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Abstract 

In this work, the problem of controlling a high-speed dynamic tracking and interception system using 

computer vision as the measurement unit was explored. 

High-speed control systems alone present many challenges, and these challenges are compounded 

when combined with the high volume of data processing required by computer vision systems. A semi-

automated foosball table was chosen as the test-bed system because it combines all the challenges 

associated with a vision-based control system into a single platform. While computer vision is extremely 

useful and can solve many problems, it can also introduce many problems such as latency, the need for 

lens and spatial calibration, potentially high power consumption, and high cost. 

The objective of this work is to explore how to implement computer vision as the measurement unit in a 

high-speed controller, while minimising latencies caused by the vision itself, communication interfaces, 

data processing/strategy, instruction execution, and actuator control. Another objective was to 

implement the solution in one low-latency, low power, low cost embedded system. A field 

programmable gate array (FPGA) system on chip (SoC), which combines programmable digital logic with 

a dual core ARM processor (HPS) on the same chip, was hypothesised to be capable of running the 

described vision-based control system.  

The FPGA was used to perform streamed image pre-processing, concurrent stepper motor control and 

provide communication channels for user input, while the HPS performed the lens distortion mapping, 

intercept calculation and “strategy” control tasks, as well as controlling overall function of the system. 

Individual vision systems were compared for latency performance. Interception performance of the 

semi-automated foosball table was then tested for straight, moderate-speed shots with limited view 

time, and latency was artificially added to the system and the interception results for the same, centre-

field shot tested with a variety of different added latencies. 

The FPGA based system performed the best in both steady-state latency, and novel event detection 

latency tests. The developed stepper motor control modules performed well in terms of speed, 

smoothness, resource consumption, and versatility. They are capable of constant velocity, constant 

acceleration and variable acceleration profiles, as well as being completely parameterisable. The 

interception modules on the foosball table achieved a 100% interception rate, with a confidence interval 

of 95%, and reliability of 98.4%. As artificial latency was added to the system, the performance dropped 

in terms of overall number of successful intercepts. The decrease in performance was roughly linear 

with a 60% in reduction in performance caused by 100 ms of added latency. Performance dropped to 0% 

successful intercepts when 166 ms of latency was added. 

The implications of this work are that FPGA SoC technology may, in future, enable computer vision to be 

used as a general purpose, high-speed measurement system for a wide variety of control problems. 



iii 
 

Acknowledgements 

I would first like to thank my supervisors Donald Bailey and Gourab Sen Gupta for their support 

throughout this process. Between their busy schedules they gave me so much of their time and shared 

their knowledge with me whenever I needed it. Donald guided me with his extensive expertise in image 

processing, and Sen steered the overall direction of the project. 

My gratitude to my wife, Nadia, cannot be expressed enough. I am grateful for all the meals, late nights 

she spent awake in solidarity, trips to the supermarket, and encouragement. She is truly a blessing and I 

am so lucky to have the most incredible wife a man could ask for. 

I am thankful to my brother-in-law, Ruven, and my brother, Giulio. Ruven was my personal trainer, and a 

heathy body leads to a healthy mind. Giulio was an inspiration to me as he is the hardest working person 

I know. Every Skype conversation increased my motivation level. 

I can’t thank my parents (biological and in law) enough for all of their financial and emotional support. It 

really has been wonderful having such a loving family and I couldn’t have done it without each and every 

one of them. 

 

 

 

  



iv 
 

Table of contents  
Acronyms and conventions used ................................................................................................................ ix 

1. Introduction ......................................................................................................................................... 1 

1.1. Aims and objectives .................................................................................................................... 3 

1.2. Thesis statement ........................................................................................................................ 3 

2. Subsystems required for low latency control of a vision-based system ............................................. 4 

2.1. Foosball table automation .......................................................................................................... 5 

2.2. Object tracking techniques ......................................................................................................... 6 

2.3. Computer vision-based control systems .................................................................................... 6 

 Self-adjusting vision systems ............................................................................................. 6 

 Other methods to improve vision system robustness ....................................................... 7 

 Spatial calibration .............................................................................................................. 8 

 Trajectory prediction and state estimation techniques ..................................................... 9 

2.4. Image and signal processing on FPGA ...................................................................................... 11 

 Software and hardware-based image processing ............................................................ 11 

 Performance improvements ............................................................................................ 13 

 Power consumption and embedded capabilities ............................................................. 14 

 Programming and reconfigurability ................................................................................. 14 

2.5. Actuator control and sensing on FPGA ..................................................................................... 15 

2.6. Conclusions ............................................................................................................................... 16 

3. System overview, requirements and high-level architecture ........................................................... 17 

3.1. Temporal and spatial resolution requirements – Camera parameters .................................... 17 

3.2. System response ....................................................................................................................... 19 

3.3. Interception performance ........................................................................................................ 20 

3.4. Power consumption .................................................................................................................. 21 

3.5. Modularity and versatility......................................................................................................... 21 

3.6. Minimal latency from distribution of processes ....................................................................... 22 

3.7. Reconfigurability ....................................................................................................................... 24 

3.8. Debuggability/traceability ........................................................................................................ 24 

3.9. Potential methods to achieve outcomes .................................................................................. 25 



v 
 

 CPU or GPU based systems .............................................................................................. 26 

 ASIC or custom hardware ................................................................................................ 27 

 FPGA ................................................................................................................................. 27 

 Summary of potential methods ....................................................................................... 29 

 Proposed method ............................................................................................................ 30 

3.10. High-level complete system architecture ................................................................................. 30 

 Semi-automated foosball table control system ............................................................... 30 

 Compute subsystem ........................................................................................................ 32 

4. Mechanical subsystem ...................................................................................................................... 34 

4.1. Introduction .............................................................................................................................. 34 

 Custom aspects of foosball table design .......................................................................... 34 

4.2. Materials ................................................................................................................................... 39 

4.3. Design aspects meeting official specifications .......................................................................... 40 

4.4. Accurate vision system placement ........................................................................................... 42 

5. Vision subsystem ............................................................................................................................... 44 

5.1. Background ............................................................................................................................... 44 

 Latency in control systems ............................................................................................... 44 

 Related work .................................................................................................................... 45 

 Hardware tested .............................................................................................................. 46 

5.2. Novel event detection latency .................................................................................................. 48 

 Aim ................................................................................................................................... 48 

 Methodology .................................................................................................................... 48 

 Results .............................................................................................................................. 49 

5.3. Steady state latency .................................................................................................................. 50 

 Aim ................................................................................................................................... 50 

 Methodology .................................................................................................................... 50 

 Mathematics .................................................................................................................... 51 

 Results .............................................................................................................................. 52 

5.4. Discussion ................................................................................................................................. 53 

 Immediate usefulness of results ...................................................................................... 53 



vi 
 

 Comparison of performance ............................................................................................ 53 

 Potential improvements .................................................................................................. 54 

 Automated foosball ......................................................................................................... 54 

5.5. Conclusions ............................................................................................................................... 55 

5.6. Implementation of final vision system ..................................................................................... 55 

 Terasic D5M camera module ........................................................................................... 55 

 Prototypes ........................................................................................................................ 56 

 Foosball table interception simulation ............................................................................ 58 

 Lens changes .................................................................................................................... 58 

 Distortion correction ........................................................................................................ 60 

 Final implementation ....................................................................................................... 61 

6. Compute subsystem .......................................................................................................................... 65 

6.1. Terasic DE1-SoC FPGA development board .............................................................................. 65 

 FPGA component ............................................................................................................. 66 

 HPS component ............................................................................................................... 67 

 SoC design ........................................................................................................................ 67 

6.2. Motor Control ........................................................................................................................... 73 

 Background ...................................................................................................................... 73 

 Mathematical approximation .......................................................................................... 74 

 Stepper motor basic control algorithm ............................................................................ 75 

 Stepper motor control on FPGA ....................................................................................... 78 

 Determining acceleration parameters ............................................................................. 80 

 Kicking algorithm ............................................................................................................. 80 

 Homing and sliding algorithm .......................................................................................... 81 

 Interception algorithm and image to table spatial mapping ........................................... 83 

6.3. Resource requirements ............................................................................................................ 87 

6.4. Summary ................................................................................................................................... 88 

7. System integration ............................................................................................................................ 89 

7.1. Electrical system ....................................................................................................................... 89 

 Overall electrical system architecture ............................................................................. 89 



vii 
 

 36V stage.......................................................................................................................... 91 

 12V stage.......................................................................................................................... 91 

 Limit and homing switches .............................................................................................. 92 

 Wiring management and cabling ..................................................................................... 93 

 Field illumination ............................................................................................................. 93 

8. Testing and system performance ...................................................................................................... 95 

8.1. Aims .......................................................................................................................................... 95 

8.2. Spatial invariance for interception ........................................................................................... 95 

 Testing method ................................................................................................................ 95 

 Overview of apparatus ..................................................................................................... 96 

 Data analysis .................................................................................................................... 97 

 Results .............................................................................................................................. 98 

 Discussion ........................................................................................................................ 98 

8.3. Close-up interception performance ......................................................................................... 98 

 Testing method ................................................................................................................ 99 

 Results .............................................................................................................................. 99 

 Discussion ........................................................................................................................ 99 

8.4. Close-up interception performance with added latency .......................................................... 99 

 Method to artificially add latency .................................................................................... 99 

 Testing method .............................................................................................................. 100 

 Results ............................................................................................................................ 100 

 Discussion ...................................................................................................................... 101 

8.5. Automated foosball ................................................................................................................ 102 

8.6. Potential improvements or additions ..................................................................................... 102 

8.7. Conclusions and recommendations ........................................................................................ 102 

9. Final conclusions and recommendations ........................................................................................ 103 

References ................................................................................................................................................ 104 

Published work ......................................................................................................................................... 110 

Appendices ............................................................................................................................................... 111 

Appendix A ........................................................................................................................................... 111 



viii 
 

Appendix B ........................................................................................................................................... 113 

Appendix C ........................................................................................................................................... 114 

Appendix D ........................................................................................................................................... 116 

Appendix E ........................................................................................................................................... 117 

Appendix F ........................................................................................................................................... 118 

Appendix G........................................................................................................................................... 119 

Appendix H........................................................................................................................................... 120 

Appendix I ............................................................................................................................................ 120 

Appendix J ............................................................................................................................................ 121 

 

  



ix 
 

Acronyms and conventions used 

 

A/D or D/A converter – Analogue to digital or digital to analogue 

ASIC – Application specific integrated circuit 

CCD – Charge coupled device 

CMOS – Complementary metal oxide semiconductor 

CPU – Central processing unit 

DCS – Distributed control system 

DLL – Delay locked loop 

DSP – Digital signal processor 

DVS – Dynamic vision sensor 

FPGA – Field programmable gate array 

FPS – Frames per second 

GPIO – General purpose input/output 

GPU – Graphics processing unit 

HDL – Hardware description language 

HPS – Hard processor system 

IDE – Integrated development environment 

MP – Megapixel 

MPPA – Massively parallel processor array 

MSB – Most significant bit 

OS – Operating system 

OTS – Off the shelf 

PLL – Phase locked loop 

USB – Universal serial bus 

VHDL – Very high-speed integrated circuit HDL 

  



x 
 

List of figures 

Figure 1-1 - Standard foosball table ............................................................................................................. 3 

Figure 2-1 - Cycle diagram representing algorithmic image processing .................................................... 12 

Figure 2-2 -Streamed image processing in FPGA hardware ....................................................................... 13 

Figure 3-1 - Representation of ball motion blur on foosball table – birds-eye view with foosmen hidden 

from view ................................................................................................................................................... 18 

Figure 3-2 - Foosball playing field captured from below, using the DE1-SoC and D5M camera ................ 19 

Figure 3-3 - One cycle of image capture through to system actuation response ...................................... 20 

Figure 3-4 - Latencies present in systems tested by Čížek et al. 2016 ....................................................... 23 

Figure 3-5 - Flowchart representing the data flow, communication, and data transfers in distributed PC 

based system .............................................................................................................................................. 23 

Figure 3-6 - Possible configurations of PC based image capture and actuator control systems ............... 26 

Figure 3-7 - Semi-automated foosball table ............................................................................................... 31 

Figure 3-8 - CAD model of the automated actuation modules .................................................................. 31 

Figure 3-9 - Compute system input and output signals ............................................................................. 32 

Figure 4-1 - Render of automated modules of CAD model ........................................................................ 34 

Figure 4-2 - Pull out torque curve of Nema 23 bi-polar stepper motor - (Pololu, 2018) ........................... 35 

Figure 4-3 - Render of actuation modules ................................................................................................. 35 

Figure 4-4 - Foosball table actuation module - rotational drive assembly ................................................. 36 

Figure 4-5 - Foosball table actuation module - linear drive assembly ....................................................... 37 

Figure 4-6 – Close-up of belt connector on actuation module .................................................................. 37 

Figure 4-7 - From left to right a bottom-up view of the glass base, the interlock switch and the safety lid

.................................................................................................................................................................... 38 

Figure 4-8 - From left to right - bottom-up view of foosball playing field with field illumination on and off 

respectively ................................................................................................................................................ 39 

Figure 4-9 - Image of completed, vinyl wrapped semi-automated foosball table – from front right ........ 39 

Figure 4-10 - Render of foosball table CAD model ..................................................................................... 40 

Figure 4-11 - Render of foosball goal on CAD model ................................................................................. 41 

Figure 4-12 - Semi automated foosball table right hand ball return chute................................................ 41 

Figure 4-13 - CAD model of the placement jig for the foosball table vision system .................................. 42 

Figure 4-14 - Manufactured calibration homing jig with rotating locking tabs.......................................... 43 

Figure 5-1 - Image capture test systems .................................................................................................... 47 

Figure 5-2 – Novel event detection latency results for all 5 experiments including PS3 eye at both 

resolutions .................................................................................................................................................. 49 

Figure 5-3 - CAD model of object marker apparatus used in steady state latency experiment ................ 51 

Figure 5-4 - Steady state latency results for all 4 experiments .................................................................. 52 

Figure 5-5 - Vision system development process ....................................................................................... 55 



xi 
 

Figure 5-6 - Terasic TRDB-D5M camera development board ..................................................................... 56 

Figure 5-7 - Bayer RGB pattern representation ......................................................................................... 56 

Figure 5-8 - Output window of simple trajectory calculation and interception coordinate simulation .... 58 

Figure 5-9 - Long focal-length (narrow angle) lens provided with the D5M camera module .................... 59 

Figure 5-10 - Sunex DSL215 fisheye lens .................................................................................................... 59 

Figure 5-11 - MATLAB output image of all calibration grid intersection points found by distortion 

correction algorithm .................................................................................................................................. 61 

Figure 5-12 - Uncalibrated (left) and calibrated (right) distortion point map ............................................ 61 

Figure 5-13 - Representation of overall image processing system ............................................................ 62 

Figure 5-14 - Block diagram of 3x3 windowed Bayer interpolation (demosaicing) hardware implemented 

in FPGA.  (Bailey, 2018). Reprinted with permission. ................................................................................. 62 

Figure 5-15 - Block diagram of simplified RGB to YCbCr conversion implemented in FPGA hardware 

(Bailey, 2018). Reprinted with permission. ................................................................................................ 62 

Figure 5-16 - Block diagram of a 5×5 morphological filter (erosion) implemented in FPGA hardware – for 

dilation, AND gates were replaced with OR gates. (Bailey, 2018). Reprinted with permission. ................ 63 

Figure 5-17 - Block diagram of the high-level architecture for connected components analysis (CCA) 

implemented in FPGA (Bailey, 2018). Reprinted with permission. ............................................................ 63 

Figure 6-1 - Representation of vision-actuation control system data cycle from input to response ......... 65 

Figure 6-2 - Block diagram showing the master/slave relationship for each of the bridges between the 

FPGA and HPS (Altera, 2016). ..................................................................................................................... 66 

Figure 6-3 - Example Qsys HPS component ............................................................................................... 68 

Figure 6-4 - Setup options for PIO in Qsys ................................................................................................. 69 

Figure 6-5 - PIO connections and addresses in Qsys .................................................................................. 69 

Figure 6-6 - C code used to send an "active" signal to the FPGA, and disable all the stepper motors 

temporarily ................................................................................................................................................. 70 

Figure 6-7 - VHDL code to receive data/signals from the HPS ................................................................... 70 

Figure 6-8 – Representation of data transfer method between FPGA and HPS ........................................ 70 

Figure 6-10 - Address map for Qsys SoC design ......................................................................................... 71 

Figure 6-11 - Development process for the motor control design ............................................................. 73 

Figure 6-12 - Nema 23 bipolar stepper motor - 200 steps per revolution ................................................. 74 

Figure 6-13 - Pull out torque curve of Nema 23 bi-polar stepper motor ................................................... 74 

Figure 6-14 - Acceleration and deceleration equations for stepper motor ramping ................................. 76 

Figure 6-15 - Stepper motor simulation output curve for input distance = 600 ........................................ 76 

Figure 6-16 - Stepper motor simulation output curve for input distance = 1200 ...................................... 77 

Figure 6-17 - Output curves for constant velocity (top 3) and trapezoidal velocity (bottom 3) profiles ... 77 

Figure 6-18 - Stepper module entity diagram showing inputs and outputs .............................................. 78 

Figure 6-19 - Block diagram of simplified variable acceleration pulse generation method, implemented in 

FPGA ........................................................................................................................................................... 79 



xii 
 

Figure 6-20 – Birds-eye view of foosball table CAD model with automated rods annotated .................... 82 

Figure 6-21 – Birds-eye view of foosball rods - Module 4 to 1 from left to right ....................................... 84 

Figure 6-22 – Birds-eye view of foosball table with positions of each foosman on each module labelled 85 

Figure 6-23 - C code used to calculate differences between ball and foosmen positions ......................... 86 

Figure 6-24 - Block diagram representing entire SoC system design ......................................................... 87 

Figure 7-1 - Development process for the mechanical/electrical system .................................................. 89 

Figure 7-2 - Electrical system architecture for the semi-automated foosball table ................................... 90 

Figure 7-3 - Panel with 2 USB-B sockets, 1 D-Sub socket, 1 IEC socket, and a high-current switch ........... 90 

Figure 7-4 - PCB layout of 40-pin expansion board created using Altium Designer................................... 92 

Figure 7-5 - PCB with pluggable screw terminals and a 40-pin header ...................................................... 92 

Figure 7-6 - One actuation module with each of the homing/limit switches labelled ............................... 93 

Figure 7-7 - Wiring conduits on left of image and electrical screw glands on right ................................... 93 

Figure 7-8 - Semi-automated foosball table with field illumination LEDs switched on ............................. 94 

Figure 7-9 - XL4015 DC-DC voltage regulator module with adjustable output voltage ............................. 94 

Figure 8-1 - Ball release apparatus positioned at the back of foosball table (closest to human goal) ...... 96 

Figure 8-2 - Experimental setup using module 2 for interception ............................................................. 97 

Figure 8-3 - Code snippet of algorithm used to artificially delay system by 20 frames ........................... 100 

Figure 8-4 - Output graph of interception performance versus artificially added latency for straight goal 

shots ......................................................................................................................................................... 101 

 

List of tables 

Table 5.1 - Important novel event detection latency data ......................................................................... 50 

Table 5.2 –Important steady state latency data ........................................................................................ 52 

Table 5.3 - Resource consumption on DE1-SoC of basic image processing design .................................... 57 

Table 6.1 - System PIOs and their respective functions ............................................................................. 72 

Table 6.2 - Time taken and maximum velocity for 3 simulated stepper motor velocity profiles .............. 78 

Table 6.3 - Increment or decrement based on current stepper motor cycle position ............................... 79 

Table 6.4 - Comparison of resource utilisation for minimal design through to full SoC design ................. 88 

 

  



1 
 

1. Introduction 

Computer vision is an extremely powerful tool when used correctly. It has a plethora of applications 

including object tracking, object recognition, augmented reality, metrology, and many others. One 

application of computer vision in which further exploration would be beneficial is high-speed control 

systems or high-speed visual servoing. That is the focus of this thesis.  

Control systems require accurate, low latency measurement systems, low latency control strategies and 

efficient processing of data to ensure all tasks are performed within the time specifications for each task 

(Dougherty & Laplante, 1995). In a critical response control system, with highly time-sensitive task 

execution, if any tasks are performed later than the specified execution time, then the control system 

will either be unstable or fail altogether. Individually, these requirements are all necessary within the 

context of a control system, however most of these requirements present a few limitations or problems 

of their own. Some systems require powerful or expensive processing hardware, some require sensitive 

equipment, and some are required to be calibrated or serviced very often. These limitations are 

significantly compounded when all the requirements are present in one system, for example a computer 

vision-based control system. 

Low latency measurement is essential for any control system where the measurements are used as a 

feedback in the control loop, or when the measurement system provides input to the control system 

(Franklin, Powell, & Emami-Naeini, 2015). Measurement system latency must be sufficiently shorter 

than the required response time. This provides adequate phase margin and improves system stability 

(Engelberg, 2015). Achieving low latency image capture and processing from a computer vision-based 

measurement system is a challenge simply because of the volume of raw data and computation 

necessary to extract the required measurement data (Johnston, Gribbon, & Bailey, 2004). 

Low latency control strategies are required when strategic planning or decision making is to be 

performed by the control system (Mueller, Censi, & Frazzoli, 2015). Large delays between the control 

system receiving the input signal and providing the output will result in poor system performance. This 

poor performance can be caused by delays in instruction execution due to inefficient control strategies 

and internal latency. Therefore, efficient processing of instruction data, calculations, and actuation tasks 

is essential and latency in control strategies should be minimised. Various methods of achieving this will 

be discussed further. 

Additionally, during operation it can be difficult to debug these systems due to the unpredictable 

execution of tasks. In some cases, poor optimisation of internal processes can cause debugging 

mechanisms (such as printing to a serial console) to fail, due to the processor being saturated by other 

inefficient operations. In some cases, the interrupt caused by the debug mechanism can cause the 

internal process to fail depending on which has a higher interrupt priority. Another possibility is that 

interrupt service routines with higher priorities threaten to continuously supersede those with lower 
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priority, therefore blocking their execution altogether. Finally, control of more complex actuators like 

encoded DC motors or stepper motors requires some processing overhead and precise timing. This is 

particularly true with stepper motors as they are sensitive to timing jitter (Proctor & P. Shackleford, 

2001). In an event driven control system with many actuators it can be a challenge to control many of 

these actuators with conventional methods due to processor power and other hardware resource 

restrictions, such as a limited number of hardware timers or limited CPU power, affecting the timing and 

execution of these calculations and tasks. These factors can make the control of complex systems with 

many asynchronous tasks and actuator control a significant challenge. 

To overcome this problem, distributed control systems (DCS) use local processing of sensor and actuator 

data on dedicated hardware for a given process (Zhao, Paine, Kim, & Sentis, 2015). However, this 

generally comes at the cost of added latency caused by data transmission and communication, which 

needs to be accounted for in the design as communication latency can dramatically decrease the overall 

responsiveness of the control system (Tianjian & Fujimoto, 2006). Minimising communication latency is, 

therefore, another focus of this thesis. 

Evidently, each of the above requirements for control systems have their own set of challenges. To 

explore and address these challenges, a system which utilises computer vision for low latency control of 

a complex mechatronic system is required as a test-bed.  A semi-automated foosball table was chosen 

as the test-bed system because it combines all these challenges into a single system, while requiring 

vision-based sensing, distributed and embedded processing, low latency communication, and both high-

level strategic control and low-level motor control for actuation.  

Foosball, also known as table soccer, is a miniature soccer game played on a small table (shown in Figure 

1-1) with a field area of approximately 1.2 m × 0.7 m. The game uses 1 ball and involves two to four 

players. It is played one-on-one or two-on-two, with players from the two teams standing and operating 

on opposite sides of the table. The players manually operate small rigid puppets (foosmen), attached to 

spinning and sliding metal rods to kick the ball into the opponent’s goal, and to defend their own goal 

from opponent’s kicks. There are four rods per team (eight rods in total) and between two and five 

foosmen per rod. It is a fast paced, dynamic game with ball speeds in excess of 10 m/s, and therefore 

requires very fast reflexes from the human players. 
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Figure 1-1 - Standard foosball table 

1.1. Aims and objectives 

The objective is to explore how to combine computer vision, communication interfaces, data 

processing/strategy, instruction execution, and scalable actuator control all in one low-latency, low 

power, embedded system. 

This system will be integrated into a semi-automated foosball table and tested for ball interception 

performance as a method to establish the performance of the system. The semi-automated foosball 

table represents a reasonably high-speed control system problem, requiring low system response time 

in order to satisfy the real-time requirements involved in a vigorous game of foosball. 

1.2. Thesis statement 

A field programmable gate array (FPGA) system on chip (SoC), which combines programmable digital 

logic with a dual core ARM processor (HPS) on the same chip, should be capable of running a low latency 

control system. Latency can be reduced by distributing the tasks over the most appropriate processors, 

with programmable logic performing high-framerate streamed image pre-processing and actuator 

control, with the higher-level strategy and floating-point operations allocated to the HPS. Finally, 

communication latency may be minimised by utilising the high-performance AXI bridges between the 

FPGA and HPS on the SoC.  
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2. Subsystems required for low latency control of a vision-based 

system 

The field of computer vision, object tracking, trajectory prediction, and control systems is massive, with 

research branching extensively into these fields. The use of computer vision as a feedback element for a 

high speed, low latency, mechatronics control systems has been explored to some extent with research 

in visual servoing. However, there are potential improvements that can be made to the speed of 

computer vision-based control systems. 

This chapter will discuss the subsystems required for high-speed control of a system, using computer 

vision in the feedback loop. The subsystems required will be presented and discussed, in conjunction 

with some examples of computer vision-based control systems. Additionally, other semi-automated 

foosball tables will be compared. 

There are several important topics to be addressed to make any improvements to state-of-the-art 

vision-based control systems. These topics include image processing hardware, the algorithms selected 

for predictive interception, the algorithmic processing hardware, the actuator control methodology, and 

the overall communication and latency within the control system. Additionally, for a smart image 

processing system, some level of intelligence is required. This may include smart colour classifiers, auto-

adaptive colour thresholding, variable lighting intensity mapping, and object recognition, among other 

possible techniques. The integration and combination of techniques is of similar importance to the 

techniques used.  
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2.1. Foosball table automation 

Some work has already been done regarding semi-automated foosball tables. Because semi-automated 

foosball is the development platform used in this project, the existing systems are covered in this and 

their contributions and limitations discussed. 

Weigel (2005) developed a semi-automated foosball table with a vision-based ball tracking system. The 

camera ran at a speed of 50 Hz, at 384 × 288 pixels resolution. Despite the low resolution and framerate, 

their system performed well, winning 69.4% of games played – 354 out of 510 games played. The 

participants were mostly unskilled players without any special training. Because of the performance of 

their system, they later commercialised their design with the “Star-Kick” semi-automated foosball robot. 

Based on the ratio of goals received to goals scored – 2753 received to 4522 scored – it appears that the 

main area of improvement to be made to Wiegel’s work was an increase in the goal defence ability of 

the robot. Given that the robot was able to win most games, the strategy was not a major area of 

weakness. 

Janssen, de Best, and van de Molengraft (2010) discuss a semi-automated foosball table with a camera 

transmitting grayscale images to a computer which then performed the object recognition and tracking 

algorithms. The camera resolution was 657 × 446 pixels, and framerate was 100 Hz. In this paper the 

authors focussed on detection of the ball from above, where occlusion of the ball was a problem. They 

used a linear Kalman filter to predict the path of the ball for interception. The authors used a region of 

interest in their image processing algorithm to reduce the computational load. They also performed the 

distortion correction on the image stream, rather than post-processing the data. The defending rod was 

able to intercept a shot at 10 m/s (the maximum theoretical velocity based on tested values). The 

authors were not clear on the interception performance in terms of proportion of goals successfully 

defended, nor were they clear about their testing methodology. Interception performance is clearly a 

key area of potential improvement in semi-automated foosball tables. 

Later, Janssen, Verrijt, de Best, and van de Molengraft (2012) built upon their initial survey paper with 

improved state estimation techniques, a higher camera framerate (200 Hz), and discussed why the 

initially proposed work was unsuitable for the application. The authors combined the use of colour 

filtering, and edge and shape detection to improve their detection and localisation of the ball. They 

achieved a peak error of 12mm in the predicted location of the ball for interception, however their 

system often missed the ball. This was assumed to be because of delays in their processing pipeline. 

Their image processing pipeline (calculated for greyscale images) was calculated as 17.5 ms in the worst-

case scenario. Including image capture, communication, actuation and strategy calculations this number 

would have been significantly higher. Overall, the total system latency was the main cause of 

unsuccessful intercepts. The authors suggest simply predicting the location of the ball using the latency 

value assuming a constant velocity model, however this may not fully solve the problem as a constant 

velocity cannot always be assumed. 
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Given the advantages of the vision-based systems, computer vision appears to be the most useful 

method for object localisation in the context of a semi-automated foosball table. Some improvements 

to the systems could be made in terms of overall system response time by lowering individual 

components of latency in order to reduce the overall processing-actuation pipeline delay. 

2.2. Object tracking techniques 

Object tracking research includes the localisation of the object, the hardware and software required to 

perform the localisation, and the techniques used to detect or segment the object from its 

surroundings. The method used to detect the object is dependent on the required temporal and spatial 

precision, and various other factors such as cost, space and power consumption. 

Many methods for tracking objects have been proposed, some with greater success than others. 

Generally, the use of computer vision tends to be the most successfully implemented method, as vision 

provides a large amount of data at high speeds and low relative cost. Given this fact, computer vision 

systems will be the focus of this review, though other methods do exist, such as the multi-touch screen 

implemented by (Korkalo & Honkamaa, 2010) using cameras with their optical plane parallel with the 

screen surface. In their work, they used several cameras at different offsets and angles to detect user 

touch inputs on the screen. While this method can have some advantages such as comparatively lower 

processing power requirements, and potentially higher tracking effectiveness under the right conditions, 

the foosball table was not a suitable testbed for this method of object localisation and tracking.  

2.3. Computer vision-based control systems 

 Self-adjusting vision systems 

Lighting is one of the most difficult issues to solve in vision-based systems (Hornberg & Jahr, 2017). 

Dynamic lighting conditions pose a problem for vision-based robotics applications. Slight changes in 

lighting over time, or spatial variation in lighting intensity, can cause a well calibrated system to 

malfunction as objects are not as effectively detected by colour segmentation techniques. Even 

greyscale images can be adversely affected by such varying lighting conditions. Therefore, it is very 

important that vision systems are either tuned for the desired image processing application every time 

the lighting changes, or better, the system self-tunes or auto-adjusts to accommodate different lighting 

conditions. Structured lighting conditions, where there is no variation in intensity or coloration and no 

ambient light ingress, are an effective method to eliminate this problem because the need to self-tune 

or self-adjust is generally not present in highly controlled lighting systems as the rest of the system is 

designed around the optimal lighting solution (Hornberg & Jahr, 2017). However, in some systems, 

particularly those in which human interaction is required, structured lighting is not always possible. This 

is the case with the semi-automated foosball table, as will be discussed later in the thesis. 

A method of eliminating or mitigating the adverse effects of variation in image data is required in order 

to use vision in dynamic lighting conditions. Common methods such as automatic exposure control and 
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white balance exist (Kondo, Kikuchi, Kato, & Hirota, 1991), however they often do not fully solve the 

problem. Automatic exposure and white balance adjustments improve picture quality when the whole 

image is brighter or darker, however in applications where a very uniform lighting intensity distribution 

is required, increasing or decreasing the white balance or exposure of the entire image does not 

generally decrease the variation in illumination. A method to adjust only the affected parts of the image 

is required. 

There are three common approaches used to automatically adjust for these dynamic lighting conditions.  

The first method is “to output the images to describe the real scene as consistently as possible in 

different light conditions by auto-adjusting the camera parameters” (Lu, Zhang, Yang, & Zheng, 2010). 

This was mentioned previously and includes features such as auto-exposure and auto-white balance. 

The second method involves transforms for colour constancy, as explored by Mayer, Utz, and 

Kraetzschmar (2002) using the Retinex algorithm, which attempts to mimic the human eye that can 

identify colours in differing lighting conditions. The Retinex algorithm uses dynamic range compression 

and tonal rendition with colour restoration to improve the observed disparity between human observed 

images and digitally captured images (Jobson, Rahman, & Woodell, 1997).  

The third method is to use “adaptive or robust object recognition algorithms” in which “colour 

segmentation is combined with a shape detection to provide additional robustness and allow colour 

recalibration” as explored by several authors (Gönner, Rous, & Kraiss, 2005; Huimin, Zhiqiang, Fei, & 

Xiangke, 2008). In a tracking application such as a semi-automated foosball table where one object with 

distinct shape, size and colour (the ball) is being tracked, this could be a promising method. Improved 

segmentation techniques have been achieved in the work of Saber, Murat Tekalp, and Bozdagi (1997) by 

combining colour and edge information for better edge linking, and by Jianping, Yau, Elmagarmid, and 

Aref (2001) by using colour-edge extraction and seeded region growing to better identify object 

boundaries and distinct regions within images. Kryjak, Komorkiewicz, and Gorgon (2014) used a 

combination of colour segmentation and edge detection for applications such as background and 

foreground segmentation. These authors demonstrated the effectiveness of combining colour and 

shape features into their image processing algorithms. 

Given the amount of effort that has been spent by other authors in this area it is obvious how important 

effective segmentation and identification of the object is. The complexity of the application, time 

constraints of processing, type of object being tracked, and non-uniformity of images determine which 

method is chosen. 

 Other methods to improve vision system robustness 

Depending on the application, feature recognition can be the most effective method of improving the 

robustness of a vision-based system. With varying lighting conditions, the segmentation of the image 

will experience some variation and unpredictability. As demonstrated by Gönner et al. (2005), a 
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combination of colour segmentation and shape/feature detection resulted in highly effective object 

recognition. Their research was limited by the hardware (933 MHz Pentium III processor), as they were 

only able to process on average one image of 379 × 262 pixels in 33.84 milliseconds. Additionally, the 

recalibration, to remap the colour segmentation parameters and more effectively identify the object, 

took from 51 to 79 milliseconds, which, when low latency is important, is a very long time. With more 

powerful hardware, however, these numbers could be reduced significantly. 

The work of Tsutsui, Nakamura, Hashimoto, Okuhata, and Onoye (2010) showed some potential; the 

authors implemented a real time FPGA based system which performed image enhancement, using the 

Retinex algorithm, on video stream of 1920 × 1080 resolution at 60 frames per second. This could 

potentially be implemented in the semi-automated foosball vision system to provide a more accurate 

output image to ensure correct segmentation. 

 Spatial calibration  

In a robotic control system where a camera is used as the measurement system, the camera space 

needs to be calibrated such that the robotic actuators match the spatial coordinates and units of 

measurement of the camera or vice versa. In camera-based systems, an additional problem arises in 

which not only are the camera space and robot workspace initially uncalibrated, but the image is also 

distorted in some way. A common distortion is radial distortion. 

In the case of the foosball table used in this research, the camera views the playing field from below. 

The wide view angle required by the camera necessitates the use of a wide-angle lens. This results in a 

radially distorted image. This distortion needs to be corrected to ensure accurate object coordinates are 

obtained by the vision system. 

Weigel (2005) discuss their method of calibrating the camera space to correct for radial (barrel) 

distortion in their semi-automated foosball table, where the authors used the following truncated Taylor 

series representation:  

 𝑟 = 𝑟′ + 𝛼𝑟′3 (1) 

   

Where the 𝑟 and 𝑟′ terms are the corrected and uncorrected radii, respectively, about the centre of 

distortion. Some models also include tangential distortion terms, which shift the centre of distortion 

away from the image centre which would, depending on the system, normally be located at (𝑥, 𝑦) =

(
𝐼𝑀𝑤𝑖𝑑𝑡ℎ

2
,

𝐼𝑀ℎ𝑒𝑖𝑔ℎ𝑡

2
). The image centre is not always the centre of distortion however as has been shown 

by (Willson & Shafer, 1994). 

The 𝛼 term in equation (1) is an empirically derived scalar constant. In equation (1) including more 

terms results in lower residuals, however for most lenses which only introduce mild distortion, 1 to 2 

terms is usually enough. 
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This approximation shown in equation (1) was used by Weigel (2005) to correct for the camera lens 

distortion. This is a common method and has also been implemented in the past by (Bailey, 2002; 

Gribbon, Johnston, & Bailey, 2003; Ngo & Asari, 2005) as well as many others. 

In a mapping function with a single scalar term, such as equation (1), determining the value of the scalar 

constant is trivial. However, in polynomials with more terms such as the following equation, an 

optimisation loop is the most effective method to determine the constants. 

 𝑟 = 𝑟′ ( 1 + (𝐾1(𝑟′2)) + (𝐾2(𝑟′4)) + (𝐾3(𝑟′6))) (2) 

 

The process of finding terms 𝐾1, 𝐾2 and 𝐾3 would be very time consuming if calculated manually (brute 

force), and therefore an iterative non-linear optimisation algorithm such as the Levenberg-Marquardt 

algorithm would be the most effective way to determine the coefficients (Zelnik-Manor & Irani, 1996). 

A calibration grid can be used to acquire an adequate number of measured points in the distorted 

image, and using those points, the mapping function in equation (2) can be used to correct the 

distortion with estimated initial values of the coefficients. The algorithm then compares the calculated 

points on the calibration grid with expected positions. The coefficients are then iteratively modified to 

minimise the observed error until convergence (minimised error) is achieved. Given that subpixel 

accuracy is not required for the semi-automated foosball table, this method should yield sufficiently 

accurate distortion correction with a small number of iterations.  

Another method is a non-parametric model based method where the ball position is calculated using an 

empirically pre-determined map, and interpolating between points on the map with known distortion to 

determine the true position of the ball. Barreto, Swaminathan, and Roquette (2007) implemented a two 

stage non-parametric barrel distortion correction method for correcting distortion in endoscopic 

imaging systems with results surpassing the conventional methods in terms of “goodness of fit”, 

however their method required a calibration grid to define the distortion map, which in some systems is 

not practical or necessary.  

(Nister, Stewenius, & Grossmann, 2005) devised a method of camera self-calibration based on what 

they called “motion” in the image, however this seemed to be aimed at images with irregular distortions 

in the image and is, therefore, more complex than necessary for the application of barrel distortion 

correction, where a simple 3rd or 5th order polynomial is usually sufficient. 

Several methods of lens calibration are possible, and once again the selected method depends on 

system performance requirements such as precision, accuracy, and vision system timing constraints. 

 Trajectory prediction and state estimation techniques 

With high-speed interception required by the semi-automated foosball table, one method to 

compensate for unavoidable system latency that cannot be minimised by hardware and software 
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efficiency optimisations is to implement some predictive calculation which uses previous states of the 

object to predict future states, and thus aid the system in interception. 

This section will discuss several works on predicting the trajectories of flying, spinning, bouncing, and 

rolling objects. In the context of automated foosball, some of them are more important than others. 

Flying objects are not as important as rolling, spinning or bouncing, however they have still been 

considered as they present a complex control problem in terms of interception. 

One of the most common methods of trajectory prediction or estimation is to use Kalman filters 

(Brookner, 1998). There are many different types of Kalman filter and many different applications. For 

example Prevost, Desbiens, and Gagnon (2007) used Kalman filters for state estimation and trajectory 

prediction of moving objects using UAVs. Rosales and Sclaroff (1998) used an Extended Kalman Filter for 

predicting the trajectory and future position of moving humans using their current positions and 

velocities, and Z. Jing and Sclaroff (2003) later improved this work to more effectively segment moving 

human targets (foreground) from varying, textured backgrounds. Pistohl, Ball, Schulze-Bonhage, 

Aertsen, and Mehring (2008) used a Kalman filter to predict the trajectory of human hands for use in a 

brain-machine interface for control of a cursor in paralysed patients, and finally Singer (1970) used 

Kalman filters for tracking and motion prediction of many different types of military vehicles.  

In the context of robotic control, Kalman filters have been used by several authors including (Frese et al., 

2001) for a robotic ball catching robot using stereo-vision and a PC running some pre-calibrated 

algorithms, and (Weigel, 2005) who used Kalman filtering in their semi-automated foosball table for 

trajectory prediction of the ball. 

Some variations or extensions of Kalman filters include particle swarm filters, Markov Chain Monte Carlo 

(L. Jing & Vadakkepat, 2010), Interacting Multiple Model (Janssen et al., 2012), and several others. Many 

of these have limitations such as high complexity or long convergence time (around 150 ms on a 3 GHz 

Pentium IV processor) as demonstrated by L. Jing and Vadakkepat (2010) with their interacting  MCMC 

particle filter for tracking of manoeuvering objects. Ramakoti, Vinay, and Jatoth (2009) and Xia and 

Ludwig (2016) use particle swarm optimisation (PSO) techniques to aid Kalman filters in tracking objects 

in a video stream. The complexity and computational requirements of these methods do, however, 

appear to limit their functionality in real-time applications. 

Cigliano, Lippiello, Ruggiero, and Siciliano (2015) implemented an eye-in-hand ball catching robot which 

caught 98% of flying and rolling balls, and 89% of bouncing balls. The authors believe their rebound 

model was the reason for the lower proportion of caught balls in the bouncing case. In this research the 

authors used a camera operating at 140 FPS, with a resolution of 512 × 368 pixels. The camera was 

mounted in the hand of their articulated robot arm which performed the movement and interception of 

the ball. The camera observed the ball for its entire flight time. 
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de la Malla and Lopez-Moliner (2015) discuss the role of prediction versus online vision for interception 

of a ball by humans. Prediction, as the name implies, involves estimating where the ball will go based on 

previous observation of the ball’s path. Online vision is the continuous observation of the ball’s position 

and matching the position of the interception apparatus (the hand in the case of humans catching a ball) 

to the ball’s position. Trials were performed by a human interacting with a data capture device called 

CyberGlove which captured finger positions at 100 Hz. A visual stimulus of a ball being launched in a 

fixed parabolic motion was created, and then projected stereoscopically for the participants to observe. 

Their findings indicated that both predictive and online vision were utilised in human vision for effective 

interception of the flying ball. 

In sophisticated systems, such as the human limbic system, predictive mechanisms and online vision 

work in tandem (Wolpert & Flanagan, 2001). Prediction may guide us as to the rough interception point 

of the ball, while online vision may help us narrow the interception window sufficiently that we can 

catch the ball. This seems like a reasonable method to adopt for high-speed ball interception in a semi-

automated foosball table. As mentioned by Wolpert and Flanagan (2001), the human predictive models 

need to be continuously updated, however so this should be considered in the design. 

2.4. Image and signal processing on FPGA 

Arguably the most important element in a computer vision-based control system is the vision system. In 

order to achieve high speed control, a high-performance image processing platform must be used. A 

popular method for high performance image processing is to use a Field Programmable Gate Array 

(FPGA) (Bailey, 2011; Johnston et al., 2004). 

The use of FPGAs for image and signal processing is quite well developed, and this is one of the 

recommended applications for FPGAs given by FPGA chip manufacturer Intel (Intel, 2018). However, 

some background will be given regarding the benefits of using FPGA rather than conventional image 

processing hardware such as desktop CPUs, GPUs or ASIC hardware. Additionally, a brief introduction to 

the fundamental theory of software and hardware-based image processing will be presented. 

 Software and hardware-based image processing 

Most modern image sensors are either CCD (charge coupled device) or CMOS (complementary metal 

oxide semiconductor), however in machine vision applications, CMOS has some advantages over CCD 

such as the ability to be integrated into the same die for low cost of manufacture (Rowe, Rosenberg, & 

Nourbakhsh, 2002), and higher framerates (El-Desouki et al., 2009). These image sensors are used in 

image capture devices such as cameras, which are then connected to a processing unit, which performs 

the image processing operations. 

A digital colour image such as that captured using a CCD or CMOS sensor is an array of light intensity 

values with a fixed data width (for example 8 – 12 bits per channel) which have passed through a colour 
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filter. Usually a red, green, blue (RGB) colour filter is used. 8-bit RGB in Bayer pattern format is a 

common configuration for CMOS and CCD sensors in robot vision (Gamal & Eltoukhy, 2005). 

One 8-bit image of 640 × 480 pixels has 307,200 total pixels, each with either red, green or blue 8-bit 

intensity value. Each pixel provides an intensity value for one of the three channels – red, green or blue. 

An 8-bit image is converted from Bayer pattern format to a true 24-bit image using demosaicing via 

Bayer interpolation, however this is only done after the image is captured and transferred to the 

processing unit. After image transfer and demosaicing, the image is usually transformed into a different 

colour space for more convenient colour segmentation. The image is then filtered (segmented) 

according to the application requirements, and the required information (centroids, histogram, image 

entropy, etc) is output.  

In most software-based image processing systems, the data is received from the camera via USB or 

Ethernet, stored in RAM and then accessed by a software application sequentially as the pixel values are 

needed for processing. The processing operations in software-based image processing applications is 

performed according to the following cycle - Figure 2-1: 

     

Figure 2-1 - Cycle diagram representing algorithmic image processing 

In FPGA image processing, the most common arrangement is to stream the image data from the CMOS 

or CCD sensor via a parallel interface (typically at a rate of one pixel per clock cycle). As this data is 

received, the image data is streamed directly to hardware blocks implementing the processing 

operations. Operations are performed on the pixel data on-the-fly, without having to store the entire 

image in RAM before accessing it. Pipelining the process hugely reduces latency as the read/write 

operations are a large contributor to the total time taken by software-based image processing 

operations. The following block diagram represents the image processing data flow in an FPGA based 

system: 
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Figure 2-2 -Streamed image processing in FPGA hardware 

With pipelined stream processing, data is continuously fed through the image processing operations. If 

local data is required, the required pixels are cached locally (in row buffers) using distributed RAM. Each 

operation runs in parallel with data streamed between operations at a constant rate. Using this method, 

operations can start their processing as soon as pixels start arriving; it is not necessary to wait until the 

previous operation has completed processing the whole image. This, combined with the reduced 

memory overhead significantly reduces latency, compared to software-based implementations. 

 Performance improvements 

High performance in terms of framerate and latency is required if the vision system is to be used in a 

control system. Image processing on an FPGA can yield performance improvements of one to two 

orders of magnitude compared to CPUs and approximately double that of GPUs, for applications like 2D 

filters, stereo vision and K-means clustering (Asano, Maruyama, & Yamaguchi, 2009). Due to improved 

instruction efficiency, which the authors define as the level of pipelining and parallelism capabilities, 

FPGAs can achieve much higher performance than CPUs in benchmarks such as Prewitt edge detection, 

wavelet transform, and maximum filter (Guo, Najjar, Vahid, & Vissers, 2004). In a recent paper, (Safaei, 

Wu, & Yang, 2018) achieved an order of magnitude improvement using an SoC FPGA, versus a 3.4 GHz 

CPU running 16 threads for a background/foreground subtraction application. (Leeser, Miller, & Haiqian, 

2004) discuss an implementation of stream-processing image data using an FPGA, with very low 

latencies – minimum of 250 microseconds for the first result of the filtering operations. The latency will 

vary depending on where the object appears in the image space, however. (Leeser et al., 2004) obtained 

a performance improvement of around 50 times for retinal vascular tracing and 20 times for particle 

image velocimetry, when compared with software implementations on a 2.6 GHz Xeon processor and a 

1.5 GHz Xeon processor respectively.  

In an industrial control problem involving an electrical drive system, the FPGA realisation was able to 

perform the execution of the control algorithm in roughly one quarter the time of a dedicated DSP 

controller (Monmasson & Cirstea, 2007). 

All of these performance improvements indicate that FPGAs present a huge opportunity to replace CPUs 

or DSPs in computationally expensive tasks where parallelism can be exploited. Image processing in the 

context of robotic control is a perfect example of this. 
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 Power consumption and embedded capabilities 

Usually, high computational power is achieved at the cost of power efficiency. High performance CPU 

based computers generally consume large amounts of power, meaning that they are less suitable for 

embedded systems with either low overall power delivery capability, or limited power supply where the 

system is battery powered for instance. Therefore, a lower power computational unit with high 

performance capability is required. A key benefit of using FPGAs is their lower power consumption in 

signal and image processing, compared to competing platforms such as CPUs and GPUs. Low power 

consumption of the processing unit may enable high performance vision and signal processing to be 

implemented in embedded systems with limited power supply capacity.  

Using an FPGA, high levels of performance can be achieved with as little as a 100 mW of power (García 

et al., 2014). As demonstrated by (Thomas, Howes, & Luk, 2009), in terms of random number 

generation, “the FPGA provides an order of magnitude more performance per joule than any other 

platform, and over 250 times that of the CPU”. 

(Putnam et al., 2014) show that “a medium-scale deployment of FPGAs can increase ranking throughput 

in a production search infrastructure by 95% at comparable latency to a software-only solution. The 

added FPGA compute boards only increased power consumption by 10% . . . yielding a significant overall 

improvement in system efficiency”. System efficiency was defined as performance per joule of energy 

and was relative to other tested systems in the paper. 

Given the low power consumption, and high performance of FPGAs they represent an ideal embedded 

processor. Honegger, Oleynikova, and Pollefeys (2014) implemented a stereo vision system performing 

disparity estimation on images of 752 × 480 pixels at 60 frames per second, all at a total power draw of 

5 W. This is remarkably low, considering the high volume of data being captured and processed by the 

system.  

Safaei et al. (2018) present a system based on a Zync-7000 SoC which separates the background from 

foreground of images with processing time of 0.96 s, a total cycle time of 4.18 ms and a data processing 

rate of 9,460 MB/s (26.2 GOPS). The total system power consumption was 1.747 W.  

As new FPGAs come to the market, their power and performance characteristics continue to improve 

(Putnam et al., 2014). Overall, FPGAs provide extreme levels of performance without the power 

premium generally faced by serial processor architectures. Therefore, FPGAs represent an ideal low 

power embedded processor where high performance is required. 

 Programming and reconfigurability 

A key advantage of FPGAs is that the designs contained within the chips are completely reconfigurable. 

This means that one FPGA chip can be used for a multitude of different applications. During the design 

process, the overall function of the chip can be completely changed which offers a lot of versatility. This 

high level of reconfigurability does come at some cost of programming complexity, which requires 
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modern synthesis tools to compensate for the high level of reconfigurability (Meeus, Van Beeck, 

Goedemé, Meel, & Stroobandt, 2012). Programming FPGAs requires a different way of thinking 

compared to algorithmic languages such as C (Mealy & Tappero, 2016). A hardware description 

language (HDL), such as VHDL, is used to describe hardware; this means that the resulting design is 

circuitry, rather than an algorithm which executes in sequential order. The timing in software is implicit 

in the sense that one function executes after the other. In HDLs, everything is concurrent, and timing 

and execution must be explicitly specified (Edwards, 2006), otherwise timing issues arise. Finally, 

debugging hardware designs is more difficult than software, despite the simulation tools that exist 

(Graham, 2001). Overall, hardware design requires a fundamentally different approach to algorithmic 

style of programming, and thus, is off-putting to some engineers who are unfamiliar with HDLs 

(Monmasson & Cirstea, 2007). 

Difficulty in programming should not be of concern as there are many examples of difficulty in 

programming image processing algorithms on CPU or GPU (Asano et al., 2009). Additionally, “the 

reduction of the execution time of an algorithm in the case of a DSP implementation is only obtained by 

a long work of optimization of the corresponding assembler code. Such an optimization is no less 

consuming in terms of development time than the time needed for the design of an efficient 

architecture” (Monmasson & Cirstea, 2007). 

Much improvement has occurred in the field of microcontrollers in terms of integrated development 

environments (IDEs), debugging, compiler efficiency and more. If similar effort is put into the 

development of programming and using FPGA technology, many of the current disadvantages of FPGA 

usage (long development cycle, expensive, conceptually difficult) could be significantly reduced 

(Monmasson & Cirstea, 2007; Putnam et al., 2014).  

2.5. Actuator control and sensing on FPGA 

Actuation and sensing are both very important in any control system. High speed and low latency are 

required in both actuation tasks and sensing in a high-speed control system. Therefore, a compute 

platform capable of performing the sensing and actuation tasks satisfying the timing and precision 

requirements of the control system is necessary.  

While not as common as image and signal processing, actuator control in FPGA is an interesting 

application. Pratt, Willisson, Bolton, and Hofman (2004) discuss an FPGA based controller which inspects 

Hall effect sensor data and various other data, such as from a large number of analogue to digital (A/D) 

and digital to analogue (D/A) converters within a robot joint control system and performs actuator 

position control with a 1 KHz update rate. The controller was interfaced to a computer with a 400 Mbit/s 

bandwidth. The concurrent processing of the FPGA enabled all the data to be processed with minimal 

latency. 

Tanaka et al. (2009) demonstrated the performance of a Xilinx Vertex-II Pro FPGA based PCI card in the 

control of a master-slave surgical robot with 12 degrees of freedom (DOF), where the control latency 
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was around 30 microseconds from master input to slave output. This meant that the time elapsed from 

the human operator performing an action to the robot initiating the mimicked movement was 30 

microseconds. 

Christopherson, Pickell, Koller, Kannan, and Johnson (2004) implemented a system where an FPGA is 

interfaced to a DSP via a 32-bit, 250 Mbit/s interface to control an unmanned helicopter (GTmax 

Research UAV) and a small, ducted fan UAV. In the GTmax, the FPGA was unable to outperform the 

previous software implementation due to the authors’ use of an inferior GPS system which provided less 

accurate results than the unit provided with the GTmax from the factory, and therefore yielded higher 

control error. Despite the faster control loop achieved by the FPGA based system, the poorer quality 

GPS data resulted in greater error. The control system was, however, deemed adequate for the ducted 

fan UAV.  

FPGA technology has improved dramatically since much of this research was published with modern 

SoCs achieving higher performance, greater FPGA-HPS communication bandwidth, lower power 

consumption, and greater FPGA resource availability. Additionally, tools for high-level synthesis have 

also been significantly improved (Meeus et al., 2012), and will likely continue to improve as more 

developers adopt the technology. These factors make FPGAs an ideal candidate for applications in high-

speed control where numerous actuators and sensors are involved. 

2.6. Conclusions 

For the control of a high-speed vision-based system, in the context of the semi-automated foosball 

table, sufficiently powerful hardware is required to receive image data from a low-latency image 

capture device. The image must be calibrated such that the distortion introduced by the lens is removed 

(either before or after image processing operations). The image must be processed in such a way that 

the correct information is obtained – the ball x and y coordinates. Finally, the ball location information 

must be used in such a way that maximises the possible interception performance of the available 

mechanical system. The more latency that is removed from these processes, the higher the theoretical 

performance limit for the vision-based control system. 
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3. System overview, requirements and high-level architecture 

This chapter will present the system performance and development requirements, as well as all the 

potential methods to meet the requirements based on the findings of the previous chapter. Finally, the 

high-level architecture of the complete system used for the development of high-speed vision-based 

control will be presented. 

3.1. Temporal and spatial resolution requirements – Camera parameters 

The temporal resolution required for the vision system must be sufficiently high that when the ball has 

been kicked by a human player, it can obtain 2 or more measurements (frames) of the ball’s position 

before the ball reaches the module performing the intercept. The table playing field is 1200 mm in 

length and 693 mm in width. 

Figure 3-1 represents a typical frame capture scenario with the ball being kicked straight forwards by 

one of the human opposition’s foosmen. In Figure 3-1, 𝑥1 𝑥2 and 𝑥3 denote individual frames captured, 

overlaid on top of each other, with 𝑥0 being the rod which performed the kick. In 𝑥1, the ball’s velocity is 

unknown. It may have just been kicked or it may still be stationary. In frame 𝑥2, we have frame 𝑥1 as a 

reference of its previous position. So frame 𝑥2 gives us an initial estimate of the ball’s velocity, however 

in frame 𝑥1 the ball may have still been in contact with the foosman, or the kick may have occurred 

between frames 𝑥1 and 𝑥2, therefore frames 𝑥2 and 𝑥3 are the frames required to perform the velocity 

and trajectory calculation, while frames 𝑥1 𝑥2 and 𝑥3  can all be used for the heading calculation. This is 

an important consideration for the required temporal precision.  
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Figure 3-1 - Representation of ball motion blur on foosball table – birds-eye view with foosmen hidden from view 

At a maximum speed of approximately 10m/s (10,000mm/s) it takes just over one tenth of a second for 

the ball to travel from one end of the table to the other, if the ball is travelling at maximum velocity. A 

camera capturing 60 FPS, for example, would capture 7 frames in that time. However, the ball only has a 

maximum of around 900mm of travel from the first rod to the opposing team’s goal. This means that a 

60 FPS camera can capture around 4 or 5 useful frames in that distance. Therefore, the minimum 

camera framerate is 60 FPS, however a higher framerate is preferred if there is no detriment to other 

system performance attributes. 

In terms of spatial precision, the foosball ball is approximately 35mm in diameter and the foosball table 

playing area is 1200 by 693 mm. If the image, at a resolution of 1024 × 768, is perfectly occupied by the 

table playing area, this would mean that each pixel corresponds to approximately 1mm. However, the 

image window does not perfectly align with both edges of the playing field as is shown in Figure 3-2. The 

aspect ratio of the playing field is approximately 7:4. The camera is constrained to a 4:3 aspect ratio due 

to the display input resolution requirements. The horizontal axis of the foosball table playing field has 

been fitted as closely as possible to the camera’s image width to maximise the number of pixels 

available for detection of the ball. 

𝑥0  𝑥1        𝑥2        𝑥3 
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Figure 3-2 - Foosball playing field captured from below, using the DE1-SoC and D5M camera 

From captured images of the playing field, the ball is, on average, 30 pixels in diameter, however some 

edge pixels will not be perfectly detected by the image processing algorithm, due to colour 

segmentation limitations.  

By increasing the pixel density (the overall resolution at which the field space is captured) the number of 

pixels can be increased, which increases the accuracy with which the ball location is measured. Other 

authors who implemented object tracking systems have used camera resolutions such as 657 × 446 

(Janssen et al., 2012), 384 × 288 (Weigel, 2005), or DVS resolutions of around 128 × 128 with highly 

structured or plain background conditions (Delbruck & Lang, 2013). Given that an increased number of 

total pixels increases latency for a given image transfer bandwidth, a resolution of 1024 × 768 pixels was 

selected. This resolution offered high precision and successfully fit the playing field into the image 

window (discussed further in later sections), while maintaining low latency and achieving the desired 

framerate. 

At a resolution of 1024 × 768, the precision achieved is more than enough to calculate the position of 

the ball to an accuracy of 1 mm. The accuracy obtained using 640 by 480 resolution would also be 

sufficient, provided the image window can capture the entire playing field. Therefore, the minimum 

required resolution is 640 by 480, and ball position detection to the nearest mm. 

3.2. System response 

System response is defined as the time from measurement system input to robot actuation execution. 

In the case of the foosball table, this would be the time between the ball having moved to a new 

location, that location to be captured by the computer vision measurement system, an output to be 

transacted by the FPGA, and then the foosman moved to the required interception position. Figure 3-3 

represents the typical dataflow involved in one cycle. 
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Figure 3-3 - One cycle of image capture through to system actuation response 

From the above processes the following latencies are present: 

1. Image capture latency 

2. Image transfer latency 

3. Data transfer latency – between processors 

4. Processing latency 

5. Actuation latency 

6. Any latencies caused by an operating system running in the background 

In order to achieve effective control, the overall system response time must be minimised. Each of the 

above latencies must therefore be minimised as much as is practically possible. The choice of hardware 

was therefore made on this basis. 

3.3. Interception performance 

For effective defence in a competitive game of foosball, a high proportion of successful interception is 

required for sub-maximal speed kick speeds. The goal for this work is therefore to achieve a 100% 

interception ability for straight shots (no angle) at sub-maximal kick speeds. This interception criteria is 

for each individual rod.  

For shots with non-zero heading angle, relative to the length axis of the foosball table, a lower 

interception ability is required because using a highly effective interception strategy for each rod, their 

interception performance should compound. If one rod misses an interception, the subsequent rod(s) in 

the ball’s path can attempt to intercept the ball. Therefore, only the straight-shot (zero heading angle 

relative to length axis) will be measured. 

Receive Image 
Input

•Ball moves

•Camera obtains new frame of data (sequentially due to rolling shutter)

•Vision system performs preprocessing

•Vision system outputs object coordinates to strategy processor

Perform trajectory 
and strategy

•Strategy processor performs lens calibration, pixel mapping and trajectory calculations

•Strategy processor calculates required actuation profile - stepper motor distance and 
direction to travel

•Actuation profile is sent to actuation processor

Perform actuation

•Actuation processor performs tasks according to the actuation profile received from 
strategy processor
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3.4. Power consumption 

This research was partially focussed on enabling high performance computer vision in embedded 

applications. Power consumption was therefore a consideration for the processing component of the 

system.  

In embedded systems, mains electricity is generally not the source of power for the system. Therefore, 

the compute unit must consume sufficiently low power to be powered by a battery. In embedded 

robotics, lithium-ion or lithium-polymer batteries are generally the preferred method of powering the 

robot or system. In the literature, a typical embedded image capture and processing power 

consumption of between 3 W (Fowers et al., 2007) and 5 W, was achieved (Honegger et al., 2014) and 

(Barry, Oleynikova, Honegger, Pollefeys, & Tedrake, 2015) all using FPGA based systems. Power 

consumption of 20 W was achieved using an ARM based “pushbroom” system (Barry et al., 2015). These 

power consumption values are for the image capture and image processing systems in the embedded 

applications only. Several other authors such as (Maxim & Zidek, 2012) and (Christopherson et al., 2004) 

report low power consumption for their image capture and processing systems, however they do not 

provide exact power draw figures. Although this is less of an issue for the mains powered semi-

automated foosball table, it was nevertheless considered for this system. 

Based on this, a maximum power draw of 20 W or less was specified for the entire compute system 

including image capture hardware, processor cores and peripherals. 

3.5. Modularity and versatility 

Reusability of code and of designs within FPGA is a very important method to improve efficiency of 

developing FPGA based solutions. Writing VHDL code in a modular, reusable way is important to enable 

efficient scaling or adaptation of one design to suit another application. 

The importance of modular design cannot be stressed enough for VHDL as it is a key factor in what 

makes FPGA a powerful tool. For example, one can write a piece of VHDL code to perform some 

function (for example actuator control) within the architecture of the top-level entity; this is somewhat 

equivalent to the main loop in a C program. This is an acceptable thing to do from a language 

perspective, however if that same piece of code was created as a standalone module, it could then be 

instantiated multiple times, to perform multiple instances of the same function; much like declaring a 

function in a C program. This takes advantage of the inherent parallelism of FPGA, where the number of 

instantiations of these reusable modules that can be used in a design is limited only by FPGA resources 

and I/O. In many designs, the resources available will far exceed the resources required. This indicates 

that FPGA enables fairly easy scaling of designs. 

In the context of robotics, automation, embedded systems and other applications, this is an extremely 

useful tool. In many embedded systems, the design requirements change throughout the project. The 



22 
 

ability to reuse modules or simply add more of them to the design is extremely useful, especially for 

things like actuator control, I/O, and communication interfaces.  

A useful tool developed by Intel for FPGA development is the Qsys tool, which is part of the Quartus 

software package. Qsys enables creation of various IP based code using a GUI to represent all the 

connections and IP components within that design. Reusability of designs is greatly increased when the 

designs are created using Qsys. The use of this tool will be discussed in later sections. 

Parameterisation of actuator control modules is required so that this actuator framework can be 

adapted to work with a variety of actuators. Given that the module is designed to control stepper 

motors, the acceleration, maximum speed, and deceleration characteristics of the motors should be 

easily adjustable such that any stepper motor can be substituted, and the motor control modules easily 

tuned to work effectively with the new motor. 

Finally, the motor control code should be written such that transferring from one FPGA to another is a 

simple process of assigning new pins for clock, reset, IO and communication bus. The HPS is not required 

for control of stepper motors as it is a fully hardware-based operation, therefore it is not included in this 

requirement. Additionally, a Nios II soft core can replace the functionality of the HPS, provided a slightly 

lower level of performance is tolerable for the design. 

3.6. Minimal latency from distribution of processes 

In some early work, (Andersson, 1990) used custom hardware and communication interfaces in a stereo 

vision-based system to minimise system latency in a robot control application, mitigating the effect of 

their distributed system. They reported an overall control system response time of 32.2 ms. 

As was seen in some cases in the literature, distribution of the design resulted in communication 

latencies compounding in the systems, decreasing overall responsiveness (Čížek, Faigl, & Masri, 2016). 

The authors discuss vision-based navigation systems utilising different image processing hardware. One 

key observation is the variation in the 𝑇𝑠𝑦𝑠 latency value reported for different systems. 𝑇𝑠𝑦𝑠 is defined 

as the latency caused by the operating system being used, including things like scheduling, 

communication and data transfers. Figure 3-4 shows the different proportions of the total latency 

caused by 𝑇𝑠𝑦𝑠 – the red parts of the bar chart.  
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Figure 3-4 - Latencies present in systems tested by Čížek et al. 2016 

As can be seen in Figure 3-4, the core i7, core i5 and ARM based systems all show a very high proportion 

of system latency, 𝑇𝑠𝑦𝑠 , relative to total latency. One reason for this is that these systems are all subject 

to communication delays, because the systems are distributed. 𝑇𝑠𝑦𝑠 in the FPGA based systems is much 

lower, both proportionally and overall. An interesting observation is that the FPGA-SPS system with the 

soft processor core implementation has lower system latency than the FPGA-HPS using the hard 

processor core. This is likely because the soft cores are implemented in FPGA logic, enabling much more 

efficient communication between the FPGA and the soft core. The FPGA-HPS system must transfer data 

between the FPGA and HPS over some communication interface (over several clock cycles), thus 

increasing system latency. However, given the much higher performance of the HPS, the FPGA-HPS 

system still provided the lowest overall latency. 

Figure 3-5 represents the data path within a distributed, CPU based system, demonstrating the sources 

of latency generally found in distributed systems. 

 

Figure 3-5 - Flowchart representing the data flow, communication, and data transfers in distributed PC based system 

As can be seen in Figure 3-5, there are several instances where, given a sub-optimal communication or 

data transfer protocols, significant latency may compound in the system. These instances are the image 

data transfer, RAM read/write operations, and the transfer of actuation commands to the controllers. 

Each of these transfers take time and occur sequentially, therefore adding latency to the overall system 

pipeline, and reducing system responsiveness.  
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Based on these observations, a strict requirement for this system was to either minimise distribution of 

processing operations, process data at the source to reduce the volume of data that needs to be 

transferred, or to use a communication interface with low enough latency to not adversely impact 

system performance. A combination of these is also possible. 

3.7. Reconfigurability 

As was stated previously, reusability of code is important to enable simple scaling of the design. 

However, reconfigurability is also very important in the design of vision-based control systems. 

Reconfigurability is the ability to change the function of the hardware at a lower level than changing the 

code running on the hardware as is done with CPU based systems. A desktop computer or 

microcontroller represent systems with low reconfigurability. The internal logic and memory elements 

of the processors in these systems cannot be changed easily. 

Reconfigurability is the enabling mechanism to achieve scalability or adaptability of a design. Therefore, 

the hardware used must be reconfigurable. An FPGA meets this requirement perfectly. The ability to 

completely change the function of the design without physically changing any components of the FPGA 

based system is the essence of its versatility. 

Microcontrollers and CPUs are reconfigurable in the sense that the code they run can be changed. 

However, fixed attributes such as the number of hardware timers, or the processor data width cannot 

be changed without physical hardware changes. Additionally, resources like hardware timers that are 

not used in a design cannot be reconfigured for other purposes, or if the processor data width is surplus 

to requirements, it cannot be decreased in software to improve efficiency or minimise resource 

consumption, to free up resources for scaling of other aspects of the design. 

3.8. Debuggability/traceability 

In order to make the system easy to debug and improve the development experience, some traceability 

features are imperative to the design. These are as follows: 

1. Real-time output of the image on a screen 

This is the most effective method of debugging a vision system in real time. Without a real-time display 

of what the vision system is ‘seeing’, it is very difficult to determine the cause of problems. 

2. Real-time output of the segmented object (tracked object) on the screen overlaid 

In colour segmentation, it is very useful to see the pixels that have been “accepted” by the 

segmentation algorithm, also in real time, overlaid over the main image stream. This is so that if lighting 

parameters change or some other variation causes the colour segmentation algorithm to fail it is easy to 

detect the symptom and potentially the cause as well. 

3. Simulation debugging of FPGA design 
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Debugging FPGA is typically quite difficult as it is hardware all running concurrently so detecting the 

source of problems can be a challenge as the algorithmic style of debugging (for example the use of 

breakpoints) is not applicable in FPGA. Simulation of hardware generally takes care of this; however it 

can still be more difficult or time consuming than with microcontrollers. 

Hardware level simulation is also very slow, because the computer must simulate all the concurrent 

hardware interactions. This is particularly noticeable for image processing where many hundreds of 

thousands of clock cycles are required to process an image. 

4. Source level debugging of the HPS C code, memory and registers 

As with most embedded systems running microcontrollers, source level debugging is necessary. The fact 

that source level debugging is ubiquitous means that its necessity need not be justified. 

5. Master access to the FPGA-HPS and HPS-FPGA bridges 

A key technology utilised by some authors is a high-bandwidth communication interface between the 

FPGA and the ARM core. This interface is very powerful, however master access is required if it is to be 

utilised properly. This means access to registers and mastering transactions from a host PC is required 

for proper development. 

6. A communication interface into the FPGA to provide debugging commands and debugging 

outputs to the user 

Like any microcontroller application, user input into the system and simple diagnostic user output is 

required. This is obviously extremely important. 

7. Soft and hard resets into the FPGA, HPS and image acquisition hardware 

Once again, this is an important feature in any system. The soft resets are useful for simple debugging 

and the hard resets are necessary for global reset of all variables, logic elements and processors, 

returning the system to a rebooted state without needing to turn off mains power. 

3.9. Potential methods to achieve outcomes 

Based on the literature, there are many different technologies, algorithms, methods and configurations 

possible for the problem of low latency control of a robotic system utilising computer vision as the main 

sensor. Each technology and configuration of the surrounding algorithms and methods have their 

individual advantages and disadvantages. The following section will discuss some relevant 

configurations of the available technologies to address the problem of high-speed, low-latency robotic 

control with computer vision as the measurement system, as well as some of their limitations. Finally, 

the proposed method will be outlined and discussed with regard to how it can meet the requirements 

laid out in the previous section. 
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 CPU or GPU based systems 

One popular method to achieve high speed image processing-based control systems is with a distributed 

control platform where a standard computer running Windows, Linux or Mac is the compute unit 

performing the image processing algorithms on its CPU and/or GPU. Several authors have used this 

general approach method  (Asfour et al., 2006; Behnke, Egorova, Gloye, Rojas, & Simon, 2004; Cigliano 

et al., 2015; Delbruck & Lang, 2013; Janssen et al., 2010; Padon, 2003; Weigel, 2005). 

Another option is to use a microcontroller or microprocessor as was done by (Barry et al., 2015) who 

tested and compared two realisations of autonomous obstacle avoidance systems using stereo vision. 

The first system was an ARM only system termed “pushbroom”. The ARM processor was responsible for 

the image capture, image processing and the flight dynamics and control. 

Several variations of the general CPU based framework are possible including (but not limited to) the 

variations shown in Figure 3-6. 

 

Figure 3-6 - Possible configurations of PC based image capture and actuator control systems 

Figure 3-6 represents eight possible combinations of PC based systems. Variations of image transfer 

protocol, image processing hardware, and actuator control methodology are possible. 

While some authors who used these systems have achieved low image processing latency, or even low 

overall measurement system latency, they all still involve the following problems: 

1. The actuator control on all these systems is still performed by a separate control unit which 

must communicate with the compute unit.  

2. The systems all require sequential transfer of image data and writing of image data to system 

memory, before any image processing operations can be performed. 

3. PC’s generally have very high-power consumption per unit performance, compared to other 

available technologies 

4. PCs which are powerful enough to perform high-speed image processing are not very portable 

or capable of being an embedded processing unit. This is generally because PCs capable of such 

tasks usually contain powerful CPUs and GPUs. These consume large amounts of electricity and 

generate excessive heat. 
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 ASIC or custom hardware 

Many different works include custom hardware to achieve low latency control of robotics. These works 

include the use of dynamic vision sensors (DVS), custom chip arrays, in-house manufactured circuit 

boards containing microcontroller chips or other processing hardware, and other non-off-the-shelf 

solutions.  

DVS sensors have been used for low latency control or feedback by several different authors. These 

include robotic pole balancing (Conradt, Berner, Cook, & Delbruck, 2009), a low latency, low CPU usage 

robotic goalie (Delbruck & Lang, 2013), low latency object localisation (Censi, Strubel, Brandli, Delbruck, 

& Scaramuzza, 2013), and micro-robotic haptic feedback (Ni, Bolopion, Agnus, Benosman, & Regnier, 

2012). DVS sensors will likely improve in the future because of the unique benefits they offer, such as 

extremely low latencies. However, they are still generally low-resolution and are better suited to highly 

structured environments where the only moving target is the object being tracked and the lighting is 

carefully controlled.  

Another option for parallelised image processing in a robotic control application is to use a 

programmable array of processors such as a massively parallel processor array or a custom designed 

board with numerous DSP chips or high-performance microprocessors such as the ARM range. Micro-

processors offer high performance per unit power, 𝑊, or chip area, 𝑚𝑚2. This can yield quite good 

performance as was shown by Andersson (1990) where the author used a custom compute platform 

based on what they called the TRIAX (an image processing platform) for stereo vision capture and pre-

processing, and a 20MFLOPS JIFFE (processor for robotic control) for processing 3D data and performing 

the required calculations to control an articulated robot with up to 6 degrees of freedom. There were 

numerous limitations with this approach including the low spatial resolution where only 2000 pixels 

worth of 3D data were processed per frame; 100 lines of 20 pixels per line. However, even with this 

crude (by modern standards) approach, they could effectively control an articulated robot. 

 FPGA 

FPGA for image processing 

Several authors have succeeded at controlling various dynamic systems with FPGA based image 

processing as their measurement systems (Christopherson et al., 2004; Honegger et al., 2014; Linares-

Barranco, Gomez-Rodriguez, Jimenez-Fernandez, Delbruck, & Lichtensteiner, 2007; Wei, Byung Hwa, 

Larson, & Voyles, 2005).  

Some limitations with these implementations were that the FPGA was often responsible only for the 

image processing, while other aspects of control like actuation, strategy or sensing were left up to a 

conventional microcontroller which then had to pass the data to the FPGA. Despite this, some authors 

were still able to achieve effective control. 
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FPGA with DVS sensor 

(Linares-Barranco et al., 2007) use an Address-Event Representation (AER) sensor connected to an FPGA, 

which also communicates with a Cygnal 80C51F320 microprocessor. The FPGA receives data from the 

AER sensor and analogue measurements from the microprocessor and performs control of the robot. 

The AER sensor has an array size (resolution) of 128x128. 

FPGA SoC 

The second system tested by (Barry et al., 2015) was an identical UAV as the ARM system tested by 

Barry et al., however the vision and control was performed by an FPGA SoC. FPGA SoC technology was 

also used by (Maxim & Zidek, 2012), who discussed an FPGA SoC system where the audio or video 

stream could be used for control of UAVs or UGVs. The ARM cores on the SoC used by the authors was 

programmed in “bare-metal” mode which means that the code is running on the lowest level possible, 

without an OS running in the background. One major limitation with their work is that they used USB 

webcams as their image input stream to the FPGAs. This would likely have added a large amount of 

latency to the systems. This is not an issue of SoC design in general, rather just a limitation with this 

particular design decision. 

(Safaei et al., 2018) use an SoC FPGA for hardware acceleration of foreground and background 

segmentation in live video stream. They achieved outstanding performance at very low power 

consumption. Their SoC-based system was capable of processing an image of 1920 by 1080 pixels in 4.18 

ms, at a total computation power consumption of 1.747 W. 

Another method of using SoC FPGAs is to run an OS on the HPS portion of the SoC and to use the FPGA 

as a simple hardware accelerator as done by (Maxim & Zidek, 2012). However, running an OS generally 

adds latency to a system as the OS adds some protection layer so that the developer cannot cause 

sections of memory to become corrupted. The OS must read and write to memory through this 

protection layer which adds some latency to the system. Additionally, scheduling requirements of an OS 

can add some latency to the system. 

Using an FPGA SoC, full advantage can be taken of the system when the FPGA performs image pre-

processing and the HPS portion of the SoC is responsible for efficiently written bare-metal code such as 

floating-point operations and other calculations of that nature. 

FPGA with parallel soft cores 

Another possible use of FPGA technology is to implement numerous soft cores in FPGA logic. 

Intel/Altera provide a Nios II RISC core with varying performance levels and resource consumption. The 

higher-performance cores consume more resources than the less powerful cores. The Nios II cores 

would, in this case, take the place of the HPS for floating point calculations, communication, and other 

such software-oriented tasks. Depending on the complexity of the application, a single Nios II core or 

many cores could be implemented. 
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(Baklouti & Abid, 2014) tested how well scaling of the soft-cores on FPGAs performs, finding that as the 

core count increased, the amount of processor time consumed by communication increased such that 

after 32 cores, the improvement of increasing the core count to 64 cores was only very slight. The 

authors used 3 different operations as performance benchmarks, reporting computational efficiency 

relative to the number of soft-cores implemented. The 3 operations were Finite Impulse Response 

filtering, Spatial Laplacian filtering, and Matrix-Matrix Multiplication. For all 3 applications, increasing 

the core count did yield a performance improvement, however as more cores were added, processing 

efficiency declined due to increased communication overhead. The lowest marginal degradation in 

efficiency was seen in the Matrix-Matrix Multiplication. There are still some applications where multiple 

soft-cores can outperform GPU’s, due to the soft-cores’ ability to communicate with one another.  

In the semi-automated foosball table, it could be useful to implement one Nios II core per actuation 

module to perform all the necessary calculations. This way the modules could all operate completely 

asynchronously. 

 Summary of potential methods 

From chapters 4 and 5, several possible systems are presented which could be used to solve the 

problem of high-speed vision for low latency control of robotics. The potential system configurations are 

as follows: 

1. PC based system where image capture is performed by camera connected via gigabit ethernet, 

image is processed on a GPU, and actuator control Is performed by a dedicated actuator 

control card 

2. Dynamic Vision Sensor based system incorporating either an FPGA or a PC to analyse the DVS 

output data, and the actuation is still performed by a dedicated actuator control card 

3. FPGA – PC based system where image capture and pre-processing are performed by FPGA, 

processed data is passed to PC, and PC gives actuator commands to dedicated actuator control 

card which then performs actuation 

4. FPGA – PC based system where image capture and pre-processing are performed by FPGA, 

processed data is passed to PC via USB or ethernet, PC performs any calculations necessary and 

actuation data is returned to FPGA which performs the actuator control 

5. FPGA – SoC system where FPGA does image capture and pre-processing, processed image data 

is given to HPS via high-bandwidth interface, HPS returns actuation commands to FPGA via 

high-bandwidth interface, FPGA performs actuator control 

6. FPGA – Nios II only system where image capture and pre-processing are performed by FPGA, 

processed image data is sent to Nios II via shared memory, Nios II returns actuation commands 

to FPGA via shared memory, and FPGA performs actuator control 
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 Proposed method 

The method proposed to satisfy all requirements detailed above and meet the outcomes for the project 

is as follows: 

An FPGA-SoC system where: 

1. Image data is streamed directly off the image sensor into the FPGA logic 

2. Image pre-processing is performed on the streamed data by the FPGA 

3. Processed image data (image information such as centre of gravity and object size) is passed 

directly to the HPS component of the FPGA via high-bandwidth FPGA to HPS bridge 

4. HPS performs lens distortion mapping, trajectory and actuator profile calculations 

5. HPS passes actuation commands back to the FPGA via the high-bandwidth HPS to FPGA bridge 

6. The FPGA performs all actuation concurrently with independent actuator control modules 

The proposed hardware to be used is the DE1-SoC development board by Terasic. 

By implementing the above system configuration, low latency control of a mechatronic system should 

be possible using computer vision as the input and/or reference signal. In other words, the above 

system should enable high-speed visual servoing, without requiring high power consumption processors 

or custom ASIC boards. 

The FPGA meets the requirements for low latency image processing capability, scalability, and 

reconfigurability. Using the ARM core running bare-metal C code with the high-bandwidth 

communication interfaces should minimise algorithmic processing latency and communication latency. 

Finally, using the FPGA for the control of the actuators should minimise latency and timing jitter that 

would arise if all the actuators were controlled by a microcontroller. 

3.10. High-level complete system architecture 

 Semi-automated foosball table control system 

In this research, a semi-automated foosball table shown in Figure 3-7, in which a human opponent plays 

against the table, is the test platform for the vision and control schemes. Therefore, the hardware and 

software discussed will be in the context of their usefulness in this application. 
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Figure 3-7 - Semi-automated foosball table 

The table used in the experimentation is semi-automated. On one side, the human players have been 

replaced with a mechatronic control system comprising actuators to slide and rotate the metal rods. The 

rods are controlled by 8 stepper motors: 4 for the linear (sliding) movement of the rods, and 4 for the 

rotation (spinning). This is shown in Figure 3-8. 

 

Figure 3-8 - CAD model of the automated actuation modules 

The camera faces upwards from beneath the table and tracks the ball through the base of the table 

which is made of glass. The human player plays against the automated control system; both try to 

defend their own goal and shoot into the opponent’s goal. The control system, therefore, is required to 

track the position of the ball with sufficient speed, low latency, and sufficient resolution to accurately 
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calculate where the ball is on the playing field. The temporal and spatial resolution requirements were 

specified in the first section of this chapter. 

 Compute subsystem 

The following block diagram, Figure 3-9, represents the overall compute/control system hardware and 

sensors: 

 

Figure 3-9 - Compute system input and output signals 

The DE1-SoC is a development board which combines an 85,000 logic element FPGA chip with a dual 

core 800 MHz ARM A9 microprocessor on the same die, interconnected via 3 bridges known as the HPS 

to FPGA bridge (H2F), the FPGA to HPS bridge (F2H), and the lightweight HPS to FPGA bridge (LWH2F).  

The FPGA component is responsible for: 

1. Configuring the camera module via I2C 

2. Providing clocks to all system components 

3. Receiving the pixels coming from the camera 

4. Performing Bayer interpolation 

5. Colour space conversion 

6. Performing colour filtering operations 

7. Performing morphological erosion and dilation 

8. Performing connected components analysis 

9. Displaying image stream on screen via VGA 
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•Camera pixel clock 
returnD5M

•Rotational "kicking" 
homing signal

•Horizontal "sliding" 
homing signal

Homing 
switches

•Hard reset

•Soft reset

•Camera reset

User 
inputs

•Lid interlock singal
System 

interlock

•Serial input
System 

JTAG

DE1-SoC 

Development 

Board 

•Video output
Image 
display 

(debugging)

•I2C control data

•Pixel clock out D5M

•8x Pulse

•8x Enable

•8x Direction

Stepper 
motor 
control

•Serial  output

System JTAG



33 
 

10. Passing detected object coordinates (x_min, x_max, y_min, y_max) and stepper motor 

positions to HPS via AXI bridge 

11. Receiving stepper motor control data from HPS via AXI bridge 

12. Performing stepper motor control 

13. Overall accepting any user input signals including JTAG, resets, and interlock 

The HPS (ARM core) is responsible for: 

1. Receiving object coordinates and stepper motor data from FPGA 

2. Use object coordinates (past and current) and stepper motor data to calculate: 

a. Trajectory for the ball 

b. Interception points for the foosmen rods 

c. Distances required for each foosman to reach the interception point for its respective 

rod 

d. Which foosman should take the intercept on each rod 

e. Number of steps required for each rod and which direction to travel 

3. Passing the above calculated values to the FPGA 

4. Overall accepting any user inputs including JTAG, resets, and other debug related signals 
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4. Mechanical subsystem 

4.1. Introduction 

This chapter will discuss in detail the overall mechanical system. This includes the dimensions, materials, 

similarities to official USTSA foosball tables, and the differences. Where relevant to the thesis topic, the 

engineering design choices for the mechanical subsystem will be justified. 

 Custom aspects of foosball table design 

There are a few major design differences between this table and regular foosball tables. These things 

include: 

1. The automated modules which take the place of one human player/team 

2. The glass base for the vision system to track the ball from beneath 

3. The glass lid, to prevent injury to the human players during operation 

4. The LED lighting around the outside of the playing field, to illuminate the ball 

Automated modules 

The automated modules shown in Figure 4-1, perform the kicking and sliding movement that a human 

player would normally perform.  

 

Figure 4-1 - Render of automated modules of CAD model 

The modules are actuated by Nema 23 stepper motors with peak torque of around 130Ncm as seen in 

Figure 4-2.  
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Figure 4-2 - Pull out torque curve of Nema 23 bi-polar stepper motor - (Pololu, 2018) 

The purpose of these actuation modules, shown in more detail in Figure 4-3, Figure 4-4, and Figure 4-5, 

is to intercept the ball when the opposing (human) team attempts to play offensive shots such as 

forward passes and scoring shots, and to play offensive shots for the autonomous team. 

There are two main movements required by the actuation modules. These are a rotation of the rod on 

which the foosmen are mounted, and a linear sliding motion of the same rod. These movements are 

achieved using the stepper motors connected with belt drives to the main rod. One stepper motor 

performs the rotational kicking movement, while the other performs the linear sliding movement. 

 

Figure 4-3 - Render of actuation modules 

The motor mounted horizontally, labelled “motor 1” above as a CAD model in Figure 4-3, is connected 

via a two-stage belt arrangement to the main rod. This motor is responsible for the kicking motion. The 

belt arrangement for motor 1 is shown in Figure 4-4. The right hand image in Figure 4-4 shows belt 

assembly 1 behind the mounting plate shown on the left-hand size of Figure 4-4. Belt assembly 1 

Motor 1 

Motor 2 

To
rq

u
e

 

Pulses per second 
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transfers the drive from the horizontally mounted stepper motor to the square shaft. Then belt 

assembly 2 transfers the drive from the square shaft to the main shaft on which the foosmen are fixed. 

There is a 1:1 gear ratio from the stepper motor to the main shaft.  

 

Figure 4-4 - Foosball table actuation module - rotational drive assembly 

The vertically mounted motor, labelled motor 2 in the CAD model Figure 4-3, is connected to the shaft 

via a belt and connector shown in more detail in Figure 4-6 below. The system has been designed such 

that the rotational and linear motion is combined into the same shaft, much the way a human would 

actuate the shaft to move the foosmen. The ratio of steps to distance for the linear motion is 25mm per 

100 steps. There is some backlash (around 2-3 mm) in the linear drive system, however this is easily 

corrected for with a small offset after the homing sequence. The stepper motor shown below in Figure 

4-5, drives the belt which is connected to the main shaft via the connector shown in Figure 4-6. 

Mounting plate 

Belt assembly 1 

Belt assembly 2 

Main shaft 

Stepper motor  
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Figure 4-5 - Foosball table actuation module - linear drive assembly 

 

Figure 4-6 – Close-up of belt connector on actuation module 

Stepper motors were used so that after initial setting of a datum (homing) was performed, high levels of 

accuracy and repeatability would be possible without the use of encoders. Additionally, they offered 

high levels of torque without the need for reduction gearboxes. 

Toothed timing belts were used to ensure no slippage, and minimal backlash were achieved in the drive 

assembly for both linear and rotational motion. 

Glass protector and playing field 

To protect the human players from the automated modules, the table was built with a glass lid. The 

system is interlocked such that the motors will only be actuated when the lid is completely shut. This 

Stepper motor 

Belt connector 
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system disables the motors when the lid is open as the motors are powerful and could cause harm. 

Figure 4-7 shows the base, interlock switch, and lid on the system. 

 

Figure 4-7 - From left to right a bottom-up view of the glass base, the interlock switch and the safety lid 

The glass base was included so that the camera could be mounted beneath the table and look vertically 

upwards at the playing field. This solved a few problems that were present in the work of other authors: 

1. Partial or full occlusion of the ball by the rods or players, respectively, as discussed by (Janssen 

et al., 2012) 

2. Ergonomic issues with the camera mounted overhead, as discussed by (Weigel, 2005) 

3. Occlusion issues where a human player would accidentally put their hands, heads or other 

objects between the camera and the playing field, as discussed by (Weigel, 2005) 

4. Extra mounting costs and cable/electronics management issues – due to power supplies, 

compute system, stepper motor drivers being housed separately. This is not discussed explicitly 

by other authors but is an obvious problem 

However, it also introduced new problems: 

1. Reflectance from any illumination beneath the table such as LEDs on the FPGA development 

board, or from ambient lighting reflecting off the ground 

2. Silhouetting or bright spots from any lights directly above the playing field within the camera 

field of view 

3. Potential misidentification of the ball if human players, visible to the camera, are wearing 

clothing of a sufficiently similar colour to the ball 

LED playing field lighting 

This feature was included in the design as it was necessary to illuminate the ball to assist the image 

processing software to effectively segment the ball from its surroundings. In the absence of the field 

illumination, the contrast between the ball and the other items in the camera field of view was 

insufficient for the colour filtering operations to segment the ball from its surroundings. This can be 
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seen in Figure 4-8. In Figure 4-8, on the left-hand side the field illumination is on, which increases the 

illumination of the ball, while simultaneously reducing the exposure on the vision system’s auto 

exposure, due to the brightness of the LEDs. This decreases the amount of background that the camera 

detects. The contrast can be seen in the right-hand image of Figure 4-8, in which the background is very 

visible. 

 

Figure 4-8 - From left to right - bottom-up view of foosball playing field with field illumination on and off respectively 

4.2. Materials 

The table body was manufactured out of MDF and finished with high quality Vinyl as shown in Figure 

4-9.  

 

Figure 4-9 - Image of completed, vinyl wrapped semi-automated foosball table – from front right 

The actuation module frames were built from aluminium end plates and steel joining rods. All bearing 

housings, pulleys and mounts were manufactured from aluminium. The drive belts are polyurethane 

Ball Ball 
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timing belts with internal steel tension bands. The foosmen rods are steel hollow tube running on 

nylon/acetal bushes on the internal solid steel rods. The playing field and protective cover over the 

playing field are both made of glass. 

4.3. Design aspects meeting official specifications 

The foosball table is built to the same dimensions as a standard USTSA foosball table. The specifications 

are as follows: 56.5 inches in length, 34.5 inches in width and 29 inches in height. These dimensions are 

shown in Figure 4-10. 

 

Figure 4-10 - Render of foosball table CAD model 

The table consists of 8 rods in total, with four rods per team. The foosmen on the automated side have 

been suppressed (made invisible) to highlight which rods are actuated by the human players. Therefore, 

up to two players can play on the human side, as can be seen in Figure 4-10. The rods are spaced evenly 

apart at 6-inch (152.4 mm) intervals. The foosmen figurines used are of the USTSA dimensions. As with 

USTSA tables, the foot height is adjustable so that the table can be made perfectly level. 

47.24” 

1.2m 
27.28” 

693mm 



41 
 

 

Figure 4-11 - Render of foosball goal on CAD model 

The goals dimensions match those of USTSA foosball tables at 8.375 inches (213 mm) in width. This is 

shown in Figure 4-11. Both ball return chutes (one per goal) were designed to deliver the ball back to 

the human side for easy access and playability. Figure 4-12 shows one of the ball return chutes on the 

manufactured system. 

 

Figure 4-12 - Semi automated foosball table right hand ball return chute 

8.375” 

213mm 



42 
 

4.4. Accurate vision system placement  

Given that the vision system is used to accurately estimate the position of the ball being tracked, a 

placement jig was required to ensure accurate repeatable placement of the vision system beneath the 

foosball table. This was done so that after initial calibration of the vision system, the electronics 

enclosure could be moved and replaced sufficiently accurately that no noticeable error would be 

introduced into the interception system. Figure 4-13 shows a CAD model of the placement jig, and 

Figure 4-14 shows the physical manufactured system. The top left and right images in Figure 4-13 show 

close up views from either side of the homing mechanism. The oval shaped tabs slot into the acrylic 

(transparent) backplate on the electronics enclosure.  

 

Figure 4-13 - CAD model of the placement jig for the foosball table vision system 



43 
 

 

Figure 4-14 - Manufactured calibration homing jig with rotating locking tabs 

As can be seen in Figure 4-14, the oval tabs rotate so that the enclosure, once locked in place, cannot be 

moved without unlocking the tabs. 
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5. Vision subsystem 

Accurate, low latency, low noise data acquisition is very important in controlling a fast, dynamic system 

(Franklin et al., 2015). This is the case regardless of what system is being controlled – if it operates at a 

high speed, obtaining reliable measurements with minimal latency is imperative. On these grounds, a 

method to obtain, process and utilize visual data (image data) with minimal overall system latency is 

required when visual feedback is used in the context of a robotic control system. 

This chapter will discuss control system latency and its importance both generally, and for the specific 

example of high-speed image processing, for control of an automated foosball table. The proposed 

vision system can be used as either the reference signal (the position of the ball which the foosball table 

rods are trying to match for interception), or both the reference and the feedback sensor element in the 

control loop.  

Two types of latency are important to consider. Novel event recognition latency is the time it takes for a 

system to identify that a novel event (for example the appearance of an object) has occurred. In tracking 

applications, steady state latency is the time it takes for a vision system to report the updated position 

of a target object. Unfortunately, most papers only discuss image processing latency, rather than 

complete measurement system latency. These can be misleading in terms of estimating performance of 

feedback control. 

For this reason, the performance of several different implementations of computer vision systems will 

be evaluated and compared in this chapter. These systems have been designed for high speed control. 

As such, latencies have been minimized where possible. The aim of the experiments was to determine 

both novel event recognition and steady state latencies associated with each of the candidate test 

systems. 

5.1. Background 

 Latency in control systems 

Control systems are designed to accept some bounded input and provide some bounded output, both 

within a specified range (Engelberg, 2015). Many dynamic control systems are run in closed-loop mode. 

This means that the system output (controlled variable) feeds back, via some sensor, into the controller 

of the system, and the system uses that feedback to adjust its control input (Franklin et al., 2015). 

Within a control system, sensor latency can be viewed as the time between an event occurring, and the 

data associated with the event being captured by the measurement system and passed to the controller 

(Engelberg, 2015). In the experiments documented here, these events are the appearance or movement 

of an object. The image is captured with a camera and image processing is used to provide the position 

of the object. 
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In the control of an automated foosball table, the position of the ball is measured, and fed into the 

control algorithms to control the positions of the foosmen to intercept the ball. This is the feedback 

element of the positional control. In practice, the control is a little more complex than simple positional 

control. The ball’s current and past positions are used to predict the motion of the ball which 

determines the position at which the rods controlling the foosmen will need to arrive when, or just 

before, the ball reaches the interception point. The system therefore represents a type of tracking 

control system with the predicted ball intercept position as the reference signal and the foosmen’s 

position as the controlled variable (Franklin et al., 2015). 

In control systems, two important parameters which determine stability and robustness of a system are 

phase and gain margins (Engelberg, 2015). The phase and gain margins indicate how much external 

disturbance (subtracted phase and added gain) the system can withstand without becoming unstable 

(oscillating) or failing entirely (Engelberg, 2015). Latency plays a strong part in this problem. If the sensor 

feedback is delayed by some amount, then this delay corresponds to a linear phase delay with 

frequency, with the delay proportional to the sensor and measurement system latency. As this appears 

within the loop gain, the latency reduces the phase margin, and reduces the actual performance of the 

system making it more difficult to control. If the latency exceeds a critical value, the system will become 

unstable. 

Vision based control systems typically consist of some image capture hardware (camera), image 

transmission interface, image processing system (hardware or software compute engine), 

communication interface and actuator or output control hardware. The transmission of the data, 

processing, and communication delays all add up to cause substantial system latency. Some of the 

latency is caused by the sheer volume of data being transmitted and processed. Various methods 

including pipelining, stream-processing, and simply increasing the processing power of the compute 

engine, have been used to improve the performance of frame-based vision systems over time. However, 

the latency is ultimately limited by the system frame rate since the data is transferred from the sensor 

to the compute engine serially. 

 Related work 

The literature describes several arrangements which use vision systems to capture and utilize motion 

data of various objects. The limiting factors of latency are mostly system-dependent; however, the 

general principle is that excessive latency can lead to instability. This is the primary motivation for 

efforts to minimize latency. 

The most similar system (Janssen et al., 2012), was also an automated foosball table with a camera that 

operated at 200 FPS with a measurement system latency of 17.5 ms. The camera transmitted 8-bit 

monochrome images with a resolution of 657×446 to a PC. This was done via Gigabit Ethernet. The 

system’s inability to defend against certain shots was determined to be due to latency in controlling the 

rods.  
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An FPGA SoC was used by (Čížek et al., 2016) for hardware acceleration of complex image processing 

tasks for vision-based navigation systems. The authors used a frame rate of 60 FPS at 640×480 

resolution. For their application, they claimed an image processing latency of approximately 17ms. 

Two different realizations of high-speed control of UAVs using stereo vision were discussed by (Barry et 

al., 2015). They achieved 2 ms image processing latency with the FPGA implementation and a worst case 

16.6 ms image processing latency with the ARM processor implementation. Given the lower image size 

of 320×240, and the relatively low computational power required for the matching algorithm, the 

latency achieved in this work appears reasonable. Hardware based processing gave approximately an 

eightfold improvement over the equivalent ARM based processing. These reported latencies are only for 

the image processing, and not the complete system latency for object detection (including image 

capture). It does give a representation of the effectiveness of hardware image processing platforms such 

as FPGAs compared to traditional systems, such as the ARM processor. 

(Andersson, 1990) demonstrated a 60 FPS, real time stereo vision system achieved through custom 

hardware with around 32 ms latency. The system’s performance was achieved through custom 

hardware and software. The reported 32 ms latency was reasonably effective for the real time 

autonomous control of their robotic manipulator. However, it is likely that the latency and throughput 

requirements for their application are less demanding than an automated foosball table due to the 

relatively slow speeds at which their robot manipulator was actuated. 

(Cigliano et al., 2015) discusses a distributed computing and control platform for a robotic arm and 

gripper assembly to catch a ball thrown at it. This represents a tracking control system. Latency was 

simply estimated and used to synchronize events between the various subsystems, rather than latency 

being minimized.  

Many others (Berner, Brandli, Yang, Liu, & Delbruck, 2013; Censi et al., 2013; Conradt et al., 2009; 

Mueller et al., 2015) also discuss the use of dynamic vision sensors (DVS) for event based image 

processing systems with extremely low latencies, ranging from 12 μs to 15 μs. DVS sensors work by 

detecting changes in intensity in each pixel which can result in very low latencies, however DVS sensors 

appear to be more suited to highly structured environments and would not be suitable for the dynamic 

environment associated with a semi-autonomous foosball table. Additionally, due to the lower 

resolution of these sensors, between 128×128 and 240×180 pixels, and the lower level of configurability, 

they do not meet the requirements for automating a foosball table. The foosball table requires higher 

resolution due to the size of the ball relative to the size of the table, and the precision required for 

interception by the foosmen. They do, however, reflect the importance of high-speed, low latency 

vision-type sensors in the control of robotics. 

 Hardware tested 

Based on the findings of this review, it was determined that for the application of semi-automated 

foosball, some experimentation was required to determine the true system latencies of several off-the-



47 
 

shelf image capture systems, as opposed to optimistic estimates based purely on image processing 

speeds. Figure 5-1 shows the key hardware for each of the test systems.                     

 

Figure 5-1 - Image capture test systems 

 

1. Altera DE1-SoC FPGA development board with a Terasic D5M camera module.  

The camera is capable of capturing image at resolutions of up to 5 MP. At 640×480 resolution, the 

system can capture images at a rate of up to 127 FPS. The image data was streamed from the sensor 

and the FPGA performed the image processing operations directly on the image data stream. The FPGA 

and D5M camera were selected for their efficiency in the required image processing applications, as well 

as being relatively low cost. 

2. CMUcam5 (PixyCam) embedded vision platform.  

The system is capable of colour object tracking at 50 FPS with a resolution of 320×240. The image 

processing is done onboard the camera module with the object data sent to a microcontroller via either 

SPI, I2C or UART. I2C was used in this experiment. The microcontroller used was an Arduino Uno, 

clocked at 16 MHz. The CMUcam5 was selected as it represents a small, low power, embedded object 

tracking vision system that can be purchased inexpensively. 

3. PS3 EYE.  

This camera can capture images at around 75 FPS at 640×480 resolution and greater than 100 FPS at 

320×240 resolution. It transmits the image data via USB 2.0. Note, the PS3 EYE was used for 2 

experiments. The PS3 eye was selected as it was capable of high frame rates and could be purchased at 

very low cost. 
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4. Logitech C920 Pro Webcam.  

This webcam is internally limited to 30 FPS. However, it is capable of many different resolutions, 

including 640×480. It also transmits the image data over USB 2.0. This camera was selected as it had 

higher image quality and was also relatively low cost. It was chosen as a reference point for 

performance from a camera with a lower framerate. 

Additionally, a quad-core i7 Windows laptop (Asus N550-JV) was used for the MATLAB based image 

processing for the PS3 EYE and the Logitech C920 webcam. 

For the timing of latencies, an Arduino Uno was used to implement a high precision timer, and an STM-

F429ZI discovery board was used as the display unit. The display unit displayed the reference image for 

the vision systems to recognize. 

5.2. Novel event detection latency 

 Aim 

The aim was to measure and compare the novel event detection latency of several different realizations 

of computer vision systems. 

 Methodology 

The experiment was carried out for each of the systems with the following steps: 

1) An LCD display unit on an STM F429ZI is set to display a target object after a random time interval of 

between 5 and 10 seconds. The display latency is fixed and was the same for all experiments. 

2) When the STM unit displays the object, it starts a high precision timer on a separate microcontroller 

(an Arduino Uno) 

3) The vision system being tested continuously captures and processes images checking for the target 

object to appear on the display unit. This involves the following steps: 

a) Capture images at given resolution and best frame rate 

b) Colour space conversion (YUV for coloured object segmentation) 

c) Filtering – colour detection, morphological filtering (erosion and dilation) 

d) Blob analysis and centroid calculation 

4) Once the object is correctly recognized, an “object recognized” signal is output. Where possible this 

output signal is in the form a logic high written to a GPIO pin. On systems where this was not 

practical, a serial command was output via a USB port to the precision timer. 

5) Once the timer receives the object recognized signal, it immediately stops and outputs the elapsed 

time. This is the total latency from the time the object was displayed until the time the object was 

recognized by the vision system and the stop signal sent, closing the loop. 

Each system was tailored to reduce latency as much as possible, and to make the comparisons as fair as 

possible. These methods included: 

1. Where possible, using the same resolution for all the systems – 640×480; 

2. Using the same image format and colour depth for all the image streams; 
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3. Not displaying the images on the PC based systems when performing the actual tests, as this can 

add processing overhead in these systems; 

4. Minimizing the amount of data sent in the communication systems – as would be done on 

similar implementations; 

5. Using the highest baud rate available if serial communication was required; 

6. Using the maximum available framerate for all systems apart from the FPGA. The FPGA system 

was fixed at 60 FPS due to display timing constraints. 

The overall latency is the combination of several components: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 + 𝐿𝑖𝑚𝑎𝑔𝑒 𝑐𝑎𝑝𝑡𝑢𝑟𝑒  + 𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝐿𝑐𝑜𝑚𝑚𝑠  (3) 

 

 Results 

The experiments consisted of 20 samples for each test platform, resulting in a total of 100 samples. 

Minitab was used to analyze the data and produce a visual representation of the results. The boxplot in 

Figure 5-2 shows the latency for the 5 experiments. The latency data is presented in Table 5.1. 

 

Figure 5-2 – Novel event detection latency results for all 5 experiments including PS3 eye at both resolutions 
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Table 5.1 - Important novel event detection latency data 

Hardware Mean latency 

(ms) 

Std dev Min Max Range Resolution Nominal 

framerate 

FPGA 26.4 5.4 12.9 36.8 23.9 640×480 60 

PixyCam 39.7 6.5 28.3 49.6 21.3 320×240 50 

PS3 EYE 

640×480 

229.2 48.4 144.4 307.4 163 640×480 75 

PS3 EYE 

320×240 

94.6 43.5 46.6 154.2 107.6 320×240 >100 

Logitech C920 260.7 31.3 211.5 313.2 101.7 640×480 30 

 

The reason for the PS3 EYE test being performed at both 640×480 and 320×240 was to test it at the 

specified resolution, as well as to compare it with the PixyCam, which operates at a resolution of 

320×240. It can be seen in Figure 5-2 that as the average latency of novel event recognition increased, 

the variability increased too. This would be very unhelpful if implemented in a robot control system that 

requires prediction because the latency, upon which predictions are partially based, would vary 

significantly, making it difficult to accurately estimate the ball motion parameters such as velocity, 

heading angle, and curvature. This is also true with changing ball motion parameters, such as in 

acceleration or deceleration situations, which a constant velocity prediction model may not be able to 

account for. 

5.3. Steady state latency 

In addition to novel event detection, another type of system latency is also important in characterising 

overall system response. The second series of experiments conducted were to measure the steady state 

latency. This latency is the continuous time difference between an event occurring and the image 

processing system recognising/measuring the event or change. Steady state latency is not dependent on 

the relative timing between an event and the frame capture phase of the image processing algorithm as 

it is measured over a period of time. 

 Aim 

The aim was to determine and compare the steady state latency of the various systems for continuous 

object tracking. 

 Methodology 

To simulate a moving target, with precisely known position, a coloured marker was moved on a circular 

path. The movement was controlled by a stepper motor so that the position of the target was known. By 

the time the imaging system has estimated the location of the target, it will have moved, with the angle 
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difference between the current and reported position being proportional to the steady state latency. 

The assembly used is shown in Figure 5-3. 

 

Figure 5-3 - CAD model of object marker apparatus used in steady state latency experiment 

Note – the motor speed used for the FPGA and PixyCam was 600 degrees per second while the motor 

speed used in the PC system was 225 degrees per second. This was due to the relatively low framerate 

(around 10 FPS after processing operations were performed) achieved by the PC based systems. In order 

to achieve adequate timing resolution with the PC based systems, a lower motor speed was required. 

With the motor spinning the coloured marker at a constant rate, the experiment was carried out for 

each of the systems with the following steps: 

1) The vision system being tested continuously captures and processes images. This involves the same 

steps as the novel event detection latency experiment, however running continuously 

2) In the FPGA and the PC based system, the angle about the centre is calculated by the vision system. 

The PixyCam, on the other hand, passes the x and y coordinates to the microcontroller-timer 

system which then calculates the angle 

3) For each new angle value received or calculated, the timer system records this alongside the 

current known angle of the motor 

4) These two angle values are output to the console in real time, and the differences in angle, 𝛿𝜃, can 

then be calculated. The calculations are done using the following equations: 

 Mathematics 

The angle of the spinning marker about the centre of the image is 

 𝜃1 = arctan (
𝑋 − 320

𝑌 − 240
). (4) 
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The difference in angle between the spinning marker and the known motor position is 

 𝛿𝜃 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑡𝑜𝑟 𝑎𝑛𝑔𝑙𝑒 ∗ 360

400
− 𝜃1. (5) 

 

Therefore, the latency is 

 𝑡 =
𝛿𝜃

𝑉𝑟𝑜𝑡

  (6) 

 

where 𝑉𝑟𝑜𝑡  is the rotational velocity of the motor in degrees per second. 

 Results 

The boxplot in Figure 5-4 shows the steady state latency for the 4 experiments. The latency data is 

presented in Table 5.2. 

 

Figure 5-4 - Steady state latency results for all 4 experiments 

Table 5.2 –Important steady state latency data 

Hardware Mean latency 

(ms) 

Std dev Min Max Range Resolution Nominal 

framerate 

FPGA 24.9 5.4 15 35 20 640×480 60 

PixyCam 35.8 5.5 26.2 45.3 19.1 320×240 50 

PS3 EYE 

640×480 

63 11.5 43.3 80.61 37.4 640×480 75 

Logitech C920 58.9 21.19 20.9 96.2 75.3 640×480 30 



53 
 

 

As shown in Figure 5-4, the best performance was achieved using the FPGA based system. The 

compounded latencies from image transfer, serial processing, and serial communication resulted in 

much larger latencies in the USB based camera systems. 

5.4. Discussion 

 Immediate usefulness of results 

It is impossible to have zero system latency, therefore experimentally determining the latency is 

important for fully characterizing the system for accurate modelling and future development purposes. 

It also serves as a benchmark to measure future improvements. Additionally, as mentioned before, it is 

useful to have accurately measured latencies as these can assist greatly with predictive compensations 

in systems with unavoidable latency. 

 Comparison of performance 

Firstly, it should be noted that these experiments were performed with the FPGA system running at less 

than half of the maximum image capture and processing speed of which it is capable. This was done for 

display synchronization and development reasons, however future work will see the frame rate 

increased to above 120 FPS and the latency (and variability of latency) should, thus, decrease 

proportionately, due to the streamed nature of the processing. 

Compared with the results for novel event recognition, the latencies seen in steady state are lower, with 

lower variability. This, despite more processing being required, is likely due to relative timing differences 

being minimized. 

In systems with lower framerates, the relative timing made a larger difference than in those with higher 

framerates. Overall, systems with low latency and high framerate performed the best across both tests, 

in terms of both latency and variability. 

It can be seen from the results that, even with the currently capped frame rate, the FPGA system still 

yielded the best performance in both novel event detection and steady state latency. 25 ms latency is 

similar to the latency experienced by the human eye when detecting new stimulus.  

The PixyCam, which yielded the second lowest latency in both experiments was only running at a 

resolution of 320×240, so cannot truly be considered a close contender, given that the specifications for 

this application are a minimum resolution of 640×480. However, it was included for reference as it is 

representative of a simple system for embedded image processing where high resolution is not 

required. It appears that the lower resolution and the application specific hardware are the primary 

reasons for the PixyCam’s low latency. 

The PS3 EYE, running at 640×480 at 75 FPS, yielded a higher latency than the PixyCam, despite the 

higher frame rate. The experimental data demonstrates the importance of efficient image processing 
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algorithms and communication strategy. Because the image processing algorithms were implemented in 

MATLAB, there were processing overheads (within the operating system and within MATLAB) which 

likely slowed down the processing. Additionally, the communication overheads caused by using a non-

streamed image acquisition method caused additional latency. 

Finally, the test system using the Logitech C920 webcam, which was internally limited to 30 FPS, yielded 

the poorest performance of the tested systems. The latency was the highest (an order of magnitude 

higher than the FPGA system in novel event detection), and the most variable in both tests. It is likely 

that the combination of inefficient processing, combined with relative timing of the event and the image 

being captured was the cause of the latency. This, in a highly dynamic control system, would likely result 

in poor system stability. 

Overall, the FPGA system yielded the best performance in steady state latency and in novel event 

detection. In addition to yielding the best latency performance, the FPGA based vision system also met 

all the requirements for the application of a semi-automated foosball table. These are minimum 

640×480 resolution, 60 FPS, less than 30 ms latency, continuous display of the image, and non-

saturation of the processing unit to enable other tasks, such as actuator control, to be carried out. 

 Potential improvements 

In the FPGA system, the angle was calculated according to equation (4). This was done using a Nios II 

core instantiated in FPGA logic. The Nios II core is significantly less powerful than the HPS (ARM A9) core 

which is part of the DE1-SOC FPGA development board; 50 MHz versus 800 MHz. This will have 

contributed to some of the latency seen in the steady state latency results for the FPGA, however this 

can be improved by using the HPS rather than the Nios II core. 

Some improvements could be made to the serial processing systems by using more powerful desktop 

processors, and more efficient image transfer protocols such as ethernet. However, without custom 

communication solutions, and streamed image processing, the serial processing systems would still 

likely be unable to achieve the same latency performance as the FPGA based systems. Additionally, 

increasing the power of the components without using a more efficient method of processing the 

images, such as streamed image processing, would cause the system to no longer meet the 

requirements of low power consumption (less than 20 W) stated in section 3.4. 

 Automated foosball 

In the context of automated foosball, and of robotic control in general, it is obvious from the data that 

the best choice from the systems tested is the FPGA based image processing platform. The low latency is 

desirable from a control perspective (Honegger et al., 2014). Additionally, based on human systems, 

“predictive control is essential for the rapid movements commonly observed in dexterous behavior” 

(Wolpert & Flanagan, 2001). In foosball, there are very high speeds involved, relative to the size of the 

playing field. This means that high-speed image processing is imperative a reasonable level of response 



55 
 

is to be possible. Not only does the sensing need to be excellent, so do the actuation techniques. Using 

reconfigurable FPGA hardware to create stepper motor controllers, or general-purpose actuator control, 

could be an extremely effective method to solve the problems involved with the automated foosball 

table. 

By combining low latency image processing (streamed image processing on Altera DE1 SoC FPGA), and 

low latency communication (high speed AXI bridge from FPGA to the embedded ARM cores), computer 

vision can be used as both a reference signal and a feedback element in a control loop. The system 

becomes even more powerful when actuator control and other general system functions (for example 

safety interlocks and user inputs) are also implemented within the FPGA. This results in comparatively 

low overall system latency for all elements of the control loop. Additionally, the use of an FPGA SoC 

enables scalability at a cost of minimal additional latency or scheduling issues present in conventional 

microcontrollers. 

5.5. Conclusions 

The novel event detection latencies ranged from 26.4 to 260.7 ms, and steady state latencies ranging 

from 24.95 ms to 62.99 ms, with the FPGA system yielding the lowest latency. 

The experimentally determined latency values will be useful in future work for the prediction 

capabilities of the system, as well as for modelling purposes.  

For the FPGA system to be a completely vision-controlled closed loop system, the camera could be used 

for tracking both the position of the foosmen, and for tracking the ball. 

5.6. Implementation of final vision system 

The implementation of the system involved many stages of concept, design, prototype, troubleshooting, 

debugging, simulation and testing. This is represented in Figure 5-5. 

 

Figure 5-5 - Vision system development process 

The first system developed and tested was the computer vision system. This included prototypes of 

software and hardware-based colour object tracking systems. 

 Terasic D5M camera module 

The image capture device used for the FPGA-based image processing was the TRDB-D5M. The TRDB-

D5M camera module, made by Terasic, shown in Figure 5-6, is a 5MP (2,592 H x 1,944 V) CMOS sensor 

on a development board which connects to the FPGA via a 40 pin 2 row header. The camera is 

controlled by an I2C communication interface. The gain, exposure, white balance, resolution, triggering, 

and windowing can be controlled via the I2C interface. 
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Figure 5-6 - Terasic TRDB-D5M camera development board 

The camera is capable of operating in windowed mode with numerous different resolutions and 

framerates – governed by the selected pixel clock. Additionally, the window can be shifted to be placed 

anywhere on the active region of the CMOS chip, in 2-pixel increments due to the Bayer pattern 

readout. 

The module is capable of a maximum data rate of 96 Mp/s at 96 Mhz clock speed. 

The output image from the camera is in Bayer pattern format, as illustrated in Figure 5-7. 

 

Figure 5-7 - Bayer RGB pattern representation 

 Prototypes 

Prototypes were used for testing the image processing algorithms prior to implementing them in FPGA. 

To simply implement an image processing algorithm in FPGA without testing the effectiveness of the 

algorithm previously is generally a waste of time, given that implementing and testing the algorithm in 

software is typically a much shorter process.  

Given this information, a test system was implemented using a Windows PC, MATLAB, and a Logitech 

C170 USB webcam. The MATLAB image acquisition and image processing toolboxes were used for this 

testing. The prototype vision system was used to determine the following: 
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• Which colour space to use 

• Morphological filter structuring element size 

• Whether other filtering methods like median filtering were required 

• Blob detection parameters – minimum and maximum blob size of detected object 

• Initial estimates for radial distortion correction requirements 

These values assisted with the final implementation in FPGA as reconfiguring multiple times to 

determine initial ballpark values would have been a tedious, inefficient process. The MATLAB code used 

to perform this image processing is shown in Appendix A. 

The vision system was then implemented in a Terasic DE1-SoC development board in order to test the 

image processing algorithms and determine what the resource consumption would be. This included 

hardware resources such as logic elements, GPIO pins, and PLL’s.  

This process involved several iterations of editing and compiling the VHDL design each time adding new 

components according to the methodology described in (Bailey, 2011). The order in which components 

were added was as follows: 

1. Display simple pattern on VGA display 

2. Capture and stream image data directly from camera with PLL in place to sync camera pixel 

stream with pixel stream of display 

3. Implement Bayer interpolation, known as demosaicing, and display demosaiced camera image 

on screen 

4. Implement colour-space conversion and colour filtering on row buffered image data 

5. Implement bounding box and filtered pixel overlay to display 

6. Implement noise reduction filtering – morphological erosion and then dilation – and display 

image on screen 

7. Implement connected components analysis (CCA) 

Table 5.3 - Resource consumption on DE1-SoC of basic image processing design 

Resource type Resource consumption 

Logic utilisation in ALMs 1,259/32,070 (4%) 

Total registers 1,460 

Total pins 151/457 (33%) 

Total block memory bits 110,694/4,065,280 (3%) 

Total DSP blocks 0/87 (0%) 

 

Table 5.3 gives the resources required by this minimum design used as a baseline for comparison in 

subsequent chapters. 
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 Foosball table interception simulation 

A vision and motor control simulation was done using MATLAB. The simulation received object 

coordinates from the FPGA, plotted the coordinates in image space, calculated the trajectory of the ball, 

and the interception points on each of the automated module rods. Finally, the difference between each 

of the foosmen and the predicted ball interception point (including the effects of bounces) was 

calculated. Using this value, the correct foosman for interception on each module was reported.  

 

 

 

Figure 5-8 - Output window of simple trajectory calculation and interception coordinate simulation 

Figure 5-8 shows the interception simulation output performed in MATLAB. The vertical lines represent 

the 4 actuation module rods with the circles representing the foosmen in their central locations. The red 

circles plotted on each of the lines indicate the predicted interception locations on each of the rods. 

 Lens changes  

The angle of view captured by the camera is calculated using the following method: 
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For a given angle of view 𝜙 and field of view length 𝑙, the required distance for the camera to capture 

the entire field of view is 

 

𝑑 = (
𝑙

2 ∗ tan (
𝜙
2

) 
). 

(7) 

 

 

The required final angle of view is therefore 

 𝜙 = 2 ∗ arctan (
𝑙

2∗𝑑
). (8) 

 

For the semi-automated foosball table, the required angle of view was 76° at 1024 × 768 resolution. The 

original lens provided with the D5M camera module, shown in Figure 5-9, had a 15° angle of view at 

1024 × 768. This was insufficient, so a new lens was required. The selected lens, shown in Figure 5-10, 

was a Sunex DSL215 miniature fisheye lens with 185° field of view. As can be seen in Figure 5-10, the 

Sunex DSL215 has a large, convex front element which provides the large angle of view. 

 

Figure 5-9 - Long focal-length (narrow angle) lens provided with the D5M camera module 

 

Figure 5-10 - Sunex DSL215 fisheye lens 
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While this lens enabled the vision system to capture the entire playing field, it did introduce severe 

barrel distortion. A method was required to correct the image for this distortion. Rather than correct the 

entire image before performing the image processing operations, the image was processed first 

according to the method presented next, in section 5.6.5, and the calculated object coordinates were 

corrected for the distortion.  

 Distortion correction 

To correct the barrel distortion caused by the wide-angle lens, the method discussed in section 2.3.3 

was used. This involved the following steps: 

1. Capture image of a uniform, square grid using the D5M camera, with the image sent to the 

PC using RS232 

2. Load the image into MATLAB 

3. Convert the image into a binary image using Otsu’s automatic threshold selection 

algorithm (Otsu, 1979) 

4. Morphologically erode the vertical lines using a rectangular structuring element of 1 × 8 

pixels and save the result as a new image 

5. Morphologically erode the horizontal lines using a rectangular structuring element of 8 × 1 

pixels and save the result as a new image 

6. Find the horizontal and vertical lines in their respective images 

7. Track along the vertical lines to find all the interception points 

8. Save all the interception points into a large array 

9. Using the array as a representative map of the original image’s distortion, apply the 

mapping function, given by equation (2) 

10. Use Levenberg-Marquardt optimisation to determine the values of K1, K2 and K3 that 

minimise the squared error with the undistorted coordinates 

11. Apply the mapping function to the received object coordinates in the HPS as shown in 

Appendix B. 

An image of the two morphologically eroded images with all the interception points found and displayed 

is shown in Figure 5-11. The black lines are the detected grid lines and the circles plotted on the vertices 

are the detected intersection points. 
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Figure 5-11 - MATLAB output image of all calibration grid intersection points found by distortion correction 
algorithm 

The calibrated and uncalibrated representations of the distortion map are shown in Figure 5-12. As can 

be seen, the calibrated map is corrected such that the curvature has been straightened. 

 

Figure 5-12 - Uncalibrated (left) and calibrated (right) distortion point map 

The final steps to utilising this calibration method is to determine the correct X and Y offsets in the final 

system. This is done by first applying the mapping function in the final system, and then inserting the 

correct offsets such that when the ball is in the corner corresponding to (x,y) = (0,0), the vision system 

outputs 0,0 as the true object coordinates. This is done retrospectively by testing the outputs. 

 Final implementation 

The final image processing algorithm was implemented in the Terasic DE1-SoC development board with 

the D5M camera module. This section will discuss the image processing hardware and FPGA design, 

while section 0 will discuss the FPGA and HPS contained in the DE1-SoC development board. 

The final image processing algorithm is represented by the block diagram shown in Figure 5-13. 
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Figure 5-13 - Representation of overall image processing system 

All the image processing operations mentioned in section 5.6.2 were included, however in the CCA 

instantiation, blob size checking was implemented to only output the coordinates of the detected blob if 

they met size constraints matching the ball size. 

The above processes are implemented in FPGA hardware such that where possible, pipelined stream 

processing is utilised. Successive operations were pipelined, enabling a throughput of 1 pixel per clock 

cycle to be maintained. First a Bayer interpolation filter is used (see Figure 5-14) to demosaic the input 

image and give a full-colour image for subsequent processing. 

 

Figure 5-14 - Block diagram of 3x3 windowed Bayer interpolation (demosaicing) hardware implemented in FPGA.  
(Bailey, 2018). Reprinted with permission. 

Following this, the image is converted from RGB colour space to YCbCr because the luminance and 

chrominance components are separated, which typically offers superior segmentation performance to 

the RGB or HSV/HIS colour spaces (Janssen et al., 2012; Jianping et al., 2001). This is done using the 

combinatorial logic shown in Figure 5-15. 

 

Figure 5-15 - Block diagram of simplified RGB to YCbCr conversion implemented in FPGA hardware 
(Bailey, 2018). Reprinted with permission. 
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After colour space conversion, the coloured ball is detected using predetermined colour thresholds and 

a binary image pixel stream is output. This pixel stream is then filtered using a morphological opening 

(using a 5×5 window) to remove small noise pixels. 

 

Figure 5-16 - Block diagram of a 5×5 morphological filter (erosion) implemented in FPGA hardware – for dilation, 
AND gates were replaced with OR gates. (Bailey, 2018). Reprinted with permission. 

The final hardware-based image processing operation is connected components analysis. Connected 

components analysis extracts feature data from each set of connected pixels in the image (Klaiber, 

Bailey, Baroud, & Simon, 2016). Here the blob size was used to filter non-ball objects, and the bounding 

box was used to give the ball position. In this implementation, only blobs smaller than 1000 pixels were 

considered to be the ball. No minimum blob size was implemented as, due to the lighting on the table, 

there were times when the ball size would appear greatly reduced due to bright spot illumination when 

the ball was too close to the field illumination LEDs. The field illumination will be discussed in a 

subsequent chapter. 

 

Figure 5-17 - Block diagram of the high-level architecture for connected components analysis (CCA) implemented in 
FPGA 
(Bailey, 2018). Reprinted with permission. 
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These pipelined processes were all used in the vision system tested in sections 5.2 and 5.3. As was seen 

in the experimental results, they provide low latency in both novel event detection and steady state 

latency. 

The combination of the morphological erosion and dilation effectively removes the noise pixels and 

replaces the eroded pixels in the detected ball. The connected components analysis detects individual 

blobs and creates the bounding box for the detected ball. Without connected components analysis, the 

bounding box was created around the entire detected region from the colour thresholding. After the 

addition of connected components analysis, even with multiple separate objects in the detected region, 

the ball could still be identified. 
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6. Compute subsystem 

This chapter will discuss the computational system including the hardware, software and control 

strategy. A detailed description will be given regarding the methodology for high-speed communication 

between the FPGA and ARM cores. The hardware-based motor control modules will also be discussed in 

detail.  

The overall flow of data for one image capture –> system response cycle is shown in Figure 6-1. 

 

Figure 6-1 - Representation of vision-actuation control system data cycle from input to response 

The data cycle for the entire compute system begins with image capture and processing, discussed in 

section 5.6.6. Once the ball has been successfully detected, its coordinates (x_min, x_max, y_min, 

y_max) are passed to the ARM core in the HPS via the high bandwidth AXI bridge. The HPS then 

performs the lens distortion calibration mapping, calculates the interception points for each automated 

module, and then returns the required actuation data to the FPGA. The motor control modules within 

the FPGA then output the required waveforms to control the 8 stepper motors concurrently. The data 

transfer methods, interception calculations, and motor control methodology will be described in detail 

in the following sections. 

6.1. Terasic DE1-SoC FPGA development board 

The DE1-SoC is a development board by Altera with a system on chip (SoC) which contains an FPGA and 

an 800 MHz Dual-core ARM Cortex-A9 MPCore processor on the same die, connected by a high-

bandwidth communication interface. The interface consists of two high performance bridges which can 
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be configured in 32, 64 and 128-bit data width configurations, and one lower performance bridge which 

can only operate in 32-bit data width configuration. The two high performance bridges are called the 

FPGA to HPS bridge (F2H) and HPS to FPGA bridge (H2F). The lower performance bridge, mostly used for 

control and status registers and passing small data packets and commands, is called the lightweight HPS 

to FPGA bridge (LWH2F). The H2F, F2H and LWH2F bridges are all shown, including their master/slave 

capabilities, in Figure 6-2. The “L3 interconnect” in Figure 6-2 refers to the L3 cache within the HPS 

component. 

 

Figure 6-2 - Block diagram showing the master/slave relationship for each of the bridges between the FPGA and HPS 
(Altera, 2016). 

The Global Programmers View (GPV shown in Figure 6-2), gives the programmer control over the 

behaviour of the three bridges through the lightweight HPS to FPGA bridge. In this design, the H2F 

bridge has been used for bidirectional data transfer, while the LWH2F bridge is used for commands and 

control/status registers. This will be detailed in later sections. 

 FPGA component 

The FPGA chip consists of 85,000 logic elements, 4,450 Kbits of embedded memory, 457 pins, 87 DSP 

blocks, 6 fractional PLLs, and 4 DLLs.  
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The FPGA component of the system is programmed either with a .SOF file from the Quartus software, a 

.RBF file loaded by the Linux OS, or a .JIC file using the EPCQ programmer device which automatically 

loads a specified file into the FPGA portion of the chip when the board is powered up. The EPCQ chip is 

originally programmed from within the Quartus software. 

For this design, the Quartus programmer is used to load the .SOF file onto the FPGA. This is done via the 

Intel FPGA Monitor Program, which accesses the Quartus programmer to load the .SOF file when the 

HPS C project is first opened. 

 HPS component 

The HPS portion of the DE1-SoC consists of: 

• 800 MHz Dual-core ARM Cortex-A9 MPCore processor 

• 1GB DDR3 SDRAM (32-bit data bus) 

• 1 Gigabit Ethernet PHY with RJ45 connector 

• 2-port USB Host, normal Type-A USB connector 

• Micro SD card socket 

The HPS is either programmed with using the Intel FPGA Monitor Program or using the bootloader built 

into the Linux distributions provided by Altera and Terasic. There are several different distributions of 

Linux which run on the ARM core and they vary in size, speed and user interface – from simple 

command line to full desktop GUI. 

In this design, the Intel FPGA Monitor Program is used to load bare-metal C code onto the ARM core. 

This is done after the .SOF file has been loaded onto the FPGA portion of the SoC. Using the Intel FPGA 

Monitor Program enables cross-compilation of the C code for the HPS. Native compilation requires an 

OS to be running on the system. This introduces two main problems: 

1. In the development process, if the C code causes a major error that freezes the ARM core, 

the entire device needs to be restarted to clear the error 

2. Cross compilation is faster on a desktop PC due to the much more powerful processor 

present in the PC, than the 800 MHz dual core ARM processor 

Bare-metal C code was selected instead of running one of the Linux operating systems available. This 

was done to avoid any additional latency caused by the OS, and to avoid previously mentioned 

development issues introduced by native compilation. 

 SoC design 

The HPS is instantiated into the FPGA design using the Qsys GUI, by following the design guidelines 

provided by Intel (2017a). Other methods are possible such as reverse engineering the pre-built design 

from the Altera University Program, called “DE1-SoC Computer”. This is a less effective approach than 

the bottom up method of starting with a blank project and only instantiating the necessary components. 
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That was the method used for this project. The complete Qsys design is shown in Appendix C.

  

Figure 6-3 - Example Qsys HPS component 

Figure 6-3 shows the top component in the Qsys project, the HPS component. For explanation on the 

Qsys tool, Altera University Program documentation can be consulted (Intel, 2017b). The important 

aspects of the HPS instantiation will be discussed, however. 

On the far left-hand side, under the connections tab, the black lines show which components are 

connected to various parts of the HPS components. The important parts of the HPS component are the 

communication bridges: h2f_master, f2h_slave, and the lwh2f. 

To transfer data between the FPGA and HPS, a communication interface is required in conjunction with 

the bridges. These communication interfaces are called PIOs (parallel input/output). As is shown in 

Figure 6-4, when creating a PIO various settings data width, direction (input, output or bidirectional), 

reset vector and interrupt options need to be set. In Figure 6-4 the settings for a 16-bit input into the 

HPS are shown. This input (x_min_pio) is used to transfer one of the 4 object coordinate data values 

from the FPGA to the HPS. The other 3 are 𝑥_max_𝑝𝑖𝑜, 𝑦_min_𝑝𝑖𝑜, and 𝑦_max_𝑝𝑖𝑜.  
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Figure 6-4 - Setup options for PIO in Qsys 

Once these settings have been set, the internal connections are then made. This step determines which 

bridge the FPGA and HPS will communicate over.  

 

Figure 6-5 - PIO connections and addresses in Qsys 

As can be seen in Figure 6-5, the row highlighted in blue shows the connections on the left-hand side, 

and the memory start and end addresses. The two connections in Figure 6-5 are to the h2f_master, and 

to the f2h_slave. The values transmitted via the PIOs are accessed in the HPS by reading the values 

stored at the corresponding memory address. This is shown in Appendix D, which shows the interrupt 

service routine (ISR) which runs once for each new frame of image data received.  

The return of data from the HPS to the FPGA is also performed with a PIO, however in the settings 

section, the direction is set to “output”. The HPS then writes to the address, an example of this is shown 

below in Figure 6-6, and the FPGA reads this data by assigning the value in the component instantiation 

of the HPS to an internal signal in the FPGA design. This is shown in Figure 6-7.  



70 
 

 

Figure 6-6 - C code used to send an "active" signal to the FPGA, and disable all the stepper motors temporarily 

 

Figure 6-7 - VHDL code to receive data/signals from the HPS 

The signals “stepCmd” and “HPS_ACTIVE” are then used to drive the stepper motors and enable the 

interception modules, respectively. A simplified block diagram of the data transfer method is shown 

below in Figure 6-8. 

 

Figure 6-8 – Representation of data transfer method between FPGA and HPS 

Any of the three bridges can be used for data transfer in either direction between the FPGA and HPS, 

however Intel recommends using the LWH2F bridge for control and status registers, and the “heavy 

weight” bridges (H2F and F2H) for data transfer (Intel, 2017a). This methodology has been used for the 

design of this control system. The following figure shows the address map and masters/slaves within the 

Qsys design of the SoC. The F2H bridge allows the FPGA master access to the HPS peripherals, while the 

H2F and LWH2F bridges provide the HPS master access to the FPGA peripherals (Altera, 2016). 

printf("dis step strobe\n en HPS_ACTIVE \n"); 

*(stepCmd_0_ptr) = 0b00000000; // write all stepper strobe signals low 

*(HPS_ACTIVE_ptr) = 0xF; // tell the FPGA that the HPS is active 

signal stepCmd : std_logic_vector(7 downto 0) := "00000000"; 

signal HPS_ACTIVE : std_logic; 

--inside HPS component instantiation 

step_cmd_0_external_connection_export          => stepCmd, 

hps_active_external_connection_export          => HPS_ACTIVE, 
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Figure 6-9 - Address map for Qsys SoC design 

As is shown in Figure 6-9, numerous PIOs have been instantiated in the Qsys design. The PIOs used in 

this design perform communication and command tasks between the FPGA and the HPS according to 

Table 6.1. 
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Table 6.1 - System PIOs and their respective functions 

PIO name Direction Function description 

HPS_ACTIVE HPS->FPGA Signal for HPS to inform FPGA that HPS is running 

RS232_HPS_CMD FPGA->HPS Command pass though for user input RS232 

RS232_HPS_CMD_ready FPGA->HPS Interrupt generation signal for RS232 data 

RS232_HPS_CMD_RETURN HPS->FPGA Generic channel to send any command to FPGA 

from HPS 

button_pio FPGA->HPS PIO to interrupt HPS with pushbuttons 

frequency_from_HPS HPS->FPGA PIO to send stepper motor frequency to FPGA 

hps_0.f2h_axi_slave HPS->FPGA Channel for HPS to master F2H 

hps_cold_reset FPGA->HPS Signal for FPGA to reset HPS 

hps_debug_reset FPGA->HPS Signal for FPGA to reset HPS 

hps_warm_reset FPGA->HPS Signal for FPGA to reset HPS 

img_data_ready FPGA->HPS Signal for FPGA to interrupt HPS when each new 

frame of image data is ready 

intr_capturer_0.avalon_slave_0 FPGA->HPS Interrupt capturer module for FPGA to HPS 

interrupts 

jtag_uart.jtag_avalon_slave User Input User input for master access to bridges 

onchip_memory2_0 Both On chip memory for memory mapped devices – 

bridges, peripherals etc 

step_cmd_0 HPS->FPGA PIO for HPS to send strobe signal to initiate stepper 

module operation 

step_data_0 HPS->FPGA PIO for HPS to send distance for stepper modules 

step_pos_0 FPGA->HPS PIO for stepper module to send distance values to 

HPS – used primarily for homing sequence 

stepper_0_busy FPGA->HPS PIO for stepper motor busy flags from FPGA to HPS 

sysid_qsys.control_slave Internal System ID PIO for checking correct function of 

bridge 

x_max_pio FPGA->HPS PIO for maximum x coordinate of ball - send to HPS 

x_min_pio FPGA->HPS PIO for minimum x coordinate of ball - send to HPS 

y_max_pio FPGA->HPS PIO for maximum y coordinate of ball - send to HPS 

y_min_pio FPGA->HPS PIO for minimum y coordinate of ball - send to HPS 
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6.2. Motor Control 

This section will discuss the algorithms, mathematics, methodologies, hardware and software used to 

implement FPGA-based stepper motor control. Figure 6-10 shows the order of the development process 

of the FPGA-based motor control modules. 

 

Figure 6-10 - Development process for the motor control design 

As can be seen in Figure 6-10, the motor control algorithm mathematics were first simulated and 

developed within MATLAB. The resultant variable-acceleration ramping algorithm was then 

implemented in an Arduino microcontroller for qualitative performance testing relative to a trapezoidal 

(constant acceleration) ramping curve. The next phase involved testing a simple motor control module 

in FPGA hardware which accepted inputs such as distance, direction and speed and ran the motor at the 

specified velocity, for the specified distance, in the specified direction. The variable-acceleration 

ramping algorithm was then implemented in FPGA. Finally, multiple modules were implemented and 

tested in FPGA to establish resource requirements, compilation times and correct functionality. The 

motor control modules were developed in parallel with the SoC system design. 

 Background 

For the semi-automated foosball table, stepper motors were selected as the actuators due to the 

combination of the ability to run in a semi-open loop, and their power density. A stepper motor is a DC 

driven electric motor which operates in discrete “steps”. The following data were considered important 

for the design of the semi-automated foosball table: 

1. Torque vs speed curve 

2. Voltage range 

3. Current at a particular voltage – rated current 

The selected stepper motors are Nema 23, bipolar stepper motors with 200 steps per rotation, 

maximum voltage of 40 V DC, and 2.8 A per phase. 

The selected stepper drivers have 3 inputs, 5 A current delivery and are based on the TB6600 driver 

chip. The drivers are capable of up to 1/16th steps. For the semi-automated foosball table, full stepping 

is used for the linear sliding motion, and half stepping is used for the kicking motion. These settings 

correspond to 200 and 400 steps per revolution of the stepper motor, respectively. Figure 6-11 shows 

the stepper motor and driver used. 
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Figure 6-11 - Nema 23 bipolar stepper motor - 200 steps per revolution 

 Mathematical approximation 

To control a stepper motor, a pulse generation system must be used. This can be a simple constant rate 

square wave, or it can be more complex, incorporating velocity changes, or even varying acceleration to 

smoothly change the velocity. To achieve the fastest acceleration from a stepper motor, the 

acceleration of the pulse rate should match the torque curve of the motor being used. Figure 6-12 

shows the torque curve of the motors being used in this application. The following section will discuss 

the approximation used to match the acceleration parameters of that curve, and the other 

considerations necessary to achieve maximum performance from the actuation modules. 

 

Figure 6-12 - Pull out torque curve of Nema 23 bi-polar stepper motor 

In the semi-automated foosball table, stepper motors drive belt assemblies which either perform the 

kicking motion (rotation to rotation) or the sliding motion (rotation to linear). For the sliding motion, 

used for intercepting the ball, the motors must overcome the static friction to initiate the sliding and 

kicking movement. For interception, however, there is constant sliding friction of the outer shaft over 

the inner shaft, separated by acetal bushings, which the motor must overcome. For many materials, as 

the sliding speed increases, given a constant normal force, the coefficient of friction decreases (Chen, 

Kato, & Adachi, 2002; Chowdhury, Khalil, Nuruzzaman, & Rahaman, 2011). This implies that as the 

sliding speed of the interception rod increases, the amount of torque required to accelerate the rod may 
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decrease. Given that the motor torque decreases with speed, there may be some cancellation of effects 

caused by these two occurrences. The acceleration curve used by the stepper motors on the semi-

automated foosball table, therefore, had to be empirically derived. 

 Stepper motor basic control algorithm 

The basic stepper motor control algorithm takes the target position (number of steps) and automatically 

determines the ramping algorithm required. If the input distance is below 800 steps, the motor does not 

reach full speed in the time available therefore for the entire cycle of the stepper motor travel, it is 

either accelerating or decelerating. If input distance is greater than 800 steps, the motor can reach a 

maximum “cruise” speed. During this cruise phase the motor is neither accelerating nor decelerating. 

This is a potential time where the interception destination of the module could be changed on-the-fly, 

however this has not been implemented to improve reliability in the testing phase. Future work could 

include this feature. The following figure shows the MATLAB code used to test the functionality of the 

acceleration and deceleration algorithm used later in the FPGA implementation. 

 

distance = 1600;    %input distance 

stepsTaken = 0;     %keep track of where we are in step cycle 

clcArray = zeros(distance);%array to record clock cycles at each step increment 

stepFreq = 50000;   %initial stepping frequency 

accelerator = 20;   %accelerator initial value 

accelIncrement = 1; %integer to increment or decrement accelerator value 

c = 0;              %counter for when to take a step (when reaches stepFreq value) 

c2 = 0;             %counter for when to incr/decr accelIncrement 

i=0;                %counter to keep track of clock cycles 

distThresh = 800;   %distance threshold for cruise or not 

 

while(stepsTaken < distance) 

    i = i+1; %% equal to clock cycles 

    c = c+1; %% counter used to take a step on overflow 

    if c == stepFreq 

        fprintf('toggled\n'); 

        c=0; 

        stepsTaken = stepsTaken + 1; %% increment step counter 

        clcArray(stepsTaken) = i; %% clock cycle val at current step converted to sec 

        if distance < distThresh 

            if stepsTaken <= distance/2 

                stepFreq = stepFreq - accelerator; 

                c2 = c2 + 1; 

                if c2 == 5 %% every 5 steps increase the rate of acceleration 

                    accelerator = accelerator + accelIncrement; 

                    c2 =0; 

                end 

            end 

            if stepsTaken > distance/2 

                stepFreq = stepFreq + accelerator; 

                c2 = c2 + 1; 

                if c2 == 5 %% every 5 steps decrease the rate of acceleration 

                    accelerator = accelerator - accelIncrement; 

                    c2 =0; 

                end 

            end 

        end 
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Figure 6-13 - Acceleration and deceleration equations for stepper motor ramping 

In Figure 6-13, the code to increment and decrement the pulse timer are shown. The lines of code that 

increment and decrement the overflow counter are marked with green arrows for the acceleration 

phase, and red arrows for the deceleration phase.  The first two arrows are for the condition where the 

input distance is less than 800, and the second two arrows are for when the distance is greater than or 

equal to 800.  

The parameters used in this code are not the exact parameters used in the FPGA stepper modules. As 

will be shown in the next section, those parameters and the starting speed were empirically derived. 

Figure 6-14 and Figure 6-15 show example outputs of the time period between steps “period”, and the 

frequency of stepping “velocity”. They are inverse of each other, in accordance with  

 
𝑇 =

1

𝑓
 

(9) 

where 𝑇 is period, and 𝑓 is frequency. 

 

Figure 6-14 - Stepper motor simulation output curve for input distance = 600 

if distance >= distThresh 

            if (stepsTaken <= (distThresh/2)) && (stepsTaken < (distance-400)) 

                stepFreq = stepFreq - accelerator; 

                c2 = c2 + 1; 

                if c2 == 5 %% every 5 steps increase the rate of acceleration 

                    accelerator = accelerator + accelIncrement; 

                    c2 =0; 

                end 

            end 

            if stepsTaken > (distance-400) 

                stepFreq = stepFreq + accelerator; 

                c2 = c2 + 1; 

                if c2 == 5 %% every 5 steps decrease the rate of acceleration 

                    accelerator = accelerator - accelIncrement; 

                    c2 =0; 

                end 

            end 

        end 

    end 

end 
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Figure 6-15 - Stepper motor simulation output curve for input distance = 1200 

The “cruise” period, shown in Figure 6-15, was achieved because the input distance was greater than 

the 800-step threshold, therefore the motor could reach maximum speed.  

For comparison, the 1200 step output has been replicated with a constant velocity model (no 

acceleration), and a trapezoidal ramping curve as done by (Wang et al., 2011). These output figures with 

execution times are shown in Figure 6-16 and Table 6.2, respectively. 

 

Figure 6-16 - Output curves for constant velocity (top 3) and trapezoidal velocity (bottom 3) profiles 
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Table 6.2 - Time taken and maximum velocity for 3 simulated stepper motor velocity profiles 

Ramping type Time taken for 1200 steps (s) Maximum velocity (PPS) 

Constant velocity (no ramp) 1.2 1000 

Constant acceleration 

(trapezoidal ramp profile) 

1.072 1190.5 

Variable acceleration 0.8635 1908.4 

 

The stepping speed was initialised at 1000 pulses per second for all 3 models. In the trapezoidal and 

variable acceleration profile, the acceleration increment was set to 20. In the variable acceleration 

model, the acceleration increment was set to 1, incrementing or decrementing every 5 steps taken, as 

shown in the simulation code. 

For the constant acceleration model, the accelerator and incrementer were both set to 0. While for the 

trapezoidal model, only the incrementer was set to 0. As shown in Table 6.2, the variable acceleration 

achieves the fastest time for 1200 steps, and the highest top speed. Additionally, this type of curve 

offers the smoothest acceleration and deceleration, minimising jerks (Wang et al., 2011). 

 Stepper motor control on FPGA 

In FPGA hardware, the variable acceleration ramping algorithm shown in Figure 6-13 was implemented. 

The main limiting factor is the difficulty to perform floating point calculations on FPGA, therefore the 

original simulation code was written only using integer counters to ensure the code could be correctly 

ported. A block diagram representing the required inputs and outputs for each stepper module is shown 

in Figure 6-17. The internal pulse generation method within the motor control module is then shown in 

Figure 6-18, however for simplicity some of the inputs and outputs such as the distance input, reset, 

stop command, homing switches, flags, and direction inputs and outputs have been omitted. The block 

diagram focusses on the pulse generation using the variable acceleration model outlined in Figure 6-13. 

 

Figure 6-17 - Stepper module entity diagram showing inputs and outputs 

Inputs: 

Clock_In 

Distance_In 

Speed_In 

Direction_In 

Strobe_In 

HomingSwitch1 

HomingSwitch2 

Stop 

Reset 

Stepper 

Module 

Entity 

Outputs: 

Pulse_Out 

Direction_Out 

Enable_Out 

Busy_Flag 

Status 

Position 
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Figure 6-18 - Block diagram of simplified variable acceleration pulse generation method, implemented in FPGA 

The key difference between the simulation and the FPGA realisation is that the number of steps taken 

by the motor is half the number of steps output by the simulation. This is because the stepper motor 

driver moves the motor by one step only on the rising edge of the pulse signal. Therefore 2 toggles of 

the pulse pin are required to perform a single step on the physical system. So, a pulse rate of 700 pulses 

per second in the simulation equates to 350 pulses per second on the physical system. 

In Figure 6-18, the 50 MHz input clock drives the counter which is compared every clock cycle with the 

speed compare variable. If they are the same, the pulse output pin is toggled, and the second counter is 

incremented. When the second counter and the counter compare variable are equal, the accelerator 

(used to decrement or increment the speed compare variable each step) is incremented or 

decremented. The following table shows whether the accelerator and speed compare variables are 

incremented or decremented relative to the stepper motor cycle – acceleration, cruise, or deceleration. 

Table 6.3 - Increment or decrement based on current stepper motor cycle position 

Acceleration or deceleration Speed compare Accelerator 

Acceleration - accelerator +1 

Deceleration + accelerator - 1 

 

 

Counter 1 CMP 

CMP 

Take step Pulse out 

Counter 2 

Counter 

compare 

Speed 

compare 

Accel: + 

Decel: - 

Accel: - 

Decel: + 

Accelerator variable is 

incremented or 

decremented by 1 

Speed compare 

variable is 

decremented or 

incremented using 

accelerator value 

Accelerating 

OR 

decelerating 

Clock_in 

Value initially set 

when stepping 

initiated 



80 
 

The VHDL code for the FPGA based stepper motor control algorithm with variable acceleration is shown 

in Appendix E and Appendix F. Appendix E shows the entity declaration, while Appendix F shows the 

architecture. 

Wang et al. (2011) implemented a trapezoidal stepper motor velocity profile on an FPGA. Their control 

algorithm consumed 1276 logic elements. In our FPGA based variable acceleration ramping profile, each 

control module consumed an average of 1085 ALUTs, while also being completely parameterizable 

(variable speed, distance, direction, and the ability to create any of the 3 types of velocity profile), and 

including the homing functionality discussed in section 6.2.7. 

While these resource utilisation values cannot be compared directly (because of differences in 

technology), they do give a reasonable comparison of the low resource requirements of our stepper 

motor control algorithm. 

 Determining acceleration parameters 

Each of the 4 actuation modules on the semi-automated foosball table is slightly different, due to 

material imperfections, manufacture tolerances, bolt tightness, bearing friction, dirt build-up and many 

more factors. To compensate for this, the acceleration curve parameters such as initial frequency, 

secondary counter overflow value, accelerator initial value and increment value had to be determined 

by testing various parameters, finding the most aggressive ramping curve the module could tolerate, 

and then reducing this by a small margin as a factor of safety.  

The starting frequency of around 350 motor pulses per second (speed counter initial value of 70000 and 

simulated initial pulse rate of 700 pulses per second) was chosen as this was the speed at which the 

motors produced the maximum torque. An initial value of 2 was selected for the accelerator, and 1 for 

the incrementer. The measured completion time for this cycle was around 2.9 seconds. 

These values were progressively increased until the stepper motor began to skip steps. The combination 

of values at which this occurred was around 25000, 20 and 1 for speed counter, accelerator, and 

incrementer, respectively. The initial motor speed was 1000 pulses per second. The simulated 

completion time for this cycle was 0.8635 seconds. The measured completion time corresponded well to 

this value when steps were not skipped, however this was often not the case. 

The starting frequency value was therefore dropped to improve reliability, and a starting frequency 

value of 27000 (corresponding to 926 motor pulses per second) was selected as this starting frequency 

reliably did not cause the system to miss steps. Further optimisation work could be done to improve the 

maximum speed of the modules, or to dynamically change the aggressiveness of the ramping profile 

depending on the input distance, however this was not included in the scope of this research. 

 Kicking algorithm 

The gearing ratio from the stepper motor to the output shaft is a 1:1 ratio. So, one full rotation of the 

motor output shaft causes one full rotation of the kicking rod. For obvious reasons, the kicking algorithm 
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should accrue maximum momentum of the kicking rod before it collides with the foosball. Given that 

the rotational inertia of the rod doesn’t change when the rod spins, in order to maximise angular 

momentum of the rod, maximum possible rotational velocity must be reached when the ball is kicked. 

The rules of foosball state that a full 360° spin prior to or after kicking the ball is illegal. Therefore, this is 

the limiting factor in terms of maximum speed that can be achieved and therefore momentum that can 

be imparted by the kicking rod. The rod therefore is accelerated from 0 rad/s to maximum rotational 

speed possible in less than 360° of rotation, the foosman’s “foot” collides with the ball, and then the rod 

is decelerated back to 0 rad/s in less than 360°. 

The method to achieve this is as follows: 

1. Intercept the ball and ensure it is stationary – done by storing the ball position values in a 

buffer and calculating the positional difference. When the difference is small enough, the ball is 

deemed to be stationary  

2. Move the foosman’s “foot” around the ball involving 

a. Sliding to one side a sufficient distance to miss the ball (approximately 40mm) 

b. Positive rotation sufficient angle to place foosman “foot” in front of the ball 

c. Equal but opposite direction slide as was performed in step 2a 

3. Accelerate and kick ball in under 360° of rotation – around 40 degrees of rotation required to 

miss the foosball – this leaves 320 degrees or less in which to accelerate and kick the ball 

4. Foosman “foot” collides with ball, transferring as much kinetic energy as possible 

5. Decelerate and stop the rod in ~359° (398 steps input to stepper module) of rotation 

Considerations required for the algorithm 

1. If the module is all the way to one side of the table, the rod may have to slide in the opposite 

direction to move around the ball 

2. If the ball moves, the new position of the ball will need to be used as the location from which to 

kick the ball 

By using the homing switches attached to the rotational assembly, combined with the fixed relationship 

between pulses and angle, the angle of the stepper motor and of the kicking rod is always known. 

 Homing and sliding algorithm 

The gearing ratio of the sliding mechanism is 1:1, therefore only input steps to output linear distance 

had to be measured. The key information required by the module is the end limits for each of the 

modules, as they each have different work envelopes. Additionally, on initialisation of the semi-

automated foosball table, the position of the rods is unknown to the system. Therefore, a method of 

calibrating each foosmen rod was required. This section will address that problem. 
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The objective of the homing sequence is for the modules to find the end limits for each rod. This is 

achieved by performing the following functions for each rod: 

1. Step at low speed for a distance greater than the workspace (input distance greater than 

2000 steps) in a predefined direction (let direction = 1) 

2. When the switch on the corresponding end of the table is pressed, set the module output 

distance to 0, reverse the direction of travel (let direction = 0) and initiate a new stepping 

sequence with the same high distance of greater than 2000 steps 

3. When the switch on the opposite side is eventually pressed, stop the module and output 

the distance reached 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑠𝑡 to the HPS,  

4. Finally, reverse the module to the centre of the table – this is the output distance 

𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑠𝑡/2 with the direction of travel set to the same as in step 1 (let direction = 1) 

The code for this homing sequence is shown in Appendix G. 

 

Figure 6-19 – Birds-eye view of foosball table CAD model with automated rods annotated 

The total number of steps required for the total travel of each rod, which are numbered in Figure 6-19, 

are as follows: 

1                2                         3                               4 
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Rod 1 – 241 mm = 964 steps 

Rod 2 – 415 mm = 1660 steps 

Rod 3 – 170 mm = 680 steps 

Rod 4 – 287 mm = 1148 steps 

The ratio of steps to mm is therefore 4:1. The total workspace for each of the rods (from one limit 

switch to another) is 690 mm, or 2760 stepper motor steps. 

 Interception algorithm and image to table spatial mapping 

Once the image had been corrected for the radial distortion introduced by the wide angle lens, using the 

method discussed in section 5.6.5, the measured position of the ball needed to be converted to physical 

space for the interception calculations to be performed. Since both spaces are linear, this requires an 

offset and a scale factor. 

These were obtained using the following steps: 

1. Place ball at minimum Y position on the playing field – this corresponds to the human side 

of the table as close to the edge of the playing field as possible  

2. Obtain lens distortion corrected ball coordinates – let this be 𝑌1 – this is equal to the offset 

3. Place ball at maximum Y position on the playing field – this corresponds to the automated 

module side of the table as close to the edge of the playing field as possible 

4. Record value – let this be 𝑌2 

5. Calculate the difference between the two obtained Y values 

6. Scale from image space (pixels) to the corresponding workspace (in stepper motor steps) – 

note that this is not the same as the total travel mentioned in section 6.2.7  

7. Apply an offset in the Y direction such that the lowest position recorded for the ball is 

equal to 0 (this offset is equal in value and opposite in sign to the first recorded Y value) 

The values obtained in this process were 𝑌1 = 240, 𝑌2 = 912. 

As mentioned in the above steps, the total workspace for the module is equal to the width of the table 

in mm minus around 3mm (to compensate for the limit switches), converted to steps. This value is 𝐷𝑇 =

690 𝑚𝑚 × 4
𝑠𝑡𝑒𝑝𝑠

𝑚𝑚
= 2760 𝑠𝑡𝑒𝑝𝑠. 

After offsetting the image Y values by -240 pixels the output map becomes 

 𝑌𝑜𝑢𝑡 = (𝑌𝑖𝑛 − 𝑌1) ∗    (
𝐷𝑇

𝑌2 − 𝑌1

)  (10) 

After correctly calculating the Y position of the ball, and applying the offset and scalar required to 

correct image coordinates into actuation module workspace, the interception points can be calculated. 

For all 4 modules the following parameters are constant and pertain to Figure 6-20: 
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 𝐷𝑇 = 690 𝑚𝑚 = 2760 𝑠𝑡𝑒𝑝𝑠 (11) 

 𝑓𝑜𝑜𝑠𝑚𝑎𝑛 𝑤𝑖𝑑𝑡ℎ 𝐹𝑤 = 32.5 𝑚𝑚 (12) 

 𝑑1 + 𝑑2 + 𝑑3 = 𝑑4 + 𝑑5 + 𝑑6 = 𝑑7 + 𝑑8 + 𝑑9 = 𝑑10 + 𝑑11 + 𝑑12  = 690 𝑚𝑚 (13) 

 

 

Figure 6-20 – Birds-eye view of foosball rods - Module 4 to 1 from left to right 

Module 4 Module 3 Module 2 Module 1 

𝑑10 + 𝑑12 = 287 𝑚𝑚 𝑑7 + 𝑑9 = 170 𝑚𝑚 𝑑4 + 𝑑6 = 415 𝑚𝑚 𝑑1 + 𝑑3 = 241 𝑚𝑚 

𝑑11 = 690 − 287 𝑑8 = 690 − 170 𝑑5 = 690 − 415 𝑑2 = 690 − 241 

𝑑11 = 403 𝑚𝑚

= 1612 𝑠𝑡𝑒𝑝𝑠 

𝑑8 = 520 𝑚𝑚

= 2080 𝑠𝑡𝑒𝑝𝑠 

𝑑5 = 275 𝑚𝑚

= 1100 𝑠𝑡𝑒𝑝𝑠 

𝑑2 = 449 𝑚𝑚

= 1796 𝑠𝑡𝑒𝑝𝑠 

 

 

 

 

 

 

 

 

4 3 2 1 

𝐷𝑇   

𝐹𝑤 

𝑑10 

𝑑11 

𝑑12 

𝑑7 

𝑑8 

𝑑9 

𝑑4 
𝑑1 

𝑑5 

𝑑6 

𝑑2 

𝑑3 



85 
 

 

 

Figure 6-21 – Birds-eye view of foosball table with positions of each foosman on each module labelled 

Module 4 Module 3 Module 2 Module 1 
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With the above calculations for each module’s position, and each foosman’s position on each module, 

the intercept can now be calculated. 

For brevity, example interception calculations will be shown for module 2. Figure 6-22 shows the C code 

section which calculates the difference between each foosman’s current position and the ball’s 

calibrated Y position. 

𝑝1 

4 3 2 1 

𝑝2 

𝑝3 

𝑝1 

𝑝2 

𝑝3 

𝑝1 

𝑝2 

𝑝3 

𝑝4 

𝑝5 

𝑝2 

𝑝1 



86 
 

 

Figure 6-22 - C code used to calculate differences between ball and foosmen positions 

In Figure 6-22, the variable “decide_possession” is used to determine which foosman should take 

possession of the ball, depending on the ball’s coordinates. The differences between the ball’s Y 

coordinate (Ycor – the corrected Y position of the ball), and the two foosmen’s linear position is then 

calculated, and the possession decider determines which “delta” to use.  

The values 1035 and 1725 represent the positions on the foosball table which correspond to the 

maximum reach of each foosman on rod 2. If the ball is at or below Y = 1035, only the first foosman can 

reach the ball. If the ball is at or above Y = 1725, only the second foosman can reach the ball. In between 

these values and either foosman can reach, therefore the closest foosman performs the intercept. 

The relevant interception data is then sent from the HPS to the FPGA motor control modules with the 

direction in which to travel to intercept the ball. This is the non-predictive model. The predictive model 

uses multiple ball locations (X and Y) to calculate the velocity and heading angle of the ball. The 

intercepts are then calculated based on the heading angle and the appropriate foosman is used for 

interception. 

Future work could factor the current motion of the foosmen rods into the equation and use the 

minimum time to intercept as the deciding variable for which foosman is used for interception. This 

would include the speed and direction of the module’s current motion and determine which foosman 

would take the least time to intercept the ball. The time-taken model was out of scope for this research, 

however. 

int decide_possession = (int)(Ycor); 

if (decide_possession > 1725) 

POSSESSION = 2; 

else if (decide_possession < 1035) 

 POSSESSION = 1; 

else if ((decide_possession < 1725) && (decide_possession > 1035)) 

 POSSESSION = 3; 

else 

 POSSESSION = 0;    

      

DELTA1 = (LIN_POS_GLOBAL+65) - Y2; 

DELTA2 = (LIN_POS_GLOBAL+1035) - Y2; 

    

if (POSSESSION == 1) 

{ 

 DELTA_USE = (int)DELTA1; 

} 

 

else if (POSSESSION == 2) 

{ 

 DELTA_USE = (int)DELTA2; 

} 

  

else if (POSSESSION == 3) 

{ 

 if ((fabs(DELTA1)) < (fabs(DELTA2))) 

 { 

  DELTA_USE = (int)DELTA1; 

 } 

 else if ((fabs(DELTA2)) < (fabs(DELTA1))) 

 { 

  DELTA_USE = (int)DELTA2; 

 }     

} 
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6.3. Resource requirements 

The final consideration with the SoC and motor control module design was resource utilisation and 

compilation time. The required elements in the complete SoC design are: 

1. Vision – capture, process and display image 

2. Code to send object coordinates to HPS 

3. RS232 communication – user inputs 

4. 8x motor control modules – 4x linear, 4x rotational 

5. Homing code and limit switch reading – 12x limit switches total 

6. HPS component and all required PIOs 

 

Figure 6-23 - Block diagram representing entire SoC system design 

Figure 6-23 shows the high-level block diagram for the entire SoC system. M0 to M7 represent the 8 

motor modules, with all the limit switch inputs. 

In order to reduce compilation time, most of the development was done with a single motor module 

implemented. This resulted in a compilation time of around 11 minutes, and resource utilisation shown 

in Table 6.4. 
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Table 6.4 - Comparison of resource utilisation for minimal design through to full SoC design 

Resource name Vision only Vision + HPS + 1 motor Vision + HPS + 8 motors 

Logic utilisation 1,259 (4 %) 7784 (24 %) 12, 437 (39 %) 

Registers used 1,460 9636 10936 

Pins used 151 (33 %) 311 (68 %) 347 (76 %) 

Memory used 110,694 (3 %) 644,966 (16 %) 644,966 (16 %) 

DSP blocks used 0 (0 %) 2 (2 %) 16 (18 %) 

 

Table 6.4 shows the resource utilisation for the minimal vision system, the vision system with the HPS 

and one motor module instantiated, and the full SoC design with all 8 motor modules instantiated. 

Compilation time for the full system is around 15 minutes. 

6.4. Summary 

Overall, the FPGA and HPS pass data to one another with the FPGA effectively functioning as a hardware 

accelerator for the HPS, and the HPS providing a platform for implementing algorithms which would be 

difficult and inefficient in terms of resource requirements if implemented in hardware. 

The FPGA is responsible for tasks which can utilise parallelism, such as vision, communication and motor 

control, while the HPS is responsible for tasks requiring algorithmic processing such as overall system 

operation, ball trajectory prediction and strategic gameplay control tasks. 
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7. System integration 

This chapter will discuss all the steps required to integrate all the required subsystems including the 

vision, compute system, electronics, power delivery, mechanical components and other miscellaneous 

tasks. The process for developing the mechanical/electrical system is shown in Figure 7-1. 

 

Figure 7-1 - Development process for the mechanical/electrical system 

In a previous project we designed and built the foosball table and actuation modules. The electronics 

and power delivery were also implemented in that project along with a rudimentary object tracking and 

interception system. This system was based on the CMUcam5 tested in sections 5.2 and 5.3, which 

provided sub-optimal interception performance due to excessive system latency, and lack of lens 

distortion correction.  

In this project the electronics enclosure was fitted with upgraded interface and service panels, improved 

development features, a calibration/homing jig and a completely redesigned image capture-processing-

compute-control platform, as was discussed in previous sections. 

7.1. Electrical system 

 Overall electrical system architecture 

The architecture of the electrical system is represented by the block diagram shown in Figure 7-2. 
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Figure 7-2 - Electrical system architecture for the semi-automated foosball table 

The whole system is powered by two 36V DC, 400W power supplies in parallel providing a maximum 

total system power of 800W. The power supplies take one AC input and an external 10A fuse is in place 

at the system power switch shown in Figure 7-3.  

 

Figure 7-3 - Panel with 2 USB-B sockets, 1 D-Sub socket, 1 IEC socket, and a high-current switch 
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 36V stage 

The 36V outputs are fed directly from the power supplies to the stepper motor drivers, thus the stepper 

motors are driven by 36V DC. 

The stepper motors used are Nema 23 bi-polar stepper motors, as mentioned previously. These were 

selected for their high-power and high-torque from low speeds. This torque is required to accelerate the 

linear and kicking motion necessary for foosball. Additionally, stepper motors, when used correctly, 

offer high-precision open loop control. 

The stepper motor drivers used are 5A peak, up to 40V DC, stepper motor drivers based on the TB6600 

chip. They are capable of microstepping resolution up to 1/16 steps (3200 steps per revolution). They 

are used in full step mode (200 steps per revolution), however, as this setting offers the best 

acceleration characteristics. The drivers require 3 inputs; pulse, enable and direction. 

After initial testing, it was determined that the ability to deactivate power to the stepper motors while 

retaining power to the compute unit was necessary, therefore the high-current switch, also shown in 

Figure 7-3, was added. This catered for situations when the stepper motors needed to be deactivated 

and the rods reset, due to debugging issues. 

 12V stage 

The following components are driven by the 12 V supply: 

1. DE1-SoC FPGA 

2. D5M camera 

3. Field illumination LEDs 

The voltage regulator module used is an XL4015 based module. With input voltage from 4.0V to 38V, 

and output from 1.25V to 36V, and maximum current of 5A. The module has a maximum power output 

of 75W with appropriate cooling. Due to the switching regulator chip used, this voltage regulator 

module produces far less waste heat than a linear regulator. Additionally, the module provides input 

and output voltage readouts which are useful for development. 

The DE1-Soc requires a 12V DC input and consumes a maximum of 24W including the D5M camera and 

HPS. 

The system runs two additional 120mm cooling fans, each of which can consume around 4W of power. 

7.1.3.1. DE1-SoC 40 pin header expansion board 

The 40-pin expansion board is a custom PCB with 8x pluggable 4 pin screw terminal blocks for the 

stepper motor drivers and 2x 5 pin pluggable screw terminal blocks for the linear and rotational homing 

switch inputs to the FPGA. This PCB design is shown in Figure 7-4 and the physical PCB is shown in Figure 

7-5. 
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Figure 7-4 - PCB layout of 40-pin expansion board created using Altium Designer 

 

Figure 7-5 - PCB with pluggable screw terminals and a 40-pin header 

This board was created for tidy, reliable, robust wiring between the FPGA and the stepper motor drivers. 

It also enables easy removal of the FPGA development board, the PCB, or any one of the stepper motor 

drivers without using any tools, and without damaging any of the components.  

 Limit and homing switches 

In order to run the stepper motors in a semi-open loop, homing switches were required for the 

rotational drive assembly, and limit switches were required for the linear drive assembly. Using one 

switch for the rotational homing, and two switches for linear homing (one at each end of the module), 

the system could be precisely homed to avoid collisions and improve accuracy in calibration. A datum 

could be set, as well as providing the ability to measure the total workspace of each linear drive 

assembly, given that each assembly had a different work envelope due to the differing number of 

players per rod. The switches are shown in Figure 7-6. 
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Figure 7-6 - One actuation module with each of the homing/limit switches labelled 

 Wiring management and cabling 

All the wiring for the stepper motors and limit switches is run through the conduit shown on the left in 

Figure 7-7. Two of the conduits are for motor cabling and one is for limit switches. The conduits connect 

to the electronics enclosure with standard electrical screw glands, also shown in Figure 7-7 on the right. 

 

Figure 7-7 - Wiring conduits on left of image and electrical screw glands on right 

 Field illumination  

The field illumination is provided by a series of LEDs of approximately 4,000 to 5,000 K colour 

temperature. The LEDs, shown in Figure 7-8, are run on 12V DC, however this can be increased or 

decreased depending on the illumination intensity required, given the background illumination 

conditions.  

Rotational switch 

Linear switch 1 

Linear switch 2 
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Figure 7-8 - Semi-automated foosball table with field illumination LEDs switched on 

The trimpot screw of the variable resistor on the XL4015 board, shown in Figure 7-9, can be used to 

adjust the voltage and, therefore, the brightness of the LEDs. This also increases the power consumed so 

care should be taken not to exceed the power output capability of the XL4015 module. 

 

Figure 7-9 - XL4015 DC-DC voltage regulator module with adjustable output voltage 

  

Trimpot screw 
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8. Testing and system performance 

To quantitatively determine the performance of the high-speed vision-based control system, an 

experiment was required. The interception performance was identified as a key performance indicator 

that would be sensitive to detection and system latency. The thesis statement for this work was that by 

developing a system with sufficiently low latency, sufficiently high-performance stepper motor control, 

and enough spatial and temporal resolution, the capability for high-performance interception would be 

greatly improved. 

In this chapter the system performance is tested relative to the interception requirement set out in 

chapter 3. This requirement is that for straight shots of sub-maximal velocity (significantly below 10 

metres per second), each rod must successfully intercept 100% of shots. In these experiments a single 

rod is tested, and justification given for the selection of that rod. 

One important aspect of the experiment described in this chapter is that “full coverage” was tested to 

ensure that the interception performance was spatially consistent. This means that regardless of the 

ball’s Y position at the time of interception, the module would be able to intercept the ball with the 

same efficacy. 

8.1. Aims 

• Spatial invariance for interception - the first aim was to establish the baseline interception 

performance of the semi-automated foosball table at all possible interception positions on the 

tested rod. 

• Close-up interception - The second test was to test the close-up interception performance of 

the interception module relative to the performance requirements stated in chapter 3. Close-

up means the distance between the release apparatus and the interception module is equal to 

the distance between the human team’s front most rod and the automated goal keeper rod. 

The requirements are for 100% interception performance for straight shots. 

• Close-up interception with added latency - The third was to test the close-up performance of 

interception with varying quantities of artificial latency added to the system. This was to 

provide quantitative evidence that as the latency of the system increases, system performance 

(interception) decreases. 

 

8.2. Spatial invariance for interception 

 Testing method 

The method for carrying out each trial involves the following steps: 

1. Disable the interception module 

2. Set up the ball release apparatus by 
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a) Aligning it with the corresponding position for the current trial number 

b) Placing the ball in the relevant speed slot – the highest obviously resulting in the 

highest release velocity 

3. Enable the interception module 

4. Send the calibration command to the interception module, causing it to perform the 

homing sequence detailed in section 6.2.7, to ensure that no positional errors had 

accumulated prior to each test 

5. Release the ball from the release apparatus at the top speed setting – 1 meter per second 

6. If the ball is successfully intercepted by the module record result as a pass, otherwise 

record result as a fail 

Interception performance was tested 10 times for each of the 19 positions at the back of the table as 

shown in Figure 8-1 to ensure 100% interception capability in the best-case defence scenario – the 

scenario where each module would theoretically have as much time as possible to intercept. 

Additionally, this was done to qualitatively ensure correct functionality of the lens distortion and 

mapping functions shown in sections 5.6.5 and 6.2.8 respectively. 

 Overview of apparatus 

Using the apparatus shown in Figure 8-1, the ball was released with the jig lined up with each of the 

black lines. The ball release jig is lined up on position 8 out of a total of 19 release positions. 

 

Figure 8-1 - Ball release apparatus positioned at the back of foosball table (closest to human goal) 

Release 

position 

sheet 
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The purpose of the release position sheet shown in Figure 8-1 is twofold; the primary purpose of the 

sheet is to consistently align the ball release apparatus for the experiments. This is to ensure 

repeatability of the test such that each trial is identical in terms of how far the module had to travel to 

intercept the ball, and that the ball is released at the same (zero) heading angle for each test. The 

second purpose is to block the ball from view of the camera until the ball is released. This will be 

explained further in subsequent sections. 

Rod 2 was used for all interception experiments, as it represents the worst case in terms of how far the 

foosmen may have to travel to intercept the ball. Rod 2 has the largest workspace of 415.5mm because 

it has only 2 foosmen attached. Figure 8-2 shows the module used. The red lines indicate the 

approximate range of travel in either direction from the centre of the table. 

 

Figure 8-2 - Experimental setup using module 2 for interception 

 Data analysis 

For statistical validity, the results were analysed with a 95% confidence interval. For attribute data 

(pass/fail) the number of samples, 𝑛, required to provide a given confidence interval (𝐶𝐼) is (Minitab, 

2017) 

 𝑛 =
ln(1 − 𝐶𝐼)

ln(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
  (14) 

Module 2 
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where 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the non-defect rate. 59 samples are required to be 95% confident that our results 

are 95% reliable: 

𝑛 =
ln(0.05)

ln(0.95)
= 58.40397. 

 Results 

The experimental results show that using a single module, 100% interception performance was achieved 

for straight sub-maximal shots. The raw experimental attribute data (pass or fail) is shown in Appendix 

H. 

 Discussion 

Given the 190 samples obtained we can calculate the achieved reliability of results, by rearranging 

equation (14): 

 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒
ln(𝐶𝐼)

𝑛 = 𝑒
ln(0.05)

190 = 0.98436 (15) 

 

The reliability of these results is 98.4%. 

Therefore, the results show, with 95% confidence and 98.4% reliability, that rod 2 can intercept sub-

maximal straight shots at any interception point. This also shows that the lens distortion calibration and 

spatial mapping functions discussed in sections 5.6.5 and 6.2.8 were effective. 

8.3. Close-up interception performance 

Close-up interception performance was tested to verify that rod 2, with the furthest distance to travel, 

could intercept close-up shots at sub-maximal speeds. “Close-up” was defined as the distance between 

the front human rod, and the automated goalie rod. This position is shown in Figure 8-2.  

The sub-maximal speed of 1 meter per second was selected for the following reasons: 

1. Average shots during foosball gameplay are around 1 meter per second. This was 

measured using a 240 FPS slow motion camera. 

2. Using the release position sheet to block the ball from view of the camera means that the 

system must respond to novel event data. In maximal speed (goal scoring) shots in actual 

gameplay, the ball will always be in sight prior to the shot being taken. This means that 

unless the ball is hit at a non-zero heading angle, the interception rod will already have 

placed the appropriate foosman in the required interception position. In order to test the 

responsiveness of the system, the ball was hidden from view of the camera and a slower 

release speed selected. Maximal speed shots at the close-up distance, combined with 

limited ball view time would likely result in zero successful intercepts. 

3. Finally, to test the effect of additional latency, shots where the system is responding to 

novel event data are required. Note that the use of angle shots would not have provided 

an alternative as the latency can be compensated for with prediction (Behnke et al., 2004) 
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 Testing method 

The testing method was the same as the method described in section 8.2.1, however 59 samples were 

taken at a single position, to provide 95% confidence and 95% reliability.  

The total ball view distance that the vision system had was 300 mm of ball travel. At 1 meter per second, 

this corresponds to a maximum of 18 visible frames before interception.  

The position on the release sheet selected for these 59 samples was position 10, as this was half way 

between the two foosmen on rod 2. Additionally, the central position is the most important defence 

position because if the intercept is missed, the opposing team will most likely score a goal. 

 Results 

The results for close-up interception performance show that 100% of the sub-maximal speed shots were 

intercepted by rod 2. The raw data is shown in Appendix I. 

 Discussion 

Given the 59 samples taken, this shows with 95% confidence and 95% reliability, that rod 2 can intercept 

sub-maximal speed shots with limited view time of the ball. 

At 1 metre per second the ball is visible for 300 ms. Therefore, maximum system response time is 300 

ms, including actuation. Given the higher distance travelled on rod 2, it is likely that the response time of 

the remaining 3 modules is significantly lower, due to the shorter interception distances, and that 

actuation is a significant portion of the response time. 

The interception performance shown above indicates that the vision system has sufficiently low latency 

to be used as the measurement system for interception in the semi-automated foosball table. 

Additionally, the results show that the stepper motor control algorithm is effective. 

Future work on the close-up interception performance could include increased ball release speeds up to 

and including maximal speeds, however this should only be done in the case that the ball is in view of 

the camera at all times, including before the ball is released. This would mimic real-life maximal or near-

maximal speed shots the system would have to intercept. Performing maximal ball release, in 

conjunction with the ball being blocked form view would not accurately represent the interception 

performance required by the foosball table. 

8.4. Close-up interception performance with added latency 

The final part of the experiment involved artificially delaying the HPS access to the ball coordinates from 

the vision system.  

 Method to artificially add latency 

In a vision system operating at 60 FPS, with a given amount of latency 𝐿, provided no frames are lost in 

processing (frame processing period does not exceed frame capture interval), the latency can be 
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expressed as a function of the incoming frames, where the system is responding to object coordinates 

that are delayed by a number of frames 𝑁: 

 𝐿 = 𝑁 ∗ (
1

60
) (16) 

 

The implementation code for artificially delaying the result is shown in Figure 8-3.  

 

Figure 8-3 - Code snippet of algorithm used to artificially delay system by 20 frames 

As is shown in Figure 8-3, two arrays are created as buffers for the ball X and Y coordinates. The length 

of these arrays is the number of frames, and therefore the time period, by which to delay the system. 

First, the X and Y values used by for interception calculations are set to the values of the first element of 

each array, provided the values are non-zero (they will only be non-zero once the image data arrives at 

the first array element). Then the values in the array are shifted left by one index value. Finally, the most 

recent image data is stored at the end of the buffers (index 19). This delays the system by 20 frames. 

The section labelled “Procedure” is called every time a new frame is received. 

 Testing method 

The testing method was the same as the method described in section 8.2.1, however only 10 samples 

were taken for each added latency value. The ball release speed for these samples was kept at 1 meter 

per second, and the visible ball distance kept at 300 mm. 

 Results 

As shown in Figure 8-4, as the added latency increased, the interception performance decreased. An 

increase in latency resulted in a lower proportion of successful intercepts.  

volatile float coordsX [20]; // set up arrays to store X and Y values 

volatile float coordsY [20]; 

 

if (coordsX[0] != 0) //as soon as values start arriving at start of array, start 

using them 

 X = coordsX[0]; //set X & Y vals to the 1st element of each array, 

respectively 

if (coordsX[0] != 0) 

 Y = coordsY[0]; 

 

int i; 

for (i = 0;i<19;) //shift end element back by 1 index value 

{ 

 coordsX[i] = coordsX[i+1]; 

 coordsY[i] = coordsY[i+1]; 

 i++; 

} 

 

coordsX[19] = Xin; //set end element of arrays to input values of image data 

coordsY[19] = Yin; 

P
ro

ce
d

u
re
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Figure 8-4 - Output graph of interception performance versus artificially added latency for straight goal shots 

The raw data for the added latency trials is provided in Appendix J. 

 Discussion 

For the results of the added latency, the reliability of the results is calculated below: 

 
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒

ln(0.05)
10 = 0.74113 

(17) 

 

The lower sample size was used for the added latency tests to give a reasonably accurate, overall picture 

of the effects of added latency. For the purpose of providing a clear picture of the effects of adding 

latency to the system, approximately 75% reliability is sufficient. 

The interception performance shown in Figure 8-4 indicates that at around 100 ms of additional latency, 

the interception performance drops to approximately 40% for straight goal shots. As little as 50 ms of 

additional latency causes the performance to drop appreciably.  

The results clearly show that increased latency decreases interception performance. This decreased 

performance was due to the decreased responsiveness of the system, as it was operating on delayed 

object coordinates. Because the ball was hidden from view of the vision system, the modules did not 

have time to intercept the ball once the delayed ball coordinates had been processed, and interception 

commands given. This demonstrates the importance of low system latency. 

+50 ms +100 ms 
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8.5. Automated foosball 

In a game of foosball, the majority of shots performed by amateur players are either passes from one of 

their foosmen to another on one rod, or straight kicks in the direction of the opposition goal. By 

maximising the ability of each module to intercept high speed straight shots, the defensive ability of the 

foosball table can be maximised. 

For this experiment, the non-predictive model was used, as was described in section 6.2.8. By 

incorporating prediction, additional latency of at least 1 frame is added, which adds unnecessary latency 

when only straight shots are being tested with limited view time of the ball. Prediction was therefore 

excluded for the straight shot interception performance testing. 

Once the foosball table has claimed possession of the ball, the strategic programming of the automated 

modules will determine the win/lose rate of the system.  

8.6. Potential improvements or additions 

In these experiments, angle shots were not tested. They are a part of the game of foosball, however for 

amateur players they happen far less frequently, and are usually unintentional. In future work it may be 

useful to test the system with angle shots directed toward the goal. This could provide some more 

useful information regarding the system performance and could give some further insight into the 

performance degradation experienced when latency is added to the system. 

Only a single module was used for interception of straight shots with zero heading angle. It would be 

useful to establish real world performance tests with 4 modules performing interception and trials 

carried out in which a representative population of human players attempt to perform goal scoring 

shots, and the 4 modules attempt to block these. Work could be done to create intelligent defence 

strategies in which the maximum percentage of the goal is defended, depending on the ball’s position 

on the table. 

Finally, the interception performance of the whole system could be put to the test against semi-skilled 

or highly skilled players performing technical or high-speed shots. 

8.7. Conclusions and recommendations 

The results presented in this chapter show that the use of an FPGA SoC enabled interception of a 

moving target, using high-speed low-latency vision as the measurement. 

A single module can defend straight shots 100% of the time, at all interception positions on the rod. 

As the latency increases, the interception performance decreases. 

Further work is required to complete the performance testing of the foosball table with all 4 modules 

defending against human players. 

Further work involving defence against skilled players would be valuable as a final step in validation.  
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9. Final conclusions and recommendations 

In this project, the objective was to research and develop a method to use computer vision for the high-

speed control of robotics, where the image sensor functioned as the input to the tracking/interception 

control system. The testbed was a semi-automated foosball table in which one human team had been 

replaced by electromechanical modules which performed the sliding and rotational movements a 

human would normally perform to intercept and kick the ball. 

The key metric for successfully controlling a robotic system at high-speed was that the robotic control 

system – the semi-automated foosball table – would be able to intercept shots equivalent to those that 

would normally be encountered in a vigorous game of amateur foosball. The quantitative requirement 

was that for straight shots, the automated system would be able to intercept 100% of straight-shots in 

which there was no heading angle. The qualitative requirement was that there would be no interception 

coordinate for which the module was unable to intercept the path of the ball. 

The system developed was an FPGA SoC where image data was streamed from the sensor and image 

processing was performed on the streamed data. The foosball ball coordinates were then sent via high-

bandwidth communication bridges to the embedded ARM cores, where the lens distortion and spatial 

calibration operations, and interception calculations were performed. The HPS then returns stepper 

motor commands back the FPGA which performs concurrent stepper motor control. Overall, the 

combination of all of these operations which were designed for low latency results in low system 

latency, and a high level of system responsiveness.  

Scalable, parameterizable, variable acceleration stepper motor control modules were also implemented 

in FPGA hardware. The modules provided high levels of versatility, improved smoothness and improved 

performance compared to related work, with comparable resource requirements. 

The effectiveness of the vision and actuator control was experimentally tested in section 8. The results 

of the experiments showed that at a 95% confidence interval, the foosball could intercept 100% of 

straight shots with a statistical reliability of 98.4%. Additionally, the experimental results showed that as 

artificial latency was added to the system, the performance dropped in an approximately linear fashion. 

Future work could include testing real world performance of the foosball table which includes play 

versus amateur and trained players. Improved defence strategies could then be tested and compared to 

the work of other authors. 
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Appendices 

Appendix A : Matlab computer vision prototype code 

This section of code has been taken from a MATLAB Graphical User Interface (GUI) where the vision 

code ran continuously, capturing images and displaying the results of the filtered images. It has been 

shortened, with many of the unnecessary lines of code removed for brevity. 

 

 

 

  

%initialise video object vid 

vid = imaq.VideoDevice('winvideo', 2, 'MJPG_640x480');  

% initialise winvideo 2 - number 1 is built in webcam 

vid.ReturnedColorSpace = 'rgb'; % set colourspace of output vid to RGB 

 

%create global array to store ball coordinates 

global centroidArray 

centroidArray = zeros(5,2); 

global angleArray 

angleArray = zeros(3,1); 

 

 

%serial device setup 

global Duino 

Duino = serial('COM6','BaudRate',250000); 

fopen(Duino); 

 

%snap one frame of vid object 

pic = step(vid); 

%filter image using built-in matlab function from their colour thresholding app 

filteredImage = createMaskBall(pic); 

%create structuring elements for morphological filters - erosion and dilation 

SE = strel('square',10); 

SE2 = strel('square',20); 

%morphologically erode the image with structuring element SE 

eroded = imerode(filteredImage, SE); 

%morphologically dilate the image with structuring element SE2 

dilated = imdilate(eroded, SE2); 

%acquire the ball coordinates 

ballProps = regionprops(dilated, 'Centroid'); 

%catch all statement as error thrown if ballCentroids accessed when no object found 

try 

    ballCentroids = ballProps.Centroid; 

    %save x and y coordinates of ball to elements x1 and y1 of array 

    centroidArray(1,1) = ballCentroids(1); 

    centroidArray(1,2) = ballCentroids(2); 

    %circularly shift the elements backwards so latest centroid is at 5th 

    %element of array - largest element = latest, smallest element = oldest 

    centroidArray = circshift(centroidArray,-1); 

    display(centroidArray) 

catch 

    fprintf('error - no ball found yet') 

end 
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The next section of code, also taken from the GUI and edited for brevity, plots a line between the 5 most 

recent detected object coordinates. This was simply to show a “trail” of where the ball had been in 

recent frames, and to estimate whether the ball was travelling straight or not. 

 

 

  

%draw last 5 centroids on the axes 

scatter([0 640 centroidArray(1:5)], [0 480 centroidArray(6:10)]) 

 

%plot lines between each element of centroid array in order of their capture 

line(centroidArray(1:2), centroidArray(6:7)) 

line(centroidArray(2:3), centroidArray(7:8)) 

line(centroidArray(3:4), centroidArray(8:9)) 

line(centroidArray(4:5), centroidArray(9:10)) 

line(centroidArray(5:1), centroidArray(10:6)) 

 

%calculate current trajectory in degrees 

currentX = centroidArray(5,1); 

currentY = centroidArray(5,2); 

oldX = centroidArray(4,1); 

oldY = centroidArray(4,2); 

angle = atan2(currentY - oldY, currentX - oldX)*(180/pi); 

display(angle) 

angleArray(1,1) = angle; 

angleArray = circshift(angleArray, -1); 

display(angleArray); 

%tell us whether the ball is going straight 

deltaAngle = angleArray(3)-angleArray(2); 

if deltaAngle < 5 

    fprintf('ball is going straight') 

else 

    fprintf('ball has curved') 

end 
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Appendix B : C code for calibrating image space for radial distortion in the HPS 

 

 

X = Xin + pad; 

Y = Yin + pad; 

r = sqrt((centreX - X)*(centreX - X) + (centreY - Y)*(centreY - Y)); 

theta = atan((centreY - Y)/(centreX - X)); 

r = r/R; 

s = r*(1+ (K1*r) + (K2*(r*r)) + (K3*(r*r*r*r)) ); 

s2 = s*R; 

X1 = s2*cos(theta); 

Y1 = s2*sin(theta); 

if (X < centreX) 

{ 

 X2 = centreX - X1; 

 Y2 = centreY - Y1; 

} 

if (X >= centreX) 

{ 

 X2 = centreX + X1; 

 Y2 = centreY + Y1; 

} 

X2 = X2 + 50; 

Y2 = Y2 - 240; 

Y2 = Y2*4.107; 
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Appendix C : Qsys connections view of entire system 
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Appendix D : Interrupt service routine for HPS receiving image data from FPGA 

 

 

 

 

 

 

volatile int * xMin_ptr = (int * ) (ALT_FPGA_F2H_BASE + F2H_X_MIN_PIO_OFFSET); 

volatile int * xMax_ptr = (int * ) (ALT_FPGA_F2H_BASE + F2H_X_MAX_PIO_OFFSET); 

volatile int * yMin_ptr = (int * ) (ALT_FPGA_F2H_BASE + F2H_Y_MIN_PIO_OFFSET); 

volatile int * yMax_ptr = (int * ) (ALT_FPGA_F2H_BASE + F2H_Y_MAX_PIO_OFFSET); 

 

void img_data_ready_ISR( void ) 

{ 

volatile int * IMG_READY_ptr =(int *)(ALT_LWFPGA_BASE+ALT_LWFPGA_IMG_READY_OFFSET); 

   

 int xMinVal, xMaxVal, yMinVal, yMaxVal; 

 xMinVal = *(xMin_ptr); // read from image data PIO signals  

 xMaxVal = *(xMax_ptr); 

 yMinVal = *(yMin_ptr); 

 yMaxVal = *(yMax_ptr); 

 

 Xin = (float)(xMinVal + xMaxVal)/2;  

// calculate centre of gravity in x and y directions 

 Yin = (float)(yMinVal + yMaxVal)/2; 

  

 press = *(IMG_READY_ptr + 3);      

// read the interrupt register 

 *(IMG_READY_ptr + 3) = press;      

// Clear the interrupt 

} 
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Appendix E : VHDL entity declaration for stepper motor module 

 

 

 

entity stepperModules is 

 generic( MODULE_NUM : integer;  

   STEP_DIR : std_logic );   

 port( --INPUTS 

   clock_in : in std_logic; 

   distanceIn : in integer; 

   freqIn : in integer; 

   strobe : in std_logic; 

   homeSwitch : in std_logic; 

   homeSwitch2 : in std_logic; 

   resetKey_in : in std_logic; 

   direction_in : in std_logic; 

   STOP : in std_logic; 

    

   --OUTPUTS 

   stBusy : out std_logic;    

-- flag used to let HPS know the module is busy 

   STATUS : out integer := 0; 

   direction_out : out std_logic;    

   pulse_out : out std_logic;     

   enable_out : out std_logic;     

   position_out : out unsigned 

    ); 

 

end entity stepperModules; 
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Appendix F : VHDL code for stepper motor module (architecture) 

 

architecture implementation of stepperModules is 

 

begin 

  

process(clock_in) 

variable clkDivide : integer := 0; --Variable used to divide the clock speed  

variable stepFreq : integer := 60000;--clkDivide increments to the value of stepFreq 

variable toggleFlag : std_logic; --this flag is used to assign the value of the output pin 

variable accelerator : integer := 20;-- used to change the frequency - change motor speed 

variable distance : integer := 50; --2x the number of steps the motor is to take (steps = distance/2) 

variable distCntr : unsigned(15 downto 0) := (others => '0');--used to check position vs total dist 

variable startFlag : std_logic := '1'; 

variable distBy2 : integer := 0; 

variable distSub400 : integer := 0; 

variable modCntr : integer := 0; 

variable modCmpr : integer := 10; 

variable hitLimSwitch : integer := 0; 

 

begin 

if rising_edge(clock_in) then 

 if ((distCntr <= distance) and (startFlag = '1')) then 

  clkDivide := clkDivide + 1;--increment clock divider counter 

  if (clkDivide > stepFreq) then--if clock divider counter reached, take a step. Then 

    --reset counter to 0 

   pulse_out <= toggleFlag; --output value of toggleflag to stepper pulse pin 

   distCntr := distCntr + 1; --one step taken so increment distance counter 

   toggleFlag := not toggleFlag;--toggles the flag for stepper output pin 

   clkDivide := 0;  --resets clock divider counter to 0 

   position_out <= distCntr; 

    

   if distance < 800 then 

    if (distCntr < (distBy2)) and ((distCntr < (distance-(distBy2)))) then  

     stepFreq := stepFreq - accelerator; 

     modCntr := modCntr + 1; 

     if modCntr = modCmpr then --Every nth (n = modCmpr) toggle of  

--the pulse pin, the accelerator  

--increases by 1- exponential ramp 

      accelerator := accelerator + 1; 

      modCntr := 0; 

     end if; 

    end if; 

    if (distCntr > (distance - (distBy2))) then 

     stepFreq := stepFreq + accelerator; 

     modCntr := modCntr + 1; 

     if modCntr = modCmpr then 

      accelerator := accelerator - 1; 

      modCntr := 0; 

     end if; 

    end if; 

   end if; 

    

   if distance >= 800 then 

    if (distCntr < 400) and ((distCntr < (distSub400)))  then  

     stepFreq := stepFreq - accelerator; 

     modCntr := modCntr + 1; 

     if modCntr = modCmpr then 

      accelerator := accelerator + 1; 

      modCntr := 0; 

     end if; 

    end if; 

    if (distCntr > (distSub400)) then      

     stepFreq := stepFreq + accelerator; 

     modCntr := modCntr + 1; 

     if modCntr = modCmpr then 

      accelerator := accelerator - 1; 

      modCntr := 0; 

     end if; 

    end if; 

   end if; 

 

  end if; 

 end if; 

 if (distCntr >= distance) then --this stops the stepping after enough steps are taken 

  startFlag := '0'; 

  enable_out <= '1'; 

  pulse_out <= '0'; 

  accelerator := 20; 

  stBusy <= '0'; 

  position_out <= distCntr; 

  STATUS <= 0; 

 end if; 
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Appendix G : VHDL code for homing switch functionality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

if homeSwitch2 = '1' and STATUS = 1 then -- home switch pressed first time 

 STATUS <= 2; 

 stBusy <= '0'; 

end if; 

if homeSwitch2 = '0' and STATUS = 2 then -- home switch released after being  

 -- pressed first time 

 STATUS <= 3; 

end if; 

 

if homeSwitch = '1' and STATUS = 3 then -- second home switch pressed (will be  

-- opposite side of foosball table) 

 STATUS <= 4; 

 stBusy <= '0'; 

end if; 

 

if homeSwitch = '0' and STATUS = 4 then -- second home switch un-pressed  

 STATUS <= 5; 

end if; 

 

if STATUS = 5 and (distCntr = distance-1) then -- module backed off after  

-- pressing second home switch 

 STATUS <= 6; 

end if; 

 

if STOP = '1' then -- stops all motion and outputs current distance to HPS signal 

 startFlag := '0'; 

 enable_out <= '1'; 

 pulse_out <= '0'; 

 accelerator := 20; 

 stBusy <= '0'; 

 position_out <= distCntr; 

 STATUS <= 0; 

end if; 
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Appendix H : Raw data (pass/fail) for preliminary interception test 
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Appendix I : Raw data (pass/fail) for goal interception test – 59 samples total 
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Appendix J : Raw data for added latency interception experiment 

 

 

 


