2.1 Opticns, conditionals and TEPEats ..o.veveiiii i i eiaes 112
077113 U U 112
ConditionalS..ccciiveiiiiiiiiii i 112

REDEALS ..o it it e it e re et a s 113

5.3 Demand-driven interpretation of Agis definitions.........ccoeeiiiiiiiiiniinin. 116
TG T S 0T 1111 ¢ 1 10) o SO U U P PPN 117

TUPLE CONSIIUCIOTS uiniuieiinenniiiiieieiereaiieiesieteraseteaeaiannannnes 118

SEre@m CONSIFUCIONS «.v ittt et i e eintreeaeaeaans 119

Basic 1ype CONSITUCIONS v vvniii et it iiaiiaaiercanrennanas 120

"Don't care” and empty VAIUES.....c..ccoeveeeriiiiiniieeennnnieiriienes 121

RIC TV 87 ¢ s (o) ¢ 1T U U SO OOPOPS 122

CONTENTS vii

5.4 Naming and bBinding...ooii e 123
541 NamMINZ oot i e et aa e 123
Environment, program, and working variables...................... 123
Version control and namingocooiiieieiiiiaiiiiiieiiininnnannn, 124
Naming of objects within SAMEc..coiiiiiiiiiiiiiiiia, 124
542 Binding ..oooiiiiiii i e e 126
5.5 Other characteristics of £gis
and the demand-driven executable environmentooeeieeiiininnnrnnnnnn. 128
5.5.1 Referential ManSparenCy ..ocrivereveevereneiinneanteeiiriierernnennens 128
5.5.2 Call-by-need and lazy evaluation.............coooiveiiiiiiiiiininnn 128
5.5.3 Typing and polymorphism..... ..o i s, 129
Strong, static, and dynamic IyDIRGcocov ittt 130
Polymorphism e 131
5.6 Language design principles and ZgIS......coiiiiiiiiiiiin i e 134
5.6.1 Procedural abstractionoveiiiiiiiniiiiie i 135
5.6.2 Data type COmPIetenessccuiiiait it iciii e eceaneaaaans 135
5.6.3 Declaration cOmesSpondencevvverieeiiiiinineiiiicaniaarrnns, 135
5.7 SUININZLY coeittrtitieiien et et aer e et ean e raetaeaenee e ratansaasarsernses 136
Chapter 6: The complete architecture of SAME 137
6.1 INTOAUCHON 1ot ieieiiit ittt it e et e s e et eaasaaanraaesanarans 137
6.2 A conceptual architecture for SAME e 137
0.2 L S D i e 139
The structure of the dictionary,
and the bindings between ObJECtS....cccoouiiiiiviriiririeineniannnnnnn 140
Data flow diagrams
as views onto data objects in the dictionaryc.ccoevivns 141
0.2, SY P e s 146
Staric definition facilitieS....c...ccciiiiiiiiiiiniiiiiiiniinaanss 146
The external entity interface ..ot aneanns 147
Data flow management (DFM)....cccooeeuiiiiiiiiiiiiiiiiiaiiiininnnn. 148
Multiprocessing and the scheduling of processors 148
6.3 Specifications and eXeCUHONS . .u i uieiiearieittierrareseaeeteitteiiaanriaareansas 149
6.3.1 Specification of applicaton environments,
applications, data flow diagrams, and data objects.................... 149
6.3.2 The execution of an applicAbON.......ivivvvervieieiiiie i raieenes 149
S I VAIEON ittt et et aaas 150
Missing data ODJECES..c...cceiiriieiiniiiiiiiieiieieieiierer e naaaans 150
TYDE CONFLICIS oo ee i et re et neaes 151

Inconsistencies, and their interpret@tionc.....cveeeiieiiieninnns 152

CONTENTS viil

SEIMANLIC @ITOFS .. i i e ar e aees 152
6.4 Datastores in SAME ... i s 152
6.4.1 Methods Of ACCESS. . vttt i iiiiei i it v ae e . 154
O S @01 ¢ i n) o L U O U PP 155
6.4.3 Exceptions handling.......cccoovrimiiiiiiiiii e, 156
6.4.4 NamME MAPPINGS . vttt ittt et et artaneaaaaeaneaaaas 156
6.4.5 Conceptual view of a datad SIOTC.....cccevivieiiiiiriinvierenieneneenean. 159
6.4.6 A data flow view of data StOTeS.....coiviiiiiiiaiiiiiieiiii e e 160
Referential transparenCyoooeeeieiieiies it iiiee s 161
5.5 SUIMIMATY L 1uitiiniitetirterareeratiteetcasaintnreannssannsasosssneenanseeronaensnsnns 162
Chapter 7: An implementation 163
AR R 115 (o 11 Te3 17w) o U U OO 163
7.1.1 Main features of the implementatonccoovviiiiiiianiannne.., 164
7.1.2 major features of the full SAME system

that have not been implemented.......ccooieviiiiiiiiiiiniiniininnns 164

7.2 Anintroduction to the definiton subsystem through
a simple example — finding the real roots of a quadratic equation............... 165
7.2.1 Creating a new applicadon, and drawing a data flow diagram....... 165
7.2.2 Defining data 0bectS.....iiuiiriiii i ea 167
7.2.3 Displaying data objects, their types, and their dependencies......... 168
7.3 Building and running an executable model............oiiiiiiiiiiin 172
7.3.1 Defining an executable process Sef....ocoiiiiiiiieiiiiieiiiiiiraannens 172
7.3.2 Running themodel.....ooviniiii e 173
7.3.3 Controlling the eXeCUtiON PIOCESS «.euuiautetreeneanacerirrrarrannennss 176
7.3.4 Tracing the exercising of amodelcovviiieiiiiiiieniii s 177
7.3.5 Exporting to external entities.....cooviiiiiiiii i naeneens 178
7.3.6 Execution Hme eXCePIiONS .. .ouuuvrereiiaisiaraneiteanersenasernrrrnenes 179
7.3.7 EXCTCIS N PIOCESSES it tetttennernneairsrennrnsressaransaeneeesneernesenn 180
ThE CORIEXE Of Q@ PTOCESS ..o vierveii e ti e e ieeieeanan 181
The fundamental algorithm for creating object instances 182
7.4 Applications with multipie levels of data flow diagrams.......................s. 182
7.4.1 Refining (expleding) data flow diagrams........cccceeereereieinnnenns 183
7.4.2 'Scope’ of ObJectS oo 184
7.4.3 Building an executable model............o.iiiiiiiiiii e ens 134
7.4.4 Hook composed data flow INSINCES ... uviiiie it iiieieeeeianaes 185
7.5 MOIE BITOT EXAMIPIES L tiiiiet ittt et it s et rsrrrerraeaanssaaenneanenss . 186
7.5.1 Missing data object definition.........oovviiiiii i s 186

7.5.2 Noimporters fora data flow......ccccoeiiiiiiiiiiiiiiiiiiirraens 187

CONTENTS x

7.6 Limited import sets, conditional exports, and 100pS...c.ccerincecinirirrinnn. 188
7.7 Prolog as the implementation Ianguageocviviiiaiiiiiiiiiii e 191
AR TN V)¢ o114 F: 1 o PSPPI 192
Chapter 8: An example analysis 193
I IS 9 T i o3 s 1o) URUOT O PO OO PO U OO UUUUUPIPRPN 193

8.2 A SAME model of the order processing example.......ovvvrivvecinenneen.. 194

8.2.1 The application data flow diagram hierarchy.................ooo e, 194
8.2.2 The data object definitions for the application........cccccceeeivinen.. 196
L IRC TN ¢To8 5 pr3 il o) g 010 S PP 201
8.3.1 The data SIores CONENIS . ..vuivvririeneisiiei i iaiie s iieirtaaeaans 202
8.3.2 Selected details from the development of the first prototype......... 202
8.4 The SeCONd PrOtOLYPE tovverieirtieterereteeanrerasiararettasttirstiesienreanesnnas 211
s N H 0016975 4 OO TP PP 216
Chapter 9: Alternative archifectures 219
0.1 INITOAUCHON e tueintnieenn it eteaetant vavenetcne et rnssatssessaentanenneaaeeanaann 219
6.2 Other executable coarse-grain data flow schemes.....cccocvieiveiiiiianiniannnees, 220
$5.2.1 The LGDF approach of Babb....ccoiiviiiiiiiricciiccvens 220
$.2.2 The Ada information management system
prototyping environment of Burns and Kirkham........................ 222
9.2.3 The DataLink environment of STONEoovvviiiiiiiiiiiiiiiiaiieen, 223
9.3 Structured Analysis Simulated Environment {SASE)ooiiiiiiiiiiiiian... 224
0.3,] ME T A i i e ettt e et et ea e e a e eas 225
9.3.2 The SASE process sub-SyStem .c..oiiiiiiiiiiiiiiiie e, 226
9.3.3 SASE as a means for building implementation models................. 227
0.4 Comparative SUIMLITATY ... ouvuuiuansseiinseiesareosernsaarsrarasessasansiassisisonaeos 227
8.5 Networks of von Neumann SySterms e i i iaiceiiciareaae g aaneanan 226
O 6 SUMIMIATY o.iienitiieiiines et annaees e rassneesasnenseaannaneseosraanteaarnssrassrerenns 231
Chapter 10: Conclusions and further research 232
10.1 Summary and concluSIonS..iviiviiiviiviiiii e 232
10.1.1 Objectives of theresearchc.ocoviiiiiiiiiiiiiiiiir e 233
10.1.2 That the executabie model be
rigorous enough to form part of the specificationcoocceae. 233
10.1.3 That the tool should have
a small number of (simple) COnCEePLS. .. .oivviiai it 234
10.1.4 That procedural details should be de-emphasised 234

10.1.5 That the tool should incorporate
high levels of abstraction in a relatively simple manner................ 234

CONTENTS

10.1.6 That the tool should make effective use of graphics....................235
10.1.7 That the tool should provide 'soft’' recovery from emors.............. 235
10.1.8 That the tool should be able to execute ‘incomplete’ models.......... 236
10.1.9 Primary ObjeCtiVe . ..ooiiiiiii e e 237
10,2 FUurther TeSearCh.. ittt e e vt s aanas 237
Glossary 239

Bibliography 257

Figures

1.1

2.1

2.2

2.3
2.4
2.5

2.6

2.7

2.8
2.9
2.10

2.11

2.12

The waterfalt model of the software life cycle,

showing the overlapping of Stages.....oviv v 12
Comparison of the Gane and Sarson,

and De Marco data flow diagram notationsS........ccereesnverecreciinnereseeces 18
Context, or Level 0, data flow diagram

for an order ProCesSINg SYSEIT .. ue et it ciitet vt et viras e eeseaneanaoaeanasn 20
Level 1 refinement of process ORDER PROCESSING . «..uvvvrvyeavsruncinerenssriinas 21
Level 2 refinement of process PRODUCE INVOICE...cc.cccueuierirccrvenceernenaaeee 22
The hierarchy of processes for the order processing

application modelled in Figures 2.2 10 2.4 ...oviiivnriiiiiiiii i niniaanees 22
A possible data structure hierarchy of the INVOICE

data flow shown in Figures 2.2 10 2.4 . ..viiiiiiime e cvnnns 24
A structured English minispec for calculating the

STALUS Of & CUSIOMIET ...ttt e s s e e e e 27
A decision table for calculating the status of a customer..............ooeie. 28
A decision tree for calculating the status of a CUSIOMeTvviveviiriiiironinanns 29

An integrated view of three tools described in Section 2.5,
showing how they combine to form a logical model

OF @ APPHCAION - .. ettt ettt et et aa s 30
Excerpt from a 'loose’ data flow diagram

in Wasserman e @l [WPSB0] .ot 33
Excerpt from a 'loose’ data flow diagram in Booch [Bo86}0, 34

xi

FIGURES AND TABLES X1

31

3.2

3.3

3.4

3.5
3.6

3.7
3.8
39

3.10

312

3.13

3.14
3.15

3.16
3.17
3.18

3.19

3.20
3.21
4.1
4.2
4.3
4.4

4.5

4.6

Data dependency graph for finding the (real) roots

o) S W [F: U § -1 5 1 3 U OSSN 43
Data flow graph for finding the (real) roots

Of 8 QUAATALIC. ... iuiiiiii ettt r e e e e e e et eas 44
A data-driven program for finding the (real)

TOOLS Of @ QUAGTATIC . .+ vvv i ietvan it teas e e e ettt e vae e sareteaesaaenaannn 45
A data flow graph for the conditional

ifx>ythen a:=vielse a = v2.. s 46
A cyclic data flow graph for calculating the factorial of N....................... 47
The general structure of a 'safe’ while-loop

Mmadata flow GTaph ... i e e 48
The occurrence of deadlock in a data-driven program graph..........coooeee.. 49
The occurrence of a race ConAItION ..ooveveinnvrriii it ceecieaas 50

The functional structure of a processing element
in a token storing data-driVen SYSIeITL. ..uueiveeir it iaiaeiieicitarneevneeennnns 54

The functional structure of a processing element
in a token matching data-driven SYSteImM....cvovvioiioiiiiinniiiiicins 55

A conceptual snapshot of an Id data flow program
showing the token <u.c.s.i, 4> on the arc connected

to input port 2 of the insouction {aCAVILY) S...ovviiiiiiiiiiiiiiiiiiiinnaes 57
A data flow graph for the processing of the loop by

(1T U111 g) = Lo U PP PPN 59
A categorisation of data-driven machines. The machines

discussed in this chapter are shown in the rectangles. ...l 61
A demand-driven program for finding the (real)

TOOS Of @ QUAGTALIC . o ev ittt ittt et r e e er e e s crernrennens 63
A string reduction execution sequence for the part of

the program in Figure 3.14 which finds the first root........ccocvivveeniiinenns 64
A graph reduction program corresponding to Figure 3.14ceeeens 66
The program graph of Figure 3.16 with reverse pointersooevenn... 67
Level 1 data flow diagram, and data dictionary definitions

for finding the (real) roots of a quadratic equationccovevviievviinnnnns 69
Level 1 data flow diagram for finding the (real) roots of a

quadratic APPHCALIONuviiiteiiiiia ittt e re e rerenner e aa e 70
Accessing the data store CUSTOMERS using CUST # as the key................... 71
Processing one COURSE_CODE against multiple STUDENT # tokens.............. 71
Level O data flow diagram for the order processing exampleoovvvvennin. 80
Level 1 data flow GIagram.......eeeoe it ie i e e e s eanaaees 80
Level 2 data flow diagram for process PRODUCEINVOICE.vveinrnnennrennns g0

Data flow diagram hierarchy for the order processing
application, showing the leaf processes shadedo.oovviviiiiiiiiinnnne 80

External entity e1, CUSTOMER, as the set
{INVOICE, ORDER_DETAILS UNFILLABLE_ORDER} of phantom nodes................ 86

An exarple which shows the decomposition and

FIGURES AND TABLES xiil

composition of data flows in data flow diagrams......cccceeeiieiiiciiiiicennn.. 93
4.7 A structurally incomplete formof Figure 4.2coooiiiiiiiiiiiiiiii 100
4.8 Possible different data flow process explosion rees

created during the analysis of an applicationc.cocoiiiiiiiiiiiiininnninn. .. 101
4.9 Virtual leaf process data flow diagram, 8p, for the

order processing applCationcciiiiiiiiiiiiii i i e e aaas 104
4.10 A snapshot of order processing ransaction hiStoriesooceevviiiniienann.., 105
5.1 Dictionary definitons relating tO INVOICEvvvreerieveieiaineevaieseansnnennns 110
5.2 EXample NVOICEciiiiii it ittt e rart v e s e e e r e aaaaas 114
5.3 Dependencies graph for INVOICEviiiiivetiie i s ier v veerein e e rereeeenaanas 117
5.5 The identity funcdon id implemented in four langnages that

support parametric polymorphisSmu. i 132
6.1 A conceptual architecture for SAMEo e 138
6.2 Dictionary definitions relating to the objects in

process 3, PRODUCE _INVOICE....ciiiiiuemerueiiniriseriseninreaerneeenesencnannns 139
6.3 Anexample invoice corresponding 1o the definitions

1N FIgUIE 6.2 ottt ittt e et i e e r e ae v e 140
6.4 Data object dependencies in process 3, PRODUCEINVOICE . ..iuviiieaniiniennnn. 142
6.5 Data object dependencies in the refinement

10 Process 3, PRODUCE INVOICE .vvu.vrtarunrunsinsuineneineainesaeinesnsnnvenenns 143
6,6 Using an exampie to show the associations (bindings)

between 0bJeCtS IN ST D Lou ittt iiirer ittt aas 145
6.7 Accessing the data store CUSTOMERS using CUST #asthekey.......c..vvevennn. 154

6.8 Adding a 'control’ dimension to a data flow diagram
in which the keys for accessing data store tuples
(among other things) can be specifiedccoooiiiiiiii i, 155

6.9 Part of a data flow diagram implicitly showing multiple data
flows referencing the same data store object

(not necessarily the SAme INStANCE) ... oiiiiiiiiiirscverreieirrereerneianeanns 158
6.10 A conceptual view of a SAME data SIOre......ocovviiivieiiiiiiiieianeereaans 160
7.1 Naming an apPliCAtOI ... e e iieieeeiie it iattaaiiiaseectrrreertrsenerraeerrnnss 165
7.2 AlLevel Odata flow diagram in the manner of Figure 3.18l 166
7.3 The structural details of the data flow diagram in Figure 7.2coooovvenn.es 167
7.4 Defining the data object coefficients to be the tuple (a, b, ¢).vrennnn. 167
7.5 A dialogue containing a menu for

selecting the data objects to disPlay .oovviiiiviiiiriiiiiieriir i i e en e 169
7.6 Display of all data objects currently in the dictionarycocvvieiiiiieiinnnns 169
7.7 The internal representation of data object definitions

for the roots exXample. e 169
7.8 Redundant rhs facts which are used

extensively in displaying data object dependencies........coovvieeereiiiennnn.. 170
7.9 A listing of data objects showing their (inferred) types.........covviveiiniinn.s 170

7.10 Arequest to display the dependency graph, to the selected
depth, of the data objects depended on by data flow

FIGURES AND TABLES Xiv

roots In Process £indRootsOEQLAdratiC i nesseesereineene- 1 71
7.11 Data dependency graph for data flow rocts in process

findRooLsOf0UuadratiC e e e e 172
7.12 Specifying the executable model process Set...coveuviiiiiiiiiiiiineann... 173
7.13 Request for user to supply external entity generated

data flOW INSTANCES .ottt et e et ii it iae e aatae e rnerane e 173
7.14 Sequence of requests for sub-object values

for an instance of data flow coefficients...ccccccimiiiiioniininiaens 176
7.15 An example full trace........ooiii 177
7.16 The executable model representation

Of external entity analy st ..ciocieiiiiiiieiiiiiierieeiaeiriciaaenenaenaans 177
7.17 An example error display prompt generated by SAME during the

creation of an instance of the data object root 1. Particularly, a

request to find the square root of -15 has been trapped.

(The user has supplied a further invalid value. See Figure 7.18.).............. 178
7.18 Following the user supplying an invalid value (as shown in

Figure 7.17), SAME displays an error message. The user

must supply a positive number before SAME will contdnue 179
7.19 Messages generated under full trace which relate to the two

attemnpts to find the square root of a negative number.........ccccceeee 179
7.20 The data flow reduction graph for data flow roots evaluated in the

context of process £indRoot sOfQUAATatic cuevierieerceiiiareeerenncnnns 181
7.21 A particular refinement of the process findRootsOfQuadratic

into the two processes computeRoot) and computeRoot2. .. u.e..... 183
7.22 A particular refinement of the process findRoots0fQuadratic

into the two processes computeRootl and computeRoot2 .. vvreiiuannn. 184
7.23 A request to form an application mode! from the leaf level

processes that are descendants of the process findRootsOfQuadratic

{namely the two processes computeRoot and computeRoOE2) iniecnnns 185
7.24 An instance of the data flow roots exported to

the external entity analyst by the hook root s, 185
7.25 Amendments to data object definitions for

the roots application, with an omission in

the definition of the Object sgr..vivievriei i, 186
7.26 An error dialogue of the same general format as Figure 7.17,

which indicates that no value could be found nor generated

fOr datd ObDJECE S QI .cieiiiaiiiiiiii ittt e e e e e e e en 187
7.27 Following the declaration of the data object sqr as

sqre=sqri(bsq - fourAC), the object dependencies will be as shown.... veeena 187
7.28 A different refinement of process findRootsOfQuadratic....cccee.... 188
7.29 An ermor dialogue stating that

no importers exist for data flow nil...cci . 188
7.30 A data flow diagram which contains aloop...oovvevviiiiiiienieni s 189

FIGURES AND TABLES XV

7.31 Data object definitions for the looping application;
and AN EXECULION ITACE.iiiuiervrirrnrrntiueenesiernreasenastsecnnemnnrnsinsenmnranns 190

7.32 Prompt to the user to define the action to take when a
currency mismatch oceurs, in the case where the automatic

fiushing of instances has been turned off.....c.c.cccciiiiiiiinnniiniiniininn, 191
8.1 Level 0 data flow diagram for the revised

order processing apPHCATONo.tisirieiii et et e aainannaarananans 194
8.2 Level | refinement of checkANdFill0Eder .oivververirerreaiiniinaniaraneannnns 195
8.3 Level 1 refinement Of produee Invo i G aeeeriaaaasnresarearenrnans 196
8.4 Data object defiNitiONS .iiiiieiiiiiiiieiiiici e eicert e e e aans 200
8.5 Datadependency graph for data object invoice .iocooiviiiiiiiniiiiiiiiiennn. 200
8.6 Data object definitions which

differ from those given In Figure 8.4 . ..ot eeeaes 201
8.7 Data store tuples used in the first prototype ...c..ovvieiiiiiiiiveeniicieeeens 202

8.8 Data store access details for constructing
instances of data flow customer details......covviiiiiiiiiiiaiininiiannn,.. 204

8.9 The objects tc be mapped between
the data flow adjusted credit and the

customer data store tuple component cust_available credita... 208
8.10 The generation of an invalid instance of cust_available credit........... 210
8.11 The instance of rejected order,

which correctly identifies the customer's lack of available credit............... 211
8.12 Revised form of Figure 8.1, with

the data store parts replaced by the external entity parts...........cvuveeennn, 212
8.13 Aninstance of data object updated_part details

which contains muitiple parts remainingINSIANCESvvieriveriinnrnnnn. 215
8.14 Aninstance of data object invoice

whicl contains multiple line item IMSIANCES ..voeivviiineiiiiiiiiereaeennins 216
9.1 Executable META minispec for

Process p3, PRODUCE INVOICE.. .. uviuuaetieanneeannennennentananaranssensacanss 225
9.2 A conceptual structure for a coarse-grain processing element...................230
Tables
I Important propertics of requirements and

design specifications, as identified by Howden [Ho82a]...ccocovcveiicannnnne 4
II The data dictionary language notation of De Marco......oooovvieiiiiiiiniininns 25
o A comparison of some reported date-driven architectures..........c.o.oceeveiene 62
IV Example tuple instances for specific definitions ... 118
A% Example tuple instances for group object definitionscoeiiiiniiinnns 121
VI Exarnple tuple instances using basic type CONSTUCIOTS vvvuovvvererrviraneneenns 121
VII The possible bindings between dictionary obJeCtS....cuvivvirereerreveeirrennnn, 144

VII A comparison of some coarse-grain data flow schemes................ocoviee 228

Part 1 contains the background material to the research reported in the
dissertation.

In Chapter 1 the motivation for the research is described, along with a statement
of the objectives. The principle objective has been to investigate the use of executable
data flow diagrams as a prototyping tool for use during the analysis phase of the
software life cycle. The approach adopted to achieve this objective is also given.

Chapters 2 and 3 contain discussions of the more important support material. In
Chapter 2 structured systems analysis, whicli is the method that has data flow diagrams
as a component tool, is discussed. Both advantages and disadvantages in the use of
structured systems analysis, and data flow diagrams in particular, are enumerated.

In Chapter 3 low level (fine-grain’) data flow schemes are discussed, and
characteristics which are particularly useful to a high level (‘coarse-grain’) data flow
systernt are 1dentified.

1.1 Motivation for the research

In the design of a software system, the output from a requirements capturing
exercise is the specification, which is a document that contains an abstract computer-
orientated representation of the set of end-user requirements.!

Producing a correct specification is seen to be the key to the successful, cost-
effective development of software systems [Bo76]. There are, however, problems in
knowing when a specification is correct, and even when it is complete; not least
because of the problems of adequately specifying what is required in the first place. In
the context of the specification of requirements, Howden has stated that ({Ho82al],
p. 72):

‘The principle idea in the analysis of requirements specifications is to make sure
that they have certain necessary properties.’

Howden tabulates some of the more important of these properties, included here
as Table I,

Some of the properties, notably completeness, must be viewed as ideals which

cannot be achieved in many software development projects.

I Terms in bold rype are included in the Glossary. In generai, the term ‘end-user(s) will refer to the potential
users of the system being analysed, who ere considered not to be software developers. The terms "user' and
‘analyst’ are used to refer 1o Lhe person(s} carrying out the analysis. The term "user’ generally appears when
the application of an analysis lechnique, or tool, is being discussed.

CHAPTER 1 — INTRODUCTION 4

Property Comments

Consistency Specifications information must be internally consistent, If
the information is duplicated in different documents,
consistency between copies must be maintained.

Completeness | Specifications must be examined for missing or incomplete
requirements and design information. All specificadon
functions must be described, including important properties

of data.

Necessity Each part of the specified system should be necessary and
not redundant.

Feasibility The specified system should be feasible with existing

hardware and technology.

Correctness In some cases, it 1s possible to compare part of the
specification with an external source for correctness.

Table I: Important properties of requirements and design specifications,
as identified by Howden [Ho82a].

Parnas and Clements enumerated various problems in the area of software

design [PC&5]. Some of particular interest, are couched below in requirements

specification terms:

In most cases the end-users do not know exactly what they want and are unable to
state what they do know,

Even if the initial requirements were known, other requirements usually surface as
progress is made in the development of the software.

Even if all of the relevant facts had been elicited and included in the specification,
experience shows that human beings are unable to fully comprehend the plethora of
details that must be taken into account in order to progress into the design and
building of a correct system.

Even if all of the detail needed could be mastered, all but the most tivial projects are
subject to change for external reasons. Some of those changes may invalidate
pIEVIOuS requirements.

Human errors can only be avoided if one can aveid the use of humans. No matter
how rational the requirements specification process, no matter how well the relevant

facts have been collected and organised, errors will be made.

CHAPTER 1 - INTRODUCTION 3

These problems suggest that as requirements are likely to change during
analysis, flexibility should exist in the methods and tools used to capture requirements.
As well, consistency needs to be maintained. In fact, checking for consistency is seen
to be the property in Table I which is the most achievable using computer tools. Given
the right tools, computers are particularly good at this type of task.

The correct specification of requirements is seen as the key to the successful,
cost-effective development of software systems [Bo76]. It is also generally agreed that
to be able to validate requirements, they must be rigorously specified. As Davis
succinctly puts it ({Da88], p. 1100):

'‘Use a formal technique when you cannot dafford to have the requirement
misunderstood.

In an attempt to improve both the capturing of requirements, and the production
of a specification document that can be effectively used throughout the software
development process, considerable effort is being expended on developing formal
specification methods (see, for example, {GT7%a, BO85, Wal3, Heg6, JoB6, ZS86]).
However, most, if not all, of the techniques proposed use formal methods and
languages which require a reasonably sophisticated level of mathematical maturity to be
fully understood. This tends to make them unsuitable as communications media
between analysts and most end users; which is unfortunate, as a further major
perceived parameter in the requirements capturing process is the active involvement of
end users (see, for example, [Al84, BW79, CM&3, De78, Ea82, 1084, MC83, Ri86,
SP88]).

Speaking specifically about understanding software requirements specifications,
Davis has observed that ([Da&8], p. 1112):

‘understandability appears to be inversely proportional to the level of
complexity and formality present.

There can be seen to be a tension between the need on the one hand for an
unambiguous, succinct, specification of requirements as the output from the analysis
process, and (at the least) the need to validate those requirements with end users.

Part of the purpose of the research reported herein has been an attempt to
address some aspects of this tension by adding formality, in the shape of a strict syntax
and operational semantics, to the data flow diagrams of structured systems
analysis (§SA), a semi-formal technique, to produce a computer-assisted
software engineering (CASE) prototyping tocl. Data flow diagrams are considered
relatively easy to understand [De78, Ri86, YBCE88], yet they have the potential to be
viewed more formally as high level data flow program graphs [Ch79].

The subsequent sections of this introduction more fully develop some of the

background to the research.

CHAPTER 1 - INTRODUCTION 6

1.1.1 Methods, methodologies, tools, and techniques

Quite often confusion exists in the use of the words 'method’ and
'methodology’. The sense in which they are used in this thesis is as follows
[Fr80, MMB5]:

Definition: A method consists of prescriptions for carrying out a certain type
of work process; that is, it 1s a way of doing something. ¢

Definition: A methodology is a collection of methods and tools, along with
the management and human-factors procedures necessary to their
application. *

Also 'tool' is used with a particular meaning [Fr80, MMZ&5]:

Definition: A tool is an aid, such as a program, a language, or documentation
forms, that helps in the use of a method. ¢

Frequently, in this dissertation, the term 'technique' appears. It is used informally
as an abstraction. For example, a set of objects may be described as 'techniques’ when,
say, some of them are 'methods’ and the rest are (parts of) 'methodologies’.

1.1.2 Formal specifications, and formal methods

The application of formal methods is viewed by many as being necessary for
the correct and unambiguous specification of objects (see, for example, [AP87, GMR6,
Jo86, LZ77]). Consequently considerable effort is being spent on research in this area.
'Formal methods' and 'formal specifications' are widely used terms that imply the use
of strict syntax and semantics in the description of objects; whether the objects are
statements, programs, requirements, or something else.,

The following definitions make clear what is meant by 'formal specification’
and the related term ‘formal method":

Definition: A formal specification is a specification which has been
defined completely in a language that is mathematically precise in
both syntax and semantics. ¢+

Definition: A formal method is a method with a rigorous mathematical
basis. *

CHAPTER 1 - INTRODUCTION 7

The extent to which formal methods can be successfully used is unknown.
Although some formal methods have been used to specify significant applications
[Su82, STER2], the correctness of the specifications has not been proved, and, in some
cases, has been shown to be incorrect {Na82]. As discussed in the next section, it
appears that the most that can be hoped for in practical situations is a specification in
which amenable parts of the requirements have been formally specified [Na82]. Any
specification which is not a formal specification will be described simply as a
'specification’. The integration of formal and informal specifications is considered
necessary. As Gehani and McGetirick have put it ((GM86], p. vii):

‘Formal specifications do not render informal specifications obsolete or
irrelevant; although they [formal specifications] can be checked to some degree
for completeness, redundancy and ambiguity, and can be used in program
verification, they are often hard to read and understand. Consequently, informal
specifications are still necessary as an aid to the understanding of the system

being designed, informal and formal specifications complement each other.'

1.1.3 Informal, semi-formal, and formal

The problems with proving the correctness and general applicability of formal
methods has led to the view that formal methods cannot be used without recourse to
informal techniques for specifying requirements {(nor even for specifying programs)
[MM835, Na82, Fe88). Naur has suggested that ‘formality' should be viewed as an
extension of 'informality' [Na82)]. He states that

'the meaning of any expression in formal mode depends entirely on a context
which can only be described informally, the meaning of the formal mode having
been introduced by means of informal statements.

Naur, himself, quotes from Zemanek discussing software development [Ze80]:

'No formalism makes any sense in itself; no formal structure has a meaning
unless it is related to an informal environment (...} the beginning and the end of
every task in the real world is informal.

The view of Naur is supported by Mathiassen and Munk-Madsen, who have
taken Naur's arguments, which were directed at program development, and applied
them to the more general area of systems development [MMB85]. Both the views of
Naur, and Mathiassen and Munk-Madsen, are supported here. As a consequence, the
following are offered as definitions for 'informal’ and 'formal' in the context of
describing some object:

Definition: The informal description of an object is a description that is done
without recourse to formal methods. .

CHAPTER 1 — INTRODUCTION 8

Definition: The formal description of an object is a description that is done
with recourse to formal methods. .

Note that a 'formal’ description could include 'informal’ descriptions within it,
as it is 'with recourse to' rather than 'solely with'. The counter-argument does not
apply: an 'informal' description contains no 'formal' descriptions within it.

It is possible to perceive of a spectrum of descriptions, going from informal at
one end, to totally formal at the other end. This is in keeping with Naur's proposals
[Na&2].

The term 'semi-formal' is used loosely to describe any technique that is formal,
but with distinctly informal compoenents, An example would be the structure charts
of structured design when interpreted using the algebraic approach(es) of Tse [St81,
Ts85, Ts85a, Ts86, Ts&7, YC79].

1.1.4 Semi-formal techniques in
the specification of requirements

Techniques of an informal nature for specifying requirements abound. The rmost
widely used is narrative text, but this frequently results in large, ambiguous, and
incomplete specifications that lead to communications problems between analysts and
end users; particularly when attempts are made to validate requirements [De78, Da88].
Starting in the early 197('s, semi-formal structured techniques have been
developed over the years in an attempt to improve both the approach to analysis, and to
place the emphasis more on the graphical presentation of information as a better method
of communications. Included in the structured approaches for the capturing and
specification of requirements are, Structured Analysis and Design Technique (SADT)
[Co85, Ro77, RS77, Di78, Th78], Information Systems work and Analysis of
Changes (ISAC) [BHE84, LGNS1, Lu82], Software Requirements Engineering
Methodology (SREM) [Al77, Al78, AD81, BBD77] which is more suited to embedded
real-time systems, and the class of techniques called 'structured systems analysis'
(SSA) [CB82, De78, GS79, WeS0L.

All of these have quite powerful abstraction capabilities which allow, for
example, objects in diagrams to be exploded into lower level diagrams in a top-down
fashion.

SSA techniques are the most widely publicised and used technigues, and are
based on data flow diagrams, which show the system in terms of data precedences: a
data-orientated approach. The SSA techniques also happen to be the most informal
of those mentoned. It is impossible to say whether their popularity is due to their
relative simplicity, although some statistical evidence does exist to suggest that this may

CHAPTER 1 — INTRODUCTION 9

be the case: in comparing the use of data flow diagrams and IDEFo (the graphically-

based function modelling part of IDEF, a component of SADT), Yadav et al. conciuded

that data flow diagrams appear slightly easter to use [YBC8Z].

Though the graphical features of the SSA techniques are seen to aid
communications between analysts and end users, they lack the necessary level of rigour
to satisfactorily facihitate the validation of requirements {Fr80, Ri86]. The lack of rigour
in these techniques stems from their generally free interpretation, which is due more to
a lack of strict semantics than a lack of syntax. Unfortunately, this lack of rigour invites
misuse [Do87]. It also leads to the possibility of incorrect, and ambiguous
specifications. Consequently, as a specification technique, SSA suffers from many of
the problems of narrative text. This is not surprising, because SSA still places a
reasonably heavy reliance on the use of textual data, although its syntax is generally,
but not completely, more formal than narrative text.

Some of the weaknesses of SSA are discussed in more detail in Chapter 2. At
this time it should be noted that they exist, and that an attempt to add formality to SSA
can be usefully applied to minimising the dependence on purely textual data. The means
used to achieve this minimisation is sketched out in Section 1.3, while the details form
the subject matter of Part IT of this dissertation.

SSA lias three major component tools which are of particular relevance in the
dissertation. These are:

+ Data flow diagrams — An application is modelled by a hierarchy of data flow
diagrams which show how data flows through the application.

+ Data dictionary — The descripton of data objects, and the transformations carried out
on them (by processes), are maintained in a data dictionary.

» Process specifications — For each bottom level (leaf) process, its process
specification (the process logic) describes how the data which flows into the
process is transformed into the data which flows out of the process.

These and the other component tools will be discussed more fully in Chapter 2.

1.1.5 Software development enviromments

In Iocking to define any tool for the capturing of requirements, consideration
should be given to the environment in which that tool will be focussed. The current
approach in software engineering is to develop tools within a framework known as
a software development environment (SDE) SDEs are also known as
software engineering environments (SEEs), and integrated project (or
program) support environments (IPSEs).

CHAPTER 1 — INTRODUCTION 10

The fundamental purpose of a SDE is to provide a computer-based set of
methods and tools — a methodology — to support the soffware (development)
process. The existence of a cohesive methodology is fundamental, as this
encapsulates the process model used in software development. In Dowson's words
([Do86], p. 6),

'We take the position that an unstructured "bag of tools” does not qualify as a
software development environment.'

Attempts have been made to define environments made up from existing
methods and tools. Howden discusses the architecture for four possible SDEs, each
based on the waterfall model of the software process [Ho82]. The differences between
the environments is the number and sophistication of the methods and tools included.
What is apparent is the large number of 'discontinuities’ which exist between the
different tools in each proposed environment. These discontinuities have to be bridged
generally by manual means, which makes them error-prone and unsatisfactory for the
development of other than small software projects.

The following definition emphasises the need for integration ({WD86], p. 5):

Definition: A software development environment is a coordinated
collection of software tools organised to support some approach to
software development or conform to some software process
model. +

It is argued that the real value of a SDE comes from the integraton between the
various methods and tools that it uses. This integration is provided by a specialised
data base environment. Conceptually, these specialised data bases have much in
common with the more recent of the data dictionary systems, which also aim to
provide an integrated view, and conrrel, of {all} the objects in some context (whether,

say, the context is an enterprise, or some division or department of that enterprise).

1.1.6 The software development process
and the software life cycle

The underlying structure of a SDE is the particular software process
development model adopted by the architects of the SDE. The purpose of this section is
to determine what a process development model is, and whether a standard model and,
hence, SDE exists into which the proposed tool could be usefully placed.

The software development process (also called the software life cycle) is

frequently shown as consisting of a number of stages, such as requirements, design,

CHAPTER 1 — INTRODUCTION 11

implementation, testing, and operation and maintenance [So85].2 The activities carried

out in each of these stages is described by Sommerville as ([So85], p. 3):

Requirements analysis and definition — The system's services, constraints and goals
are established by consultation with system end-users. Once they have been agreed,
they must be defined in a2 manner which is understandable by both end-users and
development staff.
System and software design — Using the requirements definition as a base, the
requirements are partitioned to either hardware or software systems. This process is
termed systems design. Software design is the process of representing the functions
of each software system in a manner which may be readily transformed to one or
MOTe COMpuUter programs.
Implementation and unit testing — During this stage, the software design is realised
as a set of programs or program units which are written in some executable
programming language. Unit testing involves verifying that each unit meets its
specification.
System testing — The individual program units or programs are integrated and tested
as a complete system to ensure that the software requirements have been met. After
testing, the software system is delivered to the customer.
Operation and maintenance — Normally (aithough not necessarily) this is the longest
life cycle phase. The sysiem is installed and put into practical use. The activity of
maintenance involves comrecting errors which were not discovered in eatlier stages of
the life cycle, improving the implementation of system units and enhancing the
system's services as new requirements are perceived.

Figure 1.1 shows the waterfall model view of this process, including:
The overlap between the stages — There are no 'clean' division points between the
activities across stages.
The feedback (and feed-forward) between the pre-operational development stages —
The next stage in the process is dependent on work carried out in the previous
stage(s) (feed-forward). Identifying errors, or accounting for changes, etc., require
changes to previous stages (feedback).
The feedback from the operational and maintenance stages — Once an application
becomes live, errors may surface, or changes be required over time, which lead to a
feedback to earlier stages.

It is possible to define ‘software development process' and ‘software life cycle' to have significantly
different rueanings. Compare, for example, the definition for ‘software (development) process in the
Glossary with the following definition for 'life cycle' ((MRY86], p. 83): 'The system life cycle is the
period of time from the initial perception of need for a software version to when it is removed from
service'.

CHAPTER 1 — INTRODUCTION 12

requirements e—
— design ;ﬁ Operarions
“—{ implementation %= and
— testing maintenance

Figure 1.1: The waterfall model of the software life cycle,
showing the overlapping of stages
(based on Sommerville [S085], Figs 1.1 and 1.2).

The end points of the stages in the waterfall model are generally seen to coincide
with major documentation and review points. They also tend to correspond with points
at which major changes occur in the techniques and or environments used for the
development, such as at the interface between (structured) design and implementation,
where a switch is made from using two-dimensional structure charts to using a one-
dimensional programming language [YC79].

The model in Figure 1.1 is extremely abstract, and a number of important
features have been omitted, including:

+ An indication of parallel activities within phases — Invariably, on other than the
smallest projects, developers work in tandem. This is certainly true of the
implementation phase, when a number of programmers will likely be concurrently
developing modules.

+ An indication of whether or not prototyping is supported, and if so, where.

+ An explicit indication of where verification and validation take place.

Figure 1.1 highlights a current major problem in the description of the software
process: the lack of a definitive process metamodel with which software process
models can be described, and checked for comrectness and completeness [PCS8S5,
WD86]. However, as this is a major research topic in itself, it will not be pursued
further here. Instead, the waterfall model of Figure 1.1 is accepted as adequate for the
purposes of the research reported herein.

1.1.7 Models, executable models, and prototypes
The use of models in analysis is now seen as fundamental. According to Quade

([Qu80], p. 31):
‘Analysis without some sort of model, explicit or otherwise, is impossible.

CHAPTER 1 —~ INTRODUCTION 13

The following defines what a 'model’ is understood to be:

Definition. A model of an object is a representation which specifies some but
not all of the attributes of the object. *

In the development of computer software, models are seen to be most useful if

they are executable {Ri86].

Definition: A dynamic model of an object 1s a model which can be made to
carry out a set of operations, possibly in some specified
sequence. ¢+

An 'executable model' is merely a dynamic model, which in the context of

software development specifies a software model that can be exercised on a computer.

Prototypes, and prototyping
As Carey and Mason have observed (CM&E3, p. 177), in computing:
'there appears to be little if any agreement on what a prototype is.'
The following simple definition is considered adequate:

Definition: A prototype is a model. ¢

A prototype is either an abstraction of the object it is modelling, a 'mock-up, or
it is a detailed representation of part of the object. SSA provides good facilities for
modelling parts of systems, as described in Chapter 2.

By implication, the medium used to construct a prototype need not be the same
as that used for the final object. A prototype of a menu system, for example, could be
constructed using the transition diagram interpreter (TDI) part of RAPID/USE
[WPS86], and then the real system could be constructed as part of a larger integrated
project using a language such as PL/L.

Definition: Prototyping is a method for building and evaluating prototypes. ¢

The purpose of prototyping, as it is seen here, is the same as that stated by
Carey and Mason ([CM83], p. 180):
'‘Our focus in this paper is on improving the final information system product
through use of prototypes to illuminate more clearly the [end-luser’s real

needs.

CHAPTER 1 - INTRODUCTION 14

This view of prototyping, as a productive way for analysts and end-users to
interact, is commonly held throughout the literature (see, for example, {AHNE2, Al184,
BW79, CM83, Ea82, TH87, JS85, KS85, MCR3, NJ82, SP88]). No other purpose
for prototyping is stressed here, although claims have been made for it as a replacement
for the 'classical' sofware development process [NJ82]. See, for example, the
discussion and references in Carey and Mason {CM&3].

Different approaches to prototyping in computing have been enumerated [IHE7,
JS85]. Ince and Hekmatpour, provide the following taxonomy {[IH87], p. 9):

s Throw-it-away’ prototyping — Which involves the production of an early version of
a software system during requirements analysis. This is then used as a learning
medium between the analyst and the end-user during the process of requirements
elicitation and specification.

« Incremental prototyping — Where a system is developed one section at a time, but
within a single overall software design.

+ Evolutionary prototyping — Where a system is developed gradually to allow it to
adapt to the inevitable changes that take place within an enterprise.

1.2 Objectives of the research

The principal objective of the research, has been to investigate the use of
executable data flow diagrams as a prototyping tool during the analysis phase of the
software life cycle.

Implicit in this objective are the following further objectives:
+ That the executable model, which is a significant output of a prototyping exercise, be

rigorous enough to form part of the specification, if required.

» That to serve as an adeguate communications medium between analysts and end-

users, the tool should:

have a small number of (simple) concepts;

— de-emphasise procedural details;

incorporate high levels of abstraction in a relatively simple manner;
— make effective use of graphics.
« To be an effective prototyping tool at the analysis stage, as well as the list of features
just given, the tool should:
— provide ‘soft’ recovery from errors;
- be able to exercise ‘incomplete’ models.

1.3 The approach
In arriving at the objective(s) given in Section 1.2, the following five factors

were identified as of particular importance to the successful capturing of requirerments:

CHAPTER 1 — INTRODUCTION 15

« Active user involvement — This is a long-held view in information systems
development. De Brabander and Thiers cite a paper written in 1959 which proposes
such an activity {DT84]. Active user involvement generally implies the need for
informal and semi-formal methods and tools.

+ The use of graphical techniques in place of textual descriprions, wherever
appropriate — Graphic techniques abound in commerce: PERT charts, pie charts,
histograms, and graphs, are notable examples. At the same time, purely textual
descriptions have been much criticised [Da88, De7§].

+ The use of executable models — Particularly in the form of prototypes, as a means to
illuminate clearly the needs of end-users [Al84, BW79, CM83, Ea82, M(C83, Ri86,
SP88]. A model should be viewed (at the least) as a form of documentation.

« Powerful abstraction capabilities — Analysis is a creative process which has to map
complex real world problems into the specification of solutions [We81].

« A specification should be unambiguous — This implies the existence of strict
semantics in the specification method(s), and ways of avoiding or checking for
contradictions [AP87, Da88, GM&6, Ho82a, Jo86, Rig6].

It was proposed that these factors can be addressed, to a significant degree, by
adding formality to SSA.

Following an initial study into using the three SSA tools mentioned in
Section 1.1.4, the approach adopted has been to specify the architecture for a tool
based on two of those components — data flow diagrams, and the data dictionary — plus
the development of a prototype {of the prototype system) to test out many of the ideas
put forward.

The formality added to the data flow diagrams has three components:

» A formal syntax for specifying data flow diagrams — To ensure that only a consistent
data flow hierarchy can be created, with vahd data flow connectons.

+ An operational semantics for data flow diagrams — These define how a data flow
diagram can be executed.

+ A consistent means of transforming data flows — This is achieved by treating the
definitions of data objects in the dictionary as programming language statements,
when executing data flow diagram processes.

The tool is described as 'semi-formal’. Work to provide a completely formal
‘back-end' is being undertaken separately from the research reported here.

Given the discussion in Section 1.1, the tool has not been fixed to any specific
methodology or, by implication, to any specific SDE or software development process
model. As a consequence of this, the tool can possibly have use beyond the
requirements specification phase. However, this is not argued in the dissertation, but is
suggested, in Chapter 10, as a possible topic for future research.

CHAPTER 1 — INTRODUCTION 16

The tool is not considered a panacea for all the iils bedevelling the specifying of
requirements. Again referring back to the discussions in previous sections, of necessity

it is seen as one of a collection of informal to formal tools for use during analysis.

1.4 Structure of the dissertation

The thesis 1s structured in three parts. Part I contains this introductory chapter,
and two further chapters which survey material relevant to the tool described in Part I

Part IT proposes a design for an executable data flow diagram tool in Chapters 4
to 6. Following this, in Chapter 7, a prototype implementation of the tool is discussed.
Many of the ideas incorporated in the architecture of the executable data flow diagram
environment have been incorporated into this prototype, which has been written in
Prolog. It should be realised that no attempt was made to develop a complete
commercial implementation. Having said this, the prototype source is over 400 Kbytes
in size.

The final chapter in Part II contains a detailed example application developed on
the system described in Chapter 7.

Part III contains two chapters. The first, Chapter 9, discusses other approaches
to the execution of data flow diagrams. Included there is an outline description of a
system that was also developed as part of this research, and is the precursor to the
system described in Part II. Finally Chapter 10 discusses the findings of the research,
and suggests further avenues of investigation.

2.1 Introduction

As it is discussed here, structured systems analysis (SSA) is the technique
exemplified by Gane and Sarson [GS79], and De Marco [De78]. These two approaches
are conceptually similar, but there are differences in notatien, terminolegy, and rules.
In general, the differences between the two approaches will not be discussed. If
needed, a comprehensive discussion and comparisen of the two can be found in Tucker
[Tu88].

The rest of this chapter begins with an identification of the three major tools in
SSA. After this each tool is discussed in detail, followed by a section which provides
an integrated view of the tools. The application of SSA to the specification of
requirements is then discussed, with most emphasis being given to the way that data
flow diagrams, in panicular, can be misused when specifying systems.

One of the component tools of SSA is the data dictionary. In a later section, a
discussion on dicticnaries takes them beyond their role in analysis, and focusses on
their role as general purpose tools. Following this, the two options that were pursued in
the research to develop a prototyping tool based on data flow diagrams are given.

Finally, a summary of the chapter is provided.

17

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 18

2.2 Component tools of SSA
Data flow diagrams are the main notational tool of SSA [De78, GS79, GS80].
Following on the success of structured design, SSA methodologies began to appear a

decade ago. Although much progress has been made in the understanding and the

refinement of these methodologies, as well as the development of new ones [CB82,

LB82], they suffer from a general lack of integration and lack of ease of validation,

which may in part be due to the fact that SSA is made up of a mixture of techniques.

The set of tools and techniques of SSA is based on relatively few primitive concepts

and building blocks. The major tools are

 data flow diagrams;

+ adata dictionary;

+ a representation of the procedural logic, such as minispecs, decision tables, or
decision trees.

2.3 Data flow diagrams

The data flow diagrams of SSA. use only four symbols {see Figure 2.1), namely
labelled arrows for data flows, annotated lozenges or bubbles for processes {or
transforms), squares for external entities (sources or sinks of data), and narrow open-
ended rectangles, or straight (parallel) lines, for data stores. The two most used
notations are those shown in Figure 2.1.

(Gane and Sarson De Marco
notation notation
Extemnal Source
Entit or
Y Sink
Process

Data Store File

Data Flow Data Flow

Figure 2.1: Comparison of the Gane and Sarson, and De Marco
data flow diagram notations.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 19

A number of computer packages have been implemented based on the notation
of Gane and Sarson (for a sample, see [CTL87, IT84, Jo86a]), while others have been
based on De Marco's notation (see, for example, [CT86, DMKS82, Yo86]). Some
packages support both, and allow the user to choose between them (an example is the
Visible Analyst Workbench [Pe87a]). The notation used in this dissertation is
essentially that of Gane and Sarson, which is considered to be neater than that of
De Marco's. The essentially rectangular shape of the boxes in the Gane and Sarson
scheme, and the regular shapes of the data flow arcs as straight-lined segments joined at
right-angles, makes the notation particularly suited to implementation on computers.
The prototype system in Chapter 7 implements a slightly modified form of Gane and
Sarson's notation, based on the MacCadd system {Jo86ajl.

Of the four symbols, external entities and data stores are arguably of lesser
importance. External entities are simnply named parts of the application environment,
and data stores are conceptually only required in update situations (such as where a
process transforms an old instance of a data flow into a new, updated, instance), or in
future reference (read only) situations. Together, they provide the interface to the
surrounding environment.

The arrows and Iozenges of the data flows and processes, respectively, are the
core of the data flow diagram notation and their generality enables them to be used with
a number of somewhat different emphases. For example, the practice of writing short
imperative statements in the lozenges, together with the top-down refinement of
data flow diagrams, gives mise to a functional decomposition view of systems. On the
other hand, the view of output data flows from transforms depending functionally on
input data flows, gives the fundamental data dependence view common to all data flow
systems. From an end-user system specification view, functional decomposition is
natural. From the point of view of an executable application model, the data
dependencies specified between the leaf processes in the data flow diagrams of the
explosion tree are central.! Note that these two views are not at all incompatible,
unless, as often happens, the more fundamental data precedence properties are de-
emphasised.

One major purpose served by data flow diagrams is the provision of logical
views, at increasing levels of refinement, of the system being analysed. During this
logical analysis, no physical considerations should intrude, not even in terms of time,
In general, data flow diagrams support this requirement well in that the details of how
the data flows are to be processed are 'hidden away' in the processes. Also,

conceptually, data does not have to flow instantaneously, nor need the capacity of a

I The explosion Lree (hierarchy) is discussed in Section 2.3.1.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 20

data flow conduit be limited, which means that the data flows can be viewed as pipes
along which instances of the data flows pass (in the direction of the arrows) to form
first-in, first-out (FIFO) queues at the importing processes. Exported data flows which
are imported by more than one process can be considered to generate extra copies at the
“T" junctions where the data flows fork (see, for example, data flow PART_DETAILS in
Figure 2.3). As soon as a complete set of data flows is available, the data flows can be

‘consumed’ by the importing process.

2.3.1 An application hierarchy of data flow diagrams

In data flow diagram terms, an application is represented by a hierarchy of
diagrams. The standard approach is to first represent the application by a single data
flow diagram that defines the domain of the system. This is called a context (data
flow) diagram, and it is also identified here as a Level 0 {(data flow) diagram.z
Except for small applications, the few processes and data flows that are included in this
diagram represent functions and data flows, respectively, at a high level of abstraction.
The data flow diagram in Figure 2.2 serves as an example.

CUSTOMER_
o \._POSTAL DETAILS
INVOICE CUST OMERS
" CUSTOMER DETAILS
cusToMER|—ORDER.DETATLS | ORDER
UNFILLABLE_ORDER | PROCESSING PART_DETAILS AR

N UPDATED_PART_DETAILS

Figure 2.2: Context, or Level 0, data flow diagram for an
order processing system.

The single process, named ORDER PROCESSING, represents the activities which
transform an order (generated by a CUSTOMER as the data flow ORDER_DETAILS), into
either: an order that cannot be filled (the data flow UNFILLABLE_ORDER}; or an order that
is filled, which (finally} leads to the generaton of an invoice (the data flow INVOICE).

Although this is a reasonable sumrmnation of Figure 2.2, from the diagram alone,
there is no way of knowing whether this is the correct interpretation without recourse to
supporting data or knowledge. The diagram itself does not contain information to this
level of detail.

2 De Marco distinguishes between these iwo, although he concedes that the context diagram should be part
of the (hierarchy) set of data flow diagrams ([De78], p. 75). He describes the Level 0 diagram as the
refinement of the context diagram. They are considered the same here to enable the context diagram,
which forms the root in an application’s dala flow diagram hierarchy, to be described as being at level 0 of
the hierarchy, without causing undue confusion. Also a context diagram could contain more than one
process.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS

21

Accepting the above interpreration as correct, the following are worth noting:

» Much of the semantic informarion contained in the diagram, is carried in the assigned

names of the objects — Names such as ORDER PROCESSING, ORDER_DETAILS, and

PART_DETAILS, lend considerable weight to the understanding of the diagram.

+ No guarantee can be given that the relationships between data flows can be fully

identified from the data flow diagram — There is no way of telling that INVOICE
depends on ORDER_DETAILS (what else does it depend on?}. Nor that either one or

other, but not both, of INVOICE and UNFILLABLE_ORDER is generated for each

ORDER_DETAILS.?

One way of providing further detail, is to refine process ORDER PROCESSING to

create a new data flow diagram. Only processes can be selected to be refined into new

diagrams. However, once a process is being refined, it is possible, within the same

diagrarm, to refine the data flows which are input to and output from that process into

their component objects. Examples of how this can be done are given in Figures 3.18
and 3.19 in Chapter 3, and the examples in Section 7.4 and Chapter 8.

One possible refinement (or ‘explosion’) of process ORDER PROCESSING 1s given

in Figure 2.3. Three new processes have been introduced in this diagram. Even though
more information is contained in the diagram, there is still a lot that is unclear, Why, for

example, is data store PARTS 'updated’ by process FILL ORDER and not by CHECK ORDER?
What then is CHECK ORDER checking? If CHECK ORDER is checking the availability of parts
to fill an order, why doesn't it 'update’ data store PARTS if the order can be filled?

A INVOICE A
CUSTOMER PRODUCE
N INVOICE
CUSTOMER. = ~—F—
ORDER_DETAILS POSTAL_DETAILS
CUSTOMERS BASIC_FILLED._
UNFILLABLE_ CUSTOMERL ORDER_DETAILS
ORDER DETAILS
1 YALID_ORDER N
CHECK FILL
ORDER ORDER
UPDATED_
PART_DETAILS| |PART_DETAILS

(PAI‘{TS

Figure 2.3: Level 1 refinement of process ORDER PROCESSING.

Two possible answers to these questions (among many) are the following:

+ The data flow diagram is modelling a part-manual, part-computerised system, in

3

ORDER_DETAILS is required to produce an INVOICE, or whether more than one is; and vice versa.

Because of their relatively free interpretation, there is no way of knowing whether only one

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 22

which the process CHECK ORDER is done manually against some printed list, and the
process FILL ORDER 1s computerised.
» The data flow diagram is in error.

Within the classification of the second answer, is the possibility that the first
applies, but the diagram also contains errors. An obvious one, in this case, is that
PART_DETAILS should be two different data flows from two different data stores, The
first data store, called PARTS LIST say, would model the printed list, while the second
store could model a computer-held inventory of parts in the data store PARTS.

Whether this is the right approach is unclear, as the diagram does not contain
enough information to be able to draw the above conclusions.

Further refinements can be carried out, as necessary. Figure 2.4 shows the
refinement, in the context of the refined process, of PRODUCE INVOICE. This style of
drawing data flow diagrams is consistent with Gane and Sarson. De Marco, on the
other hand, tends to minimise on the amount of detail contained in diagrams.

(" PROCESS 3 - PRODUCE INVOICE

' 3.5 Y} EXIINDEB.FILLED 31N BASIC..
cusTonERMINYOICEL] FORM I"oRpER DETAILS COMPUTE FILLED_
—

[EXTENSION ORDER_
DETATLS

3.2)

(FOTAL! |conpuTE
TOTIAL
— S

£ 3.3

LESS ICOMPUTE

LESS

\, /
CUSTONMER _POSTAL.DETAILS

|CUS'IOI‘IEBS

Figure 2.4: Level 2 refinement of process PRODUCE INVOICE,

Level O

Level I

Level 2

Figure 2.5: The hierarchy of processes for the order processing application
modelled in Figures 2.2 to 2.4,

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 23

Taken together, these diagrams form a rather simple hierarchy, or explosion
tree. The preferred way, within this dissertaton, of viewing an application in data flow
diagrams terms, is as a hierarchy of processes. A process hierarchy for the
application is given in Figure 2.5. The shaded processes are cailed the leaf
processes, as they come at the tips of the branches in the inverted tree which forms

the hierarchy.

2.4 Data dictionary

As demonstrated in Section 2.3, data flow diagrams tell only part of a 'story’.

De Marco has said ({De78], p. 126} that, without a data dictionary, they

‘are just pretty pictures that give some idea of what is going on in a system. It is
only when each and every element of the DFD has been rigorously defined that
the whole can constitute a "specification”.

The definitions of data flow diagram objects are contained in the data dictionary.

The inclusion of the word 'data’ in the term 'data dictionary' is somewhat misleading,

as the dictionary contains details on process logic as well. The use of the term is

historical, as pointed out in Section 2.8.

The data dictionary contains definitions of any objects of interest. The main
classes of objects of interest here, and their definitional details are:*

+ Data objects — For each data object, including data flows and data store tuples,
details on the component objects which it comprises, or its 'basic’ type, or edit
details. (See Section 2.4.1.)

+ Data flows — For each data flow, details of its single exporter and, possibly, multiple
importers.

» Data stores — For each data store, the data flows that are input to or output from the
store.

» Processes — For each process, the data flows that are input to or output from the
process. As well, details on whether the process is further refined or, if not, a
process logic summary specifying how the input data flows are transformed into the
output flows.

+ External entities — For each external entity, the data flows that are input to or output
from the entity.

As listed above, there appears to be significant redundancy of information. For
instance, a data flow has details on its exporter, yet each object which exports a data
flow, has details on that data flow. Whether this redundancy is real, or just apparent,

4 There are no hard and fast rules on what level of derail, or what quantity of information, should be kept on
objecls. Some methods, such as SSADM [Ea86], have siricter rules than others [De78, G579].

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 24

depends on how the data dictionary is maintained. If it is a manual system of cards,
say, then there are benefits in keeping as much information as possible in one place.
Not only does this lead to redundancy, it also invites inconsistencies caused by only
some of the affected cards being amended when a change is made. Computerised
systems, utilising data bases, can minimise on redundancy and any inconsistencies

which could result.

2.4.1 Defining data objects

The discussion in this section will concentrate on defining data objects. The
definition of data flow diagram objects, such as processes and external entities, will not
be addressed. It can be assumed that the dictionary is either able to store the diagrams
themselves, or a textual representation of them. Whichever way, all the details within a
diagram are assumed to be able to be captured within a dictionary. Similarly, process
logic is also assumed to be held in the dictionary in a suitable form.

Data structures and abstractions

In a similar way to a process being an abstraction of its refined descendant
processes, data can often be viewed as an abstraction of its component structures. The
INVOICE data flow in Figure 2.4, as an exampie, is likely to be a data object with a
structure that includes: details on the customer receiving the order; details of the parts
and quantities ordered, the cost of each quantity of parts ordered; the total cost of the
order; and so on. This structure could be represented in the form of a tree along the
lines of Figure 2.6.

INVOICE

INVOICE # CUST # CUST_DETAILS {EXTENDED LINE ITEM} TOTAL TO_PAY LESS

"\

CUST_NAME {ADDRESS_LINE}

PART # PART_DESCR QUANTITY UNIT_PRICE EXTENSION

Figure 2.6: A possible data structure hierarchy of the INVOICE data flow
shown in Figures 2.2 to 2.4.5

5 The curly braces signify (hat the enclosed object may be repeated a number of limes.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 25

In Figure 2.4, the component data objects TOTAL, LESS, and TO_PAY, themselves
appear as data flows. This similarity in concept between the refining of processes and
data flows (or, more generally, data objects), is one of the fundamental motivations
behind the adopted architecture given in Part II of this thesis.

A useful language for defining data objects is given in De Marco. Using this
language, certain of the invoice details of Figure 2.6 could be defined as follows:

INVOICE = INVOICE_# + CUST_# + CUST_DETAILS +
1{EXTENDED_LINE_ITEM]} + TCTAL +TO_PAY +LESS.

CUST_DETAILS = CUST_NAME + 1{ADDRESS_LINE}3.

EXTENDED_LINE ITEM = PART #+PART_DESCR + QUANTITY + UNIT_PRICE + EXTENSION.

INVOICE_# = 5{DIGIT}S.

PART_DESCR = 1{CHARACTER}14.

QUANTITY = INTEGER.

EXTENSION = REAL

The compiete notation is given here as Table II ([De78], p. 133).

Symbol Meaning

= 'is equivalent o', 'is composed of’,
or 'is defined as'

+ ‘and’, or 'with'

[‘either-or'; that is, select one of the
objects in the square brackets.

The objects can be separated by T,
a vertical bar standing for ‘or'.

{} ‘iterations of' the enclosed object(s)

) the enclosed object(s) is ‘optional’

Table II: The data dictionary language notation of De Marco.

De Marco provides examples using the language, particularly in Chapter 12 of
Structured Analysis and System Specification [De78]. Weinberg also uses a slightly
extended form of this language [We80].

An object is defined only once in the dictionary, although a number of
alternative structures can be given for the object using square brackets. The object
BANK_TRANSACTION, for example, could be defined as

BANK_TRANSACTION = [CURRENT_ACCOUNT_TRANSACTION |
SAVINGS_ACCOUNT_TRANSACTION |.

where the data format of these transactions could be totally different.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 26

De Marco does allow further information to be associated with a definition. For
example, if BANK_TRANS was a synonym {or alias} for BANK_TRANSACTION, the
definitions could be stored in the dictionary as:

BANK_TRANSACTION = {CURRENT_ACCOUNT_TRANSACTION|
SAVINGS ACCOUNT_TRANSACTION]
= BANK_TRANS.
BANK_TRANS = BANK TRANSACTION,

[f BANK_TRANS had itself been defined in terms of some other objects, this set of
definitions would be inconsistent. Identifying BANK_TRANS as a synonym for
BANK_TRANSACTION in the first definition has introduced the possibility for
inconsistencies to occur. An inconsistency is able to happen because there is
redundancy in defining the existence of one set of synonyms twice. It may be
convenient, and therefore justifiable, to do so, but it increases the possibility of errors
occurring.

Good practices to follow, and pitfalls to avoid, when organising a data

dictionary are given in De Marco, Gane and Sarson, and Peters [Pe88].

2.5 Process transformations

Various methods are used for specifying the logic of processes. The three most
often mentioned are:
+ Structured English
+ Decision tables
+ Decision trees

2.5.1 Structured English

Probably the most used method for specifying process logic, structured
English is a form of pseudocode. Such languages are an amalgam of English and
the constructs of structured programming. Importantly, details on the stucture and
initialisation of objects is abstracted out of process logic specified in structured English.
A possible specification of the process logic for PRODUCE INVOICE in Figure 2.3 is the
following:

FOR EACH PART #,
ASSIGN QUANTITY * UNIT PRICE TO EXTENSION.
ADD EXTENSION TO TOTAL.
IF TOTAL IS GREATER THAN $500,
ASSIGN 10% TO DISCOUNT.
ASSIGN TOTAL * DISCOUNT TO LESS.
OTHERWISE,
IF TOTAL IS GREATER THAN $250,
ASSIGN 5% TO DISCOUNT.
ASSIGN TOTAL * DISCOUNT TO LESS.
ASSIGN TOTAL - LESS TO TO_PAY.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 27

This is essentially one of the syntaxes given in De Marco ([De78], p. 209). Itis
reasonably informal and relies, for exampie, on indentation to define the scope of
conditional expressions.® A structured English version of the process logic which is

closer to pseudocode is shown below:

PROCESS P3
FOR EACH PART #
DO

ASSIGN QUANTITY * UNIT PRICE TO EXTENSION
ADD EXTENSION TO TOTAL
END DO
IF TOTAL > $500
THEN ASSIGN 10% TO DISCOUNT
ASSIGN TOTAL * DISCOUNT TO LESS
ELSEIF TOTAL > $250
THEN ASSIGN 5% TO DISCOUNT
ASSIGN TOTAL * DISCOUNT TO LESS
END IF
ASSIGN TOTAL - LESS TO TO PAY
PROCESS_END

In this variant, the scope of expressions is fully resolved by the use of
constructs such as DO — END_DO. Although apparently less ambiguous, end-users
may find such a specification harder to understand.

Note that in both versions, no mention is made of the need to initialise TOTAL
to zero. Also, the types of the objects can only be inferred from the process logic. No
definitions are contained in the structured English.

To facilitate comparison with the other process logic methods to be discussed,
the soructured English in Figure 2.7 describes how to identify whether a customer of a
particular enterprise should be treated as a priority customer, Or as a normal customer.
Hopefully, the details are reasonably easy to understand. The example and notation
used are taken from Gane and Sarson ([GS79], p. 81).

IF customer does more than $10,000 business
and-IF customer has good payment history
THEN priority treatment
ELSE {bad payment history)
so-1F customer has been purchasing
for more than 20 years
THEN priority treatment

ELSE {20 years or less)
SO normal treatment
ELSE (customer does $10,000 or less)

SO normal treatment

Figure 2.7: A structured English minispec for calculating the status of a customer.

¢ The functonal language Miranda [Tu86] is an implemented language which uses Iayout to define scope.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 28

2.5.2 Decision tables
A decision table is a two-dimensional matrix partitioned into four areas. They

have been used widely in United States Government institutions for a number of years,
and have had reasonable use elsewhere. Decision tables provide a concise means for
specifying what action to take when a relatively large number of conditions apply.
Details on their use can, for example, be found in Gildersleeve [Gi70], and McDaniel
[Mc78]. A decision table for the customer status example is shown in Figure 2.8
(IGS79], p. 83). The columns numbered 7 to § are the rules that identify which
combination of conditions apply. A "Y' signifies that the condition in the row in which
the "Y' appears applies, and an 'N', signifies that it does not. Where an 'X' appears in
a column, this signifies that the action to be taken is that which is in the same row as the
'X'. A customer, for example, who purchases more than $10,000 of goods a year (c1
=Y), is a bad payer {c2 = N), but has been trading with the company for more than
twenty years (c3 =Y), satisfies rule 3, and is given priority treatment {(al).

cl: More than $10,000avyear ? [Y [Y [Y Y [N N [N [N

c2: Good payment history ? Y|Y[NIN|Y|Y NN

c3: With company >20years 7 |Y {INJY [N |Y [N |Y [N

al: Priority treatment XXX X1X

a2: Normal treatment X XX

Figure 2.8: A decision table for calculating the status of a customer.

2.5.3 Decision trees

Decision trees provide a graphical method for describing process logic. A
decision tree for the customer status example is shown in Figure 2.9. The decision tree
in Figure 2.9 is conveniently in the form of a binary tree, but quite often more than two
branches emanate from a decision node (see, for example, [De78&, We80]).

De Marco considers decision trees as no more than a graphical representation of
decision tables. According to de Marco, end-users are more likely to understand
decision trees as they appear more familiar (like family trees, for example).

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 29

This better acceptance and understanding of decision trees over decision tables
seemms to apply equally as well to 'computer-literates'. In a design experiment carried
out by Vessey and Weber involving one hundred and twenty-four information systems
and computer science students from three tertiary estabiishments, all of whom had used
structured tools and the Cobol language, decision trees 'outperformed’ decision tables
for the task of determining the set of conditional truth values that led to a particular set
of actions in the problem being solved [VW86]. Decision trees also 'outperformed'
decision tables when transiating from them into Cobol.

Good
yment Prioriry
istory

g%%t%[[)lz)an Customer more ~————— Priority

, than 20 years
business Bad

payment
history
20 years or less =—————— Normal

Good
payment Priority

$10,000 nsstory
or less

Bad
payment Normal
history

Figure 2.9: A decision tree for calculating the status of a customer.

Three measures of performance were used in the experiments: time taken to
perform the expeniment; the number of syntactic errors made; and the number of
semantic errors made.

Included in the experiment was the use of structured English. The resulis
showed that structured English also ‘outperformed’ decision tables on both tasks.
Given that one apptication coded by the participants was reasonably complex — having
six conditions, seven actions, and five levels of nesting when translated into Cobol -
this is an interesting finding.

When decision trees were compared with structured English, decision trees
were a better tool for enumerating the conditional expressions, and were as good as
structured English for converting into Cobol. This second finding would suggest that
the associated processing performed for each condition is relatively small, or highly
abstracted. If this is the case, this is not considered to devalue the findings, as one

would expect the amount of processing modelled by a minispec o be relatively small.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 30
2.6 Combining the tools

The way in which the three tools described in Section 2.5 are integrated is
described in Figure 2.10, which is based on Fig. 2.12 in Gane and Sarson ({GS79]).

Y

g P — Level 0 data flow diagram

.
PN S N

Level I daia flow diagram

A lj *
A
” v A L,
kY N
r \ i 1
f \ i \Y

I TOTAL > 250
THEN [HSCQUNT {5 10%
ELSE

DISCOUNT 5 0%

¥ CUST_# = 5{DIGIT}5
TOTAL = | {EXTENSION }INF
PART _# =5{DIGIT}5

Data dictionary Process logic tools

Figure 2.10: An integrated view of three tools described in Section 2.5,
showing how they combine to form a logical model of an application.

To interpret this diagram, it is useful to consider how a particular data flow can
be validated. Part of this validation is likely to be a consideration of how the flow is
constructed, and it 1s this particular activity that will be considered here.

One approach is the following: The data flow diagrams can be used to identify
where the flow is created; that is, what process, external entity, or data store exports it.
If created by a process, then, from the representation of the process logic, information
can be obtained on which data objects are required to produce that object. By referring
back to the diagram(s), it may be possible to identify these data objects as import flows.
If not, the dictionary must be consulted to check that the data objects are component
objects of the import set of data flows, or {from the process logic and dictionary)
derivable from them. The dictionary will then be needed to check that the imported
objects are type compatible with the required export flow, and that the operations
carried out on the import objects are type-permissibie operations for those objects.

The above procedure is not necessarily difficult, but it is relatively easy to make
errors. Given the significant number of data objects and processes that are likely to be

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 31

in an application model, the probability of producing a consistent, correct model is
considered small. Procedures for correcting errors and performing modifications would
need to be exact, otherwise {(further) inconsistencies are likely to arise.

Computerised dictionaries and data flow diagram draughting tools are
invaluable for maintaining consistency both within and between the diagrams and
dictionary. However, these provide only syntactic checks. A problem area is still the
maintaining of consistency with the minispecs (say), and the dictionary and diagrams.

This is due to the minispecs being textual descriptions of the process logic.,

2.7 Using SSA in specifying requirements

The flexibility provided by SSA, particularly data flow diagrams, is important
to the creative approach needed in analysis. However, because SSA is currently mainly
descriptive, and relies heavily on textual descriptions, it is difficult to validate the
results of an analysis exercise. As DeMaagd has stated {[De82], p. 82):

‘A [...] problem with structured analysis techniques is that graphic analysis is
still an abstract representation. As such, data flow diagrams suffer from many
of the same problems communicating with non-data processing personnel as
conventional flowcharts do.

Some statistical support for data flow diagrams not being more or less superior
to certain other techniques (narrative text, HIPO charts, and Warnier-Orr diagrams) is
provided by Nisek and Schwartz [NS38]. However, the usefulness of the findings are
questioned here, if only because the 'end-user’ evaluated the specification in isolation,
and for a relatively short time period of one hour. It is unrealistic to expect that
specifications can be evaluated by end-users in vacuo. At the very least, a presentation
by the analyst to the end-user(s) should take place, which would be followed by an
evaluation of the specification by a small group of end-users.

Because of the pivotal role that data flow diagrams play in the success or
otherwise of SSA specifications, discussion will concentrate on identifying their
positive features for capturing requirements, and on identifying common ways in which
they can be misused. Understanding some of the ways they can be used incorrectly
should help in attempts to strengthen the techniques in which they are used.

2.7.1 The positive features of data flow diagrams
for use in specifying requirements
The following are considered the most important features of data flow diagrams
for the elicitation and documentation of requirements:
» A graphical language — Important for discussions between the analyst and end-users.
+ Good abstraction capabilities — A complete sub-system can be defined as a single

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 32

process (for example, 'ORDER PROCESSING') and then expanded into lower level data
flow diagrams when required. Similarly, data flows can be 'bundled’ (for example,
'BASIC-FILLED_ORDER_DETAILS") and split up later [De78, G879, Ha881.

« Both a functional and data flow interpretation — It is possible 1o view a single data
flow diagram functionally, by concentrating on the process lozenges, or in terms of
the data precedences, by concentrating on the input and output data flow sets
associated with each process. This also helps in bridging between analysis and
design [De78, GS79, LGN81, Pag0, Si81, YCT79].

Collectively these features have the potential to provide an extremely flexible
tool. However, this flexibility has led to the misuse of data flow diagrams.

2.7.2 Common ways of misusing data flow diagrams

Data flow diagrams have been misused in at least the following ways:

» Structurally inaccurate data flow diagrams — Included here are 'simplified data flow
diagrams' in which, for example, external entities (sources and sinks) communicate
directly with data stores, or where there are no external entities to provide an
interface with the outside world.

s Being ‘prematurely physical’ — This term was first used by Gane and Sarson
([GS791, p. 5):

'There is a great temptation to sketch a physical design of the new system
before one has a full understanding of all the logical requirements; this is
what is meant by being "prematurely physical”.
This shows up most frequently as an overuse of data stores during the logical
analysis phase(s). An example would be a data store for the holding of transactions
which are subsequently processed sequentially.

» 'Functionalising’ — By regarding data flow diagrams solely as a functional
decomposition tool.

+ Textual glueing — Where 'difficult’ parts of the system are described textually (in the
data dictionary or, more commonly, in minispecs).

+ QOver-abstraction — Where the analysis of a system is finished at too high a level of
abstraction,

Two examples will be given from the literature which demonstrate a 'loose’
interpretation of data flow diagrams. The first is an excerpt, shown in Figure 2.11,
taken from a Level 0 diagram constructed using De Marco's notation in Wasserman et
al. ([WPS&6], Fig. 4, p. 329). It contains an external entity, called librarian, which 1s
connected directly through the data flow bock query, to the data store book. Similarly,
the same external entity is connected through the flow loan query to the store loans.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 33
A i
i 1
i [
] 1
—_—— —_—

book lpans
bkid, |

bookinfo, :,_?2:; loan

cpno

2
manage
bock
inventory

addition,
deletion
slips

librarian

Figure 2.11: Excerpt from a 'loose’ data flow diagram in Wasserman et al. [WPS846].

Only the data flow book query will be discussed, along with its associated

operation{s). All the points to be made apply equally in principle to data flow loan

query and its implied operation(s).

The application being modelled is a simple library system. The relevant

ransactions which come under the term 'book query’ are given as ({WPS86], p. 328):

+ Get a list of titles of books in the library by a particular author.

+ Find out what books are currently checked out by a particular borrower.
* Find out what borrower last checked out a particular copy of a book.

These three transaction types are included within the data flow book query. In

order not to make too lengthy the discussion, the concems about this chosen abstraction

will be listed below:

I Transactions are operations, and must be modelied by processes, whereas data

stores are ‘data at rest' [GS79]. In the example, the data store book is expected to be
able to transform a transaction request into a response data flow {which has not
been shown — see 3 below). In detail, the data store has to parse each transaction to
identify the transaction type, and respond accordingly.

The import into and the export from the process bubble are sets of distinct
transactions, and should either be abstracted to a higher level flow, or be distinct
data flows. A data flow is a conduit which carries one, known, type of data. It can
be inferred from the diagram, and supporting documentation, that one of possibly
three different flows may be placed on the data flow at any time.

If the direction of the data flow arc is indicating nett flow, it should be going from
the data store to the external entity. The responses to these queries are seen to be

more impertant than the queries themsetves.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 34

Supporting details for concern 2 in the list are:

+ The data flow named (badly) as 'addition, deletion slips’ is at feast two distinct
types of data flow, for additions and deletions, respectively.” From the supporting
narrative text, an addition data flow contains more details than deletion flows.

» The data flow named (again, badly) as 'bkid, bookinio, cpno’ will:
~ only consist of the data object bkid if the deletion is for all copies of the book

identified by bkid;

— only consist of the data objects bkid and cpno if the deletion is for the copy
identified by cpno of the book identified by bkid;

— consist of bkid, title, authors, publishers, and year, but not cpno, if a book is
being added. Nowhere in the supporting text does it state that bockinfo contains
title, authors, publishers, and year; this must be inferred.

The 'looseness’ in this data flow diagram excerpt is a mixture of freely interpreting
both the syntax {connecting external entities directly via data flows to data stores), and the

semantics (assuming, for example, that data stores can 'process' transactions).

Pulse
Clock
. J | /
1
1 Wind Air Water Location
* Spoad Temp Temp Sensor
Senscrs Senscrs Sensors
Value Valug Valua Value
y
Calculate Calculate Calcuiate Calculate
Avarage Average Average Location
Average Ayerage Average Value
value valua value
]
- ——— -i Sensor Data Base

Figure 2.12: Excerpt from a 'loose’ data flow diagram in Booch [Bo86].

7 There are two types of deletion: one copy of a book, or all copies of the book. Depending on the format of
he data specifying a deletion, there could be two distinct types of deletion flow, making three rypes of
transaction in ail.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 35

The second example, excerpted from Booch ({Bo86], Fig. 8, p. 218), is 'loose’
in at least the following ways:
+ An external entity is connected via data flows directly to other external entities.
+ A number of data flows have the same name. Similarly for a number of processes.
» Data flows have been merged. This implies some transforming of data through a

process 1s required.t

No further analysis of this example will be given, although a number of
possible semantic ambiguides exist.

A detailed study of both systems will identify a considerable dependency on
narrative text, and the 'correct interpretation and interpolation of that text.

Avoiding procedural details in data flow diagrams

A more specific issue with data flow diagrams, is the extent to which procedural
details should be included. The extension of the use of data flow diagrams to real-time
systems has ied to the addition of control information to the diagrams [Wa86]. In many
ways this is not a problem, as control information is invariably kept distinct from the
normal flows and processes, etc; mostly by using dotted boxes and arcs for control
details and/or using separate diagrams [Ha85a, Wa86].

Of more concem is the existence of procedural details in the data flow diagrams
for business applications. Some users, for example, incorporate an exclusive-OR (@)
symbol in their diagrams when only one of two input (or output flows) is required (or
produced). They also use an AND (*) symbol, to signify that both flows are needed.?
The use of these symbols is not considered good practice, for the principal reason that it
takes procedural details outside the processes [De78]. In the case of input data flows,
the interpretation of @ is:

if data_flow_1_exists then do_something_with_data_flow 1
else

if data_flow_2_exists then do_something_with_data_flow_2
else

if both exist then error.

Where both do_something_with_data_flow_1 and do_something_with_data_flow_2

are operations detailed in the process.

8 There are cases, when dealing with the imporis and exporis of refined processes, where instances of

component data flows can usefully be colliected together to form an instance of the more absiract flow. In
which case a new [ype of object needs to be iniroduced to perform this function (as was done in Lhe
protorype system in Chapter 7)., However, within Lhe ‘interior’ of a refined data flow diagram, no merging
of data flows should occur.

% For an example, see the first data flow diagram in section 4.3,1, Limited import sets, See, also, their
use in Weinberg [We80].

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 36

If both data flows exist, this signifies an error, as both the operations could
legitimately be carried out. Note that 'both data flows existing' signifies that some
matching scheme exists. Exactly what the semantics of this scheme are, is generally
only defined in an informal manner [De78, GS79], and relies on a common sense
approach by the creators and interpreters of the diagrams. It also relies on the careful
description of how the processes ransform (operate on) the input data flows to produce
the cutput flows (see Section 2.5).

For output data flows, the interpretation of ® is:

if some_condition_1 then produce_export_data_flow_1
else
if some_condition_2 then preduce_export_data_flow_2.

The nett effect of using the exclusive-OR and AND symbols, is to split the
semantics of the operations between the data flow diagram and the process logic. Some
of the details are now expressed in syntactic terrms, using the symbols; while the rest of
the details must be contained within the process logic, most likely using one of the
technigues discussed in Section 2.4.

In conclusion, no procedural detail should be included in data flow diagrams
used to model commercial applications.

Avoiding control and physical details in data flow diagrams

Similarly, representing control and timing details as data flows should also be
avoided [De78]. A data flow called 'LAST_FRIDAY_OF_THE_MONTH' is an example of such
a flow. These types of flows merely serve as triggers for invoking some activity, and
have nothing to say about the wansformations between data flows (other than when
they occur).

A further terporal consideration that often appears in data flow diagrams, is the
use of a data store as a ime delay. An analyst may have a preconceived view that a data
flow exported by a particular process will be ransformed at a later date by its importing
process. Consequently the analyst defines a data store for holding the instances of the
flow. It may be, however, that the instances of the flow are imported by the second
process in the same order that they were exported by the first, in which case a simple
data flow arc between the processes would be the correct representation of the logical
relationship between the processes.

2.8 A dictionary as a general resource

Before going on to outline some of the ways that SSA tools can be incorporated
into prototyping systems, the use of a dictionary as a general resource will be briefly
reviewed. This has relevance to the next secuon, where dictonaries are seen as the core

of an executable data flow diagram prototyping tool.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 37

The fact that the data in an enterprise is as much a resource as, say, the financial
and physical assets of the enterprise, has been recognised for many years.

Historically, as the amount of data that an enterprise kept grew, methods were
sought for not only organising the data, but for documenting what data existed, and
where it was held. The facility developed to perform this documentation role has come
to be known as a data dictionary. A relatively early description was given by Lefkovits
((Le77], p. 1-1):

'‘Basically, the use of a data dictionary is an attempt to capture and store in a
central location, all definitions of data within an enterprise and some of their
attributes, for the purpose of controlling how data is used and created and to
improve the documentation of the total collection of data on which an enterprise
depends.'

The data in a data dictionary describes the data of an enterprise, and
consequently is known as mefadata ('data that describes data').

Early data dictionary systems were no more than inventories of data items,
along with their definitions. A major advance occurred with the development of
integrated data bases. Not only did these further endorse the need for the unambiguous
description of data, and the minimising of redundancy, but data bases in themselves
provided a good medium in which to implement data dictionaries. Consequently,
commercially developed dictionaries are now specialised data bases which contain
metadata [CD&1, Le77, LHP82, Lo77].

A development made reasonably early on was to include details on computer
programs in the dictionary, both in terms of the data used or produced by the program,
and in terms of which software subsystems were needed. Again, the main functions
performed by these systems were cross-teference listings and usage analysis. The
‘processing’ of the metadata occurred in isolation from the processing of the data which
it described; as a result the systems discussed so far have become known as passive
{data} dictionaries.

A further development occurred, when the descriptions of data objects
contained in the dictionary were used to automatically produce schemas and sub-
schemas for data bases, as well as data definitions for mainly Cobol and PL/I
programs. Because of this more active role, dictionaries which provided these facilities
came to be known as active {data) dictionaries.

Another class of dictionary was identified by Docker and Tate [DT86], called
executable dictionaries. This class is characteriSed by being able to execute the
metadata in a similar way to (interpretable) programming language code. The word
'data’ has been dropped from this category, in recognition of the fact that the data in the
dictionary is much more than the classical enterprise data of the early data dictionaries.

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 38

Executable dictionaries exist in principie in many fourth generation languages,
and in some of the more developed mainframe dictionary systems (see, for example,
[As&4, BR86, Co87, ICL&4]).

To make clear the differences between the various types of dictionary, the
following classification is adopted:

+ Passive — A dictionary which provides, through metadata, only a documentation
facility for the description of a system (its processes and data) is called a passive
dictionary {LHP82, Za84a]. This type of dictionary can be manually based.

+ Active —If a dictionary is involved in providing metadata during the editing,
compilation and/or linking of a program, then it is an active dictionary with
respect to that program. There are degrees of activeness, and a fully active
dictionary is one in which all processes are fully dependent on the dictionary
[LHP82, Za84a]. An active dictionary must be computer-based to provide the
necessary interaction with the compilers, Iink editors, text editors, etc.

» Executable — This class of dictionary is a superset of the previous two. In addition to
the facilities provided by an active dictionary, an executable dictionary contains
metadata which is itself executable, in a somewhat similar way to (interpretable)
programming language code. An executable dictionary ideally assumes the activities
of the software components of current systems, but in a more integrated and
consistent way. A system dictionary processor is associated with an executable
dictionary in much the same way that an operating system is involved with a filing
system. However, the possible domain of an executable dictionary and its associated
processor is much wider, encompassing data communications, data bases and their
management (ideally implemented as persistent store with the associated
management being subsumed by the system dictionary processor [ABCR31), etc.
The dictionary is fully involved during the running of an application, including:
maintaining instances of data objects, checking the typing of objects and even,
possibly, checking that an instance of an object is a legal value (within a certain
range, etc.).

‘System dictionary' is used within this thesis as a synonym for 'executable
dictionary', and is meant to convey the idea that the dictionary is a fundamental
component of the operating environment. It is suggested that a system dictionary could
provide the point of convergence between dictionaries and the specialised data bases of
SDEs in a unified software development, operational environment.

2.9 Executable data flow diagrams
Following the investigation of SSA which provided the foundation for this
chapter, the initial approach adopted to providing a prototyping tool, was to design a

CHAPTER 2 — STRUCTURED SYSTEMS ANALYSIS 39

system which incorporated the three major tools: data flow diagrams, a data dictionary,
and a method for specifying process logic (in a dialect of structured English named
META). This processing logic was 0 be executable so that the transformations between
import data flows and export flows ¢ould be validated operationally.

The system was named SASE, for Souctured Analysis Simulated Environment,
and an overview of it is given in Section 9.3. Tate and Docker [TD85] provide greater
detail on the overall architecture, and the component systems.

During the design and development of the system, it became clear that the
dictionary was performing a considerable amount of the processing of data. As a result,
an investigation was begun into the feasibility of replacing the executable META
minispecs with an extended dictionary language. The purpose in doing this was to
minimise on both the number of component tools and, hence, the number of interfaces
in the system,

The result of this investigation was the development of the £gis language,
described in Chapter 5 and Appendix 1, as a substitute for the originat dictionary and
META languages. The revised system is named SAME, for Structured Analysis
Modelling Environment, and has the architecture shown in Figure 6.1.

2.10 Summary

This chapter has discussed SSA in terms of a mixture of the methods used by
De Marce [De78], and Gane and Sarson [GS79]). Benefits were outlined for using
SSA, particularly data flow diagrams, in the elicitation of requirements. Also discussed
was the potential misuse which could arise from this same flexibility, as this reduces
the confidence that can be placed in the outcome of an analysis exercise that is based on
SSA. The main weakness in SSA for specifying requirements was identified to be the
purely descriptive representation of the process logic. An outline was given of the two
architectures considered in the research to address this weakness (among others).

Chapter 3, the last introductory chapter, surveys fine-grain data flow systems to
identify suitable methods for executing data flow diagrams.

3.1 Introduction

Data flow systems are being developed as an alternative to von Neumann
systems in an attemnpt to move away from both the centralised control inherent in the
use of a program counter, and the imperative style of programming suited to the
von Neumann architecture [Gu84, TBH82]. Whether data flow systems provide an
adequate solution is a matter of open research; even though a reasonable number of data
flow architectures have been proposed over the last decade, only about a dozen systems
have been constructed, and these are stll in the early days of evaluation.! As these data
flow systems operate at approximately the level of instructions in von Neumann
machines, they have been described as fine-grain data flow systems [Ve86].

What is of importance for the discussion here is not so much the potential for
data flow systems to support future computing needs in a more satisfactory manner
than von Neumann systems (although this is a subject worthy of debate; see, for
example, Gajski er al. [GPK&2]), but rather the philosophy underpinning data flow
systemns. In the context of SSA, the principal aspect of this philosophy is the emphasis
on data rather than operations. This is consistent with the mainly data-orientated view
of SSA [CB82, De78, G579, LGN81, Wel0].

| See Table 1 in Veen [VeS6].

40

CHAPTER 3 — DATA FLOW SYSTEMS 41

The ermphasis in this chapter is on identifying features of fine-grain data flow
systems which have particular relevance to SSA data flow diagrams, and which can
usefully be employed in an executable SSA data flow environment. To this end the
survey material presented here is limited in scope.

3.1.1 An initial classification, and some definitions

In fine-grain data flow systems, no requirement exists for the programmer to
explicitly specify control information within a program. The translator of the language
used builds associations between the programming statement that produces a data object
and the statements which make use of that object.

There are various ways that the associations between programming statements
can be made, but each falls within one of two classes depending on the type of data
flow architecture used:?

+ Data-driven systems, in which an operation (instruction) is executed when the data
required by that operation becomes available. Information on the instructions that
depend on the result of a particular instruction are associated with the ‘supplier’
instruction {see Section 3.2).

+ Demand-driven systems, where the data required by an operation is demanded by
that operation. This often requires the execution of one or more other operations to
produce the required data, which in their turn require the execution of further
instructions, and so on, until available or user-supplied data is referenced.
Information on the instructions which provide data to a particular instruction are
carried with the 'demanding’ instruction {see Section 3.3).

These two classes of architecture are discussed in the next two sections.

However, prior to discussing the architectures it is useful to define a number of terms.

Defininiorn: An algorithm specifies a sequence of steps which must be
carried out to solve a certain problern. ¢

Definiion: A program specifies a set of operations {essentially unordered)
which must be carried out (in an appropriate order if need be}, on

a set of input data, in order to produce the desired set of output
data. ¢

2 The term ‘data flow' is frequendy restricted 10 data-driven systems only, as this was the context in which it
was first used [GuB4, Sh85]. The use here will encompass both data-driven and demand-driven systems.

CHAPTER 3 — DATA FLOW SYSTEMS 42

o

The above definitions, taken from Sharp, separate the notion of an algorithm
from that of a program [Sh85]. An algorithm includes an explicit sequencing of
operations, and is thus sunited to von Neumann systems, whereas a program can have
an ordering placed on it if necessary, but need not. The notion of a program (and a

computation) can be specialised to data flow systems in the following way {Sh85]:

Definition: A data flow program is one in which the ordering of operations
is not explicitly specified by the programmer, but is that implied
by the data interdependencies. ¢

Definition: A data flow computation is one in which operations are
executed in an order determined by the data interdependencies and
the availability of resources. ¢

Note that these definifons apply equally to data-driven and demand-driven systems.
The next section looks at fine-grain data-driven systems, which are an attempt
to optimise on the inherent parallelism of a program down to the sub-instruction Ievel.
Then in the following section, demand-driven systems are discussed. This class of
system is closely associated with functional systems. Coming after these discussions
on fine-grain systems, a possible relationship between data flow systems and the data
flow diagrams of SSA is investigated. Finally, Section 3.5 summarises the chapter.

3.2 Data-driven systems

Data-driven programs are often represented as directed graphs, where the nodes
of the graph describe operations (see, for example, [De74, DK82, Gu84, Ru77]). The
data dependencies involved in finding the real roots of a quadratic equation can be
defined graphically as in Figure 3.1. A data flow graph representation of a slightly
different version of this problem, based on Sharp [Sh85], is given in Figure 3.2.

The directed arcs of Figure 3.2 define the data dependencies. Each circle node
defines the operation to be carried out on the two input data values. One data value will
flow down each arc leading into the node. For asymmetrical operators, like '/
(division}, the spatial ordering of the arcs is important; the left-most arc is always the
first operand.

A textual representation of the data flow graph is given in Figure 3.3 using the
notation given in Treleaven er al. [TBHE2]. The relationship between the two
representations is made clearer by observing that each node in Figure 3.2 has been
labelled with the corresponding instruction identifier from Figure 3.3,

CHAPTER 3 — DATA FLLOW SYSTEMS 43

In Figure 3.3 each instruction consists of an operator and two operands. Each
operand is either a literal or an 'unknown' value represented by a pair of empty
parentheses, viz. '{)'. Following the operands is a list of references; each reference has
the structure ix/y, where ix is an instruction identifier and y is the operand position
within ix where the result of applying the operator to the operands is to be placed. Each
instruction can be viewed as a template into which generated data values are siotted.
Assuming values of 1 for object a and 3 for object ¢, a possible sequence for the
execution of instruction i2 (to produce 2 * a * ¢) is the foliowing:

i2: (*()()i82) = 2 (*()3132) = 2 (*23i32) = i2(6i3/2)
where data object ¢ is shown as being available before the resuit of instruction i1 is
{2*1=2). Avalue of a data object is called a token.

Y

-b+¥{b"b-4*a~c) b-dHb*b-4"a"¢)

{b+¥{b*b-4*a*e))i{2"a) {-b-d(b*b-4-a*¢c))/(2"a)
rooti root2

Figure 3.1: Data dependency graph for finding the (real) roots of a quadratic.

Tokens {operands) are passed from instruction to instruction, and there is no
requirement to explicitly name the (intermediate) data objects. As well as this, the
operands of an instruction are ‘consumed’ by that instruction, and are not availabie to
any other instruction.

CHAPTER 3 - DATA FLOW SYSTEMS 44

If two or more instructions require a particular token, they must each be given a
copy. Creating duplicates is the function of the dupiicate, or copy, operator, shown as a
triangle in Figure 3.2. In practical systems like the Manchester prototype data flow
computer {GK'WB85], the duplicate function only produces two values. Under this type

of regime, a further two duplicate nodes would be required in Figure 3.2.

Figure 3.2: Data flow graph for finding the (real) roots of a quadratic.

CHAPTER 3 — DATA FLOW SYSTEMS 45

Textual data flow program Output data flow values
e (...i22) c
l
b: (...14114/217/1) b
a {..i11/2) a
i: (‘2()i2ﬁi8!2i9i2) 2*a
i2: 13;‘2 % % 2*a‘c
i3: Ji5/2}) 4*a*c¢
4. (*()()BA) b*b
i5: (-{)()i6rR) b*b-4*a*c
i6: { APPLY sqrt{)i8/1) Yib*b-4*a*c)
i7: (-0()ig) -b
i8: (/YO 110Mi111) (D)/(2*a)
i9: (/(Y()i102i11/2) ¥b*b-4*a*c)/(2*a)
10 (+{){)root1) (b+¥b*b-4*a*c)/(2* a)
M1 {-()()rooi2) {b-¥(b*b-4*a*c)/(2*a)

Figure 3.3: A data-driven program for finding the (teal) roots of a quadratic.

3.2.1 Conditionals and loops
The two constructs required in any computer language are essentially the if—
then—else and the while-staternent [BI66].2 The following discusses how these can be
supported in data-driven graphs [Gu84, Sh85].
A data flow graph is given in Figure 3.4 of the Pascal conditional statement
ifx>ythena =vielseg =v2

3 Certain langvages may 'disguise’ these using, for example, patierns or guards for conditionals, and
recursion instead of iteration.

CHAPTER 3 — DATA FLOW SYSTEMS 46

vi v2 X ¥y

X>y

vi v2

Figure 3.4: A data flow graph for the conditional if x > y then a = v1 else a := v2,

Two new nodes have been introduced in the data flow graph. The diamond
shape is a switch (or branch). If the value of the conditional entering the diamond from
the right is true, the data token entering from the top is output through the port marked
'T'. Otherwise the value is output through the port marked 'F'. A token which flows
down an arc which ends with "1’ is desttoyed without being used

As well as being used for the copy function, a triangle is also used for the
merge function.® As a value appears on either of the input ports to the merge, it is
selected and placed on the single cutput port. If a value appears on both input ports,
non-determinism results as each input token has an equal chance of being selected (see
footnote 10). The correct application of a merge used in isolation would be the
responsibility of the programmer.

Loops (or cycles) are a natural phenomenon in programming. Their existence in
data-driven programs is indicated by the presence of cycles within the program graph.

4 If a copy function directly follows a merge in a graph, they will be combined {as in Figure 3.5).

CHAPTER 3 - DATA FLOW SYSTEMS 47

In Figure 3.5, a data-driven graph equivalent is given of the following Pascal program
segment which calculates the factorial of N:
i=N:
nfact = 1;
whilei> 0
do
nfact = nfact * i;
Pr=i-
end; (* while *}
Nfact = nfact

Nfact

Y
Figure 3.5: A cyclic data flow graph for calculating the factoral of N.

CHAPTER 3 — DATA FLOW SYSTEMS 48

Although there is only one loop in the Pascal program segment, the data flow

graph contains two; one for each left-hand side object (i and nfact). In Figure 3.3, the
loop for i is shown shaded. Only two arcs cross this border, and the tokens that these
arcs carry need to be synchronised with those generated by the nfact loop.

In a system where multiple tokens on an arc are supported but where only one
instance of a data flow graph is allowed, this synchronisation can be achieved easily by
making the arcs FIFO queues. However, this seriously restricts the level of
concurrency that can be achieved. Methods do exist for gaining higher levels of
concurency, but at the cost of greater complexity. The most common methods are code
copying and tagging, which are discussed in detail later (see section Stafic and
dynamic architectures). The extra complexity is a direct consequence of allowing
for both cyclic graphs and multiple tokens, for each data object.

The general structure of a 'safe' while-loop in a graph is shown in Figure 3.6.

initial input

condition

v

Figure 3.6: The general structure of a 'safe’ while-loop in a data flow graph.

CHAPTER 3 — DATA FLOW SYSTEMS 49

As well as the added complexity required to achieve realistic levels of
concurrency, cyclic graphs introduce two potential problems: deadlock (deadly
embrace) and race conditions. The simplest case of a deadlock is described in
Figure 3.7, where operators P1 and P2 each depends on the other for one of its two
input tokens. As neither can fire until the required token is provided, the result is a
'deadlock’. However, by the careful use and matching of switches and merges,
deadlocks can be avoided.

¢ =P1(a, P2(c, b)) d = P2(P1{a, d), b)

Figure 3.7: The occurrence of deadlock in a data-driven program graph.

In a data flow system, the simplest race condition occurs when two token
instances of the same data object get out of sequence as the result of taking two
different computational paths. An example of how this can happen is shown in the
sequence of diagrams (a) to (f) in Figure 3.8. Both G1 and G2 are segments of the
program data flow graph. The time for the data token t1 to be ‘transformed’ into the
token G1{t1) is much greater than the time required to transform t2 into G2(i2). The
result is that, on entry to the G3 program graph segment, G2{t2) will be erroneously
matched against t1*, and Gi(1) against t2*.

Unlike the avoidance of deadlocks, race conditions cannot be combatted
structurally in data flow graphs. Fortunately, the methods required to support safe
looping also ensure that no mismatching results from the occurrence of a race
condition.®

3 In the case of code copying, a race condition cannot arise where only cone set of tokens is allowed through

a copy of the graph at any one time.

CHAPTER 3 -- DATA FLOW SYSTEMS

50

CULKERVRE XYL RERK

(@ (b)

(©)

G3{G2{12), 1) @

(d) (®

Figure 3.8: The occurrence of a race condition.

()

CHAPTER 3 — DATA FLOW SYSTEMS 51

3.2.2 Karp and Miller — a reference data-driven model

The semantics of data-driven systems vary almost from system to system. To
explain the more important alternatives, a reference model will be used in a way similar
to that employed by Oxley er al. [OSC84]. The reference model in question is that of
Karp and Miller, which was originally introduced as 'a graph-theoretic model for the
description and analysis of parallel computations. Within the model, computation steps
correspond to nodes of a graph, and dependency between computation steps is
represented by branches with which queues of data are associated' [KM66].

The main operational characteristics of the Karp and Miller model (KM-model)
can be stated as:

» Directed arcs carry tokens between operational nodes.
+ Firing rules (when nodes can execute, or 'fire'):
K1: All arcs between nodes are FIFO queues.
K2: A node becomes eligible for execution when each of its input arcs contains a
number of tokens equal to the threshold for that arc.
K3: When a node executes, it reads and removes a specified number of tokens
from each input arc and performs its operation.
K4: The node compleies execution by placing some number of result tokens on its
output arcs.

This model is essentially a graph of processors, and contains no means by
which data values can be input to or output from the graph representing an application.
Nor are data files supported.

Apart from these omissions, which are serious omissions as far as practical
systems are concerned, the KM-model does provide the most general model for FIFO-
input only data flow systems. The general exception to FIFO input occurs in systems
which support iteration, where values for different levels of iteration can become
intermixed; a requirement then exists for matching up tokens at the same level of
iteration. A simple example application where this can arise is the multiplying of two
matrices together. A conceptually simple method for identifying which level of iteration
a token belongs to, is to include within each token its iteration level. This is frequently
called colouring or tagging (see, for example, [De74, Ro81, Ve861).

Although each iteration is represented graphically in data flow systems by a
cycle in the data flow graph, it is possible to unfold the resulting cyclic graph of an
application for each specific set of input data to form an acyclic graph with a FIFO
queue on each arc; thus satisfying nile X/ above.

The KM-model supports any number of inputs to a node, and any number of
outputs from a node. Rules K2 to K4 are quite general as the number of tokens on a

particular arc can be zero or any positive integer. Having zero tokens was not explicitly

CHAPTER 3 — DATA FLOW SYSTEMS 52

-

excluded by Karp and Miller, although allowing for it in their model is equivalent in a
functional system to having an unused parameter in a function on input, or no resuit
being produced from a function invocation on output. It is included here, because most
data-driven systems have at least one node type (the conditional) which can have at least
one empty output arc, and also because it has relevance to the SAME model discussed
in Part II.

3.2.3 FKine-grain data-driven architecture features

There are many ways of classifying data-driven systemns [Sr86, TBH82, Ve86].
The approach adepted here primarily reflects the potential for each highlighted
characteristic to be used in an executable data flow diagram system (see Section 3.4).

The KM-model rules given above describe particular operational semantics for
data flow systems. The following list, based on Treleaven and Hopkins [THS1],
describes a set of characteristics for a general data-driven computational modet:

+ The execution of an instruction uses up the data tokens which appear as operands in
that instruction. These tokens are not then available to this or any other instruction.

+ There is no concept of shared data storage as exemplified by vanables in imperative
languages.

» The value of a token cannot be changed, as no form of destructive assignment exists.
That is, the model incorporates a singie-assignment Ianguage.

+ Sequencing constraints are defined by the flow of data. Put another way, control
flow and data flow coincide.

» The resulting token of one instruction is passed directly to those instructions which
require that token as an operand. Each destination instruction has its own copy of the
token.

+ A constant value may be embedded in an instruction as an 'optimisation’ of the token
mechanism.

In fine-grain systems, a data flow program instruction can be viewed as a
template into which data values (tokens) can be ‘slotted’. Figure 3.3 presents a
relatively simple template structure consisting of an operation, two token operands {one
of which possibly contains a literal), and a variable list of instruction addresses which
require as an input operand the resulting token created by the instrucdon [TBH82].5

An important characteristic of a data flow architecture is how the results of the
execution of a node are communicated to the directly dependent nodes. In a data-driven
system, the two main methods are direct communication and packet
communication. '

& Al operalors have been shown as dyadic, which need not be the case in practical systems.

CHAPTER 3 - DATA FLOW SYSTEMS 53

Direct communication

In direct communication architectures, processing elements are 'hard-wired'
together in some suitable way. In the Data-Driven Machine #1 (DDM1), for example,
the processing elements are organised as a hierarchy (tree) of processor-memory pairs
[Da78]. Each processing element is connected to one superior element (except for the
root) and up to eight inferior elements. The part of the (ree-smuctured) data flow
program allocated to a processing element can be further divided and allocated to
inferior elements.

Other examples of direct communication systems {Ve86] are Micro, a 'paper
system {[MM83], and the Data-Driven Processor Array (DDPA) [TA83].

A major problem with such systems is the need to find a suitable way of
mapping a program onto the topology of the system. Applications which have a similar
structure to the machine, usually ensure the best allocation of the physical resources and
the minimum level of overhead. DDPA, for example, is designed specifically for large-
scale scientific calculations involving sets of equations, and is organised as a two-
dimensional grid of processing elements.

Packet communication

The most promising classes of data-driven architecture for generalised
processing are those based on packet communication. A data-driven system based con
packets is a specialised data communications network, with at least one implemented
system utilising a local area ring network topology [GKW85]. The network paths in
a data-driven architecture are the equivalent of the instruction and data busses of the
von Neumann system. However, the overheads are usually much greater in data-
driven systems, and a reasonably high level of paralielism is required to compensate for
these costs.

In general, the more flexible a data-driven system is, the more complex
becomes its communication mechanisms. This manifests itself as either a relatively
large set of different packet types, or as more complex packets with a higher ratio of
status bits to data bits. The second alternative is the most common,

No detailed analysis of packet structures will be carried out here as it is felt little
of value to this thesis will result. What is considered worth discussing, and provides
one major characterisation of packet-based data-driven systems, is the method used for
'filling’ an instance of an instrnction template with its token operands. The two
principal techniques used are token storage and foken matching.

In a token storage system, each token is stored in its destination instruction.
Consider that the program in Figure 3.3 is executed on a token storage computer, and
that an invocation of instruction i1 (2 * a') produces a token with value 2. If no

CHAPTER 3 - DATA FLOW SYSTEMS 54

matching value for ¢ has yet been created, a copy of the template for instruction i2 will
be created containing the token; viz. '(* 2 (}i3/2)". As this instruction is not yet
complete, it will be kept in some form of memory until, at least, the arrival of its second
operand {'c¢') when it can be enabled. Following Veen [Ve86], Figure 3.9 gives a

functional view of a processing element in a token storage system.

PROCESSING
UNIT
s P'P

P, ..

MEMORY UNIT|
(for instructions
and tokens)

Figure 3.9: The functional structure of & processing element in a token storing
data-driven system.

Figure 3.9 shows a single memory for both instruction templates, and
instruction instances with their tokens. Each complete instruction is sent to the
processing unit, where it is processed (by one of the processors, if more than one}.”
The output tokens with their destination addresses are routed back to the update unit.

In a token matching system, tokens and instructions are kept separate untl such
time that a complete instruction can be formed. Figure 3.10 provides a functional view
of a token matching processing element [Ve86].2 Conceptually, separate memory now
exists for both instruction templates, and the data tokens. The matching unit collects
together sets of tokens, and temporarily stores incomplete sets. Ornce a set of tokens is
available, the matching unit sends the set, which contains informaticn on the
‘consuming' instruction, to the fetch/update unit. This unit inserts the tokens in their
correct place inside a copy of the instruction that includes information on the destination
instructions, and despatches the instruction to the processing unit where it is executed.

7 Sce Fig. 17 in Treleaven ef af. [TBHE2] for an alternative diagram.

8 See Fig. 18 in Treleaven et al. [TBH82), and Docker and Tate {DT86], for alternative diagrams.

CHAPTER 3 — DATA FLOW SYSTEMS 35

PROCESSING
UNIT
] PP

P, .

Figure 3.10: The functional structure of a processing element in a token matching
data-driven systermn.

Systems which employ token matching effectively support re-entrant programs.
However, without special measures being taken to correctly match sets of tokens
(usually involving fags), re-entrant programs can lead to non-determinate behaviour.?

Various schemes exist for cennecting processing elements together into a
complete data flow machine architecture. The more notable options are discussed in
Yeen [VeB6].1? Although these options are of some interest, an architecture formed
from a single processing element, with multiple processors, is adequate for the research
reported here.

Static and dynamic architectures

A different categorisation of data-driven systems relates to whether or not a
system supports the concurrent execution of more than one instance of the same node in
a data flow graph. Systems which do not are described as static. In such systems the
program graph need only be loaded once, which can be done statically before the
computation begins. Two methods have been used to ensure that only one instance of a
node is executing at a time [Ye86]:
+ A Jock is somehow placed on an executing node. This could simply be an associated

busy flag,

5 Veen (Section 2.4) provides a good example of a re-entrant graph which couid result in non-determinancy

[Ve86].

10 See, in particular, Fig. 14 and the associated 1ext.

CHAPTER 3 - DATA FLOW SYSTEMS 56

s

» A destination node somehow acknowledges to the generating node the receipt of a
token. A simpie method used by Dennis and Misunas [DM74, De79a] is to require
that each output arc be empty before a node can be enabled; this means that only one
token can be on each arc at any time.

Example systems are the MIT static architecture of Dennis and Misunas
[DM74], and the system that has been designed as part of the Mandala project [Bu81]
which is based on the design principles put forward by Dennis er al. [DBLE0).

Architectures which do support the firing of several copies of a data flow graph
node are described as dynamic. The most general scheme is where an instance of a
node is created 'on-demand' at execution time,

The two basic techniques that have been used for supporting the firing of
multiple instances of nodes, are code-copying and tagging.

As its name suggests, in a code-copying scheme, the need for a new instance of
a node results in a copy of the node being created, and a set of tokens being associated
with that node. Code-copying systems invariably duplicate at the level of a procedure or
block for greater efficiency. As most tokens will be required by instructions within the
creating procedure or block, the concept of locality arises [De84, Sp77]. The DDM1
computer is a good example of a code-copying system [Da78]. The hierarchical
structure of the system supports locality, as a sub-tree of processors can be assigned a
part of a data flow graph. As well as this, each processing element in the ree has (up
to} eight inferior processors to facihtate the execution of parts of the sub-tree in parallel.

Dynamic tagged architectures form the largest class of data flow systems. The
major work on tagged systems has been carried out by Arvind et al., initially at
Irvine[AG78] but subsequently at MIT [AKS81, AG82], and by Watson er ai. at the
University of Manchester [WG79, GKW85, WSWS87]. Other tagged architectures can
be viewed as derivatives of the systems produced by these two groups. Although the
architectures of the Id machine (Arvind er al.) and the Manchester data flow computer
have significant differences, there is much similarity in principle in the way that tags are
used. Consequently, the discussion here will be restricted to the tagging scheme used in
the Id machine.!!

Tagging in the Id machine is under the control of the U-interpreter [AG82],
which uncovers parallelism during the execution of a program and assigns a tag to each
paraliel computational activity as it is created. The U-interpreter is a generalised
scheme, and the Id machine has been described as a particular hardware implementation
[AKE1].

11 Sometimes called 'Id' after the name of the language that the machine is designed to support {see, for
example, Veen [Ve86]; also see Srini [Sr86]). 'Id’ is an acronym for ‘Irvine data flow' [AG78].

CHAPTER 3 — DATA FLOW SYSTEMS 37

—

Every computation (single execution of an operator or nede) is called an
activity. The U-interpreter allocates a unique name to each activity generated during
the executicn of a program, and each token carries the name of its destination activity.

An activity name comprises four fields:

+ u - the context field; this identifies the environment (bindings, etc.} in which the
activity is being evaluated. A context field is itself an activity name, so nested
contexts are supported.

+ ¢ - the code block name assigned by the Id compiler to the loop or procedure that
contains this activity.

+ s - the instruction number within the code block.

+ {-the initiation number; this identifies the loop iteration within which this activity
occurs, If the activity occurs outside a loop, the field has a value of 1. Nested loops
are provided for through nested contexts.

A token in the Id machine is the 2-tuple

{u.c.s.i, dara_value}P

where p identifies one of the possible two import ports of the destination activity.

Together, ¢, s and p specify that the token is ravelling along an arc that is connected to

the input port p of instruction 5 in code block ¢. The overall context in which this is

occurring is defined by u. If the activity is within a loop, i denotes the level of iteration.

A conceptual snapshot diagram is given in Figure 3.11 for a token with an activity

name 'u.c.s.i’, a data value of 4, on input port p2 of operation s.

‘context U

Figure 3.11: A conceptual snapshot of an Id data flow program showing the token
{u.c.s.i, 4) on the arc connected to input port 2 of the instruction (activity) s.

CHAPTER 3 — DATA FLOW SYSTEMS 58

The data flow program graph constructed by the Id compiler has two different
classes of node. The first class is that exemplified in Figure 3.2, and contains the
operations which can be carried out on the data. The second class of node consists of
operations to create and amend activity names.!? There are also implicit operations on
activity names associated with the first class of operation. For instance, given that
instruction s in Figure 3.11 outputs the product of its two input values to instruction t
{on port p1), the input and output token sets for instruction s could be

input token set = {{u.c.s.i, 90y, {U.C.8.0, 4)pp)

output token set = {{u.c.ti, 360)51}
where the relative instruction number of the activity that will consume the output token
is t. Implicit operations on activity names only affect the instruction number field, s.

The full set of explicit operations on activity names will not be discussed here.
Instead, the general principles can be obtained from the following discussion on the
handling of loops.

In Figure 3.12 a data flow graph is shown for the Id expression [AG82]

(while pi{x} do

new x « f{x)

return x)
Each activity name operator has been labelled, and the import and export sets ('pre-'
and 'post-conditions') of each node have been included. The types of activity name
operators used in a loop are D, D7, L, and L', The cutput token of the D operator is
the same as the input token except that the inidation number has been incremented by 1.
The D-* operator resets an initiation number to 1. The L operator creates a new context,
u', for each instantation of a loop. The value of this new context is the previcus activity
name (u.c.s.i). The L-! operator resets the context and initiation values to what they
were on entry to the loop (u and i, respectively).

The adding by the Id compiler of the necessary activity name operators to the
data flow program graph during compilation, means that the control of activity names
can be distributed to the processors that are responsible for executing the individual
block invocations. Thus, no centralised tag control, with the possibility of being a
bottleneck, is required.

The Id machine that Arvind and his group are constructing is actually a
combined code copying and dynamic tagging system. The reasons for this relate
specifically to physical machine considerations, and will be briefly discussed here
through the simple loop example given above (and in Figure 3.12). Consider that the
loop code block is allocated a pool of processing elements on which it will execute.

12 For lack of evidence, it is assumed Lhat an activity name is trivially deleted when no longer required.

CHAPTER 3 — DATA FLOW SYSTEMS

59

X l{cu.c.s.i, x>}

(] L

{«u'c't.d, x5}’

{«U'.C" L], x> {«u'.C'Lj+1, x>}
kbt S I

X l {<U.C'W'.1, x>}

wr L"1

new x

X | {<ucsi x>}t

T u=ucsi

¥ c¢.s'is the successor of instruction ¢'.w' {which is the L-! instuction)

Figure 3.12: A data flow graph for the processing of the loop by the U-interpreter.

CHAPTER 3 — DATA FLOW SYSTEMS 60

Two schemes suggest themselves for allocating activities to processors. In the
first scheme a {preferably contiguous) number of instructions are allocated to each
processor, such that instruction s will always execute on processor P,. In the second
scheme, each processor is allocated a copy of the code block program graph. In either
scheme, the number of activities per processor is likely to result in the interleaved
execution of iterations, so tags are still required but can be less complex.!?

To support both code copying and tagging, the Id machine pays a price by
employing a centralised software scheduler to allocate pools of processors {physical
domains [AK81]) to program code blocks. The scheduler is called when a code block is
invoked, and it selects a physical domain depending on a number of criteria that
includes: the code block size; whether the code block already exists in some other
physical domain; how much data has to be moved between the new code block and the
code block which invoked it [AK81].

In Section 3.4, tagging is mentioned again in terms of SSA data flow diagrams.
The important concepts to be taken through to that section from the current discussion
are:

+ Tags can be composite structures, with specialised operators acting on each part of
the structure.

+ A distributed control scheme for tags should be relatively easy to implement.

« During execution, the size of a tag can be made a function of the ‘complexity’ of the
activity. That is, an instruction which is nested within procedure invocations and
loops can dynamically be given a more detailed tag than an instruction in 'top-level’,
straight-line code.

In summary, static architectures tend to be simpler than dynamic architectures,
as they do not require a mechanism for creating copies of program sub-graphs, nor do
they need to maintain tags for differentiating between different tokens of the same
'named’ object. Against this must be weighed the fact that they achieve lower levels of
paralielism.

Enabling conditions and output conditions

A further categorisation is concerned with the conditions under which a node
becomes enabled, and under which a node outputs values. Although these are
essentially separate issues, there are two cases of interest for each. A node becomes
enabled eithier when at least one input token is available, or when all input tokens
become available. The DDDP can begin executing a node as soon as one operand is

13 Jf a complete code block is executed on a single processor, Lhere is no need to maintain the « and ¢
components during the execution of the code block program graph.

CHAPTER 3 —DATA FLOW SYSTEMS 61

available, but most systems require both operands [KYK&3]. Similarly, a value can be
output either before the node finishes executing, or after the node completes execution.
The Manchester data flow computer exports output tokens before the completion of an
operation [GKW83].

Some improvement in performance may be gained by enabling or outputting,
respectively, as soon as possible, aithough there appears to be no reported significant
performance measurements to support this. The potential performance improvements
may be much greater in coarse-grain systems.

Summary of fine-grain data-driven systems
The data-driven systems described here generally differ from the KM-model in
the following ways:

+ The KM-mode! has no conditional or merge nodes which can lead to non-
deterministic behaviour, so there is no requirement in that model to distinguish
between sets of inputs by the use of tags, for example. FIFO queues are adequate.

+ The systems considered here invariably input just one token from each arc during the
invocation of a node. The KM-model allows for any number from each arc.
Similarly for output,

The various classifications, except for the enabling and output conditions, are
presented graphically in Figure 3.13 [Ve86].

DATA-DRIVEN MACHINES

Manchester
DDDP
JUMBO

d

Figure 3.13: A categorisation of data-driven machines. The machines discussed in this
chapter are shown in the rectangles.”

14 The TUMBO machine is 2 rixed control-flow, data-driven machine. See, also, Veen [Ve86], Fig. 15.

CHAPTER 3 - DATA FLOW SYSTEMS

62

Table III provides a summary of a number of the reported architectures. Most of

which have been implemented, or emulated.

Research project Machine organisation Tokens on Tokens on
each input arc | each output arc

Utah DDM1 [Da78] Direct communication, m n
token storage; dynaric

Toulouse LAU [CH75]1? Packet communications; m n
token storage; static

MIT [De79al Packet communication; 1 0
token storage; static

Muld {Bu81]!6 Packet communication; i 0
token storage; static

TI DDP [Co791Y7 Packet communication; 1 0
token storage; static

Irvine/MIT [AKS1) Packet communication; m n
token matching; dynamic

Manchester [GKW85] Packet communication; m n
token matching; dynamic

Tokyo DDDP [KYKE3] Packet communications; m n
token matching; dynamic

Newcastie JUMBO [THRE2] Packet communication m n
token matching; dynamic

Table III: A comparison of some reported date-driven architectures.

15 Although a data-driven computer, the LAU system has a control flow program organisation. However, the

control graph of a progrem coincides with i1s dala graph [TBH82].
16 Veen [Ve86] advisedly describes Mulli as a dynamic system, whereas it is firmly a static system. The
confusion may arise becaunse, concepmelly, the system is designed to allow multiple applications to
execuie concwrrenuy in an attempt to achieve higher levels of resource utilisation, However, each of these
graphs execules statically in its own virtual machine.

17 The compiler may create multiple copies of part of a daia flow graph to increase the concurrency, but this
is done in a static manmer at compile-time.

CHAPTER 3 — DATA FLOW SYSTEMS 63
3.3 Demand-driven systems

In & demand-driven system, it is a request for a data item which leads to its

creation. In data flow graph terms this is realised as a request for the output token of an
operational node, which in turn leads to a demand for the input tokens of that node.
These input tokens are generally the output tokens of other operations, and so the
request for tokens propagates back up the graph. Taking the data flow graph of
Figure 3.1 as an example, a demand for a token of root1 will lead to a demand for two
further tokens, one of whose value is 2 * a. To satisfy the request for the '2 * a' token, a
token of the data object a is required.
A demand-driven program equivalent to Figure 3.3 is given in Figure 3.14.

Textual data flow program Output data flow values

a a

b b

c c

it: (*2a) 2’a

2: (" i1¢) 2*a’c

B3: (*2i2) 4*a*c

4. (*bhb) b*b

ib: (- 41i3) b*b-4*a*c

i6: (APPLY sqrit i5) Yib*b-4*a*c)

i7: (- 00b) -b

i8: (/17 i1) (by/(2* a)

i8: (/i6i1) ¥b*b-4*a*c)/{2*a)
HO: (+ 8 i) (b+V¥e*b-4*a*ch)/(2* a)
i11: (- i8 i9) (b-Vb*b-4*a*c)/(2*a)

Figure 3.14: A demand-driven program for finding the (real) roots of a quadratic.

CHAPTER 3 — DATA FLOW SYSTEMS 64

The major differences between the programs in Figures 3.3 and 3.14 are:
+ the absence of holes' in the demand-driven program instructions for input tokens;
+ the absence of forward references in the demand-driven program {instead, backward
references exist).”
The two principal techniques that exist for executing the program in Figure 3.14 are
string reduction and graph reduction. These are discussed in the next two
sections, but before doing so it is worth mentioning here that each instruction in the
program in Figure 3.14 can be viewed as a definition with syntax name : expression.

3.3.1 String reduction

String reduction is essentially a rewrite scheme in which a demand for a data
object leads to the name of that object being replaced by its expression. at the point of
demand. Once a complete expression has been constructed for the original object being
demanded, the expression is evaluated (reduced) to its value.!?

(+ I8 i9)
(+ (1710 (/36 1)
(+ ¢ (-0D) (* 2 a) ¢ (APPLY sart i5) (* 2 a))
(+ ¢/ (-0L8) (" 2 1)) (/ (APPLY sart (- i4 13) ¢ 2 1))
(00BN (P2 1) ¢ (APPLY sgit (- " b b (2 12)) (" 2 1))
(+ OEB) (2 1) ¢ (APPLY sart (- (" (D) (D) ("2 1) * 2 1))
YOS C2MYAPPLY sqt (- (" (B) (B "2 L 2a 60 2 1)
VLo C21IpYVAPPLY s - P (B B 22080 210

(+ (/52 ((APPLY sait (- 25 (* 2 {* 2 &) 2)
(+ 25 (/ (APPLY sant (- 25 (* 2 12) 2))
(+25 {/ (APPLY sqrt (- 25 24)) 2))

(+ 25 ¢ (APPLY sqrt 1) 2))

(+ 25 (/ 12))

(+ 2.5 0.5)

3

Figure 3.15: A string reduction execution sequence for the part of the program in
Figure 3.14 which finds the first root.

18 However, see Lhe discussion on graph reduction in Section 3.3.2.

1% This provides the most naive method of evaluation.

CHAPTER 3 — DATA FLOW SYSTEMS 65

A set of string reduction evaluation steps for generating a token of root1 are
shown in Figure 3.15. The expressions above the line contain rewrites, where object
names 10 be replaced at the next step are shown in bold type and where each expression
which replaces a name is shown underiined. The expressions below the line show a
possible sequence of reductions which maximises on the inherent parallelism. The
reduced values at each step are shown in italic type. The coefficient token values used
in the example area= 1, b=-5and c = 6.

String reduction systems use code copying at a low level of granularity. A
consequence of code copying 1s that common objects, such as i1 in Figure 3.15, are
replaced by their expression at each point that they appear in the demanding
expression(s). Consequently, an object may have its value calculated a number of
tdmes. On the plus side is the relative simplicitly of the technique.

Systems which use string reduction include the cellular-tree-based system of
Magé [Ma79, Ma80] which executes FEFP programs [Ba78], the GMD reduction
machine, which supports a language based on the lambda calculus {HS79, K179,
KS80], and the Newcastle reduction machine which has been designed to support
multiple reduction languages [TM80].

3.3.2 Graph reduction
Graph reduction differs from string reduction by 'replacing’ a name with a
reference to the definition of the named object, rather than by the expression itself. In
this way a graph is built of the total expression to be evaluated. Taking the function
=0+ " (x-2)+3
as an example. A call of the function of the form 'f 3' could lead to the following
sequence of graph reductions:

e e + = 7

7\, SN\ /N TN
* * 4 3
ANDEVANRERVAN

/N /N AN /N
¥y 1 x 2 3 i 3 2

In Figure 3.16 a graph is given for the evaluation of rootl using the demand-
driven program of Figure 3.14. The overall spatial ordering of the objects in
Figure 3.16 is consistent with Figures 3.1 and 3.2.

One technique used to set up 'return addresses' for the generated tokens is to
reverse the pointers during the construction (execution} of the graph. Each node would
point to the first higher-fevel node that demands the lower level node’s vaiue. Later

CHAPTER 3 — DATA ELOW SYSTEMS 66

demands for that value will make use of the already calculated value when their pointers
are eventually reversed. Figure 3.17 shows reversed pointers early in the evaluation of

the program graph of Figure 3.16.

il: (" 2 a)
(* i1 c)
id: (" b b) i3 2 :2}

i 5:(- i4 i3)

N

i6: (APPLY sqrt i)

N\t

i8:{ i7 i1 i9:{¢ i6 t1

~

i110: (+ 18 19)
Figure 3.16: A graph reduction program corresponding to Figure 3.14.

A concrete representation of the reverse pointers would be to store a single
Teverse address' in each token [TBHE2].

Execution of the program graph in Figure 3.17 essentially leads to the pruning
of the tree from the leaves down, until only the root of the tree is left in the form of a
token value of the required (reduced) type.

Examples of graph reduction machines are: the AMPS system of Keller et al.
which uses a dialect of Lisp for its machine language [KPL78, KLP79]; the SKIM
reduction machine of Clarke et al. [CGM&0], which is based on combinators; and the
ALICE reduction machine of Darlington er al. [DR81, HR], which is designed to
support functional languages like Hope {Ba&5al and ML [Ha85].

CHAPTER 3 —-DATA FLOW SYSTEMS 67

c:(6)
11 (' 2 a)
i2: (* i1 c)
i4: {* b b) B 2 i2)
'5: (- i4 i3)

-0 b <PPLY sqrt i5)
8 i7 i1} 9: {/ i6 i1)

¢

i10: (+ I8 i9)

Figure 3.17: The program graph of Figure 3.16 with reverse pointers.

3.3.3 Demand-driven systems and functional languages

As indicated above, there is a close association between demand-driven systems
and functional languages. The demand-driven program of Figure 3.14, particularly in
its string reduction form of Figure 3.15, can be viewed as the composition of
functions. This close relationship with functional systems has seen an increase in
interest in the development of demand-driven systems over the last few years {GKSE7,
HR, PCS87, TM80, Tr85, WSWE87]. Graph reductions have a paralle! in functional
language systems, both through the representation of functional composition as graphs
[GKS87, HR, PCS&7, Tr85, WSW87], and through the combinators of Schénfinkel
[Sc24], with thetr realisation in the SK reduction machine of Turner [Tu79a, Tu79b,
Tu87] and the SKIM reduction machine of Clarke er al. [CGMS80].

The definition of functions in functional languages are also essentially of the
form name : expression. In Miranda, for example, the function to calculate Fibonacci

nurnbers can be written as

CHAPTER 3 — DATA FLOW SYSTEMS 68

fibn= 1, n=13
1, n=1
fib(n-1) + fib{n-2), otherwise

A particular benefit claimed of functional languages is that their underlying
semantics are simpler than those of imperative languages and, hence, the validity of
functional programs should be easier to prove. However, there is much stiil to be done
regarding the use of functional languages in the implementation of complex business
applications, in particular, before the above claim can be accepted with any confidence.

Other features of functional languages - such as their powerful abstraction
mechanisms, their conciseness, and their support of referential transparency - make
them good potential candidates for use as specification languages {Tu&4]. With this
potential in mind, it is demonstrated in Chapter 5 that the data dictionary languages of
SSA can also be given a functional interpretation. The definition of a data object will be
shown to satisfy the form name : expression, followed by the suggestion that the
process logic in a data flow diagram can be represented by a set of such definitions in
the form of a reduction graph.

3.4 Data flow systems and data flow diagrams

The quadratic equation exampie of Section 3.2 will be used here to demonstrate
one relationship between fine-grain data flow systems and SSA data flow diagrams.
The discussion will be extended to inciude the definition of data objects and the
transformation of input data flows to output data flows. In SSA terms these are

supported by the data dictionary and {for example) minispecs, respectively.

3.4.1 Fine-grain data flow semantics applied to
data flow diagrams

Finding the roots of a quadratic can be specified in a Level O data flow diagram
as shown in Figure 3.18(a). Suitable dictionary definitions for the data flows are
shown in Figure 3.18(b).

Although unlikely in practice, the Level O diagram could be refined to the
Level 1 data flow diagram shown in Figure 3.19. The data flow definitions in
Figure 3.18(b) apply equally as well to the expanded diagram, except that COEFFICIENTS
and ROOTS are now redundant as the data flows, as well as the process, have been
refined.

Considering a data flow diagram as a data flow program graph, it is possible to
apply both a data-driven and a demand-driven interpretation to the diagram. In terms of
the example in Figures 3.18 and 3.19, a demand-driven interpretation would be one

where the roots of a quadratic would be demanded by an analyst, and this would finally

CHAPTER 3 — DATA FLOW SYSTEMS 69

lead back to a demand being made on the analyst for the coefficients of the quadratic.

ANATLYRT |4

COEFTICIENTS ROOCTSH

4 2 3
FIND ROOTSH

OF QUADRATIC

(a) Level O data flow diagram.

a <= number.

b <= number.

c <= number,
COEFFICIENTS <= a, b, c.

B3Q <= b * b,

FQURAC <= 4 * 73 *
TWOA <= 2 * a,

SQR <= SQRT (BSQ - FOURAC).
N1 <= = + SQR.

N2 <= -b - S50QR.
rootl <= N1 / TWOA.
root2 <= N2 / TWOCA.
ROOTS <= rootl, root2.

(b) Data dictionary definitions. (Read '«=' as "is defined as'.)

Figure 3.18: Level 0 data flow diagram, and data dictionary definifions for finding the
(real) roots of a quadratic equaton.

Applying a data-driven interpretation, the ANALYST would supply the coefficients
required by process FIND ROOTS OF QUADRATIC (or its refined processes); this would be
followed some time later by the process(es) supplying ANALYST with the roots of the
equation. In the semantics used, the external entity ANALYST has been considered as
both a source and sink of data tokens. In fine-grain data-driven systems sources and
sinks are distinct objects, but it is an easy matter to view an external entity as being at a
higher level of abstraction such that it comprises a non-empty set of sources and/or
sinks (sec Exfernal entities in Section 4.2.1).

As with fing-grain data flow systems, there are a number of practical firing
criteria for nodes (processes) in the graph. Possibly the simplest operational semantics
rules that can be applied to data flow diagrams are the following:

CHAPTER 3 - DATA FLOW SYSTEMS 70

+ A process becomes enabled, or executable, when all its input tokens are available.
This ensures that a process is deadlocked the first time it is executed, or nor at aii, In
Figure 3.19, for instance, process COMPUTE FOURAC would become enabled when
matching tokens for a and ¢ exist.

+ A process executes as an indivisible object.

+ The output tokens produced by a process are distributed, or exported, to the
importing objects (processes, external entities, and data stores} when the process
completes execution.

+ The input tokens are consumed by the process.

" ™
FIND ROOTS OF QUADRATIC
(4 N1t (7) .
COMPUTE | JJCOMPUTE oot |
b N1 rootl
 COMPUTE BSQ
\ BSQ { 3 \ / 5 \NZ _)/ 8 A "
COnPUTE |y comPUTE | icoNPUTE oL
cl, SQR N2 oo
a COMPUTE || FOURAC TWOA
FOURAC ¢
s COMPUTE
TSOA
N\, y,

Figure 3.19: Level 1 data flow diagram for finding the (real) roots of a quadratic
application.

The second and third rules together provide a 'safe’ division point in that,
should an error occur during the execution of a process, any data produced by that
process duning that invocation would not have found its way 'out’ to other processes,
external entities, or data stores.

The semantics usually attached to SSA data flow diagrams are invariably much
looser than those given above: data flow tokens are considered available when required;
any number of tokens can be matched together, depending on the process logic; data
stores can be read and written to any number of times during the invocation of a
process, including reading the value of an object 'updated' during the same invocation.

Specifically, the two areas in which the above operational semantics rules do
not adequately reflect data flow diagrams, are where data stores are involved and where
one token of a particular data flow may want to be processed against a multiple number
of one or more other data flows.

CHAPTER 3 — DATA FLOW SYSTEMS 71

In the case of data stores, a token to be input by a process from a data store is
usually selected using (part of) at least one other input token as a key. Figure 3.20
provides an example where a CUST_# token is used as the key for accessing
CUSTOMER_DETAILS. Note the data flow identifying the key leading from the process to
the data store. The triangle symbol denotes this as a key, rather than as a 'normal’ data
flow. Such 'data’ flows do not have to be shown explicitly in data flow diagrams, as
the data dictionary should contain the necessary information.

R_DATA EXPCRTED DATA

CUST_#

CUST_#
CUSTOMER_DETAILS

CUSTOMERS

Figure 3.20: Accessing the data store CUSTOMERS using CUST_# as the key.

Without employing a reasonably sophisticated system mechanism for extracting
the wanted data store token before enabling a process, the operational rule of requiring
all tokens to be available prior to the execution of a process cannot be satisfied for input
tokens supplied by data stores. It is possible, however, to obtain equivalent semantics
by allowing a process to become enabled when all non-data-store tokens are available;
provided that in the case of a data store token not being available when required during
the execution of the process, the enabling can be 'undone'. The undoing of a process is
not difficuit to achieve if the operationai rule is adhered to, that all output tokens are
(only) exported once a process has completed. Any process that is 'blocked’ through
the lack of an available data store token would be considered not to have completed.

The second arca where the operational semantics are not adequate, concerns the
matching of a single token on one data flow with multiple tokens on other data flows.
An example of when this could be required is described in Figure 3.21, where a token

of the data flow COURSE_CODE is being processed against a group of STUDENT_# tokens.

COURSE_CODE
STUDENT _# COURSE_CLASS_LIST .
- u L ol

Figure 3.21: Processing one COURSE_CODE token against multiple STUDENT_# tokens.

CHAPTER 3 —DATA FLOW SYSTEMS 72

—

To be able to support this operationally, some means must be defined for

processing elements of a group in order, and for identifying the limits of each group.
This is equivalent to interpreting a group data flow as a stream [ASS85] With this
interpretation, the process along with data flow COURSE_CODE in Figure 3.21 can be
viewed as a filter acting on the stream of STUDENT #s. What suggests itself is some form
of colouring to identify each group object instance, with an implicit indexing of tokens
within the group. The techniques of the U-interpreter, discussed in Section 3.2.3 can
usefully be applied here [AKS81].

1t should be noted that nothing in Figure 3.21 suggests that one COURSE_CODE is
being processed against multiple STUDENT_# tokens. In Section 4.3.2 one method of
showing this explicitly is given, using double arrow heads for decomposed data flows.

If the operational semantics were amended in the ways suggested, to support
the processing of data stores and the processing of decomposed group objects, the
effects of errors can still be reasonably well defined.

3.4.2 Input to output set transformations

Other research that has an operational interpretation of data flow diagrams
represent the process logic in imperative programming code [Ba82, Ba84, Bag5,
BK&86, St87]. This is considered appropriate if the use of data flow diagrams is
extended to the design phase of software development. However, as an analysis tool
which should be easily understandable to the end-users of the system being analysed, it
provides too low a level of abstraction.

Three ways of specifying the transformations from input data flow sets to
output sets will be considered, namely:

+ Program modules
+ Executable minispecs
+ Executable dictionary statements

For the reason given above, modules written in an imperative programming
language are considered unsuitable for the analysis phase. It may be possible, using
sub-programs, to present a higher level of abstraction for much of the logic.
Alternatively, a functional language could be used to define the logic of a process,
although these tend to require some understanding of the use of recursion.

Much of the concern with the use of existing programming languages for
specifying process logic, stems from the need to include the definition and initialisation
of variables, the need for loop control variables, etc. By employing an active
dictionary, much of this requirement can be dispensed with: details on the type and
initial value of a variable (possibly within a particular process) can be abstracted out of
the logic of a process and be stored in the dictionary instead. Having taken this step, it

CHAPTER 3 — DATA FLOW SYSTEMS 73

is possible to abstract out loop control variables as well. The result could be a language
whose syntax is essentially that of the structured English used by De Marco and others
[De78, GST79, WeB0], so that the processing logic could be represented by executable
minispecs.

The SASE (Structured Analysis Simulated Environment), described briefly in
Chapter 9 [DT85, TD85], was an application of this reasoning. The dictionary
supporting the executable minispecs contained full definitions of all data cobjects.
However, it was noted that much of the process logic was repeated’ in these
definitions, albeit in an apparently unstructured way. This led to the dictionary
definitions of data objects themselves being interpreted as instructions. In such a
scheme, transformations on input data flows to output data flows are viewed as
operations on data structures. The definitions in Figure 3.18(b) can be considered in
this way, although they define rather simple data souctures.?

One concern with using the dictionary definitions is their apparently monolithic
form. Consequently, some mechanism is required to structure the object definitions,
either explicitly or implicitly. Another concemn is how these definitions can be tied
together to be executed. If a data object can only have one definition in the dictionary,
which seems a sensible restriction, the dictionary object definition language can be
viewed as a single-assignment language [Ac82, AG78, Mc82, MSAR83, PCG76,
TE68, WAB85]. This class of language has a data flow interpretation, and yields
particularly to a demand-driven, or reduction, mode of execution. This implies that the

fanguage is essentially functional in nature.

3.4.3 Treating data flow diagrams and transformations
independently

The above discussion suggests that there may be some independence between
the method of executing data flow diagrams, and the method of carrying out
transformations on input data flow sets to produce output sets. This is particularly the
case when the processing logic is carried out by dictionary-based executable minispecs
or by executable dictionary definitions.

In Part IT of this thesis, SAME (Structured Analysis Modelling Environment) is
described. SAME contains two sub-models: a computational sub-model for the
execution of data flow diagrams (which was also used in the SASE system), and a
computational sub-model for executing the dictionary definitions of data objects.
Chapter 4 develops the data flow diagram sub-model, while in Chapter 5, the

20 A more comprehensive example is provided in Figure 6.3.

CHAPTER 3 — DATA FLOW SYSTEMS 74

—

executable dictionary definition language named Zgis is developed. These are brought

together into the combined SAME computational model in Chapter 6.

3.5 Summary

This chapter has discussed a number of alternative data flow systems. No
attempt has been made to be exhaustive, either in terms of the types of systems
discussed, or in terms of the example systems mentioned within each type. As well as
the cited original research documents, the excellent survey material in Treleaven et al.
[TBH82], Vegdahl [Ve84], Srini [Sr86], and Veen {Ve86], together provide a
considerable body of information, should further details be sought.?!

Attention in this chapter has primarily been focussed on data flow architectures
(both data-driven and demand-driven), and various categorisations of data flow
systems have been provided. In general, the classification of systems has been directed
towards identifying types of systems or characteristics which support the notion of
executable SSA data flow diagrams. The fine-grain data-driven systems have a natural
relationship to data flow diagrams, and many of the concerns in fine-grain systems to
do with handling iteration, recursion and data soructures, and avoiding deadlocks, have
parallels in (coarse-grained) data flow diagrams. Some of the features which are
considered particularly relevant to executable data flow diagrams are:

+ The method used to match tokens (data flows) with operations (data stores, external
entities, and processes).

+ The conditions under which operations can begin execution (the number of input
tokens required), and also when they can release their output token (frequently two
or more different data flows are created by a data flow diagram).

+ The scheduling of operations, or code blocks, (processes) to processors.

+ Removing the possibility of race conditions occurring by, for example, using tags.

« A method for safely handling loops (if they are to be allowed in data flow diagrams;
else banning them altogether).

A coarse-grained architecture for supporting executable data flow diagrams
forms the subject matter of Part II, when iteration, and data souctures will be discussed
within that context.?? The realisation of such an architecture does not depend on
concrete fine-grain data flow architectures, but could be equally suited to a network of
von Neurmnann machines. This topic is discussed in Chapter 9 within Part III.

21 Much of the survey material in this chapter is based on Treleaven et af. [TBH82], Vegdahl [Ve8d), Srini
[5r86], and Veen [Ve86). Wherever possible the original refereuces for systems were zlso used, but some
remained elusive.

22 Yteration and recursion are discussed Further in Appendix 3.

CHAPTER 3 — DATA FLOW SYSTEMS 75

The discussion on demand-driven, or reducton, systems has little to do with
data flow diagrams per se, but has much to do with the executable system dictionary
language called Agis, which is the topic of Chapter 5. Zgis is a single assignment
language based on the data dictionary language(s) of De Marco [De78] and Weinberg
[We80], and is suitable for execution in a demand-driven fashion.

Within Part II, a particular data flow computational model, called SAME
(Structured Analysis Modelling Environment), is discussed. SAME itself consists of
two distinct sub-models.

At the top level 1s a data-driven sub-model of data flow diagrams. This is based
on the fine-grain data-driven systems of Chapter 3, but also reflects the data view of
data flow diagrams within the SSA methodologies. Two candidate sub-models are
discussed in Chapter 4. Their differences can be summarised in terms of the number of
SSA data flow diagram facilities that they provide. The simpler model, called DFDM1,
is deterrninistic. However, certain 'desirable’ features, in the SSA sense, are missing,
such as allowing a process {0 execute against only a proper subset of a data flow import
set (called a 'limited import set’). Allowing 'limited’ import sets enables loops to be
supported as well. The more complex model, called DFDM?2, provides for limited
import sets, loops, limited export sets, and recursion. DFDM]1 is essentially contained
within DFDMZ2.

The bottom level sub-model employs a demand-driven (reduction) scheme to
map the input data flow set of a process to its output data flow set. As much as
possible, the bottom level sub-model is discussed independently of data flow diagrams
in Chapter 5.

In Chapter 6 the two sub-models are brought together to form the overall SAME
model. The general operational rules of the combined model are as follows :When
created, instances of data flows are made available to their importing processes by the
top level sub-model. Once a process has available a full set of non-data-store-generated

input data flows, that process can be executed. (Data store generated data flows are

77

PART II 78

treated differently, but in a semantically-equivalent manner.) A process that is executing
produces each of its output data flows within the bottom tevel model, and does this
using a reduction technique by working backwards from each cutput to the set of input
data flow instances.

Chapter 7 discusses an implementation of SAME carried out in Prolog on the
Apple Macintosh. Restrictions in the implementation are also discussed.

In Chapter 8 the order processing application introduced in Chapter 2, and used
for illustration throughout Part II, is completely anatysed using SAME.

The discussion of the components of SAME given in Chapters 4, 5 and 6, refer
to the full system and are purely descriptive. Only in Chapters 7 and 8 are examples
given of applications exercised on the SAME prototype described in Chapter 7.

4.1 Introduction

The top fevel model in SAME supports a data-driven scheme which reflects the
data orientated role of data flow diagrams in SSA. A data flow diagram process can be
viewed as an operational node in a data flow graph, and the data flows as the arcs along
which data tokens flow. Very little is said here about how the operational nodes
transform sets of input tokens to sets of output tokens; that is the subject matter of
Chapter 5. Rather, attention is focussed on the characteristics of the top level model.!

In Chapter 2, it was shown that the data flow diagrams for an application form a
tree, or hierarchy. This can be seen in Figures 4.1 to 4.4, which were first given in
Chapter 2 as Figures 2.2 to 2.5 respectively.

Given a hierarchy of processes, most attention is directed to the set of leaf
processes. In moving from the analysis to the design phase, for example, only the leaf
processes are generally involved in the transformation into a structured design [Pa80].
In Figure 4.4, the set {p1, p2, p3.1,p3.2, p3.3, p3.4, p3.5} of shaded processes
identifies the leaf processes of Figures 4.1 to 4.3.

I However, Section 5.2 can usefully be read at this point to gain some familiarity with the Zgis language

used to carry out wansformaltions, as some examples in this chapter contain £gis statements.

79

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME

80

CUSTOMER_

0 }

: INVOICE

ORDER_DETAILS

POSTAL_DETAILS

CUSTOMERS

ORDER

CUSTOMER

| \DNFILLABLE_ORDER |

PROCESSING |

| CUSTGIHER _DETAILS

PART_DETATLS

PARTS

e /

UPDATED_PART_DETAILS

. INVOICE [3
CUSTOHER PRODUCE I
H INVOICE
CUSTOMER. ™%
ORDER_DETAILS POSTAL_DETAILS
- CUSTOMERS BASIC_FILLED_
UNFILLABLE_ CUSTOMER.. ORDER_DETAILS
ORDER DETAILS
Y VALID_ORDER g
CHECK FILL
ORDER ORDER
UPDATED..
PART_DETAILS| [PART_DETAILS
[PARTS
PROCESS 3 - PRODUCE INVOICE
(3.5 Y EXTENDED_FILLED_ (. 31) |BASKC.
cusTorERNVOICEL | FORM ["GROER DETAILS COHPUTE FILLED_
INVOICE |EXTENSION ORDER_
S DETAILS
TO_PAY)
(34 (32
CoMPUTE[FSTAL lconpPuTE
TOPAY TOTAL
(33
LESS |corPUIE
LESS
“, 7
CUSTOMER_POSTAL..DETAILS
[CUSTOMERS
Level 0
Level I

Level 2

Figure 4.1: Level 0
data flow diagram
for the
order processing
example.

Figure 4.2: Level 1
data flow diagram.

Figure 4.3: Level 2
data flow diagram
for process
PRODUCE INVOICE.

Figure 4.4: Data
flow diagram
hierarchy for the
order processing
application,
showing the leaf
processes shaded.

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME 81

During analysis the set of leaf processes will change as refinements occur. It is
even possible to envisage trees of processes growing and shrinking as alternative
application models are investigated and discarded. SAME allows any set of disjoint
processes in an application data flow diagram hierarchy to be specified as the 'leaf’
nodes. In this way, already developed parts of an application can be abstracted to a
small number of processes while detailed modelling is being carried out on a related
part of the application. Processes p1 and p2 in Figure 4.2 may have been refined, but
during the refinement of process p3 processes p1 and p2 can be treated as leaf nodes,
in the manner suggested in Figure 4.4.

The overall impression is of a tree of application processes growing and being
'virtually pruned'. This notion is discussed further in Section 4.5 and Chapter 6.

In Section 4.2 the operational semantcs for a relatively simple data-driven data
flow diagram model, called DFDMI1, are proposed. The operational semantics of
DFDM1 are such that a process which 'fails’ to process a set of input {(or import) data
flows will not leave the system in an unsafe, or inconsistent, condition. These
semantics are then compared with the reference model of Karp and Miller discussed in
Chapter 3 {KM66]. Following on a more complex, but less secure, model called
DFDM2 is specified. The raticnale for developing DEDM?2 is that the model includes
important SSA data flow diagram features not available in DFDM1.

Having defined the two models, a start is made to providing a formal basis for
SAME by giving rules on how data flow diagrams are allowed to be structured. The
concept of process sets is then introduced as an alternative to data flow diagram or
process trees for describing an application at the top level. Process sets will be used in
Appendix 2. An application at the top level is then defined in terms of a 5-tuple
(following the discussion of the low level model in Chapter 5, an extended form of this
definition will be developed in Appendix 2). The implicit parallelism in DFDM1 and
DFDM?2 is then discussed, and finally a summary of the chapter is provided.

4.2 The operational semantics of a simple

data flow diagram model (DFDM1),

and its comparison with the Karp and Miller

data-driven model

The operational data-driven semantics of DFDMI1 are essentially those
suggested in Section 3.4.1 as the simplest {safe) semantics for data flow diagrams. The
operational semantics are such that a process which 'fails’ to complete execution will
leave the systern in a safe and consistent condition.

In Chapter 3, following Oxley et al. [OSC84], the main operational
characteristics of the Karp and Miller model were given as:

CHAPTER 4 - THE DATA-DRIVEN MODEL IN SAME ' 82

» Directed arcs carry tokens between operatonal nodes,

» Firing rules:

Ki:
K2:

K3:

K4:

All ares between nodes are FIFO queues.

A node becomes eligible for execution when each of its input arcs contains a
numnber of tokens equal fo the threshold for that arc.

When a node executes, it reads and removes a specified number of tokens
from each input arc and performs its operaton.

The node completes execution by placing some number of result tokens on its
output arcs.

A useful way of comparing DFDM1 with the above is to give equivalent

specifications. However, in so doing, a slightly different terminology is used. This is

not meant to confuse, but merely to draw a distinction between the fine-grain models of

Chapter 3 and the coarse-grain moedels discussed in this chapter.

The data-driven semantcs for DFDM1 are:

+ Data flows (directed arcs) carry data flow instances (token sets) between operational

2
nodes.

+ Firing rules:

Fl:

F2:

F3:

F4:

F5:

Under normal operational conditions all data flows are, or in the case of data
store produced instances can be viewed as, FIFO queues.

A process (node) is eligible for executing when a complete set of import
instances is available.

When a process executes, one instance is read from each import flow.
Following successful execution of the process, the read data flow instances
are removed from the data flows.

At the end of the successful execution of a process, each of the created
instances (possibly EMPTY?) is exported. If more than one importer exists for
an exported data flow, a copy of the instance is exported to each of the
importers.*

A data flow instance imported from a data store is created when first

referenced in the executing process, unless it has already been created.’

In general 'data flow arcs' are described as 'data flows', or just 'flows’, and 'data flow instances' as
L 1]
instances .

EMPTY is a polymorphic rull value {see Sections 4.3.1 and 5.3.2).

For example, in the case of Figure 4.3, following completion of process p3.3 an instance (copy) of LESS

will be exported o cech of processes p3.4 and p3.5.

A dara store created instance would already exist if another process which imports the data flow has already

done so. In the case of data flow PART _DETAILS in Figure 4.3, for example, process CHECK ORDER will
always cause the creation of an instance of this data flow. Process FILL ORDER will then have this instance
available before execulion, as with a normmal data flow.

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME 83

F6: The ordering of the creation of external entity generated instances is decided
by the user.

Rules F1 to ¥4 are the DFDM1 equivalents to rules KI to K4 respectively of
Karp and Miller. Rules 5 and F6 have no direct parallels in the Karp and Miller
model, as that model does not support the creation and availability of data values to this
level of detail.

In terms of FI and K1, the only significant difference between the rules is that
data stores are handled differently from other data flows. However, as we shall see in
Section 4.2.1 (and later in more detail in Section 6.4), accesses to data stores can be
given the same FIFO interpretation as other flows within DFDML1. To a large degree,
this is a consequence of not allowing data store structures to be amended until a process
has completed (see rule F4). Also race conditions are avoided by tagging instances (see
Section 3.2.3).

In rule 2, a complete set of import instances is available to a process when (at
least) one instance exists for each required data flow in the import set of that process.
Implicit in this is that the instances are related in some way, such as being components
of the same order. SAME makes the relationship explicit by allocating a 'currency’ (that
is, a tag) to each instance of each data flow when it is created. A related import set is
then characterised by each member instance having the same currency.

The use of the word 'required’ in the previous paragraph is meant to indicate
that not all data flows in an import set necessarily need to have an instance available
before the associated process can be executed. The exception in DFDM1 is any process
that imports one or more data store generated data flows. Instances for data store flows
arc always assumed to exist. If during the execution of a process a required data store
instance is not available, the execution of the process can be abandoned without any
change to its pre-execution status and without it having exported any data flow
instances (see F4). This is discussed further in Sections 4.2.1 and 6.4,

The major difference between F2 and K2, is that the latter is a more general rule
that allows for a single token on one arc being matched to many tokens on another arc.
An example would be where a node operates as a filter on a stream of tokens. In
DEFDMI, such a stream would need to be packaged up as a repeat group to form a
single data flow instance. The means for doing this are discussed in Section 5.3.1.

The interpretation of rule F3 is that only following successful execution of a

process is the set of import instances consumed. Successful execution 1s characterised

6 This means that infinitary objects could not be supported in DFDM 1. However, Lhese are not considered to

be a factor in commercial applications; although it is certainly wue Lhat infinitary objects facilitate the
use of pure functional (applicative) languages and data flow compuring for such applications. (See Seclicn
5.2.1, Repeats, for further discussion of infinitary objects in SAME.}

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME &4

by the generation of the set of associated export instances. Unsuccessful execution can
occur, for example, when a data store instance is unavailable. Elaboration on this is
given in Section 4.2.1.

Rule F4 states that export instances are only made available to the importers
once a process has completed execution. If conditional generation is involved in the
creation of a data flow, its exported value may be EMPTY (see Section 4.3.1), or
missing (in which case no data flow instance is created). An EMPTY instance has an
interpretation as a synchronisation object, as it has an associated currency.
Consequently, race conditions cannot occur in DFDMI.

F5 specifies when data store import instances are created. Implicit to this is the
notion that data stores operate as specialised processes. The SSA view of data stores as
passive objects is considered to be too simplistic, and fundamentally in error. In SAME
they are more realistically viewed as abstract data types (ADTs) with local storage.
Given a key, the dictionary definition of the required data flow, and an operation, a data
store returns an instance of the required data flow and a status indicator. The
interpretation of the data flow instance depends on the value of the status indicator in
relationship to the operation carried out, as discussed in Section 6.4.3 and Appendix 1.

F6 is concerned with external entities. An external entity export instance is
created under the direction of the user, including the choice of which data flow is to
have an instance created.

4.2.1 External entities and data stores

Two major differences between the Karp and Miller model and DFDM]1 are:
+ External entities
» Data stores

External entities

External entities and data stores both relate specifically to rules F5 and F6, and
the fact that the Karp and Miller model is without comparable rules. The latter model
omits any detailed discussion of the interface to the ‘outside world’ or to stored data.
Communicating with the 'outside world' is satisfied in SAME in the standard SSA
way: mainly by the use of external entities, but also by data stores. Stored data ('data at
rest’) is satisfied primarily by the use of data stores, although external entities (through
references to manual files, for example) can conceivably serve this purpose as well. In
this section external entities only are considered, while data stores are looked at in the
next secton.

External entities provide the major interface with the environment that exists

outside the application being studied. Customers, for example, are viewed as objects on

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME 85

the boundary of the order processing examplie. For whatever reason(s) a decision has
been made that they do not (sensibly) form part of the application.

Within SAME, external entities serve as both sources and sinks of data. In
terms of Figure 4.2, it can be seen that a CUSTOMER acts as a source when placing an
ORDER, and as a sink when receiving an INVOICE. External entities can also be used as an
abstraction for as yet unrefined parts of a system.

The closest representation to external entities in low level data flow schemes is
the phantom node of Davis and Keller {DK&2]. Like an external entity, a phantom
node sits on the penphery of the application being studied. The suggestion made by
Davis and Keller is that a phantom node provides a gateway to another part of the
system (possibly not yet studied). Within SSA, external entities (and even some data
stores) can be seen as serving this role. Thus both external entities and phantom nodes
provide, in the words of Davis and Keller, 'points at which the program [or
application] communicates with its environment by either receiving data or sending data
to it.'

At first sight, a major difference exists between external entities and phantom
nodes in that nowhere do Davis and Keller show a phantom node having more than one
import or export (to conserve functionality), and certainly not both an import and an
export. Whereas with an external entity, in the general case, both multiple imports and
exports can exist. The fundamental difference between the two is that each phantom
node is the name of the token being produced or consumed, as its arc is unnamed; an
external entity, on the other hand, can be used to name the object generating or
consuming an instance as the arc (data flow) itself is named. External entities can be
seen to provide a level of abstraction above that provided by phantom nodes. This extra
level of abstraction can be viewed as a means for identifying sets of phantom nodes,
based on some criteria of interest. Further, in terms of the data-driven model, the
importing (or exporting) of a particular external entity data flow can be viewed as an
independent operation from other data flows in the set, which is consistent with the
SSA interpretation. The external entity @1, CUSTOMER, in Figure 4.1 can be represented
as the set €1 = {INVOICE, ORDER_DETAILS, UNFILLABLE_ORDER} of phantom nodes in the
way described in Figure 4.5.

How, and in what order, an extemal entity produces data flow instances is
considered to be ouiside the control of SAME. On the other hand, an external entity is
considered to consume an instance the moment it is exported from a process. In many
cases an external entity export and an import could conceivably form ‘'message pairs"
SAME makes no special allowance for this. Potendally an exporting phantom node and
an importing phantom node have the ability to both be "active' at the same time.

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME g6

el

[FVOICE] €——

[UNFILLABLE ORDER |

['ORDER_DETAILS}

A

Figure 4.5: External entity €1, CUSTOMER, as the set
{INVOICE, ORDER_DETAILS, UNFILLABLE_ORDER } of phantom nodes.

Within SAME, to be consistent with SSA, the higher level abstraction of

external entities is used to name interface points with the external environment.

Data stores

Data stores provide the biggest problem in the pure data flow interpretation of
data flow diagrams. A data store essentially contains related updateable structures
which can be accessed in a random fashion. A full discussion on data stores forms the
subject matter of Section 6.4; the discussion is limited here to providing a data flow
interpretation of data store accessing.

Concerning exporting to a data store, rule 74 given earlier states that within
DFDML1 a data store structure can only be physically updated once a process has
completed execution. This means that within an invocation of a single process, the
ordering of data store imports (reads’), and the values of the imported instances,
cannot be influenced by exports from that execution of the process. To stop other
processes affecting the values of instances, it is stated informally here that within
DFDM1 no process can access a data store structure that could be updated by another
executing process {including a second invocation of the same process) during the
execution of that process. A scheme for checking when such an access clash could
potentially occur is described in Section 6.4.6.

Data store operations in SAME are conceptual in nature. The two types of
operation are import and export, where either a key or some sequencing is used to
identify the data store structure instance, and an operation details the activity to be
carried out. For example, it is possible to specify that an import is only to be carried
out if an instance of the data structure with the supplied key exists (see Section 6.4.3
for the details).

Concerning importing from a data store, the creation of an import instance

actually occurs during the execution of the process. This is at variance with the true data

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME 87

flow model where all data flows must be availabie before the execudon of a process can

begin. Although the 'letter’ of the data flow model is broken, the 'spirit’ is not for the

following reasons:

» All data store accesses lead to the importing of a data flow instance. At the best, this
will be the required data structure. At worst the 'instance’ will be an error message
saying no such instance exists, where one was expected. If necessary in this worst
case the system can 'roli back’ the importing process to the position it was in before
execution began, as no exporting would have yet taken place.

+ Multiple accesses within a single invocation of a process to a specific data store
instance, only leads to the importing of that instance once, at the first reference.
Consistent with the general re-use rule for imported instances, subsequent accesses
employ the already imported value.

+ The importing of a single data store flow by more than one process leads to the same
instance being imported by each. The first process to import the flow causes the
creation of the instance, which is then exported to the other importing processes.

+ Updating of a data store takes place when a process completes.

As within DFDM1 the importing of data flow instances cannot be affected by
export amendments to the data store structures involved in the imports, the ordering of
imports from a data store is immaterial. In fact, during a single invocation of a process,
the importing of multiple instances of a single data flow with different keys can be
viewed as a repeat group - a single stream of instances. This stream would be the only

{macro) instance on the data flow arc and could be viewed as a normal data flow.

4.3 The operational semantics of DFDM2

Although a reasonably powerful model, DFDM1 lacks some of the 'desirable’
features found in the SSA data flow diagrams. Most notably, the model does not allow
for a process to operate on different limited sets of its import data flows at different
invocations. Being able to do this would allow for the processing of loops at the data
flow diagram level (given a conditional construct in the ransformation scheme).

Another restriction placed by DFDMI1 is that, on importing, only a single
instance of a data flow is matched with the single instances of the other import data
flows. Similarly when exporting, only a single instance can be exported down each
export ar¢ following the completion of a process invocation. As a consequence, group
objects would have to be formed from what are, at a particular level of refinement,
naturally separate instances (in data flow terms). An example of the processing of a
single instance against several instances of another data flow was given in Figure 3.21,
where a single COURSE_CODE instance was being processed against a stream of
STUDENT_# instances.

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME 88

The example in Figure 3.21 shows a single export instance, named
COURSE_CLASS_LIST, which is most naturally interpreted as a group object. This
suggests that a need exists to compose group objects. It is aiso possible 1o identify a
need to decompose group objects into a number of separate objects. A reasonable
working analegy is being able to treat an array as a singie object, or as a stream of
separate objects consisting of the array elements.

The changes to DFDM1 to formulate DFDM?2 will be discussed in terms of the
topics outlined above, namely:

« Limited import and export sets

+ Composition and decomposition of group ebjects

4.3.1 Limited import and export sets

In data flow diagrams, not all data flows in an import set are necessarily
required for a process to successfully execute. Similarly, a successfully executing
process may not produce instances for all the data flows in the export set of the
process. In an attemnpt to keep the model simple, this data dependent generation of
instances is not allowed for in DFDMI.

Limited import sets

Limiting the required set of imports or exports to a proper subset of the import
set or export set, respectively, is considered to be a constraint on the execution of a
process.” In some SSA methods this resiriction is shown explicitly [We80], as in the
following diagram, which describes a banking application where each transaction is
processed as either a debit or a credit.

DEBIT
ACCHINT

DEBIT_TRANS DB_STATUS
AC_STATUS
CUSTOMER ACCOUNTS ADNVISE [TRANS STATUS) customer
CREDIT_TRANS CR_STATUS

CREDIT
AQCQDUNT

In a comparable way to constraints limiting the values an object can take in a data model [TL82], or the
use of subranges in Pascal {JTW78].

7

CHAPTER 4 — THE DATA-DRIVEN MODEL IN SAME 89

If TRANSACTION is of type debit, an instance of DEBIT_TRANS is generated by
process IDENTIFY TRANS, otherwise an instance of CREDIT_TRANS is generated. Similarly,
process ADVISE STATUS requires an instance of DB_STATUS or one of CR_STATUS, but not
both, to produce an instance of TRANS_STATUS. The symbol ‘@' is correctly read as
'OR’, and represents the disjunction of data flows (i.e., is an exclusive-OR).

Most methodologies do not explicitly show this type of restriction in the data
flow diagrams [CB8&2, De78, GS79, LB82]. In fact, there are strong arguments against
doing so [De78]; the most important being the fact that these details are procedural in
nature and should not be considered at the data flow diagram level.®

In DFDM2, the following two cases are distinguished between in deciding
whether a process is executable at the top level model:

+ A full import set of data flow instances is required.

» One of a number of proper subsets of the full import set is required.

The assumption with both of these is that any data store instances are accessed during

the execution of a process.

The first of these cases, which requires a full import set of instances to be
available, is described as the normal case. The second of these, which is called the
limited (import set) case, has the import set replaced by a set of import sets. The
following rule defines a valid set of import sets:

IS1: No import set can be a subset of another import set - as this could lead to non-
determinism. That is, depending on the order of availability of imports, either the
smailer set will be satisfied first, or both sets will be satisfied together. If, in an
attempt to guarantee determinancy, a policy was adopted to always satisfy the
smallest set first, the larger set would never be used as an executable set.

During the analysis of an application, it is possible for only a single subset to be
defined (as an interim measure). The effect 1s to reduce the required set of imports o
th