
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

SAME
Structured Analysis Modelling Environment

The Design of an Executable Data Flow Diagram
and Dictionary System

A dissertation presented

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy in Computer Science

at Massey University

Thomas William George Docker

1989

The research reported in this thesis has been an investigation into the use of data

flow diagrams as a prototyping tool for use during the analysis of a system. Data flow

diagrams are one of the three main tools of structured systems analysis (the other two

are a data dictionary, and some means for representing process' logic, such as

minispecs).

The motivation for the research is a perceived need for better tools with which

analysts and end-users can communicate during the requirements gathering process.

Prototyping has been identified by many researchers and practitioners as such a tool.

However, the output from the requirements analysis phase is the specification, which is

a document that should provide the framework for all future developments of the

proposed system (and should evolve with the system). Such a document should be

provably correct. However this is seen as an ideal, and the most that can be hoped for

is a document which contains within it a mixture of formality.

Executable data flow diagrams are considered to provide an environment which

serves both as a means for communication between analysts and end-users (as they are

considered relatively easy to understand by end-users), and as a method for providing a

rigorous component of a specification. The rigour comes from the fact that, as

demonstrated in this thesis, data flow diagrams can be given strict operational semantics

based on low level ('fine-grain') data flow systems. This dual focus of executable data

flow diagrams is considered significant.

Given the approach adopted in the research, executable data flow diagrams are

able to provide an informal, flexible framework, with considerable abstraction

capabilities, that can be used to develop executable models of a system. The number of

concepts involved in providing this framework can be small. Apart from data flow

diagrams themselves, the only other component proposed in the research is a system

dictionary in which the definitions of data objects are stored. Procedural details are de­

emphasised by treating the definition of data objects as statements in a single­

assignment programming language during the execution of a model.

To support many of the ideas proposed in the research, a prototype

implementation (of the prototype tool) has been carried out in Prolog on an Apple

Macintosh. This system has been used to produce results that are included in this

thesis, which demonstrate the general soundness of the research.

ii

I would like to thank Professor Graham Tate, my chief supervisor, who has

provided useful guidance and support over the time taken to carry out and report on the

research discussed here. I would also like to thank Professor Mark Apperley, who as

my second supervisor, provided assistance at a critical time in the production of this

thesis. As well as these, thanks go to Dr John Hudson and Chris Phillips for reading

various portions of this tome. Last, but not least, the support provided by all the

Dockers is much appreciated.

ill

List of figures and tables xi

Chapter 1: Introduction 3
1.1 Motivation for the research . 3

1.1.1 Methods, methodologies, tools, and techniques....................... 6

1.1.2 Formal specifications, and formal methods . 6

1.1.3 Informal, semi-formal, and formal...................................... 7

1. 1 .4 Semi-formal techniques in the specification of requirements......... 8

1.1.5 Software development environments . 9

1. 1. 6 The software development process and the software life cycle 10

1.1. 7 Models, executable models, and prototypes . 12

Prototypes, and prototyping . 13

1.2 Objectives of the research.. 14

1. 3 The approach. 14

1.4 Structure of the dissertation... 16

Chapter 2: Structured systems analysis 1 7
2.1 Introduction . 17

2.2 Component tools of SSA.. 18

2. 3 Data flow diagrams... 18

2.3.1 An application hierarchy of data flow diagrams....................... 20

2.4 Data dictionary.. 23

iv

CONTENTS V

2.4.1 Defming data objects.. 24

Data structures and abstractions . 24

2.5 Process transformations... 26

2.5.1 Structured English... 26

2.5.2 Decision tables... 28

2.5.3 Decision trees.. 28

2.6 Combining the tools.. 30

2. 7 Using SSA in specifying requirements.. 31

2. 7 .1 The positive features of data flow diagrams
for use in specifying requirements . 31

2. 7 .2 Common ways of misusing data flow diagrams....................... 32

A voiding procedural details in data flow diagrams.................... 35

Avoiding control and physical details in data flow diagrams......... 36

2.8 A dictionary as a general resource.. 36

2.9 Executable data flow diagrams.. 38

2.10 Summary . 39

Chapter 3: Data flow systems 4 0
3. 1 Introduction . 40

3 .1.1 An initial classification, and some definitions.......................... 41

3.2 Data-driven systems.. 42

3.2.1 Conditionals and loops 45

3.2.2 Karp and Miller- a reference data-driven model...................... 51

3.2.3 Fine-grain data-driven architecture features............................ 52

Direct communication... 53

Packet communication.. 53

Static and dynamic architectures... 55

Enabling conditions and output conditions............................. 60

Summary of fine-grain data-driven systems........................... 61

3. 3 Demand-driven systems 63

3.3.1 String reduction.. 64

3.3.2 Graph reduction... 65

3.3.3 Demand-driven systems and functional languages.................... 67

3.4 Data flow systems and data flow diagrams.. 68

3 .4.1 Fine-grain data flow semantics applied to data flow diagrams....... 68

3.4.2 Input to output set transformations...................................... 72

3.4.3 Treating data flow diagrams
and transformations independently...................................... 73

3.5 Summary.. 74

CONTENTS ~

Chapter 4: The data-driven model in SAME 7 9
4.1 Introduction . 79

4.2 The operational semantics of a simple
data flow diagram model(DFDMl), and its comparison
with the Karp and Miller data-driven model....................................... 81

4.2.1 External entities and data stores.. 84

External entities.. 84

Data stores.. 86

4.3 The operational semantics of DFDM2.. 87

4.3.1 Limited import and export sets... 88

Limited import sets.. 88

Conditional generation of data flows and limited export sets........ 90

4.3.2 Composition and decomposition of group objects.................... 93

4.4 Structural completeness of data flow diagrams................................... 95

4.4.1 Structurally complete data flow diagrams . 97

4.4.2 Structurally incomplete data flow diagrams............................ 98

4.4.3 Invalid data flow diagrams... 100

4.5 Levels of refinement.. 100

4.5.1 Hierarchy of data flow diagrams.. 101

4.5.2 Process sets.. 102

4.6 Applications in the top level model... 103

4. 7 Parallelism in the top level model... 105

4.8 Deadlocks.. 106

4.9 Summary.. 107

Chapter S: The demand-driven model in SAME 108
5 .1 Introduction . 108

5.2 The lEgis language... 109

5.2.1 Options, conditionals and repeats....................................... 112

Options . 112

Conditionals .. 112

Repeats... 113

5.3 Demand-driven interpretation of lEgis definitions................................ 116

5. 3 .1 Constructors . 117

Tuple constructors... 118

Stream constructors . 119

Basic type constructors... 120

"Don't care" and empty values... 121

5.3.2 Operations.. 122

CONTENTS vii

5.4 Naming and binding.. 123

5.4.1 Naming ... 123

Environment, program, and working variables........................ 123

Version control and naming.. 124

Naming of objects within SAME.. 124

5.4.2 Binding... 126

5.5 Other characteristics of .tEgis
and the demand-driven executable environment.................................. 128

5.5.1 Referential transparency.. 128

5.5.2 Call-by-need and lazy evaluation.. 128

5.5.3 Typing and polymorphism... 129

Strong, static, and dynamic typing...................................... 130

Polymorphism ... 131

5.6 Language design principles and .tEgis... 134

5.6.1 Procedural abstraction.. 135

5.6.2 Data type completeness... 135

5.6.3 Declaration correspondence.. 135

5.7 Summary .. 136

Chapter 6: The complete architecture of SAME 137
6.1 Introduction... 137

6.2 A conceptual architecture for SAME... 137

6.2.1 SID ... 139

The structure of the dictionary,
and the bindings between objects.. 140

Data flow diagrams
as views onto data objects in the dictionary............................ 141

6.2.2 SYP ... 146

Static definition facilities.. 146

The external entity interface.. 147

Data flow management (DFM)... 148

Multiprocessing and the scheduling of processors.................... 148

6.3 Specifications and executions... 149

6.3.1 Specification of application environments,
applications, data flow diagrams, and data objects.................... 149

6.3.2 The execution of an application.. 149

Starvation... 150

Missing data objects... 150

Type conflicts.. 151

Inconsistencies, and their interpretation................................ 152

CONTENTS viii

Semantic errors.. 152

6.4 Data stores in SAME .. 152

6. 4 .1 Methods of access. 154

6.4.2 Operations.. 155

6.4.3 Exceptions handling... 156

6.4.4 Name mappings 156

6.4.5 Conceptual view of a data store.. 159

6.4.6 A data flow view of data stores.. 160

Referential transparency . 161

6.5 Summary.. 162

Chapter 7: An implementation 163
7 .1 Introduction . 163

7. 1.1 Main features of the implementation . 164

7 .1.2 major features of the full SAME system
that have not been implemented.. 164

7 .2 An introduction to the definition subsystem through
a simple example - finding the real roots of a quadratic equation............... 165

7.2.1 Creating a new application, and drawing a data flow diagram....... 165

7 .2.2 Defining data objects.. 167

7 .2.3 Displaying data objects, their types, and their dependencies......... 168

7. 3 Building and running an executable model . 172

7. 3 .1 Defining an executable process set...................................... 172

7. 3 .2 Running the model . 173

7. 3. 3 Controlling the execution process . 17 6

7 .3.4 Tracing the exercising of a model . 177

7.3.5 Exporting to external entities ... 178

7. 3. 6 Execution time exceptions.. 179

7. 3. 7 Exercising processes.. 180

The context of a process.. 181

The fundamental algorithm for creating object instances............. 182

7 .4 Applications with multiple levels of data flow diagrams......................... 182

7.4.1 Refining (exploding) data flow diagrams 183

7.4.2 'Scope' of objects ... 184

7.4.3 Building an executable model.. 184

7.4.4 Hook composed data flow instances 185

7. 5 More error examples . 186

7. 5 .1 Missing data object definition.. 186

7 .5.2 No importers for a data flow... 187

CONTENTS ix

7. 6 Limited import sets, conditional exports, and loops.............................. 188

7.7 Prolog as the implementation language.. 191

7 .8 Summary.. 192

Chapter 8: An example analysis 193
8.1 introduction.. 193

8.2 A SAME model of the order processing example................................. 194

8.2.1 The application data flow diagram hierarchy........................... 194

8.2.2 The data object definitions for the application.......................... 196

8.3 The frrst prototype.. 201

8.3.1 The data stores contents .. 202

8. 3 .2 Selected details from the development of the frrst prototype 202

8. 4 The second prototype . 211

8.5 Summary .. 216

Chapter 9: Alternative architectures 219
9. 1 Introduction ... 219

9.2 Other executable coarse-grain data flow schemes 220

9.2.1 The LGDF approach ofBabb .. 220

9 .2.2 The Ada information management system
prototyping environment of Burns and Kirkham 222

9.2.3 The DataLink environment of Strong 223

9.3 Structured Analysis Simulated Environment (SASE) 224

9.3.1 META ... 225

9. 3 .2 The SASE process sub-system .. 226

9.3.3 SASE as a means for building implementation models 227

9. 4 Comparative summary ... 227

9.5 Networks of von Neumann systems ... 229

9. 6 Summary .. 231

Chapter 10: Conclusions and further research 232
10.1 Summary and conclusions ... 232

10.1.1 Objectives of the research ... 233

10.1.2 That the executable model be
rigorous enough to form part of the specification 233

10.1.3 That the tool should have
a small number of (simple) concepts 234

10.1.4 That procedural details should be de-emphasised 234

10.1.5 That the tool should incorporate
high levels of abstraction in a relatively simple manner 234

CONTENTS X

10.1.6 That the tool should make effective use of graphics 235

10.1.7 That the tool should provide 'soft' recovery from errors 235

10.1.8 That the tool should be able to execute 'incomplete' models 236

10.1.9 Primary objective ... 237

10.2 Further research ... 237

Glossary 239

Bibliography 257

Figures
1.1 The waterfall model of the software life cycle,

showing the overlapping of stages... 12

2.1 Comparison of the Gane and Sarson,
and De Marco data flow diagram notations .. 18

2.2 Context, or Level 0, data flow diagram
for an order processing system... 20

2.3 Level 1 refinement of process ORDER PROCESSING 21

2.4 Level 2 refinement of process PRODUCE INVOICE................................... 22

2.5 The hierarchy of processes for the order processing
application modelled in Figures 2.2 to 2.4 . 22

2. 6 A possible data structure hierarchy of the INVOICE
data flow shown in Figures 2.2 to 2.4... 24

2. 7 A structured English minispec for calculating the
status of a customer.. 27

2. 8 A decision table for calculating the status of a customer......................... 28

2.9 A decision tree for calculating the status of a customer 29

2.10 An integrated view of three tools described in Section 2.5,
showing how they combine to form a logical model
of an application . 30

2.11 Excerpt from a 'loose' data flow diagram
in Wasserman et al. [WPS86] .. 33

2.12 Excerpt from a 'loose' data flow diagram in Booch [Bo86] . 34

xi

FIGURES AND TABLES xii

3 .1 Data dependency graph for finding the (real) roots
of a quadratic .. 43

3.2 Data flow graph for finding the (real) roots
of a quadratic .. 44

3.3 A data-driven program for finding the (real)

roots of a quadratic... 45

3 .4 A data flow graph for the conditional
if x > y then a : = v1 else a := v2 .. 46

3. 5 A cyclic data flow graph for calculating the factorial of N. 4 7

3.6 The general structure of a 'safe' while-loop
in a data flow graph.. 48

3. 7 The occurrence of deadlock in a data-driven program graph.................... 49

3. 8 The occurrence of a race condition . 50

3. 9 The functional structure of a processing element
in a token storing data-driven system.. 54

3 .10 The functional structure of a processing element
in a token matching data-driven system.. 55

3 .11 A conceptual snapshot of an Id data flow program
showing the token <U.c.s.i, 4> on the arc connected
to input port 2 of the instruction (activity) s 57

3 .12 A data flow graph for the processing of the loop by
the U-interpreter .. 59

3 .13 A categorisation of data-driven machines. The machines
discussed in this chapter are shown in the rectangles 61

3 .14 A demand-driven program for finding the (real)
roots of a quadratic. 63

3 .15 A string reduction execution sequence for the part of
the program in Figure 3.14 which finds the first root.. 64

3 .16 A graph reduction program corresponding to Figure 3 .14 . 66

3 .17 The program graph of Figure 3.16 with reverse pointers . 67

3 .18 Level 1 data flow diagram, and data dictionary definitions
for finding the (real) roots of a quadratic equation . 69

3 .19 Level 1_ data ~ow. diagram for finding the (real) roots of a
quadranc applicanon . 70

3.20 Accessing the data store CUSTOMERS using cusT_# as the key 71

3.21 Processing one COURSE_CODE against multiple STUDENT_# tokens 71

4.1 Level 0 data flow diagram for the order processing example 80

4.2 Level 1 data flow diagram ... 80

4.3 Level 2 data flow diagram for process PRODUCEINVOICE ••.••••••..•.•••••••••••• 80

4.4 Data flow diagram hierarchy for the order processing
application, showing the leaf processes shaded . 80

4.5 External entity e1, CUSTOMER, as the set
{INVOICE, ORDER_DETAILS,UNFILLABLE_ORDER} of phantom nodes 86

4.6 An example which shows the decomposition and

FIGURES AND TABLES xiii

composition of data flows in data flow diagrams................................. 93

4. 7 A structurally incomplete form of Figure 4.2 100

4. 8 Possible different data flow process explosion trees
created during the analysis of an application 101

4. 9 Virtual leaf process data flow diagram, Cop, for the
order processing application .. 104

4.10 A snapshot of order processing transaction histories 105

5 .1 Dictionary definitions relating to INVOICE ••..........•••••••..•..........••.•••••.• 110

5. 2 Example invoice .. 114

5. 3 Dependencies graph for INVOICE •••••••••••.......•..••••••••.....•••..•••••••.••••• 117

5. 5 The identity function id implemented in four languages that
support parametric polymorphism .. 132

6.1 A conceptual architecture for SAME ... 138

6.2 Dictionary definitions relating to the objects in
process 3, PRODUCE_INVOICE ... 139

6.3 An example invoice corresponding to the definitions
in Figure 6.2 .. 140

6. 4 Data object dependencies in process 3, PRODUCE INVOICE .••.••••••.•••••••..•.•• 142

6.5 Data object dependencies in the refinement
to process 3, PRODUCE INVOICE •••••••••••••••.••.•••.•.•••••..••••••..•••••••••••••• 143

6,6 Using an example to show the associations (bindings)
between objects in SYD ... 145

6. 7 Accessing the data store CUSTOMERS using cusT_# as the key 154

6.8 Adding a 'control' dimension to a data flow diagram
in which the keys for accessing data store tuples
(among other things) can be specified ... 155

6.9 Part of a data flow diagram implicitly showing multiple data
flows referencing the same data store object
(not necessarily the same instance) ... 158

6.10 A conceptual view of a SAME data store .. 160

7.1 Naming an application ... 165

7. 2 A Level 0 data flow diagram in the manner of Figure 3 .18 166

7. 3 The structural details of the data flow diagram in Figure 7 .2 167

7.4 Defining the data object coefficients to be the tuple (a, b, c) 167

7. 5 A dialogue containing a menu for
selecting the data objects to display .. 169

7. 6 Display of all data objects currently in the dictionary 169

7. 7 The internal representation of data object definitions
for the roots example ... 169

7 .8 Redundant rhs facts which are used
extensively in displaying data object dependencies 170

7. 9 A listing of data objects showing their (inferred) types 170

7 .10 A request to display the dependency graph, to the selected
depth, of the data objects depended on by data flow

FIGURES AND TABLES xiv

roots in process findRootsOfQuadratic .. 171

7 .11 Data dependency graph for data flow roots in process
f indRoot sOfQuadra t ic .. 172

7 .12 Specifying the executable model process set 173

7 .13 Request for user to supply external entity generated
data flow instances ... 173

7 .14 Sequence of requests for sub-object values
for an instance of data flow coefficients 176

7 .15 An ex amp le full trace ... 177

7 .16 The executable model representation
of external entity an a 1 y st ... 177

7 .17 An example error display prompt generated by SAME during the
creation of an instance of the data object root 1. Particularly, a
request to find the square root of -15 has been trapped.
(The user has supplied a further invalid value. See Figure 7 .18.) 178

7 .18 Following the user supplying an invalid value (as shown in
Figure 7 .17), SAME displays an error message. The user
must supply a positive number before SAME will continue 179

7 .19 Messages generated under full trace which relate to the two
attempts to find the square root of a negative number 179

7 .20 The data flow reduction graph for data flow roots evaluated in the
context of process findRootsOfQuadratic 181

7 .21 A particular refinement of the process findRootsOfQuadratic
into the two processes computeRoot 1 and computeRoot2 183

7 .22 A particular refinement of the process findRootsOfQuadratic
into the two processes computeRootl and computeRoot2 184

7 .23 A request to form an application model from the leaf level
processes that are descendants of the process findRootsOfQuadratic
(namely the two processes computeRootl and computeRoot2) 185

7 .24 An instance of the data flow roots exported to
the external entity analyst by the hook roots 185

7 .25 Amendments to data object definitions for
the roots application, with an omission in
the definition of the object sqr .. 186

7 .26 An error dialogue of the same general format as Figure 7 .17,
which indicates that no value could be found nor generated
for data object sqr .. 187

7 .27 Following the declaration of the data object sqr as
sqr<=sqrt(bsq - fourAC), the object dependencies will be as shown 187

7 .28 A different refinement of process f indRoot sOfQuadratic 188

7 .29 An error dialogue stating that
no importers exist for data flow n 1. .. 188

7 .30 A data flow diagrn,.'11 which contains a loop 189

FIGURES AND TABLES xv

7 .31 Data object definitions for the looping application;
and an execution trace .. 190

7 .32 Prompt to the user to define the action to take when a
currency mismatch occurs, in the case where the automatic
flushing of instances has been turned off .. 191

8. 1 Level O data flow diagram for the revised
order processing application .. 194

8.2 Level 1 refinement of check:AndFill0rder 195

8.3 Level 1 refinement of produceinvoice ... 196

8.4 Data object definitions ... 200

8.5 Data dependency graph for data object invoice 200

8. 6 Data object definitions which
differ from those given in Figure 8.4 .. 201

8. 7 Data store tuples used in the first prototype 202

8. 8 Data store access details for constructing
instances of data flow customer_details 204

8. 9 The objects to be mapped between
the data flow adjusted credit and the
customer data store tuple component cust_available_credit 208

8.10 The generation of an invalid instance of cust_available_credit 210

8.11 The instance of rejected order,
which correctly identifies the customer's lack of available credit 211

8.12 Revised form of Figure 8.1, with
the data store parts replaced by the external entity parts 212

8.13 An instance of data object updated_part_details
which contains multiple parts_remaininginstances 215

8.14 An instance of data object invoice
which contains multiple line item instances 216

9 .1 Executable META minispec for
process p3, PRODUCE INVOICE •.•••.••...••.•.•••••••.••••.•.••••••..•••••..•••••••••• 225

9.2 A conceptual structure for a coarse-grain processing element 230

Tables
I Important properties of requirements and

design specifications, as identified by Howden [Ho82a]........................ 4

II The data dictionary language notation of De Marco . 25

III A comparison of some reported date-driven architectures....................... 62

N Example tuple instances for specific definitions 118

V Example tuple instances for group object definitions 121

VI Example tuple instances using basic type constructors 121

VII The possible bindings between dictionary objects 144

VIII A comparison of some coarse-grain data flow schemes 228

Part I contains the background material to the research reported in the

dissertation.

In Chapter 1 the motivation for the research is described, along with a statement

of the objectives. The principle objective has been to investigate the use of executable

data flow diagrams as a prototyping tool for use during the analysis phase of the

software life cycle. The approach adopted to achieve this objective is also given.

Chapters 2 and 3 contain discussions of the more important support material. In

Chapter 2 structured systems analysis, which is the method that has data flow diagrams

as a component tool, is discussed. Both advantages and disadvantages in the use of

structured systems analysis, and data flow diagrams in particular, are enumerated.

In Chapter 3 low level ('fine-grain') data flow schemes are discussed, and

characteristics which are particularly useful to a high level ('coarse-grain') data flow

system are identified.

2

1.1 Motivation for the research
In the design of a software system, the output from a requirements capturing

exercise is the specification, which is a document that contains an abstract computer­

orientated representation of the set of end-user requirements.1

Producing a correct specification is seen to be the key to the successful, cost­

effective development of software systems [Bo76]. There are, however, problems in

knowing when a specification is correct, and even when it is complete; not least

because of the problems of adequately specifying what is required in the first place. In

the context of the specification of requirements, Howden has stated that ([Ho82a],

p. 72):

'The principle idea in the analysis of requirements specifications is to make sure

that they have certain necessary properties.'

Howden tabulates some of the more important of these properties, included here

as Table I.

Some of the properties, notably completeness, must be viewed as ideals which

cannot be achieved in many software development projects.

1 Terms in bold type are included in the Glossary. In general, the term 'end-user(s)' will refer to the potential
users of the system being analysed, who are considered not to be software developers. The terms 'user' and
'analyst' are used to refer to the person(s) carrying out the analysis. The term 'user' generally appears when
the application of an analysis technique, or tool, is being discussed.

3

CHAPTER 1 - INTRODUCTION

Property Comments

Consistency Specifications information must be internally consistent. If
the information is duplicated in different documents,
consistency between copies must be maintained.

Completeness Specifications must be examined for missing or incomplete
requirements and design information. All specification
functions must be described, including important properties
of data.

Necessity Each part of the specified system should be necessary and
not redundant.

Feasibility The specified system should be feasible with existing
hardware and technology.

Correctness In some cases, it is possible to compare part of the
specification with an external source for correctness.

Table I: Important properties of requirements and design specifications,
as identified by Howden [Ho82a].

4

Parnas and Clements enumerated various problems in the area of software

design [PC85]. Some of particular interest, are couched below in requirements

specification terms:

• In most cases the end-users do not know exactly what they want and are unable to

state what they do know.

• Even if the initial requirements were known, other requirements usually surface as

progress is made in the development of the software.

• Even if all of the relevant facts had been elicited and included in the specification,

experience shows that human beings are unable to fully comprehend the plethora of

details that must be taken into account in order to progress into the design and

building of a correct system.

• Even if all of the detail needed could be mastered, all but the most trivial projects are

subject to change for external reasons. Some of those changes may invalidate

previous requirements.

• Human errors can only be avoided if one can avoid the use of humans. No matter

how rational the requirements specification process, no matter how well the relevant

facts have been collected and organised, errors will be made.

CHAPTER 1 - INTRODUCTION 5

These problems suggest that as requirements are likely to change during

analysis, flexibility should exist in the methods and tools used to capture requirements.

As well, consistency needs to be maintained. In fact, checking for consistency is seen

to be the property in Table I which is the most achievable using computer tools. Given

the right tools, computers are particularly good at this type of task.

The correct specification of requirements is seen as the key to the successful,

cost-effective development of software systems [Bo76]. It is also generally agreed that

to be able to validate requirements, they must be rigorously specified. As Davis

succinctly puts it ([Da88], p. 1100):

'Use a formal technique when you cannot afford to have the requirement

misunderstood.'

In an attempt to improve both the capturing of requirements, and the production

of a specification document that can be effectively used throughout the software

development process, considerable effort is being expended on developing formal

specification methods (see, for example, [GT79a, BO85, Wa85, He86, Jo86, ZS86]).

However, most, if not all, of the techniques proposed use formal methods and

languages which require a reasonably sophisticated level of mathematical maturity to be

fully understood. This tends to make them unsuitable as communications media

between analysts and most end users; which is unfortunate, as a further major

perceived parameter in the requirements capturing process is the active involvement of

end users (see, for example, [Al84, BW79, CM83, De78, Ea82, 1084, MC83, Ri86,

SP88]).

Speaking specifically about understanding software requirements specifications,

Davis has observed that ([Da88], p. 1112):

'understandability appears to be inversely proportional to the level of

complexity and formality present.'

There can be seen to be a tension between the need on the one hand for an

unambiguous, succinct, specification of requirements as the output from the analysis

process, and (at the least) the need to validate those requirements with end users.

Part of the purpose of the research reported herein has been an attempt to

address some aspects of this tension by adding formality, in the shape of a strict syntax

and operational semantics, to the data flow diagrams of structured systems

analysis (SSA), a semi-formal technique, to produce a computer-assisted

software engineering (CASE) prototyping tool. Data flow diagrams are considered

relatively easy to understand [De78, Ri86, YBC88], yet they have the potential to be

viewed more formally as high level data flow program graphs [Ch79].

The subsequent sections of this introduction more fully develop some of the

background to the research.

CHAPTER 1 - INTRODUCTION 6

1.1.1 Methods, methodologies, tools, and techniques
Quite often confusion exists in the use of the words 'method' and

'methodology'. The sense in which they are used in this thesis is as follows

(Fr80, MM85]:

Definition: A method consists of prescriptions for carrying out a certain type

of work process; that is, it is a way of doing something. •

Definition: A methodology is a collection of methods and tools, along with

the management and human-factors procedures necessary to their

application. •

Also 'tool' is used with a particular meaning (Fr80, MM85]:

Definition: A tool is an aid, such as a program, a language, or documentation

forms, that helps in the use of a method. •

Frequently, in this dissertation, the term 'technique' appears. It is used informally

as an abstraction. For example, a set of objects may be described as 'techniques' when,

say, some of them are 'methods' and the rest are (parts of) 'methodologies'.

1.1.2 Formal specifications, and formal methods
The application of formal methods is viewed by many as being necessary for

the correct and unambiguous specification of objects (see, for example, (AP87, GM86,

Jo86, LZ77]). Consequently considerable effort is being spent on research in this area.

'Formal methods' and 'formal specifications' are widely used terms that imply the use

of strict syntax and semantics in the description of objects; whether the objects are

statements, programs, requirements, or something else.

The following definitions make clear what is meant by 'formal specification'

and the related term 'formal method':

Definition: A formal specification is a specification which has been

defined completely in a language that is mathematically precise in

both syntax and semantics. •

Definition: A formal method is a method with a rigorous mathematical

basis. •

CHAPTER 1 - INTRODUCTION 7

The extent to which formal methods can be successfully used is unknown.

Although some formal methods have been used to specify significant applications

[Su82, STE82], the correctness of the specifications has not been proved, and, in some

cases, has been shown to be incorrect [Na82]. As discussed in the next section, it

appears that the most that can be hoped for in practical situations is a specification in

which amenable parts of the requirements have been formally specified [Na82]. Any

specification which is not a formal specification will be described simply as a

'specification'. The integration of formal and informal specifications is considered

necessary. As Gehani and McGettrick have put it ([GM86], p. vii):

'Formal specifications do not render informal specifications obsolete or

irrelevant; although they [formal specifications] can be checked to some degree

for completeness, redundancy and ambiguity, and can be used in program

verification, they are often hard to read and understand. Consequently, informal

specifications are still necessary as an aid to the understanding of the system

being designed; informal and formal specifications complement each other.'

1.1.3 Informal, semi-formal, and formal
The problems with proving the correctness and general applicability of formal

methods has led to the view that formal methods cannot be used without recourse to

informal techniques for specifying requirements (nor even for specifying programs)

[MM85, Na82, Fe88]. Naur has suggested that 'formality' should be viewed as an

extension of 'informality' [Na82]. He states that

'the meaning of any expression informal mode depends entirely on a context

which can only be described informally, the meaning of the formal mode having

been introduced by means of informal statements.'

Naur, himself, quotes from Zemanek discussing software development [Ze80]:

'No formalism makes any sense in itself; no formal structure has a meaning

unless it is related to an informal environment[...] the beginning and the end of

every task in the real world is informal.'

The view of Naur is supported by Mathiassen and Munk-Madsen, who have

taken Naur's arguments, which were directed at program development, and applied

them to the more general area of systems development [MM85]. Both the views of

Naur, and Mathiassen and Munk-Madsen, are supported here. As a consequence, the

following are offered as definitions for 'informal' and 'formal' in the context of

describing some object:

Definition: The informal description of an object is a description that is done

without recourse to formal methods. •

CHAPTER 1 - INTRODUCTION 8

Definition: The formal description of an object is a description that is done

with recourse to formal methods. •

Note that a 'formal' description could include 'informal' descriptions within it,

as it is 'with recourse to' rather than 'solely with'. The counter-argument does not

apply: an 'informal' description contains no 'formal' descriptions within it.

It is possible to perceive of a spectrum of descriptions, going from informal at

one end, to totally formal at the other end. This is in keeping with Naur's proposals

[Na82].

The term 'semi-formal' is used loosely to describe any technique that is formal,

but with distinctly informal components. An example would be the structure charts

of structured design when interpreted using the algebraic approach(es) of Tse [St81,

Ts85, Ts85a, Ts86, Ts87, YC79].

1.1.4 Semi-formal techniques in
the specification of requirements

Techniques of an informal nature for specifying requirements abound. The most

widely used is narrative text, but this frequently results in large, ambiguous, and

incomplete specifications that lead to communications problems between analysts and

end users; particularly when attempts are made to validate requirements [De78, Da88].

Starting in the early 1970's, semi-formal structured techniques have been

developed over the years in an attempt to improve both the approach to analysis, and to

place the emphasis more on the graphical presentation of information as a better method

of communications. Included in the structured approaches for the capturing and

specification of requirements are, Structured Analysis and Design Technique (SADT)

[Co85, Ro77, RS77, Di78, Th78], Information Systems work and Analysis of

Changes (ISAC) [BH84, LGN81, Lu82], Software Requirements Engineering

Methodology (SREM) [Al77, Al78, AD81, BBD77] which is more suited to embedded

real-time systems, and the class of techniques called 'structured systems analysis'

(SSA) [CB82, De78, GS79, We80].

All of these have quite powerful abstraction capabilities which allow, for

example, objects in diagrams to be exploded into lower level diagrams in a top-down

fashion.

SSA techniques are the most widely publicised and used techniques, and are

based on data flow diagrams, which show the system in terms of data precedences: a

data-orientated approach. The SSA techniques also happen to be the most informal

of those mentioned. It is impossible to say whether their popularity is due to their

relative simplicity, although some statistical evidence does exist to suggest that this may

CHAPTER 1 - INTRODUCTION 9

be the case: in comparing the use of data flow diagrams and IDEFo (the graphically­

based function modelling part ofIDEF, a component of SADT), Yadav et al. concluded

that data flow diagrams appear slightly easier to use [YBC88].

Though the graphical features of the SSA techniques are seen to aid

communications between analysts and end users, they lack the necessary level of rigour

to satisfactorily facilitate the validation of requirements [Fr80, Ri86]. The lack of rigour

in these techniques stems from their generally free interpretation, which is due more to

a lack of strict semantics than a lack of syntax. Unfortunately, this lack of rigour invites

misuse [Do87]. It also leads to the possibility of incorrect, and ambiguous

specifications. Consequently, as a specification technique, SSA suffers from many of

the problems of narrative text. This is not surprising, because SSA still places a

reasonably heavy reliance on the use of textual data, although its syntax is generally,

but not completely, more formal than narrative text.

Some of the weaknesses of SSA are discussed in more detail in Chapter 2. At

this time it should be noted that they exist, and that an attempt to add formality to SSA

can be usefully applied to minimising the dependence on purely textual data. The means

used to achieve this minimisation is sketched out in Section 1.3, while the details form

the subject matter of Part II of this dissertation.

SSA has three major component tools which are of particular relevance in the

dissertation. These are:

• Data flow diagrams - An application is modelled by a hierarchy of data flow

diagrams which show how data flows through the application.

• Data dictionary - The description of data objects, and the transformations carried out

on them (by processes), are maintained in a data dictionary.

• Process specifications - For each bottom level (leaf) process, its process

specification (the process logic) describes how the data which flows into the

process is transformed into the data which flows out of the process.

These and the other component tools will be discussed more fully in Chapter 2.

1.1.5 Software development environments
In looking to define any tool for the capturing of requirements, consideration

should be given to the environment in which that tool will be focussed. The current

approach in software engineering is to develop tools within a framework known as

a software development environment (SDE). SDEs are also known as

software engineering environments (SEEs), and integrated project (or

program) support environments (IPSEs).

CHAPTER 1 - INTRODUCTION 10

The fundamental purpose of a SDE is to provide a computer-based set of

methods and tools - a methodology to support the software (development)

process. The existence of a cohesive methodology is fundamental, as this

encapsulates the process model used in software development. In Dowson's words

([D086], p. 6),

'We take the position that an unstructured "bag of tools" does not qualify as a

software development environment.'

Attempts have been made to define environments made up from existing

methods and tools. Howden discusses the architecture for four possible SDEs, each

based on the waterfall model of the software process [Ho82]. The differences between

the environments is the number and sophistication of the methods and tools included.

What is apparent is the large number of 'discontinuities' which exist between the

different tools in each proposed environment. These discontinuities have to be bridged

generally by manual means, which makes them error-prone and unsatisfactory for the

development of other than small software projects.

The following definition emphasises the need for integration ([WD86], p. 5):

Definition: A software development environment is a coordinated

collection of software tools organised to support some approach to

software development or conform to some software process

model. •

It is argued that the real value of a SDE comes from the integration between the

various methods and tools that it uses. This integration is provided by a specialised

data base environment. Conceptually, these specialised data bases have much in

common with the more recent of the data dictionary systems, which also aim to

provide an integrated view, and control, of (all) the objects in some context (whether,

say, the context is an enterprise, or some division or department of that enterprise).

1.1.6 The software development process
and the software life cycle

The underlying structure of a SDE is the particular software process

development model adopted by the architects of the SDE. The purpose of this section is

to determine what a process development model is, and whether a standard model and,

hence, SDE exists into which the proposed tool could be usefully placed.

The software development process (also called the software life cycle) is

frequently shown as consisting of a number of stages, such as requirements, design,

CHAPTER 1 - INTRODUCTION 11

implementation, testing, and operation and maintenance [So85].2 The activities carried

out in each of these stages is described by Sommerville as ([So85], p. 3):

• Requirements analysis and definition -The system's services, constraints and goals

are established by consultation with system end-users. Once they have been agreed,

they must be defined in a manner which is understandable by both end-users and

development staff.

• System and software design - Using the requirements definition as a base, the

requirements are partitioned to either hardware or software systems. This process is

termed systems design. Software design is the process of representing the functions

of each software system in a manner which may be readily transformed to one or

more computer programs.

• Implementation and unit testing - During this stage, the software design is realised

as a set of programs or program units which are written in some executable

programming language. Unit testing involves verifying that each unit meets its

specification.

• System testing - The individual program units or programs are integrated and tested

as a complete system to ensure that the software requirements have been met. After

testing, the software system is delivered to the customer.

• Operation and maintenance - Normally (although not necessarily) this is the longest

life cycle phase. The system is installed and put into practical use. The activity of

maintenance involves correcting errors which were not discovered in earlier stages of

the life cycle, improving the implementation of system units and enhancing the

system's services as new requirements are perceived.

Figure 1.1 shows the waterfall model view of this process, including:

• The overlap between the stages - There are no 'clean' division points between the

activities across stages.

• The feedback (and feed-forward) between the pre-operational development stages­

The next stage in the process is dependent on work carried out in the previous

stage(s) (feed-forward). Identifying errors, or accounting for changes, etc., require

changes to previous stages (feedback).

• The feedback from the operational and maintenance stages - Once an application

becomes live, errors may surface, or changes be required over time, which lead to a

feedback to earlier stages.

2 It is possible to define 'software development process' and 'software life cycle' to have significantly
different meanings. Compare, for example, the definition for 'software (development) process' in the
Glossary with the following definition for 'life cycle' ([MRY86], p. 83): 'The system life cycle is the
period of time from the initial perception of need for a software version to when it is removed from
service'.

CHAPTER 1 - INTRODUCTION

requirements

design
operations

and

testing t-11----l maintenance

Figure 1.1: The waterfall model of the software life cycle,
showing the overlapping of stages

(based on Sommerville [So85], Figs 1.1 and 1.2).

12

The end points of the stages in the waterfall model are generally seen to coincide

with major documentation and review points. They also tend to correspond with points

at which major changes occur in the techniques and or environments used for the

development, such as at the interface between (structured) design and implementation,

where a switch is made from using two-dimensional structure charts to using a one­

dimensional programming language [YC79].

The model in Figure 1. 1 is extremely abstract, and a number of important

features have been omitted, including:

• An indication of parallel activities within phases - Invariably, on other than the

smallest projects, developers work in tandem. This is certainly true of the

implementation phase, when a number of programmers will likely be concurrently

developing modules.

• An indication of whether or not prototyping is supported, and if so, where.

• An explicit indication of where verification and validation take place.

Figure 1.1 highlights a current major problem in the description of the software

process: the lack of a definitive process metamodel with which software process

models can be described, and checked for correctness and completeness [PC85,

WD86]. However, as this is a major research topic in itself, it will not be pursued

further here. Instead, the waterfall model of Figure 1.1 is accepted as adequate for the

purposes of the research reported herein.

1.1. 7 Models, executable models, and prototypes
The use of models in analysis is now seen as fundamental. According to Quade

([Qu80], p. 31):

'Analysis without some sort of model, explicit or otherwise, is impossible.'

CHAPTER 1 INTRODUCTION 13

The following defines what a 'model' is understood to be:

Definition: A model of an object is a representation which specifies some but

not all of the attributes of the object. •

In the development of computer software, models are seen to be most useful if

they are executable [Ri86].

Definition: A dynamic model of an object is a model which can be made to

carry out a set of operations, possibly in some specified

sequence. •

An 'executable model' is merely a dynamic model, which in the context of

software development specifies a software model that can be exercised on a computer.

Prototypes, and prototyping
As Carey and Mason have observed (CM83, p. 177), in computing:

'there appears to be little if any agreement on what a prototype is.'

The following simple definition is considered adequate:

Definition: A prototype is a model. •

A prototype is either an abstraction of the object it is modelling, a 'mock-up', or

it is a detailed representation of part of the object. SSA provides good facilities for

modelling parts of systems, as described in Chapter 2.

By implication, the medium used to construct a prototype need not be the same

as that used for the final object. A prototype of a menu system, for example, could be

constructed using the transition diagram interpreter (TDI) part of RAPID/USE

[WPS86], and then the real system could be constructed as part of a larger integrated

project using a language such as PL/I.

Definition: Prototyping is a method for building and evaluating prototypes. •

The purpose of prototyping, as it is seen here, is the same as that stated by

Carey and Mason ([CM83], p. 180):

'Our focus in this paper is on improving the final information system product

through use of prototypes to illuminate more clearly the [end-]user's real

needs.'

CHAPTER 1 - INTRODUCTION 14

This view of prototyping, as a productive way for analysts and end-users to

interact, is commonly held throughout the literature (see, for example, [AHN82, Al84,

BW79, CM83, Ea82, IH87, JS85, KS85, MC83, NJ82, SP88]). No other purpose

for prototyping is stressed here, although claims have been made for it as a replacement

for the 'classical' sofware development process [NJ82]. See, for example, the

discussion and references in Carey and Mason [CM83].

Different approaches to prototyping in computing have been enumerated [IH87,

JS85]. Ince and Hekrnatpour, provide the following taxonomy ([IH87], p. 9):

• Throw-it-away' prototyping - Which involves the production of an early version of

a software system during requirements analysis. This is then used as a learning

medium between the analyst and the end-user during the process of requirements

elicitation and specification.

• Incremental prototyping - Where a system is developed one section at a time, but

within a single overall software design.

• Evolutionary prototyping - Where a system is developed gradually to allow it to

adapt to the inevitable changes that take place within an enterprise.

1.2 Objectives of the research
The principal objective of the research, has been to investigate the use of

executable data flow diagrams as a prototyping tool during the analysis phase of the

software life cycle.

Implicit in this objective are the following further objectives:

• That the executable model, which is a significant output of a prototyping exercise, be

rigorous enough to form part of the specification, if required.

• That to serve as an adequate communications medium between analysts and end-

users, the tool should:

have a small number of (simple) concepts;

de-emphasise procedural details;

incorporate high levels of abstraction in a relatively simple manner;

make effective use of graphics.

• To be an effective prototyping tool at the analysis stage, as well as the list of features

just given, the tool should:

- provide 'soft' recovery from errors;

- be able to exercise 'incomplete' models.

1.3 The approach
In arriving at the objective(s) given in Section 1.2, the following five factors

were identified as of particular importance to the successful capturing of requirements:

CHAPTER 1 - INTRODUCTION 15

• Active user involvement - This is a long-held view in information systems

development. De Brabander and Thiers cite a paper written in 1959 which proposes

such an activity [DT84]. Active user involvement generally implies the need for

informal and semi-formal methods and tools.

• The use of graphical techniques in place of textual descriptions, wherever

appropriate Graphic techniques abound in commerce: PERT charts, pie charts,

histograms, and graphs, are notable examples. At the same time, purely textual

descriptions have been much criticised [Da88, De78].

• The use of executable models - Particularly in the form of prototypes, as a means to

illuminate clearly the needs of end-users [Al84, BW79, CM83, Ea82, MC83, Ri86,

SP88]. A model should be viewed (at the least) as a form of documentation.

• Powerful abstraction capabilities -Analysis is a creative process which has to map

complex real world problems into the specification of solutions [We81].

• A specification should be unambiguous - This implies the existence of strict

semantics in the specification method(s), and ways of avoiding or checking for

contradictions [AP87, Da88, GM86, Ho82a, Jo86, Ri86].

It was proposed that these factors can be addressed, to a significant degree, by

adding formality to SSA.

Following an initial study into using the three SSA tools mentioned in

Section 1.1.4, the approach adopted has been to specify the architecture for a tool

based on two of those components - data flow diagrams, and the data dictionary - plus

the development of a prototype (of the prototype system) to test out many of the ideas

put forward.

The formality added to the data flow diagrams has three components:

• A formal syntaxfor specifying data flow diagrams-To ensure that only a consistent

data flow hierarchy can be created, with valid data flow connections.

• An operational semantics for data flow diagrams - These define how a data flow

diagram can be executed.

• A consistent means of transforming data flows - This is achieved by treating the

definitions of data objects in the dictionary as programming language statements,

when executing data flow diagram processes.

The tool is described as 'semi-formal'. Work to provide a completely formal

'back-end' is being undertaken separately from the research reported here.

Given the discussion in Section 1.1, the tool has not been fixed to any specific

methodology or, by implication, to any specific SDE or software development process

model. As a consequence of this, the tool can possibly have use beyond the

requirements specification phase. However, this is not argued in the dissertation, but is

suggested, in Chapter 10, as a possible topic for future research.

CHAPTER 1 - INTRODUCTION 16

The tool is not considered a panacea for all the ills bedevelling the specifying of

requirements. Again referring back to the discussions in previous sections, of necessity

it is seen as one of a collection of informal to formal tools for use during analysis.

1.4 Structure of the dissertation
The thesis is structured in three parts. Part I contains this introductory chapter,

and two further chapters which survey material relevant to the tool described in Part II.

Part II proposes a design for an executable data flow diagram tool in Chapters 4

to 6. Following this, in Chapter 7, a prototype implementation of the tool is discussed.

Many of the ideas incorporated in the architecture of the executable data flow diagram

environment have been incorporated into this prototype, which has been written in

Prolog. It should be realised that no attempt was made to develop a complete

commercial implementation. Having said this, the prototype source is over 400 Kbytes

in size.

The final chapter in Part II contains a detailed example application developed on

the system described in Chapter 7.

Part III contains two chapters. The first, Chapter 9, discusses other approaches

to the execution of data flow diagrams. Included there is an outline description of a

system that was also developed as part of this research, and is the precursor to the

system described in Part II. Finally Chapter 10 discusses the findings of the research,

and suggests further avenues of investigation.

2.1 Introduction
As it is discussed here, structured systems analysis (SSA) is the technique

exemplified by Gane and Sarson [GS79], and De Marco [De78]. These two approaches

are conceptually similar, but there are differences in notation, terminology, and rules.

In general, the differences between the two approaches will not be discussed. If

needed, a comprehensive discussion and comparison of the two can be found in Tucker

[Tu88].

The rest of this chapter begins with an identification of the three major tools in

SSA. After this each tool is discussed in detail, followed by a section which provides

an integrated view of the tools. The application of SSA to the specification of

requirements is then discussed, with most emphasis being given to the way that data

flow diagrams, in particular, can be misused when specifying systems.

One of the component tools of SSA is the data dictionary. In a later section, a

discussion on dictionaries takes them beyond their role in analysis, and focusses on

their role as general purpose tools. Following this, the two options that were pursued in

the research to develop a prototyping tool based on data flow diagrams are given.

Finally, a summary of the chapter is provided.

17

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 18

2.2 Component tools of SSA
Data flow diagrams are the main notational tool of SSA [De78, GS79, GS80].

Following on the success of structured design, SSA methodologies began to appear a

decade ago. Although much progress has been made in the understanding and the

refinement of these methodologies, as well as the development of new ones [CB82,

LB82], they suffer from a general lack of integration and lack of ease of validation,

which may in part be due to the fact that SSA is made up of a mixture of techniques.

The set of tools and techniques of SSA is based on relatively few primitive concepts

and building blocks. The major tools are

• data flow diagrams;

• a data dictionary;

• a representation of the procedural logic, such as minispecs, decision tables, or

decision trees.

2.3 Data flow diagrams
The data flow diagrams of SSA use only four symbols (see Figure 2.1), namely

labelled arrows for data flows, annotated lozenges or bubbles for processes (or

transforms), squares for external entities (sources or sinks of data), and narrow open­

ended rectangles, or straight (parallel) lines, for data stores. The two most used

notations are those shown in Figure 2.1.

Gane and Sarson De Marco
notation notation

External Source
Entity or

Sink

r "

8 Process

'- ,)

I Data Store File

Data Flow_ Data Flow..,
r--

Figure 2.1: Comparison of the Gane and Sarson, and De Marco
data flow diagram notations.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 19

A number of computer packages have been implemented based on the notation

of Gane and Sarson (for a sample, see [CTL87, IT84, Jo86a]), while others have been

based on De Marco's notation (see, for example, [CT86, DMK82, Yo86]). Some

packages support both, and allow the user to choose between them (an example is the

Visible Analyst Workbench [Pe87a]). The notation used in this dissertation is

essentially that of Gane and Sarson, which is considered to be neater than that of

De Marco's. The essentially rectangular shape of the boxes in the Gane and Sarson

scheme, and the regular shapes of the data flow arcs as straight-lined segments joined at

right-angles, makes the notation particularly suited to implementation on computers.

The prototype system in Chapter 7 implements a slightly modified form of Gane and

Sarson's notation, based on the MacCadd system [Jo86a].

Of the four symbols, external entities and data stores are arguably of lesser

importance. External entities are simply named parts of the application environment,

and data stores are conceptually only required in update situations (such as where a

process transforms an old instance of a data flow into a new, updated, instance), or in

future reference (read only) situations. Together, they provide the interface to the

surrounding environment.

The arrows and lozenges of the data flows and processes, respectively, are the

core of the data flow diagram notation and their generality enables them to be used with

a number of somewhat different emphases. For example, the practice of writing short

imperative statements in the lozenges, together with the top-down refinement of

data flow diagrams, gives rise to a functional decomposition view of systems. On the

other hand, the view of output data flows from transforms depending functionally on

input data flows, gives the fundamental data dependence view common to all data flow

systems. From an end-user system specification view, functional decomposition is

natural. From the point of view of an executable application model, the data

dependencies specified between the leaf processes in the data flow diagrams of the

explosion tree are central.1 Note that these two views are not at all incompatible,

unless, as often happens, the more fundamental data precedence properties are de­

emphasised.

One major purpose served by data flow diagrams is the provision of logical

views, at increasing levels of refinement, of the system being analysed. During this

logical analysis, no physical considerations should intrude, not even in terms of time.

In general, data flow diagrams support this requirement well in that the details of how

the data flows are to be processed are 'hidden away' in the processes. Also,

conceptually, data does not have to flow instantaneously, nor need the capacity of a

1 The explosion tree (hierarchy) is discussed in Section 2.3.1.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 20

data flow conduit be limited, which means that the data flows can be viewed as pipes

along which instances of the data flows pass (in the direction of the arrows) to form

first-in, first-out (FIFO) queues at the importing processes. Exported data flows which

are imported by more than one process can be considered to generate extra copies at the

'T' junctions where the data flows fork (see, for example, data flow PART_DETAILS in

Figure 2.3). As soon as a complete set of data flows is available, the data flows can be

'consumed' by the importing process.

2.3.1 An application hierarchy of data flow diagrams
In data flow diagram terms, an application is represented by a hierarchy of

diagrams. The standard approach is to first represent the application by a single data

flow diagram that defines the domain of the system. This is called a context (data

flow) diagram, and it is also identified here as a Level O (data flow) diagram.2

Except for small applications, the few processes and data flows that are included in this

diagram represent functions and data flows, respectively, at a high level of abstraction.

The data flow diagram in Figure 2.2 serves as an example.

CUSTOHEIL
0 POST AL_DET AILS

INVOICE ICUST Ol1ERS

ORDEILDETAILS
CUST Ol1EILDETAILS

CUSTOHER ORDER
UNFILLABLE ORDER PROCESSING PARLDETAILS

.!PARTS
UPDATE DJ ARLDETAILS

Figure 2.2: Context, or Level 0, data flow diagram for an
order processing system.

The single process, named ORDER PROCESSING, represents the activities which

transform an order (generated by a CUSTOMER as the data flow ORDER_DETAILS), into

either: an order that cannot be filled (the data flow UNFILLABLE_ORDER); or an order that

is filled, which (finally) leads to the generation of an invoice (the data flow INVOICE).

Although this is a reasonable summation of Figure 2.2, from the diagram alone,

there is no way of knowing whether this is the correct interpretation without recourse to

supporting data or knowledge. The diagram itself does not contain information to this

level of detail.

2 De Marco distinguishes between these two, although he concedes that the context diagram should be part
of the (hierarchy) set of data flow diagrams ([De78], p. 75). He describes the Level O diagram as the
refinement of the context diagram. They are considered the same here to enable the context diagram,
which forms the root in an application's data flow diagram hierarchy, to be described as being at level O of
the hierarchy, without causing undue confusion. Also a context diagram could contain more than one
process.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 21

Accepting the above interpretation as correct, the following are worth noting:

• Much of the semantic information contained in the diagram, is carried in the assigned

names of the objects - Names such as ORDER PROCESSING, ORDER_DETAILS, and

PART_DETAILS, lend considerable weight to the understanding of the diagram.

• No guarantee can be given that the relationships between data flows can be fully

identified from the data flow diagram - There is no way of telling that INVOICE

depends on ORDER_DETAILS (what else does it depend on?). Nor that either one or

other, but not both, of INVOICE and UNFILLABLE_ORDER is generated for each

ORDER_DETAILS.3

One way of providing further detail, is to refine process ORDER PROCESSING to

create a new data flow diagram. Only processes can be selected to be refined into new

diagrams. However, once a process is being refined, it is possible, within the same

diagram, to refine the data flows which are input to and output from that process into

their component objects. Examples of how this can be done are given in Figures 3 .18

and 3.19 in Chapter 3, and the examples in Section 7.4 and Chapter 8.

One possible refinement (or 'explosion') of process ORDER PROCESSING is given

in Figure 2.3. Three new processes have been introduced in this diagram. Even though

more information is contained in the diagram, there is still a lot that is unclear. Why, for

example, is data store PARTS 'updated' by process FILL ORDER and not by CHECK ORDER?

What then is CHECK ORDER checking? If CHECK ORDER is checking the availability of parts

to fill an order, why doesn't it 'update' data store PARTS if the order can be filled?

UNFILLABL
ORD

INVOICE (3
CUST011ER PRODUCE

INVOICE
CUST011EIL

ORDEILDET AILS POST AL-DETAILS
CUST011ERS

E_ tUST011EIL
ER DETAILS

1 VALID ORDER .,

CHECK
ORDER l

UPDATED_
PART_DETAILS P ART_DETAILS

-'--
PARTS

BASI CJILLED_
ILDETAILS ORDE

2
FILL

ORDER

Figure 2.3: Level 1 refinement of process ORDER PROCESSING.

Two possible answers to these questions (among many) are the following:

• The data flow diagram is modelling a part-manual, part-computerised system, in

3 Because of their relatively free interpretation, there is no way of knowing whether only one
ORDER_DETAILS is required to produce an INVOICE, or whether more than one is; and vice versa.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 22

which the process CHECK ORDER is done manually against some printed list, and the

process FILL ORDER is computerised.

• The data flow diagram is in error.

Within the classification of the second answer, is the possibility that the first

applies, but the diagram also contains errors. An obvious one, in this case, is that

PART_DETAILS should be two different data flows from two different data stores. The

first data store, called PARTS LIST say, would model the printed list, while the second

store could model a computer-held inventory of parts in the data store PARTS.

Whether this is the right approach is unclear, as the diagram does not contain

enough information to be able to draw the above conclusions.

Further refinements can be carried out, as necessary. Figure 2.4 shows the

refinement, in the context of the refined process, of PRODUCE INVOICE. This style of

drawing data flow diagrams is consistent with Gane and Sarson. De Marco, on the

other hand, tends to minimise on the amount of detail contained in diagrams.

PROCESS 3 - PRODUCE INVOICE

(3.5 ' EXTENDEDJ'ILLED_ (3.1 '\ :BASIC_
INVOICE 1 FORH I ORDEILDETAILS ~COHPUTE l FILLED_

CUSTOHE::
EXTENSION) ORDEIL lINVOICE./

DETAILS
TO_pAJ

(3.4 ' r 3.2 ,
COHPUTEITOTAL lco:trPUTEJ

TO PAY J l TOTAL

(3.3 ,

LESS lco:trPUTEJ
l LESS

CUSTOHEILPOSTALDETAILS

ICUSTOHERS

Figure 2.4: Level 2 refinement of process PRODUCE INVOICE.

Level 0

Level 1

Level 2

Figure 2.5: The hierarchy of processes for the order processing application
modelled in Figures 2.2 to 2.4.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 23

Taken together, these diagrams form a rather simple hierarchy, or explosion

tree. The preferred way, within this dissertation, of viewing an application in data flow

diagrams terms, is as a hierarchy of processes. A process hierarchy for the

application is given in Figure 2.5. The shaded processes are called the leaf

processes, as they come at the tips of the branches in the inverted tree which forms

the hierarchy.

2.4 Data dictionary
As demonstrated in Section 2.3, data flow diagrams tell only part of a 'story'.

De Marco has said ([De78], p. 126) that, without a data dictionary, they

'are just pretty pictures that give some idea of what is going on in a system. It is

only when each and every element of the DFD has been rigorously defined that

the whole can constitute a "specification".'

The definitions of data flow diagram objects are contained in the data dictionary.

The inclusion of the word 'data' in the term 'data dictionary' is somewhat misleading,

as the dictionary contains details on process logic as well. The use of the term is

historical, as pointed out in Section 2.8.

The data dictionary contains definitions of any objects of interest. The main

classes of objects of interest here, and their definitional details are:4

• Data objects - For each data object, including data flows and data store tuples,

details on the component objects which it comprises, or its 'basic' type, or edit

details. (See Section 2.4.1.)

• Data flows- For each data flow, details of its single exporter and, possibly, multiple

importers.

• Data stores - For each data store, the data flows that are input to or output from the

store.

• Processes - For each process, the data flows that are input to or output from the

process. As well, details on whether the process is further refined or, if not, a

process logic summary specifying how the input data flows are transformed into the

output flows.

• External entities - For each external entity, the data flows that are input to or output

from the entity.

As listed above, there appears to be significant redundancy of information. For

instance, a data flow has details on its exporter, yet each object which exports a data

flow, has details on that data flow. Whether this redundancy is real, or just apparent,

4 There are no hard and fast rules on what level of detail, or what quantity of information, should be kept on
objects. Some methods, such as SSADM [Ea86], have stricter rules than others [De78, GS79].

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 24

depends on how the data dictionary is maintained. If it is a manual system of cards,

say, then there are benefits in keeping as much information as possible in one place.

Not only does this lead to redundancy, it also invites inconsistencies caused by only

some of the affected cards being amended when a change is made. Computerised

systems, utilising data bases, can minimise on redundancy and any inconsistencies

which could result.

2.4.1 Defining data objects
The discussion in this section will concentrate on defining data objects. The

definition of data flow diagram objects, such as processes and external entities, will not

be addressed. It can be assumed that the dictionary is either able to store the diagrams

themselves, or a textual representation of them. Whichever way, all the details within a

diagram are assumed to be able to be captured within a dictionary. Similarly, process

logic is also assumed to be held in the dictionary in a suitable form.

Data structures and abstractions
In a similar way to a process being an abstraction of its refined descendant

processes, data can often be viewed as an abstraction of its component structures. The

INVOICE data flow in Figure 2.4, as an example, is likely to be a data object with a

structure that includes: details on the customer receiving the order; details of the parts

and quantities ordered, the cost of each quantity of parts ordered; the total cost of the

order; and so on. This structure could be represented in the form of a tree along the

lines of Figure 2.6.

INVOICE

INVOICE_# CUST_# CUST_DETAILS (EXTENDED_LINE_ITEM) TOTAL TO_pAY LESS

~
CUST_NAME (ADDRESS_LINE)

PART_# PART_DESCR QUANTIIY UNIT_PRICE EXTENSION

Figure 2.6: A possible data structure hierarchy of the INVOICE data flow
shown in Figures 2.2 to 2.4.5

5 The curly braces signify that the enclosed object may be repeated a number of times.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 25

In Figure 2.4, the component data objects TOTAL, LESS, and TO_PAY, themselves

appear as data flows. This similarity in concept between the refining of processes and

data flows (or, more generally, data objects), is one of the fundamental motivations

behind the adopted architecture given in Part II of this thesis.

A useful language for defining data objects is given in De Marco. Using this

language, certain of the invoice details of Figure 2.6 could be defined as follows:

INVOICE

CUST_DETAILS =
EXTENDED_LINE_ITEM =
INVOICE_#

INVOICE_#+ CUST_# + CUST_DETAILS +
l(EXTENDED_LINE_ITEM} +TOTAL+TO_PAY +LESS.
CUST_NAME + 1 (ADDRESS_LINE}3.
PART_#+ PART_DESCR +QUANTITY+ UNIT_PRICE + EXTENSION.
5(DIGIT}5.

PART_DESCR
QUANITIY
EXTENSION

1 (CHARACTER} 14.
= INTEGER.

REAL.

The complete notation is given here as Table II ([De78], p. 133).

Symbol Meaning

= 'is equivalent to', 'is composed of,
or 'is defined as'

+ 'and', or 'with'

[] 'either-or'; that is, select one of the
objects in the square brackets.
The objects can be separated by 'I',
a vertical bar standing for 'or'.

{ } 'iterations of the enclosed object(s)

() the enclosed object(s) is 'optional'

Table II: The data dictionary language notation of De Marco.

De Marco provides examples using the language, particularly in Chapter 12 of

Structured Analysis and System Specification [De78]. Weinberg also uses a slightly

extended form of this language [We80].

An object is defined only once in the dictionary, although a number of

alternative structures can be given for the object using square brackets. The object

BANK_TRANSACTION, for example, could be defined as

BANK_TRANSACTION [CURRENT_ACCOUNT_TRANSACTION I
SA VINGS_ACCOUNT_TRANSACTION].

where the data format of these transactions could be totally different.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 26

De Marco does allow further information to be associated with a definition. For

example, if BANK_TRANS was a synonym (or alias) for BANK_TRANSACTION, the

definitions could be stored in the dictionary as:

BANK_TRANSACTION [CURRENf_ACCOUNT_TRANSACTION I
SA VINGS_ACCOUNT_TRANSACTION]

BANK_TRANS.
BANK_TRANS = BANK_TRANSACTION.

IfBANK_TRANS had itself been defined in terms of some other objects, this set of

definitions would be inconsistent. Identifying BANK_TRANS as a synonym for

BANK_ TRANSACTION in the first definition has introduced the possibility for

inconsistencies to occur. An inconsistency is able to happen because there is

redundancy in defining the existence of one set of synonyms twice. It may be

convenient, and therefore justifiable, to do so, but it increases the possibility of errors

occurring.

Good practices to follow, and pitfalls to avoid, when organising a data

dictionary are given in De Marco, Gane and Sarson, and Peters [Pe88].

2.5 Process transformations
Various methods are used for specifying the logic of processes. The three most

often mentioned are:

• Structured English

• Decision tables

• Decision trees

2.5.1 Structured English
Probably the most used method for specifying process logic, structured

English is a form of pseudocode. Such languages are an amalgam of English and

the constructs of structured programming. Importantly, details on the structure and

initialisation of objects is abstracted out of process logic specified in structured English.

A possible specification of the process logic for PRODUCE INVOICE in Figure 2.3 is the

following:

FOR EACH PART#,
ASSIGN QUANTITY * UNIT PRICE TO EXTENSION.
ADD EXTENSION TO TOT AL.

IF TOT AL IS GREATER THAN $500,
ASSIGN 10% TO DISCOUNT.
ASSIGN TOTAL * DISCOUNT TO LESS.

OTHERWISE,
IF TOTAL IS GREATER THAN $250,

ASSIGN 5% TO DISCOUNT.
ASSIGN TOT AL * DISCOUNT TO LESS.

ASSIGN TOTAL - LESS TO TO_PAY.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 27

This is essentially one of the syntaxes given in De Marco ([De78], p. 209). It is

reasonably informal and relies, for example, on indentation to define the scope of

conditional expressions.6 A structured English version of the process logic which is

closer to pseudocode is shown below:

PROCESS P3
FOR EACH PART#
DO -

ASSIGN QUANTITY * UNIT PRICE TO EXTENSION
ADD EXTENSION TO TOT AL

END DO
IF TOT AL > $500

THEN ASSIGN 10% TO DISCOUNT
ASSIGN TOT AL * DISCOUNT TO LESS

ELSEIF TOT AL > $250
THEN ASSIGN 5% TO DISCOUNT
ASSIGN TOT AL * DISCOUNT TO LESS

END IF
ASSIGN TOTAL - LESS TO TO PAY
PROCESS END -

In this variant, the scope of expressions is fully resolved by the use of

constructs such as DO - END_DO. Although apparently less ambiguous, end-users

may find such a specification harder to understand.

Note that in both versions, no mention is made of the need to initialise TOT AL

to zero. Also, the types of the objects can only be inferred from the process logic. No

definitions are contained in the structured English.

To facilitate comparison with the other process logic methods to be discussed,

the structured English in Figure 2.7 describes how to identify whether a customer of a

particular enterprise should be treated as a priority customer, or as a normal customer.

Hopefully, the details are reasonably easy to understand. The example and notation

used are taken from Gane and Sarson ([GS79], p. 81).

IF customer does more than $10,000 business
and-IF customer has good payment history

THEN priority treatment
ELSE (bad payment history)

so-IF customer has been purchasing
for more than 20 years

THEN priority treatment
ELSE (20 years or less)

SO normal treatment
ELSE (customer does $10,000 or less)

SO normal treatment

Figure 2.7: A structured English rninispec for calculating the status of a customer.

6 The functional language Miranda [Tu86] is an implemented language which uses layout to define scope.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 28

2.5.2 Decision tables
A decision table is a two-dimensional matrix partitioned into four areas. They

have been used widely in United States Government institutions for a number of years,

and have had reasonable use elsewhere. Decision tables provide a concise means for

specifying what action to take when a relatively large number of conditions apply.

Details on their use can, for example, be found in Gildersleeve [Gi70], and McDaniel

[Mc78]. A decision table for the customer status example is shown in Figure 2.8

([GS79], p. 83). The columns numbered 1 to 8 are the rules that identify which

combination of conditions apply. A 'Y' signifies that the condition in the row in which

the 'Y' appears applies, and an 'N', signifies that it does not. Where an 'X' appears in

a column, this signifies that the action to be taken is that which is in the same row as the

'X'. A customer, for example, who purchases more than $10,000 of goods a year (cl

= Y), is a bad payer (c2 = N) , but has been trading with the company for more than

twenty years (c3 = Y), satisfies rule 3, and is given priority treatment (al).

1 2 3 4 5 6 7 8

cl: More than $10,000 a year? y y y y N N N N

c2: Good payment history ? y y N N y y N N

c3: With company > 20 years ? y N y N y N y N

al: Priority treatment X X X X X

a2: Normal treatment X X X

Figure 2.8: A decision table for calculating the status of a customer.

2.5.3 Decision trees
Decision trees provide a graphical method for describing process logic. A

decision tree for the customer status example is shown in Figure 2.9. The decision tree

in Figure 2.9 is conveniently in the form of a binary tree, but quite often more than two

branches emanate from a decision node (see, for example, [De78, We80]).

De Marco considers decision trees as no more than a graphical representation of

decision tables. According to de Marco, end-users are more likely to understand

decision trees as they appear more familiar (like family trees, for example).

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 29

This better acceptance and understanding of decision trees over decision tables

seems to apply equally as well to 'computer-literates'. In a design experiment carried

out by Vessey and Weber involving one hundred and twenty-four information systems

and computer science students from three tertiary establishments, all of whom had used

structured tools and the Cobol language, decision trees 'outperformed' decision tables

for the task of determining the set of conditional truth values that led to a particular set

of actions in the problem being solved [VW86]. Decision trees also 'outperformed'

decision tables when translating from them into Cobol.

More than
$10,000
business

$10,000< or less

Good
payment
history

Priority

Customer more ---- Priority

Bad < than 20 years
payment
history

20 years or less ---- Normal

Good
payment ----------- Priority
history

Bad
payment ----------- Normal
history

Figure 2.9: A decision tree for calculating the status of a customer.

Three measures of performance were used in the experiments: time taken to

perform the experiment; the number of syntactic errors made; and the number of

semantic errors made.

Included in the experiment was the use of structured English. The results

showed that structured English also 'outperformed' decision tables on both tasks.

Given that one application coded by the participants was reasonably complex - having

six conditions, seven actions, and five levels of nesting when translated into Cobol -

this is an interesting finding.

When decision trees were compared with structured English, decision trees

were a better tool for enumerating the conditional expressions, and were as good as

structured English for converting into Cobol. This second finding would suggest that

the associated processing performed for each condition is relatively small, or highly

abstracted. If this is the case, this is not considered to devalue the findings, as one

would expect the amount of processing modelled by a minispec to be relatively small.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 30

2.6 Combining the tools
The way in which the three tools described in Section 2.5 are integrated is

described in Figure 2.10, which is based on Fig. 2.12 in Gane and Sarson ([GS79]).

I
I

I

II' I-____ ,.-•~--\ ,-~-t.__, -
I I \ ' '

\

\

I I \ '
I I \ '

I I \ '
I \ '

\

\

' ' '

Level O data flow diagram

Level 1 data flow diagram

Data dictionary Process logic tools

Figure 2.10: An integrated view of three tools described in Section 2.5,
showing how they combine to form a logical model of an application.

To interpret this diagram, it is useful to consider how a particular data flow can

be validated. Part of this validation is likely to be a consideration of how the flow is

constructed, and it is this particular activity that will be considered here.

One approach is the following: The data flow diagrams can be used to identify

where the flow is created; that is, what process, external entity, or data store exports it.

If created by a process, then, from the representation of the process logic, information

can be obtained on which data objects are required to produce that object. By referring

back to the diagram(s), it may be possible to identify these data objects as import flows.

If not, the dictionary must be consulted to check that the data objects are component

objects of the import set of data flows, or (from the process logic and dictionary)

derivable from them. The dictionary will then be needed to check that the imported

objects are type compatible with the required export flow, and that the operations

carried out on the import objects are type-permissible operations for those objects.

The above procedure is not necessarily difficult, but it is relatively easy to make

errors. Given the significant number of data objects and processes that are likely to be

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 31

in an application model, the probability of producing a consistent, correct model is

considered small. Procedures for correcting errors and performing modifications would

need to be exact, otherwise (further) inconsistencies are likely to arise.

Computerised dictionaries and data flow diagram draughting tools are

invaluable for maintaining consistency both within and between the diagrams and

dictionary. However, these provide only syntactic checks. A problem area is still the

maintaining of consistency with the minispecs (say), and the dictionary and diagrams.

This is due to the minispecs being textual descriptions of the process logic.

2. 7 Using SSA in specifying requirements
The flexibility provided by SSA, particularly data flow diagrams, is important

to the creative approach needed in analysis. However, because SSA is currently mainly

descriptive, and relies heavily on textual descriptions, it is difficult to validate the

results of an analysis exercise. As DeMaagd has stated ([De82], p. 82):

'A [...]problem with structured analysis techniques is that graphic analysis is

still an abstract representation. As such, data flow diagrams suffer from many

of the same problems communicating with non-data processing personnel as

conventional flowcharts do.'

Some statistical support for data flow diagrams not being more or less superior

to certain other techniques (narrative text, HIPO charts, and Warnier-Orr diagrams) is

provided by Nisek and Schwartz [NS88]. However, the usefulness of the findings are

questioned here, if only because the 'end-user' evaluated the specification in isolation,

and for a relatively short time period of one hour. It is unrealistic to expect that

specifications can be evaluated by end-users in vacuo. At the very least, a presentation

by the analyst to the end-user(s) should take place, which would be followed by an

evaluation of the specification by a small group of end-users.

Because of the pivotal role that data flow diagrams play in the success or

otherwise of SSA specifications, discussion will concentrate on identifying their

positive features for capturing requirements, and on identifying common ways in which

they can be misused. Understanding some of the ways they can be used incorrectly

should help in attempts to strengthen the techniques in which they are used.

2. 7 .1 The positive features of data flow diagrams
for use in specifying requirements

The following are considered the most important features of data flow diagrams

for the elicitation and documentation of requirements:

• A graphical language- Important for discussions between the analyst and end-users.

• Good abstraction capabilities - A complete sub-system can be defined as a single

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 32

process (for example, 'ORDER PROCESSING') and then expanded into lower level data

flow diagrams when required. Similarly, data flows can be 'bundled' (for example,
1BASIC-FILLED_ORDER_DETAII.,S

1
) and split up later [De78, GS79, Ha88].

• Both a functional and data flow interpretation - It is possible to view a single data

flow diagram functionally, by concentrating on the process lozenges, or in terms of

the data precedences, by concentrating on the input and output data flow sets

associated with each process. This also helps in bridging between analysis and

design [De78, GS79, LGN81, Pa80, St81, YC79].

Collectively these features have the potential to provide an extremely flexible

tool. However, this flexibility has led to the misuse of data flow diagrams.

2.7.2 Common ways of misusing data flow diagrams
Data flow diagrams have been misused in at least the following ways:

• Structurally inaccurate data flow diagrams - Included here are 'simplified data flow

diagrams' in which, for example, external entities (sources and sinks) communicate

directly with data stores, or where there are no external entities to provide an

interface with the outside world.

• Being 'prematurely physical' - This term was first used by Gane and Sarson

([GS79], p. 5):

'There is a great temptation to sketch a physical design of the new system

before one has a full understanding of all the logical requirements; this is

what is meant by being ''prematurely physical".'

This shows up most frequently as an overuse of data stores during the logical

analysis phase(s). An example would be a data store for the holding of transactions

which are subsequently processed sequentially.

• 'Functionalising' - By regarding data flow diagrams solely as a functional

decomposition tool.

• Textual glueing - Where 'difficult' parts of the system are described textually (in the

data dictionary or, more commonly, in minispecs).

• Over-abstraction - Where the analysis of a system is finished at too high a level of

abstraction.

Two examples will be given from the literature which demonstrate a 'loose'

interpretation of data flow diagrams. The first is an excerpt, shown in Figure 2.11,

taken from a Level O diagram constructed using De Marco's notation in Wasserman et

al. ([WPS86], Fig. 4, p. 329). It contains an external entity, called librarian, which is

connected directly through the data flow book query, to the data store book. Similarly,

the same external entity is connected through the flow loan query to the store loans.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 33

book loans

~ book t
loan bookinfo, query

cpno query

addition,

~-- deletion --- librarian
slips

Figure 2.11: Excerpt from a 'loose' data flow diagram in Wasserman et al. [WPS86].

Only the data flow book query will be discussed, along with its associated

operation(s). All the points to be made apply equally in principle to data flow loan

query and its implied operation(s).

The application being modelled is a simple library system. The relevant

transactions which come under the term 'book query' are given as ([WPS86], p. 328):

• Get a list of titles of books in the library by a particular author.

• Find out what books are currently checked out by a particular borrower.

• Find out what borrower last checked out a particular copy of a book.

These three transaction types are included within the data flow book query. In

order not to make too lengthy the discussion, the concerns about this chosen abstraction

will be listed below:

1 Transactions are operations, and must be modelled by processes, whereas data

stores are 'data at rest' [GS79]. In the example, the data store book is expected to be

able to transform a transaction request into a response data flow (which has not

been shown - see 3 below). In detail, the data store has to parse each transaction to

identify the transaction type, and respond accordingly.

2 The import into and the export from the process bubble are sets of distinct

transactions, and should either be abstracted to a higher level flow, or be distinct

data flows. A data flow is a conduit which carries one, known, type of data. It can

be inferred from the diagram, and supporting documentation, that one of possibly

three different flows may be placed on the data flow at any time.

3 If the direction of the data flow arc is indicating nett flow, it should be going from

the data store to the external entity. The responses to these queries are seen to be

more important than the queries themselves.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 34

Supporting details for concern 2 in the list are:

• The data flow named (badly) as 'addition, deletion slips' is at least two distinct

types of data flow, for additions and deletions, respectively.7 From the supporting

narrative text, an addition data flow contains more details than deletion flows.

• The data flow named (again, badly) as 'bkid, bookinfo, cpno' will:

only consist of the data object bkid if the deletion is for all copies of the book

identified by bkid;

only consist of the data objects bkid and cpno if the deletion is for the copy

identified by cpno of the book identified by bkid;

consist of bkid, title, authors, publishers, and year, but not cpno, if a book is

being added. Nowhere in the supporting text does it state that bookinfo contains

title, authors, publishers, and year; this must be inferred.

The 'looseness' in this data flow diagram excerpt is a mixture of freely interpreting

both the syntax (connecting external entities directly via data flows to data stores), and the

semantics (assuming, for example, that data stores can 'process' transactions).

Pulse
Clock

' ' ' I

I
I Wind Air Water

Location

• Spa:id Temp Temp
Sensor Sensors Sensors Sensors

Value Value Value Value

~ 1

r "I r 'I r 'I r 'I

Calculate Calculate Calculate Calculate
Average Average Average Location

\. .J '- ~ '- ,/ '- ~

Average Average Average Value
value value value

•--- Sensor Data Base

Figure 2.12: Excerpt from a 'loose' data flow diagram in Booch [Bo86].

7 There are two types of deletion: one copy of a book, or all copies of the book. Depending on the format of
the data specifying a deletion, there could be two distinct types of deletion flow, making three types of
transaction in all.

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 35

The second example, excerpted from Booch ([Bo86], Fig. 8, p. 218), is 'loose'

in at least the following ways:

• An external entity is connected via data flows directly to other external entities.

• A number of data flows have the same name. Similarly for a number of processes.

• Data flows have been merged. This implies some transforming of data through a

process is required. 8

No further analysis of this example will be given, although a number of

possible semantic ambiguities exist.

A detailed study of both systems will identify a considerable dependency on

narrative text, and the 'correct' interpretation and interpolation of that text.

A voiding procedural details in data flow diagrams
A more specific issue with data flow diagrams, is the extent to which procedural

details should be included. The extension of the use of data flow diagrams to real-time

systems has led to the addition of control information to the diagrams [Wa86]. In many

ways this is not a problem, as control information is invariably kept distinct from the

normal flows and processes, etc; mostly by using dotted boxes and arcs for control

details and/or using separate diagrams [Ha85a, Wa86].

Of more concern is the existence of procedural details in the data flow diagrams

for business applications. Some users, for example, incorporate an exclusive-OR (EB)

symbol in their diagrams when only one of two input (or output flows) is required (or

produced). They also use an AND (*) symbol, to signify that both flows are needed.9

The use of these symbols is not considered good practice, for the principal reason that it

takes procedural details outside the processes [De78]. In the case of input data flows,

the interpretation of Ee is:

if data_flow_ 1_exists then do_something_with_data_flow_ 1
else
if data_flow_2_exists then do_something_with_data_flow_2
else
if both_exist then error.

Where both do_something_with_data_flow_ 1 and do_something_with_data_flow_2

are operations detailed in the process.

8 There are cases, when dealing with the imports and exports of refined processes, where instances of
component data flows can usefully be collected together to form an instance of the more abstract flow. In
which case a new type of object needs to be introduced to perform this function (as was done in the
prototype system in Chapter 7). However, within the 'interior' of a refined data flow diagram, no merging
of data flows should occur.

9 For an example, see the first data flow diagram in section 4.3.1, Limited import sets. See, also, their
use in Weinberg [W e80].

CHAPTER 2 - STRUCTURED SYSTEMS ANALYSIS 36

If both data flows exist, this signifies an error, as both the operations could

legitimately be carried out. Note that 'both data flows existing' signifies that some

matching scheme exists. Exactly what the semantics of this scheme are, is generally

only defined in an informal manner [De78, GS79], and relies on a common sense

approach by the creators and interpreters of the diagrams. It also relies on the careful

description of how the processes transform (operate on) the input data flows to produce

the output flows (see Section 2.5).

For output data flows, the interpretation of EB is:

if some_condition_ 1 then produce_export_data_flow_ 1
else
if some_condition_2 then produce_export_data_flow_2.

The nett effect of using the exclusive-OR and AND symbols, is to split the

semantics of the operations between the data flow diagram and the process logic. Some

of the details are now expressed in syntactic terms, using the symbols; while the rest of

the details must be contained within the process logic, most likely using one of the

techniques discussed in Section 2.4.

In conclusion, no procedural detail should be included in data flow diagrams

used to model commercial applications.

A voiding control and physical details in data flow diagrams
Similarly, representing control and timing details as data flows should also be

avoided [De78]. A data flow called 1LAST_FRIDA Y_OF _THE_MONTH' is an example of such

a flow. These types of flows merely serve as triggers for invoking some activity, and

have nothing to say about the transformations between data flows (other than when

they occur).

A further temporal consideration that often appears in data flow diagrams, is the

use of a data store as a time delay. An analyst may have a preconceived view that a data

flow exported by a particular process will be transformed at a later date by its importing

process. Consequently the analyst defines a data store for holding the instances of the

flow. It may be, however, that the instances of the flow are imported by the second

process in the same order that they were exported by the first, in which case a simple

data flow arc between the processes would be the correct representation of the logical

relationship between the processes.

2.8 A dictionary as a general resource
Before going on to outline some of the ways that SSA tools can be incorporated

into prototyping systems, the use of a dictionary as a general resource will be briefly

reviewed. This has relevance to the next section, where dictionaries are seen as the core

of an executable data flow diagram prototyping tool.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 37

The fact that the data in an enterprise is as much a resource as, say, the financial

and physical assets of the enterprise, has been recognised for many years.

Historically, as the amount of data that an enterprise kept grew, methods were

sought for not only organising the data, but for documenting what data existed, and

where it was held. The facility developed to perform this documentation role has come

to be known as a data dictionary. A relatively early description was given by Lefkovits

([Le77], p. 1-1):

'Basically, the use of a data dictionary is an attempt to capture and store in a

central location, all definitions of data within an enterprise and some of their

attributes, for the purpose of controlling how data is used and created and to

improve the documentation of the total collection of data on which an enterprise

depends.'

The data in a data dictionary describes the data of an enterprise, and

consequently is known as metadata ('data that describes data').

Early data dictionary systems were no more than inventories of data items,

along with their definitions. A major advance occurred with the development of

integrated data bases. Not only did these further endorse the need for the unambiguous

description of data, and the minimising of redundancy, but data bases in themselves

provided a good medium in which to implement data dictionaries. Consequently,

commercially developed dictionaries are now specialised data bases which contain

metadata [CD81, Le77, LHP82, Lo77].

A development made reasonably early on was to include details on computer

programs in the dictionary, both in terms of the data used or produced by the program,

and in terms of which software subsystems were needed. Again, the main functions

performed by these systems were cross-reference listings and usage analysis. The

'processing' of the metadata occurred in isolation from the processing of the data which

it described; as a result the systems discussed so far have become known as passive
(data) dictionaries.

A further development occurred, when the descriptions of data objects

contained in the dictionary were used to automatically produce schemas and sub­

schemas for data bases, as well as data definitions for mainly Cobol and PL/I

programs. Because of this more active role, dictionaries which provided these facilities

came to be known as active (data) dictionaries.

Another class of dictionary was identified by Docker and Tate [DT86], called

executable dictionaries. This class is characterised by being able to execute the

metadata in a similar way to (interpretable) programming language code. The word

'data' has been dropped from this category, in recognition of the fact that the data in the

dictionary is much more than the classical enterprise data of the early data dictionaries.

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 38

Executable dictionaries exist in principle in many fourth generation languages,

and in some of the more developed mainframe dictionary systems (see, for example,

[As84, BR86, Co87, ICL84]).

To make clear the differences between the various types of dictionary, the

following classification is adopted:

• Passive A dictionary which provides, through metadata, only a documentation

facility for the description of a system (its processes and data) is called a passive

dictionary [LHP82, Za84a]. This type of dictionary can be manually based.

• Active If a dictionary is involved in providing metadata during the editing,

compilation and/or linking of a program, then it is an active dictionary with

respect to that program. There are degrees of activeness, and a fully active

dictionary is one in which all processes are fully dependent on the dictionary

[LHP82, Za84a]. An active dictionary must be computer-based to provide the

necessary interaction with the compilers, link editors, text editors, etc.

• Executable - This class of dictionary is a superset of the previous two. In addition to

the facilities provided by an active dictionary, an executable dictionary contains

metadata which is itself executable, in a somewhat similar way to (interpretable)

programming language code. An executable dictionary ideally assumes the activities

of the software components of current systems, but in a more integrated and

consistent way. A system dictionary processor is associated with an executable

dictionary in much the same way that an operating system is involved with a filing

system. However, the possible domain of an executable dictionary and its associated

processor is much wider, encompassing data communications, data bases and their

management (ideally implemented as persistent store with the associated

management being subsumed by the system dictionary processor [ABC83]), etc.

The dictionary is fully involved during the running of an application, including:

maintaining instances of data objects, checking the typing of objects and even,

possibly, checking that an instance of an object is a legal value (within a certain

range, etc.).

'System dictionary' is used within this thesis as a synonym for 'executable

dictionary', and is meant to convey the idea that the dictionary is a fundamental

component of the operating environment. It is suggested that a system dictionary could

provide the point of convergence between dictionaries and the specialised data bases of

SDEs in a unified software development, operational environment.

2.9 Executable data flow diagrams
Following the investigation of SSA which provided the foundation for this

chapter, the initial approach adopted to providing a prototyping tool, was to design a

CHAPTER 2- STRUCTURED SYSTEMS ANALYSIS 39

system which incorporated the three major tools: data flow diagrams, a data dictionary,

and a method for specifying process logic (in a dialect of structured English named

META). This processing logic was to be executable so that the transformations between

import data flows and export flows could be validated operationally.

The system was named SASE, for Structured Analysis Simulated Environment,

and an overview of it is given in Section 9.3. Tate and Docker [TD85] provide greater

detail on the overall architecture, and the component systems.

During the design and development of the system, it became clear that the

dictionary was performing a considerable amount of the processing of data. As a result,

an investigation was begun into the feasibility of replacing the executable META

minispecs with an extended dictionary language. The purpose in doing this was to

minimise on both the number of component tools and, hence, the number of interfaces

in the system.

The result of this investigation was the development of the .tEgis language,

described in Chapter 5 and Appendix 1, as a substitute for the original dictionary and

META languages. The revised system is named SAME, for Structured Analysis

Modelling Environment, and has the architecture shown in Figure 6.1.

2.10 Summary
This chapter has discussed SSA in terms of a mixture of the methods used by

De Marco [De78], and Gane and Sarson [GS79]. Benefits were outlined for using

SSA, particularly data flow diagrams, in the elicitation of requirements. Also discussed

was the potential misuse which could arise from this same flexibility, as this reduces

the confidence that can be placed in the outcome of an analysis exercise that is based on

SSA. The main weakness in SSA for specifying requirements was identified to be the

purely descriptive representation of the process logic. An outline was given of the two

architectures considered in the research to address this weakness (among others).

Chapter 3, the last introductory chapter, surveys fine-grain data flow systems to

identify suitable methods for executing data flow diagrams.

3.1 Introduction
Data flow systems are being developed as an alternative to von Neumann

systems in an attempt to move away from both the centralised control inherent in the

use of a program counter, and the imperative style of programming suited to the

von Neumann architecture [Gu84, TBH82]. Whether data flow systems provide an

adequate solution is a matter of open research; even though a reasonable number of data

flow architectures have been proposed over the last decade, only about a dozen systems

have been constructed, and these are still in the early days of evaluation.1 As these data

flow systems operate at approximately the level of instructions in von Neumann

machines, they have been described as fine-grain data flow systems [Ve86].

What is of importance for the discussion here is not so much the potential for

data flow systems to support future computing needs in a more satisfactory manner

than von Neumann systems (although this is a subject worthy of debate; see, for

example, Gajski et al. [GPK82]), but rather the philosophy underpinning data flow

systems. In the context of SSA, the principal aspect of this philosophy is the emphasis

on data rather than operations. This is consistent with the mainly data-orientated view

of SSA [CB82, De78, GS79, LGN81, We80].

1 See Table 1 in Veen [Ve86].

40

CHAPTER 3-DATA FLOW SYSTEMS 41

The emphasis in this chapter is on identifying features of fine-grain data flow

systems which have particular relevance to SSA data flow diagrams, and which can

usefully be employed in an executable SSA data flow environment. To this end the

survey material presented here is limited in scope.

3.1.1 An initial classification, and some definitions
In fine-grain data flow systems, no requirement exists for the programmer to

explicitly specify control information within a program. The translator of the language

used builds associations between the programming statement that produces a data object

and the statements which make use of that object.

There are various ways that the associations between programming statements

can be made, but each falls within one of two classes depending on the type of data

flow architecture used:2

• Data-driven systems, in which an operation (instruction) is executed when the data

required by that operation becomes available. Information on the instructions that

depend on the result of a particular instruction are associated with the 'supplier'

instruction (see Section 3.2).

• Demand-driven systems, where the data required by an operation is demanded by

that operation. This often requires the execution of one or more other operations to

produce the required data, which in their tum require the execution of further

instructions, and so on, until available or user-supplied data is referenced.

Information on the instructions which provide data to a particular instruction are

carried with the 'demanding' instruction (see Section 3.3).

These two classes of architecture are discussed in the next two sections.

However, prior to discussing the architectures it is useful to define a number of terms.

Definition: An algorithm specifies a sequence of steps which must be

carried out to solve a certain problem. •

Definition: A program specifies a set of operations (essentially unordered)

which must be carried out (in an appropriate order if need be), on

a set of input data, in order to produce the desired set of output

data. •

2 The term 'data flow' is frequently restricted to data-driven systems only, as this was the context in which it
was first used [Gu84, Sh85]. The use here will encompass both data-driven and demand-driven systems.

CHAPTER 3-DATA FLOW SYSTEMS 42

The above definitions, taken from Sharp, separate the notion of an algorithm

from that of a program [Sh85]. An algorithm includes an explicit sequencing of

operations, and is thus suited to von Neumann systems, whereas a program can have

an ordering placed on it if necessary, but need not. The notion of a program (and a

computation) can be specialised to data flow systems in the following way [Sh85]:

Definition: A data flow program is one in which the ordering of operations

is not explicitly specified by the programmer, but is that implied

by the data interdependencies. •

Definition: A data flow computation is one in which operations are

executed in an order determined by the data interdependencies and

the availability of resources. •

Note that these definitions apply equally to data-driven and demand-driven systems.

The next section looks at fine-grain data-driven systems, which are an attempt

to optimise on the inherent parallelism of a program down to the sub-instruction level.

Then in the following section, demand-driven systems are discussed. This class of

system is closely associated with functional systems. Coming after these discussions

on fine-grain systems, a possible relationship between data flow systems and the data

flow diagrams of SSA is investigated. Finally, Section 3.5 summarises the chapter.

3.2 Data-driven systems
Data-driven programs are often represented as directed graphs, where the nodes

of the graph describe operations (see, for example, [De74, DK82, Gu84, Ru77]). The

data dependencies involved in finding the real roots of a quadratic equation can be

defined graphically as in Figure 3.1. A data flow graph representation of a slightly

different version of this problem, based on Sharp [Sh85], is given in Figure 3.2.

The directed arcs of Figure 3.2 define the data dependencies. Each circle node

defines the operation to be carried out on the two input data values. One data value will

flow down each arc leading into the node. For asymmetrical operators, like '/'

(division), the spatial ordering of the arcs is important; the left-most arc is always the

first operand.

A textual representation of the data flow graph is given in Figure 3.3 using the

notation given in Treleaven et al. [TBH82]. The relationship between the two

representations is made clearer by observing that each node in Figure 3.2 has been

labelled with the corresponding instruction identifier from Figure 3.3.

CHAPTER3-DATAFLOW SYSTEMS 43

In Figure 3.3 each instruction consists of an operator and two operands. Each

operand is either a literal or an 'unknown' value represented by a pair of empty

parentheses, viz. ' () '. Following the operands is a list of references; each reference has

the structure ix/y, where ix is an instruction identifier and y is the operand position

within ix where the result of applying the operator to the operands is to be placed. Each

instruction can be viewed as a template into which generated data values are slotted.

Assuming values of 1 for object a and 3 for object c, a possible sequence for the

execution of instruction i2 (to produce 2 *a* c) is the following:

i2: (* () () i3/2) • i2: (* () 3 i3/2) • i2: (* 2 3 i3/2) • i2: (6 i3/2)

where data object c is shown as being available before the result of instruction i 1 is

(2 * 1 = 2). A value of a data object is called a token.

b C a

~
~
~

-b b•b 4•a 2•a

/
4•a•c ~ ~

✓(•) b • b - 4 • a • c

~~

-It--.....
-b + ✓(b • b - 4 ' a • c) -b - ✓(b • b - 4 • a• c)

~
(-b + ✓ (b • b - 4 • a • c)) / (2 • a) (-b - ✓(b • b - 4 • a • c)) / (2 • a)

root1 root2

Figure 3.1: Data dependency graph for finding the (real) roots of a quadratic.

Tokens (operands) are passed from instruction to instruction, and there is no

requirement to explicitly name the (intermediate) data objects. As well as this, the

operands of an instruction are 'consumed' by that instruction, and are not available to

any other instruction.

CHAPTER 3 - DATA FLOW SYSTEMS 44

If two or more instructions require a particular token, they must each be given a

copy. Creating duplicates is the function of the duplicate, or copy, operator, shown as a

triangle in Figure 3.2. In practical systems like the Manchester prototype data flow

computer [GKW85], the duplicate function only produces two values. Under this type

of regime, a further two duplicate nodes would be required in Figure 3.2.

b a 2 C

root1 root2

Figure 3.2: Data flow graph for finding the (real) roots of a quadratic.

CHAPTER3-DATAFLOWSYSTEMS 45

Textual data flow program Output data flow values

c:

b:

a:

i1:

i2:

i3:

i4:

i5:

i6:

(... i2/2)

(... i4/1 i4/2 i?/1)

(.i1/~

i
(* 2 () i2/1 i8/2 i9/2) di I

(·ooi3/2J ~7
(* 2 () iS/2)

(* () () iS/1)

(- () () i6/2)

(APPLY sqrt () i9/1)

i?: (- 0 () i8/1)

i8: (/ () () i10/1 i11/1)

i9: (/ () () i10/2 i11/2)

i10: (+ () () root1)

i11: (- () () root2)

C

b

a

2*a

2*a*c

4*a*c

b*b

b*b-4*a*c

✓(b * b - 4 * a* c)

-b

(-b) / (2 * a)

✓(b * b - 4 * a* c) / (2 * a)

(-b + ✓(b * b-4 *a* c)) /(2 * a)

(-b - ✓(b * b- 4 *a* c)) / (2 * a)

Figure 3.3: A data-driven program for finding the (real) roots of a quadratic.

3.2.1 Conditionals and loops
The two constructs required in any computer language are essentially the if­

then-else and the while-statement [BJ66].3 The following discusses how these can be

supported in data-driven graphs [Gu84, Sh85].

A data flow graph is given in Figure 3.4 of the Pascal conditional statement

if x > y then a := v1 else a := v2

3 Certain languages may 'disguise' these using, for example, patterns or guards for conditionals, and
recursion instead of iteration.

CHAPTER 3 - DATA FLOW SYSTEMS 46

v1 v2 X

X>Y

v1 v2

Figure 3.4: A data flow graph for the conditional if x > y then a := v1 else a := v2.

Two new nodes have been introduced in the data flow graph. The diamond

shape is a switch (or branch). If the value of the conditional entering the diamond from

the right is true, the data token entering from the top is output through the port marked

'T'. Otherwise the value is output through the port marked 'F'. A token which flows

down an arc which ends with '.l' is destroyed without being used

As well as being used for the copy function, a triangle is also used for the

merge function.4 As a value appears on either of the input ports to the merge, it is

selected and placed on the single output port. If a value appears on both input ports,

non-determinism results as each input token has an equal chance of being selected (see

footnote 10). The correct application of a merge used in isolation would be the

responsibility of the programmer.

Loops (or cycles) are a natural phenomenon in programming. Their existence in

data-driven programs is indicated by the presence of cycles within the program graph.

4 If a copy function directly follows a merge in a graph, they will be combined (as in Figure 3.5).

CHAPTER 3-DATA FLOW SYSTEMS 47

In Figure 3.5, a data-driven graph equivalent is given of the following Pascal program

segment which calculates the factorial of N:

i :=N;

nfact := 1;

while i > O

do

nfact := nfact * i;

i := i -1

end; (* while *)

Nfact := nfact

Nfact

Figure 3.5: A cyclic data flow graph for calculating the factorial of N.

CHAPTER 3-DATA FLOW SYSTEMS 48

Although there is only one loop in the Pascal program segment, the data flow

graph contains two; one for each left-hand side object (i and nfact). In Figure 3.5, the

loop for i is shown shaded. Only two arcs cross this border, and the tokens that these

arcs carry need to be synchronised with those generated by the nfact loop.

In a system where multiple tokens on an arc are supported but where only one

instance of a data flow graph is allowed, this synchronisation can be achieved easily by

making the arcs FIFO queues. However, this seriously restricts the level of

concurrency that can be achieved. Methods do exist for gaining higher levels of

concurrency, but at the cost of greater complexity. The most common methods are code

copying and tagging, which are discussed in detail later (see section Static and

dynamic architectures). The extra complexity is a direct consequence of allowing

for both cyclic graphs and multiple tokens, for each data object.

The general structure of a 'safe' while-loop in a graph is shown in Figure 3.6.

initial input

result

Figure 3.6: The general structure of a 'safe' while-loop in a data flow graph.

CHAPTER 3- DATA FLOW SYSTEMS 49

As well as the added complexity required to achieve realistic levels of

concurrency, cyclic graphs introduce two potential problems: deadlock (deadly

embrace) and race conditions. The simplest case of a deadlock is described in

Figure 3.7, where operators P1 and P2 each depends on the other for one of its two

input tokens. As neither can fire until the required token is provided, the result is a

'deadlock'. However, by the careful use and matching of switches and merges,

deadlocks can be avoided.

c = P1(a, P2(c, b)) d = P2(P1 (a, d), b)

Figure 3.7: The occurrence of deadlock in a data-driven program graph.

In a data flow system, the simplest race condition occurs when two token

instances of the same data object get out of sequence as the result of taking two

different computational paths. An example of how this can happen is shown in the

sequence of diagrams (a) to (f) in Figure 3.8. Both G1 and G2 are segments of the

program data flow graph. The time for the data token t1 to be 'transformed' into the

token G1(t1) is much greater than the time required to transform t2 into G2(t2). The

result is that, on entry to the G3 program graph segment, G2(t2) will be erroneously

matched against t1 *, and G1 (t1) against t2*.

Unlike the avoidance of deadlocks, race conditions cannot be combatted

structurally in data flow graphs. Fortunately, the methods required to support safe

looping also ensure that no mismatching results from the occurrence of a race

condition.5

5 In the case of code copying, a race condition cannot arise where only one set of tokens is allowed through
a copy of the graph at any one time.

CHAPTER 3- DATA FLOW SYSTEMS

rx•:•:•:•:•xs-•-,.;,;,,..,-,.;-,;•mx•:❖mmx•:<•,>,>;,.wmm,mm,x,,

1

I ,._e:;._ >'I~·::::::- I

(a) (b)

::•!.:,u .. -..">!'6.-....,Y..~,~-....,,Y..:-,Y..:,!,~ .. -.t.:..-.t.:&Y.-:,:,:.:~.:.: .. -.:-:-:~-~?-!>!.:.:-:❖'.<:❖:.:❖:-! .. ">!•!i~«<!

I ,..______ I
r,.,,.,.,.,.,.,_,_,,_,_,_,,.,,,,.,,.,.,,.<,.,,.""''--""'·~"'''·'""·"""·""·""'1

i ~

I ::_-_-:::_-, .. ~--~~~~--~ I
I 12· l
I t1 * I

I _,...._., I
L.,,,.,wm;-,m:-.w,m»:<->>»w.-,:«<•:•:•:•:->»:•m,m:->:->x««·-j

(d) (e)

50

(c)

r,,,,W,WU❖>C•"•~•'"'-'"•'•""•~W<❖S,<E.,•,,.,s"""'""'"'°'"'"•"•'•'•"•'•"••••>•':i

~ :,

! G1 ..___,_._ I

I ,_ __,...... l
I _,...._, I
I G3(G2(t2), t1 *) ii

t,.m:•mm» ·····''·""·'···"--«««->>:•-❖:•:•:•:•:•:•J
(f)

Figure 3.8: The occurrence of a race condition.

CHAPTER 3-DATA FLOW SYSTEMS 51

3.2.2 Karp and Miller - a reference data-driven model
The semantics of data-driven systems vary almost from system to system. To

explain the more important alternatives, a reference model will be used in a way similar

to that employed by Oxley et al. [OSC84]. The reference model in question is that of

Karp and Miller, which was originally introduced as 'a graph-theoretic model for the

description and analysis of parallel computations. Within the model, computation steps

correspond to nodes of a graph, and dependency between computation steps is

represented by branches with which queues of data are associated' [KM66].

The main operational characteristics of the Karp and Miller model (KM-model)

can be stated as:

• Directed arcs carry tokens between operational nodes.

• Firing rules (when nodes can execute, or 'fire'):

Kl: All arcs between nodes are FIFO queues.

K2: A node becomes eligible for execution when each of its input arcs contains a

number of tokens equal to the threshold for that arc.

K3: When a node executes, it reads and removes a specified number of tokens

from each input arc and performs its operation.

K4: The node completes execution by placing some number of result tokens on its

output arcs.

This model is essentially a graph of processors, and contains no means by

which data values can be input to or output from the graph representing an application.

Nor are data files supported.

Apart from these omissions, which are serious omissions as far as practical

systems are concerned, the KM-model does provide the most general model for FIFO­

input only data flow systems. The general exception to FIFO input occurs in systems

which support iteration, where values for different levels of iteration can become

intermixed; a requirement then exists for matching up tokens at the same level of

iteration. A simple example application where this can arise is the multiplying of two

matrices together. A conceptually simple method for identifying which level of iteration

a token belongs to, is to include within each token its iteration level. This is frequently

called colouring or tagging (see, for example, [De74, Ro81, Ve86]).

Although each iteration is represented graphically in data flow systems by a

cycle in the data flow graph, it is possible to unfold the resulting cyclic graph of an

application for each specific set of input data to form an acyclic graph with a FIFO

queue on each arc; thus satisfying rule K 1 above.

The KM-model supports any number of inputs to a node, and any number of

outputs from a node. Rules K2 to K4 are quite general as the number of tokens on a

particular arc can be zero or any positive integer. Having zero tokens was not explicitly

CHAPTER 3 - DATA FLOW SYSTEMS 52

excluded by Karp and Miller, although allowing for it in their model is equivalent in a

functional system to having an unused parameter in a function on input, or no result

being produced from a function invocation on output. It is included here, because most

data-driven systems have at least one node type (the conditional) which can have at least

one empty output arc, and also because it has relevance to the SAME model discussed

in Part II.

3.2.3 Fine-grain data-driven architecture features
There are many ways of classifying data-driven systems [Sr86, TBH82, Ve86].

The approach adopted here primarily reflects the potential for each highlighted

characteristic to be used in an executable data flow diagram system (see Section 3.4).

The KM-model rules given above describe particular operational semantics for

data flow systems. The following list, based on Treleaven and Hopkins [TH81],

describes a set of characteristics for a general data-driven computational model:

• The execution of an instruction uses up the data tokens which appear as operands in

that instruction. These tokens are not then available to this or any other instruction.

• There is no concept of shared data storage as exemplified by variables in imperative

languages.

• The value of a token cannot be changed, as no form of destructive assignment exists.

That is, the model incorporates a single-assignment language.

• Sequencing constraints are defined by the flow of data. Put another way, control

flow and data flow coincide.

• The resulting token of one instruction is passed directly to those instructions which

require that token as an operand. Each destination instruction has its own copy of the

token.

• A constant value may be embedded in an instruction as an 'optimisation' of the token

mechanism.

In fine-grain systems, a data flow program instruction can be viewed as a

template into which data values (tokens) can be 'slotted'. Figure 3.3 presents a

relatively simple template structure consisting of an operation, two token operands (one

of which possibly contains a literal), and a variable list of instruction addresses which

require as an input operand the resulting token created by the instruction [TBH82].6

An important characteristic of a data flow architecture is how the results of the

execution of a node are communicated to the directly dependent nodes. In a data-driven

system, the two main methods are direct communication and pack et

communication.

6 All operators have been shown as dyadic, which need not be the case in practical systems.

CHAPTER 3 - DATA FLOW SYSTEMS 53

Direct communication
In direct communication architectures, processing elements are 'hard-wired'

together in some suitable way. In the Data-Driven Machine #1 (DDMl), for example,

the processing elements are organised as a hierarchy (tree) of processor-memory pairs

[Da78]. Each processing element is connected to one superior element (except for the

root) and up to eight inferior elements. The part of the (tree-structured) data flow

program allocated to a processing element can be further divided and allocated to

inferior elements.

Other examples of direct communication systems [Ve86] are Micro, a 'paper'

system [MM83], and the Data-Driven Processor Array (DDPA) [TA83].

A major problem with such systems is the need to find a suitable way of

mapping a program onto the topology of the system. Applications which have a similar

structure to the machine, usually ensure the best allocation of the physical resources and

the minimum level of overhead. DDPA, for example, is designed specifically for large­

scale scientific calculations involving sets of equations, and is organised as a two­

dimensional grid of processing elements.

Packet communication
The most promising classes of data-driven architecture for generalised

processing are those based on packet communication. A data-driven system based on

packets is a specialised data communications network, with at least one implemented

system utilising a local area ring network topology [GKW85]. The network paths in

a data-driven architecture are the equivalent of the instruction and data busses of the

von Neumann system. However, the overheads are usually much greater in data­

driven systems, and a reasonably high level of parallelism is required to compensate for

these costs.

In general, the more flexible a data-driven system is, the more complex

becomes its communication mechanisms. This manifests itself as either a relatively

large set of different packet types, or as more complex packets with a higher ratio of

status bits to data bits. The second alternative is the most common.

No detailed analysis of packet structures will be carried out here as it is felt little

of value to this thesis will result. What is considered worth discussing, and provides

one major characterisation of packet-based data-driven systems, is the method used for

'filling' an instance of an instruction template with its token operands. The two

principal techniques used are token storage and token matching.

In a token storage system, each token is stored in its destination instruction.

Consider that the program in Figure 3.3 is executed on a token storage computer, and

that an invocation of instruction i1 ('2 * a') produces a token with value 2. If no

CHAPTER 3 - DATA FLOW SYSTEMS 54

matching value for c has yet been created, a copy of the template for instruction i2 will

be created containing the token; viz. '(* 2 () i3/2)'. As this instruction is not yet

complete, it will be kept in some form of memory until, at least, the arrival of its second

operand ('c') when it can be enabled. Following Veen [Ve86], Figure 3.9 gives a

functional view of a processing element in a token storage system.

Figure 3.9: The functional structure of a processing element in a token storing
data-driven system.

Figure 3.9 shows a single memory for both instruction templates, and

instruction instances with their tokens. Each complete instruction is sent to the

processing unit, where it is processed (by one of the processors, if more than one).7

The output tokens with their destination addresses are routed back to the update unit.

In a token matching system, tokens and instructions are kept separate until such

time that a complete instruction can be formed. Figure 3.10 provides a functional view

of a token matching processing element [Ve86].8 Conceptually, separate memory now

exists for both instruction templates, and the data tokens. The matching unit collects

together sets of tokens, and temporarily stores incomplete sets. Once a set of tokens is

available, the matching unit sends the set, which contains information on the

'consuming' instruction, to the fetch/update unit. This unit inserts the tokens in their

correct place inside a copy of the instruction that includes information on the destination

instructions, and despatches the instruction to the processing unit where it is executed.

7 See Fig. 17 in Treleaven et al. [TBH82] for an alternative diagram.

8 See Fig. 18 in Treleaven et al. [TBH82], and Docker and Tate [DT86], for alternative diagrams.

CHAPTER 3 - DATA FLOW SYSTEMS

Figure 3 .10: The functional structure of a processing element in a token matching
data-driven system.

55

Systems which employ token matching effectively support re-entrant programs.

However, without special measures being taken to correctly match sets of tokens

(usually involving tags), re-entrant programs can lead to non-determinate behaviour.9

Various schemes exist for connecting processing elements together into a

complete data flow machine architecture. The more notable options are discussed in

Veen [Ve86].10 Although these options are of some interest, an architecture formed

from a single processing element, with multiple processors, is adequate for the research

reported here.

Static and dynamic architectures
A different categorisation of data-driven systems relates to whether or not a

system supports the concurrent execution of more than one instance of the same node in

a data flow graph. Systems which do not are described as static. In such systems the

program graph need only be loaded once, which can be done statically before the

computation begins. Two methods have been used to ensure that only one instance of a

node is executing at a time [Ve86]:

• A lock is somehow placed on an executing node. This could simply be an associated

busy flag.

9 Veen (Section 2.4) provides a good example of a re-entrant graph which could result in non-determinancy
[Ve86].

lO See, in particular, Fig. 14 and the associated text.

CHAPTER 3- DATA FLOW SYSTEMS 56

• A destination node somehow acknowledges to the generating node the receipt of a

token. A simple method used by Dennis and Misunas [DM74, De79a] is to require

that each output arc be empty before a node can be enabled; this means that only one

token can be on each arc at any time.

Example systems are the MIT static architecture of Dennis and Misunas

[DM74], and the system that has been designed as part of the Mandala project [Bu81]

which is based on the design principles put forward by Dennis et al. [DBL80].

Architectures which do support the firing of several copies of a data flow graph

node are described as dynamic. The most general scheme is where an instance of a

node is created 'on-demand' at execution time.

The two basic techniques that have been used for supporting the firing of

multiple instances of nodes, are code-copying and tagging.

As its name suggests, in a code-copying scheme, the need for a new instance of

a node results in a copy of the node being created, and a set of tokens being associated

with that node. Code-copying systems invariably duplicate at the level of a procedure or

block for greater efficiency. As most tokens will be required by instructions within the

creating procedure or block, the concept of locality arises [De84, Sp77]. The DDMl

computer is a good example of a code-copying system [Da78]. The hierarchical

structure of the system supports locality, as a sub-tree of processors can be assigned a

part of a data flow graph. As well as this, each processing element in the tree has (up

to) eight inferior processors to facilitate the execution of parts of the sub-tree in parallel.

Dynamic tagged architectures form the largest class of data flow systems. The

major work on tagged systems has been carried out by Arvind et al., initially at

Irvine[AG78] but subsequently at MIT [AK81, AG82], and by Watson et al. at the

University of Manchester [WG79, GKW85, WSW87]. Other tagged architectures can

be viewed as derivatives of the systems produced by these two groups. Although the

architectures of the Id machine (Arvind et al.) and the Manchester data flow computer

have significant differences, there is much similarity in principle in the way that tags are

used. Consequently, the discussion here will be restricted to the tagging scheme used in

the Id machine. 11

Tagging in the Id machine is under the control of the CT-interpreter [AG82],

which uncovers parallelism during the execution of a program and assigns a tag to each

parallel computational activity as it is created. The CT-interpreter is a generalised

scheme, and the Id machine has been described as a particular hardware implementation

[AK81].

11 Sometimes called 'Id' after the name of the language that the machine is designed to support (see, for
example, Veen [Ve86]; also see Srini [Sr86]). 'Id' is an acronym for 'Irvine data flow' [AG78].

CHAPTER 3-DATA FLOW SYSTEMS 57

Every computation (single execution of an operator or node) is called an

activity. The U-interpreter allocates a unique name to each activity generated during

the execution of a program, and each token carries the name of its destination activity.

An activity name comprises four fields:

• u - the context field; this identifies the environment (bindings, etc.) in which the

activity is being evaluated. A context field is itself an activity name, so nested

contexts are supported.

• c - the code block name assigned by the Id compiler to the loop or procedure that

contains this activity.

• s - the instruction number within the code block.

• i - the initiation number; this identifies the loop iteration within which this activity

occurs. If the activity occurs outside a loop, the field has a value of 1. Nested loops

are provided for through nested contexts.

A token in the Id machine is the 2-tuple

(u.c.s.i, data_value)p

where p identifies one of the possible two import ports of the destination activity.

Together, c, sand p specify that the token is travelling along an arc that is connected to

the input port p of instruction s in code block c. The overall context in which this is

occurring is defined by u. If the activity is within a loop, i denotes the level of iteration.

A conceptual snapshot diagram is given in Figure 3.11 for a token with an activity

name 'u.c.s.i', a data value of 4, on input port p2 of operations.

Figure 3.11: A conceptual snapshot of an Id data flow program showing the token
(u.c.s.i, 4) on the arc connected to input port 2 of the instruction (activity) s.

CHAPTER 3 - DATA FLOW SYSTEMS 58

The data flow program graph constructed by the Id compiler has two different

classes of node. The first class is that exemplified in Figure 3.2, and contains the

operations which can be carried out on the data. The second class of node consists of

operations to create and amend activity names. 12 There are also implicit operations on

activity names associated with the first class of operation. For instance, given that

instruction s in Figure 3.11 outputs the product of its two input values to instruction t

(on port p1), the input and output token sets for instructions could be

input token set = ((u.c.s.i, 90)p1, (u.c.s.i, 4)p2}

output token set = ((u.c.t.i, 360)p1 }

where the relative instruction number of the activity that will consume the output token

is t. Implicit operations on activity names only affect the instruction number field, s.

The full set of explicit operations on activity names will not be discussed here.

Instead, the general principles can be obtained from the following discussion on the

handling of loops.

In Figure 3.12 a data flow graph is shown for the Id expression [AG82]

(while p(x) do

new x ~ f(x)

return x)

Each activity name operator has been labelled, and the import and export sets ('pre-'

and 'post-conditions') of each node have been included. The types of activity name

operators used in a loop are o, 0-1, L, and L-1 • The output token of the O operator is

the same as the input token except that the initiation number has been incremented by 1.

The 0-1 operator resets an initiation number to 1. The L operator creates a new context,

u', for each instantiation of a loop. The value of this new context is the previous activity

name (u.c.s.i). The L-1 operator resets the context and initiation values to what they

were on entry to the loop (u and i, respectively).

The adding by the Id compiler of the necessary activity name operators to the

data flow program graph during compilation, means that the control of activity names

can be distributed to the processors that are responsible for executing the individual

block invocations. Thus, no centralised tag control, with the possibility of being a

bottleneck, is required.

The Id machine that Arvind and his group are constructing is actually a

combined code copying and dynamic tagging system. The reasons for this relate

specifically to physical machine considerations, and will be briefly discussed here

through the simple loop example given above (and in Figure 3.12). Consider that the

loop code block is allocated a pool of processing elements on which it will execute.

12 For lack of evidence, it is assumed that an activity name is trivially deleted when no longer required.

CHAPTER 3-DATA FLOW SYSTEMS 59

X {<U.C.S.i, X>}

s L

{<U'.c'.t'.1, X>} t

t

{
I I t ' <U .C .. J, X>

D
{<U'.C'.t.j+1, X>}

p(x)

{<u'.c'.w.n, X>}

w D -1

X {<U'.c'.w'.1, X>}

new x

X {<U.c.s'.i, X>} :j:

t u' = u.c.s.i

+ c.s' is the successor of instruction c' .w' (which is the L -1 instruction)

Figure 3.12: A data flow graph for the processing of the loop by the U-interpreter.

CHAPTER 3-DATA FLOW SYSTEMS 60

Two schemes suggest themselves for allocating activities to processors. In the

first scheme a (preferably contiguous) number of instructions are allocated to each

processor, such that instruction s will always execute on processor Pk· In the second

scheme, each processor is allocated a copy of the code block program graph. In either

scheme, the number of activities per processor is likely to result in the interleaved

execution of iterations, so tags are still required but can be less complex. 13

To support both code copying and tagging, the Id machine pays a price by

employing a centralised software scheduler to allocate pools of processors (physical

domains [AK81]) to program code blocks. The scheduler is called when a code block is

invoked, and it selects a physical domain depending on a number of criteria that

includes: the code block size; whether the code block already exists in some other

physical domain; how much data has to be moved between the new code block and the

code block which invoked it [AK81].

In Section 3.4, tagging is mentioned again in terms of SSA data flow diagrams.

The important concepts to be taken through to that section from the current discussion

are:

• Tags can be composite structures, with specialised operators acting on each part of

the structure.

• A distributed control scheme for tags should be relatively easy to implement.

• During execution, the size of a tag can be made a function of the 'complexity' of the

activity. That is, an instruction which is nested within procedure invocations and

loops can dynamically be given a more detailed tag than an instruction in 'top-level',

straight-line code.

In summary, static architectures tend to be simpler than dynamic architectures,

as they do not require a mechanism for creating copies of program sub-graphs, nor do

they need to maintain tags for differentiating between different tokens of the same

'named' object. Against this must be weighed the fact that they achieve lower levels of

parallelism.

Enabling conditions and output conditions
A further categorisation is concerned with the conditions under which a node

becomes enabled, and under which a node outputs values. Although these are

essentially separate issues, there are two cases of interest for each. A node becomes

enabled either when at least one input token is available, or when all input tokens

become available. The DDDP can begin executing a node as soon as one operand is

13 If a complete code block is executed on a single processor, there is no need to maintain the u and c
components during the execution of the code block program graph.

CHAPTER3-DATAFLOW SYSTEMS 61

available, but most systems require both operands [KYK83]. Similarly, a value can be

output either before the node finishes executing, or after the node completes execution.

The Manchester data flow computer exports output tokens before the completion of an

operation [GKW85].

Some improvement in performance may be gained by enabling or outputting,

respectively, as soon as possible, although there appears to be no reported significant

performance measurements to support this. The potential performance improvements

may be much greater in coarse-grain systems.

Summary of fine-grain data-driven systems
The data-driven systems described here generally differ from the KM-model in

the following ways:

• The KM-model has no conditional or merge nodes which can lead to non­

deterministic behaviour, so there is no requirement in that model to distinguish

between sets of inputs by the use of tags, for example. FIFO queues are adequate.

• The systems considered here invariably input just one token from each arc during the

invocation of a node. The KM-model allows for any number from each arc.

Similarly for output.

The various classifications, except for the enabling and output conditions, are

presented graphically in Figure 3.13 [Ve86].

Micro DDMl
DDPA

DDP
lAU
MIT
Multi

CODE
COPYING

Figure 3.13: A categorisation of data-driven machines. The machines discussed in this
chapter are shown in the rectangles. 14

14 The mMBO machine is a mixed control-flow, data-driven machine. See, also, Veen [Ve86], Fig. 15.

CHAPTER 3-DATA FLOW SYSTEMS 62

Table III provides a summary of a number of the reported architectures. Most of

which have been implemented, or emulated.

Research project Machine organisation Tokens on Tokens on
each input arc each output arc

Utah DDMl [Da78] Direct communication; m n
token storage; dynamic

Toulouse LAU [CH79] 15 Packet communications; m n
token storage; static

MIT [De79a] Packet communication; 1 0
token storage; static

Multi [Bu81]16 Packet communication; 1 0
token storage; static

TI DDP [Co79]17 Packet communication; 1 0
token storage; static

Irvine/MIT [AK81] Packet communication; m n
token matching; dynamic

Manchester [GKW85] Packet communication; m n
token matching; dynamic

Tokyo DDDP [KYK83] Packet communications; m n
token matching; dynamic

Newcastle JUMBO [THR82] Packet communication m n
token matching; dynamic

Table ill: A comparison of some reported date-driven architectures.

15 Although a data-driven computer, the LAU system has a control flow program organisation. However, the
control graph of a program coincides with its data graph [TBH82].

16 Veen [Ve86] advisedly describes Multi as a dynamic system, whereas it is firmly a static system. The
confusion may arise because, conceptually, the system is designed to allow multiple applications to
execute concurrently in an attempt to achieve higher levels of resource utilisation. However, each of these
graphs executes statically in its own virtual machine.

17 The compiler may create multiple copies of part of a data flow graph to increase the concurrency, but this
is done in a static manner at compile-time.

CHAPTER3 DATAFLOWSYSTEMS 63

3.3 Demand-driven systems
In a demand-driven system, it is a request for a data item which leads to its

creation. In data flow graph terms this is realised as a request for the output token of an

operational node, which in turn leads to a demand for the input tokens of that node.

These input tokens are generally the output tokens of other operations, and so the

request for tokens propagates back up the graph. Taking the data flow graph of

Figure 3.1 as an example, a demand for a token of root1 will lead to a demand for two

further tokens, one of whose value is 2 * a. To satisfy the request for the '2 * a' token, a

token of the data object a is required.

A demand-driven program equivalent to Figure 3.3 is given in Figure 3.14.

Textual data flow program Output data flow values

a: a

b: b

c: C

i1: (* 2 a) 2*a

i2: (* i1 C) 2*a*c

i3: (* 2 i2) 4*a*c

i4: (* b b) b*b

i5: (- i4 i3) b*b-4*a*c

i6: (APPLY sqrt i5) ✓(b * b - 4 * a * c)

i?: (- 0 b) -b

i8: (/ i? i1) (-b) / (2 * a)

i9: (/ i6 i1) ✓(b * b - 4 * a* c) / (2 * a)

i10:(+i8i9) (-b + ✓(b * b - 4 *a* c)) / (2 * a)

i11: (- i8 i9) (-b- ✓(b * b- 4 *a* c)) / (2 * a)

Figure 3.14: A demand-driven program for finding the (real) roots of a quadratic.

CHAPTER 3-DATA FLOW SYSTEMS 64

The major differences between the programs in Figures 3.3 and 3.14 are:

• the absence of 'holes' in the demand-driven program instructions for input tokens;

• the absence of forward references in the demand-driven program (instead, backward

references exist).18

The two principal techniques that exist for executing the program in Figure 3 .14 are

string reduction and graph reduction. These are discussed in the next two

sections, but before doing so it is worth mentioning here that each instruction in the

program in Figure 3.14 can be viewed as a definition with syntax name: expression.

3.3.1 String reduction
String reduction is essentially a rewrite scheme in which a demand for a data

object leads to the name of that object being replaced by its expression. at the point of

demand. Once a complete expression has been constructed for the original object being

demanded, the expression is evaluated (reduced) to its value. 19

(+ 18 19)

(+ (/ 17 11) (/ i6 11))

(+ (/ .(:_Q_Ql (* 2 a)) (/ (APPLY sqrt i5) (* 2 a)))

(+ (/ (- 0 .(:fil) (* 2 1)) (/ (APPLY sqrt (- i4 13)) (* 2 1)))

(+ (/ (- 0 (-5)) (* 2 1)) (/ (APPLY sqrt (- (* b b) (* 2 12))) (* 2 1)))

(+ (/ (- 0 (-5)) (* 2 1)) (/ (APPLY sqrt (- (* .(:fil .(:fil) (* 2 (* 11 c)))) (* 2 1)))

(+ (/ (- 0 (-5)) (* 2 1)) (/ (APPLY sqrt (- (* (-5) (-5)) (* 2 (* r,__2__fil .6)))) (* 2 1)))

(+ (/ (- 0 (-5)) (* 2 1)} (/ (APPLY sqrt (- (* (-5) (-5)) (* 2 (* (* 2 1) 6)))) (* 2 1)))

(+ (/ 5 2J (/ (APPLY sqrt (- 25 (* 2 (* 2 6)))) 2))

(+ 2.5 (/ (APPLY sqrt (- 25 (* 2 12))) 2))

(+ 2.5 (/ (APPLY sqrt (- 25 24)) 2))

(+ 2.5 (/ (APPLY sqrt 1) 2))

(+ 2.5 (/ 1 2))

(+ 2.5 0.5)

3

Figure 3.15: A string reduction execution sequence for the part of the program in
Figure 3.14 which finds the first root.

18 However, see the discussion on graph reduction in Section 3.3.2.

19 This provides the most naYve method of evaluation.

CHAPTER 3 - DATA FLOW SYSTEMS 65

A set of string reduction evaluation steps for generating a token of root1 are

shown in Figure 3.15. The expressions above the line contain rewrites, where object

names to be replaced at the next step are shown in bold type and where each expression

which replaces a name is shown underlined. The expressions below the line show a

possible sequence of reductions which maximises on the inherent parallelism. The

reduced values at each step are shown in italic type. The coefficient token values used

in the example are a = 1, b = -5 and c = 6.

String reduction systems use code copying at a low level of granularity. A

consequence of code copying is that common objects, such as i1 in Figure 3.15, are

replaced by their expression at each point that they appear in the demanding

expression(s). Consequently, an object may have its value calculated a number of

times. On the plus side is the relative simplicitly of the technique.

Systems which use string reduction include the cellular-tree-based system of

Mago [Ma79, Ma80] which executes FFP programs [Ba78], the GMD reduction

machine, which supports a language based on the lambda calculus [HS79, Kl79,

KS80], and the Newcastle reduction machine which has been designed to support

multiple reduction languages [TM80].

3.3.2 Graph reduction
Graph reduction differs from string reduction by 'replacing' a name with a

reference to the definition of the named object, rather than by the expression itself. In

this way a graph is built of the total expression to be evaluated. Taking the function

f x = (x + 1) * (x - 2) + 3

as an example. A call of the function of the form 'f 3' could lead to the following

sequence of graph reductions:

+

/ " ;*\ 3

+ -
/\ ;,

X 1 X 2

+ -
/\ ;,

3 1 3 2

• +

/ " • 7

4 3

In Figure 3.16 a graph is given for the evaluation of rootl using the demand­

driven program of Figure 3.14. The overall spatial ordering of the objects in

Figure 3.16 is consistent with Figures 3.1 and 3.2.

One technique used to set up 'return addresses' for the generated tokens is to

reverse the pointers during the construction (execution) of the graph. Each node would

point to the first higher-level node that demands the lower level node's value. Later

CHAPTER 3-DATA FLOW SYSTEMS 66

demands for that value will make use of the already calculated value when their pointers

are eventually reversed. Figure 3.17 shows reversed pointers early in the evaluation of

the program graph of Figure 3.16.

b: (-5) c: (6)

i~ f2~)
i5: (- i4 i3)

~ i\ ~ \p~y ~· i5)

i8:(/ i7 i1) i9:(/ i6 i1)

~i
i10: (+ i8 i9)

Figure 3.16: A graph reduction program corresponding to Figure 3.14.

A concrete representation of the reverse pointers would be to store a single

'reverse address' in each token [TBH82].

Execution of the program graph in Figure 3.17 essentially leads to the pruning

of the tree from the leaves down, until only the root of the tree is left in the form of a

token value of the required (reduced) type.

Examples of graph reduction machines are: the AMPS system of Keller et al.

which uses a dialect of Lisp for its machine language [KPL78, KLP79]; the SKIM

reduction machine of Clarke et al. [CGM80], which is based on combinators; and the

ALICE reduction machine of Darlington et al. [DRS 1, HR], which is designed to

support functional languages like Hope [Ba85a] and ML [Ha85].

CHAPTER 3 DATA FLOW SYSTEMS 67

b: (-5) a: (1) c: (6)

~

~

i1 O: (+ i8 i9)

Figure 3.17: The program graph of Figure 3.16 with reverse pointers.

3.3.3 Demand-driven systems and functional languages
As indicated above, there is a close association between demand-driven systems

and functional languages. The demand-driven program of Figure 3.14, particularly in

its string reduction form of Figure 3.15, can be viewed as the composition of

functions. This close relationship with functional systems has seen an increase in

interest in the development of demand-driven systems over the last few years [GKS87,

HR, PCS87, TM80, Tr85, WSW87]. Graph reductions have a parallel in functional

language systems, both through the representation of functional composition as graphs

[GKS87, HR, PCS87, Tr85, WSW87], and through the combinators of Schonfinkel

[Sc24], with their realisation in the SK reduction machine of Turner [Tu79a, Tu79b,

Tu87] and the SKW reduction machine of Clarke et al. [CGM80].

The definition of functions in functional languages are also essentially of the

form name : expression. In Miranda, for example, the function to calculate Fibonacci

numbers can be written as

CHAPTER 3-DATA FLOW SYSTEMS

fib n = 1,

1 '

n=O

n = 1

fib(n-1) + fib(n-2), otherwise

68

A particular benefit claimed of functional languages is that their underlying

semantics are simpler than those of imperative languages and, hence, the validity of

functional programs should be easier to prove. However, there is much still to be done

regarding the use of functional languages in the implementation of complex business

applications, in particular, before the above claim can be accepted with any confidence.

Other features of functional languages - such as their powerful abstraction

mechanisms, their conciseness, and their support of referential transparency - make

them good potential candidates for use as specification languages [Tu84]. With this

potential in mind, it is demonstrated in Chapter 5 that the data dictionary languages of

SSA can also be given a functional interpretation. The definition of a data object will be

shown to satisfy the form name : expression, followed by the suggestion that the

process logic in a data flow diagram can be represented by a set of such definitions in

the form of a reduction graph.

3.4 Data flow systems and data flow diagrams
The quadratic equation example of Section 3.2 will be used here to demonstrate

one relationship between fine-grain data flow systems and SSA data flow diagrams.

The discussion will be extended to include the definition of data objects and the

transformation of input data flows to output data flows. In SSA terms these are

supported by the data dictionary and (for example) minispecs, respectively.

3.4.1 Fine-grain data flow semantics applied to
data flow diagrams

Finding the roots of a quadratic can be specified in a Level O data flow diagram

as shown in Figure 3.18(a). Suitable dictionary definitions for the data flows are

shown in Figure 3.18(b).

Although unlikely in practice, the Level O diagram could be refined to the

Level 1 data flow diagram shown in Figure 3.19. The data flow definitions in

Figure 3.18(b) apply equally as well to the expanded diagram, except that COEFFICIENTS

and ROOTS are now redundant as the data flows, as well as the process, have been

refined.

Considering a data flow diagram as a data flow program graph, it is possible to

apply both a data-driven and a demand-driven interpretation to the diagram. In terms of

the example in Figures 3.18 and 3.19, a demand-driven interpretation would be one

where the roots of a quadratic would be demanded by an analyst, and this would finally

CHAPTER 3-DATA FLOW SYSTEMS 69

lead back to a demand being made on the analyst for the coefficients of the quadratic.

ANALYST"

COEFFICIENTS ROOTS

2 "
FilID ROOTS

OF QUADRATIC
'- ~

(a) Level O data flow diagram.

a <= number.
b <= number.
C <= number.
COEFFICIENTS <= a, b, c.
BSQ <= b * b.
FOURAC <= 4 * a * c.
TWOA <= 2 * a.
SQR <= SQRT (BSQ - FOURAC).
Nl <= -b + SQR.
N2 <= -b - SQR.
rootl <= Nl I TWOA.
root2 <= N2 I TWOA.
ROOTS <= root 1, root2.

(b) Data dictionary definitions. (Read'<=' as 'is defined as'.)

Figure 3.18: Level O data flow diagram, and data dictionary definitions for finding the
(real) roots of a quadratic equation.

Applying a data-driven interpretation, the ANALYST would supply the coefficients

required by process FIND ROOTS OF QUADRATIC (or its refined processes); this would be

followed some time later by the process(es) supplying ANALYST with the roots of the

equation. In the semantics used, the external entity ANALYST has been considered as

both a source and sink of data tokens. In fine-grain data-driven systems sources and

sinks are distinct objects, but it is an easy matter to view an external entity as being at a

higher level of abstraction such that it comprises a non-empty set of sources and/or

sinks (see External entities in Section 4.2.1).

As with fine-grain data flow systems, there are a number of practical firing

criteria for nodes (processes) in the graph. Possibly the simplest operational semantics

rules that can be applied to data flow diagrams are the following:

CHAPTER 3 - DATA FLOW SYSTEMS 70

• A process becomes enabled, or executable, when all its input tokens are available.

This ensures that a process is deadlocked the first time it is executed, or nor at all. In

Figure 3.19, for instance, process COMPUTE FOURAC would become enabled when

matching tokens for a and c exist.

• A process executes as an indivisible object.

• The output tokens produced by a process are distributed, or exported, to the

importing objects (processes, external entities, and data stores) when the process

completes execution.

• The input tokens are consumed by the process.

b -

C -
a -

FIND ROOTS OF QUADRATIC

~ ~ COH:UTE

r ? N1 . rootl C011PUTE
1 N1 --+ rootl

'-

4 C011PUTE - BSQ
BSQ 3 ~r 5 N2 8

roo12 C011PUTE C011PUTE C011PUTE
~

SQR so'a N2
H roo12

2 \.) \.. ./
~

C011PUTE _ FOURAC TWOA r FOURAC r
6

C011PUTE
TWOA

\..

Figure 3.19: Level 1 data flow diagram for finding the (real) roots of a quadratic
application.

The second and third rules together provide a 'safe' division point in that,

should an error occur during the execution of a process, any data produced by that

process during that invocation would not have found its way 'out' to other processes,

external entities, or data stores.

The semantics usually attached to SSA data flow diagrams are invariably much

looser than those given above: data flow tokens are considered available when required;

any number of tokens can be matched together, depending on the process logic; data

stores can be read and written to any number of times during the invocation of a

process, including reading the value of an object 'updated' during the same invocation.

Specifically, the two areas in which the above operational semantics rules do

not adequately reflect data flow diagrams, are where data stores are involved and where

one token of a particular data flow may want to be processed against a multiple number

of one or more other data flows.

CHAPTER3-DATAFLOW SYSTEMS 71

In the case of data stores, a token to be input by a process from a data store is

usually selected using (part of) at least one other input token as a key. Figure 3.20

provides an example where a CUST _# token is used as the key for accessing

CUSTOMER_DETAILS. Note the data flow identifying the key leading from the process to

the data store. The triangle symbol denotes this as a key, rather than as a 'normal' data

flow. Such 'data' flows do not have to be shown explicitly in data flow diagrams, as

the data dictionary should contain the necessary information.

OfHER_DATA

CUST_#

CUST_#

V

EXPORTED_DATA

CUSTOMER_DEf AILS

CUSTOMERS

Figure 3.20: Accessing the data store CUSTOMERS using CUST_# as the key.

Without employing a reasonably sophisticated system mechanism for extracting

the wanted data store token before enabling a process, the operational rule of requiring

all tokens to be available prior to the execution of a process cannot be satisfied for input

tokens supplied by data stores. It is possible, however, to obtain equivalent semantics

by allowing a process to become enabled when all non-data-store tokens are available;

provided that in the case of a data store token not being available when required during

the execution of the process, the enabling can be 'undone'. The undoing of a process is

not difficult to achieve if the operational rule is adhered to, that all output tokens are

(only) exported once a process has completed. Any process that is 'blocked' through

the lack of an available data store token would be considered not to have completed.

The second area where the operational semantics are not adequate, concerns the

matching of a single token on one data flow with multiple tokens on other data flows.

An example of when this could be required is described in Figure 3.21, where a token

of the data flow COURSE_CODE is being processed against a group of STUDENT_# tokens.

COURSE_CODE

, ,
r 'I

STUDENT_# COURSE_CLASS_LIST ,._

Figure 3.21: Processing one couRSE_CODE token against multiple STUDENT_# tokens.

CHAPTER 3- DATA FLOW SYSTEMS 72

To be able to support this operationally, some means must be defined for

processing elements of a group in order, and for identifying the limits of each group.

This is equivalent to interpreting a group data flow as a stream [ASS85] With this

interpretation, the process along with data flow COURSE_CODE in Figure 3.21 can be

viewed as a filter acting on the stream of STUDENT _#s. What suggests itself is some form

of colouring to identify each group object instance, with an implicit indexing of tokens

within the group. The techniques of the U-interpreter, discussed in Section 3.2.3 can

usefully be applied here [AK81].

It should be noted that nothing in Figure 3.21 suggests that one COURSE_CODE is

being processed against multiple STUDENT_# tokens. In Section 4.3.2 one method of

showing this explicitly is given, using double arrow heads for decomposed data flows.

If the operational semantics were amended in the ways suggested, to support

the processing of data stores and the processing of decomposed group objects, the

effects of errors can still be reasonably well defined.

3.4.2 Input to output set transformations
Other research that has an operational interpretation of data flow diagrams

represent the process logic in imperative programming code [Ba82, Ba84, Ba85,

BK86, St87]. This is considered appropriate if the use of data flow diagrams is

extended to the design phase of software development. However, as an analysis tool

which should be easily understandable to the end-users of the system being analysed, it

provides too low a level of abstraction.

Three ways of specifying the transformations from input data flow sets to

output sets will be considered, namely:

• Program modules

• Executable minispecs

• Executable dictionary statements

For the reason given above, modules written in an imperative programming

language are considered unsuitable for the analysis phase. It may be possible, using

sub-programs, to present a higher level of abstraction for much of the logic.

Alternatively, a functional language could be used to define the logic of a process,

although these tend to require some understanding of the use of recursion.

Much of the concern with the use of existing programming languages for

specifying process logic, stems from the need to include the definition and initialisation

of variables, the need for loop control variables, etc. By employing an active

dictionary, much of this requirement can be dispensed with: details on the type and

initial value of a variable (possibly within a particular process) can be abstracted out of

the logic of a process and be stored in the dictionary instead. Having taken this step, it

CHAPTER 3 - DATA FLOW SYSTEMS 73

is possible to abstract out loop control variables as well. The result could be a language

whose syntax is essentially that of the structured English used by De Marco and others

[De78, GS79, We80], so that the processing logic could be represented by executable

rninispecs.

The SASE (Structured Analysis Simulated Environment), described briefly in

Chapter 9 [DT85, TD85], was an application of this reasoning. The dictionary

supporting the executable rninispecs contained full definitions of all data objects.

However, it was noted that much of the process logic was 'repeated' in these

definitions, albeit in an apparently unstructured way. This led to the dictionary

definitions of data objects themselves being interpreted as instructions. In such a

scheme, transformations on input data flows to output data flows are viewed as

operations on data structures. The definitions in Figure 3.18(b) can be considered in

this way, although they define rather simple data structures.20

One concern with using the dictionary definitions is their apparently monolithic

form. Consequently, some mechanism is required to structure the object definitions,

either explicitly or implicitly. Another concern is how these definitions can be tied

together to be executed. If a data object can only have one definition in the dictionary,

which seems a sensible restriction, the dictionary object definition language can be

viewed as a single-assignment language [Ac82, AG78, Mc82, MSA83, PCG76,

TE68, WA85]. This class of language has a data flow interpretation, and yields

particularly to a demand-driven, or reduction, mode of execution. This implies that the

language is essentially functional in nature.

3.4.3 Treating data flow diagrams and transformations
independently

The above discussion suggests that there may be some independence between

the method of executing data flow diagrams, and the method of carrying out

transformations on input data flow sets to produce output sets. This is particularly the

case when the processing logic is carried out by dictionary-based executable minispecs

or by executable dictionary definitions.

In Part II of this thesis, SAME (Structured Analysis Modelling Environment) is

described. SAME contains two sub-models: a computational sub-model for the

execution of data flow diagrams (which was also used in the SASE system), and a

computational sub-model for executing the dictionary definitions of data objects.

Chapter 4 develops the data flow diagram sub-model, while in Chapter 5, the

20 A more comprehensive example is provided in Figure 6.3.

CHAPTER 3-DATA FLOW SYSTEMS 74

executable dictionary definition language named lEgis is developed. These are brought

together into the combined SAME computational model in Chapter 6.

3.5 Summary
This chapter has discussed a number of alternative data flow systems. No

attempt has been made to be exhaustive, either in terms of the types of systems

discussed, or in terms of the example systems mentioned within each type. As well as

the cited original research documents, the excellent survey material in Treleaven et al.

[TBH82], Vegdahl [Ve84], Srini [Sr86], and Veen [Ve86], together provide a

considerable body of information, should further details be sought.21

Attention in this chapter has primarily been focussed on data flow architectures

(both data-driven and demand-driven), and various categorisations of data flow

systems have been provided. In general, the classification of systems has been directed

towards identifying types of systems or characteristics which support the notion of

executable SSA data flow diagrams. The fine-grain data-driven systems have a natural

relationship to data flow diagrams, and many of the concerns in fine-grain systems to

do with handling iteration, recursion and data structures, and avoiding deadlocks, have

parallels in (coarse-grained) data flow diagrams. Some of the features which are

considered particularly relevant to executable data flow diagrams are:

• The method used to match tokens (data flows) with operations (data stores, external

entities, and processes).

• The conditions under which operations can begin execution (the number of input

tokens required), and also when they can release their output token (frequently two

or more different data flows are created by a data flow diagram).

• The scheduling of operations, or code blocks, (processes) to processors.

• Removing the possibility of race conditions occurring by, for example, using tags.

• A method for safely handling loops (if they are to be allowed in data flow diagrams;

else banning them altogether).

A coarse-grained architecture for supporting executable data flow diagrams

forms the subject matter of Part II, when iteration, and data structures will be discussed

within that context.22 The realisation of such an architecture does not depend on

concrete fine-grain data flow architectures, but could be equally suited to a network of

von Neumann machines. This topic is discussed in Chapter 9 within Part III.

21 Much of the survey material in this chapter is based on Treleaven et al. [TBH82], Vegdahl [Ve84], Srini
[Sr86], imd Veen [Ve86]. Wherever possible the original references for systems were also used, but some
remained elusive.

22 Iteration md recursion are discussed further in Appendix 3.

CHAPTER 3-DATA FLOW SYSTEMS 75

The discussion on demand-driven, or reduction, systems has little to do with

data flow diagrams per se, but has much to do with the executable system dictionary

language called JEgis, which is the topic of Chapter 5. }Egis is a single assignment

language based on the data dictionary language(s) of De Marco [De78] and Weinberg

[We80], and is suitable for execution in a demand-driven fashion.

Within Part II, a particular data flow computational model, called SAME

(Structured Analysis Modelling Environment), is discussed. SAME itself consists of

two distinct sub-models.

At the top level is a data-driven sub-model of data flow diagrams. This is based

on the fine-grain data-driven systems of Chapter 3, but also reflects the data view of

data flow diagrams within the SSA methodologies. Two candidate sub-models are

discussed in Chapter 4. Their differences can be summarised in terms of the number of

SSA data flow diagram facilities that they provide. The simpler model, called DFDMl,

is deterministic. However, certain 'desirable' features, in the SSA sense, are missing,

such as allowing a process to execute against only a proper subset of a data flow import

set (called a 'limited import set'). Allowing 'limited' import sets enables loops to be

supported as well. The more complex model, called DFDM2, provides for limited

import sets, loops, limited export sets, and recursion. DFDMl is essentially contained

within DFDM2.

The bottom level sub-model employs a demand-driven (reduction) scheme to

map the input data flow set of a process to its output data flow set. As much as

possible, the bottom level sub-model is discussed independently of data flow diagrams

in Chapter 5.

In Chapter 6 the two sub-models are brought together to form the overall SAME

model. The generai operational rules of the combined model are as follows : When

created, instances of data flows are made available to their importing processes by the

top level sub-model. Once a process has available a full set of non-data-store-generated

input data flows, that process can be executed. (Data store generated data flows are

77

PART II 78

treated differently, but in a semantically-equivalent manner.) A process that is executing

produces each of its output data flows within the bottom level model, and does this

using a reduction technique by working backwards from each output to the set of input

data flow instances.

Chapter 7 discusses an implementation of SAME carried out in Prolog on the

Apple Macintosh. Restrictions in the implementation are also discussed.

In Chapter 8 the order processing application introduced in Chapter 2, and used

for illustration throughout Part II, is completely analysed using SAME.

The discussion of the components of SAME given in Chapters 4, 5 and 6, refer

to the full system and are purely descriptive. Only in Chapters 7 and 8 are examples

given of applications exercised on the SAME prototype described in Chapter 7.

4.1 Introduction
The top level model in SAME supports a data-driven scheme which reflects the

data orientated role of data flow diagrams in SSA. A data flow diagram process can be

viewed as an operational node in a data flow graph, and the data flows as the arcs along

which data tokens flow. Very little is said here about how the operational nodes

transform sets of input tokens to sets of output tokens; that is the subject matter of

Chapter 5. Rather, attention is focussed on the characteristics of the top level model.1

In Chapter 2, it was shown that the data flow diagrams for an application form a

tree, or hierarchy. This can be seen in Figures 4.1 to 4.4, which were first given in

Chapter 2 as Figures 2.2 to 2.5 respectively.

Given a hierarchy of processes, most attention is directed to the set of leaf

processes. In moving from the analysis to the design phase, for example, only the leaf

processes are generally involved in the transformation into a structured design [Pa80].

In Figure 4.4, the set {p1, p2, p3.1, p3.2, p3.3, p3.4, p3.5} of shaded processes

identifies the leaf processes of Figures 4.1 to 4.3.

1 However, Section 5.2 can usefully be read at this point to gain some familiarity with the .tEgis language
used to carry out transformations, as some examples in this chapter contain .tEgis statements.

79

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME

CUSTOl1EIL

0 POSTAL DETAILS
INVOICE ICUSTOl1ERS

ORDEILDETAILS
CUST Ol1EILDET AILS

CUSTOl1ER ORDER
UNFILLABLE ORDER PROCESSING PARLDETAILS

I PARTS
UP DATE DJ ARLDETAILS

INVOICE (3 ' CUSTO11ER jPRODUCE]
INVOICE

CUSTO11EIL
ORDEILDET AILS P OSTALDETAILS

CUST011ERS BASIG_.FILLED_

UNFILLABLE_ tUST011ElL ORDELDETAILS

ORDER DETAILS

I 1 \ VALID ORDER 2
I CHECK FILL

l ORDER ORDER

UPDATED_
PART _DETAILS PART-DETAILS

[illIT s

PROCESS 3 - PRODUCE INVOICE

I 3.5 ' EXTENDED...FILLED I 3.1 ' BASIC_

CUSTOJ:!E:: INVOICE I FORH I ORDER..DETAILS ~ COHPUTE I FILLED_

EXTENSION)' l INVOICE} ORDER_
DETAILS

TO__l>AY
(3.4 ' I 3.2 ' COHPUTEITOTAL lcoHPUTEJ

TO PAY J l TOTAL

I 3.3 ' LESS lcoHPUTEI
l LESS J

CUST OHER..P OST AL-DETAILS

ICUSTOHERS

Level 0

Level 1

Level 2

80

Figure 4.1: Level 0
data flow diagram
for the
order processing
example.

Figure 4.2: Level 1
data flow diagram.

Figure 4.3: Level 2
data flow diagram
for process
PRODUCE INVOICE.

Figure 4.4: Data
flow diagram
hierarchy for the
order processing
application,
showing the leaf
processes shaded.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 81

During analysis the set of leaf processes will change as refinements occur. It is

even possible to envisage trees of processes growing and shrinking as alternative

application models are investigated and discarded. SAME allows any set of disjoint

processes in an application data flow diagram hierarchy to be specified as the 'leaf

nodes. In this way, already developed parts of an application can be abstracted to a

small number of processes while detailed modelling is being carried out on a related

part of the application. Processes p 1 and p2 in Figure 4.2 may have been refined, but

during the refinement of process p3 processes p 1 and p2 can be treated as leaf nodes,

in the manner suggested in Figure 4.4.

The overall impression is of a tree of application processes growing and being

'virtually pruned'. This notion is discussed further in Section 4.5 and Chapter 6.

In Section 4.2 the operational semantics for a relatively simple data-driven data

flow diagram model, called DFDMl, are proposed. The operational semantics of

DFDMl are such that a process which 'fails' to process a set of input (or import) data

flows will not leave the system in an unsafe, or inconsistent, condition. These

semantics are then compared with the reference model of Karp and Miller discussed in

Chapter 3 [KM66]. Following on a more complex, but less secure, model called

DFDM2 is specified. The rationale for developing DFDM2 is that the model includes

important SSA data flow diagram features not available in DFDMl.

Having defined the two models, a start is made to providing a formal basis for

SAME by giving rules on how data flow diagrams are allowed to be structured. The

concept of process sets is then introduced as an alternative to data flow diagram or

process trees for describing an application at the top level. Process sets will be used in

Appendix 2. An application at the top level is then defined in terms of a 5-tuple

(following the discussion of the low level model in Chapter 5, an extended form of this

definition will be developed in Appendix 2). The implicit parallelism in DFDMl and

DFDM2 is then discussed, and finally a summary of the chapter is provided.

4. 2 The operational semantics of a sim pie
data flow diagram model (DFDMl),
and its comparison with the Karp and Miller
data-driven model

The operational data-driven semantics of DFDMl are essentially those

suggested in Section 3.4.1 as the simplest (safe) semantics for data flow diagrams. The

operational semantics are such that a process which 'fails' to complete execution will

leave the system in a safe and consistent condition.

In Chapter 3, following Oxley et al. [OSC84], the main operational

characteristics of the Karp and Miller model were given as:

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 82

• Directed arcs carry tokens between operational nodes.

• Firing rules:

Kl: All arcs between nodes are FIFO queues.

K2: A node becomes eligible for execution when each of its input arcs contains a

number of tokens equal to the threshold for that arc.

K3: When a node executes, it reads and removes a specified number of tokens

from each input arc and performs its operation.

K4: The node completes execution by placing some number ofresult tokens on its

output arcs.

A useful way of comparing DFDMl with the above is to give equivalent

specifications. However, in so doing, a slightly different terminology is used. This is

not meant to confuse, but merely to draw a distinction between the fine-grain models of

Chapter 3 and the coarse-grain models discussed in this chapter.

The data-driven semantics for DFDMl are:

• Data flows (directed arcs) carry data flow instances (token sets) between operational

nodes. 2

• Firing rules:

2

Fl: Under normal operational conditions all data flows are, or in the case of data

store produced instances can be viewed as, FIFO queues.

F2: A process (node) is eligible for executing when a complete set of import

instances is available.

F3: When a process executes, one instance is read from each import flow.

Following successful execution of the process, the read data flow instances

are removed from the data flows.

F4: At the end of the successful execution of a process, each of the created

instances (possibly EMPTY3) is exported. If more than one importer exists for

an exported data flow, a copy of the instance is exported to each of the

importers. 4

F5: A data flow instance imported from a data store is created when first

referenced in the executing process, unless it has already been created.5

In general 'data flow arcs' are described as 'data flows', or just 'flows', and 'data flow instances' as
'instances'.

3 EMPTY is a polymorphic null value (see Sections 4.3.1 and 5.3.2).

4 For example, in the case of Figure 4.3, following completion of process p3.3 an instance (copy) of LESS
will be exported to each of processes p3.4 and p3.5.

5 A data store created instance would already exist if another process which imports the data flow has already
done so. In the case of data flow PART_DETAILS in Figure 4.3, for example, process CHECK ORDER will
always cause the creation of an instance of this data flow. Process FILL ORDER will then have this instance
available before execution, as with a normal data flow.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 83

F6: The ordering of the creation of external entity generated instances is decided

by the user.

Rules F 1 to F4 are the DFDMl equivalents to rules Kl to K4 respectively of

Karp and Miller. Rules F5 and F6 have no direct parallels in the Karp and Miller

model, as that model does not support the creation and availability of data values to this

level of detail.

In terms of F 1 and Kl, the only significant difference between the rules is that

data stores are handled differently from other data flows. However, as we shall see in

Section 4.2.1 (and later in more detail in Section 6.4), accesses to data stores can be

given the same FIFO interpretation as other flows within DFDMl. To a large degree,

this is a consequence of not allowing data store structures to be amended until a process

has completed (see rule F4). Also race conditions are avoided by tagging instances (see

Section 3.2.3).

In rule F2, a complete set of import instances is available to a process when (at

least) one instance exists for each required data flow in the import set of that process.

Implicit in this is that the instances are related in some way, such as being components

of the same order. SAME makes the relationship explicit by allocating a 'currency' (that

is, a tag) to each instance of each data flow when it is created. A related import set is

then characterised by each member instance having the same currency.

The use of the word 'required' in the previous paragraph is meant to indicate

that not all data flows in an import set necessarily need to have an instance available

before the associated process can be executed. The exception in DFDMl is any process

that imports one or more data store generated data flows. Instances for data store flows

are always assumed to exist. If during the execution of a process a required data store

instance is not available, the execution of the process can be abandoned without any

change to its pre-execution status and without it having exported any data flow

instances (see F4). This is discussed further in Sections 4.2.1 and 6.4.

The major difference between F2 and K2, is that the latter is a more general rule

that allows for a single token on one arc being matched to many tokens on another arc.

An example would be where a node operates as a filter on a stream of tokens. In

DFDMl, such a stream would need to be packaged up as a repeat group to form a

single data flow instance.6 The means for doing this are discussed in Section 5.3.1.

The interpretation of rule F3 is that only following successful execution of a

process is the set of import instances consumed. Successful execution is characterised

6 This means that infinitary objects could not be supported in DFDMl. However, these are not considered to
be a factor in commercial applications; although it is certainly true that infinitary objects facilitate the
use of pure functional (applicative) languages and data flow computing for such applications. (See Section
5.2.1, Repeats, for further discussion of infinitary objects in SAME.)

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 84

by the generation of the set of associated export instances. Unsuccessful execution can

occur, for example, when a data store instance is unavailable. Elaboration on this is

given in Section 4.2.1.

Rule F4 states that export instances are only made available to the importers

once a process has completed execution. If conditional generation is involved in the

creation of a data flow, its exported value may be EMPTY (see Section 4.3.1), or

missing (in which case no data flow instance is created). An EMPTY instance has an

interpretation as a synchronisation object, as it has an associated currency.

Consequently, race conditions cannot occur in DFDMl.

FS specifies when data store import instances are created. Implicit to this is the

notion that data stores operate as specialised processes. The SSA view of data stores as

passive objects is considered to be too simplistic, and fundamentally in error. In SAME

they are more realistically viewed as abstract data types (ADTs) with local storage.

Given a key, the dictionary definition of the required data flow, and an operation, a data

store returns an instance of the required data flow and a status indicator. The

interpretation of the data flow instance depends on the value of the status indicator in

relationship to the operation carried out, as discussed in Section 6.4.3 and Appendix 1.

F6 is concerned with external entities. An external entity export instance is

created under the direction of the user, including the choice of which data flow is to

have an instance created.

4.2.1 External entities and data stores
Two major differences between the Karp and Miller model and DFDMI are:

• External entities

• Data stores

External entities
External entities and data stores both relate specifically to rules FS and F6, and

the fact that the Karp and Miller model is without comparable rules. The latter model

omits any detailed discussion of the interface to the 'outside world' or to stored data.

Communicating with the 'outside world' is satisfied in SAME in the standard SSA

way: mainly by the use of external entities, but also by data stores. Stored data ('data at

rest') is satisfied primarily by the use of data stores, although external entities (through

references to manual files, for example) can conceivably serve this purpose as well. In

this section external entities only are considered, while data stores are looked at in the

next section.

External entities provide the major interface with the environment that exists

outside the application being studied. Customers, for example, are viewed as objects on

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 85

the boundary of the order processing example. For whatever reason(s) a decision has

been made that they do not (sensibly) form part of the application.

Within SAME, external entities serve as both sources and sinks of data. In

terms of Figure 4.2, it can be seen that a CUSTOMER acts as a source when placing an

ORDER, and as a sink when receiving an INVOICE. External entities can also be used as an

abstraction for as yet unrefined parts of a system.

The closest representation to external entities in low level data flow schemes is

the phantom node of Davis and Keller [DK82]. Like an external entity, a phantom

node sits on the periphery of the application being studied. The suggestion made by

Davis and Keller is that a phantom node provides a gateway to another part of the

system (possibly not yet studied). Within SSA, external entities (and even some data

stores) can be seen as serving this role. Thus both external entities and phantom nodes

provide, in the words of Davis and Keller, 'points at which the program [or

application] communicates with its environment by either receiving data or sending data

to it.'

At first sight, a major difference exists between external entities and phantom

nodes in that nowhere do Davis and Keller show a phantom node having more than one

import or export (to conserve functionality), and certainly not both an import and an

export. Whereas with an external entity, in the general case, both multiple imports and

exports can exist. The fundamental difference between the two is that each phantom

node is the name of the token being produced or consumed, as its arc is unnamed; an

external entity, on the other hand, can be used to name the object generating or

consuming an instance as the arc (data flow) itself is named. External entities can be

seen to provide a level of abstraction above that provided by phantom nodes. This extra

level of abstraction can be viewed as a means for identifying sets of phantom nodes,

based on some criteria of interest. Further, in terms of the data-driven model, the

importing (or exporting) of a particular external entity data flow can be viewed as an

independent operation from other data flows in the set, which is consistent with the

SSA interpretation. The external entity e1, CUSTOMER, in Figure 4.1 can be represented

as the set e1 = {INVOICE, ORDER_DETAILS, UNFILLABLE_ORDER} of phantom nodes in the

way described in Figure 4.5.

How, and in what order, an external entity produces data flow instances is

considered to be outside the control of SAME. On the other hand, an external entity is

considered to consume an instance the moment it is exported from a process. In many

cases an external entity export and an import could conceivably form 'message pairs';

SAME makes no special allowance for this. Potentially an exporting phantom node and

an importing phantom node have the ability to both be 'active' at the same time.

CHAPTER 4- THE DATA-DRNEN MODEL IN SAME 86

e1
!INVOICE!~

IUNFILLABLE_ORDERI

Al

I ORDER_DETAil.SI

H

Figure 4.5: External entity e1, CUSTOMER, as the set
{ INVOICE, ORDER_DET AILS, UNFILLABLE_ORDER} of phantom nodes.

Within SAME, to be consistent with SSA, the higher level abstraction of

external entities is used to name interface points with the external environment.

Data stores
Data stores provide the biggest problem in the pure data flow interpretation of

data flow diagrams. A data store essentially contains related updateable structures

which can be accessed in a random fashion. A full discussion on data stores forms the

subject matter of Section 6.4; the discussion is limited here to providing a data flow

interpretation of data store accessing.

Concerning exporting to a data store, rule F4 given earlier states that within

DFDMl a data store structure can only be physically updated once a process has

completed execution. This means that within an invocation of a single process, the

ordering of data store imports ('reads'), and the values of the imported instances,

cannot be influenced by exports from that execution of the process. To stop other

processes affecting the values of instances, it is stated informally here that within

DFDMl no process can access a data store structure that could be updated by another

executing process (including a second invocation of the same process) during the

execution of that process. A scheme for checking when such an access clash could

potentially occur is described in Section 6.4.6.

Data store operations in SAME are conceptual in nature. The two types of

operation are import and export, where either a key or some sequencing is used to

identify the data store structure instance, and an operation details the activity to be

carried out. For example, it is possible to specify that an import is only to be carried

out if an instance of the data structure with the supplied key exists (see Section 6.4.3

for the details).

Concerning importing from a data store, the creation of an import instance

actually occurs during the execution of the process. This is at variance with the true data

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 87

flow model where all data flows must be available before the execution of a process can

begin. Although the 'letter' of the data flow model is broken, the 'spirit' is not for the

following reasons:

• All data store accesses lead to the importing of a data flow instance. At the best, this

will be the required data structure. At worst the 'instance' will be an error message

saying no such instance exists, where one was expected. If necessary in this worst

case the system can 'roll back' the importing process to the position it was in before

execution began, as no exporting would have yet taken place.

• Multiple accesses within a single invocation of a process to a specific data store

instance, only leads to the importing of that instance once, at the first reference.

Consistent with the general re-use rule for imported instances, subsequent accesses

employ the already imported value.

• The importing of a single data store flow by more than one process leads to the same

instance being imported by each. The first process to import the flow causes the

creation of the instance, which is then exported to the other importing processes.

• Updating of a data store takes place when a process completes.

As within DFDMl the importing of data flow instances cannot be affected by

export amendments to the data store structures involved in the imports, the ordering of

imports from a data store is immaterial. In fact, during a single invocation of a process,

the importing of multiple instances of a single data flow with different keys can be

viewed as a repeat group - a single stream of instances. This stream would be the only

(macro) instance on the data flow arc and could be viewed as a normal data flow.

4.3 The operational semantics of DFDM2
Although a reasonably powerful model, DFDMl lacks some of the 'desirable'

features found in the SSA data flow diagrams. Most notably, the model does not allow

for a process to operate on different limited sets of its import data flows at different

invocations. Being able to do this would allow for the processing of loops at the data

flow diagram level (given a conditional construct in the transformation scheme).

Another restriction placed by DFDMl is that, on importing, only a single

instance of a data flow is matched with the single instances of the other import data

flows. Similarly when exporting, only a single instance can be exported down each

export arc following the completion of a process invocation. As a consequence, group

objects would have to be formed from what are, at a particular level of refinement,

naturally separate instances (in data flow terms). An example of the processing of a

single instance against several instances of another data flow was given in Figure 3.21,

where a single COURSE_CODE instance was being processed against a stream of

STUDENT_# instances.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 88

The example in Figure 3.21 shows a single export instance, named

COURSE_CLASS_LIST, which is most naturally interpreted as a group object. This

suggests that a need exists to compose group objects. It is also possible to identify a

need to decompose group objects into a number of separate objects. A reasonable

working analogy is being able to treat an array as a single object, or as a stream of

separate objects consisting of the array elements.

The changes to DFDMl to formulate DFDM2 will be discussed in terms of the

topics outlined above, namely:

• Limited import and export sets

• Composition and decomposition of group objects

4.3.1 Limited import and export sets
In data flow diagrams, not all data flows in an import set are necessarily

required for a process to successfully execute. Similarly, a successfully executing

process may not produce instances for all the data flows in the export set of the

process. In an attempt to keep the model simple, this data dependent generation of

instances is not allowed for in DFDMl.

Limited import sets
Limiting the required set of imports or exports to a proper subset of the import

set or export set, respectively, is considered to be a constraint on the execution of a

process.7 In some SSA methods this restriction is shown explicitly [We80], as in the

following diagram, which describes a banking application where each transaction is

processed as either a debit or a credit.

DEBIT_TRANS

cusroMER TRANSACITON IDENTIFY 1:f.'
TRANS W

CREDIT _TRANS

DEBIT
ACXX)UNT

AC_STATUS

Aa::oUNIS

CREDIT
ACXX)UNT

DB_STA1US

ADVISE TRANS STATUS
STA1US CUSTOMER

CR_STA1US

7 In a comparable way to constraints limiting the values an object can take in a data model [TL82], or the
use of subranges in Pascal [JW78].

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 89

If TRANSACTION is of type debit, an instance of DEBIT_TRANS is generated by

process IDENTIFY TRANS, otherwise an instance of CREDIT_TRANS is generated. Similarly,

process ADVISE STATUS requires an instance of DB_STATUS or one of CR_STATUS, but not

both, to produce an instance of TRANS_STATUS. The symbol 'EB' is correctly read as

'oR', and represents the disjunction of data flows (i.e., is an exclusive-OR).

Most methodologies do not explicitly show this type of restriction in the data

flow diagrams [CB82, De78, GS79, LB82]. In fact, there are strong arguments against

doing so [De78]; the most important being the fact that these details are procedural in

nature and should not be considered at the data flow diagram level. 8

In DFDM2, the following two cases are distinguished between in deciding

whether a process is executable at the top level model:

• A full import set of data flow instances is required.

• One of a number of proper subsets of the full import set is required.

The assumption with both of these is that any data store instances are accessed during

the execution of a process.

The first of these cases, which requires a full import set of instances to be

available, is described as the normal case. The second of these, which is called the

limited (import set) case, has the import set replaced by a set of import sets. The

following rule defines a valid set of import sets:

!SJ: No import set can be a subset of another import set - as this could lead to non­

determinism. That is, depending on the order of availability of imports, either the

smaller set will be satisfied first, or both sets will be satisfied together. If, in an

attempt to guarantee determinancy, a policy was adopted to always satisfy the

smallest set first, the larger set would never be used as an executable set.

During the analysis of an application, it is possible for only a single subset to be

defined (as an interim measure). The effect is to reduce the required set of imports to

this limited set for all invocations of the process.

Within the execution of an application, if a set of imports9 is created for a

process that has limited import sets, such that the available set is a superset of (at least)

one of the limited import sets, an error is deemed to have occurred. This is a semantic

error that signifies that more data than was required has been generated. A procedure

that has available a set of instances corresponding to a limited import set, must have all

other import instances with that currency missing.

If such 'errors' were permitted to occur, unchecked, logistical problems could

result. Consider the following diagram, where process Pl has the import set {A, B, c}.

8 See the section A voiding procedural details in data flow diagrams, pp. 35-36.

9 That is, a set of instances with the same currency.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 90

]..____D •

Suppose that the set I = { { A, B}, { A, c} } of limited import sets exists. Should

instances of A, B and c all become available with the same currency, then both of the

sets { A, B} and { A, c} can be satisfied. If non-determinancy is to be avoided, the need

exists for a priority ordering on the limited import sets to be applied so that a preferred

set is chosen. Not only is this against the spirit of data flow computing, but it is also

dragging more 'procedural' details outside of the processes. As well as this, the model

would require the use of synchronisation 'instances' for missing values, as a full set of

instances would be needed to decide whether or not to apply the priority ordering.

The semantics of the model are such, that nothing is said on exactly when an

error of the type above can be identified as having occurred in relationship to the

execution of the process involved. The only way that an error for the import sets {A, B}

and { A, c} can be 'trapped' before the execution of process Pl is if matching instances

for B and c were available before the matching instance of A. An implementation

method which will ensure that this type of error can always be 'trapped' before the

execution of a process, is the one alluded to above that substitutes synchronisation

instances for missing ones (see the discussion in the following section).

Conditional generation of data flows and limited export sets
It is relatively easy to find meaningful applications where not all data flows in

the export set of a process need have an instance generated during each invocation of

the process. This occurs where a data flow instance is created under some condition,

but not under another. For example, anticipating the discussion on conditionals in

Chapter 5, the following definition could exist:

REJECTED_AMOUNT <= ("Negative amount: ", AMOUNT) IF AMOUNT< 0.

If REJECTED_AMOUNT was exported by a process, then an instance for this object

would only be created when the object AMOUNT was less than zero. Where conditional

generation is involved in the creation of a data flow, SAME (using DFDM2) permits

two types of value to be generated in those cases where a 'normal' value is not going to

be created. The exported value may be either EMPTY, or missing (non-existent). The

difference between these can be stated as follows: A data flow with a value of EMPTY is

an object instance with a currency. It is a I-tuple, in the terminology of Chapter 5, and

can be a component of a larger object (tuple). A missing value, on the other hand, is

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 91

considered to be a 0-tuple; that is, non-existent. The only operation possible on a 0-

tuple is a check for availability. For example, the following defines Das the result of the

operation 'A* B' if an instance of Bis available, or as 'A* c' otherwise.

D<= A*B IF(AVAILABLE(B))I
A * C OTIIERWISE.

Note how the function Av AILABLE is applied to a possibly non-existent value.

The result is that each data object instance can take on one of the following two

classes of value:

• a 'concrete' value (such as 12, "Discount rate: " or EMPTY)

• missing

An example should help clarify the difference in the use of EMPTY and missing.

In the following, DISCOUNT is defined as 5 if TOT AL is more than 250 or EMPTY otherwise:

DISCOUNT<= 5 IF (TOTAL> 250) I
EMPTY OTHERWISE.

Whereas the following defines DISCOUNT as 5 if TOT AL is greater than 250 or missing

otherwise:

DISCOUNT<= 5 IF (TOT AL> 250).

The generation of a concrete value for each data flow exported by a process,

guarantees the creation of a full export set, whereas the generation of (at least) one

missing value results in the creation of a limited export set.

]As it stands, the banking application given earlier includes the use of EMPTY

values for objects DEBIT_TRANS and CREDIT_TRANS. This can be identified from the fact

that both the processes DEBIT ACCOUNT and CREDIT ACCOUNT import data flow AC_STATUS.

To explain this further, consider the following set of object definitions which support

the use of missing values:10

TRANSACTION <=
TRANS_TYPE <=
ACCOUNT_# <=
AMOUNT <=
DEBIT_TRANS <=
CREDIT_TRANS <=
AC_STATUS <=
NEW _BALANCE <=
DR_AMENDMENT <=

CR_AMENDMENT <=
DB_STATUS <=

CR_STATUS <=
TRANS_STATUS <=

TRANS_TYPE, ACCOUNT_#, AMOUNT.
STRING.
NUMBER.
NUMBER.
(ACCOUNT_#, AMOUNT) IF (fRANS_TYPE = "DB").
(ACCOUNT_#, AMOUNT) IF (TRANS_TYPE = "CR").
CURRENT_AMOUNT, OVERDRAFT_LIMIT.
CURRENT_AMOUNT + AMOUNT.
(ACCOUNT_#, AMOUNT, NEW _BALANCE)

IF (NEW _BALANCE< OVERDRAFT_LIMIT).
ACCOUNT_#, AMOUNT, NEW _BALANCE.
('TRANSACTION REFUSED", AMOUNT)

IF (NEW _BALANCE> OVERDRAFT_LIMIT) I
('TRANSACTION_ACCEPTED", NEW _BALANCE) OTIIERWISE.
'1'HANK YOU", NEW _BALANCE.
DB_STATUS IF (AV AILABLE(DB_STATUS)) I
CR_STATUS OTIIERWISE.

lO Refer to Section 5.2 and/or Appendix 1 if the meaning is not clear.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 92

The definitions that explicitly relate to missing values are DEBIT_TRANS,

CREDIT_TRANS and TRANS_STATUS.

Using angled brackets to delimit instance values (tuples), consider that the

TRANSACTION instance ("CR", 1234, -120.94) is available to process IDENTIFY TRANS.

Following execution of this process, the instance (1234, -120.94) will be exported to

process CREDIT ACCOUNT. No DEBIT_TRANS instance value will be exported to DEBIT

ACCOUNT as the value is missing. During the execution of process CREDIT ACCOUNT, the

data flow AC_STATUS will be requested from data store ACCOUNT. This same instance of

AC_STATUS will be exported to DEBIT ACCOUNT. As there will be no matching DEBIT_TRANS

instance, this is an error.

Two solutions to the above problem exist. Either the importing from data store

ACCOUNTS by processes DEBIT ACCOUNT and CREDIT ACCOUNT must be considered

separate data flows, and named accordingly; or else the definitions for DEBIT_TRANS,

CREDIT_TRANS and TRANS_STATUS must be amended to the following:

DEBIT_TRANS

CREDIT_TRANS

TRANS_STATUS

<= (ACCOUNT_#, AMOUNT)
EMPfY

<= (ACCOUNT_#, AMOUNT)
EMPfY

IF (TRANS_TYPE = "DB") I
OTHERWISE.
IF (TRANS_TYPE = "CR") I
OTHERWISE.

<= DB_STATUS
CR_STATUS

IF (DB_STATUS,;; EMPTY) I
O'IHERWISE.

It may be considered that the difference between the two cases is too small to

warrant such careful attention on the part of the user. However, it is contended that

allowing (slightly) different semantic interpretations of data flow diagrams is one of the

fundamental problems in their use. This is probably why some analysts prefer to

explicitly show limited import (and export) sets.

Note that DFDM2 is asymmetric in that it requires limited import sets to be

defined explicitly, but not limited export sets. As has been seen with the exports

DEBIT_TRANS and CREDIT_TRANS of process IDENTIFY TRANS, export sets are specified

within the 'procedural' logic of the process. Ideally, as mentioned above, limited

import sets would be similarly defined, but the model is unable to support this.

Compared to a model which only supported full import (and export) sets,

allowing limited import (and export) sets tends to both weaken the model and to make it

more complex. As was seen above, the time at which an error in an import set can be

identified may follow the execution of the importing process, unless explicit

synchronisation 'instances' are used. However, limited sets are seen to be a necessary

requirement for the adequate modelling of applications using SSA.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 93

4.3.2 Composition and decomposition of group objects
Allowing for the composition and decomposition of group objects within data

flow diagrams means that semantic differences would exist between refined

(decomposed) and non-refined data flows. As there is no reason why decomposition

and composition should not be 'nested' to match the nesting of group objects, a data

flow diagram could contain data flows at many levels of refinement.

An example section of a diagram which contains a decomposed data flow was

given in Figure 3.21. Unfortunately, the diagram does not explicitly convey the

semantic difference between the data flow STUDENT_#, and the flows COURSE_CODE and

COURSE_CLASS_LIST. A relatively simple method for showing one level of decomposition

is shown in Figure 4.6(a), which is a more complete example of Figure 3.21. The six

decomposed flows in Figure 4.6(a) are shown with double arrow heads on the arcs.

Included as Figure 4.6(b) are suitable .tEgis definitions for the diagram.

COURSE_CODE

RETECTED_ENROLMENT

STUDENT_# ---.. ACCEPTED_STUDENT_#

COURSE_CLASS_LlST

UST
STUDENT_N

COURSE_NAME

STUDENTS

(a) Part of a data flow diagram showing the use of a double-headed arc to signify the
existence of a decomposed data flow.

STUDENTS
STUDENT
STUDENT_#
STUDENT_NAME
COURSES
COURSE
COURSE_CODE
REJECTED_ENROLMENT

ACCEPTED_STUDENT_#

<= 1 {STUDENT}INF.
<= STUDENT_#, STUDENT_NAME, OTHER_STUDENT_DEfAILS.
<= NUMBER.
<= STRING.
<= 1 {COURSE}INF.
<= COURSE_CODE,COURSE_NAME,COURSE_DEfAILS.
<= STRING.
<= ("Course full", COURSE_CODE,STUDENT_#)

IF CURRENT_ENROLMENT = COURSE_LIMIT.
<= STUDENT_#

IF (CURRENT _ENROLMENT+ 1) < COURSE_LIMIT.
COURSE_DEfAILS <= COURSE_LIMIT, CURRENT_ENROLMENT.

NUMBER. CURRENr_ENROLMENf <=
NEW _CURRENT_ENROLMENT <= CURRENT-ENROLMENT+ 1

COURSE_CLASS_LIST

NUMBER_ENROU.,ED

IF (CURRENT_ENROLMENT + 1) < COURSE_LIMIT.
<= COURSE_NAME,1 {ACCEPTED_STUDENT_#}INF,

NUMBER_ENROU.,ED.
<= COUNT_OF(ACCEPTED_STUDENT_#).

(b) Supporting .tEgis definitions for the data flows in (a).

Figure 4.6: An example which shows the decomposition and composition of data flows
in data flow diagrams.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 94

The scheme for representing decomposed data flows could be extended so that a

decomposed data flow would be represented by a triple headed arc, and so on. An

alternative scheme, and one more suited to numerous levels of nested decompositions,

would be to attach a nesting level to each decomposed data flow arc. For example,

describes a 'level 6' decomposed data flow, the equivalent of six arrow heads.

However, it is suggested that multiple levels of decomposition in data flow

diagrams are best handled by using refined data flow diagrams themselves for some of

the levels. This is not unreasonable as sets of decompositions, with their 'matching'

compositions, often form a refinement of data objects and the associated processing

carried out on those objects.

The semantics associated with ENROL STUDENT and PRODUCE ENROLMENTS UST in

Figure 4.6(a) are as follows.

Process ENROL STUDENT initially becomes runnable when both an instance of

COURSE_CODE and an instance of STUDENT_# are available. Assuming that both an

instance of STUDENT_NAME and an instance of COURSE_DETAILS are available, an instance

of REJECT _ENROLMENT, or an instance each of ACCEPTED_STUDENT _# and

NEW_CURRENT_ENROLMENT will be exported. Further invocations of process ENROL

STUDENT will make use of the same COURSE_CODE instance until all the matching

STUDENT_# instances have been imported.

Matching instances are signified by both the COURSE_CODE instance and

STUDENT_# instances having the same currency. In fact, in a similar way to the

elaboration of activity names carried out by the CT-interpreter (see Section 3.2.3), the

currency for each STUDENT_# instance will differ from that of each COURSE_CODE instance

by having an extra indexing suffix. Given that the currency of a COURSE_CODE instance

is c, the currency for a matching STUDENT_# instance would be (c,i), where i is an

implicit index which denotes the relative position of the STUDENT_# instance in the group

of matching STUDENT_# instances. The suffix i is ignored when comparing the

currencies of a decomposed and non-decomposed (at this level) data flow instances.

Adding an extra suffix for each level of decomposition is a relatively simple

general scheme for ensuring correct matching, and can be loosely compared to the

technique of subscripting in multi-dimensional arrays.

The last instance in a group of decomposed instances has a currency which is

augmented with an 'end-of group' indicator.

Moving on to the second process, there would be as many executions of

PRODUCE ENROLMENTS UST as there are instances of ACCEPTED_STUDENT_#. However, only

CHAPTER 4- TIIB DATA-DRIVEN MODEL IN SAME 95

one instance of COURSE_CLASS_LIST will be exported, and this will occur following the

processing of the last ACCEPTED_STUDENT_# instance. The construction of the repeat

group l{ACCEPTED_STUDENT_#}INF in the COURSE_CLASS_LIST data flow takes place

incrementally during the invocations of the process, and in between invocations the

'current state' of the process environment is retained.

The NUMBER_ENROLLED element of the COURSE_CLASS_LIST data flow makes use

of the COUNT_OF system function which counts the number of instances of a specified

decomposed data flow (see Section Al.5, in Appendix 1). It should be noted that the

number of enrolled students could not be obtained by importing the (NEW_)

CURRENT_ENROLMENT from the COURSES data store, as it is the final value that is required.

One possible concern with the above is what happens in the case where, say, no

ACCEPTED_STUDENT_# instances are created. What will be matched to the COURSE_CODE

instance in process PRODUCE ENROLMENTS LIST? The answer is that the 'end-of group'

indicator is 'broadcast' to all processes importing decomposed exports. In the case of

the example, the 'end-of group' indicator would be sent to PRODUCE ENROLMENTS LIST

and the importer(s) of the REJECTED_ENROLMENT data flow.

4. 4 Structural completeness
of data flow diagrams

An important feature of SAME is its the ability to operate with incomplete

specifications. At the data-driven model level this takes the form of structurally

incomplete data flow diagrams. To understand what is meant by 'structurally

incomplete data flow diagrams', 'structural completeness' will be defined first

following the definition of some terms.

Definition: A process Pi is a descendant of a process Pj (or Pj is an

ancestor of Pi) if Pi is in the refinement of Pj•

This is written Pi L Pj- •

The relation descendant (ancestor) is transitive. Given that p 1 L P2, P2 L p3,

... , Pn-1 L Pn, then p J L Pn• Referring to Figures 4.1 to 4.4, the following can be

identified: p1 L. pO, p2 L pO, p3 L pO, p3.1 L p3, p3.2 L p3, p3.3 L p3, p3.4 L

p3, p3.5 L p3, p3.1 L pO, p3.2 L pO, p3.3 L pO, p3.4 L pO, and p3.5 L pO.

If Pi is not a descendant of Pj, this is written as Pi k Pj• For example, pO 1: p 1 .

It is useful to define the data object equivalent to process refinement so that the

refinement of data flows in data flow diagrams can be handled in a structural way. This

anticipates material presented in Chapter 5.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME

Definition: A named data object di is contained in a named data object dj (or

dj contains di) if di is either a sub-object of dj or di and dj are the

same object.

This is written di :s; dj, •

96

The relation contained in (contains) is also transitive. Taking examples from

Figure 4.6, the following are some of the possible contained in relationships that

exist: STUDENT::;;; STUDENT, STUDENT :s; STUDENTS, STUDENT_#::;;; ACCEPTED_STUDENT_#,

COURSE_LIMIT :s; COURSE_DETAILS, COURSE_LIMIT :s; COURSES.

If di is not contained in dj, this is written as di :1 dj, For example,

COURSE_DETAILS :t CO URS E_LIMIT. Objects that appear in conditionals (see

Section 5.2.1) may not necessarily be contained in the object being defined. In the

definition for NEW _CURRENT_ENROLMENT, the object COURSE_LIMIT is not part of the tuple

being defined, consequently COURSE_LIMIT :t NEW _CURRENT_ENROLMENT. The data

object CURRENT _ENROLMENT, does appear in the tuple body expression
1CURRENT_ENROLMENT+l

1
SO that CURRENT_ENROLMENT :s; NEW_CURRENT_ENROLMENT.

When refining data flow diagram processes, the import and export data flow

sets of the process provide an interface to the refining data flow diagram (see

Figure 4.3). To be able to satisfactorily specify structural completeness, this interface

dependency between a process and its refining data flow diagram needs to be

formalised. This will now be done.

Definition: Given a process p, which is refined to a data flow diagram

containing descendant processes, each data flow d in the import

set of p is called an import inherited data flow in the refining

data flow diagram, or any descendant process refining data flow

diagram in which it appears.

In a similar way, each data flow in the export set of p is called an

export inherited data flow in the refining diagram(s). •

In Figure 4.3, BASIC_FILLED_ORDER_DETAILS is an import inherited data flow

from process p3, and INVOICE is an export inherited flow. Collectively, they are called

inherited data flows.

The data flows INVOICE and CUSTOMER_POSTAL_DETAILS in Figure 4.3 were

inherited from process p3 in Figure 4.2. In their turn, these same two flows in

Figure 4.2 where inherited from the Level O process pO in Figure 4.1.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 97

As part of the refinement process, it is often convenient to specify inherited data

flows in terms of distinct component objects. The quadratic roots data flow diagram in

Figure 3.19 is a refinement of the process FIND ROOTS OF QUADRATIC in Figure 3.18(a).

In Figure 3.19 the inherited data flows have been specified as a, b, c, rootl, and root2,

instead of COEFFICENTS and ROOTS. Each of a, b, and C is contained in COEFFICIENTS, as

can be observed from Figure 3.18(b). Similarly for rootl and root2 with ROOTS.

Using the concept of an inherited data flow, and the contained in relation, the

interface data flows in refining data flow diagrams can be defined as follows:

Definition: Given a process p, which is refined to a data flow diagram

containing descendant processes, and given that the import data

flow set of p is/, and the export set is E: Each data flow din the

refining data flow diagram in which d ~ h, where h e /, is an

import interface data flow.

In a similar way, each data flow d in the refining data flow

diagram in which d ~ h, where he E, is an export interface
data flow. •

The import interface data flows in Figure 3.19 are a, b, and c. The export

interface data flows are rootl and root2. Collectively they are called interface data

flows.

4.4.1 Structurally complete data flow diagrams
A data flow diagram which satisfies the following rules is defined as a

structurally complete data flow diagram: 11

SJ: Each object in a data flow diagram must be of type t E O, where

0 = { data flow, process, external entity, data store}.

S2: An object of type data flow must have exactly one exporter. In the case of a

Level n diagram, n > 0, no exporter should be specified for an import interface

data flow.

S3: An object of type data flow must have one or more importers. In the case of a

Level n diagram, n > 0, no importer(s) should be specified for an export

interface data flow.

S4: A single object of type data flow cannot be imported more than once by a

specific importer.

11 A rule that has an alternative for each model has the model name in parentheses before its option.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 98

S5: An exporter of an object of type data flow is of type t, where t E o- and

o- = { process, external entity, data store}.
S6: An importer of an object of type data flow is of type t, where t E o-.
S7: As a minimum, either the exporter or each of the importers of a data flow must

be of type process.
SB: Each object of type t E o- has both an export set containing the names of the

objects of type data flow that it exports (which is possibly empty), and an

import set containing the names of the objects of type data flow that it imports

(which is possibly empty).

S9: A process must have both a non-empty import set and a non-empty export set.

SJO: Each object of type t E o-- = {external entity, data store} must have at

least a non-empty import set or a non-empty export set.

SJ I: (DFDMl.) No cycles are permitted within a group of objects of type process.
(DFDM2.) No object of type t E o- can directly import one of its own exports.

S12: The data flow diagram must have a non-empty set of objects of type process.

S13: A Level O diagram must have a non-empty set of objects of type external

entity.

S14: At least one object of type external entity must have a non-empty export set.

S15: A process can only exist within one data flow diagram.

S 16: Each object in a data flow diagram must have a name.

S17: The name of a data flow diagram object must be unique for its type within the

application, except in the case of an interface data flow, which can take the

name of the data flow that it is refining.

The minimal Level O data flow diagram is:

Applying the above rules, the data flow diagrams in Figures 4.1 to 4.3 can be

seen to be structurally complete.

4.4.2 Structurally incomplete data flow diagrams
A data flow diagram is described as structurally incomplete if it satisfies the

following rules: 12

12 See footnote 11.

CHAPTER 4- TIIB DATA-DRIVEN MODEL IN SAME 99

SJ': Each object in a data flow diagram must be of type t E 0, where O = { data

flow, process, external entity, data store, unknown}.

S2 ': An object of type data flow must have at most one exporter. In the case of a

Level n diagram, n > 0, no exporter should be specified for an import interface

data flow.

S3': An object of type data flow can have zero or more importers. In the case of a

Level n diagram, n > 0, no importer(s) should be specified for an export

interface data flow.

S4': A single object of type data flow cannot be imported more than once by a

specific importer.

S5': An exporter of an object of type data flow is of type t, where t E o- and

o- = (process, external entity, data store, unknown}.
S6': An importer of an object of type data flow is of type t, where t E o-.
S7': As a minimum, either the exporter or each of the importers of a data flow must

be of type process or unknown.
S8': Each object of type t E o- has both an export set containing the names of the

objects of type data flow that it exports (which is possibly empty), and an

import set containing the names of the objects of type data flow that it imports

(which is possibly empty).

S9': (DFDMl.) No cycles are permitted within a group made up only of objects

from the set (process, unknown}.
(DFDM2.) No object of type t e o- can directly import one of its own exports.

S10': A process can only exist within one data flow diagram.

S 11 ': Each object in a data flow diagram must have a name.

S 12 ': The name of a data flow diagram object must be unique for its type within the

application, except in the case of an interface data flow, which can take the

name of the data flow that it is refining.

The differences in the two sets of rules can be summarised as follows:

• Structurally incomplete data flows have the extra object type unknown. If an object

of this type only has an export data flow set, then the object is treated as a pseudo

external entity source for the generation of instances. If the object has only an import

set, it is treated as a pseudo external entity sink. Otherwise, the object is viewed as a

pseudo process that requires the user to specify the transformations from import set

to export set (see Figure 4.7).

• In a structurally incomplete data flow diagram, objects of type t e O can exist in

isolation (awaiting connection).

C 1- ' ,MAS::,EY Ui~l\ U \;:) \,

LIBRARY

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 100

An example of a structurally incomplete data flow diagram is shown in Figure

4. 7, which can be viewed as a modified form of Figure 4.2. A shaded cut off lozenge

has been used to denote the unknown object (or subsystem), u1.

~iii~·; iiiii; ~ INVOICE

ICUST 011:EIL
POSTAL-DETAILS

I CUST 011:ERS

VALID_ORDER

UPDATED-
PART _DETAILS PART-DETAILS ...

IPARTS

3
PRODUCE

~\.INVOICE

. . .
'-

-~ BASI CJ'ILLED_
ILDETAILS ORDE

2

FILL
ORDER ~

Figure 4.7: A structurally incomplete form of Figure 4.2.

4.4.3 Invalid data flow diagrams
A data flow diagram which is neither structurally complete nor structurally

incomplete is defined to be an invalid data flow diagram.

Structurally complete, structurally incomplete and invalid data flow diagrams

can be extended to the level of an application. This is done in Section 4.7.

4.5 Levels of refinement
The refining of a process to a new data flow diagram is viewed as a reduction in

the level of abstraction. This reduction for a particular process can also be seen to

reduce the level of abstraction of the complete application of which it is a component.

The aim of any SSA exercise can be considered to be the reduction of abstraction to the

level at which an application can optimally be taken into the (structured) design phase of

the software development process. Unfortunately, no firm rules exist to say when this

point is reached, either in general or for a particular application. A much quoted rule of

thumb, is to stop refining a process when its logic can be specified on a single A4 page

as a minispec using structured English [Ke83, De78, De79]. Without constructing each

minispec during the production of a data flow diagram, it is impossible to say exactly

when this point is reached, although it is expected that an experienced analyst would be

able to make an educated guess. Whether all applications can be satisfactorily treated in

this way is debatable. Each case would again need to depend on the experience of the

analyst and her/his understanding of the application area. Also, specifying a maximum

size for a minispec can be viewed as imposing 'premature decisions in analysis which

should come about as part of detailed design and programming' [Fl].

CHAPTER 4- TI-IE DATA-DRIVEN MODEL IN SAME 101

An approach used by some analysts, and one that does provide a foundation for

formal treatment, is to refine data flow diagrams until each process has a single input

data flow and a single output data flow [De78]. Unfortunately, as in the case of a

merge, this may not be possible and some processes will have to have m > 1 imports

and/or n > 1 exports. A satisfactory relaxation of the one-import-one-export

requirement, proposed here and pursued in Appendix 2, is to ensure that each export be

fully functionally dependent on each import (see Section A2.4.8). That is, each import

data flow must appear in the defining_details of each export data flow, either directly by

name, or by use of all the component objects of the import flow (see Section 5.2).

4.5.1 Hierarchy of data flow diagrams
The usually top-down refinement process of producing more and more detailed

data flow diagrams can be described as the generation of a data flow diagram

explosion tree. A more useful view, and one that is more in sympathy with SSA, is

to consider processes rather than diagrams. The term 'explosion tree' can just as

usefully be applied to processes. Figure 4.8 shows two possible process explosion

trees for the order processing system. The solidly shaded nodes identify the leaf

processes, which are those processes that are considered to be fully refined.

p1

p1.1 p1.2 p1.3 p3.1 p3.2 p3.3

(a) (b)

Figure 4.8: Possible different data flow process explosion trees created during
the analysis of an application.

During the development of an application, it is reasonable to expect that a

number of explosion trees will be used. Figure 4.8, for example, may describe two

chronological stages in the analysis stage of an application, as follows: (a) shows the

refinement of process p 1 ; at a later time (b) shows the explosion of process p 3

ignoring any previous refinement of processes p 1 , p2 and p3 that may have occurred.

It is suggested that the flexible abstraction scenarios of the type just briefly outlined are

not uncommon and should be supported within software development environments.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 102

4.5.2 Process sets
In Appendix 2 set theory will be used to suggest a basis for the formal

description of SAME; consequently, a set alternative to a process explosion tree will

now be given.

Definition: An application process set, P, is the set of processes in the

process explosion tree of the application. •

The process set, P, for the two explosion trees in Figure 4.8 is, respectively:

(a) {pO, p1, p1 .1, p1 .2, p1 .3, p2, p3};

(b) {pO, p1, p2, p3, p3.1, p3.2, p3.3}.

The leaf process set, PL, can also usefully be defined as follows.

Definition: An application leaf process set, PL, is the set of leaf processes

in the process explosion tree of the application.

The leaf process set, PL, for the two trees in Figure 4.8 is, respectively:

(a) {p1.1, p1.2, p1.3, p2, p3};

(b) {p1, p2, p3.1, p3.2, p3.3}.

The following diagram describes the sets P and PL for Figure 4.8(b):

•

One possible, time-independent, view of an application at the top level is as a

family of process sets, although details on data stores and external entities would be

missing.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 103

4.6 Applications in the top level model
SAME executes applications, where at the top level an application can usefully

be described as the 5-tuple

A= (E, S, P, U, F)

such that E is the application set of external entities, S is the application set of data

stores, P is the application process set, U is the set of unknown objects in the

application, and F is the set of data flows that appear in the data flow diagram hierarchy

for the application. Each of the sets includes all the objects of its type that exist in the

application.

An application can be classified as structurally complete, structurally

incomplete, or invalid in a similar way that data flow diagrams were classified in

Section 4.4.

A structurally complete application is an application

Ac= (E, S, P, 0, F)

that satisfies the structurally complete data flow diagram rules of Section 4.4.1.

The following describes the structurally complete application specified in

Figures 4.1 to 4.3:

({CUSTOMER}, {CUSTOMERS, PARTS } ,

{pO, p1, p2, p3, p3.1, p3.2, p3.3, p3.4, p3.5}, {},

(ORDER_DETAILS,UNFILLABLE_ORDER,CUSTOMER_DETAILS,PART_DETAILS,

V ALID_ORDER, UPDATED_PART_DETAILS, BASIC_FILLED_ORDER_DETAILS,

CUSTOMER_POSTAL_DETAILS, INVOICE, EXTENDED_FILLED_ORDER_DET AILS,

TOTAL, LESS, TO_PAY})

A structurally incomplete application is an application

A1 = (E, S, P, U, F)

that satisfies the structurally incomplete data flow diagram rules of Section 4.4.2.

The following describes the structurally incomplete application specified in

Figure 4.7 and a suitably modified Figure 4.1:

({}, {CUSTOMERS, PARTS}, {pQ, p2, p3}, {Ul},

{VALID_ORDER, PART_DETAILS, UPDATED_PART_DETAILS,

BASIC_FILLED _ORDER_DET AILS, CUSTOMER_POST AL_DETAILS, INVOICE})

A structurally invalid application is an application

Ax= (E, S, P, U, F)

that is neither structurally complete nor structurally incomplete.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 104

Having focussed on a data flow process rather than data flow diagram view of

an application, it is now worth looking at one particular virtual data flow diagram that

will be useful in the next section and in later chapters. In so doing, it is important to

realise that the diagram to be discussed will not generally exist within a hierarchy of

data flow diagrams.13 To be able to 'construct' the diagram, FL, the data flow set

equivalent to the leaf process set, PL, is required.

Definition: An application leaf data flow set, FL, is the set of application

data flows that appear in the import set or export set of any

process that is in the set PL. •

Let the data flow diagram made up of all the objects in the sets E, S, PL and FL

be called 8. For the order processing example, 8 (named 00 p) is given in Figure 4.9.

3 - PRODUCE INVOICE

3.5 ~EXTENDFD HLLED ORDER DETAILS 3.1

CUSfOMER - INVOICE
FORM - COMPIJIB

INVOICE - EXT'l'NSION

,-. " ~

ORDER_DETAILS TO_pAY ,
3.4 3.2

- COMPIJIB ~
TOTAL

COMPIJIB
TO_PAY 1UfAL

~

,,.
3.3

LESS COMPIJIB 'Al
LESS

CUSTOMER_POSTAL_DETAILS

1 dl !CUSTOMERS

BASIC_Flll.FD_ORDER_DETAILS
IB_ CUSfOMER_DETAILS UNFILLAB

ORD ER ,,,.
1 VAUD_ORDER

GIECK ~

ORDER

PART_DETAILS

d2 PARTS

~ 2 -
~ Flll. -

ORDER
UPDATFD_PART _DETAILS

Figure 4.9: Virtual leaf process data flow diagram, Cop, for the order processing
application.

13 Except in the case where the application is being executed at Level O only.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 105

The above specifications are useful as intuitive descriptions of an application. In

Appendix 2 a more formal approach to describing application models is discussed.

4. 7 Parallelism in the top level model
Parallelism is an inherent part of data flow systems, and is one of the strongest

justifications for their use as an alternative to imperative programs running on

von Neumann machines. It is possible to identify parallelism at a number of levels in

most systems. At the very lowest level, pipeline processors in von Neumann machines

allow for the staggered parallel execution of instructions, while data flow machines

support the parallel evaluation of sub-expressions. Above this low level, parallelism

can be identified at many levels within an application. Many mechanisms have been

suggested for exploiting parallelism in applications running on von Neumann

machines, but in most cases these have required the use of explicit control details.

A good example of inherent parallelism is a transaction orientated application.14

The order processing system can be viewed as the processing of a number of distinct,

parallel, orders. Given suitable data object instances, an 'instance' of Oop in Figure 4.9

is taken to be the life history of the associated order, so that, at any one time, a number

of instances of Oop, could be coexisting at various stages of completion. Such a

snapshot is provided in Figure 4.10.

I
I

I

-

~.:!,o~.__ ______
concurr~~t "

transactions

Figure 4.10: A snapshot of order processing transaction histories.

This transaction history is similar in concept to the (executable) model view

of the Jackson System Development (JSD) method [Ca86] and the entity life history of

the LBMS method [LB82], and is considered to be a most useful interpretation of SSA

data flow diagrams.

14 Transaction processing monitors on a number of the larger mainframes support this view by providing a
virtual machine at the transaction level (or even lower).

CHAPTER 4- THE DATA-DRJVEN MODEL IN SAME 106

An alternative to the transaction history view is one in which the data flow

diagram 00 p forms an application network. Each process in the network has a

(FIFO) queue at which data flows await consumption, so that, conceptually, each

transaction is characterised by a status structure which provides a snapshot for that

transaction of its current state in the application network. This is possible, because all

the data flow instances of a transaction would carry a common identification tag.

There is similarity in this view to both open queueing networks [K.175] and Petri

Nets [Pe81], and is essentially the same as the Karp and Miller model described earlier.

SAME also corresponds to this model, but because of the restrictions placed on the top

level model in SAME, and the use of identification tags (currencies), the transaction

history view can also be applied.

The application network interpretation of a data flow diagram can also be

viewed as a lower level of parallelism within the transaction history interpretation. That

is, it provides an application level equivalent of the parallel processing of sub­

expressions in low level data flow machines. How far such parallelism should be taken

is an interesting topic for discussion, but is not pursued further here.

4.8 Deadlocks
In Section 3.2, as part of the discussion on conditionals and loops in fine-grain

data flow systems, deadlocks were discussed. Figure 3.7 provides an example of a data

flow graph with two deadlocked processes.

Structurally, a similar diagram could be created in both DFDMl and DFDM2,

although such structures do not generally arise in the types of applications modelled by

data flow diagrams. The firing rules for both DFDMl and DFDM2 require that a full set

of (non-data-store created) import flows be available before a process can be invoked.

Thus, any attempt to execute a model containing such a structure will lead to a deadlock

occurring with the first set(s) of import data flows.

Conditional imports and exports, manifested as limited import and export sets

respectively, will either cause the same effect, or will lead to no deadlocking as at least

one of the 'errant' processes will be able to be invoked using a limited import set (any

number of times).

If loops exist in an application modelled using DFDM2, the above arguments

apply as follows. A deadlock will occur if all its imports are required by each process in

the loop; this deadlock will occur with the first set of import data. If limited import sets

are correctly defined in the loop, no deadlocking will occur.

CHAPTER 4- THE DATA-DRIVEN MODEL IN SAME 107

4.9 Summary
The discussion in this chapter has been concerned with a data-driven

interpretation of SSA data flow diagrams. A relatively simple model, named DFDMl,

has been proposed which has many similarities to the general model of Karp and Miller

[KM66]. The main differences between the models relate to the interfacing with the

'outside world' and the storing and accessing of persistent data. The Karp and Miller

model essentially ignores such considerations. The DFDMl model provides a non­

deadlocking data-driven environment with fail-safe characteristics, which guarantee

that, in data flow terms, the system will always be left in a consistent state.

In SSA terms, DFDMl is excessively restrictive; such as requiring an instance

for each data flow in the full import set to successfully execute a process, and

producing an instance for all the data flows in the full export set. To provide a system

closer to SSA data flow diagrams, a second model, named DFDM2 has also been

proposed. The cost of the additional features in DFDM2 is the potential for SAME to be

left in a non-consistent state as the result of data store 'updates' being made without the

proper termination of the execution of a process (but techniques could be designed to

avoid this). This only applies when decomposed data flow exporting to data stores is

involved, and it can be argued that, at the level of processing an element within a group

object, consistency is maintained. Like DFDMl, DFDM2 is deadlock-free if no loops

exist in the data flow diagrams. If loops do exist, checking for deadlocks can be done

structurally.

5.1 Introduction
For each data flow diagram process, the bottom level model in SAME provides

transformations from its set of import data flow instances to its set of export instances.

A demand-driven, or reduction, technique is used to carry out the transformations.

The chapter looks at this level of SAME, mostly independently of data flow

diagrams, and the unqualified use of the term 'model' will refer to the reduction

system.

This chapter continues with an overview of JEgis, the definitional language

supported in the model (while a more rigorous specification can be found in

Appendix 1). The stress in Section 5.2 is on the use of JEgis as a (static) definitional

language. The emphasis is changed in the following section where the demand-driven

method of executing JEgis definitions is explained; this is followed by a discussion of

the naming and execution-time binding of defined objects. At this point, the notion of

'binding distance' between data objects is introduced in anticipation of its use in

Appendix 2. In Section 5.5 further interesting features of JEgis and the execution

environment are discussed, while in the following section certain language design

principles are considered. Finally Section 5.7 summarises the chapter.

108

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 109

5.2 The 1Egis language
JEgis has its origins in the data dictionary languages of SSA as exemplified by

De Marco [De78] and Weinberg [We80]. These languages in themselves are consistent

in philosophy with the languages found in stand-alone1 data dictionaries, but are much

more restricted [ICL84, LHP82, Ma84].

Dictionary languages are essentially description languages in which objects and

their inter-relationships are described, where the term 'object' is used in a general sense

to describe anything of interest. Because of the limited purpose as a SSA dictionary

language, JEgis can most usefully be described in dictionary terms as a definitional

language [WA85]. This follows from the fact that each JEgis 'statement' defines an

object, where each definition is often given in terms of other objects, many of which

are themselves defined elsewhere.2 However, during execution, as JEgis also provides

the sole means of translating between import and export sets of data flow instances, it is

also a single assignment programming language [Ac82, AG78, Mc82, MSA83,

PCG76, TE68, WA85].

In this section discussion focusses on the use of JEgis as a definitional

(dictionary) language.

The main syntactic unit in the language is the definition which has the form3

object_being_defined '<=' defining_details '.'

where '<=' should be read as 'is defined as' and'.' delimits the definition.

In its simplest form, object_being_defined is a name, such as AGE. The only

other form for object_being_defined is afunction_name, an example of which is

MAX(A, B), where the ordered parameter tuple '(A, B)' forms part of the name.4

The simplest defining_ details is one of:

• a basic type (one of NUMBER, STRING, BOOLEAN)

• a constant (one of Boolean _constant, number _constant or string_constant)

• EMPTY (a special polymorphic null value)

• ? (a special polymorphic "don't care" value)

• a name

1 The term 'stand-alone' is used in the sense that the data dictionary is not part of a SSA methodology. The
data dictionary could well be tied in with a data base management system, e.g., and be (partially) active in
the sense described in Section 2.8.

2 The reason why some objects do not need to be explicitly defined will be discussed shortly.

3 See Appendix 1 for details on the metalanguage used for specifying the syntax of .tEgis.

4 In some ways this is similar to A-names (without the expression) in the A-notation [Pe77], in that the two
names 0

MAX(A, B)' and 'MAX(C, D)' are interpreted as the same name. A different name would be 'MAX(A, B, c)'.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME

Examples of each of these are included in the following:

AGE<= NUMBER.
EMPIDYEE_AGE <= AGE.
NOTHING <=EMPfY.
CAREFREE<=?.
OK<=TRUE.
BASIC_HOURLY_RATE <= 6.24.
INVALlD_ORDER_MESSAGE <="**INVALID ORDER".

basic_type
name
null
"Don't care"
Boolean constant
number constant
string_ constant

110

The more general form of a definition has a tuple as the defining_details. In

fact, each of the simple examples given above is also a tuple made up of a single object;

a 1-tuple. Having all defined objects as tuples helps to make the semantics of the

language consistent and easier to understand.

In Figure 5.1 several definitions are given, each with a tuple as the

defining_ details.

INVOICE_#
CUST_#
DISCOUNT
PART_#
PART_DESCR
UNIT_PRICE
QUANITIY
EXTENSION
EXTENDED_LlNE_ITEM

EXTENDED_LlNE_ITEM_GROUP
TOTAL
LESS
TO_PAY
INVOICE

<=
<=
<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=

NUMBER.
NUMBER.
5.
NUMBER.
?.
NUMBER.
NUMBER.
QUANTITY* UNIT_PRICE.
PART_#, PART_DESCR, QUANTITY, UNIT_PRICE,

EXTENSION.
1 {EXTENDED_LlNE_ITEM} INF.
SUM(l (EXTENSION} INF).
TOTAL* (DISCOUNT/ 100).
TOT AL - LESS.
INVOICE_#, CUST _#,

EXTENDED_LINE_ITEM_GROUP, TO_PA Y.

Figure 5.1: Dictionary definitions relating to INVOICE.

The following provides explanation of some of the objects in Figure 5 .1:

•
1
?

1 is the special "don't care", parameterless, polymorphic function (which is

discussed in more detail shortly).

• 'QUANTITY * UNIT _FRICE' is a tuple with a single object consisting of the arithmetic

product of QUANTITY and UNIT_PRICE. (Other arithmetic expressions appear in the

right-hand side of TOTAL, LESS and TO_PAY.)

• '1 (EXTENSION}INF' is a repeat _group of one or more EXTENSIONs. The actual number of

EXTENSIONs for a particular invoice is obtained at execution time when the user

specifies the line item instances.

• SUM(...) is a (pre-defined system) function that sums the values of the repeating group

of NUMBERS, 1l(EXTENSION}INF1
, which is its single parameter.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 111

'QUANTITY* UNIT_PRICE' and 1l(EXTENSION}INF1 given above are examples of

unnamed objects, as neither of them appears as the object being defined (left-hand - -
side) in a definition. In fact, they cannot appear as an object_being_defined because

they do not fit the syntactic requirements (see Appendix 1).

Tuples can be formed in two ways. Implicitly, all objects between the

metasymbols '<=' and'.' of a definition are components of a definition-level tuple,

where any two objects are separated by a comma. Explicitly, a tuple can be formed by

enclosing one or more objects in parentheses, again separating any two objects by a

comma. The following examples are meant to provide some clarification:

(I) EXTENSION<= QUANTITY* UNIT _PRICE.

EXTENSION is a 1-tuple containing the object which is the product of

QUANTITY and UNIT_PRICE.

(II) NESTED_EXTENSION <=(QUANTITY* UNIT_pRICE).

NESTED_EXTENSION is a 1-tuple object which itself is the 1-tuple result of

multiplying QUANTITY by UNIT_PRICE. That is, using the definition of EXTENSION

in (I), NESTED _EXTENSION<= (EXTENSION).

(III) EXTENDED_LINE_ITEM <= PART_#, PART_DESCR, QUANTITY, UNIT_PRICE, EXTENSION.

EXTENDED_LINE_ITEM is the 5-tuple containing the objects PART_#,

PART_DESCR, QUANTITY, UNIT_PRICE and EXTENSION.

(IV) EXTENDED_LINE_ITEM <= (PART_#, PART_DESCR, QUANTITY, UNIT_pRICE), EXTENSION.

EXTENDED_LINE_ITEM is the 2-tuple containing the objects '(PART_#,

PART_DESCR, QUANTITY, UNIT_PRICE)' and EXTENSION. The first object is an

unnamed 4-tuple.

An example of a language that supports tuples, including empty tuples, but not

1-tuples, is the functional language Miranda [Tu86]. One reason why 1-tuples are not

supported is that parentheses, which are used to enclose tuples, are also used to group

expressions. Any expression enclosed in parentheses is taken to be a simple

expression. The single interpretation of parentheses in SAME, as tuple delimiters, is

considered more satisfactory than their 'overloaded' use in Miranda. In SAME, even an

arithmetic expression such as '((A+ B) * (C + D))' is viewed as an unnamed object

containing nested unnamed objects, each of which is a 1-tuple.

The objects defined in Figure 5.1 can be viewed as an initial attempt at defining

an invoice for the order processing example of Chapters 2 and 4. As yet not all the

required objects have been defined; for example, no customer name-and-address details

exist. Also, some objects may have been described in a more general form than that

finally required: CUST_# for example, may need to be limited to a fixed number of digits.

Defining PART_DESCR as'?', which should be read as "don't care", signifies that

currently there is no interest to define this object further.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 112

5.2.1 Options, conditionals and repeats
.iEgis has facilities for: selecting one of a number of options; the creation of an

object depending on some condition; and the creation of an object that consists of an

indexed set of tuples (which is called a stream). The last two, respectively, correspond

to the conditional statement and the loop construct in many imperative languages. Each

of these three facilities has the potential to affect the structure of a tuple instance at

execution time, and they will now be described.

Options
An object in the defining_details of a definition can be described by an option,

as in the case ofTAX_DIFFERENCE in:

TAX_DIFFERENCE <=REFUND++ OWING.

where the symbol '++' stands for 'exclusive-OR', such that an instance of

TAX_DIFFERENCE can take on the value of a REFUND or an OWING instance, but not both.

There is no requirement for an explicit optional to allow for zero or one

occurrences of an object, as the object can be given a value of EMPTY, which is

equivalent to a non-existent value.

An option can be specified in terms of objects of different types. In

NUM_OR_STRING <=NUMBER++ STRING.

for example, the object NUM_OR_STRING has the union type NUMBER V STRING.

According to Harland this is true polymorphism, and provides a powerful abstraction

mechanism in languages [Ha84]. This is discussed further in Section 5.5.3.

Conditionals
An object in the defining_details of a definition can be described by a

conditional, as in the case of DISCOUNT in the following.

LESS <= TOTAL* (DISCOUNT I 100).
DISCOUNT <= 1 0 IF (TOTAL> 500) I

5 IF (TOTAL> 250)
0 OTIIERWISE.

The two general forms of a conditional are

if conditional term { 'I' if conditional term } ['I' othervvise term] - - - - -

where each if_conditional_term is

tuple 'IF' '<' conditional expression ')'

and the optional othervvise _term is

tuple 'OTHERWISE'

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 113

An otherwise _term is usually required where limited import sets are not being

used (see Section 4.3.1), although its tuple can be assigned the special (polymorphic)

value of EMPTY.

A conditional is an unnamed object and can appear anywhere within the

defining_ details of a named object, even nested within other objects. For example, the

occurrence of DISCOUNT in the definition of LESS could be replaced by its

defining_ details to obtain

LESS <=TOTAL* ((lOIF (fOTAL> 500) 15 IF (fOTAL> 250) IO OTHERWISE)/ 100).

Note that the conditional has been parenthesised. This is only strictly necessary

where the tuples in a conditional have two or more components, and ambiguity in the

interpretation of commas could arise.

A conditional is interpreted in the same way that guarded commands are

evaluated [Di75]: starting with the conditional expression in the initial

if_ conditional _term, the first conditional _expression to evaluate to TRUE results in the

associated tuple being constructed. In the case of the conditional in the defining_ details

of LESS, if TOTAL has an instance value of 350 a 1-tuple with value 5 will be created. The

major difference between conditionals in .tEgis and guarded commands is that a

conditional which does not have an otherwise term is allowed to have all the

conditional_expressions evaluate to FALSE, whereas a guarded command in which all

the guards evaluate to false is considered to be in error.

The relationships between import sets and limited import sets, and the two

general forms of a conditional, were discussed in Section 4.3.1, and will be further

discussed, using an example application, in Section 7 .6.

Repeats
It is also possible for a right-hand-side object to be a repeat _object. The adopted

view of a repeat object is as a related group of similar data objects, consequently the

more favoured way of referring to a repeat_object is as a group (data) object.

Group objects are generally specified by placing them in braces and assigning lower

and upper bounds, as in the following definition of EXTENDED_LINE_ITEM_GROUP.5

EXTENDED_LINE_ITEM_GROUP <= 1 {EXTENDED_LINE_ITEM}INF.

In words, this says that an (instance of an) EXTENDED_LINE_ITEM_GROUP consists

of one or more EXTENDED_LINE_ITEMS. That is, an EXTENDED_LINE_ITEM_GROUP instance

must be a non-empty stream of EXTENDED_LINE_ITEMs. The upper limit of INF (infinity)

5 Group objects can also be defined recursively in functions, see Section 5.3.2 for examples, or be
completely specified (see end of current section).

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 114

merely says that no constraint is placed on the number of EXTENDED_LlNE_ITEMs that can

appear in an EXTENDED_LINE_ITEM_GROUP. The fact that JEgis can support definitions that

depend on infinitary objects lends support for its possible use in the formal

specification of systems. This is not pursued further here, but was allowed for in the

design of the language.

Group definitions can appear within any n-tuples, where n ~ l. For example,

INVOICE_DEf AILS could be defined as

INVOICE_DEfAILS <= CUSTOMER_POSTAL_DETAILS, INVOICE_#, CUST_#, CUST_REF,
DATE, SALESMAN_#, DISCOUNT, l{EXTENDED_LlNE_ITEM}INF,
TOTAL, LESS, TO_pAY.

An invoice instance which satisfies this definition is given in Figure 5.2.6

GROT INDUSTRIES
RUBBISH OUTLETS LTD •~"7@•~~ I INVOICE_• j 061151
123 COMPOST DRIVE
SMALL TOWN
OVERSEAS
CUST_• CUST-REF I SALESMAN_• DISCOUNT DATE

11308 5926 I 024 5~ 07 I 03 I 87

PART a PART -DESCR UNIT....PRICE QUANTITY EXTENSION
83004 RUSTY NAILS 1.46 12 17.52
35108 BLUNT KNIFE 12.95 25 323.75

TOTAL 341.27
LESS 17.06

TO....PAY 324.21

Figure 5 .2: Example invoice.

Group data objects can be nested to an arbitrary depth. An m row by n column

table can be represented by a stream of streams, in the following way:

TABLE<= l(l(TABLE_CELL)N}M.

The definition of TABLE introduces one interesting concept, namely the use of

objects as limits, to potentially produce different sized structures between different

instances of the same object. Both the lower and upper limits of a group object can be

defined by other objects. Once a group object instance has been created, it cannot be

altered as JEgis does not support the concept of a variable. However, it is possible to

create a smaller table, say, with a definition such as

6 An instance of INVOICE_DETAILS with more than four EXTENDED_LINE_ITEMs would likely lead to
continuation invoice sheets being produced. However, this is a question of formatting data flow
instances, and does not concern the data flows themselves. Also, the order of items in the definitions and
templates can differ as named items are matched by name. Unnamed objects would be identified by their
relative position within the most immediately nesting named object.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 115

SMALLER_TABLE<= l{l{TABLE_CELL}L}K.

where Kand L are judiciously kept smaller than Mand N, respectively.7 The effect

would be that each 'row' in SMALLER_TABLE would contain the first L cells of the

corresponding 'row' in TABLE. No cells from the (K+l)th to the Mth 'row' of TABLE will

appear in SMALLER_TABLE.

For the above definition of TABLE to be valid, both M and N must have (a

derived8) type NUMBER. There is no restriction on when an instance of a bound object,

such as M, need be created, other than it must be able to be constructed at the time the

group object which depends on it is to be created (assuming that the bound object is not

previously available).

Each object instance within a group object instance has an implicit subscript

tuple associated with it. In the case of an instance of EXTENDED_LINE_ITEM within an

instance of EXTENDED_LINE_ITEM_GR0UP, the subscript list has a single value in the

inclusive range of 1 to INF. TABLE_CELL, on the other hand, has an ordered tuple of two

values (i , j), where 1 :::;; i :::;; m and 1 :::;; j :::;; n . In the following examples, FIRST and

LAST are defined as the first and lastTABLE_CELL 'entries' in TABLE, respectively.9

FIRST <= TABLEA(l, l].
LAST <= TABLEA[M, N].

The abstracting out of control details in repeats has some similarities to iterators

in the language CLU [LAB81].

A group object can also be created explicitly by providing all the components.

The group object is viewed as a group of tuples, where each pair of tuples is separated

by a pair of semicolons. Any tuple can be supplied as an object in the construction of a

group object, as the following example definitions show. 10

NAME <= STRING.
AGE <= NUMBER.
A_GR0UP _OF _NUMBERS <= (8 * 4;; 16 + 3.2 / 12;; (5 * (3 + 4));; AGE}.
NAMES_AND_AGES <= {NAME, AGE;; "W. H. AUDEN", 94;; "SIEGFRIED SASSOON", 93).

This method of specifying group objects is similar to one used by Albano et al. for

specifying sequences [ACO85].

7 The system can check that K < M and L < N when creating an instance of SMALLER_TABLE.

8 The object limits could be indirectly defined by arithmetic expressions. (Note that other than numeric
bounds can be defined. See Table V and Appendix 1.)

9The constructor '"', with the square brackets, allows an element of a stream to be indexed. Nested uses of the
constructor can be simplified to a single instance of the constructor followed by a list of subscripts, as in
the examples for FIRST and LAST. (See Appendix 1.)

IO The constructors'{}' and';;' are used to define elaborated tuples. (See Table V, and Appendix 1.)

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME

5. 3 Demand-driven interpretation
of /Egis definitions

116

Within Chapter 2, it was mentioned that SAME has an executable dictionary. In

the bottom level model this is realised by making JEgis definitions executable so that,

within a particular execution model, each of the definitions given in Figure 5.1 has an

execution-time interpretation. The execution model of relevance here is the combined

model to be discussed in Chapter 6, but at this point it is possible to discuss aspects

which are peculiar to the bottom level model alone which, fortunately, includes most of

the important features of the JEgis language. The method of execution of bottom level

programs is also discussed, and is used as the starting point.

In Section 5.2 it was stated that the simplest right-hand side for a definition was

one of a basic type, a constant, EMPTY,?, or a name. The first four of these can be

viewed as fully resolved objects; they are terminal objects of the language. A name, on

the other hand, is unresolved, by which is meant that it is necessary to (textually)

replace the name by some more detailed description. As an example, 'LESS' in the right­

hand side of TO_PAY in Figure 5.1 could be replaced by 'TOTAL* (DISCOUNT/ 100)', which

is the defining_details of LESS. It is possible to go further and substitute for 'TOTAL' and

'DISCOUNT' as well.

In an executable environment, the preferred viewpoint is one of 'function

calling' rather than 'textual replacement', where a name can be interpreted as a function

with zero parameters. The major implication of this is that a name corresponds to an

object with a definition in the dictionary, such that the body of the function is taken to

be the de.fining_ details in the definition. The interpretation to be placed on an unnamed

object would be similar to that of a A-expression in the functional language Hope,

which is viewed as an anonymous function [Ba85a].

This functional interpretation for the definitions in Figure 5.1 can be seen in

Figure 5.3, where it has been shown how the data object INVOICE can be derived in

terms of its defining_details objects, and they by theirs. The dependencies graph in

Figure 5.3 can be viewed as an application of nested function calls (function

composition) in the construction of an instance of the tuple INVOICE.

Each object in Figure 5.3 will have an instance created 'on-demand'; that is,

apart from INVOICE, when the instance is required to form part of a larger object.

The order in which the objects in a tuple are constructed is not defined. As there

is no possibility of side-effects occurring during the evaluation of an object, the order

of evaluation can make no impact on the value that the tuple finally takes. In addition,

because a named object instance is available for re-use (within the context of a data flow

diagram process) once it has been evaluated, any need to optimise the evaluation of

objects by the imposition of an evaluation sequence is removed.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 117

In terms of the example in Figure 5.3, TOTAL could be constructed before the

unnamed object '1 (EXTENDED_LINE_ITEM}INF', which could itself be constructed before

DISCOUNT' and so on.

INVOICE

INVOICE_# CUST _# TO_PAY

~csks
NUMBER NUMBER TOTAL

I
DISCOUNT

I
5

NUMBER ?

QUANTITY UNIT_FRICE

NUMBER NUMBER

Figure 5.3: Dependencies graph for INVOICE.

5.3.1 Constructors
When an application is executing, the metasymbols and many of the built-in

operators (functions) used to define objects have a separate interpretation as

constructors. As an example, the simple definition

AGE<= NUMBER.

has an execution-time interpretation of 'generate an instance of object AGE of basic type

NUMBER'. The more complicated definition

EXTENDED_LINE_ITEM <= PART_#, PART_DESCR, QUANTITY, UNIT_PRICE, EXTENSION.

would be interpreted at execution-time as 'generate an instance of EXTENDED_LINE_ITEM

consisting of the tuple (PART_#, PART_DESCR, QUANTITY, UNIT_PRICE, EXTENSION)'. Each

object within the tuple could require the generation of further nested tuples to an

arbitrary depth. The type of the resulting tuple depends on the component objects.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 118

The following three classes of constructors exist:

• Tuple constructors

• Stream constructors

• Basic type constructors

Tuple constructors
The general form of a definition is

object_being_defined '<=' object { ',' object } '.'

At execution time, the delimiters'<=', ',' (comma), and'.' (full-stop) are collectively

used to create a tuple instance of the named object_being_defined. The size of the tuple

is equal to the number of comma delimiters plus one. So that in the case of no commas,

a I-tuple instance is created.

Table IV gives a number of example definitions and possible tuple instances

corresponding to the definitions. A named tuple instance has been shown in Table IV as

the ordered 2-tuple

(object_name, object_value)

while an unnamed tuple instance has been shown as the I-tuple

(object _value)

Definition Example tuple instance

A <= NUMBER. (A, (12))

B <= 2 * A. (B, (24))

C <= A,B. (C, ((A, (12)), (B, (24))))

D <= EMPTY. (D, ())

E <= ?. (E, (?))

Nl <= ''THOMAS". (Nl, ("THOMAS"))

N2 <= "STEARNS". (N2, ("STEARNS"))

FN <= "ELIOT". (FN, ("ELIOT"))

N <= Nl, N2, FN. (N, ((Nl, ("THOMAS")),

(N2, ("STEARNS")),

(FN, ("ELIOT"))))

Al <= A. (Al, (12))

Table IV: Example tuple instances for specific definitions.

An object_value is a tuple of tuples made up of defining_details object instances

(rhs_object_value). The general format for the ordered 2-tuple is the same as for the

object_ being_ defined:

(rhs_object_name, rhs_object_value).

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 119

Placing a pair of parentheses around a group of defining_details objects has the

effect of creating a nested tuple; that is, in the notation of Table IV, of surrounding the

group of corresponding instances with '< ...)', where the ellipses denote the group of

instances.

The evaluation of any expression produces an unnamed I-tuple, as in the

instance of Bin Table IV. The difference between the instances of s1 and s2 in Table VI

are worth studying in this respect. s 1 defines a 2-tuple (if L is FALSE), while

s2 defines a I-tuple containing a string expression (under the same condition). Note that

EMPTY and ? are treated as expressions.

Also worthy of special mention in Table IV, is the final definition of Al as the

tuple consisting of the single object A. The shown instance of Al is seen to have no

reference to A. This is because an object defined in terms of a single named object, in

this way, is effectively taken to be a synonym of the defining_details object. The

converse is not true as, to avoid complete circularity, the definition for the

defining_details named object should not contain a reference to the object being

defined.

Stream constructors
The major stream constructor is the repeat, which was discussed in

Section 5 .2.1. The general structure of the repeat is

first_bound '{' object { , object } '}' second_bound

where the semantic rules on bounds require only that both first_bound and

second bound be of the same type, and that some ordering can be placed on them.

In Section 5.2.1, it was mentioned that a repeat is usually described as a 'group

object'. This will be continued here. In the case where more than one object is in the

tuple making up the 'body' of the group object, the order in which the objects are

constructed within each tuple is not specified. As well as this, however, no ordering is

defined for the generation of the subscripted tuples. The tuple with subscript m for

example, where m > l, could be created before the tuple with subscript m-1, and so on.

However, the subscripts provide an ordering through indexing such that an operation

performed over two streams will pair objects with equal subscript values, unless an

explicit, different, index matching is specified. In the case of a process operating on a

decomposed repeat group, it is important that the order in which the group objects

'arrive' at the process is the correct subscript value order.

Table V gives a number of examples, including a two-dimensional 'table' T.

Instances that result, directly or indirectly, from operations on group objects are

augmented with subscript details. Also, the dimensions of the repeat group are stored.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 120

The augmented structure is

(rhs_object_name, repeat_bounds, rhs_object_value).

Particular elements of a group object, or nested group objects, can be selected

by specifying a subscript tuple. In Table V, for example, object G is defined as the first

element in the group of elements that form F. Both G and v are treated as 'synonyms' of

their respective defining_details named object, and so no reference to

the defining_details objects appear in the resulting instances. In a similar way, U"[3] is

viewed as a 'synonym' of AGE, and so AGE does not appear in the instance of u.

Definition Example tuple instance

F <= "B"(NUMBER, 31l}"A". (F, (2), ((["B"], ((254), (311))), (["A"], ((255), (311)))))

G <= FA["B"]. (G, ((254), (311)))

T <= l(l(TC)2)3. (T, (3, 2), (([1], (([1], (TC, (11))), ([2], (TC, (12))))),

([2], (([l], (TC, (21))), ([2], (TC, (22))))),

([3], (([1], (TC, (31))), ([2], (TC, (32)))))))

u <= (2 * 3; 3 +4;; AGE). (U, (3), (([1], ((6))), ([2], ((7))),((3], ((21)))))

V <= UA[2]. (V, (7))

Table V: Example tuple instances for group object definitions.

Four further tuple operators exist, for use in functions. These are: '«' which is

an infix, non-commutative, binary function that creates a new stream from an object

and a stream; 'REST' is a function that creates a new stream which is a copy of the given

string except that the first item has been removed; '»' forms a new stream by

appending a second stream to a first stream; and 'FIRST' is a function which selects the

first object in a given stream of objects. Examples involving the use of stream functions

are given in Section 5.3.2 and in Appendix 1.

Basic type constructors
The basic types were identified in Section 5.2 as NUMBER, STRING, and BOOLEAN.

Associated with each of these basic types is a set of constructor functions. With objects

of type NUMBER, the usual arithmetic operators are available as constructors (see

Appendix 1). Parenthesising an arithmetic expression has the effect of nesting tuples,

which may affect the binding of operators to operands in the same way that parentheses

form sub-expressions in 'standard' arithmetic. Any nesting of tuples is 'collapsed'

during the creation of the result tuple, again in a way that is comparable to the general

treatment of parentheses in arithmetic (see Table VI).

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 121

The standard Boolean operators are also supported as constructors which

operate on I-tuples of type BOOLEAN (see Appendix 1). Using parentheses in Boolean

expressions has the same general effect as their use in arithmetic expressions.

The constructors for objects of type STRING are '::' (string concatenation),
1SUBSTR1 (substring), 1REPLSTR1 (replace string), and 'LENGTH' (for finding the length of

a string). Details on these are given in Appendix 1.

Definition Example tuple instance

D <= SQRT (B * B -4 * A * C) (D, (3))
Rl <= (-B+D)/(2*A) (Rl, (1))
R2 <= (-B-D)/(2*A) (R2, (-2))
Bl <= Rl >R2 (Bl, (TRUE))
B2 <= Bl AND (R2 EQ 0) (B2, (FALSE))
Ml<= (D, Rl) IF (NOT L) I (Ml, ((D, (3)), (Rl, (1))))

"LIS TRUE" OTHERWISE.
N <= SUBSTR(Nl, 1, 1) :: ". " :: (N, ("T. S. ELIOT"))

SUBSTR(N2, 1, 1) :: ". ":: FN.
L <= N2="". (L, (FALSE))
Sl <= ("MIDDLE NAME: ", N2) IF (NOT L) I (Sl, (("MIDDLE NAME:"),

EMPTY OTHERWISE. (N2, ("STEARNS"))))
S2 <= "MIDDLE NAME: " :: N2 IF (NOT L) I (S2, ("MIDDLE NAME: STEARNS"))

EMPTY OTHERWISE.

Table VI: Example tuple instances using basic type constructors.II

"Don't care" and empty values
Not shown in the above is the use of the polymorphic values 1?1 ("don't care")

and EMPTY, which can appear in an expression anywhere that an object can appear.

Each of the following are valid uses of'?' and EMPTY:

• SQRT(?)

• SUBSTR (1, 1, EMPTY)

• ("MIDDLE NAME: ", N2) IF(?)

• B*B-?*A*EMPTY

Permitting the occurrence of EMPTY within the last arithmetic expression may be

viewed with some concern. However, this is only making explicit what could happen

implicitly during the execution of an application: the corresponding object named c in

the definition of Din Table VI could feasibly have an instance value of EMPTY. In a case

11 The definition of Sl is an exception to this and involves the more general tuple constructor. It is included
here to provide a comparison with the construction of the single string instance for S2.

CHAPTER 5 - Tiffi DEMAND-DRIVEN MODEL IN SAME 122

where EMPTY is met during the evaluation of an expression, SAME requires the user to

substitute a value of the required type.

With a "don't care" value'?', the system automatically substitutes a value of the

correct basic type to satisfy the expression. A possible implication of this is discussed

in Section 5.5.3.

Table VI gives a number of examples using basic type constructors. Observe

that in each case the instance created by an expression is a I-tuple. The definition for

object Ml provides an example of an object that can take on more than one type, at

different times.

5.3.2 Operations
A number of pre-defined functions are available in .tEgis. Some of these have

already been used in the examples, generally without explanation. The full set of

functions is described in Appendix 1.

As well as the pre-defined functions, the language supports the definition of

functions by the user. The differences between the definition of a function object and a

'normal' named object can be summarised as follows:

• A function name (object_being_defined) is followed by a parenthesised tuple of zero

or more formal parameters.

• The defining details can be specified with a richer functional language, as well as that

used for defining 'normal' named objects.

The syntax for a function name is

name parenthesised _yarameter _ tuple

where a name has the same structure as a 'normal' object name, and a

parenthesised _yarameter _tuple is an ordered list of zero or more formal parameters.

Requiring an empty tuple, 'o', to be specified in the case of a function with no

parameters, allows the name string that precedes the tuple to be used as a 'normal'

object name, as well as a function name.

The following example provides a user-defined equivalent of the system­

defined function SUM, which operates on a stream (repeat group) of objects of type

NUMBER:

SUM (S) <= IFS IS EMPTY THEN 0

ELSE FIRST (S) + SUM (REST (S)).

A function that doubles each object in a stream of objects of type NUMBER is:

DOUBLE(S) <= IFS IS EMPTY THEN EMPTY
ELSE 2 * FIRST (S) « DOUBLE (REST (S)).

Further examples of user-defined functions are contained in Appendix 1.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 123

5.4 Naming and binding
The naming and binding of objects are inextricably interwoven in computer

languages. However, in the following two sub-sections an attempt is made to provide

some independent discussion of each.

5.4.1 Naming
The naming of objects in computing systems has usually been handled in an

ad hoc fashion, which can best be described as 'ripple-naming'. That is, an object is

named inside a module, then if that module is used in the building of larger software

systems, the scope of that object may ripple outwards to larger and larger encapsulating

pieces of software. One effect of this in many commercial organisations is the creation

of homonyms and synonyms. Interestingly, the ability to handle these can be

viewed as a significant justification for the use of data dictionaries.

In systems which take a more object-based view of software development, the

above method of working can have catastrophic effects. The expectation is that any

useful object-based information space is likely to require the creation and maintenance

of a large number of named objects, with the added requirement of gaining timely

access to each of the objects via its name [AMP86, GR83, ZW85].

Environment, program, and working variables
In terms of many current programming languages and software development

paradigms, the following three, not necessarily distinct, kinds of variables or objects to

be named prevail:

• Environment variables which are used to name data objects in data files and data

bases.

• Program variables which name objects of interest within programs and/or modules

(subroutines, procedures, etc.).

• Working variables that are used as loop controls, or to hold temporary values, etc.

To distinguish environment variables from program variables (although

environment variables can be used within programs as well), a data object can be

viewed as the ordered pair [ACO85]

(object_name, object_value)

Environment variables are so named because they transcend invocations of a

program, and have as minimum scope the environment in which they are created. With

most current programming languages, environment variables are often mapped onto

different named (program) variables.

Program variables can be simply partitioned into:

• Local variables, each of whose scope is the module or block in which it is declared.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 124

• Global variables, whose scope is wider than a single module or block, except where

the module or block is the program, in which case the scope is equal to it.

Conflicting requirements can be identified with regard to naming. As an

example, the ability to use the same name in different procedures to represent different

variables is generally considered desirable, otherwise the .need to dream up unique

names, for working variables say, becomes a major task [RD87]. Against this is the

desire to remove the possibility of ambiguity in large information spaces, which could

be caused by being able to access more than one object with the same name.

In specific systems this conflict may be able to be satisfactorily resolved. An

example would be where all objects at the 'procedure' level and higher that are visible

must be uniquely named, while every other object need only be uniquely named within

its own limited environment. Thus the name of an object is essentially weighted

depending on its level of (system) visibility. Whether such a scheme provides a general

solution is open to debate. It is suggested that apparent artificial divisions of this form

have plagued computing for many years, and should be avoided.

Version control and naming
Before considering the way that SAME handles the naming of objects, it is

worth mentioning a different problem associated with naming, but one which is

extremely important in the context of dictionary-based systems, or any large managed

object space: version control.

The software process can be viewed as a continuum of models in which each

model constitutes a (major or minor) version [Le81] At any time, a number of the

models along a spectrum may be in use, either as operational systems or as systems

under development. Methods for handling multiple versions is an active area of

research within software configuration management [Fe79, Be84, LM85].

Naming of objects within SAME
SAME supports an executable dictionary which contains a number of

application environments, where an application environment is the widest scope

for naming and binding. An application environment can be viewed as a set of related

applications that a user wishes to group together (for example, order processing,

inventory control, etc.). Application environments can be created from other application

environments through environment definitions. Consider that a new version of

each of the applications ORDER_PROCESSING and INVENTORY _CONTROL is to be developed

containing minor differences from the current version. A new application environment

named OP _&_IC_ENV can be created containing a copy of the existing applications by

using the following environment definitions:

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME

OP _&_IC_ENV
ENV
ORDER_pROCESSING
INV _CONTROL

<= ENVIRONMENT (ENV).
<= CONTAINS ((ORDER_PROCESSING, INV_ CONTROL}).
<= COPY (OPERATIONAL_ENV, ORDER_PROCESSING).
<= COPY (OPERATIONAL_ENV, INVENTORY _CONTROL).

125

where CONTAINS operates on a stream of applications as its single parameter and COPY

has two parameters, the first of which is an application environment name and the

second is the name of an existing application in that application environment.

Further details on environment definitions are contained in Appendix 1.

The concepts involved in the building of application environments in SAME is

similar to the way that environments are handled in the language Galileo [ACO85]. The

rationale for their use in SAME is based on the philosophy mentioned above, that the

software process can be viewed as the development of a family of related models. In

the case of many of these models, each is considered to differ only a relatively small

amount from the previous model (where there was one).12

The purpose in naming an object in JEgis is to provide the object with a unique

label by which it can be unambiguously referenced within an application environment.

This means, for example, that within a single application environment only one object

named CUST_# can be defined. This is rather a strong requirement, but does avoid the

ambiguity frequently found in commercial installations arising from the existence of

homonyms, and is considered to be a desirable aim of dictionary systems.

In the bottom level model of SAME, all named objects are implicitly global

within a single application environment. However, in the manner to be discussed in

Chapter 6, the scope of an object in each application is constrained by the data flow

diagrams of that application. It is possible for a single object definition to be used in

different processes, in which case different instances (possibly with equal value) will

be generated. In this sense, object definitions can be global. Object instances, however,

cannot be global. The only way that a specific object instance can be shared between

processes is by that object being imported by each of the processes as a data flow, or as

a component of a data flow. In this sense, data flows can be viewed as a parameter

passing mechanism.

With many, if not all, current commercial systems some variables will be global

and have the same name and meaning in different programs. These particular variables

are easily handled in SAME by being included in the total set of definitions within each

application. However, if the operations on these variables differ from application to

application, they would have to be named differently. This can be considered too

restrictive as there is merit in being able to use the same name for slightly different

12 What suggests itself here, is the creation of a base model in which only the changes to that model are
stored.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 126

variables within different programs, particularly where that name conveys a reasonable

semantic message within the context of each program. An example may be DATE in a

diary program, to signify "today's date", and DATE in an order processing program to

represent 'the date that an order was placed'. It is argued, however, that these are

different objects and should be seen as such. Further, as the name of an object should

be important, it should carry as much semantic information as possible (without the

need to resort to excessively long names); for example, TODAY'S_DATE and ORDER_DATE.

The lEgis equivalent to a working variable is identified in Chapter 6, as its

interpretation is within the context of a data flow diagram process.

5.4.2 Binding
Bindings involving data objects in SAME occur at two levels. A named data

object binds to a data flow of the same name (a top level binding). At the bottom level,

bindings are defined in lEgis definitions: an object_being_defined is directly bound

to each of the named objects in its defining_ details. 13

Definition: Given that object 'P appears in the defining_details of object 3,

then the (asymmetrical) direct binding 3 • 'P is said to

exist. •

It is said that '3 binds to 'P', or ''P is bound to by 3 '.

In the following definition, EXTENSION is directly bound to QUANfITY and directly

bound to UNIT _PRICE:

EXTENSION<= QUANfITY * UNIT _PRICE.

Graphically,

EXTENSION

~
QUANfITY UNIT_PRICE

Each of these bindings is shown as follows:

• EXTENSION • QUANTIIT

• EXTENSION • UNIT_PRICE

The use of the single-headed arrow is significant and indicates, in the case of

EXTENSION • QUANTITY for example, an asymmetrical binding from EXTENSION to

QUANTITY. In Figure 5.3, each connection (line) describes an asymmetrical binding such

13 See Section A2.4.1 for why only named objects appear in bindings.

CHAPTER 5 - TI1E DEMAND-DRIVEN MODEL IN SAME 127

that the object spatially higher in the graph is at the 'tail' of the binding. For instance,

the following direct bindings involving INVOICE exist:

• INVOICE • INVOICE_#

• INVOICE • CUST_#

• INVOICE • EX'TENDED_LINE_ITEM

• INVOICE • TOTAL

• INVOICE • TO_PAY

A binding can also be transitive:

Definition: Given that 3 • 'P and 'P • II then the (asymmetrical)

transitive binding 3 • II exists. Transitivity applies to any

level of nesting, or indirection: given the bindings 3 • a 1, a 1

• a2, .•. , aµ • II, then 3 • II. •

A binding between two objects 3 and II is generally described in terms of the

set of all bindings that 'connect' the two objects.

Definition: Given the bindings 3 • a 1, a 1 • a2, ... , aµ • II, then the

binding set {3 • a 1, a 1 • ~, ... , aµ • II} describes a

binding of 3 • II. •

More than one binding set may exist between two objects. In the case of

EXTENDED_LINE_ITEM and QUANTITY in Figure 5.3, the following binding sets exist:

• {EX1ENDED_LINE_ITEM • QUANTITY}

• {EX1ENDED_LINE_ITEM • EXTENSION, EXTENSION • QUANTITY}

A binding is resolved at execution time, and occurs when an instance of the

referencing object (for example, 3) is being created. The feeling may be that the two

binding sets between EXTENDED_LINE_ITEM and QUANTITY result in references to different

instances of QUANTITY. This is not the case as, within the context of a single data flow

diagram process, an object instance is available for re-use once it has been created.

The operational limits of binding at execution time are dependent on the family

of data flow diagrams that define the application being executed. Put simply, bindings

only occur within the context of a process, and the limits on the objects participating in

bindings are provided by the export and import sets of the process.

The binding distance between any two objects is equal to the cardinality of

the set of bindings. In the case of there being more than one set for a pair of objects, as

with EXTENDED_LINE_ITEM and QUANTITY above, more than one binding distance may

exist. Where no set of bindings exists between two objects the cardinality is zero.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME

5. 5 Other characteristics of lEgis and the
demand-driven executable environment

128

The previous sections, particularly Sections 5.2 and 5.3, have been mainly

concerned with how fEgis can be used. In this section a number of desirable language

features are discussed. These features have been included in fEgis because of their

ability to support abstraction during both the definition and execution phases.

The features to be briefly discussed are:

• Referential transparency

• Call-by-need and lazy evaluation

• Typing and polymorphism

Within fEgis, these features are particularly relevant at execution time, so they will be

discussed in this context.

5.5.1 Referential transparency
In fEgis, consistent with data flow languages in general, there is no concept of

updateable objects to produce side effects, which means that the language falls within

the category of applicative languages [Sh85, Te76]. 14 A named data object depends

solely on the definitions of the objects which form its defining_details. At execution

time, the defining_details can be viewed as an 'expression' to be evaluated whose result

is an instance of the named object (object_being_defined). This instance is the 'value'

of the expression and it is this value that is semantically important. It has already been

demonstrated in Sections 5.2 and 5.3 that a defining_details object can be replaced by

an equivalent 'expression' without changing the overall 'value' of the instance. This

property of the language is called referential transparency [Qu60, Te7 6].

An important implication of referential transparency within SAME is that

amendments to an object's definition need not require changes to objects which

indirectly make use of that definition. This is true whether the amendment is made

'statically' or during execution of the application.

5.5.2 Call-by-need and lazy evaluation
In SAME, object instances are evaluated on-demand; once evaluated an

instance is available for multiple use by the objects which bind to that object. The

process of delaying the creation of an object instance until actually required and making

it available for re-use is described as call-by-need [GHT84, He80]. Call-by-need

combines the benefits of both the call-by-name and call-by-value parameter

14 See, however, Smoliar [Sm85], who limits the term 'applicative' to those functional languages, such as
pure-Lisp, whose structure is based on A-calculus. The use here of 'applicative' is consistent with the more
general use which signifies that a language is referentially transparent [GHT84, Sh85].

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 129

passing mechanisms, but without the need to accommodate the deficiencies of either.

With call-by-name, an object is not actually evaluated until referenced.

However, if an object is referenced more than once, that object is evaluated each time it

is referenced. With call-by-value, each parameter is evaluated prior to the body of the

procedure being entered. Then, within the procedure body, a parameter can be

referenced any number of times without the need to re-evaluate it. If a parameter is not

referenced it will have been needlessly evaluated. Further, the major problem with call­

by-value is when a parameter that is not required in the body during the invocation of a

procedure causes an error to occur. An example would be an attempt to evaluate a

parameter which includes division by zero.

Call-by-need employs the call-by-name technique of only evaluating a parameter

when needed, and the call-by-value technique of re-using evaluated parameter values.

Lazy evaluation is an extended form of call-by-need [GHT84, He80]. The

difference between the two can be identified when a group object is involved. With call­

by-need, a group object is created in its entirety once a reference to the group object is

made. With lazy evaluation, each element of the repeat group is only created when a

reference to that element is made. If we view a repeat group as a list of elements in

LISP, call-by-need puts a delay on the evaluation of the complete list until a reference to

(an element of) the list is made. Lazy evaluation, on the other hand, puts a delay on the

cons function as well, which means that the evaluation of the tail of the list is delayed

until a reference is made to an element in the tail. The list is then only evaluated up to

and including that element [FW76, He80].

Both call-by-need and lazy evaluation fit in extremely well with reduction

computing by ensuring that no exponential explosion needlessly takes place in the

evaluation of data objects, which could occur if call-by-value alone was used. Lazy

evaluation can be seen to provide more flexibility than call-by-need.

In principle, ...Egis supports the use of lazy evaluation by allowing infinitary

objects to be declared. SAME on the other hand, consistent with the normal techniques

used in data processing, is designed to work with finite, but possibly large, objects.

Consequently, lazy evaluation is not supported but call-by-need is.

The major advantage of using call-by-need in SAME, is that only the objects

required in the construction of referenced objects need themselves be constructed.

However, objects that are potentially in error will only be discovered to be incorrect if

they are referenced.

5.5.3 Typing and polymorphism
The typing of objects in programming languages has been a major area of

research for a number of years (see, for example, [Ca84, Ca86a, CW85, DD84,

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 130

0077, Mi78, Re74, Sc76, SW77]), and has more recently, particularly through the

notion of persistence [ACO85, AMP86, OR83, ZW85], been widened to data

environments (for example, data bases, persistent stores, object stores, etc.).

To provide the levels of abstraction considered desirable in software

development, polymorphism is being incorporated into many of the newer languages

(see, for example, [Ba 85, CW85, Ha84, Ha85, MCD87, Tu86]).

Strong, static, and dynamic typing
In computing, typing and flexibility in abstraction generally go hand-in-hand.

The ability to be able to provide a succinct abstraction of an object (in the general sense)

within a particular programming language, depends on the richness of the set of basic

types supported in that language and the operations allowed on those types to create

new types (and operations). However, as well as the desire for powerful and flexible

means of abstraction, some mechanism is generally also required for limiting the values

that each object can take. Taking one extreme, an untyped language may well provide

complete flexibility, but the cost is that operations can be attempted (and possibly

succeed) on objects of the wrong type, such as attempting to add a person's name to

their hours worked in a payroll application. 15

What is considered to be a minimum requirement within SAME is strong

typing, such that the type system can allow for the creation of arbitrarily complex

tuples in which the type of any component can be checked at any time, but without

imposing the type 'strait-jacket' of many current languages. A language is strongly

typed if 'all expressions are type consistent' and if 'its compiler can guarantee that the

programs it accepts will execute without type errors' [CW85].

Most strongly typed languages use static type checking, where the type of

an object can be derived at compilation time (see, for example, [Ba85a, Ha85, MCD87,

ML86, PS85, Tu86]). In most languages, this is done by explicitly declaring each

object to be of a particular type. Some languages however, notably ML and Miranda,

are able to infer the type of an object statically from the operations defined on the object

[Ha85, Tu86]. These languages allocate the most general type possible for the

operations involved.

Static type checking allows most type errors to be discovered relatively cheaply

at translation (compilation) time, and leads to relatively efficient execution. With a

language in which all type checking is done dynamically, the cost incurred is the need

to type check each object every time an operation is carried out on it. The main

advantage of dynamic type checking is that it can provide increased flexibility and

15 A less severe example, but one that would raise a type exception in very few current computer languages,
is adding a person's age to their hours worked.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 131

increased expressive power over a purely statically typed language [CW85].

To provide the flexibility sought after for SAME, .iE.gis requires that the type of

an object need only be known at the time an operation is carried out on that object. This

means that dynamic typing must be supported, unless potentially large numbers of

object definitions are going to be checked each time an object is defined or re-defined. 16

If static type checking was supported, and in the case of an object being re-defined, any

existing instances of that object would also need to be amended to reflect the new

definition at the time of the re-definition.

With the dynamic type checking system of .iE.gis, consider that the definition of

an existing object is amended at execution time. Following such a change, it may be

some time before all the previously created instances of that object are consumed.

However, this is not a problem, as any data flow instance used after the change must

reflect the new structure. In a manner to be described in Section 6.3.2, the user would

be prompted for any new object instance needed as a result of the amendment, as

SAME would halt due to a missing or inconsistently typed data object. Also, any

unwanted existing object instances which were contained within a larger object

instance, would be discarded when the larger instance was consumed.

Polymorphism
Most of the extensively used languages have a monomorphic type system,

where each object can only take on values of a single type. Many of the newer

languages do allow (some) objects to take on more than one type [DD79, Ba85a, Ha84,

Ha85, MCD87, Tu86]. These languages are said to be polymorphic.

The most widely used form is parametric polymorphism where, depending

on the language, each function has either an implicit or explicit type parameter.

Figure 5.5 contains an implementation of the identity function in various languages.

ML, Hope and Miranda are interactive functional languages and the system

responses have been shown in italics. Napier is an imperative language and 'system

responses' have been simulated using comments.

Certain other languages have some polymorphic facilities. It has been argued by

Harland [Ha84], that both the variant record of Pascal and the union type of Algol 68

are deliberate attempts at providing limited polymorphism. Ada has a more recognisable

form of parametric polymorphism, but this has to be resolved statically. The effect is of

a template which is filled in during compilation, followed by the instantiation of one of

a family of monomorphic functions [CW85].

16 The potential exists for a significant amount of static type checking to be carried out. This is an
implementation issue, and is not discussed further here.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 132

In one way, by allowing different structure patterns within the same type, the

variant record in Pascal is more general than the polymorphic languages so far cited.

Parametric polymorphism implies homogeneity, where each object, in a list say, has the

same type as the other objects. True polymorphism is where an object, such as a list

element, can take on one of a number of types [Ha84]. The type of the object would be

the union of the allowed types. Some languages do off er type unions, such as Algol 68

(although it is considered difficult to use [Ha84]). Miranda, for example, offers labelled

union types which are essentially equivalent to the Pascal variant records.

fun Id x = x;
val Id= tn : 'a -> ~
Id 1;
1 : int
Id "a";
"a": string
Id [[1, 2], [3, 41];
[[1, 2], [3, 4]]: (int list) list

(a) Standard ML [Ha85].
(Type parameter is 'a.)

idX=X
II Next command finds type of Id.
id::
* * ->
id 1
1
id "a"
a
id [[1, 2], [3, 4]]
[[1, 2], [3, 4]]

(c) Miranda [Tu86].17
(Type parameter is *.)

dee Id : alpha -> alpha;
-- Id x <= x;
Id 1;
1 :num
ld'a';
'a' :char
Id [[1, 2], [3, 4]];
[[1, 2], [3, 4]]: list (list (num))

(b) Hope [Ba85a].
(Type parameter is alpha.)

let Id= proc [t: type] (x: t -> t); x
v1 := id [int] (1)
! v1 = 1
v2 := id [string] ("a")
!v2= "a"
v3 := id (int.list (1, pointer.to.rest))
! v3 = int.list (1, pointer.to.rest)

(d) Napier [MCD87].18

(Type parameter is t.)

Figure 5.5: The identity function Id implemented in four languages that support
parametric polymorphism.

JEgis implicitly supports polymorphism. To fully understand this statement, it

is necessary to place a third interpretation on an JEgis definition. Consider the definition

EXTENDED_LINE_ITEM <= PART_#, PART_DESCR, QUANTITY, UNIT_PRICE, EXTENSION.

17 The line beginning with 'II' is a comment.

18 The lines beginning with an exclamation mark are comments.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 133

It was stated in Section 5.2 that this defines an EXTENDED_LINE_ITEM to be the 5-tuple

which contains the objects PART_#, PART_DESCR, QUANTITY, UNIT_FRICE and EXTENSION.

Following this, in Section 5.3, an execution-time interpretation was placed on the

definition, as follows: 'generate an instance of EXTENDED_LINE_ITEM consisting of the

tuple (PART_#, PART_DESCR, QUANTITY, UNIT_PRICE, EXTENSION)'.

The third interpretation to be placed on the definition is: 'The type of

EXTENDED_LINE_ITEM is the Cartesian cross-product of the types of PART_#, PART_DESCR,

QUANTITY, UNIT_FRICE and EXTENSION'.

Replacing each defining_ details object by its own definition, or its resulting

type if it is an unnamed expression or constant, the type of an object can usually be

reduced to a type 'expression' containing only the basic types of the language. The

exception is where one or more "don't care" values are involved, as in the case of

PART_DESCR in Figure 5.3. However, a "don't care" value is always replaced during

execution by a suitable basic type value, and is therefore constrained to be a value taken

from the union of the basic types, thus guaranteeing type closure.

The following type can be inferred at execution time for INVOICE in Figure 5.3:19

(INVOICE, (INVOICE_#, NUMBER) x (CUST_#, NUMBER) x (DISCOUNT, NUMBER) x
(#,1 ((PART_#, NUMBER) x

(PART_DESCR, NUMBER u STRING u BOOLEAN) x
(QUANTITY, NUMBER) x
(UNIT_PRICE, NUMBER) x
(EXTENSION, NUMBER) }INF) x

(TOTAL, NUMBER))

As PART_DESCR has been defined as a "don't care" object, its type is given by

'NUMBER u STRING u BOOLEAN', which is the union of the basic types. During execution,

if PART_DESCR was imported by two different processes, it is possible that the same

instance could be coerced to two different values. For example, if the definitions

USE_PD_l <= 2 * PART_DESCR.
USE_PD_2 <= "Part description is: ":: PART_DESCR.

existed and object USE_PD_l was referenced in the first process, PART_DESCR would be

coerced to a NUMBER value. Further, if USE_PD_2 was referenced in the second process,

that copy of PART_DESCR would be coerced to a STRING. This chameleon attribute of'?'

may be disconcerting, but it should be remembered that the sole purpose in using

"don't care" values is where the user is stating no (current) preference in the value taken

by the associated object, even to the point described above. Obviously, at some stage,

one or both of the definitions USE_PD_l and USE_PD_2 must be amended.

19 '#' appearing on its own as a name denotes an unnamed object.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 134

Revising the definition of any object in Figure 5.3 such that its type changes,

leads at execution time to a change in the type of all objects that are (transitively) at the

'tail' of bindings with that object.

Objects in lEgis can take on values of different types, which is true

polymorphism in the sense described by Harland [Ha84]. The following definitions

provide an example of this. 20

A

B
C

<= NUMBER.
<= NUMBER.
<= A/B

("ATTEMPTED DMSIONBYZERO: ", A, B)
IF (B ¢ 0) I
OTHERWISE.

The type of C is (#,NUMBER) u ((#,STRING) X (A.NUMBER) X (B,NUMBER)), where

again the parentheses have been used for punctuation. If the further definition

D <=4 * C.

existed, a type error will result in the cases where B has an instance value of zero. A

more suitable definition is

D <= 4 * C IF (TYPE (C) = NUMBER) I
C OTHERWISE.

or

D <= 4 * C IF (B ¢ 0) I
C OTHERWISE.

The pre-defined function TYPE returns the type of the object supplied as its

parameter. lEgis compares the types of two structures using structural equivalence.

That is, a spatial pair-wise matching of objects within the two structures is performed.

5.6 Language design principles and lEgis
In an attempt to provide a framework for the development of programming

languages, a number of design principles have been proposed. The most important of

these are procedural abstraction, data type completeness, and declaration

correspondence. No detailed discussion of these will be given here, as they have

been well-documented elsewhere [Te81, CM82, Ha84]. The intention is merely to

identify if and how lEgis satisfies each of these principles.

20 See also the example in Section 5.2.1, Options.

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 135

5.6.1 Procedural abstraction
The principle of procedural abstraction requires that any piece of in-line code

can be abstracted over to form an abstraction body (a procedure) which can be invoked

whenever required [Ha84]. This abstraction should be carried out without the need to

significantly alter the code forming the abstracted body.

In .tEgis, the equivalent to in-line code is a tuple or tuple element. As a tuple

element can be either a named or unnamed expression, procedural abstraction is simply

replacing an unnamed expression (the 'in-line code') by a name (the 'value procedure

call'). The abstracted body is the defining_ details in the definition of the named object,

and is exactly the unnamed expression.

As an example, in the following definition of TOTAL

TOT AL<= QUANTITY* UNIT _PRICE.

the 'in-line code', 'QUANTITY* UNIT_PRICE', can be abstracted over to form the following

pair of definitions

TOTAL <= EXTENSION.
EXTENSION <= QUANTITY* UNIT _PRICE.

5.6.2 Data type completeness
The principle of data type completeness, due to Reynolds [Re70], requires that

all values be (see [Ha84]):

• passable as parameters;

• assignable;

• able to form components of data structures;

• able to be returned from functions.

A frequently quoted example of incompleteness is sets in Pascal, which cannot

contain sets as members.

In .tEgis, every instance of a data object is a tuple, and every expression

evaluates to a (component of a) tuple. No restrictions exist on what the components of a

tuple can be, so .tEgis supports the principle of data type completeness.

5.6.3 Declaration correspondence
The principle of declaration correspondence requires that anything that can be

declared in-line must be able to be declared as a parameter. An example where this

cannot be done is the declaration of a constant in Pascal; although this can be done in­

line, there is no parametric equivalent.

.tEgis has the single (monolithic) form of declaring named objects. Formal

parameters in function definitions are only place holders and contain no definition

CHAPTER 5 - THE DEMAND-DRIVEN MODEL IN SAME 136

details. An actual parameter is either a named object or unnamed expression, whose

evaluation is carried out on demand in the standard way. As a consequence, the

principle of declaration correspondence is supported.

5.7 Summary
In this chapter, the bottom level model in SAME has been discussed. This

model is realised using the dictionary language lEgis. Each definition in /Egis has three

interpretations:

• Statically, each definition has a standard dictionary interpretation as metadata

describing an object of interest.

• At execution time, the definition of each referenced data object is interpreted as a

statement in a single-assignment language in which the metasymbols in the definition

are viewed as constructors in the creation of a tuple instance. Data flow diagram

objects also have a specialised interpretation, which allows for the execution of the

data flow diagrams.

• At execution time, and within the context of a data flow diagram process, sets of

definitions are bound together. At such a time, the types of data objects can be

resolved by treating the definition of each involved data object as a type declaration.

The number of features in lEgis are relatively few, and hopefully easy to

understand. Instances of objects are restricted to be tuples, and complex tuples can be

built from a few basic types.

An important consideration in designing the language is that it remain relatively

simple. As van Wijngaarden said more than twenty years ago [Wi63]

'In order that a language be powerful and elegant it should not contain many

concepts.'

Another primary consideration was that lEgis should provide powerful

abstraction capabilities to support a perceived need at the analysis phase of software

development.

6.1 Introduction
In Chapters 4 and 5 the two component models of SAME were discussed,

generally independently of each other. The current chapter describes how these models

combine to provide an executable structured analysis prototyping environment.

In the next section a conceptual architecture for SAME is explained in terms of

its main structural components. Following on, the architecture is discussed further, but

the emphasis is changed to the modes of use available within SAME. An abstract data

type interpretation of data stores is then developed, which views data stores as active

objects. Finally, a summary of the chapter is given.

6.2 A conceptual architecture for SAME
A conceptual architecture for SAME is given in Figure 6.1. The two primary

components are the system dictionary and the system dictionary processor.

The system dictionary (SYD) contains:

• Definitions of application environments, applications, data flow diagrams and data

objects. This includes the layout of data at the external entity interface.

• Instances of data flow diagrams and data objects created during the execution of

applications.

137

CHAPTER 6 - THE COMPLETE ARCHITECTURE OF SAME

a

DFDand
data object
definition
interface

b

USER

d

External
entity

interface

Data flow
management

f

CUST _# <= NUMBER.
DISCOUNT<= 10 IF (TOTAL> 500) I

5 IF (TOTAL> 250) I
0 OTHERWISE.

PART_#<=NUMBER.
PART_DESCR <= S1RING.
UNIT_PRICE <= NUMBER.
QUANTITY<= NUMBER.
EXTENSION<=

QUANTITY* UNIT_pRICE
TOTAL<= SUM (1 {EXIENSION}INF).

SYSTEM
DICTIONARY
PROCESSOR (SYP)

g • Process
scheduler

SYSTEM
DICTIONARY (SYD)

Figure 6.1: A conceptual architecture for SAME.

138

CHAPTER 6 - THE COMPLETE ARCIDTECTURE OF SAME 139

The system dictionary processor (SYP) contains:

• An interface for defining application environments, applications, data flow diagrams

and data objects.

• An external entity interface.

• Data flow management.

• A pool of processors.

• A scheduler for assigning processors to processes.

6.2.1 SYD
All objects that are described in the system are contained in SYD, including

application environments, applications, data flow diagrams and data objects.

Considered of most general interest is an application, which is viewed as a hierarchy of

data flow diagrams and the data objects associated with those diagrams. With regard to

the order processing example, Figures 4.1 to 4.4 describe one possible set of data flow

diagrams, and the hierarchy into which they fit. In terms of the data objects, and using

process PRODUCE_INVOICE in Figure 4.2 as an example, a suitable set of definitions is

given in Figure 6.2.

INVOICE <= CUSTOMER_POSTAL_DETAILS,
EXTENDED_FILLED_ORDER-DETAILS, TOTAL, LESS, TO_PAY.

EXTENDED_FILLED_ <= INVOICE_#, CUST_#, CUST_REF, DATE, SALESMAN_#, DISCOUNT,
1 {EXTENDED_LINE_ITEM}INF. ORDER_DETAILS

BASIC_FILLED_
ORDER_DETAILS

<= INVOICE_#, CUST_#, CUST_REF, DATE, SALESMAN_#, DISCOUNT,

TO_pAY <=
LESS <=
'IDTAL <=
EXTENDED_LINE_ITEM <=
BASIC_LINE-ITEM <=
EXTENSION <=
QUANITIY <=
UNIT_PRICE <=
DISCOUNr <=

1 {BASIC_LINE_ITEM} INF.
TOTAL-LESS.
TOTAL* (DISCOUNT/ 100).
SUM (l{EXTENSION}INF).
BASIC_LINE_ITEM, EXTENSION.
PART_#, PART_DESCR, QUANTITY, UNIT_PRICE.
QUANTITY* UNIT_PRICE.
1..9999.
REAL.
10 IF(TOTAL>250)1
5 IF(TOTAL>250)1
0 OTHERWISE.

PART_DESCR <= 0{CHARACTER}l4.
PART_#
DAIB
SALESMAN_#
CUST_REF
CUST_#

<= 1..99999.
<= DAY, MONTH, YEAR.
<= 1..999.
<= 0(CHARACTER}lO.
<= 1..99999.
<= 1..99999. INVOICE_#

CUSTOMER_POSTAL_
DETAILS
CUSTOMER_FOSTAL_ <=
NAME
CUSTOMER_POSTAL_ <=
ADDRESS

<= CUSTOMER_POSTAL_NAME, CUSTOMER_POSTAL_ADDRESS.

1 (CHARACTER)20.

1 (ADDRESS_LINE}3.

ADDRESS_LINE <= l(CHARACTER)20.

Figure 6.2: Dictionary definitions relating to the objects in
process 3, PRODUCE INVOICE.

CHAPTER 6 TIIE COMPLETE ARCHITECTURE OF SAME 140

In Figure 6.3 an instance of an invoice is given which satisfies the definitions

contained in Figure 6.2. The definitions allow for an 'infinite' number of line items on

the invoice, whereas the invoice itself only allows for four. The mapping from the

logical invoice structure to the physical structure would be defined at the external entity

interface by a suitable template. 1 This would be required to take into account the need

for continuation sheets, as well as the positioning of the physical representation of

objects on the form.

GROT INDUSTRIES
RUBBISH OUTLETS LTD D~\"l'@•~rn I INVOICE_· 1 061151
123 COMPOST DRIVE
SMALL TOWN
OVERSEAS
CUST_• CUST-REF SALESMAN_• DISCOUNT DATE

11308 5926 024 5~ 07 I 03 187

PART• PART-DESCR UNIT-PRICE QUANTITY EXTENSION
83004 RUSTY NAILS 1.46 12 17.52
35108 BLUNT KNIFE 12.95 25 323.75

TOTAL 341.27
LESS 17.06

TO.J>AV 324.21

Figure 6.3: An example invoice corresponding to the definitions in Figure 6.2.

The structure of the dictionary,
and the bindings between objects

The minimal SAME system has an empty dictionary.

Applications, data flow diagrams and data objects can only be set up within the

context of an application environment. This means that at least one, named, application

environment must be the first object created by the user. To be able to specify a data

flow diagram, an application must also exist which will contain that diagram within its

data flow diagram hierarchy.

Once an application environment (and application) exists, dictionary objects can

be created in any order. Having this flexibility suggests that some means must exist to

bind objects to each other, especially bearing in mind that objects must be uniquely

named within a single application environment. The following describes the various

means for binding objects within the dictionary.

A data object is bound to another data object by appearing in the

defining_details of that data object (or vice versa), as described in Chapter 5. This

binding is usually 'realised' as an asymmetrical binding during execution, but tacitly a

two-way binding can be considered to exist for cross-referencing purposes (to support

1 Templates are explained in Section 6.2.2 when discussing the external entity interface.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 141

the asking of questions such as "Which objects include DISCOUNT in their definition?").

There are three major types of binding associated with data flow diagrams:

• Between data flow diagram objects (external entities, data flows, data stores and

processes; also objects of type unknown).

• Between data flow diagrams in the application hierarchy (each child to its parent).

• Between a hierarchy of data flow diagrams and an application.

The first of these has been discussed in detail in Chapter 4. What is important

for the discussion here, is that a particular (named) data flow object can appear in more

than one application. In terms of external entities and data stores, this is reasonably

obvious as these types of objects provide the interfaces to other applications (manual or

computerised). A shared data flow is one whose definition is used by at least two

applications. ORDER, for example, could be used by the applications ORDER PROCESSING

and INVENTORY CONTROL.

The binding between data flow diagram objects in a hierarchy of diagrams is

based on the ability to refine a data flow process in terms of a set of subordinate

processes. These child processes are consistently referred to as (process) refinements

within this document. Checking the structural and semantic correctness of such

refinements is a very useful feature of most, if not all, of the commercially available

data flow diagram drafting packages. These packages appear to carry out this binding

through the user applying a top-down refinement method. SAME provides greater

flexibility than this, by additionally allowing a set of existing processes to be grouped

together under a new, more abstract, process; this activity is called aggregating.

A data flow diagram can only be created in the context of an application. The

major characteristic of an application within SAME is its hierarchy of data flow

diagrams that provides the top level model view of the application. This hierarchy

identifies the set of data object definitions pertaining to the application. No other

mechanism exists within SAME for binding applications to data objects.

Data flow diagrams as views onto
data objects in the dictionary

The set of data object definitions pertaining to an application, can be viewed as a

minimally structured space of named and unnamed objects of equal significance.

Abstracting over such a space requires features not available within the data object

definition facilities of the JEgis language, such as limiting the number of objects of

interest at any particular time. Facilities for doing this could be incorporated into the

language or its environment. However, within the context of SAME, many of the

desired facilities can be realised through data flow diagrams. Other features, which are

more in the area of data modelling, are not addressed here [BMS84, SS77].

CHAPTER 6 - THE COMPLETE ARCHITECTIJRE OF SAME 142

The data flow diagrams of an application can be interpreted as a mechanism for

restricting the view(s) taken of data objects; in a similar way that sub-schemas can

restrict the views provided of a data base. In particular, each application data flow

diagram2 can be considered to be a window onto a subset of the data objects in the

dictionary, such that no other data object in the dictionary is (currently) of interest

within the context of that application model. Figures 6.4 and 6.5 serve as examples of

the restricted views provided by examples, as do Figures 7.11, 7.22, 7.25, and 7.27.

At any one time, the dictionary will contain a set of data object definitions for

each application. As an application can be executed at any level for which an application

data flow diagram can be created, the largest window is always provided by the Level 0

diagram, which implicitly includes the data objects of refined diagrams. This carries

through to any level. A Level 1 process, for example, that has a Level 2 refinement,

'covers' the data objects referenced by the refining processes.

Consider the execution of the order processing example at the level of

abstraction described by Figure 4.2. The derivation of an invoice in the Level 1 process

PRODUCE INVOICE, is shown in Figure 6.4, given that values for the two imported data

flows BASIC_FILLED_ORDER_DETAILS and CUSTOMER_POSTAL_DETAILS are available.

INVOICE

'IUI'AL

/
EXTENDED_FILLED_ORDER_DETAILS

\7~0N
BASIC_FILLED_ORDER_DETAILS

Figure 6.4: Data object dependencies in process 3, PRODUCE INVOICE.

2 An 'application data flow diagram' is the 'application virtual leaf data flow diagram', o, of Section 4.6 (see
especially Figure 4.9). An 'application virtual leaf data flow diagram' will be referred to as an 'application
data flow diagram' from this point onwards.

CHAPTER 6 - THE COMPLETE ARCI-IlTECTURE OF SAME 143

EXTENDED_FILLED_ORDER_DETAILS

TOTAL

EXTENSION

I EXTENDED_FILLED_ORDER_DETAILS

BASIC_FILLED _ORDER_DET AILS

(a) Process 3.1, COMPUTE EXTENSION (b) Process 3.2, COMPUTE TOTAL

LESS TO_PAY

BASIC_FILLED _ORDER_DET AILS WfAL TOTAL LESS

(c) Process 3.3, COMPUTE LESS (d) Process 3.4, COMPUTE TO PAY

INVOICE

EXTENDED_FILLED_ CUSTOMER] OSTAL_DETAILS TOTAL LESS TO_FAY
ORDER_DETAILS

(e) Process 3.5, FORM INVOICE

Figure 6.5: Data object dependencies in the refinement to process 3, PRODUCE INVOICE.

If the application was executed at a level of abstraction which included the

Level 2 refinements to process PRODUCE INVOICE shown in Figure 4.3, the derivation of

the various data objects would be as described in Figure 6.5. Note that no changes need

to be made to the definitions of Figure 6.2 to facilitate this increase in level of

CHAPTER 6 - Tiffi COMPLETE ARCHITECTURE OF SAME 144

refinement. If any data object definition changes had occurred, these would have led to

implicit changes at both Levels 1 and 0.

The fact that no amendments need to be made to the definitions of the data

objects, tends to suggest that some level of independence exists between the two. The

degree of independence, however, depends on where the relationship is viewed from.

The .tEgis data object definitions can quite easily be interpreted independently of the

data flow diagrams, except that some problems do exist in identifying the boundaries

between applications.

The data flow diagrams, on the other hand, provide an incomplete view when

interpreted in isolation, as no details are provided on the mappings from data flow

import sets to the export sets. This asymmetrical relationship is made clearer by noting

that each application data flow diagram maps to a single set of data object definitions;

whereas for the general case, and up to renaming, each set of data objects can map to

more than one application data flow diagram. Figures 4.1, 4.2, and 4.9 together

provide one group of different data flow diagrams that are able to use a common set of

object definitions.

First object • Dictionary Application Application DFD Data objects
environment

Second object J,

Dictionary I - - -

Application M I - - -
environment

Application [M] M I - -

DFD [M] [M] H H -

Data objects [M] M [M] M, [M] M, [M]

Key:
• "H" = The first object binds to an hierarchy of the second object.
• "I" = Identical (the same object).
• "M" = The first object binds to zero or more of the second object.
• "[M]" = The first object indirectly binds to zero or more of the second object.

Table VII: The possible bindings between dictionary objects.

CHAPTER 6 - THE COMPLETE ARCHITECTURE OF SAME 145

INVOICE<= FORMAT (INVOICE_DETAILS)
USING_TEMPlA TE (INVOICE_TEMPlA TE).

ADDRESS_LINE <= 1 {CHARACTER}20.

The SAME dictionary
containing the two
disjoint application
environments
ENVJ and ENV2.

Application environment
ENVJ contains the
following three
applications: Al, A2 and
ORDER_PROCESSING.
Applications A2 and
ORDER_PROCESSING
share some objects.

The order processing
application and its

fa associated hierarchy
of data flow diagrams.
(See Figures 4.1 to 4.4,
and Figure 4.9.)

The set of data objects
mapped onto by the
application data flow
diagrams in the box above.
(See Figure 6.2.)

Figure 6.6: Using an example to show the associations (bindings)
between objects in SYD.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 146

The different bindings which can exist within SAME are described via an

example in Figure 6.6 and summarised in Table VII. To be able to create a data flow

diagram, at least one application environment must exist, containing an application. To

create a data object, only requires the existence of an application environment.

Intermediate objects such as EXTENDED_FILLED_ORDER_DETAILS and EXTENSION in

Figure 6.4 are the SAME equivalent of working variables. Their scope is restricted to

the process in which they are referenced, and, like any named data object, an instance

of an intermediate object can be used more than once within a process.

6.2.2 SYP
The system dictionary processor, SYP, contains facilities for the static

definition of objects, and an execution-time environment for exercising application

models. Objects can also be defined or amended during the execution of an application.

The overall facilities provided for the static definition of objects has been

implicitly stated in Chapters 4 and 5. Further elaboration was also provided in

Section 6.2.1, while Chapter 7 provides useful details in the context of the

implemented system. As a consequence very little will be said here on this particular

aspect of the SAME architecture. Rather, following a brief discussion of the static

definition facilities, most effort will go on the description of the execution-time facilities

under the following headings:

• The external entity interface

• Data flow management (DFM)

• Multiprocessing and the scheduling of processors

Static definition facilities
The static definition facilities provide the interface for defining application

environments, applications, hierarchies of data flow diagrams, and data objects.

Definitions are made within levels,3 as follows (see Figure 6.6):

• The highest level is the dictionary. No object definition can be made outside the

dictionary. The objects which can be 'defined' at the dictionary level are the naming

of the dictionary, and the setting up of application environments.

• The second level is the application environment, within which applications and data

objects can be specified.

• The third level is the application, at which data flow diagram hierarchies and data

objects can be defined.

• Finally, the fourth level is the data flow diagram, where data flow diagrams and data

objects can be specified.

3 Not to be confused with the levels of refinement within data flow diagrams.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 147

The external entity interface
Within data flow diagrams, interfaces to objects on the boundary of interest are

generally shown as external entities (otherwise as data stores). In Figure 4.2, for

example, there was no desire to represent a customer (enterprise) in detail and so the

object CUSTOMER was defined as an external entity. Other, less concrete, objects which

are on the boundary of the system being analysed and other computerised or manual

systems within the enterprise, can just as easily be defined as external entities. 4 Usually

'people' are modelled as external entities within SSA, and the combination of an

external entity with an editing process, as in the case of CUSTOMER and process CHECK

ORDER in Figure 4.2, is a common technique for modelling the human-computer

interface.

The SSA methodologies are at their best in modelling non-interactive parts of

systems and the complex interfaces required in present day interactive systems quite

often result in messy or incomplete data flow diagrams. (Menu systems, for example,

are better represented by finite state transition diagrams [CD84, Ja83, Pa69, Wa85].) In

addition, the representation of the handling of errors in interactive, particularly

transaction processing, systems is often also messy in data flow diagrams. Sensibly,

the handling of errors is usually relegated to lower level diagrams. The contention here

is that the screen-painting/report-layout facilities that are now available in fourth

generation systems, and which have data validation at run time, provide a good

environment for the modelling of external entities and the human-computer interface

within an executable data flow diagram environment [Co87]. In this way, clean

input/output can be assured. However, there may also be a desire on the part of the user

to model an application which includes the explicit validation or editing of data on

input, and so this should be allowed for. Consequently, in SAME, the principle

component of the external entity interface is a screen painting/report layout facility

which allows different levels of validation to be imposed on each data object.

The second major component of the external entity interface is concerned with

the frequency and ordering of the specification of external entities. In Section 4.2.1 it

was pointed out that an external entity data flow import is 'consumed' as soon as it is

exported from a process. Consumption of a data flow instance by an external entity

results in that value being displayed in the format specified by a template. An abstract

language for defining templates is assumed, as is some method for associating a

template with a set of data flows. The functionality of the template language is seen to

include the association of named objects with spatial positions. As well as this, the

language would support the generation of page numbers, date, etc., on reports. A good

4 This need not be done in the case of data stores, as by their nature they can persist beyond the invocation
of an application.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 148

example of a language which has the functionality sought in the template language is

Advanced Revelation [Co87].

The frequency and order in which external entity generated instances are created

is decided by the user, and the overall system is driven by the availability of these

instances.

Data flow management (DFM)
The management of data flows is the central function within SYP. This is made

more apparent in Section 6.3, where the conceptual execution of an application is

described in some detail.

Data flow management (DFM) is concerned with the matching and allocation of

flows. When a process completes execution, DFM is responsible for the following:

• The possible explicit decomposition, or explicit composition, of group data flows

exported by the process. This occurs when the user has requested the corresponding

activity in the top level model. (See Composition and decomposition of

group objects in Section 4.2.2, and the section Composition and

decomposition of group objects at the end of Section 6.3.2.)

• The duplication of each export data flow that has multiple importers.

• The allocation of the export data flow instances to the importer(s) of those instances.

• Marking as 'runnable' each process whose import set is completed by instances from

the newly created export set.

• Consuming of the set of data flows imported by the process. In the case of one (or

more) of the import set being a decomposed data flow, only the decomposed data

flow instance is consumed. (See Composition and decomposition of group

objects in Section 4.2.2, and the section Composition and decomposition of

group objects at the end of Section 6.3.2.)

Multiprocessing and the scheduling of processors
The level of parallelism 'actively' supported in SAME is that of a data flow

diagram process. Although it is possible to define a process as a single arithmetic

operation, the expected level of refinement is seen to be a module which has strong

internal cohesion, and 'minimal' coupling with other modules (processes) [YC79].

Conceptually any number of processes, including multiple instances of the same

process, could be executing at the same time. As with the implemented fine-grain

systems of Chapter 3, limitations would be placed on the level of concurrency realisable

in a concrete system. The techniques used for allocating processes to processors in the

fine-grain systems apply equally to SAME.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 149

6.3 Specifications and executions
An alternative view of the architecture in Figure 6.1 is provided by considering

the modes of use within SAME: specification and execution.

6. 3 .1 Specification of application environments,
applications, data flow diagrams, and data objects

The two-way flows a and b in Figure 6.1 provide the path through which

objects are added to the system dictionary, or through which queries about such objects

can be made and resolved. Two levels of structural completeness can also be tested in

this mode: at the first level, the structure of an application data flow diagram5 can be

checked to see that no object is isolated, and that all objects are structurally correctly

connected; at the second level, the data flow diagram structure checking is augmented

by a check on bindings between data flow export sets to data flow import sets. This

includes checks on intermediate objects to make sure that each object is in the derivation

graph of at least one export data flow (see Figure 5.3 for an example graph), and that

each object has been defined.

Most specification activities will be concerned with defining and redefining data

flow diagrams and data objects, rather than creating application environments and

setting up applications.

6.3.2 The execution of an application
If a 'correct' application is executed, in that no structural errors exist in the

application data flow diagram and no binding errors occur when resolving the

mappings from export to import data flow sets, the flows d to i inclusive in Figure 6.1

are relevant.

An external entity data flow instance is supplied by the user along path d • e •

f. Once an import set of data flows exists for a process, that process can be scheduled

to run on a vacant processor. This is path f • g • h. (f is involved because the details

of the process are contained in the dictionary.) During the execution of the process,

import data flow instances and intermediate object values are made available to the

process via DFM along the two-way path i H f. At the completion of the process, the

export set of data flow instances is allocated to the importing processes by DFM along

path i • f. If, as a consequence, one or more processes has a full set of import data

flows available, the process(es) can be scheduled. If not, DFM requests import flows

from external entities. As can be seen, DFM plays a central role during execution.

In the case of an application being run which contains structural or binding

errors, two choices are available to the user (when an error occurs):

5 See Figure 4.9 for an example application data flow diagram.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 150

• The execution can be stopped, while retaining its current execution state, and the

user can carry out modifications within the standard specification mode described in

Section 6.3.1.

• The user can remain in the executable mode, but gain temporary access to the

specification mode using the link c. Any modifications made by the user will likely

involve b as well as a and c.

The three major types of execution error that can occur are:

• Starvation - Where, during the period of execution, only missing data flow

instances are available to a specific process for a particular data flow when other

values were required. This means that the process will become blocked due to the

unavailability of data flow instances.

• Missing data object - Where, during the running of a process, an instance of a data

object is required which is not derivable from the set of available import data flow

instances. This is due to either the incorrect specification of one or more data objects,

or to one or more data flows having been omitted, or to both.

• Type conflict - Where an operation is being carried out on an object of the wrong

type. Such as attempting to form the sub-string of a NUMBER.

Starvation
In the case of starvation, there is a requirement for the user to notice that

something is wrong. In general, this should not be too difficult as the system is likely

to grind to a halt, or some data flow arcs will have a relatively large number of

instances queued. In the implementation described in Chapter 7, a reporting level can be

individually set for each data flow in an application. If the number of instances of a data

flow that are waiting to be consumed exceeds its reporting level, SAME advises the

user of the fact. The user can halt the execution, or ignore the report (even, perhaps,

increasing the level at which reporting is to take place). If the transaction orientated

view of Section 4.7 is adopted, each reporting level should be viewed as an indicator of

the number of transactions which has an instance of a particular data flow available.

The reporting level can then be viewed as a trigger which signals when a threshold of

such transactions has been reached.

Missing data objects
In the case of a missing data object, the system will halt and request an instance

value for the object (path a • c). At such times, the user can change the definition of

the data flow diagram, data objects, or both (path a • b). Following such a change, it

may be some time before all the previously created instances are consumed. However,

this is not a problem, as any data flow instance used after the change must reflect the

CHAPTER 6- THE COMPLETE ARCIIlTECTURE OF SAME 151

new structure. The user is prompted for any new object instance needed as a result of

the amendment (path a~ c), as the system will halt due to a missing data object. Also,

any unwanted existing object instances which are contained within a larger data flow

instance, would be discarded when the larger instance is consumed. If the object

definition of a data flow is deleted during the amendment of the application, all

instances of that data flow are automatically deleted at that time. Similarly, if a process

is deleted, all data flow instances queued at that process are also automatically deleted.

When a change is made to the definition of a data store, it may be a considerable

time (if ever) before all the data store tuples satisfy the new definition. In fact there may

be many different tuple structures within a single data store as the result of a number of

definition changes. Apart from the tedium of having to provide missing object values,

this is not a problem to the user as all object instances are held as an ordered pair of the

form (name, value), where name is the object name, and value can be a simple value or

a tuple of nested pairs. DFM does not use the definitions to locate an object instance

within a larger object instance; instead, it searches the larger instance for a matching

name. If an instance of the required object is in the larger tuple, the search will succeed.

Type conflicts
As all type checking is carried out dynamically, type conflicts may occur. A

simple example is provided by the following set of definitions:

ERN
ERS
NUM
STR

<=
<=
<=
<=

NUM*STR.
NUM::STR.
NUMBER.
STRING.

Any attempt to generate an instance of ERN, will result in a type conflict when

'reducing' the object STR to a value of type NUMBER. Similarly~ an attempt to create an

instance of ERS will lead to a type conflict, this time with reference to the object NUM.

As mentioned previously, the general effect of a type conflict occurring is a

request for the user to enter a value of the required type. The full list of options

available to the user at this time is:

• Supply the missing value - The user can explicitly provide a value, or request an

EMPTY or? value. In the case of specifying an EMPTY value, the user is likely to be

prompted again, (almost) immediately, for a non-null value. Supplying a value of the

wrong type will result in a repeated request for a value of the correct type.

• Amend definitions - The user can, through the link c in Figure 6.1, carry out

amendments to object definitions. Following which, one of the actions in this list

will have to be carried out.

CHAPTER 6-THE COMPLETE ARCHITECTURE OF SAME 152

• Stop execution - The execution can be 'abandoned' at the current point. The user is

then able to continue execution at a later time, if so desired, starting with the re­

execution of the currently executing process(es).

Inconsistencies, and their interpretation
As the user is able to change the definition of objects associated with an

application during the execution phase, it is possible that two instances of the same

named data object could have different types. These type inconsistencies can persist

until one of three activities occurs:

• An operation is attempted on an inconsistent object value which results in a type

conflict in the manner described in the previous section.

• An attempt is made to export (part of) the inconsistent object value to a data store.

The value to be stored must be type consistent with the definition of the data store

objects, and the user will be prompted accordingly.

• An attempt is made to export (part of) the inconsistent object value to an external

entity. All data objects are checked with their current definition when exporting to an

external entity. In the case of no template being used, the user is able to accept the

inconsistent object, or amend it. If a template is involved, and correctly formatted

output is required, this will force the user to provide a value of the correct type in a

similar way to the previous cases above. Where the user does not wish to provide

'corrected data', it is permissible for a template to be 'incorrectly filled'.

Semantic errors
As well as structural errors, semantic errors can occur. For example, an

obligatory employee number may be EMPTY or missing when a salary cheque is

'produced'. SAME will prompt the user for a replacement object for an EMPTY value,

and will, when exporting to an external entity or data store, do the same for missing

values. In general, however, the onus is on the user to spot errors in this class. As with

structural errors, the user is free to amend the application during execution following

the discovery of a semantic error.

6.4 Data stores in SAME
Data stores in SSA are described as 'data at rest' [GS79]. The reason for

describing them as such is an attempt to differentiate them from data flows, which are

seen as carrying continuously moving data around a data flow diagram.

Data stores fit uneasily into the pure data flow view of data flow diagrams.

Because of this, they are open both to misuse and misinterpretation. A common

misuse, in a batch-orientated system, is using a data store to hold transactions that will

CHAPTER 6 -THE COMPLETE ARCHITECTURE OF SAME 153

be processed later, whereas in a logical data flow diagram, these transactions should be

'queued' on a data flow arc. More serious misuses than this occur, all of which are the

result of a relatively free interpretation of data flow diagrams in general, and data stores

in particular (refer to the examples in Section 2.7.2). A more cynical view, and one that

is hard to justify, is that data stores with their associated processing are used to handle

the 'difficult' parts of the modelling of an application. To a large degree this is

considered to be as much a function of the 'textual' processing of data (using, for

example, minispecs).

The major characteristics of a data store are the ability to:

• contain data which persists beyond the execution time of an application;

• allow multiple access to a data object (across processes, and across invocations of

the same process(es));

• randomly access a data object using a set of keys;

• update (change) the value of any data object.

It has been argued that the persistence of data should not require the splitting of

data into categories, such as 'variables' and 'files', or 'data flows' and 'data stores'

[ABC83]. This argument is supported here, and the notion of a persistent store is

considered necessary in the context of the system dictionary; if only to retain

unconsumed data flow instances across executions of an application, so that an

application can be interrupted and resumed at a later time or date.

The second characteristic of being able to access a data object a number of times

is already supported in SAME, for normal data flows, within the context of a single

process. Different processes can gain access to the same object by each process

importing that object as a data flow, or as a sub-object within a 'shared' data flow.

PART_DETAILS in Figure 4.2, or any of its sub-objects, serves as an example.

The characteristics demonstrate that a data store can be viewed as a conceptual

file or data base. The ability to retain and update values suggests the existence of a

store, in the von Neumann machine sense. This is against the spirit of data flow

systems, but is important enough to have been accommodated in some low-level data

flow systems, including the Manchester data flow computer [GKW85].

A major failing of SSA is felt to be the view it takes of data stores as 'passive'

objects. In point of fact, they are active objects that are more realistically modelled as

abstract data types (ADTs). This can probably best be seen by considering an example.

Figure 6.7 shows part of a data flow diagram, given earlier as Figure 3.20. cusT_#,
which is an import data flow of the process, is used as the key for accessing the

CUSTOMER_DET AILS data flow imported by the process from data store CUSTOMERS. 6

6 There is nothing in the diagram which explicitly states the relationship between these two 'flows'. If more
flows existed between the process and the store, the implied relationship may not be so clear.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 154

An interaction is being modelled between the process and the data store. It is

suggested that the most natural view of this interaction is that the process, in supplying

a cusT_# to the data store, is passing a request for a particular CUSTOMER_DETAILS

instance. The data store will be required to recognise the request, construct the needed

data flow instance, and make the instance available to the process. This interaction can

hardly be viewed as a passive activity.

OTHER_DATA

CUST_#

CUST_#

V

EXPORTED_DATA

CUSTOMER_DET AILS

CUSTOMERS

Figure 6.7: Accessing the data store CUSTOMERS using CUST_# as the key.

The preferred interpretation of data stores in SAME is as ADTs. Through a

fixed set of requests on a data store, the store can make available certain (parts) of the

data structures that it is maintaining. No process is able to access the data maintained by

the data store except through the defined interface.

6.4.1 Methods of access
The defined interface in SAME is the two 'messages' (or meta-operations)

import and export. Conveniently, these can be shown as normal data flow arcs in

data flow diagrams. The data flow CUSTOMER_DETAILS in Figure 6.7 would then have

the textual interpretation 'import CUSTOMER_DETAILS'. If the data store is to be able to

supply the right instance of this data flow, it requires details on how the instance is to

be constructed.

At the JEgis level, this can be done in exactly the same way as for any other data

flow. The following set of definitions adequately describes both the CUSTOMERS data

store and the CUSTOMER_DETAILS data object.

CUSTOMERS <= 1 {CUSTOMER}oo.
CUSTOMER <= CUST_#, CUSTOMER_NAME, CUSTOMER_ADDRESS,

CUST_BAlANCE, OTHER_DETAILS.
CUSTOMER_DETAILS <= CUSTOMER_NAME, CUSTOMER_ADDRESS, CUST _BALANCE.

What is not described by the definitions is that the key used to create the

instance is the data object CUST_#. This could be solved by making cusT_# a (possibly

specialised) data flow as shown in Figure 6.7, but this is not done for two reasons:

• It is not considered to be a data flow in the strict sense.

CHAPTER 6 - THE COMPLETE ARCHITECTURE OF SAME 155

• The CUST_# indexing data flow and the CUSTOMER_DETAILS data flow would need to

be matched up somehow, as more than one data flow may be being imported by a

process from a single data store.

The second of these can be adequately 'solved' for by putting two labels on a

data flow; one the index and the other the data object name. However, the preferred

approach is to provide a third dimension to the data flow diagram for 'control'

information (which includes data store keys). This means that associated with each data

flow is its method of access, but that this is not explicitly shown on the standard data

flow diagram plane. Figure 6.8 suggests a possible conceptual view.

Textually, we can augment the definitions with details on the access method as

follows: 'import CUSTOMER_DETAILS using CUST_#', where the key details following

'using' can be any tuple of named objects that appear in the data store tuples.

'Control' plane

f$_• r•ta flow plane

Figure 6.8: Adding a 'control' dimension to a data flow diagram in which the keys for
accessing data store tuples (among other things) can be specified.

As well as keyed access, SAME also supports sequential accessing of data store

tuples. As with keyed accessing, sequential accessing is applied at the data flow level,

so that textually the sequential accessing of CUSTOMER_DETAILS could be specified as

'import CUSTOMER_DETAILS sequentially'. Sequential processing only has meaning

where there is an implied ordering on the data store tuples. This ordering can be defined

separately for each data flow, so that one view of a data store is as a collection of

tuples, with an accessing scheme per data flow on those tuples.

6.4.2 Operations
The meta-operations import and export do not fully specify the operations on

data store tuples usually allowed for in SSA. Although a relational system could

usefully be supported (see Strong [St87]), SAME currently provides the more common

file operations of reading, deleting, adding, and updating 'records'.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 156

Implicitly associated with importing from a data store is the notion of reading

a tuple. To allow for the re-use of data, the importing of a data store data flow is

effectively a 'non-destructive read'.

When exporting to a data store, the operations that can be carried out on each

tuple instance are:

• deleting - where an existing tuple can be deleted. Only a full 'record', such as an

instance of CUSTOMER, can be deleted.7

• adding - which is the execution time mechanism for adding new 'record' tuples to

the data store.

• updating - which allows part, or all, of an existing data store tuple instance to be

amended.

6.4.3 Exceptions handling
In scheduling a process to run, the assumption is that any data store 'accesses'

caused by that process will succeed. This may not, in reality, be the case. For example,

an imported data flow may not be able to be created, or a data store object instance that

is to be updated may not exist.

Associated with each operation is a set of exception activities, any one of which

can be chosen for each data flow. As an example, the following is the list of exception

activities which can apply when updating.

If a required data object to be updated is missing, one of the following can be

chosen for all instances of the data flow being used to update the data store instances:

• Abort process execution (without consuming any imports from the import set).

• Prompt the user for a value of the required type.

• Create a new object with the updated value. (Only applies if a tuple exists into which

the object can be placed, or the object is a complete 'record'.)

• Create a new object with a constant user-supplied value of a user-specified type.

(Only applies if a tuple exists into which the object can be placed, or the object is a

complete 'record'.)

The full details of the activities for each operation are given in Appendix 1.

6.4.4 Name mappings
The ability to update named objects is a characteristic of imperative systems,

and does not strictly exist in data flow systems. However, when processing loops,

there is frequently a requirement to refer to different instances of the same named object

within a single pass through the loop. A common method employed to facilitate this in

7 Objects within a tuple can only be given the value EMPTY, and this must be done through the normal
object evaluation method within an executing process.

CHAPTER 6 - THE COMPLETE ARCHITECTURE OF SAME 157

data flow languages (see for example, [Ac82, AG78, AW77, Mc83, WA85]) can be

demonstrated using the high-level, single-assignment language, SISAL [Mc83]:8

export Integrate
function Integrate (returns real)
for initial

int .- 0.0;
y .- 0.0;
X .- 0.02
while x < 1.0
repeat

int .- 0.01 * (old y + y);
y .- old x * old x;
x := old x + 0.02

returns value of sum int
end for
end function

The above program contains a loop in which two instances of the objects x and

y from successive iterations appear in the assignment statements. As each object can

only be given a single value, the two instances of each object must be made distinct.

SISAL uses the keyword 'old' to distinguish the previous from the current instance.

(An alternative found in some languages is to use 'new' to do the opposite.)

Each language that employs this technique implicitly incorporates renaming

semantics in which new_ name becomes old_ name when the next loop iteration occurs.

In SAME, the same type of situation arises when (part of) an export data flow is

an 'updated' (part of an) import data flow. Trivially, as an example, a data flow

diagram could include

with the associated definition

x <= old_x + 0.02.

old_x X

The use of 'old' in the SISAL program above can be viewed as a form of name

qualification which makes the object unique (unambiguous). As SAME requires object

names to be unique, this is achieved in the data flow diagram example above by the use

of different names for the import and export data flows. However, a major difference

exists between the two examples in that the SISAL program includes an implicit 'name

coercion', where the object 'x' is coerced to 'old x'.9

8 The example, taken from Gurd et al. [GKW85], computes the area under the curve y = x2 between x = 0.0
and x = I .0 using a trapezoidal approximation with constant x intervals of 0.02.

9 Strictly, this is not a name coercion, but is considered such for the sake of discussion. The 'coercing' is
temporal in nature.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 158

A case in SAME where the same object can usefully be 'name coerced' is when

data flows are imported and/or exported to data stores. Consider the section of data

flow diagram given in Figure 6.9(a), and the associated definitions in Figure 6.9(b).

TRANSACTION_DETAILS

CURRENT_BALANCE

CURRENT_BALANCE
DAY_END_BALANCE
REVISED_BALANCE
TRANSACTION_DETAILS

CUSTOMERS

DAY_END_BALANCE

(a) Data flow diagram segment.

<= CUST_BALANCE.
<= CUST_BALANCE.
<= CURRENT_BALANCE + TRANSACTION_AMOUNTS.
<= CUST_#, TRANSACTION_AMOUNT.

(b) Associated A3gis definitions.

Figure 6.9: Part of a data flow diagram implicitly showing multiple data flows
referencing the same data store object (not necessarily the same instance).

Suggested in this example is that each of the three data flows 'accessing' the

CUSTOMERS data store is referencing the same object, CUST_BALANCE, within the

CUSTOMER tuple, although not necessarily the same instance. In the case of

CURRENT_BALANCE and DAY_END_BALANCE, the reference to the same object is explicit in

the definitions, and in such cases the defining of 'synonyms' in this way has an

execution time interpretation as a 'name coercion'.

With REVISED_BALANCE, there is no explicit association with CUST_BALANCE. To

make the relationship explicit, SAME provides a mechanism for mapping names

between data flows exported to a data store and the data store tuples. This mechanism is

kept separate from the A3gis object definitions themselves for two reasons:

• As a general philosophy, an attempt is made to keep the data flow diagrams distinct

from the object definitions.

• A data flow imported by a data store may also be imported by one or more processes

and/or external entities, and so any added details would not apply to these importers.

REVISED_BALANCE is such a data flow.

CHAPTER 6 - THE COMPLETE ARCHITECTIJRE OF SAME 159

Textually, the proposed mechanism can be represented by the construct

'map dataJlow _objects_tuple to data_store_objects_tuple in data_store'. For data

flow REVISED_BALANCE, the specification would be 'map REVISED_BALANCE to

CUST_BALANCE in CUSTOMER'.

In the general case, the ordering of objects within the tuples is significant, and a

single object (defined as a tuple) can be mapped against a tuple of objects, as long as

the basic types of the 'leaf level' objects match. For example, given the definitions

A <= NUMBER.
B <= STRING.
C <= BOOLEAN.
D <= NUMBER.
E <= STRING.
F <= BOOLEAN.
G <= STRING.
H <= Hl, H2.
H1 <= NUMBER.
H2 <= STRING.
TUPLE <= D,E,F,G.
TUPLES<= 1 (TUPLE)INF.

both the following mappings are valid:

map (A. B, C) to (D, E, F) in TUPLE.

map (H, C) to (D, E, F) in TUPLE.

It should be noted that keys may need to be mapped as well.

6.4.5 Conceptual view of a data store
The combined features of SAME data stores discussed in Sections 6.4.1 to

6.4.4 can be relatively easily incorporated into a conceptual ADT. A feature of such an

ADT is a membrane which encloses the data and the internal operations on the data. A

suitable membrane fitted around a data store is shown in Figure 6.10. The particular

box shape used is the data store symbol from the MacCadd package [Jo86a], and is the

one adopted in the SAME implementation described in Chapter 7.

For each data flow, the interface to the data store ADT consists of the four

classes of activities described in Sections 6.4.1 to 6.4.4, namely:

• The import and export of data flows at execution time.

• The static specification of an access operation for each data flow exported to a data

store.

• The static specification of the procedure to be used for handling exceptions at

execution time.

• The static specification of the name mappings for data flows exported to a data store.

At execution time access through the membrane is via the meta-operations

import and export. The data store tuple to be referenced is identified by the access

method specified in the import or export meta-operation. If a 'correct' data flow

CHAPTER 6 - TIIB COMPLETE ARCHITECTURE OF SAME 160

instance cannot be created by or absorbed into the data store, the exception is dealt with

in the way statically specified by the user.

CUSTOMERS

data store

using key
sequentially

CUST_BALANCE

CltEJf_BALANC

+MEMBRANE

Figure 6.10: A conceptual view of a SAME data store.

Conceptually, as named objects pass through the membrane, they are coerced to

different named objects. In the case of an import data flow, the coercion is specified

by a standard .tEgis 'synonym' definition. With an export, the coercion is specified in

a map statement.

6.4.6 A data flow view of data stores
The order in which data store generated data flows are processed is either

defined by the ordering of keys within normal data flows, or by some sequential

ordering which matches the ordering of normal data flows. Consequently, no

distinction needs to be made between data store generated flows and normal flows in

this way. A possible difference is to do with the availability of data store generated

flows. Normal data flows are guaranteed to be available before a process is made

runnable, but any data store generated flows are not. However, consistency with

normal flows is maintained by either:

• ensuring that a value is generated;

• 'rolling back' the process to the state it was in prior to its current invocation.

CHAPTER 6- THE COMPLETE ARCHITECTURE OF SAME 161

The first of these has a parallel in normal data flows, where a user-supplied value is

requested for a required component object that is missing from an instance of a data

flow (possibly due to the associated data flow data object being redefined).

The second alternative can be supported due to the requirement that no export

data flow instances can be exported until the process has generated a full set of export

instances.

Referential transparency
A feature of data flow systems, and applicative systems in general, is referential

transparency (see Section 5.5.1). A data store appears to lack referential transparency

because of its ability to contain updateable objects. Certainly viewed over a specific

time frame, which can be quite small, most data stores are not referentially transparent.

However, within the context of a single process activation inside SAME, any accessing

to a data store is referentially transparent. This is guaranteed in two ways:

• Within one activation of a single process, multiple use of a data store flow will result

in an initial data store 'access' to that flow, followed by references to the created

value. Within a single activation of a set of processes (not necessarily overlapping in

time but co-ordinated by currencies or keys), where it is desired that they refer to the

same data flow instance, this is achieved by making all the processes in the set

import the same named data flow. In data flow diagram terms, this is shown as a

single flow emanating from the store, then splitting into multiple arcs, with one arc

per importing process. When first 'accessed' the data flow instance is generated, and

at that time is exported to the complete set of importing processes (rule FS in Section

4.2). For those processes that are not currently executing, the instance will be

queued on the data flow in the same way as for normal data flows.

• Any updating of a data flow can only occur at the end of the activation of the

exporting process (rule F4 in Section 4.2).

Inconsistencies in data store tuples could occur in the classic case when more

than one process both imports the same data flow and exports that flow. If, say, two

processes imported cusT_BALANCE, then each process carried out a transaction against

the balance, followed by a suitably named export to cusT_BALANCE, the resulting value

for CUST_BALANCE would be incorrect.

The onus for ensuring that such inconsistencies do not arise rests with the user,

however having SAME test for the possibility of such inconsistencies is relatively

straightforward. A structural analysis of a data flow diagram can be used to identify any

processes that are both importing the same data flow from a data store and then

exporting to the same store. This is very much a 'first cut' effort, as it will not identify

whether the exporting is to the same tuple object.

CHAPTER 6- THE COMPLETE ARCIIlTECTURE OF SAME 162

A second cut can be made by analysing the lEgis definitions for the data flow

objects, as well as the mappings. Let:

• Pl to Pn be the n processes which are importing a particular data store flow;

• I be the set of 'leaf level' data store tuple objects referenced through the shared

import data flow;

• e 1 to en be the sets of 'leaf level' data store tuple objects referenced through the

export data flow of processes Pl to Pn respectively;

• E = { ei n ej I i -:I:- j} be the set of commonly referenced export objects paired over sets

of 'leaf level' data store tuple objects.

If Z =In Eis non-empty, the possibility exists for the creation of inconsistent

tuple object instances (namely instances for those objects in Z).

The possibility also exists for inconsistencies to occur when more than one data

flow is imported, but with the same conditions for exporting as given previously. This

can happen when the same data flow tuple object is coerced to different data flow

names (possibly through poor analysis). As no ordering on the accessing of these

different data flows can be assumed, the same instance may be imported under the

different names.

Handling multiple imports only requires the intersection set of the import

referenced data store objects. This can be obtained in an analogous fashion to that used

to produce the set E. The set Z resulting from the exercise is more general than that

derived under the previous conditions, as nothing can be said on whether or not a non­

empty intersection of the import sets will ever have an execution time equivalent of a set

of common object values.

6.5 Summary
The two component models of SAME discussed in Chapters 4 and 5

respectively have been unified into a single model within this chapter. The major

components of this single model are a system dictionary processor (SYP) and a system

dictionary (SYD). The combined model supports multiple real processors to take

advantage of the parallelism inherent in many data processing applications. The model

also supports multiple application environments to facilitate, for example, the parallel

development of different versions of an application.

Included in the chapter was a discussion of data stores, and their interpretation

in SAME as abstract data types. The interpretation of data stores as active objects is

considered to be more realistic than the passive view generally adopted in SSA.

7.1 Introduction
In this chapter, a prototype implementation of SAME is described, which has

been carried out in LP A Prolog on an Apple Macintosh SE [LP A85]. Knowledge of the

Prolog language is assumed, particularly the Edinburgh syntax [Br86, CM84].

In this chapter, the term 'SAME' will be used to refer to the implementation,

while the full system will be referred to as 'the full SAME system'.

In the rest of this section, the main features of the full SAME system that have

been included in the implementation are identified, as are the main omissions. In the

following sections some of the more important features of SAME are described, mainly

through example applications. Other important features are included in the example

given in Chapter 8.

The preferred method of working adopted in the examples, is to build a Level 0

data flow diagram, followed by the defining of data objects. Consistent with the general

philosophy of SAME, no ordering need generally be imposed on the definition of

objects, so these activities could be carried out in reverse order, or even in tandem

(there is an option available to define a data object when the associated data flow is

defined).

Section 7. 7 discusses the choice of Pro log as the implementation language, and

this is followed by a summary of the chapter.

163

CHAPTER 7 -AN IMPLEMENf A TION 164

7 .1.1 Main features of the implementation
The implementation has been designed to be relatively user-friendly, and

employs as much as possible the standard Macintosh interface. The main features of the

implementation are:

• The use of windows, menus, and dialogue boxes.

• The graphical specification of data flow diagrams. Each data flow diagram is created

within its own window. A tool box is provided in each window for creating,

moving, and deleting objects.

• Special objects called hooks are included in other than Level O data flow diagrams.

There will be a hook for each data flow imported or exported by the process being

refined. Hooks provide a means for checking the consistent use of data flows across

different levels of data flow diagrams. (At execution time hooks serve as specialised

processes which split or merge data flow components.)

• Loops within data flow diagrams are supported.

• Limited import sets, and the conditional generation of export data flows. (See

Section 4.3.1.)

• An executable model can be formed from any set of processes within an application,

as long as no process is a dependant of any other process in the set (that is, the

'overlapping' of processes is not allowed). The user is even allowed to specify an

incomplete executable model, if so desired.

• Typing of objects is by type inference.

• Extensive error handling is provided. If an incomplete executable model is specified,

the effect at execution time is a 'soft' error. In most cases, such as a missing data

object definition or an incorrectly typed object, the user is prompted for a 'correct'

value. In other cases, such as no importer for a data flow, the system displays details

of the error that has occurred and then generally attempts to continue.

• All the features of the .tEgis language have been implemented, with the exception of

those listed in Section 7 .1.2.

• A restricted data store interface is provided. Data flows which do not contain group

objects are supported.

Most of the features given above are discussed in terms of examples within

Sections 7.2 to 7.6.

7.1.2 Major features of the full SAME system
that have not been implemented

The following are the major features of the full SAME system that have not

been included in the implementation. These have been omitted to keep the

implementation (and the project) to a manageable size.

CHAPTER 7 - AN IMPLEMENTATION 165

• Decomposed data flows.

• Recursion (which implies the support of 'overlapping' processes within an

executable model).

• The following JEgis language features:

User-defined functions. (See Section 5.3.2.)

Data flow objects of type unknown. (See Section 4.4.2.)

Other than numeric bounds in a repeat. (See Table V.)

The explicit listing of a repeat using the constructor';;'. (See Table V.)

Qualified types. (See Section Al.3.)

Environment statements. These are not required as only a single environment is

supported in the implementation. (See Section 5.1.)

Templates for specifying input and output screens.

7. 2 An introduction to the definition subsystem
through a simple example - finding the
real roots of a quadratic equation
In this section, the basic features of the definition subsystem are introduced

through an example: finding the two real roots of a quadratic equation.

7. 2 .1 Creating a new application,
and drawing a data flow diagram

On entry to SAME, the user has the choice to create a new application, or to

work on an existing model (see Appendix 4). If the choice is to create a new

application, the dialogue shown in Figure 7 .1 is presented to the user.

t FIie Edit Windows -••1.:.1a

Enter o nome for the opplicotion

Nome

I roots

Description

When supplied with the three coefficients or o quodn1t1c, roots
finds the two reol roots of the equation.

Creoted: 10th July 88 - t 2.58pm

(Concel]

Figure 7.1: Naming an application.

CHAPTER 7 - AN IMPLEMENTATION 166

Suitable details for an application to find the two real roots of a quadratic

equation have been specified. The name details must be specified, while the description

is optional, and is purely documentation.

When presented with a valid name, SAME responds by asserting the fact1

type (ApplicationName, app) into the Prolog data base, and also creates a graphics

window with the name of the application. In Figure 7 .2, the user has 'drawn' a Level 0

data flow diagram for the application in the manner of Figure 3.18.

s File Edit Windows SAME Objects Show

:• roots

CJI co.fficie.nt• root.

: y fin.U..ot,OfQuadntic }- I
Jilill

0 -
!:.:11-:c-,""""""""""""'""'"""""""""""""""'"""""""'""'"""""""""""'"""""""""'"'"""""'""''""""'"""""""""""""""""""""""""=rl;::;-il fO 1::::1:•~·:·:·:·:::·:;:·:·~·:;:1:•:;:::.:::·:·:1:·:::·:·:;~.:i::~.:::·:·:·~;:i:::::::;~.~1:1:::::::•::1 1:::::;:·~·1·:·:·:·::'.1:•:·:::·:·:·:::::1:•:·:·:::;:::::1:::·:·:::·:::·:::;:·:::.:::.:·:·:·:·:·~·::~:m o C2J

Figure 7 .2: A Level O data flow diagram in the manner of Figure 3.18.

The following three predicate types are used for storing the structural (syntactic)

details of a data flow diagram:2

• type(ObjectName,ObjectType,GraphicReference).

Each data flow diagram object has a single type fact asserted containing the user­

defined name of the object, its type, and a reference to facts containing the graphical

details of the object (including which window it is in, and its location within the

graphics window). The full type predicates for the application are shown in

Figure 7.3. The graphical details add little to the discussion and so the third

parameter should be ignored.

The ObjectName must be unique within the dictionary for its type. The Object Type

is one of ds, ee, or pr, for data store, external entity, or process, respectively.

• exporter(ExportingObj,ExportingObjType,DataFlowBeingExported,DFD).

Only one exporter fact can exist for each data flow. The exporter details for the

1 An initial upper case letter denotes a 'variable'.

2 See footnote 1.

CHAPTER 7 - AN IMPLEMENTATION 167

application are included in Figure 7 .3. The DFD parameter specifies which diagram

(window) the object is defined in.

• importer(DataFlowBeingimported,ImportingObj,ImportingObjType,DFD).

One importer fact is asserted for each importer (see Figure 7.3).3

type(roots,app). % Names the application.
type(analyst,ee,ee0).
type(findRootsOfQuadratic,pr,pr0).
type(coefficients,df,df3).
type(roots,df,df7).

exporter(analyst,ee,coefficients,roots).
exporter(findRootsOfQuadratic,pr,roots,roots).

importer(coefficients,findRootsOfQuadratic,pr,roots).
importer(roots,analyst,ee,roots).

Figure 7. 3: The structural details of the data flow diagram in Figure 7 .2. 4

7 .2.2 Defining data objects
Having chosen to create the data flow diagram first, the user now defines the

data objects. Figure 7.4 shows the data object coefficients being defined as the tuple

(a, b, c) , and is the equivalent of the lEgis definition coefficients <= a, b, c.

s File Edit Windows SAME .. , , '-'•~- Show

-
[Object Creotion time: 10th July 88 - 1.12pm

~
[

I coefficients I
Description

0:

-
- Dota flow definition ..

1·····
I

-
(Number) (String] (Booleon) (Don't core) (Empty]

(Ok~] [Concel)

Figure 7.4: Defining the data object coefficients to be the tuple (a, b, c).

3 The different ordering of the parameters in the exporter and importer predicates is to maximise on the
efficiency of searching the Prolog data base during execution.

4 '% any string' is a comment.

CHAPTER 7 - AN IMPLEMENTATION 168

The syntax of a definition is checked when it is entered, and if found to be

incorrect, the user is prompted with the same dialogue for a valid definition.

The leftmost three of the top row of buttons in Figure 7.4 can be used to define

basic type objects. Alternatively, buttons exist which allow a user to define an object as

either a "don't care" value, or an EMP1Y (null) value.

7 .2.3 Displaying data objects,
their types, and their dependencies

Two main methods are available for displaying the details of objects. The first is

by selecting menu options (mainly within the Show menu), while the second is through

the use of tools in graphic windows. In this section, both means are used to display

data objects, and the dependencies between them.

If the user selects option Display data objects in the Show menu, a dialogue

will be displayed that includes a menu listed in collating sequence of all the data objects

in the dictionary, as shown in Figure 7.5. The user can select any number of objects

from the menu, or by clicking on the Select all button, all the objects will be listed (see

Figure 7.6).

The internal format for storing data objects is

defn(ObjectName,InternalFormOfRHS).

where the internal form of an object is a Prolog data structure. The defn facts for the

roots example are shown in Figure 7. 7.

To both check the syntactic correctness of a data object definition, and to

produce the intermediate form of the definition, the goal

parse (SourceDefnRHS, InternalFormOfRHS) is set with SourceDefnRHS suitably

instantiated. This goal will fail if the source definition is syntactically invalid, or

succeed with InternalFormOfRHS instantiated. The internal form is the only form that

data objects are stored in. When data objects are displayed, the same predicate is used

to regenerate the .tEgis definition by again setting the goal

parse (SourceDefnRHS, InternalFormOfRHS), but this time InternalFormOfRHS is

the initially instantiated parameter, and SourceDefnRHS is the 'returned value'.

With only a single representation for a data object no inconsistencies can arise

from having different source and intermediate versions for the data object.

Following a successful parse of a definition, other facts than the definition are

inserted into the data base. The extra facts are a set of predicates of the form

rhs(RHSObj,LHSObj).

The LHSObj is the data object being defined, and the RHSObj is a named object that

appears in the defining details. One rhs fact will be asserted for each named object in

the defining details. The relevant facts for the roots example are shown in Figure 7 .8.

CHAPTER 7 - AN IMPLEMENTATION 169

• File Edit Windows SAME Objects-., 1111.-

Select object(s) to disploy ~
B Q

I b
C

coefficients
root I
root2
roots

lo

D Show types for selected objects

(Ok) (Select Bil ~) (Concel l

Figure 7.5: A dialogue containing a menu for selecting the data objects to display .

• File Edit Windows SAME Objects Show Disploy

roots DlsplB!-1 e:i;;;

0 r----1-l~•f *** dO ***
~ --------------• OBJECT DEFINITIONS :

a:

CJ! oo•ffioienu root• numller
b:

numller - y fincl).oot•OfQ<J-dnda

~
c:

numller - coefficients: .. (a,
b,
c)

root1:
(- b+sqrt(b*b-4*a*c))/(2*a)

root2:
II.- (- b-sqrt(b*b-4*a*c))/(2*a)

roots:
(root1,
root2)

i =====--============

Figure 7.6: Display of all data objects currently in the dictionary.

defn(a,type(num)).
defn(b,type(num)).
defn(c,type(num)).
defn(coefficients, (a,b,c)).
defn (rootl,

div(add(neg(b),func(sqrt,1, [sub(mul(b,b),mul(mul(4,a),c))])),
mul (2, a))) .

defn(root2,
div (sub (neg (b), func (sqrt, 1, [sub (mul (b, b) ,mul (mul (4, a), c))])),

mul(2,a))).
defn (roots, (rootl, root2)).

Figure 7.7: The internal representation of data object definitions for the roots example.

CHAPTER 7 - AN IMPLEMENTATION

rhs(a,coefficients).
rhs(b,coefficients).
rhs(c,coefficients).
rhs(a,rootl).
rhs(b,rootl).
rhs(c,rootl).
rhs(sqrt(l),rootl).
rhs(a,root2).
rhs (b, root2) .
rhs (c, root2) .
rhs(sqrt(l),root2).
rhs(rootl,roots).
rhs(root2,roots).

Figure 7.8: Redundant rhs facts which are used extensively in displaying
data object dependencies.

170

The rhs facts are used extensively when reporting on the interdependencies of

objects. For example, to find all the definitions which contain a as a defining details

object, the following goal is set:

findall(LHSObj,rhs(a,LHSObj),LHSObjs).

This goal will always succeed, and results in LHSObj s being instantiated to a list of the

left-hand side object names which are defined in terms of a. For the roots example, this

list is [coefficients, rootl, root2].

The rhs facts are essentially redundant, as the right-hand side object names can

be extracted from the defn facts, but this would be a relatively slow process.

a:

b:

c:

S file Edit Windows SAME Objects Show Oispl11y

Display

number

number

number

coefficients:
a : number
b : number
c : number

root1:
(- b+sqrt(b*b-4*a*c))/(Z*a) : number

rootZ:
(- b-sqrt(b*b-4*a*c))/(Z*a) : number

roots:
root1 : number
rootZ : number

I

Figure 7 .9: A listing of data objects showing their (inferred) types.

CHAPTER 7 - AN IMPLEMENTATION 171

If the check box, Show types for selected objects, in Figure 7.5 is

marked, data objects are displayed with their types in the manner described in

Figure 7.9. Typing for displays is resolved up to the types of the top level objects

within the defining details of an object.

No details are maintained in the dictionary (data base) on the type of a data

object. Rather, the type is inferred from its defining details objects when required,

which often means finding the types of these objects as well, as with roots in

Figure 7 .9. Consequently, if an object is redefined, no action needs to be taken to

amend typing information for that object, or any objects which depend on it. This is

consistent with the general policy adopted within SAME of resolving bindings as late as

possible.

A graphical means exists for displaying the dependencies of specific data

objects.

With the process box tool selected in the tool-pane of the graphics window

roots, and by holding down the option and 3€ keys while clicking on the process

findRootsOfQuadratic, the user asks the system to provide a menu in the form

shown in Figure 7 .10 of all the data flows used by the process. The user is able to

select objects from the menu and have the chosen activity or activities performed for

each of the selected objects. The two possible activities, are a display of the data object

definitions for the chosen objects, in the format described in Figure 7 .5, and the

generation of an object dependency graph.

e FIie Edit Windows SAME Objects Show

Process findAootsOfQuadrntic data objects flJ
coefficients IO
I.I It.,.

5
O Show definitions for selected objects

l2l;l Show dependency graphs for selected objects
to o moHimum depth of III!JI

(Ok~ (Select all l [Cancel]

Figure 7.10: A request to display the dependency graph, to the selected depth, of the
data objects depended on by data flow roots in process findRootsOfQuadratic.

The effect from clicking the Ok button in Figure 7.10 is shown in Figure 7.11,

where a graph has been created of all data objects that the data flow roots depends on.

CHAPTER 7 -AN IMPLEMENTATION

s File Edit llJindOWS SAME Objects Show

ll• iii Object dependencies grnph iii0lil

0

•
root•

l'J

A

'---------------1 fl

I

Figure 7 .11: Data dependency graph for data flow roots in process
findRootsOfQuadratic.

(Ringed nodes denote objects elaborated elsewhere in the graph.)

7 .3 Building and running an executable model
There are two stages to executing an application:

172

• Defining an executable process set - as not all the processes defined in an application

need be included in an executable model.

• Running the model - by providing external entity generated data flow instances.

7.3.1 Defining an executable process set
The first time a request to build an executable model is made, by selecting

E1-1ecute in the SAME menu, the application hierarchy of processes is displayed along

with a menu of all the process names, as shown in Figure 7.12.

Generally, any set of processes can be chosen to form an executable model. If

the check box Find leaf processes from selected is marked, each process is

represented in the model by its child processes, if it has any, and they by theirs, etc.

The net effect is to create an application data flow diagram made up of all the leaf

processes which are descendants of the selected processes. If the Level 0 diagram

process(es) are chosen, the full application data flow diagram model will be created.

If the check box is not marked, the executable application model created

consists solely of the selected processes. By creating a model this way, it is possible to

generate a model that has 'hanging' data flow connections. That is, a data flow which

has an exporter but no importers, or vice versa.

CHAPTER 7 -AN IMPLEMENTATION

s File Edit Windows Objects Show

Rpplication hierarchy

~.findl\ootsOfQ11&dr•tic
roots Select the processes to be

In the e11ecutable
application •
findRootsOfQuadratic, :'!1

D Find leaf processes from selected

~ (Select all j [Cancel)

Figure 7.12: Specifying the executable model process set.

173

When the model has been constructed, the user is requested to name the

executable application. A system-supplied default name of exec can be used.

7 .3.2 Running the model
Selecting Continue in the SRME menu leads to the exercising of the model.

If an application model has just been built, selecting Continue will lead to a

menu being displayed of all the external entity generated data flows, as in Figure 7 .13.

ti File Edit Windows Objects Show Trace

Select import dato flows

coefficients :'!1

D More Instances to specify

Select oll [Cancel j

Figure 7.13: Request for user to supply external entity generated data flow instances.

The user is then able to choose those flows which are to be specified. Marking

the check box More instances to specify allows the user to specify more than one

CHAPTER 7 - AN IMPLEMENTATION 174

instance for particular external entity generated data flows. This has not been done in

Figure 7.13, so the user will be prompted for a single instance of coefficients.5

When each external entity generated instance is fully created, the instance is

distributed to its importers. Once the user has specified all the desired instances for that

interaction, SAME will check to see if any processes have full import sets. Each

process that does have a full import set is added to a runnable list. Once this list is

formed, SAME works through the list, executing each process in turn.

During the processing of the runnable list, data flow instances are going to be

generated which may make more processes runnable. These new runnable processes

are in their turn added to the end of the runnable list.

When the complete list has been processed, SAME displays the message 'No

processes to execute.', and then waits on the user to specify the next activity. If

the user again selects Continue in the SAME menu, the above 'cycle' will be repeated.

Concentrating on the roots application, once the user has selected

coefficients, as in Figure 7.13, SAME will ask the user to supply a suitable instance

value for the data flow. The implementation only prompts users for basic type values,

so the user is asked in turn for a value for a, b, and c respectively. This sequence is

shown in Figure 7.14(a) to Figure 7.14(c).

Associated with all data flow instances is a currency. Figure 7.14(d) shows the

currency generated for the instance of coefficients. The user is able to change the

system supplied value if so desired. In general this is not expected to be done.

a: File Edit Windows SAME Objects Show Trace

II tO *ii*

Executi

Trnce

· Number

Object: a

Don't care

ConteHt

[Empty]

[Cancel]

Starting application exec

(a) Request for a value of a of type number.

Figure 7.14: (Continued ...)

5 This provides a way of (artificially) queueing instances on particular flows.

CHAPTER 7 -AN IMPLEMENTATION

s File Edit Windows SAME Objects Show Trace

Trace

to
Executi Object: b

1-3
Don't care

OiiJ

ConteHt

(Empty]

[Cancel]

Starting application exec

(b) Request for a value of b of type number.

s File Edit Windows SAME Objects Show Trace

to
Executi

Trace
------Numb_e_r_, ____ _

Object: C

Don't care

ConteHt

(Empty]

(Cancel]

Starting application exec

(c) Request for a value of c of type number.

Figure 7.14: (Continued ...)

175

CHAPTER 7 - AN IMPLEMENTATION 176

s File Edit Windows SAME Objects Show Trace

Trnce

*'*to***
: Cun-encg for complete::"data·flow2 •

Executi Dato flow coefficients

Currency of IDII
[Cancel]

ConteHt
Starting application exec

(d) Prompt for currency of coefficients.

Figure 7.14: Sequence of requests for sub-object values for an instance of data flow
coefficients.

7.3.3 Controlling the execution process
The normal mode of execution, outlined in the previous section, is to execute all

runnable processes that exist using a fair scheduling algorithm. A facility also exists

under the SAME menu, called Single step mode, which causes the execution to pause

following the exercising of each process. This allows the user to, amongst other things,

look at data flow instances queued on data flow arcs, and amend them if necessary.

The examples discussed in this chapter do not make use of this feature.

7 .3.4 Tracing the exercising of a model
Three levels of tracing are supported within the implementation: low, medium,

and full. All the examples in this chapter have been executed with full trace. Example

executions which use the medium tracing level are included in Chapter 8.

Figure 7.15 contains the trace produced from running the roots example with

the data of Figure 7.14. The right-pointing arrow'->' indicates an import data flow

instance, and '<-' signifies an export instance. Each data flow has all its component

objects listed in the trace, which means that traces can get large relatively quickly if

large data structures are moved between a number of processes. There are two possible

ways to restrict the trace without reverting to a lower trace level.

First, a facility exists to have the data flows displayed in a condensed form as a

list of tuples. This is primarily a formatting change, which reduces on the amount of

'white space' output.

CHAPTER 7 - AN IMPLEMENTATION 177

Second, A 'single step' facility is available which causes the system to halt after

the completion of each process invocation. At these points, the tracing level can be

changed.

s File Edit Windows SAME Objects Show

Trace

*** to ***
•a•---•••-•--•-•--••

Execution sub-system [0.1]
==--=--============

STARTING: findRootsOfQuadratic (1)
-> coefticients:

a: 1
b: -3
c: 2

<- roots:
root1: 2
root2: 1

ENDING: tindRootsOfQuadratic (1) >-

ConteHt E!]~
ENDING: findRootsOfQuadratic Q
(1)
No processes to execute.

; ~
-

Figure 7.15: An example full trace.

7 .3.5 Exporting to external entities
Each external entity in the application is represented by a data window in the

executable model. Figure 7.16 shows the instance of data flow roots, exported to the

external entity analyst, which corresponds to the coefficients instance of

Figure 7.14.

s File Edit Windows SAME Objects Show

EE: anBlllSt ~r
II tO *II* ------------ Q

--------------------- Data tlov roots
Execution sub-system [0.1] From process findRootsOfQuadratic

•= (currency 1)

STARTING: findRootsOfQuadratic (root1: 2
-> coefficients: root2: 1

a: 1
b: -3
c: 2

<- roots:
root1: 2
root2: 1

ENDING: findRootsOfQuadratic (1)

Conte Ht
ENDING: findRootsOfQuadratic
(1)
No processes to execute. I

- i
Figure 7.16: The executable model representation of external entity analyst.

CHAPTER 7 - AN IMPLEMENTATION 178

Each external entity window is a simple display window, and as each instance

is exported to the external entity the details of the instance are added to the window at

the current cursor position. As different data flows (as well as instances) may be

exported to the same external entity, each instance exported to an entity has a header

generated in the external entity window stating the name of the data flow, the name of

the exporting process, and the currency of the data flow instance, as in Figure 7 .16.

7 .3.6 Execution time exceptions
During the analysis process it is likely that a user will make a number of errors.

In attempting to provide a flexible and forgiving environment, SAME must be able to

cope with both structural (syntactic) errors and semantic errors.

Syntactic errors can arise when an executable process set is chosen such that at

least one data flow has either no exporter, or is missing an importer. An example is

Given in Section 7.4.2.

A possible semantic error is where the user specifies coefficients for the roots

application which, when evaluating rootl and/or root2, lead to an attempt to find the

square root of a negative number. Figure 7 .17 describes SAME' s response when

attempting to evaluate root 1. The format of the dialogue in Figure 7 .17 is standard for

all errors that occur during the resolving of an object value. The text bar describes the

type of error, while the next three fields provide context information on where the error

occurred. The last field is an edit box in which the user can enter a value of the

specified type. In Figure 7 .17, the user has entered a negative value in response to the

prompt, which has led to SAME responding in the manner shown in Figure 7.18.

• File Edit Windows SAME Objects Show Troce

->

<-

ST
->

ST
fi

- ..
Rttempting to find the-square root of-a negatil.1e•1•alue •

Point error occurred: root I

Ualue supplied: -15

Within eHpression: (- b+sqrt(b'"b-4'"11'"c))/(2*11)

Type required: number

-2

[Don't care] [Empty] [Cnnt:el]

Figure 7 .17: An example error display prompt generated by SAME during the creation
of an instance of the data object root 1. Particularly, a request to find the square root of
-15 has been trapped. (The user has supplied a further invalid value. See Figure 7.18.)

CHAPTER 7 - AN IMPLEMENTATION 179

s File Edit Windows SAME Objects Show Trace
-

"sT Attempting to find the square root of a negatiue ualue ,-.,-

-> = Point error occurred: root I

Ualue supplied: -15
<-

Within eHpression: (- b+sqrt(b"b-4"a*c))/(2*a)
ENi
ST
->

Type required: number -
"""" -.... ,_.,

I

'sT
ti e Incorrect type or ualue: Enter 8 ualue20 of

type number [Continue)
t(-

'- -
Figure 7.18: Following the user supplying an invalid value (as shown in Figure 7.17),

SAME displays an error message. The user must supply a positive number before
SAME will continue.

Depending on the current level of tracing, details on the trapping of errors are

included in the trace window. Figure 7.19 shows the messages output for the above

error when full tracing is in operation. Note that a message has been generated for each

of rootl and root2, as an error dialogue would have been generated for each object.

root2: 1
ENDING: findRootsOfQuadratic (1)
STARTING: findRootsOfQuadratic (2)
-> coefficients:

a: 2
b: 1
c: 2

** sqrt function:
root1: Negative parameter has been set to 4

** sqrt function:
root2: Negative parameter has been set to 4

<- roots:
root1: 0.25
root2: -0.75

ENDING: findRootsOfQuadratic (2) I
ConteHt

ENDING: findRootsOfQuadratic
(2)
No processes to execute.

111111

Ill

Figure 7 .19: Messages generated under full trace which relate to the two attempts to
find the square root of a negative number.

7.3.7 Exercising processes
The fundamental unit of execution is an executable model leaf process. A

process is executable (or 'runnable') when an adequate set of import data flow

CHAPTER 7 - AN IMPLEMENTATION 180

instances is available. What constitutes an adequate import set was discussed in general

in Chapter 4, and can be summarised as follows:

• Where a process has limited import sets, an adequate set of imports exists when

instances are available which satisfy one (and only one) of the limited import sets.

• Where a process imports data store generated instances, an adequate set of imports

exists when all non-data-store generated flows have an instance each available.

• Where a process only has 'normal' (that is, not data store generated) data flows in the

import set, and no limited import sets, an adequate import set exists when an

instance is available for each data flow in the set.

Note that a process can have limited import sets, and also import data store

generated flows.

The context of a process
Each process executes within its own context. At the time a process begins

execution, this context is defined by the pair (N, D). The possibly empty set D, contains

the names of the data store generated flows imported by the process for which an

instance does not already exist.6 The non-empty set N contains the existing data flow

instances that (at least) form the adequate set of imports. Each element in the set N is a

2-tuple (DataFlowName, DataFlowinstanceValue). A possible initial context for

process COMPUTE TO PAY in Figure 4.3 is

({(total, 341.27),(less, 17.06)}, {})

while one for process CHECK ORDER in Figure 4.2 could be

({(order_details, ParticularOrderDetails)},

{customer_details, part_details})

where ParticularOrderDetails is used here to represent the actual value in the

instance.

The Prolog facts which collectively represent this context state are

inst(order_details, Currency, computeToPay,

ParticularOrderDetails).

dsinst(customer_details, Currency, computeToPay).

dsinst(part_details, Currency, computeToPay).

where all parameters are fully instantiated, and Currency is the same value in each fact.

A process executes by finding out the names of all the data flows that it exports,

and then creates an instance for each of them by treating the object definition of the data

flow as a statement in a single assignment language. The general effect is the creation of

6 An instance will exist for a data store generated flow, only if that flow is imported by (at least) one other
process, and the prior execution of that process has already led to the creation of the instance.

CHAPTER 7 - AN IMPLEMENTATION 181

a data flow reduction graph. The graph for data flow roots, evaluated in the context of

process find.RootsOfQuadratic from Section 7.3, is given in Figure 7.20.

:T -----.,.
(-b + ✓ (b*b - 4*a*c)) / (2*a (-b - ✓ (b*b - 4*c)) / (2*a

t t t
-b + ✓(b*b - 4*a*c 2*a -b - ✓(b*b - 4*a*c

t
2*a

__ t __ / t
✓(b * b - 4 *a* c) ✓(b * b - 4 *a* c)

t t t t
✓(• b*b-4*a*c ✓(• b - 4 * a * C

t t
b * b * C 4 *

Figure 7 .20: The data flow reduction graph for data flow roots evaluated in the context
of process find.RootsOfQuadratic.

The nodes in the reduction graph which correspond to named objects are shown

shaded in Figure 7.20. As each of these named nodes is resolved (evaluated), the set N

in the context is extended by the 2-tuple (DataObjectName, DataObjectValue)

corresponding to that object. The way the context is extended, is to assert a fact of the

form

met(DataObjectName, DataObjectValue).

into the dictionary. This is called its 'met value'. As only a single processor is

CHAPTER 7 - AN IMPLEMENTATION 182

supported in the implementation, and this executes each process to completion, there is

no need for a third parameter to identify the executing process.

Unnamed objects, which are expressions such as 'b * b' in Figure 7.20, are

resolved each time they are met. Consequently, in the example a number of expressions

are calculated twice, once for each root. It would have been possible to treat an

expression as a special type of name, leading to the creation of tuples like

(' b * b', 9). This was not done, as the probability of an expression being re-used

was not considered high enough to warrant the cost of maintaining larger contexts,

especially when these contexts could grow at an exponential rate.

When a process includes the importing of data store generated instances, the

creation of the instance occurs, at the latest, when the first reference is made to that data

flow or to one of its component objects. When a data store generated instance is

created, an inst (instance) fact is added into the dictionary, and the corresponding

cts Inst fact is deleted. Once all data store generated instances have been created, the set

D for a process will be empty.

As export data flow instances cannot be used by the process which creates

them, these instances are kept separate from the context. Once a set of export data flows

has been created by a process, the context is deleted.

The fundamental algorithm for creating object instances
The fundamental algorithm used to create named object instances is:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

If named object has already been created, use the met value.

If object is an imported data flow use its value.

If object is within an imported data flow, create a met value and use it.

If object is an as yet unresolved data store generated data flow,

create the data flow instance.

If object is within an as yet unresolved data store generated data

flow, create the data flow instance and create a met value.

Create an instance of the object using its definition and applying the

fundamental algorithm, then create a met value.

7.4 Applications with multiple levels
of data flow diagrams

Most applications would involve the refining of data flow diagrams to at least

two levels, and quite often more. SAME supports the refining of data flow diagrams,

and the creation of executable models at differing (and mixed) levels of abstraction.

CHAPTER 7 - AN IMPLEMENTATION 183

7.4.1 Refining (exploding) data flow diagrams
With the process tool in the tool pane of a diagram window selected, a user can

refine a process in the diagram by clicking on the process while holding down the

control key. If this was done for process findRootsOfQuadratic, the result would

be the creation of a graphics window of the same name. In the window would be two

objects, called hooks, which correspond to the two data flows coefficients and

roots respectively. These can be seen in Figure 7.21. The import data flow

coefficients is represented by a box shaded with horizontal lines, while the export

flow roots is represented by one with vertical lines. These hooks can be dragged

anywhere within the window.

Figure 7.21 describes a refinement of the process findRootsOfQuadratic in

terms of the two processes computeRootl and computeRoot2. In the case of the

export data flow roots, the refining diagram shows the two component flows rootl

and root2 being 'exported' to the hook named roots. The interpretation to be made is

that roots is a two tuple with components rootl and root2. As these two objects

appear in the object definition of roots as component objects (see Figure 7.6), SAME

accepts this refinement. However, if the user had attempted to 'export' a data flow to

roots with any other name, SAME would have queried the user on whether this was

or was not acceptable.

Ii File Edit Windows SAME Objects Show Processes

D

•

Figure 7.21: A particular refinement of the process findRootsOfQuadratic into the
two processes computeRootl and computeRoot2.

The import data flow coefficients could have been similarly refined in terms

of its components a, b, and c. Except that in this case, the hook coefficients would

be carrying out the exporting to the two processes.

CHAPTER 7 - AN IMPLEMENTATION 184

Hooks also play an important part during the execution of a model, as explained

in Section 7.4.4.

7.4.2 'Scope' of objects
Data flow diagrams provide windows onto the essentially monolithic set of data

object definitions. As an example, Figure 7.11 shows a dependency graph for the

export object roots created within the context of the process findRootsOfQuadratic,

and shows all the objects referenced within the process. Figure 7 .22 shows the

equivalent diagram for the export rootl within process computeRootl.

s File Edit Windows SAME Objects ShOW

D

•

-

D

--
root2

Figure 7 .22: A particular refinement of the process f indRootsOfQuadra tic into the
two processes computeRootl and computeRoot2.

It can be seen from the object dependencies graph in Figure 7 .22, that

computeRoot2 provides a more restricted view than findRootsOfQuadratic onto the

data objects in the dictionary.

7.4.3 Building an executable model
Two possible 'sensible' execution models can now be built for the roots

application. The first is the previously described application consisting of the Level 0

process findRootsOfQuadratic. The second contains the two child processes

computeRootl and computeRoot2. In Figure 7.23 the second model is being created.

The difference between this request and that shown in Figure 7 .12, is that the

box Find leaf processes from selected has been checked, which means that each

process is replaced by any child processes that it may have. The result is an application

consisting solely of leaf processes.

CHAPTER 7 - AN IMPLEMENTATION

c File Edit Windows

roots

Objects Show

Application hierarchy

Select the processes to be
In the eHecutable
11pplic11tion •
findRootsOfQuadratic:;0 - 52
omputeRoot 1

computeRoot2

[8:1 Find leaf processes from selected

~ (Select all) [Cancel)

185

Figure 7.23: A request to form an application model from the leaf level processes that
are descendants of the process findRootsOfQuadratic (namely the two processes

computeRootl and computeRoot2).

7.4.4 Hook composed data flow instances
During the execution of a model, hooks act as specialised processes. A hook

that coincides with a flow which is imported into the exploded process, splits an

instance of the flow into an instance each of its component flows. If the hook coincides

with an export flow, it constructs an instance of the refined flow from the an instance of

each component flow.

e FIie Edit Windows SAME Objects Show

EE: analllSt

STARTING: com.puteRoot1 (1) ----------------~ -> coefficients: Data flow roots
a: 1 Froa hook roots (currency 1)
b: -3 ----------------------------c: 2 root1: 2

<- root1: 2 root2: 1
ENDING: com.puteRoot1 (1)
STARTING: com.puteRoot2 (1)
-> coefficients:

a: 1
b: -3
c: 2

<- root2: 1
ENDING: com.puteRoot2 (1)

ConteHt 0;;;
ENDING: com.puteRoot2 (1) IQ
No processes to execute.

~

~ -

Figure 7.24: An instance of the data flow roots exported to the external entity analyst
by the hook roots.

CHAPTER 7 - AN IMPLEMENTATION 186

Running the application with the data specified in Figure 7 .14 leads to the

instance of roots shown in Figure 7 .24 being exported to the external entity analyst.

The exporter of the instance is shown to be the hook roots, which took as 'imports'

the instances of the flows rootl and root2 (see Figure 7.21).

7 .5 More error examples
Two more error examples will now be described. The first deals with the case

where a required data object has not been defined, while the second is concerned with

the specification of a structurally incomplete executable model (see Section 4.4.2).

7.5.1 Missing data object definition
Consider that the user has amended the data object definitions from those

shown in Figure 7.6 to include those shown in Figure 7.25. In making the changes, the

user has omitted to define the data object sqr, as indicated in the graph in Figure 7.25.

s file Edit Windows SAME Objects Show = Olspla
number

bsq:
b*b

c:
number

coefficients:
(a.
b.
c)

tourAC:
4*a*c

n1:

n2:
- b+sqr

- b-sqr
root1:

n1/twoA
root2:

n2/twoA
roots:

(root1.
root2) ...

twoA: I .,,
__ _ 2*a __________ Q]

r11ph

Figure 7.25: Amendments to data object definitions for the roots application, with an
omission in the definition of the object sqr.

An attempt to run this application will result in the error dialogue shown in

Figure 7 .26 being produced. Note that the error occurred while attempting to generate a

value for nl, whose defining details are '-b+sqr'.

Invariably the text bar heading 'Missing object ualue' refers to the fact that

no data object definition exists for the offending object.

Adding the definition

sqr <= sqrt(bsq - fourAC).

CHAPTER 7 - AN IMPLEMENTATION 187

at a suitable time will resolve the error, and produce the dependency graph shown in

Figure 7 .27.

s FIie Edit Windows SAME Objects Show Troce
-

lllfDI I • • ,. illll•

*II
=- Point error occurred: sqr ~ - Ualue supplied:

ST
Within eHpression: nl ,- b+sqr ->

Type required: number '-

i....

111 I
....

'sT

(Ole~ (Don't care l (Empty J [Cnncel)

H '--

Figure 7 .26: An error dialogue of the same general format as Figure 7 .17, which
indicates that no value could be found nor generated for data object sqr.

It FIie Edit Windows SAME Objects Show

D

•
co•fticzi•nU ..

111111

-111
nwn

l!l!l!

Figure 7 .27: Following the declaration of the data object sqr as sqr <= sqrt(bsq - fourAC),
the object dependencies will be as shown.

7.5.2 No importers for a data flow
Figure 7 .28 shows a more elaborate refinement of process

findRootsOfQuadratic than that given in Figure 7.21. To demonstrate the effect of

creating an incomplete executable model, consider that the user creates a model of all

the refined processes except for computeRootl.

CHAPTER 7 - AN IMPLEMENTATION 188

An attempt to execute this model will produce the error dialogue in Figure 7.29.

Edit Windows SAME Objects Show Processes

flndRootso rouadratic

-

Ill

Figure 7.28: A different refinement of process findRootsOfQuadratic .

• File Edit Windows SAME Objects Show

-
& No importers for dete flow • EHporter: computeN I

[
Type: process

Dete flow: n 1

...
Data flow currency: 1

-- Ualue: 4 -
"s

(Continue ~] (Stop)

Figure 7.29: An error dialogue stating that no importers exist for data flow nl.

7 .6 Limited import sets,
conditional exports, and loops

Loops in data flow diagrams can only be correctly specified when limited

import sets and conditional exports are used, so these features will be discussed

together.

The example application that will be used to describe the features is one that

calculates total = a * n + init using successive addition; that is, total = sum(1, n, a) +

init.

CHAPTER 7 - AN IMPLEMENTATION 189

A general solution at the data flow diagram level is possible, by incorporating a

loop in the manner described in Figure 7 .30.

e File Edit Windows SAME Objects Show

loop ll• il Ob ect dependencies

0
"""" to•t.l ml

• ~
c:::JI initAN

i,oI.rl \
--+ pl :ill'of•r p2 ~

A ..
:i;

Figure 7.30: A data flow diagram which contains a loop.

The definitions for the supporting data objects are shown in Figure 7 .31 (a). Of

particular interest are the definitions for nl and sum, which check for the existence of an

instance, and n2, soFarl, suml, and total, each of which only produces an instance

when its conditional is satisfied.

A trace of the execution of the model for input init = 4, a = 2, and n = 1 is

given as Figure 7.31(b). Where a conditionally generated export data flow has no

instance generated for it, this is shown as 'missing'. It is important to distinguish this

from a value of empty, which is a concrete nil instance. An empty value could be

created if, say, the definition of total was 'sum if nl~O or empty otherwise'.

If more than one set of export entity generated instances are specified, the

implementation defaults to flushing out other than the first set when looping back to

process p 1. The user is able to stop this happening by specifying under

Preferences ... in the SAME menu that automatic flushing is not to take place. The

result of doing this is a dialogue prompt to the user in the format of Figure 7 .32. By the

user setting the check boxes as shown in Figure 7 .32, the system will carry out an

interleaved execution of the sets of instances without further prompting. (See

Figure A3.2.)

CHAPTER 7 -AN IMPLEMENTATION

a :
number

init:
number

initAN:
(init,
a,
n)

n :
number

nl

n2

n if available(n) or
n2 otherwise

nl-1 if nl>O
soFar:

(sum,
a,
nl)

soFarl:
(suml,
a,
n2) if nl>O

sum
suml if available(n2) or
init otherwise

suml :
sum+a if nl>O

total :
sum if n1:s;o

(a) Data object definitions

STARTING: pl (1)
-> initAN:

init: 4
a: 2
n: 1

<- soFar:
sum: 4
a: 2
nl: 1

ENDING: pl (1)
STARTING: p2 (1)
-> soFar:

sum: 4
a: 2
nl: 1

<- soFarl:
suml: 6
a: 2
n2: 0

<- total: missing
ENDING: p2 (1)
STARTING: pl (1)
-> soFarl:

suml: 6
a: 2
n2: 0

<- soFar:
sum: 6
a: 2
nl: 0

ENDING: pl (1)
STARTING: p2 (1)
-> soFar:

sum: 6
a: 2
nl: 0

<- soFarl: missing
<- total: 6
ENDING: p2 (1)

(b) Execution trace

190

Figure 7 .31: Data object definitions for the looping application; and an execution trace.

CHAPTER 7 - AN IMPLEMENTATION

s File Edit Windows SAME Objects Show Trace

Instances to be flushed
Data flow: sofarl
Process: pl

currency• I

[8:1 Coerce process currency

D Display instances D Delete instances

Cancel

191

Q

Figure 7 .32: Prompt to the user to define the action to take when a currency mismatch
occurs, in the case where the automatic flushing of instances has been turned off.

7. 7 Prolog as the implementation language
The initial implementation attempted was the SASE system described in

Chapter 9. This was carried out mainly in PL/I-G on a multi-user microcomputer. In

that system, the transformations to be carried out by processes were represented by

executable structured English statements. Once the research progressed to the stage of

treating the dictionary language as a single assignment language in which the

transformations could be performed, the suitability of PL/I-Gas the implementation

medium became questionable. As a consequence, experiments were carried out into the

suitability of using Prolog. These experiments were carried out on an ICL 2900

mainframe, and proved very promising.

Possible alternatives to Prolog were Lisp, and functional languages. The

facilities in Prolog proved rich and complete enough that Lisp could be viewed as a

'lower level' language, whose greater flexibility was not required. The functional

languages were considered too experimental; also, building and maintaining the

dictionary requires facilities not freely available in functional languages.

The facilities in Prolog that have proved most valuable are the following:

• Prolog provides the essentials of a persistent store/database, which is the central

component of SAME.

• The declarative style of the language, with its strong pattern matching capabilities,

mirrors the demand-driven dictionary language in SAME.

• Specifying and checking the structural characteristics of data flow diagrams is

relatively straightforward. (This is partly due to the fact that SAME allows loops in

data flow diagrams.)

CHAPTER 7 - AN IMPLEMENTATION 192

Following the experimentation on the ICL system, development of the current

prototype began on a Macintosh Plus using a pre-release version of LP A MacProlog,

which, amongst other things, had no graphics. Following the introduction of graphics,

a major rewrite and extension to the implementation has been carried out. Although

LPA MacProlog is now evolving into a comprehensive product [LPA85], considerable

time and effort has been spent on getting over 'quirks' of the system. The graphics add

considerably to the size of the implementation, which is approximately 450 Kbytes of

Prolog source, and about the same size in object format.

Including the MacProlog environment, the implementation requires at least

2.5 Mbytes of main memory to run in. The screen on a Mac Plus or Mac SE is really

too small to be useful. Working with the standard Mac II screen is abou·t the minimum

usable size.

7.8 Summary
This chapter has provided some insight into a prototype version of SAME

written in Prolog on an Apple Macintosh. Not all the features of the system have been

described. Some of the omitted features, such as repeats and data stores, are considered

in Chapter 8.

A brief discussion has been included on choosing Prolog as the implementation

language. The persistent environment, and the pattern matching capabilities provided by

Prolog are two particular features which add support to its use.

8.1 Introduction
In Chapter 2, a data flow diagram hierarchy was given for an order processing

application. This application has then been used in Part II as the main example for

describing various features of SAME.

In this chapter, a SAME specification will be developed for the application. This

model has significant differences from that given in Chapter 2, and referenced in

previous chapters. It may be remembered that as part of the discussion on the Level I

data flow diagram for the application (Figure 2.3), concern was voiced about the

correctness of the diagram in terms of the data flow PART_DETAILS (p. 22).

Consequently, the application will be developed in a way that combines the two

processes CHECK ORDER and FILL ORDER into a single process.

In Section 8.2, a specification is given consisting of a hierarchy of three data

flow diagrams and a set of data object definitions. This specification was constructed

by developing two models within the implementation discussed in the previous chapter.

These two models are described in Section 8.3 and 8.4, respectively. The need for two

models was brought about by the fact that the prototype implementation cannot yet

support the mapping of repeat groups to data store tuples, and vice versa. As a result,

the first model, developed in Section 8.3, supports the use of data stores in the

processing of orders, but only allows for a single line item in each order. This model is

called the 'first prototype'.

193

CHAPTER 8 -AN EXAMPLE ANALYSIS 194

The second model, developed in Section 8.4, allows multiple line items to be

specified. However, to achieve this, the data store PARTS was replaced with an external

entity of the same name, through which data store accessing with group objects could

be simulated. This model is called the 'second prototype' or model.

Together, the data flow diagram hierarchy of the first prototype and the data

object definitions of the second prototype form the specification of the application given

in the next section.

As in Chapter 7, the term 'SAME' will be used to denote the prototype

implementation described there. Any reference to the complete SAME system will use

the term 'the full SAME system'. All the diagrams and output shown in this chapter

have been produced using SAME.

8.2 A SAME model of the
order processing example

The order processing model to be discussed in this section has two components:

the data flow diagram hierarchy developed in the first prototype, and the data object

definitions developed in the second prototype.

8.2.1 The application data flow diagram hierarchy
The context diagram for the application is shown in Figure 8.1. This bears

many similarities to the Level 1 diagram shown earlier in Figure 2.2. The main

difference is that the processes CHECK ORDER and FILL ORDER have been combined into

the process, checkAnd.FillOrder, to simplify the checking for availability of parts.

invoice - produce-customer ..
custorner_postal_ details Invoice

L .,

•• customers adjusted_credit I ..
"

customer -
details ,.

order
I checkAnd-

FillOrder
rejected_order basic filled order details - - -

-...
part_details updated_part_ details

-
pan:s

Figure 8.1: Level O data flow diagram for the revised order processing application.

CHAPTER 8 - AN EXAMPLE ANALYSIS 195

The refinement of process checkAndFillOrder is shown in Figure 8.2. This

carries out two classes of checking.1

The first class checks customer details to make sure that the order is for a valid

customer who has the necessary credit available. A valid customer is one for whom a

tuple exists in the data store customers which is 'matched' using cust_num as the key.

If the customer is valid, customer_details will be generated, and the credit­

worthiness of the customer can be checked. If no suitable tuple exists, or the customer

is not credit-worthy, the order will be rejected.

custorner_details

customer details

cust nurn

validate­
Customer

checkParts­
._ __ or_d_e_r~_o_a_r_t __ d_e_t_ai_· 1_s_._ Availability

vetted customer details
basic
filled - -
order

__ .-_....,.details

validate-
Order

vetted_parts_details

part_details updated_part_details rejected_order

part_details

Figure 8.2: Level 1 refinement of checkAndFillOrder.

The second class checks that each of the parts ordered has a tuple in the data

store parts. If one or more of the ordered parts does not have a tuple, the order is

rejected. If all parts have tuples, each part is checked to make sure that there are enough

units in stock to fill the order. Any shortfall will lead to the order being rejected.

The refinement of process forminvoice shown in Figure 8.3 is essentially that

shown in Figure 2.3. The only difference is the inclusion of data flow

adjusted credit, which adjusts the credit available to a customer once the cost of an

order has been calculated in process forminvoice.

1 The details of the operations carried out are contained in the data object definitions given m
Section 8.2.2.

CHAPTER 8 - AN EXAMPLE ANALYSIS

basic filled order details - - -

basic_filled_order_details

compute­
Extension

extended filled order details - - -

compute- total
Total

compute- less

adjusted_credit

adjusted_credit

to_pay

compute­
ToPay

invoice

Less ____ .._ ___ __,

customer
postal_
details

customer_postal_details

Figure 8.3: Level 1 refinement of produceinvoice.

8.2.2 The data object definitions for the application

196

The data object definitions which support the application data flow diagram

hierarchy given above, are those developed in the second prototype. These are given

here as Figure 8.4. To provide an overview of the structure of data object invoice, its

data dependency graph is given in Figure 8.5.

Some details relevant to the development of the model given in this section will

be discussed in the next two sections.

OBJECT DEFINITIONS:

adjusted_credit:

cust available credit - to_pay

basic filled order details:

(cust_nurn,

{l, inf, [basic_line_itern]}) if cust OK & parts_OK

basic line item:

(part_nurn,

part_descr,

unit_price,

order_quantity)

Figure 8.4: Data object definitions (continued ...).

CHAPTER 8 - AN EXAMPLE ANALYSIS

customer:

(cust_num,

cust_name,

cust_address,

cust available_credit)

customers:

{l, inf, [customer]}

customer details:

(cust_name,

cust available_credit)

customer_postal_details:

(cust_name,

cust_address,

cust available_credit)

cust address:

string

cust available credit:

number

cust_message:

"Missing customer details" if customer_details=empty or

"Insufficient funds" if cust available creditS0 or

("Customer details OK",

cust_num,

cust available_credit) otherwise

cust name:

string

cust num:

number

cust OK:

not (customer_details=empty # cust_available_creditS0)

discount:

10 if total>S00 or

5 if total>250 or

0 otherwise

Figure 8.4: Data object definitions (continued ...).

197

CHAPTER 8 - AN EXAMPLE ANALYSIS

extended filled order details:

(cust_num,

{1, inf, [part_num, part_descr, order_quantity, unit_price,

extension] })

extension:

order_quantity*unit_price

invoice:

(cust_num,

customer_postal_details,

extended_filled_order_details,

discount,

total,

less,

to_pay)

less:

total*discount/100

missing_cust_details:

(missing_cust_mess,

missing_cust_status)

missing_part:

thereExists(part_detail, part_detail=empty)

order:

(cust_num,

order_date,

order_part_details)

order date:

date()

order_part_details:

{1, inf, [part_num, order_quantity]}

order_quantity:

number

part:

(part_num,

part_descr,

unit_price,

quantity_on_hand)

Figure 8.4: Data object definitions (continued ...).

198

CHAPTER 8 - AN EXAMPLE ANALYSIS

parts:

{ 1, inf, [part] }

parts_message:

"Non-existent part" if missing_part or

"Parts shortage" if shortfall or

("Parts available",

{1, inf, [part_num, part_descr, unit_price, order_quantity] })

otherwise

parts_OK:

not (missing_part # shortfall)

parts_remaining:

quantity_on_hand - order_quantity

part_descr:

string

part_detail:

(part_ des er,

unit_price,

quantity_on_hand)

part_details:

{1, inf, [part_detail]}

part_num:

number

quantity_on_hand:

number

rejected_order:

(cust_message,

parts_message) if not (cust_OK & parts_OK)

shortfall:

thereExists({l,inf, [parts remaining]}, parts_remaining,

parts_remaining<0)

total:

sum({l,inf, [extension]})

to_pay:

total - less

unit_price:

number

Figure 8.4: Data object definitions (continued ...).

199

CHAPTER 8 - AN EXAMPLE ANALYSIS

updated_part_details:

{l,inf, [parts_remaining]} if cust OK & parts_OK

vetted customer details:

(cust_message,

cust_OK)

vetted_parts_details:

(parts_message,

parts_OK)

Figure 8.4: Data object definitions.

cust num

num

Figure 8.5: Data dependency graph for data object invoice.

200

CHAPTER 8 - AN EXAMPLE ANALYSIS 201

8. 3 The first prototype
Development of this first prototype included the construction of the diagrams in

Figures 8.1 to 8.3. Definitions are given in Figure 8.6 for all those data objects whose

details differ from the ones given in Figure 8.4. Also, the three objects missing_part,

parts_remaining, and shortfall, were not included in the first prototype.

basic filled order details:

(cust_num,

basic line_item) if cust_OK & parts_OK

extended filled order details:

(cust_num,

part_num,

part_descr,

order_quantity,

unit_price,

extension)

order_part_details:

(part_num,

order_quantity)

parts_message:

"Non-existent part" if part_details=empty or

"Parts shortage" if quantity_on_hand<order_quantity or

("Parts available",

part_num,

part_ descr,

unit_price,

order_quantity) otherwise

parts_OK:

not (part_details=empty # quantity_on_hand<order_quantity)

part_details:

(part_descr,

unit_price,

quantity_on_hand)

total:

extension

updated_part_details:

quantity_on_hand - order_quantity if cust_OK & parts_OK

Figure 8.6: Data object definitions which differ from those given in Figure 8.4.

CHAPTER 8 - AN EXAMPLE ANALYSIS 202

Before going on to discuss some of the details of the experimentation which

produced the model, brief details are given in the next section on the data store tuples

used in the experiments.

8. 3 .1 The data stores contents
The two data stores customers and parts used in the model had a small

number of tuples set up using standard menu-driven facilities available in SAME. The

actual tuples used are listed in Figure 8.7.2

The general method of operation was to load the data store tuples prior to

carrying out a set of experiments. The amended tuples were generally discarded at the

end of an experiment set, and the original set was 'reloaded' when the next set of

experiments was performed. At times, the data stores were saved, partly processed,

between orders, and then recovered following the processing of an order. SAME

provides the facilities to do these operations simply and quickly.

Data store customers

1:

2:

3:

cust num: 101
cust - name: "Bennetts Bookshop"
cust-address: "Broadway, Palmerston North"
cust=available_credit: 1200

cust num: 102
cust name: 11 DIC 0

cust-address: "The Square, Palmerston North"
cust=available_credit: 104

cust_num: 103
cust name: 11 Better Books"
cust-address: "High Street, Wellington"
cust-available credit: -12.45 - -

(a) Data store customers.

Data store parts

1:

2:

3:

4:

part num: 201
part-descr: "lm shelf"
unit-price: 46.5
quantity_on_hand: 14

part num: 202
part-descr: "2m support"
unit-price: 34.8
quantity_on_hand: 32

part_num: 203
part descr: "bracket"
unit-price: 16.2
quantity_on_hand: 32

part num: 204
part-descr: "bolt"
unit-price: 0.34
quantity_on_hand: 145

(b) Data store parts.

Figure 8.7: Data store tuples used in the first prototype.

8.3.2 Selected details from the
development of the first prototype

In this section a brief discussion is given of selected events during the

development of the first prototype. To start with, details will be given of the execution

of the model with the following order details:3

2 The relative position of the first tuple in each data store is indicated in the listing by '1: ', and so on.

3 These details are entered through system generated prompts (see Figure 7.14). They are shown here in
italics to distinguish them from the output produced by the implementation.

CHAPTER 8 - AN EXAMPLE ANALYSIS

order:
cust num = 101
order_date = system generated value
order_part_details:

part_num = 201
order_quantity = 12

203

The details of the experiment will be provided by an execution trace. There are

three levels of tracing in SAME: low, medium, and high. The trace that will be analysed

first was produced at the high trace level. Because the trace contains much detail, it will

be broken down into manageable segments.

The executable model used in the experiment was made up of the complete set

of leaf level processes in the application model, namely validateCustorner,

checkPartsAvailability,validateOrder,cornputeExtension,cornputeTotal,

cornputeLess, cornputeToPay, and forminvoice.

Once the above specified order data flow instance was exported by external

entity customer to the process validateCustomer, the processes validatecustomer

and checkPartsAvailability could both be executed. The first to be scheduled by

SAME was validateCustomer.4

STARTING: validateCustomer (1)
-> cust num: 101
-> customer details:

cust name: "Bennetts Bookshop"
cust-available credit: 1200

<- vetted customer details:
cust message:

#-; "Customer details OK"
cust num: 101
cust available credit: 1200

cust OK: true
ENDING: validateCustomer (1)

The above trace segment shows that the process had imported('->') the two

flows cust num and customer_details, and produced the export ('<-') flow

vetted customer details.

The data flow cust_num was made available to the process by the hook order

(in Figure 8.2), while the flow customer_details was accessed using cust_num as

the key. The details on how the data flow customer_details was to be exported by

the data store were specified by the user, again through the menu interface. The actual

access details are shown in the dialogue box in Figure 8.8.

As a customer tuple existed for this customer, and the customer had adequate

credit (1200), a suitable instance of cust_message was created and the Boolean

4 The string ' (1 >' after the process' name indicates that the process' currency is 1. Also, '•' denotes an
unnamed tuple.

CHAPTER 8 -AN EXAMPLE ANALYSIS 204

cust _ OK evaluated to true. These are the component objects of the exported data flow

vetted customer details.

Note that the data object cust_message contained the data objects cust_num

and cust_available_credit. Strictly these should not have appeared in a flow with

this name; in fact, the flow should have been renamed. However, to keep the

discussion here simple, this was not done.5

Doto flow access details for:

customer_detoils

Operation: E11ported by data store

Recess method: Keyed occess using:
cusLnum

E11ceptions octiuity: Substitute on Empty uotue

Figure 8.8: Data store access details for constructing instances of data flow
customer details.

Following the completion of process validateCustomer, the only process

which can be executed is checkPartsAvailability. The following is its execution

trace:

STARTING: checkPartsAvailability (1)
-> order_part_details:

part_num: 201
order_quantity: 12

-> part_details:
part_descr: "lm shelf"
unit_price: 46.5
quantity_on_hand: 14

<- updated_part_details: 2
<- vetted_parts_details:

parts_message:
#: "Parts available"
part_num: 201
part_descr: "lm shelf"
unit_price: 46.5
order_quantity: 12

parts_OK: true
ENDING: checkPartsAvailability (1)

5 There are a number of questionable data object definitions, etc.; these exist because no attempt has been
made to produce a 'definitive' solution. Rather, the models demonstrate that procedures and standards are
needed as much, if not more, when prototyping as for any other phase of the life cycle.

CHAPTER 8 - AN EXAMPLE ANALYSIS 205

The above shows the importing of the two flows order_part_details and

part_details. In a similar way to the processing of validatecustomer, hook order

provides the instance of order_part_details, and the component object part_num is

used by the data store parts as the key to construct the instance of part_details.

The flow updated_part_details was obtained by subtracting

order_quantity from quantity_on_hand. This value was mapped to object

quantity_on_hand in the data store parts. The way a mapping was specifed is

discussed shortly with reference to the data object adjusted_credit (see Figure 8.9).

Once the instance of the flow vetted_parts_details had been created, the

process validateorder had a full set of import flows:

STARTING: validateOrder (1)
-> vetted customer details:

cust_message:
#: "Customer details OK"
cust num: 101
cust available credit: 1200

cust OK: true
-> vetted_parts_details:

parts message:
#:-"Parts available"
part_num: 201
part_descr: "lm shelf"
unit_price: 46. 5
order_quantity: 12

parts OK: true
<- basic filled order details: - - -

cust num: 101
basic line item: - -

part_num: 201
part_descr: "lm shelf"
unit_price: 4 6. 5
order quantity: 12

<- rejected_order: missing
ENDING: validateOrder (1)

The trace of the execution of process validateOrder shows that, as the two

import flows were 'OK' messages, the order could be filled. As a consequence the

shown instance of basic_filled_order_details was exported (through the hook of

the same name) to process computeExtension.

As the order was not rejected, no instance of rejected_order was created.

This is represented in the trace by an instance 'value' of missing.

Process computeExtension only required the one non-data-store-generated

flow to execute, so it was scheduled:

CHAPTER 8 - AN EXAMPLE ANALYSIS

STARTING: cornputeExtension (1)
-> basic filled order details:

cust nurn: 101
basic line item: - -

part_nurn: 201
part descr: "lrn shelf"
unityrice: 46.5
order_quantity: 12

<- extended filled order details:
cust nurn: 101
part_nurn: 201
part_descr: "lrn shelf"
order_quantity: 12
unit_price: 46.5
extension: 558

ENDING: cornputeExtension (1)

206

As the first prototype did not support multiple line items on an order, the

processing done by cornputeExtension was trivial. The single extension on the line

item was obtained by multiplying order_quantity by unit_price.

Similarly, the calculation performed by cornputeTotal was also trivial, as this

process summed all the extensions on an order.

STARTING: cornputeTotal (1)
-> extended filled order details: - -

cust nurn: 101
part_nurn: 201
part_descr: "lrn shelf"
order_quantity: 12
unit_price: 46.5
extension: 558

<- total: 558
ENDING: cornputeTotal (1)

Processes cornputeLess and cornputeToPay both performed simple tasks. As

the total on the order was greater than 5 o o, the discount rate applied was 1 o % • The final

amount that the customer needed to pay was 502. 2 monetary units.

STARTING: cornputeLess (1)
-> total: 558
<- less: 55.8
ENDING: cornputeLess (1)
STARTING: cornputeToPay (1)
-> total: 558
-> less: 55.8
<- to_pay: 502.2
ENDING: cornputeToPay (1)

The final process executed for this order was forrninvoice. This required four

non-data-store-generated import flows, and the custorner_postal_details data store

generated flow.

CHAPTER 8 -AN EXAMPLE ANALYSIS

STARTING: forminvoice (1)
-> extended filled order details:

cust num: 101
part_num: 201
part descr: "lm shelf"
orde~ quantity: 12
unit_price: 46.5
extension: 558

-> total: 558
-> less: 55.8
-> to_pay: 502.2
-> customer_postal_details:

cust_name: "Bennetts Bookshop"
cust address: "Broadway, Palmerston North"
cust-available credit: 1200

<- invoice:
cust num: 101
customer_postal_details:

cust_name: "Bennetts Bookshop"
cust_address: "Broadway, Palmerston North"
cust available credit: 1200 - -

extended filled order details: - -
cust num: 101
part_num: 201
part_descr: "lm shelf"
order_quantity: 12
unit_price: 46.5
extension: 558

discount: 10
total: 558
less: 55.8
to_pay: 502.2

<- adjusted_credit: 697.8
ENDING: forminvoice (1)

207

The above trace of this process shows that the data object cust_num appeared

twice in the data structure invoice. Also the import flow customer_postal_details

contains cust_available_credit, which is certainly not part of the customer's

address. Sensibly, this would need to be made available to the process as a separate

data flow.

One export from this process is the data flow adjusted_credit, which had to

be matched to the data store tuple component object cust_available_credit. The

mapping between these objects would have been specified by the user using a graphical

facility available in SAME. The essential part of this facility, showing the two matched

objects, is given in Figure 8.9.

Matching was carried out by clicking on the small rectangle containing the

object name. Only objects of like type could be matched.

CHAPTER 8 - AN EXAMPLE ANALYSIS 208

%~1\~i·til c usto me rs !@fitWM
customer [Num]

[Str l
[Str]

Figure 8.9: The objects to be mapped between the data flow adjusted_credit and the
customer data store tuple component cust_available_credit.

The effect of the importing of data flow adjusted_credit on data store

customers is shown in the following 'before' and 'after' snapshots of the relevant

tuple:

Data store customers

1:
cust num: 101
cust_name: "Bennetts Bookshop"
cust_address: "Broadway, Palmerston North"
cust available credit: 1200

Data store customers

1:
cust num: 101
cust_name: "Bennetts Bookshop"
cust_address: "Broadway, Palmerston North"
cust available credit: 697.8

The major output from the processing of the order was the invoice data object,

which was exported to external entity customer (represented by a text window). The

details of the exported instance are:

CHAPTER 8 - AN EXAMPLE ANALYSIS

Data flow invoice
From process forminvoice (currency 1)

cust num: 101
customer_postal_details:

cust_name: "Bennetts Bookshop"
cust address: "Broadway, Palmerston North"

extended filled order details:
cust num: 101
part_num: 201
part descr: "lm shelf"
order_quantity: 12
unit_price: 46.5
extension: 558

discount: 10
total: 558
less: 55.8
to_pay: 502.2

209

Quite often during the development of a model it proves more convenient to

work with a medium trace, as this makes it easier to identify where SAME has trapped

inconsistencies. The following is an example of this level of tracing. It shows the

execution history of an order in which two required data objects were not available in

process computeExtension, and one in process forminvoice. In each case, the user

has been prompted for the required value. Each of these inconsistencies was due to the

incorrect definition of data objects.

Execution sub-system [0.1]

STARTING: validateCustomer (1)

ENDING: validateCustomer (1)

STARTING: checkPartsAvailability (1)

ENDING: checkPartsAvailability (1)

STARTING: validateOrder (1)

ENDING: validateOrder (1)

STARTING: computeExtension (1)

** locating object part_descr:

Missing value filled by str(lm shelf)

** locating object unit_price:

Missing value filled by 46.5

ENDING: computeExtension (1)

CHAPTER 8 - AN EXAMPLE ANALYSIS

STARTING: computeTotal (1)

ENDING: computeTotal (1)

STARTING: computeLess (1)

ENDING: computeLess (1)

STARTING: computeToPay (1)

ENDING: computeToPay (1)

STARTING: forminvoice (1)

** locating object cust available credit:

Missing value filled by 1200

ENDING: forminvoice (1)

210

A semantic error which surfaced during the testing of exception conditions was

the incorrect checking for whether or not a customer had sufficient credit available for

the order to be filled (cust_available_credit > O). The invoice given in

Figure 8.10 shows that cust_available_credit was negative, and must have been

when the order was made. The 'must have been' rests on the fact that only one order

was flowing around the system at the time. The statement could not necessarily have

been made if a previous order for the same customer was in the system for some

overlapping period of time. This is because the later order may have reached the stage

of having customer_details imported into process checkAndFillOrder, which

includes cust_available_credit, before the earlier order made the value of

cust_available_credit negative through data flow adjusted_credit.

Data flow invoice
From process forminvoice (currency 3)

cust num: 102
customer__postal_details:

cust name: "DIC"
cust_address: "The Square, Palmerston North"
cust available credit: -35.2

extended filled o~der details:
cust num: 102
part_num: 203
part_descr: "bracket"
order_quantity: 4
unit__price: 16.2
extension: 6 4. 8

discount: 0
total: 64. 8
less: 0
to__pay: 64.8

Figure 8.10: The generation of an invalid instance of cust_available_credit.

CHAPTER 8 - AN EXAMPLE ANALYSIS 211

The cause of the error was that basic filled order details had been

defined to be unconditionally generated (see Figure 8.6, for the correct definition). This

meant that, even though a rejected message was exported to the customer

(Figure 8.11), the processing of the order continued to the point of generating the

invoice in Figure 8.10. If quantified types had been implemented in SAME, this could

have been trapped.6

Following correction of data object basic_filled_order_details, repeating

the previous order resulted only in the production of the instance of rejected_order

shown in Figure 8.11, as required.7

Data flow rejected_order
From process validateOrder (currency 4)

cust_message: "Insufficient funds"
parts_message:

#: "Parts available"
part_num: 203
part descr: "bracket"
unityrice: 16.2
order_quantity: 4

Figure 8.11: The instance of rejected_order, which correctly identifies the
customer's lack of available credit.

8. 4 The second prototype
In this prototype, the data store parts was replaced by an external entity with

the same name, as shown in Figure 8.12.

The model supported the processing of repeat groups by having the parts data

store import and export flows consumed and generated, respectively, by the external

entity parts. In this model, the processing of an order required two export entity

generated flows: order and part_details. If the order could be filled, the model also

produced two flows for consumption by external entities: invoice by entity customer,

and updated_part_details by entity parts. Otherwise only an instance for the

single rejected_order flow was exported to external entity customer.

To show the effect of executing this model, the amount of trace details produced

was reduced by specifying an execution model which comprised only of the top level

processes, checkAndFillOrder and produce Invoice. That is, the executable model

was the same as Figure 8.12.

6 The intention in the full SAME system is that definition details given as a quantified type would be used at
execution time to check that the instances of that object are within range, or whatever.

7 Note that cust_nurn could be usefully included in cust_rnessaqe.

CHAPTER 8 - AN EXAMPLE ANALYSIS 212

Although this model was at a higher level of abstraction than one made up of the

leaf level processes, the same set of data object definitions required by the leaf level

model could be used in the more abstract model. This relates back to the discussion in

Chapter 6, to do with the views that data flow diagrams provide onto data objects in the

dictionary. 8

1.nvo1.ce
customer 111-:--------------------lproduce­

customer_postal_details Invoice

... customers adjusted_credit
•

customer -
details

, ..
.__0 _rd_e_r __ -tlll, checkAnd­,

FillOrder

I

•

I

rejected_order basic filled order details

part_details

.,..

- - -

updated_part_details

IP

parts

Figure 8.12: Revised form of Figure 8.1,
with the data store parts replaced by the external entity parts.

...

A high level trace output from one experiment will now be presented. In

producing the trace, the user has indicated a preference that the implicit subscripts

associated with group object elements be explicitly displayed. In the full SAME system,

the subscript operator '" 1 is a constructor.

To begin the experiment, the user entered the following external entity generated

data flow instances. From external entity customer:

order:
cust num = 101
order_date = system generated value
order_part_details:

part_num = 201
order_quantity 6
part_num = 202
order_quantity 12

8 Section Data flow diagrams as views onto data objects in the dictionary, which begins in
p. 140.

CHAPTER 8 - AN EXAMPLE ANALYSIS

and, from external entity parts:

part_details:
part_detail"' [1]:

part_descr"' [l] = "lm shelf"
unit_price"'[l] = 46.5
quantity_on_hand"'[l] = 14

part_detail"'[2]:
part_descr"' [2] = "2m support"
unit_price"'[2] = 34.8
quantity_on_hand"'[2] = 32

213

As checkAndFillOrder now had a full set of import flows available, it was

scheduled for execution:

STARTING: checkAndFillOrder (1)
-> order:

cust num: 101
order date: 28th Dec. 88
order_part_details:

part_numA[l]: 201
order_quantityA[l]: 6
part_numA[2]: 202
order_quantityA[2]: 12

-> part_details:
part detail A [1] :

part_descrA[l]: "lm shelf"
unit_priceA[l]: 46.5
quantity_on_handA[l]: 14

part detailA[2]:
part_descrA[2]: "2m support"
unit_priceA[2]: 34.8
quantity_on_handA[2]: 32

-> customer details:
cust_name: "Bennetts Bookshop"
cust available credit: 1200

<- updatedyart_details:
parts remainingA[l]: 8
parts=remainingA[2]: 20

<- rejected order: missing
<- basic filled order details: - -

cust num: 101
#:

basic_line_itemA[l]:
part numA[l]: 201
part_descrA[l]: "lm shelf"
unit_priceA[l]: 46.5
order quantityA[l]: 6

basic_line_itemA[2]:
part numA[2]: 202
part_descrA[2]: "2m support"
unit_priceA[2]: 34.8
order_quantityA[2]: 12

ENDING: checkAndFillOrder (1)

The trace segment given above shows that the order was able to be filled,

consequently no instance of data flow rejected_order was produced. The instance of

CHAPTER 8 -AN EXAMPLE ANALYSIS 214

basic_filled_order_details exported by checkAndFillOrder is the only non­

data-store-generated import of process produceinvoice, consequently this process

was scheduled.

STARTING: produceinvoice (1)
-> basic filled order details: - -

cust num: 101
#:

basic_line itemA[l]:
part numA[l]: 201
part_descrA[l]: "lm shelf"
unit_priceA[l]: 46.5
order_quantityA[l]: 6

basic_line_itemA[2]:
part_numA[2]: 202
part_descrA[2]: "2m support"
unit_priceA[2]: 34.8
order_quantityA[2]: 12

-> customer_postal_details:
cust_name: "Bennetts Bookshop"
cust_address: "Broadway, Palmerston North"
cust available credit: 1200

<- invoice:
cust num: 101
customer_postal_details:

cust_name: "Bennetts Bookshop"
cust_address: "Broadway, Palmerston North"
cust available credit: 1200

extended filled o~der details:
cust num: 101
#:

part_numA[l]: 201
part_descrA[l]: "lm shelf"
order_quantityA[l]: 6
unit_priceA[l]': 46.5
extensionA[l]: 279
part_num"[2]: 202
part_descr"[2]: "2m support"
order_quantity"[2]: 12
unit_price"[2]: 34.8
extension"[2]: 417.6

discount: 10
total: 696.6
less: 69.66
to_pay: 626. 94

<- adjusted credit: 573.06
ENDING: produceinvoice (1)

A major difference between this prototype and that given in Section 8.3, is in

the checking of part details. This prototype makes use of the function thereExists,

which has two forms.

In the first form, the function has two parameters: the first identifies which

group object is to be the existential object, one of whose instances (elements) might

satisfy the binary condition given as the second parameter. In particular, given that the

defining details for missing_part are

CHAPTER 8 AN EXAMPLE ANALYSIS 215

thereExists(part_detail, part_detail=empty)

missing_part evaluates to true if there is a part_detail created by the 'data store'

parts which is empty.9

This form of thereExists is most used when there is a possibility that the

object being tested does not exist at all (in which case the result is unconditionally

false). In the case of part_detail, the existence of instances of this object could be

guaranteed, as the user had specified that where no matching part_detail existed in

the data store part, an instance would be generated by the store with a value of empty.

In the second form, the function has three parameters. The first is a tuple which

is evaluated before the binary condition is applied. This version of the function is useful

when it is known that the existential object will exist at some time within the context of

the process, but due to the fact that no guarantee can be given on the evaluation

sequence, its creation may not have occurred before the invocation of thereExists.

Consequently the evaluation of its group instances can be forced by a suitable

specification of the first parameter. With shortfall for example, which is defined as

thereExists({l, inf, [parts_remaining]}, parts_remaining,

parts_remaining<0).

the repeat will ensure that the subscripted instances of parts_remaining will be

generated before attempting to do the comparison for each instance. This second

version of the function is best viewed as the evaluation of the tuple forming the first

parameter, followed by a call to the two-parameter version of

thereExists(original_second_parameter, original_third_parameter).

Another function that was introduced in this model was sum. In its method of

use in the model, the function summed all the elements in the unnamed group object

supplied as its parameter.

The two data flow instances exported to external entities are shown as

Figures 8.13 and 8.14.

Data flow updated_part_details
From process checkAndFillOrder (currency 1)

parts remainingA[l]: 8
parts=remainingA[2]: 20

Figure 8.13: An instance of data object updated_part_details
which contains multiple parts_remaining instances.

9 Note that in this model, as the data store parts is modelled by an external entity, the generation of an
empty value could only be achieved by respecifying part_detail to be a basic type object. As the external
entity interface is set up, SAME prompts for basic type objects; as part_detail is a composite object, an

instance of each of its component objects is asked for.

CHAPTER 8 - AN EXAMPLE ANALYSIS

Data flow invoice
From process produceinvoice (currency 1)

cust num: 101
customer_postal_details:

cust_name: "Bennetts Bookshop"
cust address: "Broadway, Palmerston North"
cust-available credit: 1200

extended filled o~der details:
cust num: 101
#:

part_numA[l]: 201
part descrA[l]: "lm shelf"
orde~_quantityA[l]: 6
unit_priceA[l]: 46.5
extensionA[l]: 279
part_numA[2]: 202
part descrA[2]: "2m support"
orde~_quantityA[2]: 12
unit_priceA[2]: 34.8
extensionA[2]: 417.6

discount: 10
total: 696.6
less: 69.66
to_pay: 626.94

Figure 8.14: An instance of data object invoice
which contains multiple line item instances.

8.5 Summary

216

In this chapter, a specification was given for an order processing system made

up of a hierarchy of data flow diagrams and a set of data object definitions. The

specification was developed from two complementary models, both of which were

evaluated using test data. Some discussion took place of the experimentation which

produced the executable models, restricted mainly to the consideration of traces. It is

impossible to convey here an adequate feel for the highly interactive environment

provided by SAME.

If the specification was to form part of a detailed requirements specification

document, further details on the experiments performed would need to be included,

such as showing what test data was used and the results produced from applying that

data.

Part III contains two chapters.

The first discusses three coarse-grain data flow systems that have been

proposed for developing business systems by other researchers, and have been

implemented to at least some degree. All of these systems are considered here to be

more suitable for systems design and implementation than for use during analysis. As

well, SASE (Structured Analysis Simulated Environment) the precursor to SAME, is

briefly described. SASE, as a tool, is viewed as being ideally positioned in the software

development process somewhere between SAME and the three other coarse-grained

systems.

The final discussion in the chapter is the specification of a conceptual

architecture for a coarse-grain data flow system, based on a network of von Neumann

machines.

Chapter 10 provides a summary of the research, and draws conclusions. Each

objective enumerated in Section 1.2 is considered in terms of how successful the

research has been in meeting that objective. Finally, some possible avenues for further

research are identified.

218

9.1 Introduction
The data flow schemes of Babb [Ba82, Ba84, Ba85], Burns and Kirkham

[BK86], and Strong [St87, St88], are approaches other than SAME which come within

the coarse-grain category. There are major similarities between these three schemes:

such as their use of third generation languages for defining the process transformations,

and using modules (or macros) for carrying out data flow activities. The importance of

these schemes, and the reason for their inclusion here, is that they explicitly extend the

use of data flow diagrams to the design and implementation stages. This suggests the

possibility of using data flow diagrams throughout the software process.

Following a discussion of the main features of each of the three schemes in

Section 9.2, SASE, the precursor to SAME, is briefly described in Section 9.3. SASE

lies somewhere between SAME and the above schemes in terms of the level of

abstraction used to describe transformations. The structured English language in SASE

is considered adequate for specifying 'implementation models' (that is, 'release'

software) when supported by a system dictionary. Section 9.4 compares the schemes.

All of the systems discussed here emphasise the concurrency implicit in

applications. Section 9.5 briefly reviews a hardware architecture for realising this

concurrency. Finally, Section 9.6 summarises the chapter.

219

CHAPTER 9- ALTERNATIVE ARCHITECTURES

9.2 Other executable coarse-grain
data flow schemes

220

The three schemes to be discussed here focus more on the use of data flow

diagrams at the design and implementation stages, rather than at the requirements stage

of the software process.

Two further executable modelling schemes, based on data flow diagrams, that

are currently being developed are those of Tse and Pong [TP86], and Chua et al.

[CTL87]. These are particularly concerned with the formal specification of data flow

diagrams, with Petri nets as their executable models. As these approaches are more

relevant to the discussion in Appendix 2, they are considered there.

9.2.1 The LGDF approach of Babb
Babb coined the phrase 'large-grain' when he referred to his approach as 'large­

grain data flow', or LGDF [Ba84].1 Babb describes the LGDF as a 'compromise

between the data flow and traditional [imperative] approaches'. In principle, the

approach is very much data-driven; but a noticeable difference is the potential for a

specified set of programs to share memory, although access contention to this memory

is resolved in a data-flow-like manner.

In LGDF, a data flow diagram process is represented either by a program in

some chosen target language or a system, where a system corresponds to a data flow

diagram of processes (programs and data flows).

Macros are used to specify the data flow (communication) operations. The

expanded body of the macros would depend on the source language used to program

the application.

When Fortran is being used for the application implementation language, a data

flow arc is represented by a named common block. This means that only a single

instance can be queued on a flow, which is a general LGDF requirement.2

Babb describes the steps involved in modelling and implementing a Fortran

program using LGDF as [Ba84]:3

• Draw data flow diagrams - Create a hierarchical, consistent set of data flow

diagrams that express the logical data dependencies of the program fragments

modelled.

• Create wirelist - Encode the data flow dependencies of the set of data flow diagrams

using macro calls.

1 'Coarse-grain' is a generalised synonym for 'large-grain'.

2 See Table III for fine-grain architectural equivalents: MIT, Multi, and TI DDP.

3 In principle, the procedure is the same for other third generation languages (for example, COBOL, PL/I, C,
and Pascal).

CHAPTER 9 - AL TERNATNE ARCHITECTURES 221

• Package data declarations- Identify the Fortran data declarations corresponding to

each data link in the data flow diagrams. (These become a set of labelled COMMON

blocks in the generated programs.)

• Add data flow control to program fragments - Embed standard data flow control

macro calls in the Fortran code.

• Expand data flow macros - Expand the wirelist, packaged data declarations, and

program fragments to produce compilable Fortran tailored for a particular computer

environment.

• Compile and execute - Include, if desired, optimisation steps before and/or after

compiling.

Elaboration on these steps can be found in Babb [Ba84].

Two points particularly worth noting on the above procedure are: the obvious

emphasis on program development (only the first step is independent of this); the

relatively long feedback loop if amendments to data flow diagrams are required to be

made as a consequence of testing.

The data flow diagram semantics for LGDF are given in Babb [Ba82]. With

reference to the enabling and output conditions, LGDF is the same as, for example, the

MIT fine-grain system of Dennis [De79a] (see Table III). A process (program) is not

enabled unless all its imports are available, and all its export flows are empty.

The setting and clearing of data flow arcs are performed by the exporter and

importers, respectively, of a data flow. These control details are added into the process'

programs as macro calls. For example, a process which imports a data flow named

dOS can clear the arc by using the macro call aclear_ (dOS). This then allows the

exporter to execute if this was the only data flow on which it was blocked.

Each program process can be in one of three states:

• Executing - When it can read (write) on any data flow arc that is readable

(writeable).

• Suspended - Temporarily blocked while, for example, waiting for a previous export

to be used by its importer.

• Terminated- Permanently blocked, possibly due to a fatal system error.

As the data flow diagrams are acyclic graphs, the processing of loops must

either be carried out within a single process program, or by using explicit unfolding

through specifying multiple invocations of a process.

Data stores are not explicitly represented in LGDF, and the processing of a data

store (as a file) is viewed as a side-effect.

The macro calls to control concurrency and data sharing have to be incorporated

by hand, which has its problems. For example, multiple invocations of processes

(programs) are allowed, possibly resulting in simultaneous parallel updates of data

CHAPTER 9 - ALTERNATIVE ARCHITECTURES 222

structures. Unless care is taken to include the right macros in the correct position(s)

within all the involved programs, nondeterminism may result.

The need for synchronisation macros, etc., suggests analogies with P-V

semaphores [Di65]. Even in the most capable hands P-V semaphores are easily

misused (notably mis-matched), which is why more secure constructs such as monitors

have been developed [Ho74]. In the same way, the view is taken here that some sort of

enveloping (monitor-like) structure should be generated by the LGDF environment in

which a program can be placed. This envelope would then be responsible for the

sharing, etc., of the data imported or exported by the process, and could incorporate

similar constructs to the existing macros. Shared data should also be accessed through

the enveloping structure.

9.2.2 The Ada information management system
prototyping environment of Burns and Kirkham

Burns and Kirkham describe their approach as being suited to creating

prototypes of information management systems [BK86].4 A prototype is constructed as

a single Ada program using:

• packages for data definitions;

• tasks for data flow arcs, and for processes;

• exceptions for error handling.

The interface with the user is a VDU terminal, and the following restrictions

apply:

• All external entities are modelled by this terminal.

• All data stores are implemented as random access files.

The user interface is essentially a general-purpose system [RB85], which

interfaces to the application through a single user control task. The flexible interface can .
support format controls, multi-dialogue levels, help facilities, backtracking, and

graphics.

Each data store is modelled as an Ada task which controls access to the

associated file.

Each data flow arc is modelled as an ADT: a circular buff er task, of a specif ed

size, which operates on a data structure of type record. Burns and Kirkham point out

that it is straightforward to construct a generic package which can act as a template for

all data flows.

The environment has a data dictionary in which all data items are defined, and

the data definitions package is constructed from the dictionary.

4 To maintain consistency, the term 'application' is used in the discussion which follows in place of the
phrase 'information management system'.

CHAPTER 9 - ALTERNATIVE ARCHITECTURES 223

Burns and Kirkham describe the procedure to be followed in any prototyping

exercise as:

• Construct a data definitions package from the data dictionary.

• Code the user control task where possible make use of the dialogue development

aids [RB85].

• Instantiate or construct all file control tasks.

• Construct a top level task for all application processes.

• Construct and test the appropriate transformations for each process.

The description as a prototyping method appears to rest on three features:

• The flexible user interface.

• The use of ADTs to provide abstract objects (such as data flow arcs), and to provide

the potential for software re-use. These can be viewed as building blocks for the

rapid creation of application models.

• The separate compilation and run-time loading of Ada procedures.

Burns and Kirkham suggest that the production of prototypes can be largely

'automated' using the generic and exception handling features in Ada. Presently, work

is being carried out towards the production of program generators.

9.2.3 The DataLink environment of Strong
The primary objective of Strong's approach is to 'implement a system directly

from the data flow diagrams, removing the need for the transform analysis stage'

[St88]. The approach is seen here as an attempt to shorten the software process.

Strong's system is a software development package called DataLink. A

prototype has been constructed consisting of an applications generator, and a set of

library modules. The prototype has been implemented in Modula-2 and Pascal, and the

target language is Modula-2.

DataLink includes a specification language for defining the connections between

data flow diagram objects. This is needed as no graphical facility exists.

Unlike the previous two systems, DataLink is demand-driven. Initially a request

is made for one of the data flows exported to external entities, and this leads to the

system 'firing up' in a ripple fashion as demands are made on processes to produce

their export flows, and so on, back to demands for external entity generated flows.

The representation of data flow diagrams is as follows:

• Each process is a procedure written in some high level language (currently only

Modula-2), where input and output requests are to data streams (implemented as

special input-output modules in Modula-2).

• Data stores are views of a relational data base. Data store accessing is via a restricted

set of relational algebra statements onto a single data base.

CHAPTER 9 - ALTERNATIVE ARCI-IlTECTURES 224

• External entities are modelled as windows, although, unlike SAME, the user must

write a routine to make use of windowing primitives to manage each window. Also

menus can be set up to facilitate movement between the windows.

• Data flow arcs are modelled as ADTs containing a single text line buffer. Each arc

has one exporter, and only one importer. The exporter and importer communicate

through the data flow arc, and not directly.

DataLink provides the minimal constraints on the running of a process. Each

process is able to execute when only one specified import arc has data available and

only one specified export arc is empty. Which arcs are specified is decided by the user

in the code of the process.

A major problem with this scheduling approach is the possibility of deadlocks

occurring. In the prototype of DataLink, there is no way to guarantee that deadlocks

cannot arise. In fact, Strong gives guidelines on how to check for deadlocks, but does

not address the problem in any detail.

As with Babb's approach, the onus is very much on the user to ensure the

correct matching of synchronisation data flow (input-output) primitives.

The suggested method for developing a DataLink application is :

• Draw the data flow diagrams.

• Translate the diagrams into a DataLink specification.

• Run the specification through the applications generator. The output is a 'driver

program' in Modula-2.

• Write the procedures which implement the tasks performed at each process node in

the application. Suitable existing procedures can be used.

• Compile and link the procedures together to form an executable Modula-2 program.

In writing the procedures, the user is able to incorporate calls on the system

primitives for accessing data stores (that is, the relational data base), and external

entities (through windows, and menus for navigating between windows).

9. 3 Structured Analysis Simulated Environment
(SASE)
SASE was the precursor of SAME. The main difference between the two

systems, is the method used for specifying the transformations between data flow

import and export sets. In this section, the method used in SASE will be described.

The most common methods used in SSA methodologies for specifying the

transformations are decision tables, decision trees, Jackson structure diagrams [Ja75],

Warnier-Orr diagrams [Or77, Wa76] and minispecs (structured English). As SASE

was an attempt at implementing an executable environment using PL/I-G on a non­

graphics microcomputer, minispecs was the technique chosen.

CHAPTER 9- ALTERNATIVE ARCHITECTURES 225

The system was only partially implemented, but the design was relatively

complete. The discussion here will describe the system as it was expected to function.

SASE had the following components:

• The top-level data flow diagram model of Chapter 4, except that the semantics were

not so fully defined.

• An active data dictionary, essentially using the language in De Marco [De78], which

has many similarities to .iEgis in SAME.

• An executable structured English language for defining the transformations from data

flow import sets to export sets in leaf level processes. This language was named

META.

The conceptual differences between the architecture for SASE and that shown in

Figure 6.1 for SAME were:

• The data object definitions in the system dictionary, SYD, were not executable.

• SYD also contained the META procedures corresponding to data flow diagram leaf

level processes.

• The object definition interface was more complex (see Section 9.3.2).

• No link c existed between the definition and execution subsystems.

9.3.1 META
MET A was similar to the structured English type languages found in many of

the SSA texts, including Gane and Sarson [GS79], De Marco [De78], and Weinberg

[We80]. Figure 9 .1 is an example MET A mini spec for process PRODUCE INVOICE in

Figure 4.2.

PROCESS P3
FOR EACH BASIC LINE ITEM
DO - -

MATCH BASIC LINE ITEM TO EXTENDED LINE ITEM
ASSIGN QUANTITY *- UNIT PRICE TO EXTENSION
ADD EXTENSION TO TOT AL

END DO
IF TOT AL > 500 THEN ASSIGN 10 TO DISCOUNT
ELSEIF TOTAL > 250 THEN ASSIGN 5 TO DISCOUNT
ELSE ASSIGN O TO DISCOUNT
END IF
ASSIGN (TOT AL * DISCOUNT) / 100 TO LESS
ASSIGN TOTAL - LESS TO TO PAY
MATCH CUSTOMER POST AL DETAILS
FORM INVOICE USING INVOfCE TEMPLATE
PROCESS END -

Figure 9 .1: Executable MET A minispec for process p3, PRODUCE INVOICE.

CHAPTER 9- ALTERNATIVE ARCHITECTURES 226

There are a number of points which should be mentioned.

• Typing-The types of data objects were contained in the system dictionary, so there

was no need for explicit type declarations in processes. The dictionary processor

was actively involved in resolving the types of data instances between processes.

• Initialisation of data objects - Each data object was automatically initialised by the

system dictionary according to its type. For example, for the minispec m

Figure 9.1, TOTAL would have been initialised too before it was used.

• Object details - The details of all objects were contained in the dictionary.

• Importing/exporting interfaces - The system provided two interfaces to processes,

one for importing and the other for exporting. The import interface made all of a data

flow, or parts of a data flow in the case of structures, available to process statements

without the need for explicit import requests.

• Explicit matching of data objects - Imported data objects that did not appear on the

right-hand side of assignments within a process, but which needed to be mapped to

exported data flows, had to be explicitly mapped using the MATCH function. For

example, MATCH copied objects with the same label, such as PART_#, from the

BASIC_LINE_ITEM to an EXTENDED_LINE_ITEM. (EXTENDED_LINE_ITEM

was part of a matching group item, so an EXTENDED_LINE_ITEM was created for

each BASIC_LINE_ITEM.)

• Applicativity - In SASE, a process was viewed as an indivisible object, just as in

SAME. Consequently a process was treated as a pure function which exhibited no

side effects.

Following completion of the execution of a process, the export interface

checked that all export instances were complete or null. The management of data flows

was handled by a special process.

9.3.2 The SASE process sub-system
The process sub-system was where META processes would have been

specified and translated into executable interpretive code (I-code). The two components

of the sub-system were to be a META-language editor and a translator. Neither of these

components were built on the target system. However, a META-language editor was

set up on a Prime minicomputer using a language-independent, syntax-directed editor

called GED, which was developed by Moretti [ML86a].

The syntax of the META language was input in extended-BNP, along with

'pretty printing' details. The output from this process was a screen-based editor. An

important feature of this editor, was that only syntactically correct processes could be

specified. Further, editing could be stopped before all non-terminal symbols were

resolved, with the incomplete state of the process being noted.

CHAPTER 9-AL TERNA TIVE ARCHITECTURES 227

9.3.3 SASE as a means for building implementation 1nodels
MET A had the essential features of imperative languages like Pascal and

Modula-2, except that no program or procedure headings involving parameter lists were

defined. The object names used in the META processes were directly mapped through

SYD to the object qefinitions, and the import and export data flow sets. This effectively

precluded software re-use at the process level. However, the META language did

include a comprehensive sub-program feature, which supported the setting up of re­

usable software at this level.

In a similar way to its use in SAME, SYP, the system dictionary processor,

was responsible for extracting import data flow objects required by the META

statements in a process, and was also responsible for composing export data flows

from the data objects created by the process.

If required, these operations could have been made explicit by an 'intelligent'

translator, and incorporated into (compiled) executable target code, in a language such

as Ada. Also, the object definitions maintained in the system dictionary could have been

used to generate data definitions in a way similar to that done by the commercially

available active dictionaries. The envisaged result would have been an operational

model in a language which supports concurrent processes.

9.4 Comparative summary
The three systems discussed in Sections 9 .2.1 to 9 .2.3 can all be considered as

attempts to combine data flow diagrams with procedural languages.

The approach of Burns and Kirkham has taken advantage of the language

features in Ada for separately compiling procedures, packaging data, and concurrently

executing processes. Data flows are created as ADTs, and it is feasible that a generic

data flow ADT could be specified. Given the flexible interface tool component, and the

modular features of Ada which support the construction of ADTs, the scheme does

provide a reasonable prototyping tool in the hands of an analyst with programming

skills.

In a similar way, Strong makes use of modules for implementing data flow

diagram objects, including data flows as ADTs. He also employs the quasi-concurrency

available in Modula-2 to model the concurrency in the data flow diagrams. The major

failing of Strong's system is considered to be the low-level synchronisation

mechanisms, which, when taken together with the flexible operational semantics, can

lead to deadlocks.

Babb does not limit his approach to one specific target language, although the

published work only shows the use of Fortran in any detail. The macros used to handle

CHAPTER 9 - ALTERNATIVE ARCHITECTURES

Babb's Strong's Burns & SASE
LGDF DataLink Kirkham

Suitable as a No No (1) Yes
requirements tool

Suitable for use Yes Yes Yes Yes
in design/
implementation

DFD graphics No No No No

DF system Macros Modula-2 Ada Trans-
management ADTs ADTs parent

Software (3) Yes Yes (4)
reusability

Target languages (6) Modula-2 Ada META
supported

Data stores Files Restricted Random (7)
representation RDB files

Environment Macros, DataLink, Data die., SYD,
contains libraries, libraries, libraries, SYP,
(9) compilers RDBMS, compiler editor,

compiler interpreter

Notes:
(1) Depends on the availability of libraries of suitable ADTs, etc., and on the

sophistication of the user interface.
(2) Only if functions are used is SAME considered usable for detailed design.
(3) Depends on the target language, but generally yes.

SAME

Yes

(2)

Yes

Trans-
parent

(5)

LEgis

(8)

SYD,
SYP

(4) Yes, through sub-programs, but not comprehensively designed into the language.
(5) Using functions.
(6) Languages such as Fortran, Cobol, C, and Pascal have been mentioned.
(7) Data flow management and files.
(8) Conceptual ADTs.
(9) Identifies the main facilities. 'Environment' is used informally.

Table VIII: A comparison of some coarse-grain data flow schemes.

228

CHAPTER 9 - ALTERNATIVE ARCHITECTIJRES 229

inter-process communication through data flow management, are essentially similar to

the modules used in the other systems. Like Strong's, Babb's system is susceptible to

deadlocks, although he makes no mention of the problem, or its possible occurrence, in

the literature.

All three systems lack a graphical interface. Third generation programs are not

considered a good medium for communicating with end-users, consequently all three

systems are considered more suitable for providing information at the 'back end' of the

analysis process, at the earliest. They are seen as particularly useful during design

where they can be used to model the implicit concurrency in an application.

Babb's scheme is designed for use with a number of languages to support the

production of implementation modules. The other two approaches can also be used in

this way if their respective single language is the target language.

SASE is considered a more useful scheme for undertaking analysis for the

following reasons:

• Unnecessary details (at the analysis stage) on the declaring and initialisation of

variables are abstracted out.

• The syntax of the META language is closer to English than the other languages.

• Interpreting operations provides better run time control of errors, and the reporting

of errors, but at the cost of slower execution.

Table VIII compares the discussed schemes in terms of some of the more

important features. SAME is also included, to provide further comparison.

9.5 Networks of von Neumann systems
The topic of networks of von Neumann machines is extremely large, and there

is no intention to discuss the topic here other than with a narrow focus.

Data flow diagrams can be related reasonably easily both to fine-grain data­

driven systems, and to networks of von Neumann machines. In fact, the relationship

of data flow diagrams to certain types of von Neumann computer networks, provides a

coarse-grain analogy to the relationship between fine-grain data flow program graphs

and the machines on which they are executed.

A suitable physical architecture for supporting executable diagrams could be a

local area network of von Neumann machines. One or more minispecs could be

mapped to each processor, in much the same way that Id code blocks are mapped to

physical domains in the Id machine [AK81]. Ideally there would be a high level of

interconnectivity between the processor nodes of the network, such as that found in the

ALICE reduction machine [CDF87], but it could be that a ring or Ethernet-type network

would be adequate for most purposes.

CHAPTER 9- ALTERNATIVE ARCHITECTURES 230

Each node, or processing element (PE), would need to carry out some data flow

management activities to alleviate bottlenecks. These are, at a minimum:

• Checking for adequate import sets.

• Extracting of objects from import data flows.

• Constructing export data flows from created component objects.

• Transferring exported data flows to the network data flow manager.

A possible conceptual structure for a PE is given in Figure 9.2, and contains:

processors and memory to handle input buffering (IB), output buffering (OB), data

flow management (DFM), process execution (processing unit, PU); local memory

(local memory unit, LMU), and cache storage (cache unit, CU). Although only one of

each component has been shown, more than one may be desirable for some to produce

a more balanced system. If the unit of execution is a MET A process, for example,

multiple PU s with associated CU s would be sensible.

Interconnection network

Figure 9.2: A conceptual structure for a coarse-grain processing element.

The scheduling of processes to PEs, and the management of data flows, should

be transparent to the user, and should not need to be programmed. This provides

considerable flexibility in such things as the number of PEs in the network, and the

topology of the network. Given that the network can be viewed as a local area network

operating with layered protocols, the DFM would add one level of protocol.

CHAPTER 9 - AL TERNA TNE ARCHITECTURES 231

9.6 Summary
This chapter has looked at four other proposed coarse-grain approaches, while

two more are mentioned in Appendix 2. Three of the schemes are identified as being

more suited to the design and implementation phases of the software process. The

fourth is SASE, which was the precursor to SAME. As only a very limited part of the

system was implemented, emphasis was placed on describing the basic concepts behind

SASE. It was viewed as coming somewhere between the three other discussed systems

and SAME.

It was suggested in the chapter that a network of von Neumann systems could

provide a good environment for coarse-grain processing. A conceptual architecture for

a processing node in such a network was put forward in Section 9.5.

10.1 Summary and conclusions
The research reported in this dissertation has explored the use of executable data

flow diagrams in the specification of software systems. Data flow diagrams are a

component of SSA, and are considered to be relatively easily understandable to end­

users.

Two fundamental benefits were considered to arise from being able to execute

data flow diagrams. The first was the potential to provide a prototyping tool which can

serve as a focus between analysts and users in the capturing of requirements. The

second was the imposition of strict (operational) semantics on the interpretation of data

flow diagrams. In general, data flow diagrams are used in an informal manner, which

frequently leads to their misuse.

It was considered important that the prototyping tool have certain desirable

properties, which will be enumerated shortly and expanded on in the following sub­

sections. Essentially, the needs were seen to exist to keep the tool both simple in terms

of the number of concepts that it incorporated, and flexible in terms of its ability to

model systems at various levels of abstraction and completeness.

A system has been produced which is considered to satisfy these two aims. A

prototype of this system has been developed, and this has been used to demonstrate the

general efficacy of the system.

232

CHAPTER 10- CONCLUSIONS AND FURTHER RESEARCH 233

10.1.1 Objectives of the research
The primary objective of this research, has been to investigate the use of

executable data flow diagrams as a prototyping tool during the analysis phase of the

software life cycle.

Implicit in this objective were the following further objectives:

• That the executable model, which is a significant output of a prototyping exercise, be

rigorous enough to form part of the specification, if required.

• That to serve as an adequate communications medium between analysts and end-

users, the tool should:

have a small number of (simple) concepts;

de-emphasise procedural details;

incorporate high levels of abstraction in a relatively simple manner;

make effective use of graphics.

• To be an effective prototyping tool at the analysis stage, as well as the list of features

just given, the tool should:

- provide 'soft' recovery from errors;

- be able to exercise 'incomplete' models.

The extent to which each of these objectives has been achieved will now be

considered.

10 .1. 2 That the executable model be
rigorous enough to form part of the specification

This objective has been achieved by incorporating strict operational semantics

into both the data flow diagrams and the underlying data object definitions used by an

application. The integration between the two is achieved by a binding between data

flow names in the diagrams and data object names in the object definitions, where a

data flow is bound to the data object with the same name (if it exists).

For each application model created, at least the following information is

obtainable from an analysis exercise for inclusion in a requirements specification:

• The application model - Consisting of:

- the application hierarchy of data flow diagrams;

- the set of all data object definitions used in the application;

the category the model falls in within the categorisation given in Section A2.5.

• A set of executable models - For each model:

the virtual leaf process data flow diagram, o;
execution traces from exercises carried out with given data;

the category the executable model falls in within the categorisation given in

Section A2.5.

CHAPTER 10- CONCLUSIONS AND FURTHER RESEARCH 234

10 .1. 3 That the tool should have
a small number of (simple) concepts

SAME has only two components for modelling applications: the data flow

diagram hierarchy, and the associated data object definitions. This is less than the

current SSA methods, which have three major components that also includes some

representation of the process logic (such as minispecs), as well as the previous two.

The two components in SAME are kept as distinct from each other as possible,

as data object definitions can be shared between applications. Integration is provided by

an implicit binding between each data-flow-data-object pair that have a common name.

10.1.4 That procedural details should be de-emphasised
Each of the three coarse-grain data flow systems discussed in Chapter 9, of

Babb [Ba82, Ba84, Ba85], Burns and Kirkham [BK86], and Strong [St87, St88],

respectively, use procedural languages for performing the transformations between

data flow import and export sets.

SAME does not require the explicit specification of procedural details using

modules in this way. Instead the procedural details are distributed throughout the data

object definitions, and are viewed, statically, as providing the semantics of the objects.

The fact, for example, that an object B is described as having 'four times the value of A'

(B <= 4 * A), is considered a more useful definition than 'B is a NUMBER' (B <= NUMBER),

with the procedural details given elsewhere.

The de-emphasising of procedural detail is helped by the fact that the demand­

driven program graphs constructed during execution, are automatically generated by

SAME. As a program graph is a straightforward evaluation of data object definitions,

treated as single-assignment language statements, the structure of the graph for a

particular object is essentially the same as its data dependency graph. This means that

an (end-)user can view the creation of an instance of an object, as a navigation (or

execution) of its dependency graph for a specific set of dependent object values.

10.1.5 That the tool should incorporate high levels
of abstraction in a relatively simple manner

Data flow diagrams provide a powerful abstraction method at both the process

and data flow level. A single process can be an abstraction of a complete data flow

diagram, or hierarchy of diagrams. Similarly, a data flow could be a complex data

object which is partitioned into its component objects within refining data flow

diagrams.

Both of these abstraction mechanisms are supported in SAME. In the case of

data flows, the refinement of flows in the import and export sets of exploded

processes, has been provided for by the introduction of the 'hook' data flow diagram

CHAPTER 10- CONCLUSIONS AND FURTHER RESEARCH 235

object. An instance of a hook bears the name of its associated abstracted data flow.

Component data flows are then constructed between the hook and the relevant

process(es).

Further support for abstracting out unwanted details is provided in SAME

through the use of 'unknown' objects in data flow diagrams, and "don't care"

definitions and values for data objects.

10.1.6 That the tool should make effective use of graphics
The interpretation to be made of this objective, is not one of psychological tests

of usage patterns, and usability, but a much simpler measure of the general extent to

which graphics have been used.

SAME is based on the concept of data flow diagrams providing the main focus

of an application model. The diagrams, principally through the processes, provide

windows through which relevant parts of the dictionary can be viewed, conceptually in

a similar way to subschemas providing views onto data bases. This emphasis on the

data flow diagrams as the primary interface has been incorporated into the prototype of

SAME, described in Chapter 7. As an example, Figures 7 .11 and 7 .22 contain different

views onto the same dictionary. The larger view provided by Figure 7 .11 is due to the

fact that the process through which the viewing is taking place is at a higher level of

abstraction than the process in Figure 7 .22.

The views through processes onto the dictionary can be in the form of

dependency graphs, a further graphical facility within SAME. As well as these, the

process hierarchy can be viewed graphically for both the application model and any

executable application model.

As graphics are provided for the two main facilities in SAME, the data flow

diagrams, and data objects (dependencies), the objective is felt to have been achieved.

10 .1. 7 That the tool should provide
'soft' recovery from errors

The general philosophy in SAME, is to provide 'soft' traps for all errors. This

implies that if an error occurs, it can be recovered from without the system crashing.

Obviously the trapping of all errors cannot be guaranteed, but in an attempt to identify

the most likely classes of errors, the following taxonomy was developed.

• Statically - When objects are being defined:

- During the creation of data flow diagrams - Illegal operations are trapped when

they occur during the creation of data flow diagrams. For example, SAME will

not allow a data flow to connect an external entity to a data store. Nor will it allow

two objects of the same type and name to be created in a diagram, and so on.

CHAPTER 10- CONCLUSIONS AND FURTHER RESEARCH 236

During the defining of data objects - Attempts to create an already existing data

object and syntax errors are trapped during the creation of the object, as are

certain other errors.

• Dynamically - When executing an application model:

The specified executable application model is structurally incomplete or invalid -

Attempts to execute the model may, for example, result in the creation of data

flow instances for which no importers exist. When such an error is trapped, the

user can stop the execution, amend the model, and continue from where the pause

was made.

Errors exist in the data objects - The most obvious of these are: missing data

object definitions; required data objects not being available in the context of a

process; data objects being of the wrong type for the specified operation; and

instance values being invalid for the required operation (such as zero for the

divisor in an arithmetic expression). SAME is meant to trap these errors, and in

each case request a suitable value from the user.

Comprehensive error trapping facilities have been included in the prototype of

SAME described in Chapter 7, and examples of error trapping in this system were

given in Sections 7.3.6 and 7.5. The provision of details on where and how the errors

arose was felt to be important to the trapping of errors, and an attempt has been made to

include such details in the prototype.

10.1.8 That the tool should be able
to execute 'incomplete' models

An 'incomplete' executable model is any of the following:

• One which contains 'unknown' objects or "don't care" definitions.

• The executable application data flow diagram has structural errors.

• The data object definitions contain errors, such as missing definitions, or incorrect

typing.

• A mixture of the above two.

Apart from unknown objects and "don't care" definitions, possible omissions in

the incomplete models coincide with the dynamic errors identified in the previous

section. This is not a coincidence as it is important that incomplete models can be

exercised without the system crashing.

'Unknown' objects and "don't care" values produce 'guaranteed' behaviour

during the exercising of a model.

CHAPTER 10- CONCLUSIONS AND FURTHER RESEARCH 237

10.1.9 Primary objective
As well as achieving the supporting objectives discussed in the earlier sections

of this chapter, meeting the primary objective required an evaluation of SSA and the

development of a strict interpretation of the component methods. The resulting rigorous

interpretation is considered to be consistent with the aims of SSA, and has been

obtained without the need to distort the underlying methods.

10.2 Further research
During the carrying out of the research, a number of possible areas for further

research were identified. Those which relate most closely to SAME, and which can

generally be viewed as extensions to the system, are listed below:

• The addition of a further abstraction facility to allow user-defined types, and

operations specific to those types, to be declared. This facility is commonly found in

functional languages [Ba85a, Ha 85, Tu86].

• The 'correctness' of an executable model is checked by running the model against

selected sets of (test) data. If a more general statement of the validity of the model is

to be made, this would require the use of formal methods. Currently work is being

carried out by France to provide a formal basis for validating executable data flow

diagram models [FDP87, FD88, FD88a, Fr88]. It is expected that SAME will be

one of the supported systems.

• The execution of data flow diagrams at mixed levels of refinement to support

recursion.

• An investigation of the use of data flow diagrams throughout the software

development process.

• Little has been said on the interface provided by SAME to the user, either in terms of

the method for building templates, or more general facilities. Work could usefully be

done in both of these areas.

• The development of a suitable extension to .tEgis for storing the details of screen and

report templates.

A number of sources have been used in compiling this glossary. The major

ones have been McDonald et al., De Marco, and Gane and Sarson [MRY86, De78,

GS79].

!Egis. The single-assignment, system dictionary language in SAME.

Abstract (data) type (ADT). A user-defined type.

Abstraction. The process of separating the inherent characteristics of a concept or
physical object from the concept or object (alternatively, the result of this
process).

Active dictionary. A dictionary which provides metadata during the editing,
compiling, and linking of programs; also supplies data for defining schemas
and subschemas.

Activity. A computation in the U-interpreter.

Activity name. A 4-tuple which specifies an activity in the U-interpreter.

Acyclic graph. A (data flow) graph which contains no cycles (loops).

Adequate (set of import data flows instances). A set of data flow instances
required to execute a process. (See Section 7.3.7.)

ADT. See abstract data type.

Aggregate type. A token type. consisting of two or more component parts.

Aggregating. The activity by which data flow diagram processes can be grouped
together to form a single process.

Algorithm. A procedure that leads to a guaranteed result.

239

GLOSSARY 240

Alias. 1. See synonym.
2. A name or symbol which stands for something and is not its proper name.

Analysis. The study of a business area prior to implementing a new set of (possibly
automated) procedures.

Analyst The person, group or organisation which performs the analysis of a system.

Ancestor. In SAME, process A is an ancestor of process B, if B is a transitive
refinement of A.

Application. Any part of an end-user required software system which can be viewed
in isolation; the part of a software system that is being, or is a candidate for
being, analysed; a program; a cohesive suite of programs for use in a single
enterprise activity or area.

Application data flow diagram. The (virtual) data flow diagram made up of the
following objects in an application data flow diagram hierarchy: all the external
entities; all the data stores; all the leaf level processes; all the data flows that are
connected to leaf level processes (and to external entities and data stores, if the
diagram is structurally invalid).

Application environment. In the system dictionary in SAME, the largest
environment in which objects have to be uniquely named; a system dictionary
contains one or more application environments.

Application network. An application virtual leaf data flow diagram, 8, viewed as a
network of shared processes with the data flows being first-in, first-out (FIFO)
queues.

Application virtual leaf data flow diagram (8). See application data flow
diagram.

Application's binding distance. See definition in Section A2.5.

Asymmetrical direct binding. See direct binding.

Asymmetrical transitive binding. See transitive binding.

Attribute. A data element which holds information about an entity.

Automated software environment. See computer-assisted software engineering
and software development environment.

Balancing. The relationship that exists between parent and child diagrams in a
properly levelled data flow diagram hierarchy; specifically the equivalence of
import and export data flows portrayed at a given lozenge on the parent diagram
and the net import and export data flows on the associated child diagram.

Binding. A measure of the strength of the interconnection of one object to a second
object.

Binding distance. The cardinality of the set of bindings between two data objects.

Call-by-name. The technique whereby a reference to a parameter is passed to a
subprogram.

GLOSSARY 241

Call-by-need. The technique whereby the value of an object (parameter) is not
calculated until the value is first required. Once calculated the value is available
for use within the scope of the object. Quite often described as a parameter
passing technique in subprograms. (See, also, on-demand.)

Call-by-name. The technique whereby the value of an object (parameter) is passed to
a subprogram.

CASE. See computer-assisted software engineering.

Coarse-grain (data flow systems). A data flow system in which the level of
operation is a module.

Code block name. Used in the U-interpreter to name the block in which a loop or
procedure occurs (assigned by the Id compiler).

Code-copying (data flow systems). Data flow systems where multiple instances
of nodes can be created by copying the node segment.

Coding. The phase in the life cycle during which data or a software version is
represented in a symbolic form that can be accepted by a processor.

Cohesion. Measure of the strength of association of the elements within a module.

Colouring. Matching data flow instances by giving them like 'markings' (colours).

Computer-aided software engineering. See computer-assisted software
engineering.

Computer-assisted software engineering (CASE). An umbrella term for
computerised methods and tools which are focussed on helping the software
engineer in the development of applications.

Conception. The point in time at which there is an initial perception of need for a
software version.

Conservation of data. A principle in which a process cannot create data not
dependent on its import flows, nor consume data without using that data to
produce one or more export flows.

Constructor. In SAME, a special type of function used in creating instances of data
objects.

Contained in. In SAME, a data object B is contained in a data object A, if B is a sub­
object of A, or Bis A.

Context. See definition in Section A2.4.1.

Context (data flow) diagram. Top level (Level 0) diagram of a data flow diagram
hierarchy; the data flow diagram that portrays all the net imports and exports of
the system, but shows no decomposition.

Context field. Used in the U-interpreter to define the environment in which an
operation is carried out.

Corrective maintenance. Maintenance performed to overcome identified faults.

GLOSSARY 242

Coupling. Measure of the interdependence of modules in a design structure; the
amount of information shared between two modules.

Currency. Within SAME, a cardinal valued tag added to each data flow instance. Data
flows within the same import (or export) set will have the same currency.

Cyclic graph. A (data flow) graph which contains, or can contain, cycles (loops).

Data administrator (data base administrator). A person (or group) responsible
for the control and integrity of a set of files (data bases).

Data aggregate. A named collection of data items (data elements) within a record.
(See also group.)

Data base. 1. A collection of interrelated data stored together with controlled
redundancy to serve one or more applications; the data are stored so that they
are independent of programs which use the data; a common and controlled
approach is used in adding new data and in modifying and in retrieving existing
data within a data base.
2. Data store that is accessed in more than one way, and that can be modified in
format without affecting the programs that access it.

Data dictionary. 1. A data base that describes the nature of each piece of data used in
a system, often including process descriptions, glossary entries, and other
items.
2. Set of definitions of data objects, data flows, data stores, external entities,
and processes referred to in a data flow diagram hierarchy.
3. See dictionary.

Data dictionary processor. Program that affects a set of data dictionary
procedures; specifically a program that allows definition control, and produces
listings portraying definitions and relationships among definitions.(See, also,
system dictionary processor.)

Data directory. A data base, usually machine-readable, that tells where each piece of
data is stored in a system.

Data-driven. When an operation in a data flow system is enabled by the availability
of its input data.

Data element. Primitive data object, one that is not decomposed to subordinate
objects.

Data flow. 1. A pipeline along which information of known composition is passed.
2. Object type in a data flow diagram.

Data flow computation. Where operations are executed in an order determined by
the data interdependencies and the availability of resources.

Data flow diagram (DFD). A network of related functions showing all interfaces
between components; a partitioning of a system and component parts; A data­
orientated graphical view of an application, usually with the following four
types of object: data flows, data stores, external entities, and processes

Data flow program. Is one in which the the ordering of operations is defined by the
data interdependencies.

GLOSSARY 243

Data flow (program) graph. A two-dimensional data flow program in which the
nodes are operations and the arcs define the paths taken by data tokens.

Data immediate-access diagram (DIAD). A picture of the immediate-access
paths into a data store showing what the users require to retrieve from the data
store without searching or sorting it.(See, also, data structure diagram.)

Data item. See data element.

Data object. A data flow; a component of a data flow; a data store tuple; or a
component of a data store tuple.

Data-orientated. Where emphasis is placed on the interdependencies between data
objects, rather than on functional details.

Data preserving. See definition in Section A2.4.7.

Data store. 1. Repository of data; a time-delayed data flow; a file.
2. Object type in a data flow diagram.

Data structure. One or more data elements in a particular relationship, usually used
to describe some entity.

Data structure diagram (DSD). A graphical tool to portray relationships between
data elements in a file structure. (See, also, data immediate-access diagram.)

Data type completeness. A language design principle, whereby all objects in a
program should be: passable as parameters; assignable; able to form
components of data structures; and able to be returned from functions.

Deadlock. Where two (or more) operations are blocked because of mutual
dependencies on data, such that no operation can have its data requirements
satisfied to supply the other dependent operation(s).

Deadly embrace. See deadlock.

Decision table. A tabular chart showing the logic relating various combinations of
conditions to a set of actions. Usually all possible combinations of conditions
are dealt with in the table.

Decision tree. A branching chart showing the actions that follow from various
combinations of conditions.

Declaration correspondence. A language design principle, whereby any object that
can be declared within the body of a program, should be able to be declared as a
parameter to a procedure.

Definition. The description of an object. Possibly in some formal notation.

Degree (of normalised relation). The number of domains making up the relation.
(If there are seven domains, the relation is 7-ary or of degree 7 .)

Delivery. The point in a life cycle at which a software version is released for
integration into the automated system of which it is a part.

Demand-driven. Where the data required by an operation in a data flow system is
demanded by that operation.

GLOSSARY 244
Definition. Syntactic unit in .!Egis; used principally to define data objects and

functions.

Definitional language. Where instructions are represented, or have an interpretation
as, definitions of objects.

Descendant. In SAME, process B is an descendant of process A, if B is a transitive
refinement of A.

Design. 1. The (iterative) process of taking a logical model of a system, together with
a strongly stated set of objectives for that system, and producing the
specification of a physical system that will meet those objectives.
2. The phase in a life cycle during which the preliminary design is refined and
expanded to contain more detailed descriptions of the processing logic, data
structures, and data definitions, to the extent that the design is sufficiently
complete to be implemented.

Detailed design. See design.

Development. The process by which user needs are transformed into a software
version that can be delivered.

DFD. See data flow diagram.

DIAD See data immediate-access diagram.

Dictionary. An organised repository for metadata, and possibly other objects of
interest.

Direct communication. A data flow architecture in which processing elements
appear to be permanently connected together.

Direct binding. See definition in Section 5.4.2.

Directed graph. G = (V, E), where Vis the set of nodes and Eis the set of arcs such
that all elements of E are distinct.

Directly bound.In the .!Egis definition, A<= B, c, for example, A is directly bound to
B, and is directly bound to c, but to no other objects.

Discrete data element. One which takes up only a limited number of values, each
of which usually has a meaning. See also continuous data element.

Domain. The set of all values of a data element that is part of a relation. Effectively
equivalent to a field or data element.

DSD. See data structure diagram.

Dynamic (data flow systems). Data flow systems in which nodes can be copied.

Dynamic model. A model which can be made to carry out a set of operations,
possibly in some specified sequence.

Dynamic type checking. Where the type of an object is derived during the
execution of the program in which it appears.

EE. See external entity.

GLOSSARY 245

Enabled. In a data flow system, the point when an operation has a full set of input
tokens, and is able to execute.

End-user. The person, group, or enterprise, who will be the user(s) of a proposed
system.

Enterprise. Any organisation, or company, etc.

Entity. 1. External entity: a source or destination of data on a data flow diagram.
2. Something about which information is stored in a data store; e.g., customer,
employees.

Environment definition. In SAME, a system dictionary definition which operates
on application environments.

Executable dictionary. An active dictionary in which the metadata is executable.

Execution. I. A mode of use in SAME, when an executable application model is
exercised.
2. The running of a computer program.

Exploded (process). See refined (process).

Explosion tree. A hierarchy of data flow diagrams (or processes).

Export. I. A data flow output by an external entity, data store, or process.
2. A meta-operation in SAME, which is used in data stores.

Export inherited. In SAME, a data flow D, which is exported by process A, is
export inherited if it is also exported by process B, such that B is a descendant of
A.

Export interface. See definition in Section 4.4.

External entity (EE). I. An object on the periphery of the system being analysed;
part of a system which is not being considered in detail in the analysis ..
2. Object type in a data flow diagram.

Factored. A function or logical module is factored when it is decomposed into
subfunctions or submodules

File. Data store.

Fine-grain (data flow systems). A data flow architecture at the level of primitive
functions, such as ADD, MULTIPLY, and DIVIDE. Equivalent level to
von Neumann machines in control flow computing.

First normal form (INF). A relation without repeating groups (a normalised
relation but not meeting the stiff er tests for second or third normal form.

Formal. A formal description of an object is a description that is done with recourse to
formal methods.

Formal method. A method with a rigorous mathematical basis.

Formal specification. A specification which has been defined completely in a
language that is mathematically precise in both syntax and semantics.

GLOSSARY

Full export data preserving. See definition in Section A2.4.6.

Full functional completeness. See definition in Section A2.4.5.
Full functional dependence. See definition in Section A2.4.8.

Full functional independence. A process which is not fully functionally
dependent.

Full functional incompleteness. A process which is not fully functionally
complete.

Full import data preserving. See definition in Section A2.4.4.

246

Fully active dictionary. An active dictionary which provides facilities for all the
software of the enterprise.

Functional. 1. Functional cohesion: used to describe a module all of whose
components contribute toward the performance of a single function.
2. Functional dependence: a data object A is functionally dependent on another
data element B if given the value of B, the corresponding value of A is
determined.

Functional completeness. See definition in Section A2.4.3.

Functional primitive. Lowest-level component of a data flow diagram; a process
that is not further decomposed to a subsequent level.

Functional specification. Classical product of analysis; description of a system to
be implemented.

Graph reduction. A demand-driven scheme in which the names of objects are
replaced by references, thus forming a graph of references.

Group (item). A data structure composed of a small number of data elements, with a
name, referred to as a whole. (See also data aggregate.)

Group (data) object. A structure containing a multiple number of a tuple of objects.

Heuristic. A procedure that often leads to an expected result, but makes no guarantee
to do so.

Homonym. An object which has the same name as a different object.

Immediate access. Retrieval of a piece of data from a data store faster than it is
possible to read through the whole data store searching for the piece of data or
to sort the data store.

Implementation. 1. See coding.
2. Executable version of an application.

Import. 1. An input data flow to an external entity, data store, or process.
2. A meta-operation in SAME, which is used in data stores.

Import inherited. In SAME, a data flow D, which is imported by process A, is
import inherited if it is also imported by process B, such that B is a descendant
of A.

GLOSSARY 247

Incremental model. Model of a portion of a system; model of a portion of a system
as it is proposed in an associated change request; description of a proposed
modification to a structured specification.

Import Interface. See definition in Section 4.4.

Index. See key.

Informal. An informal description of an object is a description that is done without
recourse to formal methods.

Information sink. Net receiver of system information.

Information Systems work and Analysis of Changes (ISAC). A
methodology developed in Scandinavia, in which information systems being
analysed are specified at three levels: change analysis; activity studies; and
information analysis.

Initiation number. Used by the CT-interpreter to identify the loop in which an
operation occurs.

Instruction number. Identifies an instruction within a U-interpreter activity.

Integrated programming support environment (IPSE). A software
development environment restricted to part of the software life-cycle.

Integrated project support environment (IPSE). See software development
environment.

Invalid data flow diagrams. In SAME, a data flow diagram that is neither
structurally complete nor structurally incomplete.

IPSE. See integrated programming support environment and integrated project support
environment.

ISAC. See Information Systems work and Analysis of Changes.

Key. A data element (or group of data elements) used to find or identify a record
(tuple).

Lazy evaluation. An extended form of call-by-need, where the individual elements
in a group object (stream) are only evaluated when that particular element is
required. (In call-by-need, the complete group object would be evaluated when
a reference was made to any component of it.)

Level O (data flow) diagram. See context (data flow) diagram and Level n (data
flow) diagram.

Level n (data flow) diagram. 1. Indication of the position of a data flow diagram
(process) in the application hierarchy of data flow diagram (processes) in SSA.
2. Indication of the level of a definition within the system dictionary in SAME.

Levelled. Portrayed in a hierarchical fashion such that the relationships among
elements are presented as a tree structure.

Levels. See Level n (data flow) diagram.

Leaf data flow set. See definition in Section 4.6.

GLOSSARY

Leaf process. A process in a data flow diagram that is not refined.

Leaf process set. See definition in Section 4.5.2.

Life cycle. I. See software development process.

248

2. The period of time from the initial perception of need for a software version
to its retirement.

Logical. I. Implementation-independent; pertaining to the underlying policy rather
than to any way of effecting that policy.
2. Nonphysical (of an entity, statement, or chart): capable of being implemented
in more than one way, expressing the underlying nature of the system referred
to.
3. Logical cohesion: used to describe a module which carries out a number of
similar but slightly different functions - a poor module strength.

Maintenance. Modification of a software version after delivery to correct faults,
improve performance or other attributes, or meet new requirements.

MET A. Pseudocode, or structured English, type language for specifying minispecs in
SASE.

Metadata. The data in a dictionary which describes the data, programs, etc., of an
enterprise; data which describes data.

Method. A set of rules, guidelines, and techniques for carrying out a process.

Methodology. A general philosophy for carrying out a process; comprised of
procedures, principles, and practices.

Minispec. Transform description; statement of the policy governing transformation of
input data flow(s) into output data flow(s) at a given functional primitive.

Missing. In SAME, the non-existent value of an export data flow that has no instance
generated during the invocation of its exporting process.

Model. I. A representation which specifies some but not all of the attributes of an
object.
2. Representation of a system using data flow diagrams, data dictionary, data
structure diagrams,etc.

Modular programming. A programming discipline in which a program is
constructed from a number of smaller units or modules.

Module. I. A logical module: a function or set of functions referred to by name.
2. A physical module: a contiguous sequence of program statements bounded
by a boundary element and referred to by name.

Morphology. The study of an object's structure and form without concern for its
function.

Mutual recursion. See recursion (2).

Narrative text. Free-form text. Natural language text.

Natural language. Language spoken by people, as opposed to a formal language, a
language used by computers, or a metalanguage (a limited facility for rigorous
description of a given logic).

GLOSSARY 249

Nodes. A module which has associated firing or enabling conditions that specify the
input and output requirements for its activation.

Normalised (relation). A relation (file), without repeating groups, such that the
values of the data elements (domains) could be represented as a two­
dimensional table.

Null (null). A special polymorphic empty value.

Object. An encapsulation of data and/or processing activity which reflects some entity
in the software or its operational environment.

Object-oriented methodology. A methodology that represents the organisation of
a piece of software as a layering of successively more detailed objects.

On-demand. When a data object first has its value calculated is when that object is
first met in any expression. Once its value has been calculated, that value is
available within the scope of the variable.

On-line. Connected directly to the computer so that input, output, data access, and
computation can take place without further human intervention.

Operation. Use of a version in its operational environment.

Operation and maintenance. Use of a software system in its operational
environment; involves monitoring for satisfactory performance and modification
as necessary to correct problems or respond to changed requirements.

Orthogonal. Property of a representational technique or descriptive method in which
the functions of the various tools used do not overlap each other.

Packet communication. A data flow architecture based on the use of packets for
transferring tokens around the system.

Parametric polymorphism. A language in which a generic function can be defined
with a type parameter. Given an implicit or explicit typed object, the function
replaces the type parameter with the type of that object..

Passive dictionary. A dictionary which provides a documentation facility for the
description of a system.

Perfective maintenance. Maintenance performed to improve performance,
maintainability, or other software attributes.

Persistence. The concept, or phenomenon, where an object (value) exists for as long
as it is needed, without the need to explicitly save the object in a file or data
base.

Persistent store. A one-level store in which data persists as long as it is needed.
(See Persistence.)

Petri networks (Petri nets). A network of related functions in a business
operation in which people are portrayed as nodes, and documents as
connections between nodes.

Phantom node. An interface object to the outside environment, found in a fine-grain
scheme of Davis and Keller [DK82]. Similar in principle to an external entity.

GLOSSARY

Phase. A period of time during a life cycle.

Physical. 1. Implementation-dependent.

250

2. To do with the particular way data or logic is represented or implemented at a
particular time. A physical statement cannot be assigned more than one real­
world implementation. (See also logical.)

Polymorphic (language). A language, like JEgis, where an object can take on
values of any one of a chosen set of types.

Preliminary design. The phase in a life cycle during which alternatives are analysed
and the general architecture of a software version is defined; typically includes
definition and structuring of modules and data, definition of interfaces, and
preparation of timing and sizing estimates.

Primary key. A key which uniquely identifies a record (tuple).

Primitive function. An JEgis system function which has access to the execution
state of an application.

Procedural abstraction. A language design principle, which requires that any piece
of code within the same program block in a program can be encapsulated in a
procedure.

Process (transform, transformation). 1. Transformation of input data flow(s)
into output data flow(s).
2. A set of operations transforming data, logically or physically according to
some process logic.
3. An object type in a data flow diagram.

Process' binding distance. See definition in Section A2.4.10.

Process description. Minispec; statement of the policy governing transformation of
input data flow(s) at a given functional primitive.

Process hierarchy. The hierarchy made up of data flow processes and their refining
processes.

Process logic. Description of how input (import) data flows are mapped to output
(export) data flows in data flow diagram processes.

Process metamodel. A model (language) used to describe software process models.

Process set. See definition in Section 4.5.2.

Product. Results created by a process.

Program. Specifies a set of operations, essentially unordered, which must be carried
out, in an appropriate order if need be, on a set of input data, in order to
produce the desired set of output data.

Prototype. 1. An instance of a software version that does not exhibit all the properties
of the final system; usually lacking in terms of functional or performance
attributes.
2. See model.

Prototyping. A method that organises the creation and evolution of a software
version as a series of prototypes. (Can also be a methodology.)

GLOSSARY 251

Pseudocode. A tool for specifying program logic in English-like-readable form
without conforming to the syntactical rules of any particular programming
language.

Race condition. Where sequenced data in a system can become out of sequence by
data overtaking other data through following a quicker path (of operations)
through the system.

Recursion. I. Where an object is defined, or evaluated, in terms of itself.
2. See mutual recursion.

Referential completeness. See definition in Section A2.4.2.

Referential transparency. A property of a programming language, and its
execution environment, whereby an object can be replaced by any expression of
the same value, anywhere that the object appears in a program, without
changing the results of the execution of the program.

Refine. The process of refinement ('to refine').

Refined (process). A data flow diagram process which is refined into a (new) data
flow diagram.

Refinement. A more detailed description of an object.

Refining (data flow diagram). A data flow diagram which is the refinement of a
process; any Level n data flow diagram, where n ;;:: I.

Relation. A file represented in normalised form as a two-dimensional table of data
elements.

Release. A software version that is delivered for integration into an automated system.

Relational data base. A data base constructed out of normalised relations only.

Requirements definition. The phase in the life cycle during which the
requirements, such as the functional and performance capabilities, are defined.

Requirements specification. 1. See requirements definition.
2. See software requirements specification.

Retirement. The point in a life cycle at which a software version is removed from
service.

Ring network. Form of local area data communications network in which the
topology is in the shape of a ring.

SADT. See structured analysis design technique.

SAME. See Structured Analysis Modelling Environment.

SASE. See Structured Analysis Simulated Environment.

Schema. Set of relationships among data elements in a complex file structure.

Second normal form (2NF). A normalised relation in which all of the non-key
domains are fully functionally dependent on the primary key.

GLOSSARY 252

Secondary index. An index to a data store based on some attribute other than the
primary key.

Selection. Picking a methodology, or set of alternative methodologies, for use on a
specific project.

Semantics. The model (including properties and operations on that model), plus the
denotations to designated real world things and actions.

Side effect. The lowering of a module's cohesion due to its doing some subfunctions
which are "on the side," not part of the main function of the module.

Single-assignment (programming) language. A language in which each
identifier in a program can only have one value assigned to it during a single
invocation of the program.

Software. The executable code, all of its associated documentation and documents
that trace the history of its creation and evolution.

Software development environment (SDE). An integrated set of tools and
methods in which software can be developed.

Software (development) process. The collection of related activities involved in
the production of a software system.

Software engineer. A computer professional involved in the development of
software using engineering concepts. More usually applied to developers
(designers and programmers) than analysts.

Software engineering. An umbrella term for an engineering approach to the
development of software.

Software engineering environment (SEE). See software development
environment.

Software requirements specification. The point in time at which a version is
described in a document that defines, in a relatively complete, precise, and
verifiable manner, the requirements of a software version.

Software life cycle. See life cycle.

Software system. A component of an automated system that is realised as
executable code.

Specification. J. See software requirements specification.
2. A mode of use in SAME, when objects are defined.

Specification increment. Description of a proposed change of requirement in a
format (data flow diagrams, data dictionary, structured English, data structure
diagrams, etc.) that facilitates integration into the structured specification; also
specification increment document(SID).

SSA. See structured systems analysis.

Static (data flow systems). Data flow systems in which nodes cannot be copied.

Static type checking. Where the type of an object can be derived at compilation
time.

GLOSSARY 253

Step-wise refinement. The decomposition, ideally in parallel, of the functional and
data elements of a problem or program.

Stream. A sequence of like objects.

String reduction. A demand-driven scheme in which the names of objects are
replaced by expressions at the point of demand; essentially a rewrite scheme.

Strong typing. A language in which all objects are type consistent, and in which the
translator (compiler or interpreter) can guarantee that the programs it receives
can execute without type errors.

Structurally complete (data flow diagram). A data flow diagram which satisfies
the rules in Section 4.4.1.

Structurally complete application. An application in which all the data flow
diagrams satisfy the structurally complete data flow diagram rules of
Section 4.4.1.

Structurally incomplete (data flow diagram). A data flow diagram which
satisfies the rules in Section 4.4.2.

Structurally incomplete application. An application with at least one data flow
diagram that does not satisfy the structurally complete rules of Section 4.4.1,
but which satisfies the structurally incomplete rules of Section 4.4.2.

Structurally invalid (data flow diagram). A data flow diagram which is neither
structurally complete nor structurally incomplete.

Structurally invalid application. An application which is neither structurally
complete nor structurally incomplete.

Structure chart. Graphic technique for portraying a hierarchy of modules and the
relationships among them (specifically their connections and coupling).

Structured. Limited in such a way as to increase orthogonality; arranged in a top­
down hierarchy.

Structured Analysis Design Technique (SADT). A proprietary data-flowing
convention of SofTech Inc, Waltham, Massachusetts.

Structured Analysis Modelling Environment (SAME). An analysis
prototyping tool based on executable data flow diagrams, and executable data
object definitions resident in a system dictionary.

Structured Analysis Simulated Environment (SASE). An analysis
prototyping tool based on executable data flow diagrams, executable MET A
minispecs, and an active/executable system dictionary.

Structured design. Design technique that involves hierarchical partitioning of a
modular structure in a top-down fashion, with emphasis on reduced coupling
and strong cohesion.

Structured English. 1. A subset of the English language with limited syntax,
limited vocabulary, and an indentation convention to call attention to logical
blocking; a metalanguage for process specification.
2. A tool for representing policies and procedures in a precise form of English
using the logical structures of structured coding. (See also pseudocode.)

GLOSSARY 254

Structured programming (coding). The construction of programs using a small
number of logical constructs, each one-entry, one-exit, in a nested hierarchy.

Structured Specification. End-product of structured analysis; a target document
(description of a new system of automated and manual procedures) made up of
data flow diagrams, data dictionary, structured English process descriptions,
data structure diagrams, and minimal overhead.

Structured systems analysis (SSA). A collection of techniques for performing
analysis based on structured techniques and tools, including data flow
diagrams, a data dictionary, and process specifications (using, for example,
rninispecs).

Structured techniques. Those techniques of the genre of structured systems
analysis and structured design.

Subschema. Portion of a schema; description of a private model of a file structure as
conceived by a single user.

Synonym. A different name for an existing data dictionary data object.

SYD. See system dictionary (2).

SYP. See System dictionary processor.

System. Connected set of procedures (automated procedures, manual procedures, or
both).

System dictionary. 1. See executable dictionary.
2. (SYD) One of the two primary components of SAME.

System dictionary processor. 1. A (data) dictionary processor which also
executes the metadata as programming statements.
2. One of the two primary components within SAME (SYP).

System model. Representation of a system using data flow diagrams, data
dictionary, data structure diagrams, etc.

Tagging. See colouring.

Target document. The end-product of analysis; description of a system to be
implemented - in order to be characterised a target document, the description
should include all of the criteria for project success.

Technique. An abstraction for a methodology, method, approach, tool, or mixture of
these. Used when there is no desire to be more specific.

Technology. Collection of techniques and knowledge underlying some process.

Template. A specification of a screen or report format in lEgis.

Test and integration. The phase in a life cycle during which the conformance of the
version to its requirements is assessed and the version is integrated into the
larger (software or automated) system of which it is a part.

Third normal form (3NF). A normalised relation in which all of the non-key
domains are fully functionally dependent on the primary key and all the non-key
domains are mutually independent.

GLOSSARY 255

Tight English. A tool for representing policies and procedures with the least possible
ambiguity. (See also structured English.)

Token. A data object value transmitted between operation nodes along a connecting
arc.

Token matching. A data flow machine in which tokens are kept in a token store until
a full set of tokens is available to create an instruction.

Token storage. A data flow machine in which each token is stored with its
destination instruction.

Tool. Software or documentation method which assists in carrying out a task or
activity.

Top-down (development). A development strategy whereby the executive control
modules of a system are coded and tested first, to form a 'skeleton' version of
the system; and when the system interfaces have been proven to work, the
lower-level modules are coded and tested.

Top-down programming. An approach to programming in which the resulting
program is hierarchically structured as a result of successive refinements.

Top-down refinement. See top-down (development) and top-down programming.

Transaction analysis. A design strategy for original derivation of a modular
structure from a data flow diagram describing the policy; a design strategy that
is applicable to portions of the data flow diagram where there is parallel flow of
similar data items by type.

Transaction history. An application virtual leaf data flow diagram, o, viewed as the
history of a transaction. The data flow diagram defines all the possible
operations in the history of the transaction.

Transform. See process.

Transformation. See process.

Transform analysis. A design strategy for original derivation of a modular structure
from a data flow diagram describing the policy; a strategy that is applicable for
the transform portions that correspond to the shell of the structure chart (input
legs, output legs, and location of the president module).

Transform description. Statement describing the logical policy that governs
transformation of input data flow(s) into output data flow(s) at a given
functional primitive.

Transitive binding. See definition in Section 5.4.2.

Transitive refinement. See definition in Section 5.4.2.

Tuple. 1 Specific sets of values for the domains making up a relation. The "relational"
term for a record. (See also segment.)
2. A data object in lEgis.

Type. An attribute of an object which define its structure and the operations which can
be carried out with or on the object.

GLOSSARY 256

Undefined. An object in SAME for which no definition exists.

Unknown. In SAME a type of object in data flow diagrams which has an
interpretation as either an external entity or a process, depending on the
requirements of the user, and its importing and exporting characteristics. An
object of this type explicitly signifies that the application data flow diagram is
incomplete.

User. The person, group or enterprise which uses an analysis tool. See analyst. See,
also, end-user.

User type, Where the type of an object is the (set) union of at least two other types.

Validation. 1. Analysing a version to assure that it meets user needs.
2. The establishment of the fitness or worth of an object for its operational
mission.

Verification. 1. Analysing a version to assure that it meets its requirements.
2. To establish the truth of the correspondence between an object and its
specification.

Version. Any instance of a software system.

Volatility. A measure of the rate at which a file's contents change, especially in terms
of addition of new records and deletion of old.

Waterfall model. A particular model of the software process attributed to Royce
[Ro70]. (See Figure 1.1, p. 11.)

Well-formed context. See definition in Section A2.4.1.

[AAO82] T. Ajisaka, K. Agusa & Y. Ohno, 'Integral Software Development through
a Functional Language', in [Oh82], 1982, 33-38.

[ABC83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott & R.
Morrison, 'An Approach to Persistent Programming', Computer Journal,
26(4), 1983, 360-365.

[Ac82] W. B. Ackerman, 'Data Flow Languages', Computer, 15(2),
February 1982, 15-25.

[ACO85] A. Albano, L. Cardelli & R. Orsini, 'Galileo: A Strongly-Typed,
Interactive Conceptual Language', ACM Transactions on Database
Systems, 10(2), June 1985, 230-260.

[Ad88] M. Adler, 'An Algebra for data Flow Diagram Process Decomposition',
IEEE Transactions on Software Engineering, SE-14(2), February 1988,
169-183.

[AD81] M. W. Alford & C. G. Davis, 'Experience with the Software Development
System', in [Hti81], 1981, 295-303.

[AG78] Arvind & K. P. Gostelow, The Id Report: An Asynchronous Language
and Computing Machine, TR-114, Department of Computer and
Information Science, University of California at Irvine, California,
September 1978.

[AG82] Arvind & K. P. Gostelow, 'The U-Interpreter', Computer, 15(2),
February 1982, 42-49.

[AHN82] N. Ahituv, M. Hadass & S. Neumann, 'A Flexible Approach to
Information System Development', MIS Quarterly, June 1984, 69-78.

[AK81] Arvind & V. Kathail, 'A Multiple Processor Data Flow Machine that
Supports Generalized Procedures', Proceedings of the 8th Annual
International Symposium on Computer Architecture, 12-14 May 1981,
Minneapolis, Minnesota, SIGARCH, 9(3), 1981, 291-302.

[Al77] M. W. Alford, 'A Requirements Engineering Methodology for Real-Time
Processing Requirements', IEEE Transactions on Software Engineering,
SE-3(2), February 1977, 60-69.

[Al78] M. W. Alford, 'Software Requirements Engineering Methodology
(SREM) at the Age of Two', Proceedings of the 2nd International
Computer Software and Applications Conference, IEEE Computer Society

257

BIBLIOGRAPHY 258

[Al84]

[Al86]

[ALM82]

[AMP86]

[ANS83]

[Ao87]

[AP87]

[As84]

[ASS85]

[Ba78]

[Ba82]

[Ba84]

[Ba85]

[Ba85a]
[BB86]

[BBD77]

[BCS77]

[Be84]

[BG81]

[BGS84]

[BGW78]

[Bh86]

Press, New York, 1978, 332-339.
M. Alavi, 'An Assessment of the Prototyping Approach to Information
Systems Development', Communications of the ACM, 27(6), June 1984,
556-563.
G. L. Alexander, An Algebra for Structured Systems Analysis, Honours
Project, Department of Computer Science, Massey University, 1986.
F. W. Allen, M. E. S. Loomis & M. V. Mannino, 'The Integrated
Dictionary/Directory System', Computing Surveys, 14(2), June 1982,
245-286.
M. P. Atkinson, R. Morrison & G. D. Pratten, 'A Persistent Information
Space Architecture', 10th IFIP World Congress, Dublin, September 1986.
The Programming Language Ada Reference Manual, American National
Standards Institute, ANSIJMIL-STD-1815A-1983, Springer-Verlag,
New York, 1983.
M. Aoyarna, 'Concurrent Development of Software Systems: A New
Development Paradigm', SIGSOFT, Software Engineering Notes, 12(3),
July 1987, 20-23.
'Case Study: The Use of Formal Specification and Rapid Prototyping to
Establish Product feasibility', Information and Software Technology,
29(7), September 1987, 388-394.
Y. Asscher, 'Describing Businesses with Data Dictionaries',
Data Processing, 26(6), July/August 1984, 17-19.
H. Abelson, G. J. Sussman & J. Sussman, Structure and Interpretation of
Computer Programs, The MIT Press, Cambridge, Massachusetts, 1985.
J. Backus, 'Can Programming Be Liberated From the von Neumann
Style? A Functional Style and its Algebra of Programs', ACM Turing
Award Lecture, Communications of the ACM, 21(8), August 1978,
613-641.
R. G. Babb II, 'Data-Driven Implementation of Data Flow Diagrams',
Proceedings Sixth International Conference on Software Engineering,
September 1982, 309-318.
R. G. Babb II, 'Parallel Processing with Large-Grain Data Flow
Techniques', Computer, 17(7), July 1984, 55-61.
R. G. Babb II, 'A Data Flow Approach to Unifying Software
Specification, Design and Implementation', Proceedings Third
International Workshop on Software Specification and Design, London,
26-27 August 1985, IEEE, 9-13.
R. Bailey, 'A Hope Tutorial', Datamation, 10(8), August 1985, 235-258.
Software Engineering 86, Eds D. Barnes & P. Brown, Peter Peregrinus,
London, 1986.
T. E. Bell, D. C. Bixler & M. E. Dyer, 'An Extendable Approach to
Computer-Aided Software Requirements Engineering', IEEE Transactions
on Software Engineering, SE-3(2), February 1977, 49-60.
'The British Computer Society Data Dictionary Systems Working Party
Report', Data Base, 9(2), Fall 1977, 2-24.
E. H. Bersoff, 'Elements of Software Configuration Management', IEEE
Transactions on Software Engineering, SE-10(1), January 1984, 79-87.
R.M.Burstall & J. A. Goguen, 'An Informal Introduction to Specifications
Using Clear', The Correctness Problem in Computer Science,
Eds R. S. Boyer & J. Strother Moore, Academic Press, 1981, 185-213.
B. W. Boehm, T. E. Gray & T. Seewaldt, 'Prototyping Versus
Specifying: A Multi project Experiment', IEEE Transactions on Software
Engineering, SE-10(3), May 1984, 290-302.
R. Balzer, N. Goldman & D. Wile, 'Informality in Program
Specifications', IEEE Transactions on Software Engineering, SE-4(2),
February 1978, 94-103.
L. Bhabuta, 'Standards and System Development', Data Processing,
28(7), September 1986, 344-350.

BIBLIOGRAPHY 259

[BH84] S. B0dker & J. Hammerskov, ISAC - A Case Study of Systems
Description Tools, DAIMI PB-172, Computer Science Department,
Aarhus University, April 1984.

[BHP84] F. W. Beichter, 0. Herzog & H. Petzsch, 'SLAN-4- A Software
Specification and Design Language', IEEE Transactions on Software
Engineering, SE-10(2), February 1984, 155-162.

[BJ66] C. Bohm & G. Jacopini, 'Flow Diagrams, Turing Machines and
Languages With Only Two Formation Rules', Communications of the
ACM, 9(5), May 1966, 366-371.

[BK86] A. Burns & J. A. Kirkham 'The Construction of Information Management
System Prototypes in Ada', Software-Practice and Experience, 16(4),
April 1986, 341-350.

[BKM84] Approaches to Prototyping, Eds R. Budde, K. Kuhlenkamp, L.
Mathiassen & H. Zi.illighoven, Proceedings of the Working Conference on
Prototyping, Namur, October 1983, Springer-Verlag, Berlin, 1984.

[Bl84] C. R. Black, 'LINC - A Fresh Perspective on Information Systems
Development', Joint International Symposium on Information Systems,
9-11 April, Sydney, 1984.

[BJK86] W. Bruyn, R. Jensen, D. Keskar & P. Ward, 'ESML: An Extended
Systems Modeling Language Based on the Data Flow Diagram', in
[WD86], 1986, 58-67.

[BL72] L.A. Belady & M. M. Lehman, 'An Introduction to Growth Dynamics',
Proceedings of the Conference on Statistical Computer Performance
Evaluation, Brown University, 1971, in Statistical Computer Performance
Evaluation, Academic Press, New York, 503-512.

[BMS84] On Conceptual Modelling, Eds M. L. Brodie, J. Mylopoulos & J. W.
Schmidt, Springer-Verlag, New York, 1984.

[Bo75] B. W. Boehm, 'Some Experience with Automated Aids to the Design of
Large Scale Reliable Software', IEEE Transactions on Software
Engineering, SE-1(1), January 1975, 125-133.

[Bo76] B. W. Boehm, 'Software Engineering', IEEE Transactions on Computers,
C-25(12), December 1976, 1226-1241.

[Bo79] B. W. Boehm, 'Guidelines for Verifying and Validating Software
Requirements and Design Specifications', EURO !PIP 79,
Ed. P.A. Samet, North-Holland, IFIP, 1979, 711-719.

[B085] N. D. Birrell & M. A. Ould, A Practical Handbook for Software
Development, Cambridge University Press, 1985.

[Bo86] G. Booch, 'Object-Oriented Development', IEEE Transactions on
Software Engineering, SE-12(2), February 1986, 211-221.

[Bo86a] B. W. Boehm, 'A Spiral Model of Software Development and
Enhancement', in [WD86], 1986, 14-24.

[Bo87] P. 0. Bobbie, 'Productivity through Automated Tools', SIGSOFT,
Software Engineering Notes, 12(2), April 1987, 30-31.

[BOI86] J. J. Baroudi, M. H. Olson & B. Ives, 'An Empirical Study of the Impact
of User Involvement on System Usage and Information Satisfaction',
Communications of the ACM, 29(3), March 1986.

[BOT85] D. Bolton, P. Osmon & P. Thomson, 'A Data Flow Methodology for
System Development', Proceedings Third International Workshop on
Software Specification and Design, London, 26-27 August 1985, IEEE,
22-24.

[Br77] P. Brinch Hansen, The Architecture of Concurrent Programs,
Prentice-Hall, New Jersey, 1977.

[Br86] I. Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley, Wokingham, 1986.

[BR86] K. Behan & D. Ruscoe, Understanding Pick, The Ultimate Corporation,
Melbourne, 1986.

[BS81] Method of Defining Syntactic Metalanguage, British Standards Institution,
BS 6154, 1981.

BIBLIOGRAPHY 260

[BS84] M. H. Brown & R. Sedgewick, 'A System for Algorithm Animation',
Technical Report No. CS-84-1, Department of Computer Science, Brown
University, Providence, Rhode Island 02912, 1984.

[Bu81] F. J. Burkowski, 'A Multi-User Data-Flow Architecture', Proceedings of
the 8th Annual International Symposium on Computer Architecture,
12-14 May 1981, Minneapolis, Minnesota, SIGARCH, 9(3), 1981,
327-340.

[BW79] T. Berrisford & J. Wetherbe, 'Heuristic Development: A Redesign of
Systems Design', MIS Quarterly, March 1979, 11-19.

[BWW88] J. Billington, G. R. Wheeler & M. C. Wilbur-Ham, 'PROTEAN: A
High-Level Petri Net Tool for the Specification and Verification of
Communication Protocols', IEEE Transactions on Software Engineering,
SE-14(3), March 1988, 301-316.

[Ca84] L. Cardelli, Basic Polymorphic Typechecking, AT&T Bell Laboratories,
Computing Science Technical Report No. 112, Murray Hill, New Jersey,
September 1984.

[Ca86] J. R. Cameron, 'An Overview of JSD', IEEE Transactions on Software
Engineering, SE-12(2), February 1986, 222-240.

[Ca86a] L. Cardelli, A Polymorphic A-calculus with Type: Type, Digital Systems
Research Center, Palo Alto, California, May 1986.

[CB82] G. Collins & G. Blay, Structured Systems Development Techniques:
Strategic Planning to System Testing, Pitman, London, 1982.

[CCA86] V. E. Church, D. N. Card, W.W. Agresti & Q. L. Jordan, 'An Approach
for Assessing Software Prototypes', SIGSOFT, Software Engineering
Notes, 11(3), July 1986, 65-76.

[CCE81] Systems Analysis and Design: A Foundation for the 1980's, Eds W.
Cotterman, J. D. Couger, N. L. Enger & F. Haroki, Elsevier, Amsterdam,
1981.

[CCK82] J. D. Couger, M. A. Colter & R. W. Knapp, Advanced System
Development/Feasibility Techniques, John Wiley & Sons, New York,
1982.

[CD81] R. M. Curtice & E. M. Dieckmann, 'A Survey of Data Dictionaries',
Datamation, March 1981, 135-158.

[CD84] B. E. Casey & B. Dasarathy, 'Modelling and Validating the Man-Machine
Interface', Software-Practice and Experience, 12(6), June 1982,
557-569.

[CDF87] M. D. Cripps, J. Darlington, A. J. Field, P. G. Harrison and M. J. Reeve,
'The Design and Implementation of ALICE: A Parallel Graph Reduction
Machine, May 1987.
(To appear in Dataflow and Reduction Architectures, Ed. S.S. Thakkar,
IEEE Press.)

[CDJ84] F. B. Chambers, D. A. Duce & G. P. Jones, Distributed Computing,
Academic Press, 1984.

[CGM80] T. J. W. Clarke, P. J. S. Gladstone, C. D. Maclean & A. C. Norman,
'SKIM - The S, K, I Reduction Machine', Proceedings LISP-80
Conference, August 1980, Stanford, California, IEEE Press, 1980,
128-135.

[Ch79] N. Chapin, 'Some Structured Analysis Techniques', Data Base, 11(3),
ACM SIGBDP, Winter 1979, 16-23.

[Ch81] N. Chapin, 'Structured Analysis and Structured Design: An Overview', in
[CCE81], 1981, 199-211.

[Ch8la] N. Chapin, 'Graphic Tools in the Design of Information Systems', in
[CCE81], 1981, 121-162.

[Ch88] G. Chroust, 'Models and Instances', SIGSOFT, Software Engineering
Notes, 13(3), July 1988, 41-42.

[CH79] D. Comte & N. Hifdi, 'LAU Multiprocessor: Microfunctional Description
and Technological Choices', Proceedings First European Conference on

BIBLIOGRAPHY 261

[CM82]

[CM83]

[CM84]

[Co68]

[Co73]

[Co79]

[Co81]

[Co85]

[Co87]
[CPM86]

[CT86]

[CTL87]

[CTL87a]

[CW85]

[Da78]

[Da82]

[Da82a]

[Da82b]

[Da88]

[DBL80]

[DD79]

[DD84]

Parallel and Distributed Processing, Toulouse, February 1979, 8-15.
A. J. Cole & R. Morrison, An Introduction to Programming with S-algol,
Cambridge University Press, Cambridge, 1982.
T. T. Carey & R. E. A. Mason, 'Information System Prototyping:
Techniques, Tools, and Methodologies', INFOR, 21(3), August 1983,
177-191.
W. F. Clocksin & C. S. Mellish, Programming in Prolog, second edition,
Springer-Verlag, Berlin, 1984.
L. L. Constantine, 'Control of Sequence and Parallelism in Modular
Programs', Spring Joint Computer Conference, Atlantic City, New Jersey,
30 April-2 May 1968, AFIPS Press, 1968, 409--414.
J. D. Couger, 'Evolution of Business System Analysis Techniques',
Computing Surveys, 5(3), December 1985, 167-198.
M. Cornish, 'The TI Data Flow Architectures: The Power of Concurrency
for Avionics', Proceedings Third Conference on Digital Avionics Systems,
Fort Worth, Texas, November 1979, IEEE, 1979, 19-25.
M. F. Connor, 'Structured Analysis and Design Technique', in [CCE81],
1981, 213-234.
'Douglas Ross Talks About Structured Analysis', Computer, 18(7),
July 1985, 80-88.
Advanced Revelation - Tutorial, COSMOS Inc, June 1987.
B. H. Cherrie, C. Potts, R. I. Maclean & A. J. Bartlett, 'The Role of
Validation in Software Development', in [WD86], 1986, 47--48.
Teamwork/SA®, Cadre Technologies Incorporated, 222 Richmond Street,
Providence, RI 02903, 1986.
T. S. Chua, K. P. Tan & P. T. Lee, 'AUTO-DFD: An Intelligent Data
Flow Processor', Discs Publication Number TRD8/87, Department of
Information Systems and Computer Science, National University of
Singapore, Kent Ridge, Singapore 0511, August 1987.
T. S. Chua, K. P. Tan & P. T. Lee, 'EXT-DFD: A Visual Language for
Extended DFD', Discs Publication, Department of Information Systems
and Computer Science, National University of Singapore, Kent Ridge,
Singapore 0511, 1987.
L. Cardelli & P. Wegner, 'On Understanding Types, Data Abstraction, and
Polymorphism', Computing Surveys, 17(4), December 1985, 471-522.
A. L. Davis, 'The Architecture and System Method of DDMl: A
Recursively Structured Data Driven Machine', Proceedings 5th Annual
Symposium on Computer Architecture, SIGARCH, 6(3), 3-5 April 1978,
Palo Alto, California, 210-215.
G. B. Davis, 'Strategies for Information Requirements Determination',
IBM System Journal, 21(1), 1982, 4-30.
A. Davis, 'The Design of a Family of Applications-Oriented Requirements
Languages', Computer, 15(5), May 1982, 21-28.
A. Davis, 'Rapid Prototyping Using Executable Requirements
Specifications', SIGSOFT, Software Engineering Notes, 7(5), December
1982, 39--44.
A. M. Davis, 'A Comparison of Techniques for the Specification of
External System Behavior', Communications of the ACM, 31(9),
September 1988, 1098-1115.
J. B. Dennis, G. A. Boughton & C. K. C. Leung, 'Building Blocks for
Data Flow Prototypes', Proceedings 7th Annual Symposium on Computer
Architecture, SIGARCH, 8(3), 6-8 May 1980, La Baule, France, 1-8.
A. Demers & J. Donohue, Revised Report on Russell, TR79-389,
Computer Science Department, Cornell University, Ithaca, New York,
1979.
J. Donahue & A. Demers, Data Types Are Values, Xerox Corporation,
Palo Alto Research Center, California, March 1984.

BIBLIOGRAPHY 262

[De74] J.B. Dennis, 'First Version of a Data Flow Procedure Language', in
Programming Symposium, Proceedings Colloque sur la Programmation,
9-11 April 1974, Paris, Lecture Notes in Computer Science, Vol. 19,
Springer-Verlag, Berlin, 1974, 362-376.

[De78] T. DeMarco, Structured Analysis and System Specification, Prentice-Hall,
New Jersey, 1978.

[De79] T. DeMarco, Concise Notes on Software Engineering, Yourdon,
New York, 1979.

[De79a] J.B. Dennis, 'The Varieties of Data Flow Computers', Proceedings First
International Conference on Distributed Computer Systems, Tolouse,
October 1979, 430-439.

[De80] J.B. Dennis, 'Data Flow Supercomputers', Computer, 13(11),
November 1980, 48-56.

[De82] G. R. DeMaagd, 'Limitations of Structured Analysis', Journal of Systems
Management, September 1982, 26-27.

[De84] H. M. Deitel, An Introduction to Operating Systems, revised first edition,
Addison-Wesley, 1984.

[DF87] D. A. Duce & E. V. C. Fielding, 'Formal Specification-A Comparison of
Two Techniques', The Computer Journal, 30(4), August 1987, 316-327.

[DF88] T. W. G. Docker & R. B. France, 'Flexibility and Rigour in Structured
Analysis', Submitted to IFIP Congress '89, 1988.

[DGG87] J. Dahler, P. Gerber, H.-P. Gisiger & A. Ki.indig, 'A Graphical Tool for
the Design and Prototyping of Distributed Systems', SIGSOFT, Software
Engineering Notes, 12(3), July 1987, 25-36.

[DHT82] Functional Programming and its Applications, Eds J. Darlington,
P. Henderson and D. A. Turner, Cambridge University Press,
Cambridge, 1982.

[Di65] E.W. Dijkstra, Cooperating Sequential Processes, Technological
University, Eindhoven, 1965. (Reprinted in Programming Languages,
Ed. F. Genuys, Academic Press, New York, 1968.)

[Di75] E.W. Dijkstra, 'Guarded Commands, Nondeterminancy, and Formal
Derivation of Programs', Communications of the ACM, 18(8),
August 1975, 453-457.

[Di78] M. E. Dickover, C. L. McGowan & D. T. Ross, 'Software Design Using
SADT', in Vol. 2 of [In78], 1978, 99-114.

[Di85] J. Dietz, 'Towards an Information System Development Environment',
in [TD85a], 1985, (with discussion) 27-34.

[DK82] A. L. Davis & R. M. Keller, 'Data Flow Program Graphs', Computer,
15(2), February 1982, 26-41.

[DM74] J. B. Dennis & D. P. Misunas, 'A Preliminary Architecture for a Basic
Data Flow Processor', Proceedings of the 2nd Annual International
Symposium on Computer Architecture, 20-22 January 1975,
University of Houston, Houston, Texas, SIGARCH, 3(4), December
1974, 126-132.

[DM83] P.A. Dearnley & P. J. Mayhew, 'In Favour of System Prototypes and
their Integration into the Systems Development Cycle', The Computer
Journal, 26(1), February 1983, 36-42.

[DMK82] N. M. Delisle, D. E. Menicosy & N. L. Kerth, 'Tools for Supporting
Structured Analysis', in [SW82], 1982, 11-20.

[Do86] M. Dowson, 'The Structure of the Software Process', in [WD86], 1986,
6-8.

[Do87] T. W. G. Docker, 'A Flexible Software Analysis Tool', Information and
Software Technology, 29(1), January/February 1987, 21-26.

[Do88] T. W. G. Docker, 'SAME - A Structured Analysis Tool and its
Implementation in Prolog', Logic Programming, Eds R. A. Kowalski &
K. A. Bowen, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, 15-19 August 1988, MIT Press,
82-95.

BIBLIOGRAPHY 263

[DR81] J. Darlington & M. Reeve, 'Alice: A Multiprocessing Reduction Machine
for the Parallel Evaluation of Applicative Languages', Proceedings of the
International Symposium on Functional Programming Languages and

[DR84]

[DT84]

[DT85]

[DT86]

[DT87]

[Ea82]

Computer Architecture, June 1981, Goteborg, IEEE, 32-62.
A. D'Cunha & T. Radhakrishnan, 'DASS: A Data Administration Support
System', The Journal of Systems and Software, Vol. 4, 1984, 175-184.
B. De Brabander & G Thiers, 'Successful Information System
Development in Relation to Situational Factors Which Affect Effective
Communication Between MIS-Users and EDP-Specialists', Management
Science, 30(2), February 1984, 137-155.
T. W. G. Docker & G. Tate, 'A High Level Data Flow Environment',
Department of Computer Science Report 85/2, Massey University,
February 1985.
T. W. G. Docker & G. Tate, 'Executable Data Flow Diagrams', in
[BB86], 1986, 352-370.
T. W. G. Docker & G. Tate, 'Flexibility in Executable Specifications',
Proceeedings 10th New Zealand Computer Conference ('Putting
Computers to Work'), New Zealand Computer Society,
26-28 August 1987, Christchurch, 0155-0167.
M. J. Earl, 'Prototype Systems for Accounting, Information and Control',
Data Base, 13(2&3), ACM SIGBDP, Winter-Spring 1982, 39-46.

[EFN85] Formal Methods and Software Development, Eds H. Ehrig, C. Floyd,

[En81]

[Er86]

M. Nivat & J. Thatcher, Vol. 2, Colloquium on Software Engineering,
Lecture Notes in Computer Science, Vol. 186, Springer-Verlag, Berlin,
March 1985.
N. L. Enger, 'Classical and Structured Systems Life Cycle Phases and
Documentation', in [CCE81], 1981, 1-24.
M. C. Er, 'Classical Tools of Systems Analysis - Why They Have Failed',
Data Processing, 28(10), December 1986, 512-513.

[FDP87] R. B. France, T. W. G. Docker & C. H. E. Phillips, 'Towards the
Integration of Formal and Informal Techniques in Software Development
Environments', Proceeedings 10th New Zealand Computer Conference
('Putting Computers to Work'), New Zealand Computer Society,

[FD88]
26-28 August 1987, Christchurch, R57-R74.
R. B. France & T. W. G. Docker, 'A Formal Basis for Structured
Analysis', Software Engineering 88, Second IEE/BCS Conference,
11-15 July 1988, Liverpool, Institution of Electrical Engineers,
Conference Publication No. 290, London, 191-195.

[FD88a] R. B. France & T. W. G. Docker, 'The Picture Level: A Theory of

[Fe79]

[Fe88]

[Fi84]

[Fl]

[Fr81]
[Fr80]

[Fr88]

[FW76]

Hierarchical Data Flow Diagrams', forthcoming paper.
S. I. Feldman, 'MAKE - A Program for Maintaining Computer Programs',
Software-Practice and Experience, Vol. 9(4), April 1979, 255-65.
J. H. Fetzer, 'Program Verification: The Very Idea', Communications of
the ACM, 31(9), September 1988, 1048-1063.
D. W. Fife, 'The Dictionary Becomes a Tool for System Management', in
Advances in Data Base Management, Vol. 2, Eds E. A. Unger,
P. S. Fisher & J. Slonim, Wiley Heyden, 1984, 101-117.
C. Floyd, A Comparative Evaluation of System Development Methods,
Technische Universitat Berlin, Institut fi.ir Angewandte Informatik,
FranklinstraBe 28/29, Sekr. 5-6, D-1000 Berlin 10, Undated (1983 or
later).
P. Freeman, 'Why Johnny Can't Analyze', in [CCE81], 1981, 321-329.
P. Freeman, 'A Perspective on Requirements Analysis and Specification',
in [FW80], 1980, 86-96.
R. B. France, 'The Specification Level: Deriving Formal Specifications
from Hierarchical Data Flow Diagrams', forthcoming paper.
D. P. Friedman & D.S. Wise, 'Cons Should Not Evaluate its Arguments',
Automata, Languages and Programming, Third International Colloquium,

BIBLIOGRAPHY 264

[FW80]

[Ga85]

[Ga86]

[GG77]

[GHT84]

[Gi70]

[Gi84]

[GKS87]

[GKW85]

[GM86]

[Go84]

[GPK82]

[GR83]

[GS79]

[GS80]

[GT79]

[GT79a]

[GT80]

[Gu81]

[Gu84]
[Ha80]

[Ha82]

[Ha84]

[Ha85]

[Ha85a]

Eds S. Michaelson & R. Milner, Edinburgh University, 20-23 July 1976,
Edinburgh University Press, 1976, 257-284.
Tutorial on Software Design Techniques, Third Edition, Eds P. Freeman &
A. I. Wasserman, IEEE, New York, 1980,
J. L. Gaudiot, 'Methods for Handling Structures in Data-Flow Systems',
Proceedings of the 12th Annual International Symposium on Computer
Architecture, 17-19 June, 1985, Boston, Massachusetts, SIGARCH,
13(3), 352-358.
J. L. Gaudiot, 'Structure Handling in Data-Flow Systems', IEEE
Transactions on Computers, C-35(6), June 1986, 489-502.
D. Gries & N. Gehani, 'Some Ideas on Data Types in High-Level
Languages', Communications of the ACM, 20(6), June 1977, 414-420.
H. Glaser, C. Hankin & D. Till, Principles of Functional Programming,
Prentice-Hall, London, 1984.
T. R. Gildersleeve, Decision Tables and Their Practical Application in Data
Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.
R. V. Giddings, 'Accommodating Uncertainty in Software Design',
Communications of the ACM, 27(5), May 1984, 428-434.
J. R. W. Glauert, J. R. Kennaway & M. R. Sleep, 'Dactl: A
Computational Model and Compiler Target Language Based on Graph
Reduction', !CL Technical Journal, 5(3), May 1987, 509-537.
J. R. Gurd, C. C. Kirkham & I. Watson, 'The Manchester Dataflow
Computer', Communications of the ACM, 28(1), January 1985, 34-52.
Software Specification Techniques, Eds N. Gehani & A. D. McGettrick,
Addison-Wesley, Wokingham, 1986.
H. Gomaa, 'A Software Design Method for Real-Time Systems',
Communications of the ACM, 27(9), September 1984, 938-949.
D. D. Gajski, D. A. Padua & D. J. Kuck, 'A Second Opinion on Data
Flow Machines and Languages', Computer, 15(2), February 1982, 58-69.
A. Goldberg & D. Robson, Smalltalk-80 The Language and its
Implementation, Addison-Wesley. Massachusetts, 1983.
C. Gane & T. Sarson, Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, New Jersey, 1979.
C. Gane & T. Sarson, 'Structured Methodology: What Have We
Learned?', Computer World/EXTRA, Vol. XIV, No. 38,
17 September 1980, 52-57. (Reprinted in [CCK82], 122-134.)
K. P. Gostelow & R. E. Thomas, 'A View of Dataflow', Proceedings
National Computer Conference, Vol. 48, AFIPS Press, New York, 4-7
June 1979, 629-636.
J. A.Goguen & J. J. Tardo, 'An Introduction to OBJ: A Language for
Writing and Testing Formal Algebraic Program Specifications',
Specification of Reliable Software, IEEE, 1979, 170-189.
K. P. Gostelow & R. E. Thomas, 'Performance of a Simulated Dataflow
Computer', IEEE Transactions on Computers, C-29(10), October 1980,
905-919.
D. A. Gustafson, 'Control Flow, Data Flow & Data Independence',
SIGPLAN, 16(10), October 1981, 13-19.
J. R. Gurd, 'Fundamentals of Dataflow', Chapter 1 in [CDJ84], 3-19.
New Approaches to Systems Analysis and Design, Ed. P. Hammersley,
British Computer Society/Heyden, London, 1980.
(Reprinted from The Computer Journal, 23(1), February 1980.)
T. Hayashi, 'A Requirements Definition Method Based on Flow-Net
Model', in [Oh82], 1982, 41-49.
D. M. Harland, Polymorphic Programming Languages, Ellis Horwood,
Chichester, 1984.
R. Harper, Introduction to Standard ML, Department of Computer
Science, Edinburgh University, 1985.
D. J. Hartley, A Structured Analysis Method for Real-Time Systems, A

BIBLIOGRAPHY 265

[Ha88]

[He80]

[He86]

[HG81]

[HHK77]

[HMM86]

[HMR85]

[HI86]

[HI86a]

[Ho74]

[Ho82]

[Ho82a]

[HS79]

[HR]

[Hi.i81]

[IBM83]

[ICL77]

[ICL84]

[IH87]

[In78]

[In86]

[1084]

[IT84]
[Ja75]

[Ja83]

Seminar for the Fall DECUS U.S. Symposium, December 1985.
I. T. Hawryszkiewycz, Introduction to Systems Analysis and Design,
Prentice-Hall, Sydney, 1988.
P. Henderson, Functional Programming Application and Implementation,
Prentice-Hall, London, 1980.
P. Henderson, 'Functional Programming, Formal Specification, and Rapid
Prototyping', IEEE Transactions on Software Engineering, SE-12(2),
February 1986, 241-250.
C. L. Hankin & H. W. Glaser, 'The Data Flow Programming Language
CAJOLE- An Informal Introduction', SIGPLAN, 16(7), July 1981,
35-44.
M. Hammer, W. G. Howe, V. J. Kruskal & I. Wladawsky, 'A Very High
Level Programming Language for Data Processing Applications',
Communications of the ACM, 20(11), November 1977, 832-840.
R. Harper, D. MacQueen & R. Milner, Standard ML, ECS-LFCS-86-2,
Department of Computer Science, Edinburgh University, March 1986.
P. Henderson, C. Minkowitz & J. S. Rowles, me too Reference Manual,
International Computers Limited, London, 1985.
S. Hekmatpour & D. C. Ince, 'Rapid Software Prototyping', Report 86/4,
Mathematics Faculty, Open University, Walton Hall, Milton Keynes,
MK7 6AA, 28 February 1986.
S. Hekmatpour & D. C. Ince, 'Forms as a Language Facility', SIGPLAN
Notices, 21(9), September 1986, 42-48.
C. A. R. Hoare, 'Monitors: An Operating System Structuring Concept',
Communications of the ACM, 17(10), October 1974, 549-557.
(Corrigendum, Communications of the ACM, 18(2), February 1975, 95.)
W. E. Howden, 'Contemporary Software Development Environments',
Communications of the ACM, 25(5), May 1982, 318-329.
W. E. Howden, 'Life-Cycle Software Validation', Computer, 15(2),
February 1982, 71-78.
F. Hommes & H. Schlutter, Reduction Machine System User's Guide,
Technical Report ISP-Report 79, Gesellschaft filr Mathematik und
Datenverarbeitung, MBH Bonn, December 1979.
P. G. Harrison & M. J. Reeve, The Parallel Graph Reduction Machine,
Alice, Imperial College, Undated preprint (1986 or later).
Software Engineering Environments, Ed. H. Hilnke, Proceedings of the
Symposium in Software Engineering Environments, 16-20 June 1980,
Lahnstein, North-Holland, 1981.
OS/VS! DB/DC Data Dictionary General Information Manual,
GH20-9104-5, IBM, San Jose, California, 1983.
Data Dictionary System, Technical Publication 6504, International
Computers Limited, London, 1977.
Data Dictionary System Summary (DDS.700), International Computers
Limited, London, 1984.
D. C. Ince & S. Hekmatpour, ' Software Prototyping - Progress and
Prospects', Information and Software Technology, 29(1),
January/February 1987, 8-14.
Infotech State-of-the-Art Report on Structured Analysis and Design,
Infotech, Maidenhead, Two volumes, 1978.
Software Engineering The Decade of Change, Ed. D. Ince,
Peter Peregrinus, London, 1986.
B. Ives & M. Olson, 'User Involvement and MIS Success: A Review of
Research', Management Science, 30(5), May 1984, 586-603.
Excelerator™, Index Technology Corporation, 1984.
M. A. Jackson, Principles of Program Design, Academic Press, London,
1975.
R. J. K. Jacob, 'Using Formal Specifications in the Design of a
Human-Computer Interface', Communications of the ACM, 20(4), April

BIBLIOGRAPHY 266

1983, 259-264.
[Jo85] K. D. Jones, The Application of a Formal Development Method to a

Parallel Machine Environment, Ph.D. thesis, The University of
Manchester, 1985.

[Jo86] C. B. Jones, 'Systematic Software Development Using VDM',
Prentice-Hall, 1986.

[Jo86a] J. Jones, 'MacCadd, An Enabling Software Method Support Tool',
People and Computers: Designing for Usability, Eds M. D. Harrison &
A. F. Monk, Proceedings of the Second Conference of the British
Computer Society Human Computer Interaction Specialist Group,
23-26 September 1986, University of York, Cambridge University Press,
1986, 132-154.

[JS85] M.A. Janson & L. D. Smith, 'Prototyping for Systems Development: A
Critical Appraisal', MIS Quarterly, December 1985, 305-315.

[JW78] K. Jensen & N. Wirth, Pascal User Manual and Report, Second Edition,
Springer-Verlag, New York, 1978.

[Ke77] J. L. W. Kessels, 'A Conceptual Framework for a Nonprocedural
Programming Language', Communications of the ACM, 20(12),
December 1977, 906-913.

[Ke80] P. G. W. Keen, 'Adaptive design for Decision Support Systems',
Data Base, 12(1&2), ACM SIGBDP, Fall 1980, 15-25.

[Ke83] R. Keller, The Practice of Structured Analysis, Yourdon, New York,
1983.

[Kl75] L. Kleinrock, Queueing Systems, Volume 1: Theory, Wiley, New York,
1975.

[Kl79] W. E. Kluge, The Architecture of a Reduction Language Machine
Hardware Model, Technical Report !SF-Report 79.03, Gesellschaft ftir
Mathematik und Datenverarbeitung, MBH Bonn, August 1979.

[KL83] B. K. Kahn & E. W. Lumsden, 'A User-Oriented Framework for Data
Dictionary Systems', Data Base, 15(1), ACM SIGBDP, Fall 1983, 28-36.

[KLP79] R. M. Keller, G. Lindstrom & S. Patil, 'A Loosely Coupled Applicative
Multiprocessing System', Proceedings National Computer Conference,
4-7 June 1979, New York, AFIPS Press, Arlington, Virginia, Vol. 48,
1979, 613-622.

[KM66] R. M. Karp & R. E. Miller, 'Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing', SIAM Journal of
Applied Mathematics, 14(6), November 1966, 1390-1411.

[KNP87] J. Kramer, K. Ng, C. Potts & K. Whitehead, 'Tool Support for
Requirements Analysis', Submitted to the IEEE 9th International
Conference on Software Engineering, Monterey, 1987.

[Ko84] R. Kowalski, 'Software Engineering and Artificial Intelligence in New
Generation Computing', FGCS (Fifth Generation Computer Systems),
North-Holland, 1984, 39-49.

[KPL78] R. M. Keller, S. Patil & G. Lindstrom, An Architecture for a Loosely
Coupled Parallel Processor, Technical Report UUCS-78-105, Department
of Computer Science, University of Utah, October 1978.

[KS80] W. E. Kluge & H. Schlutter, 'An Architecture for the Direct Execution of
Reduction Languages, Proceedings of the International Workshop High­
Level Language Computer Architecture, May 1980, Fort Lauderdale,
Florida, University of Maryland and Office of Naval Research, 1980,
174-180.

[KS85] J. M. Kraushaar & L. E. Shirland, 'A Prototyping Method for
Applications Development by End Users and Information Systems
Specialists', MIS Quarterly, Vol. 9, September 1985, 189-197.

[LAB81] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Schaffert, R. Scheifler
& A. Snyder, CLU Reference Manual, Lecture Notes in Computer
Science, Vol. 114, Springer-Verlag, Berlin, 1981.

[LB82] LBMS System Development Methodology Handbook, Learrnonth and

BIBLIOGRAPHY 267

[Le77]
[Le81]

[Le85]

[Le86]

[Le86a]

[LGN81]

[LHP82]

[LL85]

[LM85]

[Lo77]
[LPA85]

[LST84]

[Lu82]

[LZ77]

[Ma79]

[Ma80]

[Ma82]

[Ma84]

[Ma84a]

[Ma85]

[Ma85a]

Burchett Management Systems (LBMS), London, 1982.
H. Lefkovits, Data Dictionary Systems, QED Information Sciences, 1977.
M. M. Lehman, 'The Environment of Program Development and
Maintenance- Programs, Programming and Programming Support',
Proceedings, 1981 International Computing Symposium, IPC Business
Press Ltd, 1981, 1-12.
M. M. Lehman, 'Program Evolution', in [TD85a], 1985, (with discussion)
3-25.
B. Lennartsson, Programming Environments and Paradigms - Some
Reflections, Report No. LITH-IDA-R-86-32, Department of Computer
and Information Science, Linkoping University, 1986.
M. M. Lehman, 'Approach to a Disciplined Development Process -The
IS TAR Integrated Project Support Environment', in [WD86], 1986,
28-33.
M. Lundeberg, G. Goldkuhl & A. Nilsson, Information Systems
Development A Systematic Approach, Prentice-Hall, Englewood Cliffs,
1981.
B. W. Leong-Hong & B. K. Plagman, Data Dictionary/Directory Systems:
Administration, Implementation and Usage, Wiley-Interscience,
New York, 1982.
K. R. Laughery, Jr, & K. R. Laughery, Sr, 'Human Factors in Software
Engineering: A Review of the Literature', The Journal of Systems and
Software, Vol. 5, 1985, 3-14.
D. B. Leblang & G. McLean, 'DSEE: Overview and Configuration
Management', in Integrated Project Support Environments,
Ed. J. McDermid, Proceedings of the conference on Integrated Project
Support Environments (IPSEs), University of York, 10-12 April 1985,
Peter Peregrinus, 1985, 10-31.
J. D. Lomax, Data Dictionary Systems, NCC Publications, 1977.
LPA MacProlog User Manual, Logic Programming Associates Limited
(LPA), London, 1985.
M. M. Lehman, V. Stenning & W. M. Turski, 'Another Look at Software
Design Methodology', SIGSOFT, Software Engineering Notes, 9(2),
April 1984, 38-53.
M. Lundeberg, 'The ISAC Approach to Specification of Information
Systems and its Application to the Organization of an IFIP Working
Conference', in [OSV82], 1982, 173-234.
B. Liskov & S. Zilles, 'An Introduction to Formal Specifications of Data
Abstractions', Chapter 1 of Current Trends in Programming Methodology,
Vol. 1, Ed. R. T. Yeh, Prentice-Hall, Englewood Ciffs, New Jersey,
1977, 1-32.
G. A. Mag6, 'A Network of Microprocessors to Execute Reduction
Languages, Part I', International Journal of Computer and Information
Sciences, 8(5), 1979, 349-385.
G. A. Mag6, 'A Cellular Computer Architecture for Functional
Programming', COMPCON, Spring 1980, IEEE Computer Society, 1980,
179-187.
J. Martin, Application Development without Programmers, Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.
A. Mayne, Data Dictionary Systems A Technical Review, NCC
Publications, Manchester, 1984.
R. W. Marti, 'Integrating Database and Program Descriptions Using an
ER-Data Dictionary', The Journal of Systems and Software, Vol. 4, 1984,
185-195.
M. Maiocchi, 'The Use of Petri Nets in Requirements and Functional
Specification', in [TD85a], 1985, 253-274.
J. Mason, 'From Analysis to Design', Datamation, 15 September 1985,
129-130, 132, 135.

BIBLIOGRAPHY 268

[Ma87] P. V. Mannino, 'A Presentation and Comparison of Four Information
Systems Development Methodologies', SIGSOFT, Software Engineering
Notes, 12(2), April 1987, 26-29.

[Mc78] H. McDaniel, An Introduction to Decision Logic Tables, Petrocelli Charter,
New York, 1978.

[Mc81] D. D. McCracken, 'A Maverick Approach to Systems Analysis and
Design', in [CCE81], 1981, 446-451.

[Mc82] J. R. McGraw, 'The VAL Language: Description and Analysis', ACM
Transactions on Programming Languages and Systems, 4(2),
January 1982, 44-82.

[Mc83] J. R. McGraw, S. Skedzielewski, S. Allen, D. Grit, R. Oldehoeft,
J. R. W. Glauert, I. Dobes & P. Hohensee, SISAL - Streams and
Iteration in a Single Assignment Language. Language Reference Manual
(Version 1.0), Lawrence Livermore National Laboratory, Livermore,
California, July, 1983.

[MC83] R. E. A. Mason & T. T. Carey, 'Prototyping Interactive Information
Systems', Communications of the ACM, 26(5), May 1983, 347-354.

[Mc85] Integrated Project Support Environments, Ed. J. McDermid, Proceedings
of the Conference on Integrated Project Support Environments,
10-12 April 1985, York, Peter Peregrinus, London, 1985.

[MCD87] R. Morrison, A. Brown, R. Connor & A. Dearle, Polymorphism,
Persistence and Software Reuse in Strongly Typed Object Oriented
Languages, Submitted for publication, 1987.

[Mi76] H. D. Mills, 'Software Development', IEEE Transactions on Software
Engineering, SE-2(4), December 1976, 265-273.

[Mi78] R. Milner, 'A Theory of Type Polymorphism in Programming', Journal of
Computer and System Sciences, Vol. 17, 1978, 348-375.

[Mi81] R. E. Michelsen, A Data-Driven Software Development Language and the
Kernel of an Associated Development Methodology, Ph.D. thesis,
University of Southwestern Louisiana, August 1981.
(Reprint available from University Microfilms International,
300 N. Zeeb Road, Ann Arbor, MI 48106, USA.)

[Mi82] H. D. ~ills, 'The Intellectual Control of Computers', in [Oh82], 1982,
XV-XXL

[ML86] M. Marcotty & H.F. Ledgard, Programming Language Landscape,
second edition, SRA, Chicago, 1986.

[ML86a] Moretti, G. S. & Lyons, P. J., 'An Overview of GED, A
Language-Independent Syntax-Directed Editor', The Australian Computer
Journal, 18(2), May 1986, 61-66.

[MM83] R. W. Marczynski & J. Milewski, 'A Data Driven System Based on a
Microprogrammed Processor Module', Proceedings of the 10th Annual
International Symposium on Computer Architecture, 13-17 June, 1983,
Stockholm, SIGARCH, 11(3), 98-106.

[MM85] L. Mathiassen & A. Munk-Madsen,' Formalization in Systems
Development', in [EFN85], 101-116.

[MRY86] C. W. McDonald, W. Riddle & C. Yongblut, 'STARS Methodology Area
Summary - Volume II: Preliminary Views on the Software Life Cycle and
Methodology Selection', SIGSOFT, Software Engineering Notes, 11(2),
April 1986, 58-85.

[MS85] T. J. McCabe & C. G. Schulmeyer, 'System Testing Aided by Structured
Analysis: A Practical Experience', IEEE Transactions on Software
Engineering, SE-11(9), September 1985, 917-921.

[Na82] P. Naur, 'Formalization in Program Development', BIT, Vol. 22, 1982,
437-453.

[No80] J. D. Noe, 'Abstractions of Net Models', Net Theory and Applications,
Ed. W. Brauer, Lecture Notes in Computer Science, Vol. 84,
Springer-Verlag, Berlin, 1980, 369-388.

[NJ82] J. D. Naumann & A. M. Jenkins, 'Prototyping: The New Paradigm for

BIBLIOGRAPHY 269

Systems Development', MIS Quarterly, September 1982, 29-44.
[NK81] J. F. Nunamaker & B. Konsynski, 'Formal and Automated Techniques of

Systems Analysis and Design', in [CCE81], 1981, 291-319.
[NS88] J. T. Nosek & R. B. Schwartz, 'User Validation ofinformation System

Requirements: Some Empirical Results', IEEE Transactions on Software
Engineering, SE-14(9), September 1988, 1372-1375.

[Oh82] Requirements Engineering Environments, Ed. Y. Ohno, OHMSHA,
North-Holland, 1982.

[OP81] V. A. Owles & M. J. Powers, 'Structured Systems Analysis Tutorial',
Proceedings ACM '81, 9-11 November 1981, 11-21.

[Or77] Orr, J. T., Structured System Development, Yourdon Press, New York,
1977.

[OSC84] D. Oxley, W. Sauber & M. Cornish, 'Software Development for
Data-Flow Machines', Chapter 29 in Handbook of Software Engineering,
Eds C.R. Vick & C. V. Ramamoorthy, Van Nostrand Reinhold,
New York, 1984, 640-655.

[OSV82] Information Systems Design Methodologies: A Comparative Review,
Eds T. W. Olle, H. G. Sol & A. A. Verrijn-Stuart, IFIP, North-Holland,
1982.

[Pa69] D. L. Parnas, 'On the Use of Transition Diagrams in the Design of a User
Interface for an Interactive Computer System', Proceedings 24th National
ACM Conference, 26-28 August 1969, 379-385.

[Pa80] M. Page-Jones, The Practical Guide to Structured Systems Design,
Y ourdon Press, New York, 1980.

[PC85] D. L. Parnas & P. C. Clements, 'A Rational Design Process: How and
Why to Fake It', in [EFN85], 1985, 80-100.

[PCG76] A. Plas, D. Comte, 0. Gelly & J.C. Syre, 'LAU System Architecture: A
Parallel Data Driven Processor Based on Single Assignment', Proceedings
1976 International Conference on Parallel Processing, Ed. P.H. Enslow,
August 1976, 293-303.

[PCS87] S. L. Peyton Jones, C. Clack & J. Salkild,' GRIP: A Parallel Graph
Reduction Machine', !CL Technical Journal, 5(3), May 1987, 595-599.

[Pe81] J. L. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Pe87] S. L. Peyton Jones, The Implementation of Functional Programming
Languages, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

[Pe87a] G. Perrone, 'Low-Cost CASE: Tomorrow's Promise Emerging Today',
Computer, 20(11), November 1987, 104-110.

[PFA86] C. Potts, A. Finkelstein, M. Aslett & J. Booth, 'Formalizing Requirements
(Systematically)', pre-published paper, 1986.

[PS85] PS-algol Reference Manual, Second Edition, Persistent Programming
Research Group, Persistent Programming Research Report 12, Department
of Computational Science, University of St Andrews, North Haugh,
St Andrews, 1985.

[PST86a] L. B. Protsko, P. G. Soerenson & J. P. Tremblay, SPSL/SPSA Version
2.0 Primer, Research Report 86-10, Department of Computational
Science, University of Saskatchewan, Saskatoon, September 1986.

[PST86b] L.B. Protsko, P. G. Soerenson & J.P. Tremblay, DEVIEW Project
Overview, Department of Computational Science, University of
Saskatchewan, Saskatoon, October 1986.

[Qu60] W. V. Quine, Word and Object, Technology Press, Cambridge,
Massachusetts, and Wiley, New York, 1960.

[Qu80] E. S. Quade, 'Pitfalls in Formulation and Modeling', in Pitfalls in
Analysis, Eds G. Majone & E. S. Quade, John Wiley & Sons, Chichester,
1980, 23-43.

[RB85] J. Robinson & A. Burns, 'A Dialogue Development System for the Design
and Implementation of User Interfaces in Ada, The Computer Journal,
28(1), February 1985, 22-28.

BIBLIOGRAPHY 270

[RD87] W. Ryder & T. W. G. Docker, 'One Approach to Implementing Objects in

[Re70]

[Re74]

[Re83]

[RH86]

[Ri86]

[Ro70]

[Ro77]

[Ro81]

[RS77]

[Ru77]

[SB82]

[Sc24]

[Sc76]

[Sc82]

PS-algol', To appear as a technical report, Massey University, 1987.
J.C. Reynolds, 'GEDANKEN: A Simple Typeless Language Based on
the Principles of Completeness and the Reference Concept',
Communications of the ACM, 13(5), May 1970, 308-319.
J. C. Reynolds, 'Towards a Theory of Type Structure', 9-11 April 1974,
Paris, Lecture Notes in Computer Science, Vol. 19, Springer-Verlag,
Berlin, 1974, 408-425.
S. P. Reiss, 'PECAN: Program Development Systems that Support
Multiple Views', Technical Report No. CS-83-29, Department of
Computer Science, Brown University, Providence, Rhode Island 02912,
1983.
S. Rotenstreich & W. E. Howden, 'Twer-Dimensional Program Design',
IEEE Transactions on Software Engineering, SE-12(3), March 1986,
377-384.
C. A. Richter, 'An Assessment of Structured Analysis and Structured
Design', in [WD86], 1986, 41-45.
W. W. Royce, 'Managing the Development of Large Software Systems:
Concepts and Techniques', Proceedings WESCON, August 1970.
D. T. Ross, 'Structured Analysis (SA): A Language for Communicating
Ideas', IEEE Transactions on Software Engineering, SE-3(1),
January 1977, 16-34. (Reprinted in [CCK82], 135-163.)
J. D. Roberts, 'Naming by Colours: A Graph Theoretic Approach to
Ditributed Structure', in Algorithmic Languages, Eds J. W. de Bakker &
J.C. van Vliet, IFIP, North-Holland, 1981, 59-76.
D. T. Ross & K. E. Scheman, Jr, 'Structured Analysis for Requirements
Definition', IEEE Transactions on Software Engineering, SE-3(1),
January 1977, 6-15.
J. Rumbaugh, 'A Data Flow Multiprocessor', IEEE Transactions on
Computers, C-26(2), February 1977, 138-146.
J. G. Sakamoto & F. W. Ball, 'Supporting Business Systems Planning
Studies with the DB/DC Data Dictionary', IBM System Journal, 21(1),
1982, 54-80.
M. Schonfinkel, 'Uber die Bausteine der mathematischen Logik',
Mathematical Annals, Vol. 92, 1924.
D. Scott, 'Data Types as Lattices', SIAM Journal on Computing, Vol. 5,
1976, 522-587.
B. Schneiderman, 'The Future of Interactive Systems and the Emergence
of Direct Manipulation', Report No. TR-1156, Department of Computer
Science, University of Maryland, College Park, MD 20742, 1982.

[SCB85] R. Saracco, L. Cerchio & P. Bagnoli, 'Specification and Design
Methodologies: Problems in Their Introduction in Research and Industrial
Environments', in [TD85a], 1985, 35-44.

[SCH77] J. C. Syre, D. Comte & N. Hifdi, 'Pipelining, Parallelism and
Asynchronism in the LAU System', Proceedings 1977 International
Conference on Parallel Processing, August, 1977, 87-92.

[SFS77] R. J. Swan, S. H. Fuller & D. P. Siewiorek, 'Cm* - A Modular
Multimicroprocessor', Proceedings of AFIPS National Computer
Conference, 13-16 June 1977, Dallas, Texas, Vol. 46, June 1977,

[Sh80]

[Sh85]
[Sh88]

[Sm85]

637-644.
J. A. Sharp, 'Some Thoughts on Data Flow Architectures', SIGARCH,
8(4), June 1980, 11-21.
J. A. Sharp, Data Flow Computing, Ellis Horwood, London, 1985.
P. Shoval, 'ADDISSA: Architectural Design of Information Systems
Based on Structured Analysis', Information Systems, 13(2), 1988,
193-210.
S. W. Smoliar, 'Applicative and Functional Programming', Chapter 26 in
Handbook of Software Engineering, Eds C.R. Vick &

BIBLIOGRAPHY

C. V. Ramamoorthy, Van Nostrand Reinhold, New York, 1984,
565-597.

271

[So85] I. Sommerville, Software Engineering, second edition, Addison-Wesley,
Wokingham, 1985.

[So86] Software Engineering Environments, Ed. I. Sommerville, Proceedings of
Conference on Software Engineering Environments, 2-4 April 1986,
Lancaster, Peter Peregrinus, London, 1986.

[Sp77] J. R. Spirn, Program Behavior: Models and Measurement, Elsevier,
New York, 1977.

[SP88] P. Shoval & N. Pliskin, 'Structured Prototyping: Integrating Prototyping
into Structured System Development', Information & Management,
Vol. 14, 1988, 19-30.

[Sr86] V. P. Srini, 'An Architecture for Extended Abstract Data Flow',
Proceedings of the 8th Annual International Symposium on Computer
Architecture, 12-14 May 1981, Minneapolis, Minnesota, SIGARCH,
9(3), 1981, 303-325.

[Sr86] V. P. Srini, 'An Architectural Comparison of Dataflow Systems',
Computer, 19(3), March 1986, 68-87.

[SS77] J. M. Smith & D. C. P. Smith, 'Database Abstractions: Aggregation and
Generalization', ACM Transactions on Database Systems, 2(2),
June 1977, 105-133.

[St81] W. P. Stevens, Using Structured Design, John Wiley & Sons, New York,
1981.

[St87] D. Strong, 'DataLink - Running Data Flow Diagrams', Proceeedings 10th
New Zealand Computer Conference ('Putting Computers to Work'), New
Zealand Computer Society, 26-28 August 1987, Christchurch,
R87-R100.

[St88] D. Strong, A Data Flow Oriented Programming System, M.Sc. thesis,
University of Otago, Dunedin, February 1988.

[STE82] C. A. Sunshine, D. H. Thompson, R. W. Erickson, S. L. Gerhart &
D. Schwabe, 'Specification and Verification of Communication Protocols
in AFFIRM Using State Transition Models', IEEE Transactions on
Software Engineering, SE-8(5), September 1982, 460-489.
(An abridged version is reprinted in [GM86], 303-339.)

[Su82] B. Sufrin, 'Formal Specification of a Display-Oriented Text Editor',
Science of Computer Programming, Vol. 1, 1982, 157-202.
(An abridged version is reprinted in [GM86], 223-267.)

[SW77] A. Shamir & W.W. Wadge, 'Data Types as Objects', Automata,
Lcmguages and Programming, Fourth International Colloquium,
Eds A. Salomaa & M. Steinby, University of Turku, 18-22 July 1977,
Springer-Verlag, Lecture Notes in Computer Science, Vol. 52,
Springer-Verlag, Berlin, 1977, 465-479.

[SW82] Automated Tools for Information Systems Design, Eds H.-J. Schneider &
A. I. Wasserman, IFIP, North-Holland, 1982.

[TA83] N. Takahashi & M. Amamiya, 'A Data Flow Processor Array System:
Design and Analysis', Proceedings of the 10th Annual International
Symposium on Computer Architecture, 13-17 June, 1983, Stockholm,
SIGARCH, 11 (3), 243-250.

[TBH82] P. C. Treleaven, D. B. Brownbridge & R. P. Hopkins, 'Data-Driven and
Demand-Driven Computer Architecture', Computing Surveys, 14(1),
March 1982, 93-143.

[TC85] R. B. Terwilliger & R.H. Campbell, PLEASE: Predicate Logic Based
Executable Specifications, Report No. UIUCDCS-R-85-1231,
Department of Computer Science, University of illinois at
Urbana-Champaign, October 1985.

[TD85] G. Tate & T. W. G. Docker, 'A Rapid Prototyping System Based on Data
Flow Principles', SIGSOFT, Software Engineering Notes, 10(2), April

BIBLIOGRAPHY 272

1985, 28-34.
[1D85a] System Description Methodologies, Eds D. Teichroew & G. David, IFIP,

[TE68]

[Te76]

[Te81]

[Th78]

[Th87]

[TH77]

[TH81]

North-Holland, 1985.
L. G. Tesler & H.J. Enea, 'A Language Design for Concurrent
Processes', SJCC, Vol.32, AFIPS Press, 1968, 403-408.
R. D. Tennent, 'The Denotational Semantics of Programming Languages',
Communications of the ACM, 19(8), August 1976, 437-453.
R. D. Tennent, Principles of Programming Languages, Prentice-Hall,
1981.
M. Thomas, 'Functional Decomposition: SADT', in Vol. 2 of [In78],
1978, 335-354.
R. J. Thomas, 'GRAPHITI and Structure Systems Methodologies', CASE
Conference, Ann Arbor, Michigan, May 1987.
D. Teichroew & E. A. Hershey, III, 'PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems', IEEE Transactions on Software Engineering,
SE-3(1), January 1977, 41-48.
P. C. Treleaven & R. P. Hopkins, 'Decentralized Computation',
Proceedings of the 8th Annual International Symposium on Computer
Architecture, 12-14 May 1981, Minneapolis, Minnesota, SIGARCH,
9(3), 1981, 279-290.

[THR82] P. C. Treleaven, R. P. Hopkins & P. W. Rautenbach, 'Combining Data

[TK85]

[TL82]
[TM80]

[TP86]

Flow and Control Flow Computing', The Computer Journal, 25(2),
May 1982, 207-217.
R. J. Thomas & J. A. Kirkham, 'Micro-PSL and the Teaching of Systems
Analysis and Design', in [1D85a], 1985, 45-58.
D. C. Tsichritzis & F. H. Lochovsky, Data Models, Prentice-Hall, 1982.
P. C. Treleaven & G. F. Mole, 'A Multi-Processor Reduction Machine for
User-Defined Reduction Languages', Proceedings of the 7th Annual
International Symposium on Computer Architecture, May 6-8, 1980,
La Baule, SIGARCH, 8(3), 121-130.
T. H. Tse & L. Pong, 'A Review of System Development Systems',
Australian Computer Journal, 14(3), August 1982, 99-109.

[TP86a] T. H. Tse & L. Pong, 'An Examination of System Requirements
Specification Languages', Computer Studies Publication TR-A4-86,
Centre of Computer Studies and Applications, University of Hong Kong,
1986.

[TP86b] T. H. Tse & L. Pong, 'Towards a Formal Foundation for De Marco Data
Flow Diagrams', Computer Studies Publication TR-A6-86, Centre of
Computer Studies and Applications, University of Hong Kong, June
1986.

[TP86c] T. H. Tse & L. Pong, 'An Application of Petri Nets in Structured

[Tr82]

[Tr83]

[Tr84]

[Tr85]

[Ts85]

Analysis', SIGSOFT, Software Engineering Notes, 11(5), October 1986,
53-56.
P. C. Treleaven, 'Computer Architecture for Functional Programming', in
[DHT82], 1982, 281-306.
P. C. Treleaven, 'The New Generation of Computer Architecture',
Proceedings of the 10th Annual International Symposium on Computer
Architecture, June 17-19, 1985, Boston, Massachusetts, SIGARCH,
13(3), 333-341.
P. C. Treleaven, 'Decentralised Computer Architecture', Chapter 1 in New
Computer Architectures, Ed. J. Tiberghien, Academic Press, 1984, 1-58.
K. R. Traub, 'An Abstract Parallel Graph Reduction Machine',
Proceedings of the 12th Annual International Symposium on Computer
Architecture, 13-17 June 13-17, 1983, Stockholm, SIGARCH, 11(3),
402-409.
T. H. Tse, An Algebraic F ormulationfor Structured Analysis and Design,

BIBLIOGRAPHY 273

[Ts85a]

[Ts86]

[Ts87]

[Tu79a]

[Tu79b]

[Tu84]

[Tu86]

[Tu88]

[Ur82]

[Va84]

[Ve84]

[Ve86]

[Vui74]

[VW86]

[Wa76]

[Wa82]

[Wa85]

[WA85]

[Wa86]

[WB72]

[WD86]

[We80]

Computer Studies Publication TR-A2-85, Centre of Computer Studies and
Applications, University of Hong Kong, 1985.
T. H. Tse, Towards a Unified Algebraic View of the Structured Analysis
and Design Models, Computer Studies Publication TR-A6-85, Centre of
Computer Studies and Applications, University of Hong Kong, 1985.
T. H. Tse, 'Integrating the Structured Analysis and Design Models: An
Initial Algebra Approach', The Australian Computer Journal, 18(3),
August 1986, 121-127.
T. H. Tse, 'Integrating the Structured Analysis and Design Models: A
Category-Theoretic Approach', The Australian Computer Journal, 19(1),
February 1987, 25-31.
D. A. Turner, 'A New Implementation Technique for Applicative
Languages', Software- Practice and Experience, 9(1), January 1979,
31-49.
D. A. Turner, 'Another Algorithm for Bracket Abstraction', Journal of
Symbolic Logic, 44(2), June 1979, 267-270.
D. A. Turner, 'Functional Programs as Executable Specifications',
Philosophical Transactions of the Royal Society, A 312, 1984, (page
numbers include a discussion of the paper) 363-88.
D. A. Turner, 'An Overview of Miranda', SIGPLAN Notices, 21(12),
December 1986, 158-166.
J. Tucker, The Analysis and Design of an Automated Tool to Support
Structured Systems Analysis, M.Sc. thesis, Massey University, 1987.
J.E. Urban, 'Software Development with Executable Functional
Specifications', Proceedings 6th International Conference on Software
Engineering, IEEE, 1982, 418-419.
J. Van Duyn, 'Data Dictionaries as a Tool to Greater Productivity', Data
Processing, 26(6), July/August 1984, 14-16.
S. R. Vegdahl, 'A Survey of Proposed Architectures for the Execution of
Functional Languages', IEEE Transactions on Computers, C-33(12),
December 1984, 1050-1071.
A.H. Veen, 'Dataflow Machine Architecture', Computing Surveys, 18(4),
December 1986, 365-396.
J. Vuillemin, 'Correct and Optimal Implementation of Recursion in a
Simple Programming Language,' Journal Of Computer and System
Sciences, Vol. 9, 1974, 332-354.
I. Vessey and R. Weber, 'Structural Tools and Conditional Logic: An
Empirical Investigation', Communications of the ACM, 29(1), January
1986, 1090-1097.
Warnier, J. D., The Logical Construction of Programs, third edition,
Translated by B. M. Flanagan, Van Nostrand Reinhold, 1976.
A. I. Wasserman, 'The Future of Programming', Communications of the
ACM, 25(3), March 1982, 196-206.
A. I. Wasserman, 'Extending State Transition Diagrams for the
Specification of Human-Computer Interaction', IEEE Transactions on
Software Engineering, SE-11(8), August 1985, 699-713.
W.W. Wadge & E. A. Ashcroft, Lucid, the Dataflow Programming
Language, Academic Press, London, 1985.
P. T. Ward, 'The Transformation Schema: An Extension of the Data Flow
Diagram to Represent Control and Timing', IEEE Transactions on
Software Engineering, SE-12(2), February 1986, 198-210.
W. A. Wulf & C. G. Bell, 'C.mmp-A Multi-Mini-Processor',
Proceedings of AFIPS FJCC, Vol. 41, September 1972, 765-777.
'Proceedings of an International Workshop on the Software Process and
Software Environments', Eds J.C. Wileden & M. Dowson, Coto de caza,
California, 27-29 March 1985, SIGSOFT, Software Engineering Notes,
11(4), August 1986.
V. Weinberg, Structured Analysis, Prentice-Hall, New Jersey, 1980.

BIBLIOGRAPHY 27 4

[We81] G. M. Weinberg, 'General Systems Thinking and its Relevance to Systems
Analysis and Design', in [CCE81], 1981,498-513.

[We82] C. S. Wetherall, 'Error Data Values in the Data-Flow Language VAL',
ACM Transactions on Programming Languages and Systems, 4(2),
April 1982, 226-238.

[We85] J.-L. Weldon, 'The Case for Active Data Dictionaries: Lessons from the
Microcomputer World', Journal of Information Systems Management,
Summer 1985, 42-45.

[WG79] I. Watson & J. Gurd, 'A Prototype Data Flow Computer with Token
Labelling', Proceedings National Computer Conference, 4--7 June, 1979,
New York, Vol. 48, AFIPS Press, 623-628

[Wi63] A. vanWijngaarden,'Generalised Algol', Annual Review in Automatic
Programming, Pergamon Press, Oxford, 1963, 17-26.

[Wi77] N. Wirth, 'Modula: A Language for Modular Multiprogramming',
Software -Practice and Experience, 7(1), January/February, 1977, 3-35.

[WPS86] A. I. Wasserman, P.A. Pircher, D. T. Shewmake & M. L. Kersten,
'Developing Interactive Information Systems with the User Software
Engineering Methodology', IEEE Transactions on Software Engineering,
SE-12(2), February 1986, 326-345.

[WSW87] I. Watson, J. Sargeant, P. Watson & V. Woods, 'Flagship Computational
Models and Machine Architecture', !CL Technical Journal, 5(3),
May 1987, 555-57 4.

[YBC88] S. B. Yadav, R.R. Bravoco, A. T. Chatfield & T. M. Rajkumar,
'Comparison of Analysis Techniques for Information Requirement
Determination', Communications of the ACM, 31(9), September 1988,
1090-1097.

[YC79] E. Yourdon & L. L. Constantine, Structured Design, Yourdon, New
York, 1979.

[YC83] S.S. Yau & M. U. Caglayan, 'Distributed Software System Design
Representation Using Modified Petri Nets', IEEE Transactions on
Software Engineering, SE-9(6), November 1983, 733-745.

[Yo86] The Yourdon Analyst/Designer Toolkit™, Yourdon Incorporated, 1501
Broadway, New York, NY 10036, 1986.

[Za83] P. Zave, 'Operational Specification Languages', ACM Annual Conference,
1983, 214--222.

[Za84] P. Zave, 'The Operational Versus the Conventional Approach to Software
Development', Communications of the ACM, 27(2), February 1984,
104--118.

[Za84a] E. S. A. Z. Zahran, Concepts and Architectures for a New Generation of
Data Dictionary Systems, Ph.D. thesis, London School of Economics,
University of London, 1984.

[Za88] R. A. Zahniser, 'The Perils of Top-Down Design', SIGSOFT, Software
Engineering Notes, 13(2), April 1988, 22-24.

[Zd77] M. M. Zloof & S. P. de Jong, 'The System for Business Automation
(SBA): Programming Language', Communications of the ACM, 20(6),
June 1977, 385-396.

[Ze80] H. Zemanek, 'Abstract Architecture', in Abstract Software Specifications,
Ed. D. Bj~rner, Lecture Notes in Computer Science, Vol.86,
Springer-Verlag, Berlin, 1980, 1-42.

[ZS86] P. Zave & W. Schell, 'Salient Features of an Executable Specification
Language and its Environment', IEEE Transactions on Software
Engineering, SE-12(2), February 1986, 312-325.

[ZW85] S. B. Zdonik & P. Wegner, Language and Methodology for Object­
OrientedDatabase Environments, Technical Report CS-85-19, Department
of Computer Science, Brown University, Providence, Rhode Island,
November 1985.

A 1.1 Introduction ... 27 8

Al.2 Concrete syntax ... 278

A 1.2.1 System dictionary ... 279

Al.2.2 Status information, and descriptors 279

A 1.2.2.1 Status information ... 279

Al.2.2.2 Descriptors .. 280

Al.2.3 System dictionary body .. 280

A 1. 2. 3 .1 Environment statements 280

Al.2.3.2 Static objects .. 281

A 1.2.3.2.1 Data object definition 281

Al.2.3.2.2 Tuple ... 281

Al.2.3.2.3 The type of an object 281

A 1.2.3.2.4 Component object 282

Al.2.3.2.5 Repeat object .. 282

Al.2.3.2.6 Conditional object 282

Al.2.3.2.7 'One of .. 283

Al.2.3.2.8 Expression ... 283

Al.2.3.2.8.1 Arithmetic expression 283

Al.2.3.2.8.2 Boolean expression 283

Al.2.3.2.8.3 String expression 284

Al.2.3.2.9 Functions .. 284

Al.2.3.2.9.1 User functions definition 284

276

APPENDIX 1 - .tEGIS 277

Al.2.3.2.9.2 System functions definition 285

Al.2.3.2.9.3 Function call 285

Al.2.3.2.10 Typing .. 286

Al.2.3.2.11 Constant .. 286

Al.2.3.2.12 "Don't care" .. 286

Al.2.3.2.13 Empty ... 287

Al.2.3.2.14 Missing ... 287

Al.2.3.2.15 High value .. 287

Al.2.3.2.16 Inhibit synonyms 287

Al.2.3.2.17 Inhibit subscripting 287

A 1.2.3.2.18 Unique application details 287

Al.2.3.2.18.1 Data flow diagram hierarchy 288

Al.2.3.2.18.1.1 Basic data flow diagram
objects 288

Al.2.3.2.18.1.2 Exporting and importing ... 288

Al.2.3.2.18.1.3 Process, and data flow
refinement. 288

A 1.2.3 .2.18 .1.4 Control details 288

Al.2.3.3 Execution time objects ... 289

Al.2.3.3.1 Executable applications 289

Al.2.3.3.2 Process' status 289

Al.2.3.3.3 Execution application process set 289

Al.2.3.3.4 Instances ... 290

Al.2.3.3.4.1 Data flow instance 290

A 1.2.3.3.4.2 Met value 290

Al.2.4 Name ... 290

Al.2.5 Basic type objects ... 291

Al.2.5.1 Number ... 291

Al.2.5.2 Boolean ... 291

Al.2.5.3 String .. 291

Al.2.6 Date and time .. 291

Al.2.6.1 Date .. 291

Al.2.6.2 Time ... 292

Al.3 Further .tEgis language features ... 292

Al.3.1 Numeric operations ... 292

Al.3.2 String operations .. 292

Al.3.3 Stream operations ... 293

Al.3.4 System-dependent (primitive) operations 294

Al.5 System functions ... 296

APPENDIX 1 - JEGIS 278

Al.6 Data store activities ... 298

Al.6.1 Exporting from a data store .. 298

Al.6.2 Importing into a data store ... 298

Al.I Introduction
This appendix contains details on the /Egis language. Section A 1.2, gives the

concrete syntax; Section Al.3 has examples of constructs not described in the body of

the dissertation; and Section A 1.4 details the legal data store operations. A list of

system functions is contained in Section Al.5. Chapter 5, particularly Section 5.2, also

contains details of the language.

Al.2 Concrete syntax
This section contains the concrete syntax for /Egis. The metalanguage used to

describe the syntax is that specified by the British Standards Institution [BS81].

It is expected that implementations of SAME could incorporate certain notational

differences from the language defined here and in the body of the dissertation. The

system described in Chapter 7, for example, does not make use of the 'is defined as'

symbol'<='. With this in mind, the language described in this appendix is considered to

form a major component of an interchange language. The only extra information

required to fully describe a SAME dictionary and its contents, are details on the

graphical structure and location of objects in data flow diagrams.

The following briefly describes the metasymbols used in this section:

• = : Defining symbol. The non-terminal appearing to the left of the equality symbol is

defined in terms of what appears on the right of the equality symbol.

• ; : Definition separator. Placed at the end of each definition.

• {} : Repeat symbols. Anything enclosed within matching curly braces are repeated

zero or more times.

• [] : Option symbols. Anything between matching square brackets are optional.

• () : Group symbols. Anything which appears between matching parentheses forms a

single group of symbols. Used in a similar way to parentheses in arithmetic

expressions.

• I : Definition separator. Divides the different definition options for an object.

• - : Except symbol. Can be used to exclude symbols. For example, in the definition

<actual-parameter> = <Object> - (<basic-type> I <missing>)

an <actual-parameter> is defined as any <object> except <basic-type> or <missing> objects.

APPENDIX 1 - .tEGIS 279

• ' : All terminal symbols appear in single quotes to distinguish them from

metasymbols. (When a single quote appears as a terminal symbol, it appears in

double quotes:"'·.)

• (* *): Comment delimiters. Any string appearing between the symbols 1
(*

1 and 1
*)1 is

treated as a comment.

Al.2.1 System dictionary
A (system) dictionary is defined as:

<system-dictionary> = <dictionary-name>
<system-dictionary-body>

<dictionary-name>= ('DICTIONARY' I 'DIC') '(' <name> ')' '.'

Al.2.2 Status information, and descriptors

(* See Section A 1.2.4. *)

Each object has associated with it status information, and an optional textual

description.

Al.2.2.1 Status information

Status information, detailing the creation and last amendment dates, is

maintained by the system dictionary for all objects whose types are given in

<object-type> in Section Al.2.2.2. The structure of this information is as follows:

<Object-status-information> = <Object-creation-details>
<Object-last-amendment-details>

<Object-creation-details> =
('CREATION_DETAILS' I 'CD')'(' <object-name> ',' <object-type> ','

<Creation-date> ',' <creation-time> ')' '.'

<Object-name> = <name>

<Creation-date> = <date>

<Creation-time> = <time>

<Object-last-amendment-details> =

(* See Section A 1.2.4. *)

(* See Section A 1.2.6.1. *) ;

(* See Section A 1.2.6.2. *)

('AMENDMENT_DETAILS' I 'AD') '(' <Object-name>',' <Object-type>','
<last-amendment-date> ',' <last-amendment-time> ')' '.'

<last-amendment-date>= <date>

<last-amendment-time> = <time>

Restriction:

<last-amendment-date> ~ <creation-date>.

(* See Section A 1.2.6.1. *)

(* See Section A 1.2.6.2. *) ;

If <last-amendment-date> = <Creation-date> then <last-amendment-time>> <Creation-time>

APPENDIX 1 - !EGIS 280

Al.2.2.2 Descriptors
Optionally associated with each object in the dictionary is a descriptor. This is

not shown in the various definitions as a descriptor can be added at any time, even

before the object itself is defined.

<descriptor> = ('DESCRIPTOR' I 'DESC') '(' <Object-name> ',' <Object-type> ',' <description> ')' '.'

<Object-name> = <name>

<Object-type> = 'EE' I 'PR' I 'DS' I 'DF I 'UN' I
'OBJ' I
'APP'I
'EX' I
'DIC' I
'ENV'

<description> = <String>

Al.2.3 System dictionary body

(* See Section A 1.2.4. *)

(* DFD objects, including unknown. *)
(* A data object. *)
(* A (static) application. *)
(* An executable application. *)
(* A dictionary. *)
(* An environment. *)

(* See Section A 1.2.5.3. *)

The major part of the dictionary is a disjoint set of environments.

Al.2.3.1 Environment statements

Environments can be manipulated as an entities using environment statements.

The second option in <copy-environment>, creates an environment by copying another

environment except for those applications listed in the stream following the difference

('--') operator. The names of the applications copied will remain the same as in the

copied environment.

<environment-statement> = { <environment-name> I
<environment-contains> I
<copy-environment> I
<rename-application> }

<environment-name> = ('ENVIRONMENT' I 'ENV') '(' <name> ')' '.'

<environment-contains> =

(* See Section A 1.2.4. *)

<env-name> '<=''CONTAINS''(''(' <appl-name> { ',' <appl-name>} '}' ')' '.';

<Copy-environment> =
(<new-appl-name> '<=''COPY''(' <name-of-environment-to be copied from> ',' <appl-name> ')' ·:) I
(<name-of-environment-to be copied from>'--''(' <appl-name> { ',' <appl-name>} ')'

<rename-application>= 'RENAME''(' <env-name> ',' <Old-appl-name> ',' <new-appl-name> ')' '.'

<appl-name> = <name>

<env-name> = <name>

<name-of-environment-to be copied from> = <name>

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

Each environment can be viewed in terms of 'static' and 'execution time'

objects. Static objects are: data object definitions; user-defined functions; (pre-defined)

system functions; and application data flow diagram hierarchies (one hierarchy per

application).

APPENDIX 1 - JEGIS 281

<system-dictionary-body> = { { <environment-statement> }, <environment> }

<environment> = { <Static-object> I <execution-time-object> }

<environment-name> = ('ENVIRONMENT' I 'ENV') '(' <name> ')' '.' (* See Section A 1.2.4. *)

Al.2.3.2 Static objects

These collectively provide the total descriptive view of applications and data

objects.

<Static-object> = <data-object-definition> I
<User-function-definition> I
<system-function-definition> I
<application-dfd-hierarchy>

Al.2.3.2.1 Data object definition

Every named data object in the dictionary is defined using the following

construct:

<data-object-definition> = <name> '<=' <tuple> '.' (* See Section A 1.2.4. *)

Al.2.3.2.2 Tuple

The structure of every data object is a tuple. A tuple is generally characterised

by the number of objects it contains. The minimum tuple is a 0-tuple (zero-tuple),

which is denoted by the terminal symbol MISSING (see Section Al.2.3.2.14). No

conceptual limit exists on the size of a tuple. A tuple which is greater than a 1-tuple is a

tuple of tuples.

The following defines all permissible data object tuples, other than those which

can appear in functions (See Section Al.2.3.2.9):

<tuple>= <type-definition> I
<object-tuple>

<Object-tuple> = <Object> { ','<Object>}

Al.2.3.2.3 The type of an object

The typing of objects is carried out implicitly. However, the type of a data

object can be found explicitly as follows. This is useful in the case of a polymorphic

data object, to check the type of a particular instance of that object.

<type-definition> = TYPE''(' <tuple> ')' I <basic_type_expression>

APPENDIX 1 - JEGIS 282

Al.2.3.2.4 Component object

A tuple contains zero or more component objects. The forms an object can take

are:

<Object> = <repeat-object> I
<conditional-object> I
<One-ob I
<name> I
<expression> I
<missing> I
<inhibit-synonym> I
<inhibit-subscripting>

Al.2.3.2.5 Repeat object

(* See Section A 1.2.4. *)

(* See Section A 1.2.1.14. *)
(* See Section A 1.2.1.16. *)
(* See Section A 1.2.1.17. *)

A repeat defines a tuple of tuples. In the case where bounds are given, the tuple

has a fixed number of elements (although the types may differ between different

instances of the same element). In a fully elaborated repeat, the tuple types may be

totally different:

<repeat-object> = <bounded-repeat-object> I
<elaborated-repeat-object>

<bounded-repeat-object> = <first-bound> '{' <Object-tuple> '}' <Second-bound>

<first-bound> = <expression>

<Second-bound> = <expression> I <high-value>

<elaborated-repeat-object>= '{' <Object> { ';;' <Object>} '}'

Restriction:

TYPE(dirst-bound>) = TYPE(<second-bound>), and is a basic type.
Fully elaborated repeats are allocated numeric bounds with <first-bound> = 1.

Al.2.3.2.6 Conditional object

A conditional object is used to conditionally define a tuple. During execution,

the <if-conditional-term>S are evaluated in order, from the first specified. The object-tuple

produced is that associated with the first <if-conditional-term> to evaluate to TRUE. If no

conditional evaluates to TRUE, and where an 'OTHERWISE' clause exists, the object-tuple

associated with the 'OTHERWISE' is produced.

<Conditional-object> = <if-conditional-term> { 'I' <if-conditional-term> } [T <Otherwise-term>]

<if-conditional-term> = <Object-tuple> 'IF' <conditional>

<Otherwise-term> = <Object-tuple> 'OTHERWISE'

<conditional> = <boolean-expression>

APPENDIX 1 - JEGIS 283

Al.2.3.2.7 'One of'

'One of is a binary operator which specifies that one of two <expression>S

should apply. If the first expression leads to the creation of a tuple, this is the value of

the object, else the second expression should apply. If neither applies, this is an error.

The operator can be used a number of times in a single definition. The order of

evaluation of <expression>S is left-to-right.

<one-ob= <expression>'++' <expression> {'++'<expression>}

Al.2.3.2.8 Expression

An expression is an object which at execution time evaluates to a basic type

value. An expression may have component objects within it. For example, in the

arithmetic expression 'A* B', A and B are component objects (tuples), and the

expression 'A* B' is also an object (tuple). Valid expressions are:

<expression>= <arithmetic-expression> I
<boolean-expression> I
<string-expression>

Al.2.3.2.8.1 Arithmetic expression

<arithmetic-expression> = <arithmetic-expression> <arith-op> <arithmetic-expression> I
'-' <arithmetic-expression> I
<name> I
<number> I
<number-function-call> I
'(' <arithmetic-expression> ')'

<arith-Op> = '+' I '-' I '*' I ·r I 'DN' I 'REM'

Operator precedence:

See table in Section A 1.2.3.2.8.3.

Al.2.3.2.8.2 Boolean expression

(* See Section A 1.2.4. *)
(* See Section A 1.2.5.1. *)

<boolean-expression> = <boolean-expression> <bool-op> <boolean-expression> I
<expression> <Comp-op> <expression> I

<bool-op> = '&' I '#'

'NOT' <boolean-expression> I
<name> I
<boolean> I
<boolean-function-call> I
'(' <boolean-expression> ')'

<comp-op> = '<' I ':;;' I '=' I •~• I ~· I '>'

Operator precedence:

See table in Section A 1.2.3.2.8.3.

(* See Section A 1.2.4. *)
(* See Section A 1.2.5.2. *)

APPENDIX 1-.tEGIS 284

Al.2.3.2.8.3 String expression

<String-expression> = <string-expression> <string-op> <String-expression> I
<name> I (* See Section A 1.2.4. *)
<String> I (* See Section A 1.2.5.3. *)
<String-function-call> I
'(' <String-expression> ')'

<String-op> = '::'

Operator precedence:

The higher the level, the greater the precedence.

Operators Level

NOT 3
AND, *, /, MOD, REM, ::, >>, << 2
OR,+,- 1
~, <, ;c, =, >, ~ 0

The operators >> and << can only be used in a <function-body>.

Al.2.3.2.9 Functions

The structural details on functions are provided in this section. Other details are

given in Section Al.3.2.

Al.2.3.2.9.1 User functions definition

Extra language constructs are available when defining functions. These include

'VAL', 'LET', and 'WHILE', (essentially the same as those found in the SML language

[Ha85, HMM86]). Also available are the stream constructors'»' and'«'.

'VAL' provides a binding between an object name, whose scope is the function

body, and a value. The named object can be bound to different values at different times

during a single invocation of the function.

'LET' allows expressions which are likely to be used more than once within a set

of function expressions to be temporarily bound to a named object. The scope of the

name and binding is the the body of the 'LET'.

'WHILE' provides the classical iterative construct found in many languages, and

has the standard interpretation. In particular, the construct provides a relatively easy

method of manipulating repeat group objects by the explicit use of subscripts.

'»' allows two streams of objects of a common object type to be concatenated

together, while '«' will form a new stream from an object (first parameter) and a

stream of objects (second parameter) of the same type as the first parameter object.

<User-function-definition> = <function-definition-head> '<=' <function-body>

APPENDIX 1 - JEGIS

<function-definition-head> = <function-name> '(' [dermal-parameter-list>] ')'

<function-name> = <name> (* See Section A 1.2.4. *)

Restriction:

<function-definition-head> is unique within the dictionary in terms of the
combination of <function-name> with its arity (number of parameters).

dermal-parameter-list> = <name-list>

<function-body> = <function-expression> { ';' dunction_expression> }

<function-expression> = <Object-tuple> I
<function-only-tuple>

<function-only-tuple> = <let> I
<While> I
<Val> I
< function-stream-expression>

<val> = 'VAL' <name> '=' <object-tuple>

det> = 'LET' <Vais> 'IN' <let-body> ('ENDLET' I 'ENDL')

<Vais> = <Val> { ':' <Val> }

<let-body> = <function-expression> { ';' dunction_expression> }

(* See Section A 1.2.4. *)

<While>= 'WHILE' <boolean_expression> 'DO' <While-body> ('ENDWHILE' I 'ENDW')

<While-body> = <function-expression> { ';' dunction_expression> }

<function-stream-expression> = <tuple-object> '«' (<repeat-object> I <name>) I

Restriction:

(<repeat-object> I <name>) '»' <tuple-object> I
<stream-function-call> I
'(' <function-stream-expression> ')'

TYPE(<name>) must be a repeat object.

Al.2.3.2.9.2 System functions definition

285

Certain system functions, such as 'AVAILABLE' with a single parameter, test

system states, and are better described as primitive functions (see Sections Al.3.4

and Al.5). The implementation of these functions is system specific. All other system

functions are specified in the same manner as user-defined functions. A list of system

functions is given in Section Al.5.

Al.2.3.2.9.3 Function call

<boolean-function-call> = <function-call>

<number-function-call> = <function-call>

<String-function-call> = <function-call>

APPENDIX 1 - JEGIS

Restriction:

The value 'returned' by a <number-function-call> is of type NUMBER, etc.

<function-call> = <function-name> '(' [<actual-parameter-list>] ')'

<actual-parameter-list> = <actual-parameter> { ',' <actual-parameter> }

<actual-parameter> = <Object> - <missing>

Al.2.3.2.10 Typing

<basic-type-expression> = <basic-type> I <qualified-type>

<qualified-type> = <Sub-type> I
<basic-type-expression> <type-op> <basic-type-expression>

<basic-type> = 'BOOLEAN' I 'NUMBER' I 'STRING'

<type-op> = 'AND' I 'OR'

<SUb-type> = <repeat-range> I
<range>

<repeat-range>= <first-bound>'{' ('DIGIT' I { 'CHAR' I 'CHARACTER'))')' <Second-bound>

Restrictions:

<Second-bound>~ <first-bound>.
<first-bound> ~ 0.
TYPE{dirst-bound>) = TYPE{<second-bound>) = NUMBER.
<Second-bound> ~ <first-bound>.

<range> = <first-basic-type-value> ' . .' <Second-basic-type-value>

<first-basic-type-value> = <constant-object> I '-' <high-value>

<second-basic-type-value> = <Constant-object> I <high-value>

Restrictions:

<Second-basic-type-value> ~ <first-basic-type-value> in the collating sequence.
TYPE{ <first-basic-type-value>) = TYPE{ <second-basic-type-value>).
In each <range>, at least one of the <first-basic-type-value> and the
<Second-basic-type-value> must be a <Constant-object>.
" '-' <high-value> " means any value s; <Second-basic-type-value> is accepted.

Al.2.3.2.11 Constant

286

<Constant-object> = <number> I <String> I <boolean> {* See Section A 1.2.5. *)

Al.2.3.2.12 "Don't care"

<don't-care> = '?'

APPENDIX 1 - JEGIS

Al.2.3.2.13 Empty

<empty> = 'EMPTY'

Al.2.3.2.14 Missing

<missing> = 'MISSING'

Al.2.3.2.15 High value

287

(* No value. *)

INF is a polymorphic object which is used to signify a potentially high value.

The use of INF is restricted to repeats, and to qualified type expressions.

<high-value> has meaning for all types. In the case of numbers, <high-value> is a

high integer value. With strings, <high-value> is a long string made up of the highest

collating sequence characters. The <high-value> for Booleans is TRUE.

<high-value> = 'INF'

Al.2.3.2.16 Inhibit synonyms

If the defining details of an object is a single <name>, then at execution time the

defining object is treated as a synonym for the defined object, and when creating an

instance of the defined object, the defining object name is removed from the instance.

If the intention is that the name should be retained, synonym inhibiting can be

invoked using the operator'-'.

<inhibit-synonym> = •-• <name> (* See Section A 1.2.4. *)

Al.2.3.2.17 Inhibit subscripting

An object which appears in within a group object has an implicit subscript

created for it during execution, which means that any referenced object in a group

object is expected to be a subscripted object. If there is a need to reference a non­

subscripted object (or one with a fixed subscript value), this can be done by inhibiting

subscripting on that object using the '@' operator.

<inhibit-subscripting> = '@' <name>

Al.2.3.2.18 Unique application details

Each application is fully identified by its name.

<application> = <application-name>
<application-status-information>
<application-dfds>

<application-name>= ('APPLICATION' I 'APPL')'(' <appl-name> ')'

<application-dfds> = { <dfd> I <Control-details> }

(* See Section A 1.2.4. *)

APPENDIX 1 - .tEGIS

Al.2.3.2.18.1 Data flow diagram hierarchy

<dfd> = { <external-entity> I
<process> I
<Unknown> I
<data store> I
<data flow> I
<exporter> I
<importer> I
<refinement>}

Al.2.3.2.18.1.1 Basic data flow diagram objects

<external-entity> =
('EXTERNAL_ENI'ITY' I 'EE') '(' <name> ',' <appl-name> ')'

<process> = ('PROCESS' I 'PR') '(' <name> ',' <appl-name> ')'

<Unknown> = ('UNKNOWN' I 'UN) '(' <name> ','
<Unknown-qualifier> ','
<appl-name> ')'

<Unknown-qualifier> = 'EE' I 'PR'

<data store>= ('DATA_STORE' I 'DS') '('<name>',' <appl-name> ')'

<data-flow>= ('DATA_FLOW I 'DF) '('<name>',' <appl-name> ')'

Al.2.3.2.18.1.2 Exporting and importing

288

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

<exporter>= 'EXP''(' <name>',' <non-df-dfd-object-type> ',' <appl-name> ')'

<importer> = 'IMP' '(' <name> ',' <non-df-dfd-object-type> ',' <appl-name> ')'

<non-df-dfd-object-type> = 'EE' I 'PR' I 'UN I 'DS'

Al.2.3.2.18.1.3 Process, and data flow refinement

<refinement>= ('REFINEMENT' I 'REF)'(' <refined-object> ',' <refined-object-type> ','
<refining-object> ',' <appl-name> ')'

<refined-object> = <name>

<refined-object-type>= 'PR' I 'DF

<refining-object> = <name>

Al.2.3.2.18.1.4 Control details

<Control-details> = { <import-set> I
<data-store-action> }

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

<import-set>= ('IMPORT_SET' I 'IS')'(' <process>',' <name-list>',' <appl-name> ')'

Restriction:

The type of each <name> in the <name-list> must be DF.

<data-store-action>= { <access-method> I <Operation> I <exception>}

APPENDIX 1 - .tEGIS 289

<access-method>= (('KEYED_USING' I 'KU')'(' <df-name> ','<name-list>',' <appl-name> ')') I
(('SEQUENTIAL' I 'SEQ')) '(' <df-name> ',' <appl-name> ')')

<Operation> = ('DELETING' I 'DEL') '(' <df-name> ',' <appl-name> ')' I
((('ADDING' I 'ADD') I ('UPDATING' I 'UPD')) '(' <df-name> ',' <appl-name> ')'

'MAP' '(' <name-tuple> ')' 'TO' '(' <name-tuple> ')')

<df-name> = <name> (* See Section A 1.2.4. *)

Restriction:

The type of <df-name> must be DF.

<exception> = ('EXCEPTION' I 'EXC') '(' <df-name> ',' <exception-activity> ',' <appl-name> ')'

<exception-activity> = <roll-back> I <prompt> I <default> I <empty> I <don't-care> I <missing>

Restrictions:

<exception activity> details, and the restrictions on their use, are described in Section A 1.4.

Al.2.3.3 Execution time objects
The execution time objects are: executable applications, made up of instances of

data objects, executable application process sets, and process status' objects. None of

these can exist outside the context of the executable application model whose name they

include.

<executable-application> = <execution-application-name>
<executable-application-process-set>
<process'-status>
{ <instance> }

Al.2.3.3.1 Executable applications

Each executable application is fully identified by its name.

<exececution-application-name> =
('EXECUTABLE_APPLICATION I 'EA')'(' <exec-appl-name> ',' <appl-name> ')'

<exec-appl-name> = <name> (* See Section A 1.2.4. *)

Al.2.3.3.2 Process' status

Each executable process is in one of three states.

<process'-status> =
('BLOCKED' I 'RUNNABLE' I 'EXECUTING') '(' <process-name> ',' <exec-appl-name> ')'

Al.2.3.3.3 Execution application process set

These are the set of processes which are in.a particular executable model.

<execution-application-process-set>= (<execution-process>)

<execution-process> = ('EXECUTION_PROCESS' I 'EP') '(' <name>, <exec-appl-name> ')'

APPENDIX 1 - £GIS 290

Al.2.3.3.4 Instances

An object instance can be either a data flow instance, or a met value (which is

the value of an intermediate object generated within the context of a process).

<instance> = <data-flow-instance> I
<met-value>

Al.2.3.3.4.1 Data flow instance

<data-flow-instance> = 'INSTANCE''(' <df-name> ','
<importer-name> ',' <importer-type> ','
<exec-appl-name> ','
<Value-tuples> ')'

<importer-name> = <name> (* See Section A 1.2.4. *)

<importer-type> = <non-df-dfd-object-type>

<Value-tuples> = '(' <Value-tuple> { ','<value-tuple> } ')'

<Value-tuple> = '(' (<name>) <Value-tuples> ')' I
<constant-object>

Al.2.3.3.4.2 Met value

<met-value> = 'MET '(' <data-object-name> ','
<process-name> ','
<exec-appl-name> ','
<Value-tuples> ')'

<data-object-name> = <name>

<process-name> = <name>

Al.2.4 Name

<name> = <simple-name> I <Subscripted-name>

Restriction:

(* See Section A 1.2.4. *)
(* See Section A 1.2.3.2.11. *)

(* See Section A 1.2.4. *)

(* See Section A 1.2.4. *)

<name> must be unique for the object type within the dictionary.

<simple-name> = <single-quoted-string> I <restricted-unquoted-string>

<Single-quoted-string> = " ' " dull-unquoted-string> " ' ".

dull-unquoted-string> = Any sequence of characters in the character set.

Restriction:

If the dull-unquoted-string> appears within single quotes, any instance of a single
quote in the dull-unquoted-string> is represented by two adjacent single quotes.
If the dull-unquoted-string> appears within double quotes, any instance of a double
quote in the dull-unquoted-string> is represented by two adjacent double quotes
{see Section A 1.2.5.3).

<restricted-unquoted-symbol> = Any sequence of characters not including terminal symbols.

APPENDIX 1 - IEGIS

Restriction:

A <restricted-unquoted-symbol> must not begin with a numeric value.

<Subscripted-name> = <simple-name> "" <subscript-list>

Restriction:

A <Subscripted-name> cannot appear as an object being defined and, hence,
cannot appear as a <function-name>.

<subscript-list> = '[' <Subscript> { ',' <subscript> } ']'

<Subscript> = <expression>

<name-list> = '[' <name> { ',' <name> } ']'

<name-tuple> = <name> { ',' <name>}

Al.2.5 Basic type objects

(* See Section A 1.2.3.2.8. *)

The three basic types are NUMBER, BOOLEAN, and STRING.

Al.2.5.1 Number

291

No distinction is generally made between integer and real values. The system

sometimes imposes subtypes (integers or cardinals), such as only matching data flows

with integer currencies.

<number> = Any integer or real value which has a representation on the 'host' computer.

Al.2.5.2 Boolean

<boolean>= TRUE' I 'FALSE'.

Al.2.5.3 String

<String> = ' " ' dull-unquoted-string> ' " '. (* See Section A 1.2.4. *)

Al.2.6 Date and time
The standard format for representing the date and the time are as follows.

Al.2.6.1 Date

<date> = <day> '(<month> •r <Year>.

<day> = Integer day value (one or two digits).

<month> = Integer month value (one or two digits).

<year> = Full integer year value (four digits).

APPENDIX 1-.tEGIS

Al.2.6.2 Time

<time> = <hour> '.' <minutes> '.' <Seconds>.

<hour> = Integer twenty-four hour clock value (in range 0 .. 23).

<minutes> = Integer value (in range 0 .. 59).

<seconds> = Integer value (in range 0 .. 59).

Al.3 Further lEgis language features

292

Details on .tEgis language features not described in Chapter 5 are given in the

following subsections.

Al.3.1 Numeric operations
• 'SUM' forms the total of all the component objects in its stream of objects. The

general form of the function is

SUM (GROUP _OBJECT)

For example, when the component instances of the repeat group are, respectively,

([l], (EXTENSION, (17.52))) and ([2], (EXTENSION, (323.75))),

SUM ((1, INF, [EXTENSION]})

leads to the construction of the tuple

(341.27).

A fully elaborated repeat group can be given as the parameter for SUM.

Al.3.2 String operations
The following extra functions are available for operating on 1-tuples of type

S1RING:

• 'sUBSTR' constructs a new string by selecting a contiguous range of characters from a

given string. The general form of the function is

SUBSTR (SOURCE_STR, FIRST_CHAR_FOSIDON, NUMBER_OF _CHARS_TO_SELECT)

For example,

SUBSTR (''THIS STRING rs TOO LONG", 16, 8)

leads to the construction of the tuple

('TOO LONG").

•
1
REPLSTR

1 leads to the creation of a new string in which each occurrence, up to a

specified maximum number, of a given string of characters in a 'source' string is

replaced by a second string of characters. The general format is

REPLSTR(SOURCE_STR,STR_TO_REPLACE,STR_TO_REPLACE_WITH,

MAXIMUM_NUMBER_OF _TIMES_TO_PERFORM_THE_REPLACEMENT,

FIRST_CHARACTER_IN_SOURCE_STR_TO_BEGIN_REPLACEMENT_SEARCH).

APPENDIX 1-JEGIS

The example

REPLSTR ("MISS JONES", "MISS", "MS", 1, 1)

results in the creation of the tuple

("MS JONES").

293

• 'LENGTH' creates a I-tuple of type NUMBER that denotes the length in characters of a

given string. For example,

LENGTH ("HOW LONG IS THIS STRING?")

results in the creation of the tuple

(24).

Al.3.3 Stream operations
Four tuple operators exist for use in functions. These are:

• '«' which is an infix, non-commutative, binary function that creates a new stream

from an object and a stream. For example, if ss has the associated stream value

((3), (([l], ("EIGHT")), ([2], ("NINE")), ([3], ("TEN"))))

then

"SEVEN" « SS

leads to the creation of the stream

((4), (([l], ("SEVEN")), ([2], ("EIGHT")), ([3], ("NINE")), ([4], ("TEN")))).

• 'REST' is a function that creates a new stream which is a copy of the given string

except that ·the first item has been removed. For example,

REST(SS)

leads to the creation of the stream

((2), (([l], ("NINE")), ([2], ("TEN")))).

• '»' forms a new stream by appending a second stream to a first stream. For

example, if ss1 and ss2 have the following respective values

((2), (([l], ("SEVEN")), ([2], ("EIGHT"))))

((2), ([l], ("NINE")), ([2], ("TEN"))))

then

SSl » SS2

leads to the creation of the stream

((4), (([l], ("SEVEN")), ([2], ("EIGHT")), ([3], ("NINE")), ([4], ("TEN")))).

• 'FIRST' is a function which selects the first object in a given stream of objects. For

example,

FIRST(SS)

extracts the object "EIGHT". Note that the relationship 's = FIRST (S) « REST (S)' holds.

APPENDIX 1 - JEGIS 294

Al.3.4 System-dependent (primitive) operations
The implementation of the following functions is system-dependent, as they test

the execution state of processes, and data object instances.

• 'AV AILABLE(DATA_OBJECT)' which evaluates to TRUE if the data object (name) which is

its parameter has an instance in the context of the executing process. The instance

has to exist at the time the call on Av AILABLE is made.

•
1
CURRENCY(DATA_FLOW _OR_PROCESS_OBJECT)

1 returns the currency of the object if its

type is DATA_FLOW or PROCESS.

•
1
NEW(DATA_OBJECT)

1 is a function that performs a name coercion on a newly created

object. It is used in data flow diagrams which contain (tight) loops, so that the

imported (old) instance of a data object can be distinguished from the new instance

of that object, created during the current process invocation. For example,

NEW(OBJ)

leads to the creation of an instance of 'NEW(OBJ)' of the form

('NEW(OBJ)', (value of the object)).

When, or if, the object is exported, its name is automatically coerced (back) to 'OBJ'

by the system.

•
1
THERE_EXISTS(DATA_OBJECT, CONDITION)', where CONDITION is one of the following

two forms:
1
DATA_OBJECT binary_op expression'

'/unction (DATA_OBJECT, expression)'

'Boolean_ unary Junction DAT A_OBJECT
1

'Boolean Junction (DATA_OBJECT)'

DATA_OBJECT must be a group object element; that is, it must be an implicitly

subscripted object. For example, given that the group object 1
(1, INF, [EXTENSION]}'

has been imported by the executing process, the function call

THERE_EXISTS(EXTENSION, EXTENSION< 0)

will lead to the following two actions:

A check will be made that (at least) one instance of EXTENSION exists within the

context. If not, the function evaluates to FALSE.

For each instance of EXTENSION that exists, it is checked to see whether its value is

negative. If an instance is found which satisfies the conditional, the function

evaluates to TRUE, without the need to evaluate further. If no instance(s) satisfies

the conditional, the function evaluates to FALSE.

•
1
THERE_EXISTS(EXPRESSION, DATA_OBJECT, CONDITION)', where the second and third

parameters are as given for the previous function. The first parameter is any valid

expression. The function is executed by first evaluating the expression given as the

first parameter, following which a call of the previous function is made, of the form

APPENDIX 1 - JEGIS 295

THERE_EXISTS(DATA_OBJECT, CONDIDON).

This function is used when it is known that the data object to be tested will have

subscripted instances created within the context of the process, but because there is

no general guarantee on the order of evaluating objects, at the time the function is

evaluated, the object may not have yet had its instances created. The first parameter

can be used to force this evaluation (if it has not already been carried out).

The example given for the previous function is relevant here. If the values of

EXTENSION had not been imported into the process, the current function should be

used with a call such as

THERE_EXISTS((l, INF, [EXTENSION]), EXTENSION, EXTENSION< 0) .

• 'FOR_ALL(DATA_OBJECT, CONDITION)', where CONDITION is as defined above in
1
THERE_EXISTS(DATA_OBJECT, CONDITION)'. For the function to evaluate to TRUE, all

instances of the data object must satisfy the condition. If no instance of the

subscripted data object exists, the function evaluates to FALSE.

• 'FOR_ALL(EXPRESSION, DATA_OBJECT, CONDIDON)', where CONDIDON is as defined above

in 1
THERE_EXISTS(DATA_OBJECT, CONDIDON)'. For the function to evaluate to TRUE, all

instances of the data object must satisfy the condition. The expression can be used to

ensure that the data object instances are created prior to the condition testing.

• 'EXPRESSION_l ++ EXPRESSION_2'.

If all the needed data object instances are available to evaluate EXPRESSION_l, then it is

evaluated. Otherwise an attempt is made to evaluate EXPRESSION_l. On of the options

must be able to be evaluated, otherwise an error condition is raised. '++'s can be

combined. For example,

'EXPRESSION_l ++ EXPRESSION_2 ++ EXPRESSION_3 ++ EXPRESSION_ 41

will result in an attempt to evaluate EXPRESSION_l first, then EXPRESSION_2, then

EXPRESSION_3, and finally EXPRESSION_ 4.

• '@ OBJ'. The unary operator'@' stops the implicit subscripting of an object in a

repeat group. In the definition

A<= (1, 2, [B, @ C"[6], D])

the instance created for object A will have two component tuples. In the first

component, an instance of B with subscript [ll will appear, and similarly for D. The

instance of c which will appear is that with an (implicit) subscript of [6]. In the

second component, an instance of B and D with subscript [2] will appear. The

instance of c will once again be that with an (implicit) subscript of [6].

• '~ OBJ'. The unary operator'~' stops the implicit interpretation of a simple definition

as the definition of a synonym. In

A<=~B

the instance created for object A will have the component tuple <B, value_ of _B) ••

APPENDIX 1 - JEGIS 296

Al.5 System functions
The following lists the system-defined functions available in SAME. All but

those marked with a dagger ('t') been included in the implementation of Chapter 7.

Those marked with an asterisk ('*') are primitive functions, which require a system­

specific implementation.

• AV AIIABLE(DATA_OBJECT) - If an instance of DATA_OBJECT exists,

the value is TRUE, otherwise it is FALSE. (*)

• COUNT_OF(DF _OR_PROCESS_OBJECT, OBJECT_TYPE) - In the context of a currently

running executable model, returns a count of, in the case of a specified data flow, the

number of instances that have been created of that data flow; or, in the case of a

specified process, the number of times that process has been executed. (*)

• CURRENCY(DF _OR_PROCESS_OBJECT, OBJECT_TYPE) - Returns the currency of a data

flow or process in a currently running executable model. (*)

• DATE() - Returns the date. (*)

• A DIV B Infix binary operator which returns the quotient

from dividing the (integer) number A by the (integer) number B.

• FIRST(OBJECT_STREAM) - Returns a copy of the first object in the stream. The object

can be any tuple. (t)

• FOR_ALL(DATA_OBJECT, CONDITION) - Used to see whether a condition applies to all

component objects in a data object stream.

• FOR_ALL(EXPRESSION, DATA_OBJECT, CONDIDON)- After first evaluating the expression,

checks to see whether a condition applies to all component objects in a data object

stream.

• LENGTH(STRING_OBJECT)- Returns the length of a string.

• MAX(TUPLE) - Returns the maximum collating sequence, basic typed,

valued object in TUPLE. This function works down through the

tuple structure locating each leaf object.

• MAX_ALL(fUPLE) - Returns the maximum collating sequence,

structure valued object in TUPLE. This function only operates on the

'top level' components of TUPLE, which can be of any type.

• MIN(fUPLE) - Returns the minimum collating sequence, basic typed,

valued object in TUPLE. This function works down through the

tuple structure locating each leaf object.

• MIN_ALL(fUPLE) - Returns the minimum collating sequence,

structure valued object in TUPLE. This function only operates on the

'top level' components of TUPLE, which can be of any type.

• NEW(NAME) - Coerces NAME to 'NEW(NAME)' for the instance of

a data object created within the currently executing context of a process.

APPENDIX 1 - JEGIS

Allows the previous (now imported) instance of the object to be

distinguished from the new (just created) instance of the same named

object within the single process context.

• POWER(MANTISSA_OBJECT, EXPONENT _OBJECT) - Given two objects of type

NUMBER, returns the result of calculating MANTISSA_OBJEcrEXPONENT_OBJECT.

• A REM B Infix binary operator which returns the remainder

from dividing the (integer) number A by the (integer) number B.

• REPLSTR (SOURCE_STR, STR_TO_REPLACE, STR_TO_REPLACE_WITH,

MAXIMUM_NUMBER_OF _TIMES_TO_PERFORM_THE_REPLACEMENT,

FIRST_CHARACTER_IN_SOURCE_STR_TO_BEGIN_REPLACEMENT_SEARCH)­

Returns a string in which a specified string in the original string has

been replaced by a different string. The number of times the replacement

is to occur is also specified, as is the position in the source string

from which matching is to begin taking place.

297

(*)

• REST(OBJECT_STREAM)- Returns a copy of the given object stream, except for the first

item in the original stream. (t)

• SQRT(OBJECT_OF_TYPE_NUMBER)- Returns the square root of a number~ 0.

• SUBSTR(SOURCE_STRING, FROM, LENGTH) - Returns the substring of

SOURCE_STRING which begins at character position FROM, and is of

(maximum) size LENGTH.

• SUM(STREAM_OF_OBJECTS_OF_TYPE_NUMBER)- Used with a repeat group

object. Sums the components of the stream .

• THERE_EXISTS(DATA_OBJECT, CONDffiON)- Used to see whether a condition applies to

at least one component object in a data object stream .

• THERE_EXISTS(EXPRESSION, DATA_OBJECT, CONDffiON) - After first evaluating the

expression, checks to see whether a condition applies to at least one component

object in a data object stream.

• TIME() Returns the time.

• TYPE(I'UPLE) - Returns the type of the tuple.

• :: - Infix binary string concatenation operator.

• +, -, *, f - Standard infix binary arithmetic operators C-' also unary prefix).

• ::;;, <, =, ¢, >, ~ - Standard infix binary comparative operators.

• NOT, & ('AND'),# ('OR'), - Standard Boolean operators

('&' and'#' binary infix; 'NOT' unary prefix).

• «, » - Infix binary stream operators.

(*)

Ct)

APPENDIX 1 - .tEGIS 298

Al.6 Data store activities
The details in this section relate closely to material presented in Section 6.4.

Each data flow that is imported into or exported from a data store has a set of

attributes associated with it. In the case of a data flow exported by a data store, the first

two in the following list are the associated attributes. For flows imported into the data

store, all the following are in the attributes set:

• The method of access (viewed from the data store).

• The method for handling exceptions.

• The operation carried out on the associated data store tuple.

• The name mapping which occurs between the data flow and the data store tuple.

The two methods of access are import the data flow into the data store, and

export the data flow from the data store. The other attributes will be discussed under

these access methods.

Al.6.1 Exporting from a data store
There are two methods for exporting from a data store: sequential and keyed.

With sequential exporting, the 'next' tuple in the data store is accessed, and the

exported tuple is extracted from that tuple. With a keyed access, the tuple identified by

the key is accessed, and the data flow instance is formed from that tuple.

The only other attribute for a data flow exported from a data store, is the action

that is to be taken if the export instance is unable to be created from the data store

contents. The options are:

• Abort the process execution ('roll back') - No import data flows are consumed by

the process.

• Substitute a previously specified default value.

• Prompt the user for the data flow instance.

• Substitute a "don't care" value.

• Substitute an EMPTY value.

• Substitute a missing (MISSING) value.

Al.6.2 Importing into a data store
A data flow that is imported into a data store is also matched to the data store

tuple either sequentially or using a key.

The operation caused by the importing is one of the following:

• Delete the matching data tuple from the data store.

• Add a new data tuple to the data store.

• update (amend) the matching data tuple in the data store.

APPENDIX 1 - JEGIS 299

The first two operations only work on full tuples, whereas an update can result

in only part of an existing data store tuple being changed.

The exceptions activities possible when importing are the following:

• Ignore the operation- Such as when deleting a non-existent tuple.

• Abort the process execution ('roll back') - No import data flows are consumed by

the process.

• Substitute a previously specified default value.

• Create a new object with the updated value. (Only applies if a tuple exists into which

the object can be placed, or the object is a complete 'record'.)

• Create a new object with a constant user-supplied value of a user-specified type.

(Only applies if a tuple exists into which the object can be placed, or the object is a

complete 'record'.)

The final operation that must be specified for data store imported flows, is the

mapping of the data flow object name(s), to the data store tuple name(s). This mapping

is done using the structure of the objects and their type(s) as the method of mapping, so

care needs to be exercised in the way that data objects are defined. For example, from

the following definitions data objects A and B have the same type, but A and c do not

(because of the ordering of the elements in the tuples).

A<=D, E,F.
B<=G,E,H.
C<=H,E,G.
D<=NUMBER.
E <= BOOLEAN.
F<=STRING.
G<=NUMBER.
H<=STRING.

A2.1 Introduction ... 301

A2.2 Formal specification of the structure of data flow diagrams 302

A2.2.1 PL specification of the roots of a quadratic application 303

A2.2.2 Extensions required to the PL to fully support SAME 304

A2.2.3 Acknowledgment. ... 305

A2.3 Execution states, and transformations between them 305

A2. 3 .1 Bi, the set of blocked processes ... 307

A2. 3 .2 Ri, the set of runnable processes .. 308

A2.3.3 Ei, the set of executable processes 308

A2.4 Data object transformations ... 308

A2.4.1 Contexts .. 309

A2.4.2 Referential completeness ... 311

A2.4.3 Functional completeness ... 311

A2.4.4 Full import data preserving .. 312

A2.4.5 Full functional completeness ... 312

A2.4.6 Full export data preserving ... 313

A2.4. 7 Data preserving .. 313

A2.4.8 Full functional dependence ... 313

A2.4.9 Summary of the classification ... 314

300

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 301

A2.4.10 The inclusion of binding distance 314

A2.5 A final categorisation of applications ... 315

A2.1 Introduction
An application is represented in SAME by an executable model. The exercising

of this model is a simulation against which test data is processed. The limitations on

this approach relate both to the suitability of the model as an adequate representation of

the application, and to the representation of the test data. As a consequence, it is felt that

a need can be seen for the generation of a formal specification of the model generated in

SAME. To be able to produce such a document requires that both SAME itself be

formally specified, and that a suitable toolset exists for the generation of the formal

application specifications.

The production of a formal specification for a data flow system is a major task

and has formed the subject matter of at least one doctoral dissertation [Jo85], while also

being the active doctoral research area of France [FDP87, FD88a, FD88b, Fr88]. Work

undertaken by France and Docker to do with the formal specification of data flow

diagrams is relevant to SAME and is discussed in Section A2.2. Currently this work is

concerned with the use of algebras to define the syntax of the diagrams modelling an

application [FDP87, FD88a, FD88b]. France is extending this work to incorporate

semantics as well [Fr88], but this has not reached a stage where it can be applied to

SAME.

The work undertaken by France and Docker does not consider the relationships

between import and export sets of data flows, as these are dependent on the particular

method(s) used in the specification of the relationships. In SAME, the relationships are

defined by bindings between objects (see Section 5.4.2) which have a pictorial

representation as data dependency graphs, such as those given in Figure 6.5.

Section A2.4, provides a more formal interpretation of the transformations than that

given in the body of the dissertation.

Before discussing the work of France and Docker, two other research groups

working on the formalisation of data flow diagrams are worthy of special mention.

These are Tse and Pong [Tse85, Tse86a, Tse86b, Tse86c, Tse86d, TP86], and Chua

et al. [CTL87].

There are similarities in the work carried out by Tse's group and that of Chua.

Both have an underlying Petri net model for checking the consistency of a data flow

diagram and for providing executable models. The use of Petri nets is an obvious

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 302

approach, and has on a number of occassions been proposed as a formalisation tool for

specification and for software design, where most uses have been concerned with the

inherent concurrency within applications (see [YC83] and [Ma85], for examples).

These previous uses have close associations with the data dependency view of data

flow diagrams, and some work on the relationship of Petri nets to SSA data flow

diagrams was undertaken by Alexander at Massey University [A186]. A point of

concern highlighted by the work of Alexander was the representation of data stores in

Petri nets. The inference to be drawn is that data stores need to be modelled at a higher

level of abstraction than that found in simple transitions-places networks.

It is interesting to note that none of the cited references for Tse's or Chua's

group discuss the detailed handling of data stores. In Tse's case the work appears to be

restricted to processes and data flows only, while Chua seems to only note syntactic

differences between data stores and other data flow diagram objects.

The use of Petri nets as an underlying formalism has some value with reference

to testing the 'reachability' of flows. However, even here it is limited as the instances

of flows are treated as simple tokens with little or no semantics, so that, for example,

the conditional generation of a flow cannot be easily modelled. To adequately model the

semantics is likely to lead to an exponential explosion in the complexity of the nets, and

is therefore considered to have little value.

An alternative approach is a scheme which uses typed tokens, along with

predicates associated with the value of tokens to specify places in Petri nets. Two

particular examples of this approach are Pro-Nets [No80] and PROTEAN [BWW88],

but neither of these has been applied to data flow diagrams.

Work is being carried out by other people on limited aspects of data flow

diagrams. One such case is the work of Adler, which is concerned with an algebra to

support the decomposition of processes within data flow diagrams [Ad88].

A2.2 Formal specification of the
structure of data flow diagrams

Work carried out principally by France takes Tse's work as a starting point. A

formal algebraic system has been developed consisting of a language and an inference

component from which algebraic specifications can be derived. The semantic model

used for the algebraic specification is the initial word algebra [BG81, FD88b].

By way of example, the following defines the theory which supports the

specification of a process: 1

1 The 'pl' in lower or upper case letters identifies this as a Picture Level (PL) theory, which is concerned with
the syntactic details of a data flow diagram. A second level, called the Specification Level (SL), deals with
the semantics of the data flow diagram components (see [Fr88]). The discussion here is limited to the PL.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 303

THEORY PLprocess using Set(Plflow), Procnames
Signature:

sorts = {plprocess }

constructors
mkplprocess: procname, set(plflow), set(plflow) • plprocess
-- creates a plprocess with name of type procname, and import and

export sets of plflows ---

obse rvat ion functions
getpimports, getpexports : plprocess • set(plflow)
--- generates the import and export sets, respectively, of a plprocess ---

ok predicate
okproc : plprocess • boolean

Laws: \:::/ in, out E set(plflow); e E plprocess ; n E procname

PR1. getpimports(mkplprocess(n, in, out)) = in

PR2. getpexports(mkplprocess(n, in, out)) = out

PR3. isempty(intersect(getpimports(e), getpexports(e))),
~isempty(getpexports(e)), ~isempty(getpimports(e)) ~ okproc(e)
-- a plprocess, e, is constructed correctly iff its import and export sets are

non-empty and disjoint ---

EN DTH E ORY Plprocess

The above theory, and the other theories required to formally describe the

structure of data flow diagrams, are given in France and Docker [FD88a].

A2.2.1 PL specification of the roots of a
quadratic application

To demonstrate the use of the PL theories, the roots of a quadratic example

given in Section 3.4.1 will be defined. The Level O diagram given in Figure 3.18(a) has

the specification

RootsOfAQuadratic =
mkplapplic('ROOTS OF A QUADRATIC',
{mkplprocess('FIND ROOTS OF QUADRATIC', {COEFFICIENTS}, {ROOTS})},
{},
{mkplentity(ANALYST, {ROOTS}, {COEFFICIENTS})})

Figure 3.19 shows a Level 1 refinement of the process FIND ROOTS OF

QUADRATIC, and its specification is

'ROOTS OF A QUADRATIC' =
primstruct(

mkplprocess('FIND ROOTS OF QUADRATIC', {COEFFICIENTS}, {ROOTS}),
{mkplprocess('COMPUTE BSQ', {b}, {BSQ}),
mkplprocess('COMPUTE FOURAC', {a, c}, {FOURAC}),
mkplprocess('COMPUTE SOR', {BSQ, FOURAC}, {SOR}),

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 304

mkplprocess('COMPUTE N1', {b, SOR}, {N1}),
mkplprocess('COMPUTE N2', {b, SOR}, {N2}),
mkplprocess('COMPUTE TWOA', {a}, {TWOA}),
mkplprocess('COM PUTE root1 ', {N1}, {root1 }) ,
mkplprocess('COMPUTE root2', {N2}, {root2})}

The above is possible because primstruct is a suitable operator in a theory that

specifies process refinements [FD88a]. Within the theory is a law

okrefinement(p, sp) <:=> okprocstruct(primstruct(p,sp))

which is valid if, and only if, sp is a refinement of p. The laws that determine this are

part of the theory.

All invalid data flow diagram hierarchies reduce to the value errapplic. It is

possible to parameterise errapplic, so that the (first met) reason why an hierarchy is

invalid can be identified. This can be done easily. For example, if plprocess •

plprocess, defined only on errplprocess, picks up an error from constructing a

plprocess. Thus if mkplprocess(n, in, out)= errplprocess then errapplic(mkplprocess(•)).

A2.2.2 Extensions required to the PL to fully support SAME
The theories so far developed for the PL do not fully support the flexibility

found in SAME. For example, there are no theories associated with objects of type

unknown, nor with limited import and export sets. Also, the various classifications of

applications as structurally complete, incomplete, and invalid are not fully represented.

The extensions required to support these features are not considered significant.

An unknown object, for example is essentially viewed as either an external entity or a

process depending on the wishes of the user. In PL terms, no distinction need be made

between them as no details on transformations from data flow import sets to export sets

are specified.

France separates out syntactic from semantic details, and prefers to specify

limited import sets at the Specification Level (SL), which accounts for their omission

from the PL theories. The specification of theories at the SL to encapsulate the

semantics of data flow diagrams is currently being addressed [Fr88].

Amendments to the theories of the PL to support undefined (unknown) objects

and incomplete applications is being developed by France. An undefined object will

result in an incomplete specification, and is analogous to A1 in Section 4.6.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 305

A2.2.3 Acknowledgment
Section 2.2 owes much to the work of France, and has been included in this

thesis because of its particular relevance to SAME through the joint research of France

and Docker.

The rest of this appendix details work carried out independently of France.

A2.3 Execution states, and
transformations between them

Rules describing the operational semantics of the data-driven DFDMl model

were given in Section 4.2, and are as follows:

• Data flows (directed arcs) carry instances (token sets) between operational nodes.

• Firing rules:

Fl: Under normal operational conditions all data flows are, or in the case of data

store produced instances can be viewed as, FIFO queues.

F2: A process (node) is eligible for executing when a complete set of import

instances is available.

F3: When a process executes, one instance is read from each import flow.

Following successful execution of the process, the read data flow instances

are removed from the data flows.

F4: At the end of the successful execution of a process, each of the created

instances (possibly EMPTY) is exported. If more than one importer exists for

an exported data flow, a copy of the instance is exported to each of the

importers.

FS: A data flow instance imported from a data store is created when first

referenced in the executing process, unless it has already been created.

F6: The ordering of the creation of external entity generated instances is decided

by the user.

The above rules do not provide details on when processes are executed. Rule

F2, for example, only states under what conditions a process becomes eligible for

execution. Details on exactly when a process is executed can be left as an

implementation issue. However, using Figure 6.1 as the specification of an abstract

'SAME machine', such details can be specified in terms of this machine. This is now

done, by viewing the execution state of SAME in terms of the allowable states that

processes can be in.

At any particular time during the exercising of an application model, a

component process can be in one of three states: blocked, runnable, or executing.

One condition under which a process is blocked is if an adequate set of data flow

instances is not available, where an adequate set is defined as follows:

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 306

Definition: An adequate set of data flows instances for an executable

process p exists if one of the following conditions is true:

• where import sets exist for process p, an import set of instances

is available;

• where import sets do not exist for p, a matching instance exists

for each of the data flows in the full import set, excepting those

generated by data stores.2 •

The other condition under which a process can be blocked, is where the

execution of the process was abandoned (rolled back) due to an unsuccessful data store

access.

The underlying architecture of the 'SAME machine' includes the set

{ c1, c2, ... , ck, c1, ... , cp} of processors, where p :2:: 1.

The execution of an application is defined as the sequence of state changes

[S0, S1, S2, ... , Sa], a> 0. The application completes at time ta.

Initially the system is in state S0 at time t0 = 0. A state transition Si-l • Si

occurs at time;, such that ti> ti-l• where i E N, the set of natural numbers. A change

in state from Si-l to Si occurs when one or more currently running processes

completes, or when external entity generated data flows become available. That is, the

execution of a process is considered an atomic activity, as is the supplying of external

entity generated data flow instances.

At state i, i E N0 (Nu { 0}), the set of executable application leaf processes PL

can be divided into the sets

• Bi, the set of blocked processes;

• Ri, the set of runnable processes;

• Ei, the set of executing processes.

That is,

iPL=B· UR u E· 1 1 I'

s.t. Bin~ n Ei = 0, and where the superscript on PL is meant to signify that the sets

Bi, Ri, and Ei are state dependent. (PL never changes.)

At state S0 (t = 0),

OpL = PL U 0 U 0;

that is, B0 = PL, Ri = 0 and Ei = 0.

A diagram showing the possible state transitions is given as Figure A2. l.

2 Data store generated data flows are not specified in import sets, so need not be explicitly excluded.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 307

[E3], [E4]

Figure A2. l: State transition diagram for the execution of processes
within an application.

The conditions under which transitions occur are elaborated in the following

three sub-sections. The Boolean functions used in the conditions have the following

interpretation:

• import_set_available(pj, i) - This is true if process Pj has an adequate set of data

flows available at transition Si-l • Si.

• completed(pj, c1, i) - This is true if process Pj executing on real processor c1 finishes

execution at transition Si-l • Si.

• scheduled(pj, ck, i) - This is true if process Pj is allocated to real processor ck at

transition Si-l • Si.

• rolled_back(pj, c1, i) - This is true if process Pj is abandoned (rolled back) due to the

unavailability of a data store access at transition Si-l • Si. Such a process remains

blocked for one state transition to provide time for another process to produce the

required data store tuple. There is no guarantee that the tuple will be created in this

time, in which case the rolled back process will be rolled back again at a later

transition (Si+l • Si+2 at the earliest).

A2.3.1 Bi, the set of blocked processes
The set Bi of blocked processes is defined by

Bi= {pj I [Bl] v [B2] v [B3]}

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 308

where:

• [Bl]= (pj E Bi-l A ~import_set_available(pj, i)).

• [B2] = (Pj E Ei-l A (completed(pj, c1, i) A ~import_set_available(pj, i)).

• [B3] = (Pj E Ei-1 A rolled_back(pj, C1, i)).

A2.3.2 Ri, the set of runnable processes
The set Ri of runnable processes is defined by

Ri = {pj I [Rl] v [R2] v [R3]}

where:

• [Rl] = (pj E Bi-l A (import_set_available(pj, i) A ~scheduled(pj, ck, i)).

• [R2] = (Pj E Ri-l A ~scheduled(pj, ck, i)).

• [R3] = (pj E Ei-l A (completed(pj, c1, i) A import_set_available(pj, i)

A ~scheduled(pj, ck, i)).

A2.3.3 Ei, the set of executable processes
The set Ei of executable processes is defined by

Ei = {pj I [El] v [E2] v [E3] v [E4]}

where:

• [El] = (pj E Bi-l A (import_set_available(pj, i) A scheduled(pj, ck, i))

• [E2] = (pj E Ri-l A scheduled(pj, ck, i))

• [E3] = (Pj E Ei-l A ~completed(pj, c1, i)).

• [E4] = (pj E Ei-l A (completed(pj, c1, i)

A import_set_available(pj, i)

A scheduled(pj, ck, i))).

A2.4 Data object transformations
The transformations that occur in process' invocations from import sets to

export sets are not covered by the algebraic theories in Section A2.2. A major reason

for wanting to formally reason about the relationship between import and export data

flows is the principle of the conservation of data [GS79, Ha88]. Stated simply, if

conservation of data is to apply:

• a process cannot create data not dependent on the import flows;

• a process cannot consume data without using that data to produce one or more export

flows.

In providing a flexible environment, with powerful abstraction capabilities,

SAME allows for the violation of this principle. However, SAME also allows data

conservation to be checked for by providing a categorisation scheme for

transformations which is similar in principle to the categorisation for data flow

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 309

diagrams given in Section 4.4, and that for applications at the top level model given in

Section 4.6.

In the following much use is made of the generic phrase 'an object in [the data

flow] x'. Where used, this phrase should be interpreted as including the data flow x

itself as a candidate object.

A2.4.1 Contexts
To begin with, the concept of a context will be developed. Contexts are defined

in terms of bindings and binding sets, which were discussed in Section 5.4.2. As well,

the existence of a function to map a data flow name to the (same) data object name is

assumed. If an object definition does not exist for the named object, the operation is

undefined.

Definition: The context CP' for a process p, is the tuple C = (I, D, E), where

I is the import set of data flows for process p, E is the set of

export data flows for process p, and Dis the set of all the named

objects which appear in any of the binding sets between the

objects in E and, at most, the objects in I. This excludes the

objects in E themselves, unless they appear in a loop. •

The set D contains the maximum number of objects that can be referenced in the

invocation of process p. The situations in which less objects will be referenced coincide

with the existence of limited import and/or export sets, and/or the existence of

conditionals.

The phrase 'at most' in the definition is in recognition of the fact that an export

data flow may (erroneously) not depend, partially or fully, on any of the import data

flows. Such a case is demonstrated in Figure A2.2, where D, through D2, depends on

data object F, which is not available in the import set of data flows.

Given the data flow process Pl in Figure A2.2(a), and the associated definitions

in Figure A2.2(b), the following bindings exist (for the stated derivation paths):

• D • D1 • Al defines binding set {D => Dl, Dl =>Al}.

• D • Dl • Bl defines binding set {D=>Dl,Dl=>Bl}.

• D • D2 • F defines binding set { D => D2, D2 => F} .

• D • D3 defines binding set {D => D3}.

• A • Al defines binding set {A=>Al}.

• A • A2 defines binding set {A=> A2}.

• B • Bl defines binding set {B => Bl}.

• B • B2 defines binding set {B => B2}.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 310

A

B D
Pl

C

(a) A data flow diagram process.

D <= Dl, D2, D3.
Dl <= Al, Bl.
D2 <= F.
D3 <= 12.
F <= 24.
A <= Al, A2.
B <= Bl, B2.
C <= Cl, C2.

(b) Associated definitions.

Figure A2.2: Example used to demonstrate binding sets.

The context for Pl is

Cp1 = ({A, B, C}, {A, Al, A2, B, ABl, B2, Dl, D2, D3, F}, {D}).

The following are worth noting about the bindings:

• The constant values 12 and 24, which D3 and F are respectively defined as, do not

appear in any binding sets, as bindings to constant values are considered to have no

effect on the conservation of data. It is certainly true, that constants can be used to

generate data, but each constant is viewed as being globally available; in that its

representation, such as '12' for the number 'twelve', is taken to be its global name.

• The data objects A and B do not appear in the binding sets from D, although

component objects do.

Also worth noting is that the import data flow c is not used in producing D. This

will be referred to again in the next few sections.

A graphical representation of a binding set between two objects a and b, where

a • b, is the path in the dependency graph from a to b.3

If a loop exists within a context, this signifies the existence of a (potentially)

non-terminating dependency path, or paths (see Appendix 3). This can be used to

determine the status of an application model, so a well-formed context is defined as:

Definition: A well-formed context CP' for a process p, is a context that

contains no loops. •

3 See Figure 5.3 and the related example binding sets in Section 5.4.2.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 311

For a given import set and export set, a context is unique. This follows from the

requirement that each data object can only be defined once within a single dictionary

application environment. (See The structure of the dictionary, and the

bindings between objects in Section 6.2.1.)

During execution, the context of a process defines the scope for the reusability

of objects. The export set is excluded from a well-formed context, as a reference within

the process to an export data flow implies the need for a further process.

A2.4.2 Referential completeness
In SAME, the binding sets for a particular export from a process may possibly

not include any import set (nested) objects, in which case the export does not depend

on the import set. This would be the case, if the definition of Din Figure A2.2(b) was

D<=D2, D3.

To see whether a process has any exports which are independent of the import

set, the notion of referential completeness is defined as follows:

Definition: Given the import set of process p is I = {i 1, .. , i m}, and the

export set is E = {e1, •. , en}, the process pis referentially

complete if for each ek e E there exists at least one object in ek

which binds to at least one object in at least one data flow ij e /.

•

Referential completeness describes the most tenuous link possible between the

import set and the export set of a process. It guarantees that each export depends on (at

least) one member of the import set. This dependency need only occur in terms of a

single nested object within each data flow. In the case where the export data flow Dis

defined only in terms of D2 and D3, above, process Pl is not referentially complete.

Such a process is defined as referentially incomplete.

A2.4.3 Functional completeness
A stronger relationship is one where each export set flow depends on each of

the import set data flows. This relationship is couched in process terms as:

Definition: Given the import set of process p is I= {i1 , .. , im}, and the

export set is E = { e 1 , •• , en}, then process p is defined as

functionally complete if for each combination of import set

export set pairs (ek, i), where ek e E and ij e I, a binding set

exists between an object in ek and an object in it •

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 312

Conceptually each export data flow is now a function of the complete import

data flow set. As a minimum, the dependence on each import data flow need be in

terms of a single nested object only.

Given the specification in Figure A2.2, the process Pl is not functionally

complete as there is no binding set between D and (a component of) c. Such a process

is defined as functionally incomplete.4

A2.4.4 Full import data preserving
A process in which the export data flow set is defined in terms of the full data

flows in the import set, is defined to be fully import data preserving:

Definition: Given the import set of process p is / = {i 1 , •. , i m}, and the

export set is E = { e 1, .• , en}, then process p is defined as (fully)

import data preserving if\:::/ ij E /, then as a minimum either

the import ij is bound to by an object in at least one ek E E, or each

named object in ij is independently bound to by at least one object

in at least one ek E E. •

Conceptually each import flow is now fully needed to produce the export set for

the process. Pl would be fully import data preserving if the definition of 01, say, was

Dl <=A,B, C.

or the definitions for Dl and D3, say, were

D1 <= Al, Bl, CL
D3 <= A2, B2, C2.

It should be noted that 02 is still binding to F, which is not (a component) in the

import set of data flows.

A2.4.5 Full functional completeness
A process in which each export data flow is defined in terms of the full data

flows in the import set, is said to be fully functionally complete:

Definition: Given the import set of process p is/= {i1 , .. , im}, and the

export set is E = { e 1, .. , en}, then process p is defined as fully

functionally complete if for each combination of import set

export set pairs (e k• i), where e k E E and ij E /, then as a

4 A function which is referentially incomplete is also functionally incomplete. This concept of a weaker
incomplete state being contained in a stronger incomplete state is discussed in Section A2.4.9.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 313

minimum either the import ij is bound to by an object in ek, or

each named object in ij is bound to by one or more objects in ek.

•

Conceptually each export data flow is now a function of the complete import

data flow set. As a minimum, the dependency on each import data flow can be in terms

of a single nested object within the export data flow. As given in Figure A2.2, process

Pl is not fully functionally complete, and so it is defined as fully functionally

incomplete.

In the Figure A2.2 example, where only one export data flow exists, the cases

under which process Pl will be fully functionally complete coincide with those where it

is fully import data preserving (see Section A2.4.4).

A2.4.6 Full export data preserving
A process in which each export data flow is defined only (indirectly) in terms of

the import data flow set, is defined to be fully export data preserving:

Definition: Given the import set of process p is/= (i1, .. , im}, and the

export set is E = {e1, .. , en}, then process pis defined as (fully)

export data preserving if "i/ ek E E, there is no object ekl in ek

(including ek itself) for which a binding ekl • oi exists such that

oi does not appear in at least one binding between eld and some ijk

in the set of import flows. •

Process Pl in Figure A2.2 would be fully export data preserving if F was

(contained in) a data flow in the import set. Note that this is the case even when an

object in c is not bound to. That is, unreferenced import data objects can exist.

A2.4. 7 Data preserving
A process which is data preserving satisfies the following definition:

Definition: A process which is both import data preserving and export data

preserving is defined as (fully) data preserving. •

This corresponds to the use of the term in Hawryszkiewycz [Ha88].

A2.4.8 Full functional dependence
The final category provides a stronger functional statement of data preservation.

A process in which each export data flow is defined completely in terms of the full data

APPENDIX 2-THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 314

flows in the import set (and constants), is defined to be fully functionally dependent:

Definition: Given the import set of process p is I = (i 1 , .. , i m}, and the

export set is E = {e1, .. , en}, then process pis defined as fully

functionally dependent if p is functionally complete, and if,

for each ek E E, ij E /, the binding LekJ • Lii •

where is either the named object, or all component objects (possibly through sub­

components).

A process which is not fully functionally dependent is defined to be fully

functionally independent.

A2.4.9 Summary of the classification
In summary, Figure A2.3 describes the relationships between the categories as

an informal Hasse diagram.

A process which satisfies a particular category in the diagram, also satisfies all

those categories which come below it in the diagram and to which it is (indirectly)

connected.

A process which does not satisfy a particular category does not satisfy any other

category above it in the diagram and to which it is (indirectly) connected.

fully functionally dependent

(fully) data preserving

(fully) export data
preserving

(fully) import data
preserving

fully functionally complete

functionally complete

referentially complete

Figure A2.3: Informal Hasse diagram of data object transformations categories.

A2.4.10 The inclusion of binding distance
To provide further information on the strength of bindings between the import

and export sets of a process, binding distances can be incorporated with the categories

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 315

given above. Binding distance between two objects was defined, in Section 5.4.2, as

being equal to the Cardinality of the set of bindings between the objects.

Considered to be the most useful binding distance measure, is the maximum

level of binding which exists between objects in the context set D of a process (see

Section A2.4.1). For the example in Figure A2.2, the maximum binding level for Pl is

2, which occurs three times; once each for the sets {D • Dl, D1 • Al}, {D • D1, Dl •

Bl}, and {D • D2, D2 • F}. This is defined as the process' binding distance, as

follows:

Definition: The process' binding distance for process p is the maximum

of all the binding distances that exist between any of the objects in

the set D within the context of p. •

The strongest possible binding (between the import and export sets) in a

process is where the process is fully functionally dependent, and the process binding

distance is 1.

A2.5 A final categorisation of applications
In Section 4.4.6 applications at the top level model were described as the 5-

tuple

A= (E, S, P, U, F)

such that E is the application set of external entities, S is the application set of data

stores, P is the application process set, U is the set of unknown objects in the

application, and F is the set of data flows that appear in the data flow diagram hierarchy

for the application. Each of the sets includes all the objects of its type that exist in the

application.

This description will now be extended to take account of the bottom level model

which describes the transformations between data flow sets. In doing so, a single

framework will be developed for describing both static and executable application

models.

The static model of an application includes all the objects of relevance to that

application, and is generally larger than any of the executable models for the

application.

An application in SAME is described as the 6-tuple

A= (E, S, P, U, F, C)

such that

• E is the application set of external entities, where each external entity e in E is

described by (name, I, E), such that name is the name of the entity, and I and E are

APPENDIX 2-THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 316

respectively the import and export sets of the entity.

• S is the application set of data stores, where each data store s in S is described by

(name, I, E), such that name is the name of the store, and I and E are respectively the

import and export sets of the store.

• Pis the application process set, where each process p in Pis described by (name,

where_contained, C, IS), such that: name is the name of the process;

where contained is the name of the parent process, if there is one, or the name of the

application otherwise; C is the context for the process (see Section A2.4.1); and IS is

the (possibly empty) set of import sets for the process.

• U is the set of unknown objects in the application, where each unknown object u in

U is described by (name, where _contained, option), such that: name is the name of

the unknown object; where _contained is the name of the process in whose

refinement the unknown object appears, if there is one, or the name of the

application otherwise; and option is either process(C, IS), or entity(C, IS),

depending on whether the unknown object is to be interpreted as a process or an

external entity, respectively.

• F is the set of data flows that appear in the data flow diagram hierarchy for the

application, where each flow fin Fis described by (name, where_contained), such

that name is the name of the flow, and where _contained is the name of the process in

whose refinement the data flow appears, if there is one, or the name of the

application otherwise.

The classification of an application model, whether it is the static or an

executable model, is two-tiered. At the higher level, the application is defined as:

• structurally complete - if it satisfies the data flow diagram rules of Section 4.4.1;

• structurally incomplete - if it satisfies the data flow diagram rules of Section 4.4.2;

• structurally invalid - otherwise.

Those applications which are either structurally complete or incomplete, a lower

level classification applies in terms of the bindings of import sets to export sets. An

application, at the lower level, is defined as:

• referentially complete - if one process in the application is referentially complete, and

all other processes are at least referentially complete.5

• functionally complete - if one process in the application is functionally complete, and

all other processes are at least functionally complete.

• fully functionally complete - if one process in the application is fully functionally

complete, and all other processes are at least fully functionally complete.

5 The use of the term 'process' in this set of definitions extends to objects of type unknown which are to
be treated like processes. Also, the phrase 'at least x' refers to the position of a category in the Hasse
diagram of Figure A2.3.

APPENDIX 2 - THE BASIS FOR A RIGOROUS INTERPR'N OF SAME 317

• fully functionally dependent - if all processes in the application are fully functionally

dependent.

• (fully) data conserving - if all processes in the application are data conserving.

The lower level classification can be augmented with the application's binding

distance, which is defined as follows:

Definition: The application's binding distance is the maximum of all the

process' binding distances which exist in the application. •

A3.1 Introduction ... 318

A3.2 Iteration .. 319

A3.2.1 Iteration in the standard SAME model.. 319

A3.2.2 Iteration with renaming semantics 322

A3.3 Recursion .. 324

A3.1 Introduction
Iteration, in the form of loops, at the data flow diagram level in SSA, is

generally discouraged. De Marco makes the following comment ([De78], p.40):

'[...], you almost never see a loop in a Data Flow Diagram. A loop is

something that the data are unaware of; each datum typically goes through it

once, and so from its point of view it is not a loop at all. Loops and decisions

are control considerations and do not appear in Data Flow Diagrams.'

Other authors express stronger views. Hawryszkiewycz [Ha88], for example,

describes them as an illegal construct.

318

APPENDIX 3 - ITERATION AND RECURSION IN DFDS 319

The general mechanism for providing repetition in SAME is the group object,

which has an implicit index. The control activities required to construct group objects in

SAME, are made transparent in the execution models DFDMl and DFDM2. Although it

would be possible to pass an index as a data flow, this is not needed, and is considered

bad practice within SSA [Ha88, De78, GS79, We80]. Recursion can most naturally be

handled within functions.

Having said this, there are arguments to do with providing flexibility which

suggest that both repetition and recursion should be able to be specified within data

flow diagrams. An important application which is naturally recursive is bill of

materials, where part assemblies can be constructed from sub-assemblies, and so on.

A3.2 Iteration
In SAME, renaming semantics are not part of the standard model(s), so the

direct importing of a data flow by the exporting process is not allowed. In Section

A3.2.1, the standard method for accommodating loops in SAME is described in terms

of a small example. In Section A3.2.2, the same example is modelled by an extended

version of SAME which (experimentally) supports renaming semantics. It should be

stressed that the ability to have two 'generations' of the same named object in the

context of a process is not considered desirable.

A3.2.1 Iteration in the standard SAME model
A simple example of an application with looping is calculating total = n * a +

init using successive addition; that is, an application to find sum(O,n,a)+ init.

A data flow diagram for the application is shown in Figure A3.l(a), with the

object definitions in Figure A3.l(b). (See also Section 7.6.) The effect of executing this

application is the unfolding of the loop into a sequence of n instances of processes pl

and p2, as can be seen in the trace of Figures 7.31 and A3.2.

An important point to note is that the data flow diagram and the JEgis object

definitions still remain essentially independent from each other. The diagram has an

iterative structure while the data objects appear recursive. The data object definitions

taken on their own contain a cycle which will result in an infinite, mutually recursive,

path being generated if a demand-driven evaluation is attempted outside the context of

the data flow diagram. This can be seen in the dependency graph in Figure A3. l.

However, within the context of the data flow diagram, the evaluation is well bounded

as the execution is driven by the availability of the initial values, and the limited set of

data objects used in each process includes no recursion.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS

s File Edit Windows SAME Objects Show

loop ~□~ Object dependencies gm ~e:rn

0 user total

•
c::JJ initAN

soI•rl

- pl !fo!er p2

..

(a) A data flow diagram with a loop formed by flows soFar and soFarl.

s File Edit Windows SAME Objects Show Display

Display em Object dependencies gm
a:

number
init:

nu.m.ber
initAN:

init,a,n
n:

n1:

n2:

nu.m.ber

n if available(n) or
n2 otherwise

n1-1 if n1>0
:ioFar:

:itua,a,n1
:ioFar1:

(:itua1,a,n2) if n1>0
:itua:

stua1 if available(n2) or
init otherwise

stuai:
:,um.+a if n1>0

total:
Stua it n1::s;O

Def

111111

mm

(b) Object definitions.

n2

nl

Figure A3.l: An application containing a processing loop
within the data flow diagram.

The impact on SAME of allowing loops at the diagram level is three-fold:

320

• The matching currency for data flows and processes is kept constant within the

execution of the loop. An instance of soFarl, for example, when produced will

have the same currency as the imported instance of s oF a r. As this instance of

soFarl becomes the available import set for process pl, the currency for this

process is coerced to the currency of the data flow soFarl. This scheme supports

the interleaving of sets of input data to the application, as shown in Figure A3.2.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS

STARTING: pl (1)
-> initAN:

init: 2
a: 3
n: 1

<- soFar:
sum: 2
a: 3
nl: 1

ENDING: pl (1)
STARTING: p2 (1)
-> soFar:

sum: 2
a: 3
nl: 1

<- soFarl:
suml: 5
a: 3
n2: 0

<- total: missing
ENDING: p2 (1)
STARTING: pl (2)
-> initAN:

init: 4
a: 5
n: 1

-> soFarl (** 1 **):
suml: 5
a: 3
n2: 0

** Process pl
** Currency changed from 1 to 2
<- soFar:

sum: 4
a: 5
nl: 1

ENDING: pl (2)
STARTING: p2 (2)
-> soFar:

sum: 4
a: 5
nl: 1

<- soFarl:
suml: 9
a: 5
n2: 0

<- total: missing
ENDING: p2 (2)
STARTING: pl (1)
-> soFarl:

suml: 5
a: 3
n2: 0

<- soFar:
sum: 5
a: 3
nl: 0

ENDING: pl (1)
STARTING: p2 (1)
-> soFar:

sum: 5
a: 3
nl: 0

<- soFarl: missing
<- total: 5
ENDING: p2 (1)
STARTING: pl (2)
-> soFarl:

suml: 9
a: 5
n2: 0

<- soFar:
sum: 9
a: 5
nl: 0

ENDING: pl (2)
STARTING: p2 (2)
-> soFar:

sum: 9
a: 5
nl: 0

<- soFarl: missing
<- total: 9
ENDING: p2 (2)

Figure A3.2: The trace for the loop example, where different import sets of data
have been interleaved. 1

321

• The most abstract executable model must contain the loop diagram. For instance,

Figure A3.1 (a) cannot usefully be abstacted to an executable model containing just a

single process (see following paragraph). If an application contains nested loops, the

most abstract executable model is at the level of the innermost loop.

• As the object definitions must now allow for the indirect definition of an object in

1 In the implementation described in Chapter 7, automatic flushing of data flows must be turned off under
Preferences ... in the SAME menu to produce the trace in Figure A3.2.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS 322

terms of itself, it is possible that an object instance will not be able to be generated

from the definitions where an object definitions loop falls within the context of a

single process.

The last of these will lead to the user being advised of the existence of a cycle.

A3.2.2 Iteration with renaming semantics
The extension to SAME to let a process directly import its own exports is

achieved by use of the function NEW, which has as its single parameter the name of a

data object. If, for example, the tuple element NEW(OBJ) was being evaluated, two

possible situations can occur:

• If a value exists for an object named 1
NEW(OBJ)

1
, this value is used.

• If no such value exists, a value is generated using the definition of OBJ. This value is

then bound to the object named 1
NEW(OBJ)

1
•

The example given in the previous section can be specified in the new scheme in

the manner described in Figure A3.3

The object dependency graphs for soFar and total are given in Figures A3.4

and A3.5, respectively. (The graph for total is too big to be viewed in its entirety on

the Macintosh SE screen.) Observe that new is shown as a function in the graphs. The

generated names 'new (sum)' and 'new (nl)' are internal to the invocation of the

process, and are transparent to the user.

An execution trace of the model is given in Figure A3.6 for the shown input

data. Note how 'new (sum)' becomes 'sum' on the next iteration. The renaming from

'new< sum)' to 'sum' takes place when creating the exports, so that instances of

'new (sum)' are inserted into the export data flow instances with the object name 'sum'.

• File Edit Windows SAME Objects Show Oisploy

0

I •
c:n

-- l •

loop2 Displ8ll

um F
initAH

pl r:
a:

number
init:

number
initAN:

(init,
a,
n)

n:
number

ni:
n-1++(n1-1)

soFar:
(new(sum),
a,
new(n1)) if new(n1)>0

sum:

0

I

I
11111!

mm
init if available(n)&n=O or
init+a if available(n)&n>O or

totaf~+a if new(n1)>0 II
init if available(n)&n=O or ill
sum.+a if new(n1)=0 Q

------------------------ Q]

Figure A3.3: The summation example using renaming semantics.

APPENDIX 3 - TIERA TION AND RECURSION IN DFDS

ct File Edit Windows SAME Objects Show Disploys

loop2 ~□~ Object dependencies grnph §'§0l\l

i.nitAN

pl

YI
J'i'

' ~
A

n1llll llllll

nl

Figure A3.4: Object dependency graph for soFar.

II.

Figure A3.5: Object dependency graph for total.

323

APPENDIX 3 - ITERATION AND RECURSION IN DFDS

is file Edit Windows SAME Objects Show

Trace ~r EE: user
*#*to*#* o
---=------==•-•==•=-===•=------- ~ ==--=-----------------------Execution sub-system (0.1]

STARTING: p1 (1)
-> initAN:

init: 2
a: 3
n: 2

<- soFe.r:
sum: 5
e.: 3
n1: 1

<- total: missing
ENDING: p1 (1)
STARTING: p1 (1)
-> soFe.r:

sum: 5
a: 3
n1: 1

<- soFe.r: missing
<- total: 8
ENDING: p1 (1)

Data flow total
From process p1 (currency 1)

111111

8

m111

111111

11111!

illlli

~ ~ -

Figure A3.6: A trace of the model which contains renaming semantics.

A3.3 Recursion

324

Although recursion can be handled within data flow diagrams, the effects in

SAME are to:

• remove the independence between the diagrams and the iEgis object definitions;

• require the execution of a process and its descendant processes within the same

model;

• require the use of overlapping limited import sets.

These effects can be seen by considering the data flow diagram modelling of an

application to find the factorial of n.

Using a function, the factorial problem can be specified simply as

FACT(N) <= N * FACT(N-1)
1
(''NEGATIVE VALUE SPECIFIED FOR N OF", N)

IFN> 11
IF (N = 0 ORN= 1) I
OTHERWISE.

A model for the application which does not use an explicit function is given in

Figure A3.7.

The refinement for process FACT includes an instance of itself. The availability

of an instance of N_MINUS_l will make the nested FACT process runnable. This would

lead to an expansion of process FACT into its three descendant processes, and the

allocation of the imported N_MINUS_l instance to processes CHECK FOR END and MULT.

The data flow instance for N_MINUS_l would have been name coerced to N by the

RECURSION operator. When the inner invocation of FACT completes, the export data flow

N_FACT is name coerced to N_MINUS_l_FACT also by the RECURSION operator.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS 325

FACT

N
N FACT

N_Mil\'US_l_FACT

(a) A data flow diagram with recursion.

N_FACT <= N * N_MINUS_l_FACT IF (N > 1) I
BOUNDARY_VAL IF(N=0ORN= 1).

N_MINUS_l <= N - 1 IF (N > 1).
BOUNDARY_VAL <= 1 IF(N=0ORN=l).
N_MINUS_l_FACT <= RECURSION(N_FACT, (N_MINUS_l = N)).
N <= 0 .. INF.

(b) Object definitions.

Figure A3.7: Finding the factorial of N using recursion in the data flow diagram.

The data flow BOUNDARY_ v AL supplies the value of the base equation of a

recursive definition. The invocation of nested instances of the process F~CT cease when

the value of N is less than or equal to 1, as no instance of N_MINUS_l will be generated.

Process MULT has the two limited import sets {N, BOUNDARY_ VAL} and {N,

N_MINUS_l_FACT}. The intersection of these sets is not disjoint, although it is reasonably

easy to demonstrate that non-determinism will not occur.

It is possible to circumvent using overlapping import sets, by distributing the

object N through the other flows, BOUNDARY_ VAL, N_MINUS_l and N_MINUS_l_FACT, but

this can be viewed as 'inelegant'.

As a second example, Figure A3.8 contains a structure diagram for finding the

components of parts within a bill of materials application. COMPONENTS(PART_#) is a

procedure for displaying the details of the part referenced by PART_#. As can be seen in

the diagram, this application is naturally recursive where parts can be composed from

other parts.

A data flow solution to this application is given in Figure A3.9. Figure A3.9(b)

contains the explosion of process PL MINOR_PARTS is the decomposed data flow labelled

MINOR_PART_NUM, which means that the nested process Pl will be invoked for each

MINOR_PART_NUM. One export instance of data flow MINOR_COMPONENTS will be

generated for each MINOR_PART_NUM.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS 326

Note that the import sets for process Pl and the nested version of Pl do not

completely match. The difference is in terms of the data store generated data flows.

Figure A3.9(a) shows process Pl importing the two data flows PART_# and

PART_DETAILS, while the nested Pl in Figure A3.9(b) is only shown importing

MINOR]ART_NUM (that is, PART_#). A solution to this lack of symmetry is to allow data

stores to be specified within recursive processes, in which case PARTS would appear

within the confines of the larger box in Figure A3.9(b), as well as outside it. Figure

A3.10 contains the details of a specification based on this concept which is equivalent

to that given in Figure A3.9.

As with iteration, the execution time effect of recursion is an unfolding of

processes. The main difference between the handling of iteration and recursion at the

data flow diagram level in SAME, is the need to include data flow diagram process

details in the object definitions for an application using recursion.

It was argued earlier that the independence in iterative models between the data

flow diagrams and the object definitions is more apparent than real. This follows from

the fact that the object definitions now contain loops, so that the demand-driven

generation of an object instance could terminate within the context of the execution of a

data flow diagram process, but not if the generation is attempted outside a process.

GETPART_DETAILS
USING PART_#

COMPONENTS(PART _#)

FIND TIIE COMPONENTS
OF PART WHOSE KEY IS
PART_#

OUTPUT
PART_DESCR

LOOPWHILE
MINOR_pART_#

EXISTS

COMPONENTS(MINOR_pART_#)

Figure A3.8: A structure diagram for the part components application, showing the
recursive nature of the application.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS

PART_# COMPONENTS
P2

PART_DETAILS

PARTS

(a) Part of a data flow diagram for the parts components application.

PART_#

PART_DEfAILS

PARTS

PART_#
PART_DEfAILS
PART_DESCR
MINOR_PARTS
NUU,_STREAM
MINOR_FART_#
MINOR_COMPONENTS

MINOR_FART_NUM
COMPONENfS

Pl

PART_DESCR COMPONENTS

MINOR_COMPONENTS

(b) The explosion of process Pl.

<=
<=
<=
<=
<=
<=
<=

<=
<=

NUMBER.
PART-DESCR, MINOR_FARTS.
STRING.
0(MINOR_PART_#)INF.
EMPTY IF (MINOR_FARTS = EMPTY).
NUMBER.
RECURSION(COMPONENTS,

(MINOR_PART_#= PART_#,
DS(PARTS, PART_DEfAILS)).

MINOR_PART_# IF (MINOR_FARTS * EMPTY).
(PART _#,PART _DESCR) « MINOR_COMPONENTS

327

IF AV AII.ABLE(MINOR_COMPONENTS) I
(PART_#,PART_DESCR) OTHERWISE.

(c) Certain object definitions for the recursive application.

Figure A3.9: An application involving recursion within the data flow diagram.

APPENDIX 3 - ITERATION AND RECURSION IN DFDS

PART_# COMPONENTS

PART_DETAILS

PARTS

(a) The same data flow diagram segment as Figure A3.6(a) can be used.

PART_#

PART_DETAILS

PARTS

Pl

PART_DESCR

NULL_STREAM

MINOR_p ART _NUM

MINOR_COMPONENTS

MINOR_pART_DETAILS

PARTS

COMPONENTS

(b) The data flow diagram in which PARTS appears within the
exploded view of process Pl.

PART_#
PART_DETAILS
PART_DESCR
MINOR_pARTS
NULL_STREAM
MINOR_PART_DETAILS
MINOR_PART_#
MINOR_COMPONENTS

MINOR_PART_NUM
COMPONENTS

<=
<=
<=
<=
<=
<=
<=
<=

<=
<=

NUMBER.
PART-DESCR, MINOR_PARTS.
STRING.
0(MINOR_FART_#}INF.
EMPTY IF (MINOR_PARTS = EMPTY).
PART-DESCR, MINOR_pARTS.
NUMBER.
RECURSION(COMPONENTS,

(MINOR_PART_#= PART_#,
MINOR_pART_DETAILS=PART_DETAJLS)).

MINOR_FART_# IF (MINOR_PARTS"' EMPTY).
(PART _#,PART _DESCR) « MINOR_COMPONENTS

328

IF AV AIIABLE(MINOR_COMPONENTS) I
(PART_#,PART_DESCR) OTHERWISE.

(c) Definitions including MINOR_PART_DETAILS, and an amendedMINOR_COMPONENTS.

Figure A3.10: The recursive application shown in Figure A3.6, but with the
explicit representation of the minor part details data flow.

A4. l Introduction ... 330

A4.2 Starting and ending a modelling session ... 330

A4.2.1 Starting a SAME session ... 330

Loading an existing application model 331

Creating an application model .. . 333

A4.2.2 Ending a SAME session .. 334

A4.3 SAME files .. 335

A4.3. l SAME system files .. 335

A4.3.2 Application models files .. 335

A4.4 Windows .. 336

A4.4.1 Data flow diagram (DFD) windows 337

DFD windows tools .. 339

A4.4.2 Object dependencies graph window 344

Object dependencies graph window tools 344

A4.4.3 Application hierarchy window ... 345

Application hierarchy window tools 345

A4.4.4 Data store mapping window ... 347

Data store mapping window tools348

A4.5 Menus .. 349

329

APPENDIX 4 - OUTLINE SAME USER MANUAL 330

A4.5.1 SAME .. 349

A4.5.2 Objects .. 352

A4.5.3 Show ... 353

A4.5.4 Window .. 353

A4.5.5 Display ... 354

A4.5.6 Trace .. 354

A4.5.7 External entities .. 355

A4.5.8 Processes ... 355

A4.5.9 Data stores ... 356

A4.5.10 Data flows .. 357

A4.5.11 Next. .. 357

A4.6 Help .. 358

A4.1 Introduction
This appendix describes some of the features of the prototype implementation of

SAME described in Chapter 7. In general, features described in Chapter 7 are not

elaborated here.

SAME has a comprehensive on-line help facility, access to which is described

in Section A4.6.

A4.2 Starting and ending a modelling session
A4.2.1 Starting a SAME session

The system is loaded by clicking on the SAME application icon, shown in the

window below.

gO~SAME~0g
5 it•m• 547K in disk 238K •v

~
SAME

Warning: Do not attempt to load any other file directly.

APPENDIX 4 - OUTLINE SAME USER MANUAL

Once the application has been loaded, the following dialogue is displayed.

Structured Analysis Modelling Eriuironment

Uersion 1.0 - 22 January, 1989

© T llJ G Docker

[Continue]
~

331

If Help is selected, brief details of the SAME system are given. Selecting Stop

will end the SAME session.

Clicking on Continue results in the menu bar being reduced to the format

shown in the diagram below.

c File Edit SAME

The 41 menu is that available under the LPA Prolog application, while the File,

and Edit menus are generated by LPA Prolog.

Warning: Unless prompted to do so, do not select any item
in the File menu.

The two main options under the SAME menu are creating a new application

model, and loading an existing model from disk.

Loading an existing application model
If an existing model is to be loaded, the load sequence is as follows: 1

1 Read Section A4.3.2 before continuing with the load sequence discussion.

APPENDIX 4 - OUTLINE SAME USER MANUAL 332

• Select the DFDs file - SAME prompts for the file which contains the non-data­

objects details of the application model.

la bank e.g. I
1111,l'i dl'<lllllSI ~

[) bank Objs ~ I
(Ok l i ([j1~i:1 l

!
(Cancel) I (OrilH/)

0 = SAME applications

Conte Ht
LOADING APPLICATION DFD HIERARCHY.
Select the file from which the
application hierarchy of data flow
diagrams is to be loaded.

When the file has been selected, the system checks that the file is of the right

type. If it is, a dialogue of the following form is displayed, so that the user can check

the correct application is being loaded. If the file is of the wrong type, an exception

message is displayed, and the load sequence is halted.

Data flow diagram hierarchy fAMEj

Name: bank

Date saued: 27th April 89

Time saued: 3.49pm

Don't load

• Select the Data Objects file - The above sequence of activities is repeated, but

this time for the file which contains the data object definitions.

• Data stores reminder - Once the data object definitions have been loaded, the

following dialogue is displayed.

~
~

Remember to load data store tuples, If
required [Continue J

tt

APPENDIX 4 - OUTLINE SAME USER MANUAL 333

If the application model includes data stores, the user must load the data store

tuple instances separately (see Section A4.5.9, menu item Load tuples ...). This can

be done any time following the last item in the loading sequence (display of

application details).

• Display of application details - Finally, SAME displays the following

dialogue, giving the application details.

bank

Description

Created: Last amended:

19th April 89 - 12.56pm

(Cancel)

Creating an application model
If a new application model is to be created, the following sequence of

operations occurs:

• Naming the application - A dialogue of the following form is displayed, and

this is filled in by the user. A name must be supplied for the application. The

description is optional and can be added at a later stage (see Section A4.5.1, menu

item Application ...).

Enter a name for the application

Name

I roots

Description

Giuen the coefficients a, b, and c, finds the two real roots of a
quadratic.

Created: 2nd Mey 89 - 5.02pm

(Cancel)

APPENDIX 4 - OUTLINE SAME USER MANUAL 334

• Creation of Level O data flow diagram - The system creates a DFD window

in which the user should create the Level O data flow diagram. The window is given

the name of the application.

The system applies a hidden grid when positioning objects of the types data

store, external entity, and process. The user is prompted for the size of this grid,

using the following dialogue. A suggested size of 20 is provided by the system as a

default value.

Reuise suggested grid size, ~AMEi
os required, for window
roots

A4.2.2 Ending a SAME session
A modelling session is terminated by selecting Quit (3€0) in the SAME menu

(see Section A4.5.1). When quitting, the following exit sequence is followed through:

• Check on quitting - the user is prompted on whether or not an exit should be made

from the SAME system:

& Do you reolly want to quit SAME ~~

• Check on saving the application model(s) - if an exit from the SAME system is

required, the user is asked whether the application model(s) should be saved:

/4\ Do you wish to soue the application (ves]
Ll.1 before eHitlng

If the answer is yes, the standard save sequence is followed (see item Sau e ... in

Section A4.5.1).

APPENDIX 4 - OUTLINE SAME USER MANUAL 335

A4.3 SAME files
Apart from the LP A Prolog system, two types of files can be identified in the

SAME system: system files, and application models files.

A4.3.1 SAME system files
The five files shown in the following window constitute the SAME system

files.

-• SAME 0=
Sitems 547K in disk 238K •v•il•blt

kid
:Q

SAME

~ ~ ~ D
SAME d,fault •nvironment SAME Synt•x Htlp SAME Help SAMErts01

0
CJI IQ Q:]

The purpose of each file is:

• SAME-The SAME program (an LPA Prolog object file).

• SAME default environment - A file containing default details common to all

application models. Details from this file are automatically loaded on entry to SAME.

No user access is provided to this file.

• SAME Syntax Help - Contains help text on the structure of iEgis constructs, and

on the purpose of system defined functions. Access to the help details is provided

within SAME.

• SAME Help - Contains help details on all SAME menu items and graphic tools.

Access to the help details is provided within SAME.

• SAMEres0l - Details on the resources (cursors, buttons, etc.) used within SAME

are contained within this file. No user access is provided to this file.

A4.3.2 Application models files
An application model created within SAME can be saved for use in later

sessions, either by selecting Saue ... in the SAME menu (see Section A4.5.1), or at the

time of quitting from SAME (see Section A4.2.2).

Each model is saved to two files:

• DFDs file - All details about the model which are in the system dictionary,

excluding the definition of data objects, are saved to a DFD file. This includes details

on any current executable model.

• Data Objects file - The definitions of the data objects in the system dictionary are

saved to a file of this type.

APPENDIX 4 - OUTLINE SAME USER MANUAL 336

The reason for storing the data objects in a separate file is to allow them to be

used by more than one application, and also to allow a single application to be exercised

against different sets of object definitions.

A4.4 Windows
SAME maintains the following four classes of windows:

• DFDs - Each window contains a single data flow diagram in the application

hierarchy. At the top of the hierarchy is the Level O (or context) diagram. Each other

diagram is a refinement of a single process. (A DFD window is also a graphics

window. See the last item.)

• EEs- Each external entity in the (executable) application model which imports one

or more data flows has a window created for it. All data flows exported to the

external entity are written to that window. (An external entity window is also a text

window. See the next item.)

• TEXT-As its name suggests, a text window is used to contain textual details. Apart

from EEs, three special text windows are used by the system:

ConteHt - This is used to display messages on the current state of the system.

Used mostly during the execution of a model.

Display - A display request either leads to a dialogue being shown on the screen,

or details being written to the Display window. A dialogue display is an

immediate display that is lost when the dialogue is completed. A display written to

the Display window can be kept for as long as desired, and can even be cut and

placed into other windows or documents via the Clipboard or Scrapbook.

Trace - If medium or full trace is on, details on the tracing of an executable model

are written to the Trace window. Details written to the Trace window can be kept

for as long as desired, and can even be cut and placed into other windows or

documents via the Clipboard or Scrapbook.

Note: Text windows quickly consume main memory, and lead to slow

processing speed as working memory is reduced. Periodically delete

text window details. It is better to delete medium to large chunks of

text, otherwise store fragmentation can occur.

• GRAPHICS - As its name suggests, a graphics window is used to contain

diagrams. Apart from DFDs, three special graphics windows are used by the system:

Object dependencies graph - This is used to display the structure of a data

object as a graph of its dependent objects.

Application hierarchy-The structure of both the application process hierarchy,

and the executable model process hierarchy, can be displayed in this window.

Data store mapping - This window is only created if one or more mappings

APPENDIX 4 - OUTLINE SAME USER MANUAL 337

has been carried out between data flows and data stores. The window will contain

a pictorial representation of the data flow and data store object structures, by

which the mappings can be specified.

In general, a graphics window has the structure of the DFD windows shown

in Section A4.4.1. The usual facilities associated with Macintosh windows, such as

'go-away' and resizing boxes, are present.

Note: Having graphic windows displayed slows down processing, as

the system refreshes the windows following dialogue displays, etc.

The following dialogue shows the windows from three of the above classes for

a simple application.

Select windows

------------- OF Os ------------- IQ
processTronsaction
bank ITTTTi

;r~~~;:ome, ::, --1
----------- GRAPHICS -----------IO

Ok (Cancel)

A4.4.1 Data flow diagram (DFD) windows
Each DFD window has the following basic structure:

tool pane __ _,.~

scrollable viewing pane

\
~ Ill

ndl--1,;d.-- cursor
(in the shape

1'"!

viewer ----11• of the process tool)

• Split line - which is the vertical line that splits the window into the two main areas:

the tool pane, and the viewing pane. The split bar can be moved by holding the

cursor down over the line, and dragging to left or right. Dragging to the left

APPENDIX 4 - OUTLINE SAME USER MANUAL 338

increases the viewing pane, and reduces the size of the tool pane and the viewer.

Dragging to the right has the opposite effect (see following diagram).

• Tool pane - to the left of the split line, which contains the various tools that can be

selected to operate in the window. The tool pane is fixed and cannot be scrolled. The

currently selected tool (if any) is shown in reverse video.

• Viewing pane - to the right of the split line, which provides a viewpoint onto the

large drawing area of the window. By using the scroll bars (or manipulating in the

viewer- see be~ow), the section of the drawing pane visible in the viewing area can

be changed.

• Viewer - this is below the tool pane and displays a reduced overview of the complete

drawing area, and the objects in the area. The currently visible area is shown in a

grey outlined (dotted) rectangle. Clicking in the viewer will centre the viewing pane

on the relative click point. A similar effect can be obtained by dragging the grey

rectangle in the viewer.

The DFD shown above contains a Level 0 (context) data flow diagram. The

name of the application is bank, which is the name assigned to the DFD window by the

system.

The selected tool is the process, which is reflected by the cursor taking on the

shape of a process box. Clicking in the viewing pane will result in the creation of a

process box that is centred on the cursor position, except for an adjustment to align the

box to the nearest (invisible) grid point.

process tool
(the only visible tool)

full graphics
window extent
is represented
by this area

process box
in the visible
window

roots

c>li:1W!t­
Roots I

0

dashed box describes the relative size
and location of the viewing pane within
the complete DFD window

APPENDIX 4 - OUTLINE SAME USER MANUAL 339

In the second DFD above, the split line has been dragged to the right so that

only the (selected) process tool is visible in the tool box. Note the increased size of the

viewer, and its various components.

The following DFD contains the refinement of process processTransaction

in the bank DFD. Two things worth noting are the reduced toolbox (neither the external

entity nor data store tool is available), and the two hooks. These hooks were created by

the system, and provide the only interface points to the bank DFD.

impo;t hook export hook

process Tm n soc t lo n

innlidlIHTrllntt

reduced -tool set ----1•Ji, tr~cti•n

'\
~

-

cMclllH Vt11idlIH pe:rfox11t-
Trt1n• 'r.rlMUI

min

111111

o li!ii!

DFD windows tools
The tools available in DFD windows will now be described. Only the Level 0

DFD window has the full set of tools. The other windows do not have the external

entity nor the data stores tool. Double-clicking on any tool results in the display of a

help dialogue.

Process tool

•
No modifiers. A fixed size process box is centred on the
click point (but aligned to grid). A text box is inside the
process box, and an unique process name must be typed into
the box. The details on the process are saved into the
dictionary when the mouse is clicked anywhere in the DFD,
but outside of the text box.

Note: The mouse button is 'live' when
so, unless a new process is to be
following naming, use an unused
combination; else click in the tool pane.

clicking,
created

tool-key

Control key. If the object clicked on is a process, then a
DFD window is created with the name of the process.
Import and export hooks are created as necessary.

Where a refined DFD already exists for the process, the
effect is to make that DFD the selected front window.

APPENDIX 4 - OUTLINE SAME USER MANUAL 340

Data store tool

D

If the object clicked on is not a process, and the DFD is a
refinement of a process, the parent DFD window is made the
front selected window.

Option key. Drag a marqui (rectangle) of the required
width. A process box is then created (aligned to grid) of the
specified width and standard depth.

Use this if a long process name is to be specified, or the
process has a significant number of import and export data
flows to be connected.

00 key. A dialogue is entered to allow the optional text
description of the object to be specified; or, in the case where
it already exists, amended.

Shift key. Displays details of the object clicked on,
regardless of the object's type.

Control and Option keys. Displays a hierarchy of all the
processes in the application, regardless of where the mouse
is clicked within the viewing pane.

00 and Option keys. Displays a menu of the import and
export data flow sets of the process clicked on. Data object
definitions can be chosen for display, and/or data
dependency graphs can be displayed.

00, Control, and Option keys. If an executable model
exists, the processes in the executable model will be
displayed as a graph.

No modifiers. A fixed size data store box is centred on the
click point (but aligned to grid). A text box is inside the data
store box, and an unique data store name must be typed into
the box. The details on the data store are saved into the
dictionary when the mouse is clicked anywhere in the DFD,
but outside of the text box.

Note: The mouse button is 'live' when clicking,
so, unless a new data store is to be created
following naming, use an unused tool-key
combination; else click in the tool pane.

Control key. A menu is displayed of all the data objects
that are in the tuple of the data store that was clicked on.

Select from the menu to display the definitions of the data
objects.

Option key. Drag a marqui (rectangle) of the required
width. A data store box is then created (aligned to grid) of
the specified width and standard depth.

APPENDIX 4 - OUTLINE SAME USER MANUAL 341

External entity
tool

•

Data flow tool

Use this if a long data store name is to be specified, or the
data store has a significant number of import and export data
flows to be connected.

00 key. A dialogue is entered to allow the optional text
description of the object to be specified; or, in the case where
it already exists, amended.

Shift key. Displays details of the object clicked on,
regardless of the object's type.

00 and Option keys. Displays a graph of the data object
dependencies within the data store tuple.

No modifiers. A fixed size external entity box is centred
on the click point (but aligned to grid). A text box is inside
the external entity box, and an unique external entity name
must be typed into the box. The details on the external entity
are saved into the dictionary when the mouse is clicked
anywhere in the DFD, but outside of the text box.

Note: The mouse button is 'live' when clicking,
so, unless a new external entity is to be created
following naming, use an unused tool-key
combination; else click in the tool pane.

Option key. Drag a marqui (rectangle) of the required
width. An external entity box is then created (aligned to grid)
of the specified width and standard depth.

Use this if a long external entity name is to be specified, or
the external entity has a significant number of import and
export data flows to be connected.

00 key. A dialogue is entered to allow the optional text
description of the object to be specified; or, in the case where
it already exists, amended.

Shift key. Displays details of the object clicked on,
regardless of the object's type.

No modifiers. A straight line arc segment is constructed
between each contiguous pair of click points. The very first
and last points must be inside boxes of the other data flow
diagram object types. The first object clicked in is the
exporter of the data flow, while the second is an importer.

A data flow arc can consist of any number of line segments.
These line segments are 'straightened' automatically, and the
angles between segments are multiples of 90 degrees.

APPENDIX 4 - OUTLINE SAME USER MANUAL 342

Further line segments can be drawn to other importers, when
creating a data flow, by clicking at any point 'close' to an
existing line segment, and then clicking new line segment
points until an importer is reached. This process can be
repeated for other importers.

Once all the arc segments for the data flow have been
created, including those to multiple importers, the data flow
must be named using the Control-key option described
below.

Note: Do not make consecutive clicks too quickly
when creating line segments. The Prolog system
can lose events, which results in the construction
of a 'stunted' arc. If this occurs, complete the
naming process, then delete the data flow using
the eraser tool, and re-draw.

Control key. Drag a marqui (rectangle) where the data
flow name is to be placed, then enter the name in the text box
described by the marqui. When this has been done, click
outside the text box.

If the marqui is dragged from one of the left corners, the
name will be left-justified. If dragged from one of the right
corners it will be right justified.

If the name does not fit properly in the (invisible) name box,
a new box can be constructed using the Option key.

Note: The mouse button is 'live' when clicking,
so, unless a new data flow is to be created
following naming, use a tool-key combination
which has no specified action; else click in the
tool pane.

Option key. Drag a marqui (rectangle) at the new position
and of the desired size for the data flow name box. Then
click on the data flow name to be moved.

As with the standard naming procedure, the name will be
left-justified if the marqui is dragged from one of the left
comers, and right justified otherwise.

00 key. A dialogue is entered to allow the optional text
description of the object to be specified; or, in the case where
it already exists, amended.

Amendments can also be made to the definition of the data
object of the same name, if it exists. In the case where no
definition currently exists, one can be specified.

Shift key. Displays details of the object clicked on,
regardless of the object's type.

APPENDIX 4 - OUTLINE SAME USER MANUAL 343

Select tool No modifier. Clicking over an object makes that object the

Drag tool

_10]
~·

Eraser tool

selected object.

Note: Most objects are composite objects made up
of (at least) a graphic object and a text box. To
select all the object, Drag a marqui (rectangle)
around the object. Hooks are the only object type
which has a single component. However, to select
a hook, the click must occur in the shaded area of
the hook, and not in the text area.

Shift key. Clicking on, or drawing a marqui round, an
object, adds the object to the number of selected objects.

No modifier. All the currently selected objects can be
dragged by clicking the mouse over one of the objects and
dragging the mouse.

By clicking on any non-selected object, all previous
selections are deselected, and the new object becomes
selected and can be dragged.

Note: Most objects are composite objects made up
of (at least) a graphic object and a text box. To
select all the object using the select tool, drag a
marqui (rectangle) around the object. Hooks are
the only object type which has a single
component. However, to select a hook, the click
must occur in the shaded area of the hook, and not
in the text area.

Shift key. Clicking on a object extends the selected
objects. Dragging will include both the previously selected
and the newly selected objects.

Option key. Only the object clicked on is dragged, but any
previously selected objects remain selected.

No modifier. Clicking on an object will result in a prompt
from the system to query the requested erasure. If required,
the object is then deleted.

If an object of type external entity, process, or data store is
deleted, all the data flows imported and/or exported by that
object are also deleted. In the case where that object is one of
a number of importers of a data flow, details on the exporter
and other importers of that flow are written to the Display
window. These details can be used when redrawing the data
flow.

Control key. Used when all objects in a window are to be
deleted. Clicking anywhere in the DFD window will result in
a prompt asking whether on not all objects should be
deleted.

APPENDIX 4 - OUTLINE SAME USER MANUAL 344

Text tool

A
No modifier. Text can be added anywhere within a DFD
window by selecting this tool.

A single line of text can be entered by first clicking at the
point where the left-most character of the text is to be placed,
then typing in the text. The text is completed by clicking
outside of the text line.

A block of text can be entered by dragging a marqui of the
required size, then typing in the text. The text is completed
by clicking outside of the text box.

The font, font size, and other details, can be specified using
the Fonts menu.

Note: The mouse button is 'live' when clicking,
so, unless a new text string is to be created
immediately following the creation of the current
string, use a tool-key combination which has no
specified action; else click in the tool pane.

A4.4.2 Object dependencies graph window
The object dependency graph window is used by the system to display the

graphs of the dependencies between chosen data objects, and has the same basic

structure as a DFD window.

Object dependencies graph window tools
The tools available in the object dependencies graph window will now be

described. Double-clicking on any tool results in the display of a help dialogue.

Definition tool

Def

Select tool

Drag tool

_I{]
~·

No modifiers. Clicking anywhere in the viewing pane will
result in a menu being displayed of all the data objects which
appear in the dependency graph. Selecting objects from this
menu will result in a display of their definitions.

No modifier. Clicking over the graph selects it. The graph
can then be copied onto the Clipboard or Scrapbook.

No modifier. All the currently selected objects can be
dragged by clicking the mouse over one of the objects and
dragging the mouse. (More than one object - graph - will be
in the window if the user has pasted other graphs from the
Clipboard or Scrapbook.)

By clicking on any non-selected object, all previous
selections are deselected, and the new object becomes
selected and can be dragged.

APPENDIX 4 - OUTLINE SAME USER MANUAL 345

Eraser tool

Text tool

A

Note: Each graph is a single object, but where
other objects have been pasted into the window,
some may be composites made up of (at least) a
graphic object and a text box. To select one of
these object, drag a marqui (rectangle) around the
object. Hooks, like graphs, are single objects.
However, to select a hook, the click must occur in
the shaded area of the hook.

Shift key. Clicking on a object extends the selected
objects. Dragging will include both the previously selected
and the newly selected objects.

Option key. Only the object clicked on is dragged, but any
previously selected objects remain selected.

No modifier. Clicking on the graph will result in it being
deleted from the window.

No modifier. Text can be added anywhere within the
window by selecting this tool.

A single line of text can be entered by first clicking at the
point where the left-most character of the text is to be placed,
then typing in the text. The text is completed by clicking
outside of the text line.

A block of text can be entered by dragging a marqui of the
required size, then typing in the text. The text is completed
by clicking outside of the text box.

The font, font size, and other details, can be specified using
the Fonts menu.

Note: The mouse button is 'live' when clicking,
so, unless a new text string is to be created
immediately following the creation of the current
string, use a tool-key combination which has no
specified action; else click in the tool pane.

A4.4.3 Application hierarchy window
The application hierarchy window is used by the system to display the process

hierarchy in the static application model, and (separately) the flat hierarchy of an

existing executable model.

Application hierarchy window tools
The tools available in the application hierarchy window will now be described.

Double-clicking on any tool results in the display of a help dialogue.

APPENDIX 4 - OUTLINE SAME USER MANUAL 346

Definition tool

Def

Select tool

Drag tool

_IO]
~·

Eraser tool

Text tool

A

No modifiers. Clicking anywhere in the viewing pane will
result in a menu being displayed of all the data objects which
appear in the dependency graph. Selecting objects from this
menu will result in a display of their definitions.

No modifier. Clicking over the graph selects it. The graph
can then be copied onto the Clipboard or Scrapbook.

No modifier. All the currently selected objects can be
dragged by clicking the mouse over one of the objects and
dragging the mouse. (More than one object will be in the
window if the user has pasted other objects from the
Clipboard or Scrapbook.)

By clicking on any non-selected object, all previous
selections are deselected, and the new object becomes
selected and can be dragged.

Note: Each graph is a single object, but where
other objects have been pasted into the window,
some may be composite objects. To select one of
these object, drag a marqui (rectangle) around the
object. Hooks, like graphs, are single objects.
However, to select a hook, the click must occur in
the shaded area of the hook.

Shift key. Clicking on a object extends the selected
objects. Dragging will include both the previously selected
and the newly selected objects.

Option key. Only the object clicked on is dragged, but any
previously selected objects remain selected.

No modifier. Clicking on the graph will result in it being
deleted from the window.

No modifier. Text can be added anywhere within the
window by selecting this tool.

A single line of text can be entered by first clicking at the
point where the left-most character of the text is to be placed,
then typing in the text. The text is completed by clicking
outside of the text line.

No modifier. Text can be added anywhere within the
window by selecting this tool.

APPENDIX 4 - OUTLINE SAME USER MANUAL 347

A single line of text can be entered by first clicking at the
point where the left-most character of the text is to be placed,
then typing in the text. The text is completed by clicking
outside of the text line.

A block of text can be entered by dragging a marqui of the
required size, then typing in the text. The text is completed
by clicking outside of the text box.

The font, font size, and other details, can be specified using
the Fonts menu.

Note: The mouse button is 'live' when clicking,
so, unless a new text string is to be created
immediately following creation of the current
string, use a tool-key combination which has no
specified action; else click in the tool pane.

A4.4.4 Data store mapping window
Data flows exported by a process to a data store must have the name of the data

flow (component objects) mapped to the data store tuple name, or to the names of

components of that tuple. This mapping is specified graphically using the data store

mapping window.

The following diagram shows the case where a data flow dfl is being exported

by a process to the data store dsl. Data flow dfl contains the basic type objects al (a

number), a21 (a string), and a22 (a boolean); a21 and a22 are components of the

object a2, and al and a2 are components of a. Similarly, the data store dsl contains

instances of the tuple dsTuple, and the components of dsTuple are dl (a string), and

d2 (a number).

In the diagram, al and d2 are shown in reverse video, which means that they

have been selected so that al will map to d2. The mapping is committed when the data

store tool is selected from the tool pane.

Select matching
groups of
objects from the
data floy and
data store. Each
set of mate hi ng
objects should
be validated by
selecting the
data store icon
in the graphics
tool box.

I

APPENDIX 4 - OUTLINE SAME USER MANUAL 348

Objects are selected using the select tool. Clicking on a, for example, will select

all the basic type objects that are components of a (namely al, a21, and a22).

Any number of mappings between objects can be specified. The system checks

that each mapping takes place between objects of the same type and structure. Only

valid mappings are accepted by the system.

Data store mapping window tools
The tools available in the data store mapping window will now be described.

Double-clicking on any tool results in the display of a help dialogue.

Select tool

Commit tool

D

No modifier. Clicking on a rectangle in either the data
flow or data store structures has one of two effects. If the
object is a composite object (such as a in the data flow
structure dfl in the diagram above), all the component basic
type objects are selected (that is, al, a21, and a22, in the
case of selecting a). If the selected object is a basic type
object, only that object is selected.

In the above diagram, al has been selected in the data flow
df 1, and ct2 has been selected in the data store tuple
dsTuple.

Clicking on an item that is already selected, deselects it.

00 key. In the diagrammatic representation of structures,
each data object is represented by a rectangle of a constant
width. This may mean that the name of the object is too wide
for the rectangle, in which case it will not all be displayed by
default. However, by depressing the 00 key when clicking
on an object, the object's full name will be displayed in an
extended rectangle.

Option key. Extended rectangles, created with the 00 key,
which show the full names of objects, can only be removed
by refreshing the window. This is done using the Option key
and clicking anywhere in the viewing pane of the window.

No modifiers. To commit a selected matching of data flow
data objects and data store tuple objects, click anywhere in
the viewing pane.

If the match is invalid, because of an attempt to match
objects of different types or structures, the commit will not
occur, and a suitable error message will be raised.

APPENDIX 4 - OUTLINE SAME USER MANUAL 349

A4.5 Menus
The various menus supported by the SAME system are described in this

section. The menus not described here are supported by LP A Prolog.

A4.5.1 SAME
When an application model is to be loaded, the SAME menu bar contains four

items, as shown in the first menu below. Following selection of New application ...

or [Histing application ... (that is, once an application exists), the menu is changed to

the second format.

New application... N
[Histing application ... E

Help

Quit

EHecute .. .
Continue .. .

Set trace .. .
Trace objects ...
Un-trace objects ...
Single step mode
Binding leuel ...
Grid size ...
Preferences ...

Application ...
Saue ...
Reinitialise ...

H

Q

[

G

T

Help H
fEgis syntaH help ...

Delete file ...

Quit Q

App Ii cation ... Displays the name, textual
description, creation date, and last amendment
date, of the currently loaded application model.
The textual description of the application can be
amended when it is displayed.

fEgis syntaH help ... The syntax of any of the
.tEgis constructs can be displayed, as can the
purpose of any system-defined function.

Binding leuel. .. In an executable model, each
process has a depth specified, initially by SAME,
to which data object instances will be searched to
locate a referenced data object instance. The
purpose for this is, for example, to stop lengthy,
unsuccessful, searches occurring when a
required object is not a component of any of the
data objects available within the process.

The user can define the maximum level of search
using this item.

Continue ... The exerc1smg of an ex1stmg
executable model can be resumed by selecting
this item.

If no existing executable model exists, the result
of selecting this item is the same as choosing
EH e cute ... and asking for the creation of a new
model.

Delete file ... SAME application model files can
be deleted by selecting this item. Each deletion
request is queried by the system.

APPENDIX 4 - OUTLINE SAME USER MANUAL 350

EH e cute ... Selecting this item has one of two
effects: if no current executable model exists, one
is created; if an executable model does exist, the
user is prompted to select one of the following
four options:
• Continue - Resume exercising the existing

executable model from the point it was halted.
• Restart - Execute the current model, after

resetting the model to its initial state.
• Modify - Create a modified executable model,

but retain all existing data object instances.
(Most used when a small structural error is to
be corrected in a model.)

• Rebuild - Construct a new executable model,
and place the model in its initial state.

When an executable model is in its initial state, all
the process and data flow currencies are set to 1,
and no data object instances exist.

[Histing application ... An existing application
model can be loaded by selecting this item. There
are two major steps to the load process: loading
the application data flow diagrams and existing
executable model (if there is one); loading the
data object definitions.

Grid size ... Each data flow diagram window
uses an invisible grid to align objects by. This
grid is used when creating an external entity, data
store, or process. It is not used to align data
flows.

If this item is chosen when a data flow window
is the currently selected front window, the grid of
that window is displayed. If desired, a new grid
size can be selected at the time of the display and,
optionally, the current objects aligned to this new
grid.

If no data flow diagram window is the selected
window when this item is chosen, the default
grid size is displayed. This is the size that the
system defaults to if the user does not wish to
specify a grid size for a new diagram. If desired,
a new default grid size can be selected at the time
of the display.

Help ... If this item is ticked (selected), each time
a menu item is selected, a help dialogue is
displayed on that item. This only applies to the
SAME system menus and not the LP A Prolog
menus.

The item must be selected a second time to turn
help off.

APPENDIX 4 - OUTLINE SAME USER MANUAL 351

Help for the graphic tools can be obtained by
double clicking on the tool in the tool box. (Help
does not need to be ticked to do this.)

New application ... Select this item when a new
application model is to be created.

Preferences ... The system makes use of a
number of user-settable variables. A number of
these variables have their own menu items (see,
e.g., Grid size ...), while others can only be set
by selecting the Preferences ... menu item.

Ou it... To end a modelling session, the user
selects this item. If an application model is
currently loaded, the user is given the option to
save it before leaving the system.

Rein it i a Ii s e ... When an application model is
loaded, a different model can be created or loaded
by selecting this item. The currently loaded
model is deleted, after the user has been given the
opportunity to save it.

Sau e ... Used to save the currently loaded
application model, and executable model (if one
exists), to disk.

Set trace ... The execution sequence details of
running an executable model can be written to the
Trace window by specifying a suitable tracing
level using this menu item.

The three trace levels available are:
• Low - No trace details are written to the Trace

window.
• Medium - An indication of the beginning and

ending of each process invocation is written to
the Trace window, as are all status messages
(warnings, errors, etc.).

• High-As well as all the medium trace details,
import and export data flow instances are also
written to the Trace window. These details
can either be displayed in a 'pretty' format, or
a compressed format to save on space.

Single step mode ... Ticking this item will lead
to the running of an executable model being
halted following each process invocation. At
such times, tracing can be switched on or off,
and unconsumed data flow instances can be
displayed.

Trace objects ... One or more individual data
objects (not just data flows) can be traced by
selecting this item.

APPENDIX 4 - OUTLINE SAME USER MANUAL 352

A4.5.2 Objects

New data object... N
Modify data object... M
Rename data object... R
Delete data object... D

Load data objects... L

Define data objects
Check object deletion

Un-trace objects ... The tracing of data objects
selected under Trace objects ... can be stopped
using this item. Traces can be limited to specific
periods of activity in a similar way to full tracing
(see Single step mode ...).

Check object deletion When this item is
ticked, each time the user deletes a data flow
from a data flow diagram, a prompt is issued
where an associated data object definition exists.
The prompt asks the user whether or not the
associated definition should be deleted.

Define data objects If a data flow is being
created when this item is ticked, the user is
prompted with the New data object ... dialogue
for the definition of the associated data object. (If
the data object definition already exists, it is
displayed in a dialogue box.)

Delete data object ... Any existing data object
can be deleted using this item.

Load data objects ... Existing data object
definitions can be loaded from a saved
application using this item.

This is most used when a new data flow diagram
hierarchy is to be bound to an existing set of
definitions.

Modify data object ... Allows the definition of
an existing data object to be changed.

Note: This item cannot be used to
rename a data object. Use Rename data
o b j e c t... to do this.

New data object ... Used to create the
definition for a data object that is not yet in the
dictionary.

Rename data object ... The name of a data
object can be changed using this item.

The user is advised of all data objects which have
the renamed object as a component object. The
user is then able to amend these definitions,
under system control, to include the new name.

APPENDIX 4 - OUTLINE SAME USER MANUAL 353

A4.5.3 Show

Where? ... I

Objects... O
Instances... I

EHternal entities ...
Data flows ...
Data stores ...
Processes ...

A4.5.4 Window

Hide
Hide all

w

Select... S
Select all

Fonts

Data flows ... Selecting this item, leads to the
menu Data flows being added to the menu bar.

Data stores ... Selecting this item, results in the
menu Data stores being added to the menu bar.

EHternal entities ... Selecting this item, results
in the [Hternal entities menu being added to
the menu bar.

Instances ... As yet unconsumed data flows can
be displayed using this item.

Objects ... The definitions of selected data
objects can be displayed using this item, as can
their dependency graphs.

Processes... Selecting this item, results in the
menu Processes being added to the menu bar.

Where? ... The definitions in which a selected
data object appears as a component object can be
displayed using this item.

Hide The currently selected window is hidden,
and the next visible window is made the selected
window.

Hide all All the currently displayed windows are
hidden.

Select ... A menu of all windows, arranged by
type, is displayed. Selecting one or more
windows will lead to their being made visible.

Select all All the windows are made visible.

Fon ts Selecting this item will result in a menu
named Fonts being added to the menu bar. The
name of this menu item is changed to Hide
fonts.

This menu can be used to set the font, and its
style, in the currently selected window. If it is a
text window, all the text is changed to the
selected font and style. If it is a graphic window,
only subsequently created textual descriptions
will appear in the chosen font and style.

APPENDIX 4 - OUTLINE SAME USER MANUAL 354

A4.5.5 Display

Find display ...
Cut display ...
Copy display .. .
Clear display .. .

Print display .. .

Clear & Quit
Quit

A4.5.6 Trace

llllllfi • N:.JIII

Find trace .. .
Cut trace .. .
Copy trace .. .
Clear trace .. .

Print trace .. .

Clear & Quit
Quit

Hide fonts Selecting this item will lead to the
removal of the Fonts menu from the menu bar,
and the renaming of this item to Fonts.

Clear & Quit Delete all details in the Display
window, hide the window, and remove the
Display menu from the menu bar.

Clear display ... Clear a specific display from
the Display window.

Copy display ... Copy a specific display from
the Display window onto the Clipboard.

Cut dis p I a y . . . Cut a specific display from the
Display window and place it on the Clipboard.

Find display ... Locate a specific display in the
Display window.

Print display ... Print a specific display in the
Display window on the attached printer.

Quit Hide the Display window, and remove the
Display menu from the menu bar.

Clear & Quit Delete all details in the Trace
window, hide the window, and remove the
Trace menu from the menu bar.

Clear trace ... Clear a specific trace from the
Tm ce window.

Copy trace... Copy a specific trace from the
Trace window onto the Clipboard.

Cut trace ... Cut a specific trace from the Trace
window and place it on the Clipboard.

Find trace ... Locate a specific trace in the Trace
window.

Print trace ... Print a specific trace in the Trace
window on the attached printer.

APPENDIX 4 - OUTLINE SAME USER MANUAL 355

A4.5. 7 External entities

Display ...

Quit Q

A4.5.8 Processes

; Processes:
Display ...

Display import sets .. .
Create import sets .. .
Delete import sets .. .

Search depth .. .
Set currency .. .

Quit Q

Quit Hide the Trace window, and remove the
Trace menu from the menu bar.

Display ... Used to display details on the external
entities in the application model.

Quit Removes the EHternal entities menu from
the menu bar.

Create import sets ... Used to specify new
import sets within the application model.

Delete import sets ... Used to delete one or
more existing import sets from the application
model.

Dis p I a y ... Used to display details on the
processes in the application model.

Display import sets ... Used to display details
on any import sets which exist in the application
model.

Quit Removes the Processes menu from the
menu bar.

Search depth ... The depth to which data objects
are searched during execution to find a required
data object can be specified using this item.

Each process can have its own depth level
defined by the user, otherwise a system (user­
settable) value is applied.

Restricting the depth of search stops long
searches taking place when an object has been
erroneously specified, or has not been specified.

Set currency ... The currency of one or more
processes can be individually altered by selecting
this item.

APPENDIX 4 - OUTLINE SAME USER MANUAL 356

A4.5.9 Data stores

Display data flows ...
Display tuples .. .

Create tuples .. .
Amend tuples .. .
Delete tuples .. .

Load tuples .. .
Saue tuples .. .

Access method ...
EHceptions ...
Mapping .. .
Operation .. .

Quit Q

Access method ... Used to define the method,
during execution, by which a data store is to be
accessed for a specified data flow (i.e., keyed or
sequential).

Amend tuples ... Tuple instances in a data store
can have their value changed statically using this
item.

Create tuples ... Tuple instances in a data store
can be created statically using this item.

Delete tuples ... Selected tuple instances can be
deleted statically from a data store using this
item.

Display data flows ... Used to display details
on the data flows imported and exported by
selected data stores.

Display tuples ... Selected tuples in a data store
can be displayed using this item.

EHceptions ... Used to define the activity to be
followed during execution, by a data store, when
an exception occurs during the creation of an
instance for a specified data flow.

Load tuples ... Tuples from a data file can be
loaded into the dictionary using this item. In the
case where matching tuples are already loaded,
the system prompts the user on whether tuples
already in the dictionary should be kept or deleted
prior to the loading.

Mapping ... Used to define the mapping between
a data flow imported by a data store and the store
tuple. The mapping is in terms of data object
names, and the objects must be type compatible.

Operation . .. Used to define the operation to be
carried out by a data store, during execution, for
a specified data flow. The options for data flows
imported by the data store are adding, deleting,
and updating. For data flows exported by the
data store, the operations are a destructive-read
(deletion), and a non-destructive-read.

Quit Removes the Data stores menu from the
menu bar.

Saue tuples ... Tuples for a chosen data store
can be saved to a data file using this item.

APPENDIX 4 - OUTLINE SAME USER MANUAL 357

A4.5.10 Data flows

Display ...

Recess method ...
EHceptions ...
Mapping .. .
Operation .. .

Set currency ...

Quit

A4.5.11 Next

Q

Recess method ... Used to define the method,
during execution, by which a data store is to be
accessed for a specified data flow (i.e., keyed or
sequential).

Dis p I a y . . . Used to display details of selected
data flows which exist in the application.

EHceptions ... Used to define the activity to be
followed during execution, by a data store, when
an exception occurs during the creation of an
instance for a specified data flow.

Mapping ... Used to define the mapping between
a specified data flow imported by a data store and
the data store tuple. The mapping is in terms of
data object names, but the objects must be type
compatible.

Operation ... Used to define the operation to be
carried out by a data store, during execution, for
a specified data flow. The options for data flows
imported by the data store are adding, deleting,
and updating. For data flows exported by the
data store, the operations are a destructive-read
(deletion), and a non-destructive-read.

Quit Removes the Data flows menu from the
menu bar.

Set currency ... The currency of one or more
data flows can be individually altered by selecting
this item.

Ne Ht When the displaying of a number of objects
has been requested, and where these objects are
displayed sequentially, the NeHt menu is added
to the menu bar. Following the displaying of one
object, the next object is displayed by selecting
this item.

Following the displaying of all the selected
objects (or, in some cases, the cancelling of the
display request), this menu is automatically
removed from the menu bar.

APPENDIX 4 - OUTLINE SAME USER MANUAL 358

A4.6 Help
Two classes of help are available within the SAME system: general help, and

.tEgis constructs syntax help.

General help is available on each of the SAME menu items. To obtain help,

select the SAME menu item Help. This will lead to the display of a help dialogue

describing the help system. Each help dialogue is made up of one or more frames. The

diagram below is the first of six frames which describe the purpose of the Set trace ...

item in the SAME menu.

SAME

Set trace ...

Det11lls of the e11ecution history of 11n
11ppllc11tlon c11n be written to the
displ11y window "Trnce" by selecting
this menu item.

More ...

I of 6

NeHt ;J
l'n~IJitlUS)

(Fir~ t trnnu~]

(Go to frnme]

•
Quit help

Help is turned off by selecting the Help item for a second time .

.tEgis syntax help can either be obtained by selecting item f£gis syntcrn help ...

in the SAME menu, or by choosing the syntaH help button in the data object definition

dialogue (see following diagram).

Object Cre11tlon time: 19th M11y 89 - 5.07pm

II

Description

D11t11 object definition

[Number] [String) Boole11n) (Don't care [Empty)

Ok ~Efij (Cancel]
'\

The effect of either of these is the displaying of a menu which contains the

names of all the constructs in the .tEgis language, and all the available functions (see

APPENDIX 4 - OUTLINE SAME USER MANUAL 359

diagram below). By selecting one or more of these items, details of their syntax and

purpose will be displayed in a standard help dialogue.

Select l£gis
construct to
display its synta11

----- TUPLE OBJECTS -------b'.)

~~6~~J! :~~~~~~ting 1!1i!i

Oneor ~-

~ (cancel)

