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Abstract 

It is widely viewed that there is a dichotomy of sex-determining mechanisms within the 

reptiles: species ,either exhibit genotypic sex determination or temperature-dependent 

sex determination (TSD). However, very few species have been examined for both 

modes. Although it is often considered that the two mechanisms are mutually 

exclusive, there is evidence that there may be a weak genetic sex-determining 

mechanism in species in which the primary sex-determining mode is temperature­

dependent sex determination. This infers that some TSD individuals may be sex­

reversed~ that is, their sexual genotype is discordant with their sexual phenotype. This 

hypothesis of an underlying genotypic system may also be linked to the question of the 

evolution of sex-determination within the reptiles. The discovery of sex-specific DNA 

within a TSD reptile could suggest that genotypic sex determination is ancestral and 

TSD has evolved many times over within independent reptile lineages. 

This study tested the hypothesis that there is a genetic component to sex determination 

in TSD species. This was accomplished by searching for sex-specific DNA in the 

tuatara, a reptile with temperature-dependent sex determination, using two different 

molecular genetic techniques. 

The major undertaking of the experimental programme was the completion of a 

comprehensive minisatellite DNA profiling survey. This incorporated 14 restriction 

enzymes and five different polycore DNA probes; in total, 66 different probe/enzyme 

combinations were tested for tuatara genomic DNA. None of the .DNA profiles 

revealed sex-specific fragments. Furthermore, a significant difference in mean 

fragment numbers for males and females was not detected for any of the probe/enzyme 

combinations. 

In addition, a RAPD analysis was conducted in a search for a molecular sex marker in 

the tuatara. A total of 27 random-sequence oligonucleotide primers were used to 

successfully amplify anonymous products from the genomic DNA of male and female 

tuatara. Again, no sex-specific fragments were detected. 



Abstract 

Thus, evidence of sex-specific genetic differences in the tuatara was not found. This 

result fails to refute the null hypothesis that there are underlying sexual genotypes in 

the tuatara. This finding may reflect the absence of genetic sex differences in the 

tuatara. Alternatively, it might also be the result of accidental inclusion of sex-reversed 

individuals within the analyses, a situation which could have obscured the sex-specific 

nature of any sex-linked fragments. It would appear that the key to solving the 

question of sex-specific DNA within TSD reptiles such as the tuatara lies with the 

problem of ensuring sex-reversed individuals are excluded from molecular analysis. 
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Thesis Structure And Format 

I have arranged this thesis in the following manner. Chapter 1 gives a general 

introduction to the tuatara, describing its evolutionary position, taxonomic status, 

distribution, and general biology. The aspect of tuatara ecology that is the focus of this 

study, sex determination, is introduced. Finally, the aim of the thesis is explained, in 

terms of its relevance to scientific study and also its application to the conservation of 

this rare species. 

In Chapter 2 I provide background material and theory relevant to this research. The 

phenomenon of temperature-dependent sex determination (TSD) is described in some 

detail, including a general review of its occurrence within the four major living groups 

of reptiles (including the tuatara). The concept of genetic sex differences in a species 

that exhibits temperature-dependent sex determination is examined. Current insights 

into the possible molecular mechanisms of TSO are discussed, particularly with respect 

to reconciling the concept of an underlying genotypic mode of sex determination 

interacting with the TSO mechanism. This discussion is used to give a context to the 

methodological approach of the study. 

Chapter 3 presents a detailed account of the major experimental undertaking of the 

investigation; a comprehensive minisatellite DNA profiling survey aimed at testing the 

hypothesis that tuatara have sex-specific DNA. This survey is divided into three 

distinct phases, consistent with three different sets of tuatara blood samples. The 

results of a large number of probe/enzyme combinations are presented and discussed. 

Chapter 4 is an account of a brief investigation employing RAPD (Randomly 

Amplified Polymorphic DNA) assays as a further attempt to detect a molecular marker 

for gender in this species. In this study, a large number of random-sequence 

oligonucleotide primers were used to amplify anonymous PCR products from male and 

female tuatara. Results are presented and discussed. 
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Thesis Structure and Format 

Chapter 5, the final chapter, presents a summary of the findings of the research. 

Following a general conclusion, there is a discussion of potential avenues of 

investigation for future research into the question of sex determination in the tuatara 

(and TSD reptiles in general). 
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