
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

i

Low latency vision-based control for robotics

A thesis presented in partial fulfilment of the requirements for the degree

of

Master of Engineering

In

Mechatronics

At Massey University, Manawatu, New Zealand

Joshua Lues

2018

ii

Abstract

In this work, the problem of controlling a high-speed dynamic tracking and interception system using

computer vision as the measurement unit was explored.

High-speed control systems alone present many challenges, and these challenges are compounded

when combined with the high volume of data processing required by computer vision systems. A semi-

automated foosball table was chosen as the test-bed system because it combines all the challenges

associated with a vision-based control system into a single platform. While computer vision is extremely

useful and can solve many problems, it can also introduce many problems such as latency, the need for

lens and spatial calibration, potentially high power consumption, and high cost.

The objective of this work is to explore how to implement computer vision as the measurement unit in a

high-speed controller, while minimising latencies caused by the vision itself, communication interfaces,

data processing/strategy, instruction execution, and actuator control. Another objective was to

implement the solution in one low-latency, low power, low cost embedded system. A field

programmable gate array (FPGA) system on chip (SoC), which combines programmable digital logic with

a dual core ARM processor (HPS) on the same chip, was hypothesised to be capable of running the

described vision-based control system.

The FPGA was used to perform streamed image pre-processing, concurrent stepper motor control and

provide communication channels for user input, while the HPS performed the lens distortion mapping,

intercept calculation and “strategy” control tasks, as well as controlling overall function of the system.

Individual vision systems were compared for latency performance. Interception performance of the

semi-automated foosball table was then tested for straight, moderate-speed shots with limited view

time, and latency was artificially added to the system and the interception results for the same, centre-

field shot tested with a variety of different added latencies.

The FPGA based system performed the best in both steady-state latency, and novel event detection

latency tests. The developed stepper motor control modules performed well in terms of speed,

smoothness, resource consumption, and versatility. They are capable of constant velocity, constant

acceleration and variable acceleration profiles, as well as being completely parameterisable. The

interception modules on the foosball table achieved a 100% interception rate, with a confidence interval

of 95%, and reliability of 98.4%. As artificial latency was added to the system, the performance dropped

in terms of overall number of successful intercepts. The decrease in performance was roughly linear

with a 60% in reduction in performance caused by 100 ms of added latency. Performance dropped to 0%

successful intercepts when 166 ms of latency was added.

The implications of this work are that FPGA SoC technology may, in future, enable computer vision to be

used as a general purpose, high-speed measurement system for a wide variety of control problems.

iii

Acknowledgements

I would first like to thank my supervisors Donald Bailey and Gourab Sen Gupta for their support

throughout this process. Between their busy schedules they gave me so much of their time and shared

their knowledge with me whenever I needed it. Donald guided me with his extensive expertise in image

processing, and Sen steered the overall direction of the project.

My gratitude to my wife, Nadia, cannot be expressed enough. I am grateful for all the meals, late nights

she spent awake in solidarity, trips to the supermarket, and encouragement. She is truly a blessing and I

am so lucky to have the most incredible wife a man could ask for.

I am thankful to my brother-in-law, Ruven, and my brother, Giulio. Ruven was my personal trainer, and a

heathy body leads to a healthy mind. Giulio was an inspiration to me as he is the hardest working person

I know. Every Skype conversation increased my motivation level.

I can’t thank my parents (biological and in law) enough for all of their financial and emotional support. It

really has been wonderful having such a loving family and I couldn’t have done it without each and every

one of them.

iv

Table of contents
Acronyms and conventions used .. ix

1. Introduction ... 1

1.1. Aims and objectives .. 3

1.2. Thesis statement .. 3

2. Subsystems required for low latency control of a vision-based system ... 4

2.1. Foosball table automation .. 5

2.2. Object tracking techniques ... 6

2.3. Computer vision-based control systems .. 6

 Self-adjusting vision systems ... 6

 Other methods to improve vision system robustness ... 7

 Spatial calibration .. 8

 Trajectory prediction and state estimation techniques ... 9

2.4. Image and signal processing on FPGA .. 11

 Software and hardware-based image processing .. 11

 Performance improvements .. 13

 Power consumption and embedded capabilities ... 14

 Programming and reconfigurability ... 14

2.5. Actuator control and sensing on FPGA ... 15

2.6. Conclusions ... 16

3. System overview, requirements and high-level architecture ... 17

3.1. Temporal and spatial resolution requirements – Camera parameters 17

3.2. System response ... 19

3.3. Interception performance .. 20

3.4. Power consumption .. 21

3.5. Modularity and versatility... 21

3.6. Minimal latency from distribution of processes ... 22

3.7. Reconfigurability ... 24

3.8. Debuggability/traceability .. 24

3.9. Potential methods to achieve outcomes .. 25

v

 CPU or GPU based systems .. 26

 ASIC or custom hardware .. 27

 FPGA ... 27

 Summary of potential methods ... 29

 Proposed method .. 30

3.10. High-level complete system architecture ... 30

 Semi-automated foosball table control system ... 30

 Compute subsystem .. 32

4. Mechanical subsystem .. 34

4.1. Introduction .. 34

 Custom aspects of foosball table design .. 34

4.2. Materials ... 39

4.3. Design aspects meeting official specifications .. 40

4.4. Accurate vision system placement ... 42

5. Vision subsystem ... 44

5.1. Background ... 44

 Latency in control systems ... 44

 Related work .. 45

 Hardware tested .. 46

5.2. Novel event detection latency .. 48

 Aim ... 48

 Methodology .. 48

 Results .. 49

5.3. Steady state latency .. 50

 Aim ... 50

 Methodology .. 50

 Mathematics .. 51

 Results .. 52

5.4. Discussion ... 53

 Immediate usefulness of results .. 53

vi

 Comparison of performance .. 53

 Potential improvements .. 54

 Automated foosball ... 54

5.5. Conclusions ... 55

5.6. Implementation of final vision system ... 55

 Terasic D5M camera module ... 55

 Prototypes .. 56

 Foosball table interception simulation .. 58

 Lens changes .. 58

 Distortion correction .. 60

 Final implementation ... 61

6. Compute subsystem .. 65

6.1. Terasic DE1-SoC FPGA development board .. 65

 FPGA component ... 66

 HPS component ... 67

 SoC design .. 67

6.2. Motor Control ... 73

 Background .. 73

 Mathematical approximation .. 74

 Stepper motor basic control algorithm .. 75

 Stepper motor control on FPGA ... 78

 Determining acceleration parameters ... 80

 Kicking algorithm ... 80

 Homing and sliding algorithm .. 81

 Interception algorithm and image to table spatial mapping ... 83

6.3. Resource requirements .. 87

6.4. Summary ... 88

7. System integration .. 89

7.1. Electrical system ... 89

 Overall electrical system architecture ... 89

vii

 36V stage.. 91

 12V stage.. 91

 Limit and homing switches .. 92

 Wiring management and cabling ... 93

 Field illumination ... 93

8. Testing and system performance .. 95

8.1. Aims .. 95

8.2. Spatial invariance for interception ... 95

 Testing method .. 95

 Overview of apparatus ... 96

 Data analysis .. 97

 Results .. 98

 Discussion .. 98

8.3. Close-up interception performance ... 98

 Testing method .. 99

 Results .. 99

 Discussion .. 99

8.4. Close-up interception performance with added latency .. 99

 Method to artificially add latency .. 99

 Testing method .. 100

 Results .. 100

 Discussion .. 101

8.5. Automated foosball .. 102

8.6. Potential improvements or additions ... 102

8.7. Conclusions and recommendations .. 102

9. Final conclusions and recommendations .. 103

References .. 104

Published work ... 110

Appendices ... 111

Appendix A ... 111

viii

Appendix B ... 113

Appendix C ... 114

Appendix D ... 116

Appendix E ... 117

Appendix F ... 118

Appendix G... 119

Appendix H... 120

Appendix I .. 120

Appendix J .. 121

ix

Acronyms and conventions used

A/D or D/A converter – Analogue to digital or digital to analogue

ASIC – Application specific integrated circuit

CCD – Charge coupled device

CMOS – Complementary metal oxide semiconductor

CPU – Central processing unit

DCS – Distributed control system

DLL – Delay locked loop

DSP – Digital signal processor

DVS – Dynamic vision sensor

FPGA – Field programmable gate array

FPS – Frames per second

GPIO – General purpose input/output

GPU – Graphics processing unit

HDL – Hardware description language

HPS – Hard processor system

IDE – Integrated development environment

MP – Megapixel

MPPA – Massively parallel processor array

MSB – Most significant bit

OS – Operating system

OTS – Off the shelf

PLL – Phase locked loop

USB – Universal serial bus

VHDL – Very high-speed integrated circuit HDL

x

List of figures

Figure 1-1 - Standard foosball table ... 3

Figure 2-1 - Cycle diagram representing algorithmic image processing .. 12

Figure 2-2 -Streamed image processing in FPGA hardware ... 13

Figure 3-1 - Representation of ball motion blur on foosball table – birds-eye view with foosmen hidden

from view ... 18

Figure 3-2 - Foosball playing field captured from below, using the DE1-SoC and D5M camera 19

Figure 3-3 - One cycle of image capture through to system actuation response 20

Figure 3-4 - Latencies present in systems tested by Čížek et al. 2016 ... 23

Figure 3-5 - Flowchart representing the data flow, communication, and data transfers in distributed PC

based system .. 23

Figure 3-6 - Possible configurations of PC based image capture and actuator control systems 26

Figure 3-7 - Semi-automated foosball table ... 31

Figure 3-8 - CAD model of the automated actuation modules .. 31

Figure 3-9 - Compute system input and output signals ... 32

Figure 4-1 - Render of automated modules of CAD model .. 34

Figure 4-2 - Pull out torque curve of Nema 23 bi-polar stepper motor - (Pololu, 2018) 35

Figure 4-3 - Render of actuation modules ... 35

Figure 4-4 - Foosball table actuation module - rotational drive assembly ... 36

Figure 4-5 - Foosball table actuation module - linear drive assembly ... 37

Figure 4-6 – Close-up of belt connector on actuation module .. 37

Figure 4-7 - From left to right a bottom-up view of the glass base, the interlock switch and the safety lid

.. 38

Figure 4-8 - From left to right - bottom-up view of foosball playing field with field illumination on and off

respectively .. 39

Figure 4-9 - Image of completed, vinyl wrapped semi-automated foosball table – from front right 39

Figure 4-10 - Render of foosball table CAD model ... 40

Figure 4-11 - Render of foosball goal on CAD model ... 41

Figure 4-12 - Semi automated foosball table right hand ball return chute.. 41

Figure 4-13 - CAD model of the placement jig for the foosball table vision system 42

Figure 4-14 - Manufactured calibration homing jig with rotating locking tabs.. 43

Figure 5-1 - Image capture test systems .. 47

Figure 5-2 – Novel event detection latency results for all 5 experiments including PS3 eye at both

resolutions .. 49

Figure 5-3 - CAD model of object marker apparatus used in steady state latency experiment 51

Figure 5-4 - Steady state latency results for all 4 experiments .. 52

Figure 5-5 - Vision system development process ... 55

xi

Figure 5-6 - Terasic TRDB-D5M camera development board ... 56

Figure 5-7 - Bayer RGB pattern representation ... 56

Figure 5-8 - Output window of simple trajectory calculation and interception coordinate simulation 58

Figure 5-9 - Long focal-length (narrow angle) lens provided with the D5M camera module 59

Figure 5-10 - Sunex DSL215 fisheye lens .. 59

Figure 5-11 - MATLAB output image of all calibration grid intersection points found by distortion

correction algorithm .. 61

Figure 5-12 - Uncalibrated (left) and calibrated (right) distortion point map .. 61

Figure 5-13 - Representation of overall image processing system .. 62

Figure 5-14 - Block diagram of 3x3 windowed Bayer interpolation (demosaicing) hardware implemented

in FPGA. (Bailey, 2018). Reprinted with permission. ... 62

Figure 5-15 - Block diagram of simplified RGB to YCbCr conversion implemented in FPGA hardware

(Bailey, 2018). Reprinted with permission. .. 62

Figure 5-16 - Block diagram of a 5×5 morphological filter (erosion) implemented in FPGA hardware – for

dilation, AND gates were replaced with OR gates. (Bailey, 2018). Reprinted with permission. 63

Figure 5-17 - Block diagram of the high-level architecture for connected components analysis (CCA)

implemented in FPGA (Bailey, 2018). Reprinted with permission. .. 63

Figure 6-1 - Representation of vision-actuation control system data cycle from input to response 65

Figure 6-2 - Block diagram showing the master/slave relationship for each of the bridges between the

FPGA and HPS (Altera, 2016). ... 66

Figure 6-3 - Example Qsys HPS component ... 68

Figure 6-4 - Setup options for PIO in Qsys ... 69

Figure 6-5 - PIO connections and addresses in Qsys .. 69

Figure 6-6 - C code used to send an "active" signal to the FPGA, and disable all the stepper motors

temporarily ... 70

Figure 6-7 - VHDL code to receive data/signals from the HPS ... 70

Figure 6-8 – Representation of data transfer method between FPGA and HPS .. 70

Figure 6-10 - Address map for Qsys SoC design ... 71

Figure 6-11 - Development process for the motor control design ... 73

Figure 6-12 - Nema 23 bipolar stepper motor - 200 steps per revolution ... 74

Figure 6-13 - Pull out torque curve of Nema 23 bi-polar stepper motor ... 74

Figure 6-14 - Acceleration and deceleration equations for stepper motor ramping 76

Figure 6-15 - Stepper motor simulation output curve for input distance = 600 .. 76

Figure 6-16 - Stepper motor simulation output curve for input distance = 1200 77

Figure 6-17 - Output curves for constant velocity (top 3) and trapezoidal velocity (bottom 3) profiles ... 77

Figure 6-18 - Stepper module entity diagram showing inputs and outputs .. 78

Figure 6-19 - Block diagram of simplified variable acceleration pulse generation method, implemented in

FPGA ... 79

xii

Figure 6-20 – Birds-eye view of foosball table CAD model with automated rods annotated 82

Figure 6-21 – Birds-eye view of foosball rods - Module 4 to 1 from left to right 84

Figure 6-22 – Birds-eye view of foosball table with positions of each foosman on each module labelled 85

Figure 6-23 - C code used to calculate differences between ball and foosmen positions 86

Figure 6-24 - Block diagram representing entire SoC system design ... 87

Figure 7-1 - Development process for the mechanical/electrical system .. 89

Figure 7-2 - Electrical system architecture for the semi-automated foosball table 90

Figure 7-3 - Panel with 2 USB-B sockets, 1 D-Sub socket, 1 IEC socket, and a high-current switch 90

Figure 7-4 - PCB layout of 40-pin expansion board created using Altium Designer................................... 92

Figure 7-5 - PCB with pluggable screw terminals and a 40-pin header .. 92

Figure 7-6 - One actuation module with each of the homing/limit switches labelled 93

Figure 7-7 - Wiring conduits on left of image and electrical screw glands on right 93

Figure 7-8 - Semi-automated foosball table with field illumination LEDs switched on 94

Figure 7-9 - XL4015 DC-DC voltage regulator module with adjustable output voltage 94

Figure 8-1 - Ball release apparatus positioned at the back of foosball table (closest to human goal) 96

Figure 8-2 - Experimental setup using module 2 for interception ... 97

Figure 8-3 - Code snippet of algorithm used to artificially delay system by 20 frames 100

Figure 8-4 - Output graph of interception performance versus artificially added latency for straight goal

shots ... 101

List of tables

Table 5.1 - Important novel event detection latency data ... 50

Table 5.2 –Important steady state latency data .. 52

Table 5.3 - Resource consumption on DE1-SoC of basic image processing design 57

Table 6.1 - System PIOs and their respective functions ... 72

Table 6.2 - Time taken and maximum velocity for 3 simulated stepper motor velocity profiles 78

Table 6.3 - Increment or decrement based on current stepper motor cycle position 79

Table 6.4 - Comparison of resource utilisation for minimal design through to full SoC design 88

1

1. Introduction

Computer vision is an extremely powerful tool when used correctly. It has a plethora of applications

including object tracking, object recognition, augmented reality, metrology, and many others. One

application of computer vision in which further exploration would be beneficial is high-speed control

systems or high-speed visual servoing. That is the focus of this thesis.

Control systems require accurate, low latency measurement systems, low latency control strategies and

efficient processing of data to ensure all tasks are performed within the time specifications for each task

(Dougherty & Laplante, 1995). In a critical response control system, with highly time-sensitive task

execution, if any tasks are performed later than the specified execution time, then the control system

will either be unstable or fail altogether. Individually, these requirements are all necessary within the

context of a control system, however most of these requirements present a few limitations or problems

of their own. Some systems require powerful or expensive processing hardware, some require sensitive

equipment, and some are required to be calibrated or serviced very often. These limitations are

significantly compounded when all the requirements are present in one system, for example a computer

vision-based control system.

Low latency measurement is essential for any control system where the measurements are used as a

feedback in the control loop, or when the measurement system provides input to the control system

(Franklin, Powell, & Emami-Naeini, 2015). Measurement system latency must be sufficiently shorter

than the required response time. This provides adequate phase margin and improves system stability

(Engelberg, 2015). Achieving low latency image capture and processing from a computer vision-based

measurement system is a challenge simply because of the volume of raw data and computation

necessary to extract the required measurement data (Johnston, Gribbon, & Bailey, 2004).

Low latency control strategies are required when strategic planning or decision making is to be

performed by the control system (Mueller, Censi, & Frazzoli, 2015). Large delays between the control

system receiving the input signal and providing the output will result in poor system performance. This

poor performance can be caused by delays in instruction execution due to inefficient control strategies

and internal latency. Therefore, efficient processing of instruction data, calculations, and actuation tasks

is essential and latency in control strategies should be minimised. Various methods of achieving this will

be discussed further.

Additionally, during operation it can be difficult to debug these systems due to the unpredictable

execution of tasks. In some cases, poor optimisation of internal processes can cause debugging

mechanisms (such as printing to a serial console) to fail, due to the processor being saturated by other

inefficient operations. In some cases, the interrupt caused by the debug mechanism can cause the

internal process to fail depending on which has a higher interrupt priority. Another possibility is that

interrupt service routines with higher priorities threaten to continuously supersede those with lower

2

priority, therefore blocking their execution altogether. Finally, control of more complex actuators like

encoded DC motors or stepper motors requires some processing overhead and precise timing. This is

particularly true with stepper motors as they are sensitive to timing jitter (Proctor & P. Shackleford,

2001). In an event driven control system with many actuators it can be a challenge to control many of

these actuators with conventional methods due to processor power and other hardware resource

restrictions, such as a limited number of hardware timers or limited CPU power, affecting the timing and

execution of these calculations and tasks. These factors can make the control of complex systems with

many asynchronous tasks and actuator control a significant challenge.

To overcome this problem, distributed control systems (DCS) use local processing of sensor and actuator

data on dedicated hardware for a given process (Zhao, Paine, Kim, & Sentis, 2015). However, this

generally comes at the cost of added latency caused by data transmission and communication, which

needs to be accounted for in the design as communication latency can dramatically decrease the overall

responsiveness of the control system (Tianjian & Fujimoto, 2006). Minimising communication latency is,

therefore, another focus of this thesis.

Evidently, each of the above requirements for control systems have their own set of challenges. To

explore and address these challenges, a system which utilises computer vision for low latency control of

a complex mechatronic system is required as a test-bed. A semi-automated foosball table was chosen

as the test-bed system because it combines all these challenges into a single system, while requiring

vision-based sensing, distributed and embedded processing, low latency communication, and both high-

level strategic control and low-level motor control for actuation.

Foosball, also known as table soccer, is a miniature soccer game played on a small table (shown in Figure

1-1) with a field area of approximately 1.2 m × 0.7 m. The game uses 1 ball and involves two to four

players. It is played one-on-one or two-on-two, with players from the two teams standing and operating

on opposite sides of the table. The players manually operate small rigid puppets (foosmen), attached to

spinning and sliding metal rods to kick the ball into the opponent’s goal, and to defend their own goal

from opponent’s kicks. There are four rods per team (eight rods in total) and between two and five

foosmen per rod. It is a fast paced, dynamic game with ball speeds in excess of 10 m/s, and therefore

requires very fast reflexes from the human players.

3

Figure 1-1 - Standard foosball table

1.1. Aims and objectives

The objective is to explore how to combine computer vision, communication interfaces, data

processing/strategy, instruction execution, and scalable actuator control all in one low-latency, low

power, embedded system.

This system will be integrated into a semi-automated foosball table and tested for ball interception

performance as a method to establish the performance of the system. The semi-automated foosball

table represents a reasonably high-speed control system problem, requiring low system response time

in order to satisfy the real-time requirements involved in a vigorous game of foosball.

1.2. Thesis statement

A field programmable gate array (FPGA) system on chip (SoC), which combines programmable digital

logic with a dual core ARM processor (HPS) on the same chip, should be capable of running a low latency

control system. Latency can be reduced by distributing the tasks over the most appropriate processors,

with programmable logic performing high-framerate streamed image pre-processing and actuator

control, with the higher-level strategy and floating-point operations allocated to the HPS. Finally,

communication latency may be minimised by utilising the high-performance AXI bridges between the

FPGA and HPS on the SoC.

4

2. Subsystems required for low latency control of a vision-based

system

The field of computer vision, object tracking, trajectory prediction, and control systems is massive, with

research branching extensively into these fields. The use of computer vision as a feedback element for a

high speed, low latency, mechatronics control systems has been explored to some extent with research

in visual servoing. However, there are potential improvements that can be made to the speed of

computer vision-based control systems.

This chapter will discuss the subsystems required for high-speed control of a system, using computer

vision in the feedback loop. The subsystems required will be presented and discussed, in conjunction

with some examples of computer vision-based control systems. Additionally, other semi-automated

foosball tables will be compared.

There are several important topics to be addressed to make any improvements to state-of-the-art

vision-based control systems. These topics include image processing hardware, the algorithms selected

for predictive interception, the algorithmic processing hardware, the actuator control methodology, and

the overall communication and latency within the control system. Additionally, for a smart image

processing system, some level of intelligence is required. This may include smart colour classifiers, auto-

adaptive colour thresholding, variable lighting intensity mapping, and object recognition, among other

possible techniques. The integration and combination of techniques is of similar importance to the

techniques used.

5

2.1. Foosball table automation

Some work has already been done regarding semi-automated foosball tables. Because semi-automated

foosball is the development platform used in this project, the existing systems are covered in this and

their contributions and limitations discussed.

Weigel (2005) developed a semi-automated foosball table with a vision-based ball tracking system. The

camera ran at a speed of 50 Hz, at 384 × 288 pixels resolution. Despite the low resolution and framerate,

their system performed well, winning 69.4% of games played – 354 out of 510 games played. The

participants were mostly unskilled players without any special training. Because of the performance of

their system, they later commercialised their design with the “Star-Kick” semi-automated foosball robot.

Based on the ratio of goals received to goals scored – 2753 received to 4522 scored – it appears that the

main area of improvement to be made to Wiegel’s work was an increase in the goal defence ability of

the robot. Given that the robot was able to win most games, the strategy was not a major area of

weakness.

Janssen, de Best, and van de Molengraft (2010) discuss a semi-automated foosball table with a camera

transmitting grayscale images to a computer which then performed the object recognition and tracking

algorithms. The camera resolution was 657 × 446 pixels, and framerate was 100 Hz. In this paper the

authors focussed on detection of the ball from above, where occlusion of the ball was a problem. They

used a linear Kalman filter to predict the path of the ball for interception. The authors used a region of

interest in their image processing algorithm to reduce the computational load. They also performed the

distortion correction on the image stream, rather than post-processing the data. The defending rod was

able to intercept a shot at 10 m/s (the maximum theoretical velocity based on tested values). The

authors were not clear on the interception performance in terms of proportion of goals successfully

defended, nor were they clear about their testing methodology. Interception performance is clearly a

key area of potential improvement in semi-automated foosball tables.

Later, Janssen, Verrijt, de Best, and van de Molengraft (2012) built upon their initial survey paper with

improved state estimation techniques, a higher camera framerate (200 Hz), and discussed why the

initially proposed work was unsuitable for the application. The authors combined the use of colour

filtering, and edge and shape detection to improve their detection and localisation of the ball. They

achieved a peak error of 12mm in the predicted location of the ball for interception, however their

system often missed the ball. This was assumed to be because of delays in their processing pipeline.

Their image processing pipeline (calculated for greyscale images) was calculated as 17.5 ms in the worst-

case scenario. Including image capture, communication, actuation and strategy calculations this number

would have been significantly higher. Overall, the total system latency was the main cause of

unsuccessful intercepts. The authors suggest simply predicting the location of the ball using the latency

value assuming a constant velocity model, however this may not fully solve the problem as a constant

velocity cannot always be assumed.

6

Given the advantages of the vision-based systems, computer vision appears to be the most useful

method for object localisation in the context of a semi-automated foosball table. Some improvements

to the systems could be made in terms of overall system response time by lowering individual

components of latency in order to reduce the overall processing-actuation pipeline delay.

2.2. Object tracking techniques

Object tracking research includes the localisation of the object, the hardware and software required to

perform the localisation, and the techniques used to detect or segment the object from its

surroundings. The method used to detect the object is dependent on the required temporal and spatial

precision, and various other factors such as cost, space and power consumption.

Many methods for tracking objects have been proposed, some with greater success than others.

Generally, the use of computer vision tends to be the most successfully implemented method, as vision

provides a large amount of data at high speeds and low relative cost. Given this fact, computer vision

systems will be the focus of this review, though other methods do exist, such as the multi-touch screen

implemented by (Korkalo & Honkamaa, 2010) using cameras with their optical plane parallel with the

screen surface. In their work, they used several cameras at different offsets and angles to detect user

touch inputs on the screen. While this method can have some advantages such as comparatively lower

processing power requirements, and potentially higher tracking effectiveness under the right conditions,

the foosball table was not a suitable testbed for this method of object localisation and tracking.

2.3. Computer vision-based control systems

 Self-adjusting vision systems

Lighting is one of the most difficult issues to solve in vision-based systems (Hornberg & Jahr, 2017).

Dynamic lighting conditions pose a problem for vision-based robotics applications. Slight changes in

lighting over time, or spatial variation in lighting intensity, can cause a well calibrated system to

malfunction as objects are not as effectively detected by colour segmentation techniques. Even

greyscale images can be adversely affected by such varying lighting conditions. Therefore, it is very

important that vision systems are either tuned for the desired image processing application every time

the lighting changes, or better, the system self-tunes or auto-adjusts to accommodate different lighting

conditions. Structured lighting conditions, where there is no variation in intensity or coloration and no

ambient light ingress, are an effective method to eliminate this problem because the need to self-tune

or self-adjust is generally not present in highly controlled lighting systems as the rest of the system is

designed around the optimal lighting solution (Hornberg & Jahr, 2017). However, in some systems,

particularly those in which human interaction is required, structured lighting is not always possible. This

is the case with the semi-automated foosball table, as will be discussed later in the thesis.

A method of eliminating or mitigating the adverse effects of variation in image data is required in order

to use vision in dynamic lighting conditions. Common methods such as automatic exposure control and

7

white balance exist (Kondo, Kikuchi, Kato, & Hirota, 1991), however they often do not fully solve the

problem. Automatic exposure and white balance adjustments improve picture quality when the whole

image is brighter or darker, however in applications where a very uniform lighting intensity distribution

is required, increasing or decreasing the white balance or exposure of the entire image does not

generally decrease the variation in illumination. A method to adjust only the affected parts of the image

is required.

There are three common approaches used to automatically adjust for these dynamic lighting conditions.

The first method is “to output the images to describe the real scene as consistently as possible in

different light conditions by auto-adjusting the camera parameters” (Lu, Zhang, Yang, & Zheng, 2010).

This was mentioned previously and includes features such as auto-exposure and auto-white balance.

The second method involves transforms for colour constancy, as explored by Mayer, Utz, and

Kraetzschmar (2002) using the Retinex algorithm, which attempts to mimic the human eye that can

identify colours in differing lighting conditions. The Retinex algorithm uses dynamic range compression

and tonal rendition with colour restoration to improve the observed disparity between human observed

images and digitally captured images (Jobson, Rahman, & Woodell, 1997).

The third method is to use “adaptive or robust object recognition algorithms” in which “colour

segmentation is combined with a shape detection to provide additional robustness and allow colour

recalibration” as explored by several authors (Gönner, Rous, & Kraiss, 2005; Huimin, Zhiqiang, Fei, &

Xiangke, 2008). In a tracking application such as a semi-automated foosball table where one object with

distinct shape, size and colour (the ball) is being tracked, this could be a promising method. Improved

segmentation techniques have been achieved in the work of Saber, Murat Tekalp, and Bozdagi (1997) by

combining colour and edge information for better edge linking, and by Jianping, Yau, Elmagarmid, and

Aref (2001) by using colour-edge extraction and seeded region growing to better identify object

boundaries and distinct regions within images. Kryjak, Komorkiewicz, and Gorgon (2014) used a

combination of colour segmentation and edge detection for applications such as background and

foreground segmentation. These authors demonstrated the effectiveness of combining colour and

shape features into their image processing algorithms.

Given the amount of effort that has been spent by other authors in this area it is obvious how important

effective segmentation and identification of the object is. The complexity of the application, time

constraints of processing, type of object being tracked, and non-uniformity of images determine which

method is chosen.

 Other methods to improve vision system robustness

Depending on the application, feature recognition can be the most effective method of improving the

robustness of a vision-based system. With varying lighting conditions, the segmentation of the image

will experience some variation and unpredictability. As demonstrated by Gönner et al. (2005), a

8

combination of colour segmentation and shape/feature detection resulted in highly effective object

recognition. Their research was limited by the hardware (933 MHz Pentium III processor), as they were

only able to process on average one image of 379 × 262 pixels in 33.84 milliseconds. Additionally, the

recalibration, to remap the colour segmentation parameters and more effectively identify the object,

took from 51 to 79 milliseconds, which, when low latency is important, is a very long time. With more

powerful hardware, however, these numbers could be reduced significantly.

The work of Tsutsui, Nakamura, Hashimoto, Okuhata, and Onoye (2010) showed some potential; the

authors implemented a real time FPGA based system which performed image enhancement, using the

Retinex algorithm, on video stream of 1920 × 1080 resolution at 60 frames per second. This could

potentially be implemented in the semi-automated foosball vision system to provide a more accurate

output image to ensure correct segmentation.

 Spatial calibration

In a robotic control system where a camera is used as the measurement system, the camera space

needs to be calibrated such that the robotic actuators match the spatial coordinates and units of

measurement of the camera or vice versa. In camera-based systems, an additional problem arises in

which not only are the camera space and robot workspace initially uncalibrated, but the image is also

distorted in some way. A common distortion is radial distortion.

In the case of the foosball table used in this research, the camera views the playing field from below.

The wide view angle required by the camera necessitates the use of a wide-angle lens. This results in a

radially distorted image. This distortion needs to be corrected to ensure accurate object coordinates are

obtained by the vision system.

Weigel (2005) discuss their method of calibrating the camera space to correct for radial (barrel)

distortion in their semi-automated foosball table, where the authors used the following truncated Taylor

series representation:

 𝑟 = 𝑟′ + 𝛼𝑟′3 (1)

Where the 𝑟 and 𝑟′ terms are the corrected and uncorrected radii, respectively, about the centre of

distortion. Some models also include tangential distortion terms, which shift the centre of distortion

away from the image centre which would, depending on the system, normally be located at (𝑥, 𝑦) =

(
𝐼𝑀𝑤𝑖𝑑𝑡ℎ

2
,

𝐼𝑀ℎ𝑒𝑖𝑔ℎ𝑡

2
). The image centre is not always the centre of distortion however as has been shown

by (Willson & Shafer, 1994).

The 𝛼 term in equation (1) is an empirically derived scalar constant. In equation (1) including more

terms results in lower residuals, however for most lenses which only introduce mild distortion, 1 to 2

terms is usually enough.

9

This approximation shown in equation (1) was used by Weigel (2005) to correct for the camera lens

distortion. This is a common method and has also been implemented in the past by (Bailey, 2002;

Gribbon, Johnston, & Bailey, 2003; Ngo & Asari, 2005) as well as many others.

In a mapping function with a single scalar term, such as equation (1), determining the value of the scalar

constant is trivial. However, in polynomials with more terms such as the following equation, an

optimisation loop is the most effective method to determine the constants.

 𝑟 = 𝑟′ (1 + (𝐾1(𝑟′2)) + (𝐾2(𝑟′4)) + (𝐾3(𝑟′6))) (2)

The process of finding terms 𝐾1, 𝐾2 and 𝐾3 would be very time consuming if calculated manually (brute

force), and therefore an iterative non-linear optimisation algorithm such as the Levenberg-Marquardt

algorithm would be the most effective way to determine the coefficients (Zelnik-Manor & Irani, 1996).

A calibration grid can be used to acquire an adequate number of measured points in the distorted

image, and using those points, the mapping function in equation (2) can be used to correct the

distortion with estimated initial values of the coefficients. The algorithm then compares the calculated

points on the calibration grid with expected positions. The coefficients are then iteratively modified to

minimise the observed error until convergence (minimised error) is achieved. Given that subpixel

accuracy is not required for the semi-automated foosball table, this method should yield sufficiently

accurate distortion correction with a small number of iterations.

Another method is a non-parametric model based method where the ball position is calculated using an

empirically pre-determined map, and interpolating between points on the map with known distortion to

determine the true position of the ball. Barreto, Swaminathan, and Roquette (2007) implemented a two

stage non-parametric barrel distortion correction method for correcting distortion in endoscopic

imaging systems with results surpassing the conventional methods in terms of “goodness of fit”,

however their method required a calibration grid to define the distortion map, which in some systems is

not practical or necessary.

(Nister, Stewenius, & Grossmann, 2005) devised a method of camera self-calibration based on what

they called “motion” in the image, however this seemed to be aimed at images with irregular distortions

in the image and is, therefore, more complex than necessary for the application of barrel distortion

correction, where a simple 3rd or 5th order polynomial is usually sufficient.

Several methods of lens calibration are possible, and once again the selected method depends on

system performance requirements such as precision, accuracy, and vision system timing constraints.

 Trajectory prediction and state estimation techniques

With high-speed interception required by the semi-automated foosball table, one method to

compensate for unavoidable system latency that cannot be minimised by hardware and software

10

efficiency optimisations is to implement some predictive calculation which uses previous states of the

object to predict future states, and thus aid the system in interception.

This section will discuss several works on predicting the trajectories of flying, spinning, bouncing, and

rolling objects. In the context of automated foosball, some of them are more important than others.

Flying objects are not as important as rolling, spinning or bouncing, however they have still been

considered as they present a complex control problem in terms of interception.

One of the most common methods of trajectory prediction or estimation is to use Kalman filters

(Brookner, 1998). There are many different types of Kalman filter and many different applications. For

example Prevost, Desbiens, and Gagnon (2007) used Kalman filters for state estimation and trajectory

prediction of moving objects using UAVs. Rosales and Sclaroff (1998) used an Extended Kalman Filter for

predicting the trajectory and future position of moving humans using their current positions and

velocities, and Z. Jing and Sclaroff (2003) later improved this work to more effectively segment moving

human targets (foreground) from varying, textured backgrounds. Pistohl, Ball, Schulze-Bonhage,

Aertsen, and Mehring (2008) used a Kalman filter to predict the trajectory of human hands for use in a

brain-machine interface for control of a cursor in paralysed patients, and finally Singer (1970) used

Kalman filters for tracking and motion prediction of many different types of military vehicles.

In the context of robotic control, Kalman filters have been used by several authors including (Frese et al.,

2001) for a robotic ball catching robot using stereo-vision and a PC running some pre-calibrated

algorithms, and (Weigel, 2005) who used Kalman filtering in their semi-automated foosball table for

trajectory prediction of the ball.

Some variations or extensions of Kalman filters include particle swarm filters, Markov Chain Monte Carlo

(L. Jing & Vadakkepat, 2010), Interacting Multiple Model (Janssen et al., 2012), and several others. Many

of these have limitations such as high complexity or long convergence time (around 150 ms on a 3 GHz

Pentium IV processor) as demonstrated by L. Jing and Vadakkepat (2010) with their interacting MCMC

particle filter for tracking of manoeuvering objects. Ramakoti, Vinay, and Jatoth (2009) and Xia and

Ludwig (2016) use particle swarm optimisation (PSO) techniques to aid Kalman filters in tracking objects

in a video stream. The complexity and computational requirements of these methods do, however,

appear to limit their functionality in real-time applications.

Cigliano, Lippiello, Ruggiero, and Siciliano (2015) implemented an eye-in-hand ball catching robot which

caught 98% of flying and rolling balls, and 89% of bouncing balls. The authors believe their rebound

model was the reason for the lower proportion of caught balls in the bouncing case. In this research the

authors used a camera operating at 140 FPS, with a resolution of 512 × 368 pixels. The camera was

mounted in the hand of their articulated robot arm which performed the movement and interception of

the ball. The camera observed the ball for its entire flight time.

11

de la Malla and Lopez-Moliner (2015) discuss the role of prediction versus online vision for interception

of a ball by humans. Prediction, as the name implies, involves estimating where the ball will go based on

previous observation of the ball’s path. Online vision is the continuous observation of the ball’s position

and matching the position of the interception apparatus (the hand in the case of humans catching a ball)

to the ball’s position. Trials were performed by a human interacting with a data capture device called

CyberGlove which captured finger positions at 100 Hz. A visual stimulus of a ball being launched in a

fixed parabolic motion was created, and then projected stereoscopically for the participants to observe.

Their findings indicated that both predictive and online vision were utilised in human vision for effective

interception of the flying ball.

In sophisticated systems, such as the human limbic system, predictive mechanisms and online vision

work in tandem (Wolpert & Flanagan, 2001). Prediction may guide us as to the rough interception point

of the ball, while online vision may help us narrow the interception window sufficiently that we can

catch the ball. This seems like a reasonable method to adopt for high-speed ball interception in a semi-

automated foosball table. As mentioned by Wolpert and Flanagan (2001), the human predictive models

need to be continuously updated, however so this should be considered in the design.

2.4. Image and signal processing on FPGA

Arguably the most important element in a computer vision-based control system is the vision system. In

order to achieve high speed control, a high-performance image processing platform must be used. A

popular method for high performance image processing is to use a Field Programmable Gate Array

(FPGA) (Bailey, 2011; Johnston et al., 2004).

The use of FPGAs for image and signal processing is quite well developed, and this is one of the

recommended applications for FPGAs given by FPGA chip manufacturer Intel (Intel, 2018). However,

some background will be given regarding the benefits of using FPGA rather than conventional image

processing hardware such as desktop CPUs, GPUs or ASIC hardware. Additionally, a brief introduction to

the fundamental theory of software and hardware-based image processing will be presented.

 Software and hardware-based image processing

Most modern image sensors are either CCD (charge coupled device) or CMOS (complementary metal

oxide semiconductor), however in machine vision applications, CMOS has some advantages over CCD

such as the ability to be integrated into the same die for low cost of manufacture (Rowe, Rosenberg, &

Nourbakhsh, 2002), and higher framerates (El-Desouki et al., 2009). These image sensors are used in

image capture devices such as cameras, which are then connected to a processing unit, which performs

the image processing operations.

A digital colour image such as that captured using a CCD or CMOS sensor is an array of light intensity

values with a fixed data width (for example 8 – 12 bits per channel) which have passed through a colour

12

filter. Usually a red, green, blue (RGB) colour filter is used. 8-bit RGB in Bayer pattern format is a

common configuration for CMOS and CCD sensors in robot vision (Gamal & Eltoukhy, 2005).

One 8-bit image of 640 × 480 pixels has 307,200 total pixels, each with either red, green or blue 8-bit

intensity value. Each pixel provides an intensity value for one of the three channels – red, green or blue.

An 8-bit image is converted from Bayer pattern format to a true 24-bit image using demosaicing via

Bayer interpolation, however this is only done after the image is captured and transferred to the

processing unit. After image transfer and demosaicing, the image is usually transformed into a different

colour space for more convenient colour segmentation. The image is then filtered (segmented)

according to the application requirements, and the required information (centroids, histogram, image

entropy, etc) is output.

In most software-based image processing systems, the data is received from the camera via USB or

Ethernet, stored in RAM and then accessed by a software application sequentially as the pixel values are

needed for processing. The processing operations in software-based image processing applications is

performed according to the following cycle - Figure 2-1:

Figure 2-1 - Cycle diagram representing algorithmic image processing

In FPGA image processing, the most common arrangement is to stream the image data from the CMOS

or CCD sensor via a parallel interface (typically at a rate of one pixel per clock cycle). As this data is

received, the image data is streamed directly to hardware blocks implementing the processing

operations. Operations are performed on the pixel data on-the-fly, without having to store the entire

image in RAM before accessing it. Pipelining the process hugely reduces latency as the read/write

operations are a large contributor to the total time taken by software-based image processing

operations. The following block diagram represents the image processing data flow in an FPGA based

system:

Camera
Image

capture

RAM

RAM access for
next pixel data

CPU performs
operations

Data written to
RAM

13

Figure 2-2 -Streamed image processing in FPGA hardware

With pipelined stream processing, data is continuously fed through the image processing operations. If

local data is required, the required pixels are cached locally (in row buffers) using distributed RAM. Each

operation runs in parallel with data streamed between operations at a constant rate. Using this method,

operations can start their processing as soon as pixels start arriving; it is not necessary to wait until the

previous operation has completed processing the whole image. This, combined with the reduced

memory overhead significantly reduces latency, compared to software-based implementations.

 Performance improvements

High performance in terms of framerate and latency is required if the vision system is to be used in a

control system. Image processing on an FPGA can yield performance improvements of one to two

orders of magnitude compared to CPUs and approximately double that of GPUs, for applications like 2D

filters, stereo vision and K-means clustering (Asano, Maruyama, & Yamaguchi, 2009). Due to improved

instruction efficiency, which the authors define as the level of pipelining and parallelism capabilities,

FPGAs can achieve much higher performance than CPUs in benchmarks such as Prewitt edge detection,

wavelet transform, and maximum filter (Guo, Najjar, Vahid, & Vissers, 2004). In a recent paper, (Safaei,

Wu, & Yang, 2018) achieved an order of magnitude improvement using an SoC FPGA, versus a 3.4 GHz

CPU running 16 threads for a background/foreground subtraction application. (Leeser, Miller, & Haiqian,

2004) discuss an implementation of stream-processing image data using an FPGA, with very low

latencies – minimum of 250 microseconds for the first result of the filtering operations. The latency will

vary depending on where the object appears in the image space, however. (Leeser et al., 2004) obtained

a performance improvement of around 50 times for retinal vascular tracing and 20 times for particle

image velocimetry, when compared with software implementations on a 2.6 GHz Xeon processor and a

1.5 GHz Xeon processor respectively.

In an industrial control problem involving an electrical drive system, the FPGA realisation was able to

perform the execution of the control algorithm in roughly one quarter the time of a dedicated DSP

controller (Monmasson & Cirstea, 2007).

All of these performance improvements indicate that FPGAs present a huge opportunity to replace CPUs

or DSPs in computationally expensive tasks where parallelism can be exploited. Image processing in the

context of robotic control is a perfect example of this.

Camera
Image stream
from camera

Processing
operations

Processing
Output

data

Row

buffer

14

 Power consumption and embedded capabilities

Usually, high computational power is achieved at the cost of power efficiency. High performance CPU

based computers generally consume large amounts of power, meaning that they are less suitable for

embedded systems with either low overall power delivery capability, or limited power supply where the

system is battery powered for instance. Therefore, a lower power computational unit with high

performance capability is required. A key benefit of using FPGAs is their lower power consumption in

signal and image processing, compared to competing platforms such as CPUs and GPUs. Low power

consumption of the processing unit may enable high performance vision and signal processing to be

implemented in embedded systems with limited power supply capacity.

Using an FPGA, high levels of performance can be achieved with as little as a 100 mW of power (García

et al., 2014). As demonstrated by (Thomas, Howes, & Luk, 2009), in terms of random number

generation, “the FPGA provides an order of magnitude more performance per joule than any other

platform, and over 250 times that of the CPU”.

(Putnam et al., 2014) show that “a medium-scale deployment of FPGAs can increase ranking throughput

in a production search infrastructure by 95% at comparable latency to a software-only solution. The

added FPGA compute boards only increased power consumption by 10% . . . yielding a significant overall

improvement in system efficiency”. System efficiency was defined as performance per joule of energy

and was relative to other tested systems in the paper.

Given the low power consumption, and high performance of FPGAs they represent an ideal embedded

processor. Honegger, Oleynikova, and Pollefeys (2014) implemented a stereo vision system performing

disparity estimation on images of 752 × 480 pixels at 60 frames per second, all at a total power draw of

5 W. This is remarkably low, considering the high volume of data being captured and processed by the

system.

Safaei et al. (2018) present a system based on a Zync-7000 SoC which separates the background from

foreground of images with processing time of 0.96 s, a total cycle time of 4.18 ms and a data processing

rate of 9,460 MB/s (26.2 GOPS). The total system power consumption was 1.747 W.

As new FPGAs come to the market, their power and performance characteristics continue to improve

(Putnam et al., 2014). Overall, FPGAs provide extreme levels of performance without the power

premium generally faced by serial processor architectures. Therefore, FPGAs represent an ideal low

power embedded processor where high performance is required.

 Programming and reconfigurability

A key advantage of FPGAs is that the designs contained within the chips are completely reconfigurable.

This means that one FPGA chip can be used for a multitude of different applications. During the design

process, the overall function of the chip can be completely changed which offers a lot of versatility. This

high level of reconfigurability does come at some cost of programming complexity, which requires

15

modern synthesis tools to compensate for the high level of reconfigurability (Meeus, Van Beeck,

Goedemé, Meel, & Stroobandt, 2012). Programming FPGAs requires a different way of thinking

compared to algorithmic languages such as C (Mealy & Tappero, 2016). A hardware description

language (HDL), such as VHDL, is used to describe hardware; this means that the resulting design is

circuitry, rather than an algorithm which executes in sequential order. The timing in software is implicit

in the sense that one function executes after the other. In HDLs, everything is concurrent, and timing

and execution must be explicitly specified (Edwards, 2006), otherwise timing issues arise. Finally,

debugging hardware designs is more difficult than software, despite the simulation tools that exist

(Graham, 2001). Overall, hardware design requires a fundamentally different approach to algorithmic

style of programming, and thus, is off-putting to some engineers who are unfamiliar with HDLs

(Monmasson & Cirstea, 2007).

Difficulty in programming should not be of concern as there are many examples of difficulty in

programming image processing algorithms on CPU or GPU (Asano et al., 2009). Additionally, “the

reduction of the execution time of an algorithm in the case of a DSP implementation is only obtained by

a long work of optimization of the corresponding assembler code. Such an optimization is no less

consuming in terms of development time than the time needed for the design of an efficient

architecture” (Monmasson & Cirstea, 2007).

Much improvement has occurred in the field of microcontrollers in terms of integrated development

environments (IDEs), debugging, compiler efficiency and more. If similar effort is put into the

development of programming and using FPGA technology, many of the current disadvantages of FPGA

usage (long development cycle, expensive, conceptually difficult) could be significantly reduced

(Monmasson & Cirstea, 2007; Putnam et al., 2014).

2.5. Actuator control and sensing on FPGA

Actuation and sensing are both very important in any control system. High speed and low latency are

required in both actuation tasks and sensing in a high-speed control system. Therefore, a compute

platform capable of performing the sensing and actuation tasks satisfying the timing and precision

requirements of the control system is necessary.

While not as common as image and signal processing, actuator control in FPGA is an interesting

application. Pratt, Willisson, Bolton, and Hofman (2004) discuss an FPGA based controller which inspects

Hall effect sensor data and various other data, such as from a large number of analogue to digital (A/D)

and digital to analogue (D/A) converters within a robot joint control system and performs actuator

position control with a 1 KHz update rate. The controller was interfaced to a computer with a 400 Mbit/s

bandwidth. The concurrent processing of the FPGA enabled all the data to be processed with minimal

latency.

Tanaka et al. (2009) demonstrated the performance of a Xilinx Vertex-II Pro FPGA based PCI card in the

control of a master-slave surgical robot with 12 degrees of freedom (DOF), where the control latency

16

was around 30 microseconds from master input to slave output. This meant that the time elapsed from

the human operator performing an action to the robot initiating the mimicked movement was 30

microseconds.

Christopherson, Pickell, Koller, Kannan, and Johnson (2004) implemented a system where an FPGA is

interfaced to a DSP via a 32-bit, 250 Mbit/s interface to control an unmanned helicopter (GTmax

Research UAV) and a small, ducted fan UAV. In the GTmax, the FPGA was unable to outperform the

previous software implementation due to the authors’ use of an inferior GPS system which provided less

accurate results than the unit provided with the GTmax from the factory, and therefore yielded higher

control error. Despite the faster control loop achieved by the FPGA based system, the poorer quality

GPS data resulted in greater error. The control system was, however, deemed adequate for the ducted

fan UAV.

FPGA technology has improved dramatically since much of this research was published with modern

SoCs achieving higher performance, greater FPGA-HPS communication bandwidth, lower power

consumption, and greater FPGA resource availability. Additionally, tools for high-level synthesis have

also been significantly improved (Meeus et al., 2012), and will likely continue to improve as more

developers adopt the technology. These factors make FPGAs an ideal candidate for applications in high-

speed control where numerous actuators and sensors are involved.

2.6. Conclusions

For the control of a high-speed vision-based system, in the context of the semi-automated foosball

table, sufficiently powerful hardware is required to receive image data from a low-latency image

capture device. The image must be calibrated such that the distortion introduced by the lens is removed

(either before or after image processing operations). The image must be processed in such a way that

the correct information is obtained – the ball x and y coordinates. Finally, the ball location information

must be used in such a way that maximises the possible interception performance of the available

mechanical system. The more latency that is removed from these processes, the higher the theoretical

performance limit for the vision-based control system.

17

3. System overview, requirements and high-level architecture

This chapter will present the system performance and development requirements, as well as all the

potential methods to meet the requirements based on the findings of the previous chapter. Finally, the

high-level architecture of the complete system used for the development of high-speed vision-based

control will be presented.

3.1. Temporal and spatial resolution requirements – Camera parameters

The temporal resolution required for the vision system must be sufficiently high that when the ball has

been kicked by a human player, it can obtain 2 or more measurements (frames) of the ball’s position

before the ball reaches the module performing the intercept. The table playing field is 1200 mm in

length and 693 mm in width.

Figure 3-1 represents a typical frame capture scenario with the ball being kicked straight forwards by

one of the human opposition’s foosmen. In Figure 3-1, 𝑥1 𝑥2 and 𝑥3 denote individual frames captured,

overlaid on top of each other, with 𝑥0 being the rod which performed the kick. In 𝑥1, the ball’s velocity is

unknown. It may have just been kicked or it may still be stationary. In frame 𝑥2, we have frame 𝑥1 as a

reference of its previous position. So frame 𝑥2 gives us an initial estimate of the ball’s velocity, however

in frame 𝑥1 the ball may have still been in contact with the foosman, or the kick may have occurred

between frames 𝑥1 and 𝑥2, therefore frames 𝑥2 and 𝑥3 are the frames required to perform the velocity

and trajectory calculation, while frames 𝑥1 𝑥2 and 𝑥3 can all be used for the heading calculation. This is

an important consideration for the required temporal precision.

18

Figure 3-1 - Representation of ball motion blur on foosball table – birds-eye view with foosmen hidden from view

At a maximum speed of approximately 10m/s (10,000mm/s) it takes just over one tenth of a second for

the ball to travel from one end of the table to the other, if the ball is travelling at maximum velocity. A

camera capturing 60 FPS, for example, would capture 7 frames in that time. However, the ball only has a

maximum of around 900mm of travel from the first rod to the opposing team’s goal. This means that a

60 FPS camera can capture around 4 or 5 useful frames in that distance. Therefore, the minimum

camera framerate is 60 FPS, however a higher framerate is preferred if there is no detriment to other

system performance attributes.

In terms of spatial precision, the foosball ball is approximately 35mm in diameter and the foosball table

playing area is 1200 by 693 mm. If the image, at a resolution of 1024 × 768, is perfectly occupied by the

table playing area, this would mean that each pixel corresponds to approximately 1mm. However, the

image window does not perfectly align with both edges of the playing field as is shown in Figure 3-2. The

aspect ratio of the playing field is approximately 7:4. The camera is constrained to a 4:3 aspect ratio due

to the display input resolution requirements. The horizontal axis of the foosball table playing field has

been fitted as closely as possible to the camera’s image width to maximise the number of pixels

available for detection of the ball.

𝑥0 𝑥1 𝑥2 𝑥3

19

Figure 3-2 - Foosball playing field captured from below, using the DE1-SoC and D5M camera

From captured images of the playing field, the ball is, on average, 30 pixels in diameter, however some

edge pixels will not be perfectly detected by the image processing algorithm, due to colour

segmentation limitations.

By increasing the pixel density (the overall resolution at which the field space is captured) the number of

pixels can be increased, which increases the accuracy with which the ball location is measured. Other

authors who implemented object tracking systems have used camera resolutions such as 657 × 446

(Janssen et al., 2012), 384 × 288 (Weigel, 2005), or DVS resolutions of around 128 × 128 with highly

structured or plain background conditions (Delbruck & Lang, 2013). Given that an increased number of

total pixels increases latency for a given image transfer bandwidth, a resolution of 1024 × 768 pixels was

selected. This resolution offered high precision and successfully fit the playing field into the image

window (discussed further in later sections), while maintaining low latency and achieving the desired

framerate.

At a resolution of 1024 × 768, the precision achieved is more than enough to calculate the position of

the ball to an accuracy of 1 mm. The accuracy obtained using 640 by 480 resolution would also be

sufficient, provided the image window can capture the entire playing field. Therefore, the minimum

required resolution is 640 by 480, and ball position detection to the nearest mm.

3.2. System response

System response is defined as the time from measurement system input to robot actuation execution.

In the case of the foosball table, this would be the time between the ball having moved to a new

location, that location to be captured by the computer vision measurement system, an output to be

transacted by the FPGA, and then the foosman moved to the required interception position. Figure 3-3

represents the typical dataflow involved in one cycle.

20

Figure 3-3 - One cycle of image capture through to system actuation response

From the above processes the following latencies are present:

1. Image capture latency

2. Image transfer latency

3. Data transfer latency – between processors

4. Processing latency

5. Actuation latency

6. Any latencies caused by an operating system running in the background

In order to achieve effective control, the overall system response time must be minimised. Each of the

above latencies must therefore be minimised as much as is practically possible. The choice of hardware

was therefore made on this basis.

3.3. Interception performance

For effective defence in a competitive game of foosball, a high proportion of successful interception is

required for sub-maximal speed kick speeds. The goal for this work is therefore to achieve a 100%

interception ability for straight shots (no angle) at sub-maximal kick speeds. This interception criteria is

for each individual rod.

For shots with non-zero heading angle, relative to the length axis of the foosball table, a lower

interception ability is required because using a highly effective interception strategy for each rod, their

interception performance should compound. If one rod misses an interception, the subsequent rod(s) in

the ball’s path can attempt to intercept the ball. Therefore, only the straight-shot (zero heading angle

relative to length axis) will be measured.

Receive Image
Input

•Ball moves

•Camera obtains new frame of data (sequentially due to rolling shutter)

•Vision system performs preprocessing

•Vision system outputs object coordinates to strategy processor

Perform trajectory
and strategy

•Strategy processor performs lens calibration, pixel mapping and trajectory calculations

•Strategy processor calculates required actuation profile - stepper motor distance and
direction to travel

•Actuation profile is sent to actuation processor

Perform actuation

•Actuation processor performs tasks according to the actuation profile received from
strategy processor

21

3.4. Power consumption

This research was partially focussed on enabling high performance computer vision in embedded

applications. Power consumption was therefore a consideration for the processing component of the

system.

In embedded systems, mains electricity is generally not the source of power for the system. Therefore,

the compute unit must consume sufficiently low power to be powered by a battery. In embedded

robotics, lithium-ion or lithium-polymer batteries are generally the preferred method of powering the

robot or system. In the literature, a typical embedded image capture and processing power

consumption of between 3 W (Fowers et al., 2007) and 5 W, was achieved (Honegger et al., 2014) and

(Barry, Oleynikova, Honegger, Pollefeys, & Tedrake, 2015) all using FPGA based systems. Power

consumption of 20 W was achieved using an ARM based “pushbroom” system (Barry et al., 2015). These

power consumption values are for the image capture and image processing systems in the embedded

applications only. Several other authors such as (Maxim & Zidek, 2012) and (Christopherson et al., 2004)

report low power consumption for their image capture and processing systems, however they do not

provide exact power draw figures. Although this is less of an issue for the mains powered semi-

automated foosball table, it was nevertheless considered for this system.

Based on this, a maximum power draw of 20 W or less was specified for the entire compute system

including image capture hardware, processor cores and peripherals.

3.5. Modularity and versatility

Reusability of code and of designs within FPGA is a very important method to improve efficiency of

developing FPGA based solutions. Writing VHDL code in a modular, reusable way is important to enable

efficient scaling or adaptation of one design to suit another application.

The importance of modular design cannot be stressed enough for VHDL as it is a key factor in what

makes FPGA a powerful tool. For example, one can write a piece of VHDL code to perform some

function (for example actuator control) within the architecture of the top-level entity; this is somewhat

equivalent to the main loop in a C program. This is an acceptable thing to do from a language

perspective, however if that same piece of code was created as a standalone module, it could then be

instantiated multiple times, to perform multiple instances of the same function; much like declaring a

function in a C program. This takes advantage of the inherent parallelism of FPGA, where the number of

instantiations of these reusable modules that can be used in a design is limited only by FPGA resources

and I/O. In many designs, the resources available will far exceed the resources required. This indicates

that FPGA enables fairly easy scaling of designs.

In the context of robotics, automation, embedded systems and other applications, this is an extremely

useful tool. In many embedded systems, the design requirements change throughout the project. The

22

ability to reuse modules or simply add more of them to the design is extremely useful, especially for

things like actuator control, I/O, and communication interfaces.

A useful tool developed by Intel for FPGA development is the Qsys tool, which is part of the Quartus

software package. Qsys enables creation of various IP based code using a GUI to represent all the

connections and IP components within that design. Reusability of designs is greatly increased when the

designs are created using Qsys. The use of this tool will be discussed in later sections.

Parameterisation of actuator control modules is required so that this actuator framework can be

adapted to work with a variety of actuators. Given that the module is designed to control stepper

motors, the acceleration, maximum speed, and deceleration characteristics of the motors should be

easily adjustable such that any stepper motor can be substituted, and the motor control modules easily

tuned to work effectively with the new motor.

Finally, the motor control code should be written such that transferring from one FPGA to another is a

simple process of assigning new pins for clock, reset, IO and communication bus. The HPS is not required

for control of stepper motors as it is a fully hardware-based operation, therefore it is not included in this

requirement. Additionally, a Nios II soft core can replace the functionality of the HPS, provided a slightly

lower level of performance is tolerable for the design.

3.6. Minimal latency from distribution of processes

In some early work, (Andersson, 1990) used custom hardware and communication interfaces in a stereo

vision-based system to minimise system latency in a robot control application, mitigating the effect of

their distributed system. They reported an overall control system response time of 32.2 ms.

As was seen in some cases in the literature, distribution of the design resulted in communication

latencies compounding in the systems, decreasing overall responsiveness (Čížek, Faigl, & Masri, 2016).

The authors discuss vision-based navigation systems utilising different image processing hardware. One

key observation is the variation in the 𝑇𝑠𝑦𝑠 latency value reported for different systems. 𝑇𝑠𝑦𝑠 is defined

as the latency caused by the operating system being used, including things like scheduling,

communication and data transfers. Figure 3-4 shows the different proportions of the total latency

caused by 𝑇𝑠𝑦𝑠 – the red parts of the bar chart.

23

Figure 3-4 - Latencies present in systems tested by Čížek et al. 2016

As can be seen in Figure 3-4, the core i7, core i5 and ARM based systems all show a very high proportion

of system latency, 𝑇𝑠𝑦𝑠 , relative to total latency. One reason for this is that these systems are all subject

to communication delays, because the systems are distributed. 𝑇𝑠𝑦𝑠 in the FPGA based systems is much

lower, both proportionally and overall. An interesting observation is that the FPGA-SPS system with the

soft processor core implementation has lower system latency than the FPGA-HPS using the hard

processor core. This is likely because the soft cores are implemented in FPGA logic, enabling much more

efficient communication between the FPGA and the soft core. The FPGA-HPS system must transfer data

between the FPGA and HPS over some communication interface (over several clock cycles), thus

increasing system latency. However, given the much higher performance of the HPS, the FPGA-HPS

system still provided the lowest overall latency.

Figure 3-5 represents the data path within a distributed, CPU based system, demonstrating the sources

of latency generally found in distributed systems.

Figure 3-5 - Flowchart representing the data flow, communication, and data transfers in distributed PC based system

As can be seen in Figure 3-5, there are several instances where, given a sub-optimal communication or

data transfer protocols, significant latency may compound in the system. These instances are the image

data transfer, RAM read/write operations, and the transfer of actuation commands to the controllers.

Each of these transfers take time and occur sequentially, therefore adding latency to the overall system

pipeline, and reducing system responsiveness.

Image
capture

Image
data

transfer

Write
image
data to

RAM

Read
image
data
from
RAM

Image
processing
operations

Write
outputs

Calculate
required
actuation

Transfer
actuation

commands
to controller

Controller
performs

commands

Processing latency Communication latency Read/write latency

24

Based on these observations, a strict requirement for this system was to either minimise distribution of

processing operations, process data at the source to reduce the volume of data that needs to be

transferred, or to use a communication interface with low enough latency to not adversely impact

system performance. A combination of these is also possible.

3.7. Reconfigurability

As was stated previously, reusability of code is important to enable simple scaling of the design.

However, reconfigurability is also very important in the design of vision-based control systems.

Reconfigurability is the ability to change the function of the hardware at a lower level than changing the

code running on the hardware as is done with CPU based systems. A desktop computer or

microcontroller represent systems with low reconfigurability. The internal logic and memory elements

of the processors in these systems cannot be changed easily.

Reconfigurability is the enabling mechanism to achieve scalability or adaptability of a design. Therefore,

the hardware used must be reconfigurable. An FPGA meets this requirement perfectly. The ability to

completely change the function of the design without physically changing any components of the FPGA

based system is the essence of its versatility.

Microcontrollers and CPUs are reconfigurable in the sense that the code they run can be changed.

However, fixed attributes such as the number of hardware timers, or the processor data width cannot

be changed without physical hardware changes. Additionally, resources like hardware timers that are

not used in a design cannot be reconfigured for other purposes, or if the processor data width is surplus

to requirements, it cannot be decreased in software to improve efficiency or minimise resource

consumption, to free up resources for scaling of other aspects of the design.

3.8. Debuggability/traceability

In order to make the system easy to debug and improve the development experience, some traceability

features are imperative to the design. These are as follows:

1. Real-time output of the image on a screen

This is the most effective method of debugging a vision system in real time. Without a real-time display

of what the vision system is ‘seeing’, it is very difficult to determine the cause of problems.

2. Real-time output of the segmented object (tracked object) on the screen overlaid

In colour segmentation, it is very useful to see the pixels that have been “accepted” by the

segmentation algorithm, also in real time, overlaid over the main image stream. This is so that if lighting

parameters change or some other variation causes the colour segmentation algorithm to fail it is easy to

detect the symptom and potentially the cause as well.

3. Simulation debugging of FPGA design

25

Debugging FPGA is typically quite difficult as it is hardware all running concurrently so detecting the

source of problems can be a challenge as the algorithmic style of debugging (for example the use of

breakpoints) is not applicable in FPGA. Simulation of hardware generally takes care of this; however it

can still be more difficult or time consuming than with microcontrollers.

Hardware level simulation is also very slow, because the computer must simulate all the concurrent

hardware interactions. This is particularly noticeable for image processing where many hundreds of

thousands of clock cycles are required to process an image.

4. Source level debugging of the HPS C code, memory and registers

As with most embedded systems running microcontrollers, source level debugging is necessary. The fact

that source level debugging is ubiquitous means that its necessity need not be justified.

5. Master access to the FPGA-HPS and HPS-FPGA bridges

A key technology utilised by some authors is a high-bandwidth communication interface between the

FPGA and the ARM core. This interface is very powerful, however master access is required if it is to be

utilised properly. This means access to registers and mastering transactions from a host PC is required

for proper development.

6. A communication interface into the FPGA to provide debugging commands and debugging

outputs to the user

Like any microcontroller application, user input into the system and simple diagnostic user output is

required. This is obviously extremely important.

7. Soft and hard resets into the FPGA, HPS and image acquisition hardware

Once again, this is an important feature in any system. The soft resets are useful for simple debugging

and the hard resets are necessary for global reset of all variables, logic elements and processors,

returning the system to a rebooted state without needing to turn off mains power.

3.9. Potential methods to achieve outcomes

Based on the literature, there are many different technologies, algorithms, methods and configurations

possible for the problem of low latency control of a robotic system utilising computer vision as the main

sensor. Each technology and configuration of the surrounding algorithms and methods have their

individual advantages and disadvantages. The following section will discuss some relevant

configurations of the available technologies to address the problem of high-speed, low-latency robotic

control with computer vision as the measurement system, as well as some of their limitations. Finally,

the proposed method will be outlined and discussed with regard to how it can meet the requirements

laid out in the previous section.

26

 CPU or GPU based systems

One popular method to achieve high speed image processing-based control systems is with a distributed

control platform where a standard computer running Windows, Linux or Mac is the compute unit

performing the image processing algorithms on its CPU and/or GPU. Several authors have used this

general approach method (Asfour et al., 2006; Behnke, Egorova, Gloye, Rojas, & Simon, 2004; Cigliano

et al., 2015; Delbruck & Lang, 2013; Janssen et al., 2010; Padon, 2003; Weigel, 2005).

Another option is to use a microcontroller or microprocessor as was done by (Barry et al., 2015) who

tested and compared two realisations of autonomous obstacle avoidance systems using stereo vision.

The first system was an ARM only system termed “pushbroom”. The ARM processor was responsible for

the image capture, image processing and the flight dynamics and control.

Several variations of the general CPU based framework are possible including (but not limited to) the

variations shown in Figure 3-6.

Figure 3-6 - Possible configurations of PC based image capture and actuator control systems

Figure 3-6 represents eight possible combinations of PC based systems. Variations of image transfer

protocol, image processing hardware, and actuator control methodology are possible.

While some authors who used these systems have achieved low image processing latency, or even low

overall measurement system latency, they all still involve the following problems:

1. The actuator control on all these systems is still performed by a separate control unit which

must communicate with the compute unit.

2. The systems all require sequential transfer of image data and writing of image data to system

memory, before any image processing operations can be performed.

3. PC’s generally have very high-power consumption per unit performance, compared to other

available technologies

4. PCs which are powerful enough to perform high-speed image processing are not very portable

or capable of being an embedded processing unit. This is generally because PCs capable of such

tasks usually contain powerful CPUs and GPUs. These consume large amounts of electricity and

generate excessive heat.

Image
capture

-

Standalone
camera

Image transfer

-

USB

OR

Ethernet

Image processing

-

CPU

OR

GPU

Actuator control

-

Dedicated card

OR
Microcontroller

27

 ASIC or custom hardware

Many different works include custom hardware to achieve low latency control of robotics. These works

include the use of dynamic vision sensors (DVS), custom chip arrays, in-house manufactured circuit

boards containing microcontroller chips or other processing hardware, and other non-off-the-shelf

solutions.

DVS sensors have been used for low latency control or feedback by several different authors. These

include robotic pole balancing (Conradt, Berner, Cook, & Delbruck, 2009), a low latency, low CPU usage

robotic goalie (Delbruck & Lang, 2013), low latency object localisation (Censi, Strubel, Brandli, Delbruck,

& Scaramuzza, 2013), and micro-robotic haptic feedback (Ni, Bolopion, Agnus, Benosman, & Regnier,

2012). DVS sensors will likely improve in the future because of the unique benefits they offer, such as

extremely low latencies. However, they are still generally low-resolution and are better suited to highly

structured environments where the only moving target is the object being tracked and the lighting is

carefully controlled.

Another option for parallelised image processing in a robotic control application is to use a

programmable array of processors such as a massively parallel processor array or a custom designed

board with numerous DSP chips or high-performance microprocessors such as the ARM range. Micro-

processors offer high performance per unit power, 𝑊, or chip area, 𝑚𝑚2. This can yield quite good

performance as was shown by Andersson (1990) where the author used a custom compute platform

based on what they called the TRIAX (an image processing platform) for stereo vision capture and pre-

processing, and a 20MFLOPS JIFFE (processor for robotic control) for processing 3D data and performing

the required calculations to control an articulated robot with up to 6 degrees of freedom. There were

numerous limitations with this approach including the low spatial resolution where only 2000 pixels

worth of 3D data were processed per frame; 100 lines of 20 pixels per line. However, even with this

crude (by modern standards) approach, they could effectively control an articulated robot.

 FPGA

FPGA for image processing

Several authors have succeeded at controlling various dynamic systems with FPGA based image

processing as their measurement systems (Christopherson et al., 2004; Honegger et al., 2014; Linares-

Barranco, Gomez-Rodriguez, Jimenez-Fernandez, Delbruck, & Lichtensteiner, 2007; Wei, Byung Hwa,

Larson, & Voyles, 2005).

Some limitations with these implementations were that the FPGA was often responsible only for the

image processing, while other aspects of control like actuation, strategy or sensing were left up to a

conventional microcontroller which then had to pass the data to the FPGA. Despite this, some authors

were still able to achieve effective control.

28

FPGA with DVS sensor

(Linares-Barranco et al., 2007) use an Address-Event Representation (AER) sensor connected to an FPGA,

which also communicates with a Cygnal 80C51F320 microprocessor. The FPGA receives data from the

AER sensor and analogue measurements from the microprocessor and performs control of the robot.

The AER sensor has an array size (resolution) of 128x128.

FPGA SoC

The second system tested by (Barry et al., 2015) was an identical UAV as the ARM system tested by

Barry et al., however the vision and control was performed by an FPGA SoC. FPGA SoC technology was

also used by (Maxim & Zidek, 2012), who discussed an FPGA SoC system where the audio or video

stream could be used for control of UAVs or UGVs. The ARM cores on the SoC used by the authors was

programmed in “bare-metal” mode which means that the code is running on the lowest level possible,

without an OS running in the background. One major limitation with their work is that they used USB

webcams as their image input stream to the FPGAs. This would likely have added a large amount of

latency to the systems. This is not an issue of SoC design in general, rather just a limitation with this

particular design decision.

(Safaei et al., 2018) use an SoC FPGA for hardware acceleration of foreground and background

segmentation in live video stream. They achieved outstanding performance at very low power

consumption. Their SoC-based system was capable of processing an image of 1920 by 1080 pixels in 4.18

ms, at a total computation power consumption of 1.747 W.

Another method of using SoC FPGAs is to run an OS on the HPS portion of the SoC and to use the FPGA

as a simple hardware accelerator as done by (Maxim & Zidek, 2012). However, running an OS generally

adds latency to a system as the OS adds some protection layer so that the developer cannot cause

sections of memory to become corrupted. The OS must read and write to memory through this

protection layer which adds some latency to the system. Additionally, scheduling requirements of an OS

can add some latency to the system.

Using an FPGA SoC, full advantage can be taken of the system when the FPGA performs image pre-

processing and the HPS portion of the SoC is responsible for efficiently written bare-metal code such as

floating-point operations and other calculations of that nature.

FPGA with parallel soft cores

Another possible use of FPGA technology is to implement numerous soft cores in FPGA logic.

Intel/Altera provide a Nios II RISC core with varying performance levels and resource consumption. The

higher-performance cores consume more resources than the less powerful cores. The Nios II cores

would, in this case, take the place of the HPS for floating point calculations, communication, and other

such software-oriented tasks. Depending on the complexity of the application, a single Nios II core or

many cores could be implemented.

29

(Baklouti & Abid, 2014) tested how well scaling of the soft-cores on FPGAs performs, finding that as the

core count increased, the amount of processor time consumed by communication increased such that

after 32 cores, the improvement of increasing the core count to 64 cores was only very slight. The

authors used 3 different operations as performance benchmarks, reporting computational efficiency

relative to the number of soft-cores implemented. The 3 operations were Finite Impulse Response

filtering, Spatial Laplacian filtering, and Matrix-Matrix Multiplication. For all 3 applications, increasing

the core count did yield a performance improvement, however as more cores were added, processing

efficiency declined due to increased communication overhead. The lowest marginal degradation in

efficiency was seen in the Matrix-Matrix Multiplication. There are still some applications where multiple

soft-cores can outperform GPU’s, due to the soft-cores’ ability to communicate with one another.

In the semi-automated foosball table, it could be useful to implement one Nios II core per actuation

module to perform all the necessary calculations. This way the modules could all operate completely

asynchronously.

 Summary of potential methods

From chapters 4 and 5, several possible systems are presented which could be used to solve the

problem of high-speed vision for low latency control of robotics. The potential system configurations are

as follows:

1. PC based system where image capture is performed by camera connected via gigabit ethernet,

image is processed on a GPU, and actuator control Is performed by a dedicated actuator

control card

2. Dynamic Vision Sensor based system incorporating either an FPGA or a PC to analyse the DVS

output data, and the actuation is still performed by a dedicated actuator control card

3. FPGA – PC based system where image capture and pre-processing are performed by FPGA,

processed data is passed to PC, and PC gives actuator commands to dedicated actuator control

card which then performs actuation

4. FPGA – PC based system where image capture and pre-processing are performed by FPGA,

processed data is passed to PC via USB or ethernet, PC performs any calculations necessary and

actuation data is returned to FPGA which performs the actuator control

5. FPGA – SoC system where FPGA does image capture and pre-processing, processed image data

is given to HPS via high-bandwidth interface, HPS returns actuation commands to FPGA via

high-bandwidth interface, FPGA performs actuator control

6. FPGA – Nios II only system where image capture and pre-processing are performed by FPGA,

processed image data is sent to Nios II via shared memory, Nios II returns actuation commands

to FPGA via shared memory, and FPGA performs actuator control

30

 Proposed method

The method proposed to satisfy all requirements detailed above and meet the outcomes for the project

is as follows:

An FPGA-SoC system where:

1. Image data is streamed directly off the image sensor into the FPGA logic

2. Image pre-processing is performed on the streamed data by the FPGA

3. Processed image data (image information such as centre of gravity and object size) is passed

directly to the HPS component of the FPGA via high-bandwidth FPGA to HPS bridge

4. HPS performs lens distortion mapping, trajectory and actuator profile calculations

5. HPS passes actuation commands back to the FPGA via the high-bandwidth HPS to FPGA bridge

6. The FPGA performs all actuation concurrently with independent actuator control modules

The proposed hardware to be used is the DE1-SoC development board by Terasic.

By implementing the above system configuration, low latency control of a mechatronic system should

be possible using computer vision as the input and/or reference signal. In other words, the above

system should enable high-speed visual servoing, without requiring high power consumption processors

or custom ASIC boards.

The FPGA meets the requirements for low latency image processing capability, scalability, and

reconfigurability. Using the ARM core running bare-metal C code with the high-bandwidth

communication interfaces should minimise algorithmic processing latency and communication latency.

Finally, using the FPGA for the control of the actuators should minimise latency and timing jitter that

would arise if all the actuators were controlled by a microcontroller.

3.10. High-level complete system architecture

 Semi-automated foosball table control system

In this research, a semi-automated foosball table shown in Figure 3-7, in which a human opponent plays

against the table, is the test platform for the vision and control schemes. Therefore, the hardware and

software discussed will be in the context of their usefulness in this application.

31

Figure 3-7 - Semi-automated foosball table

The table used in the experimentation is semi-automated. On one side, the human players have been

replaced with a mechatronic control system comprising actuators to slide and rotate the metal rods. The

rods are controlled by 8 stepper motors: 4 for the linear (sliding) movement of the rods, and 4 for the

rotation (spinning). This is shown in Figure 3-8.

Figure 3-8 - CAD model of the automated actuation modules

The camera faces upwards from beneath the table and tracks the ball through the base of the table

which is made of glass. The human player plays against the automated control system; both try to

defend their own goal and shoot into the opponent’s goal. The control system, therefore, is required to

track the position of the ball with sufficient speed, low latency, and sufficient resolution to accurately

32

calculate where the ball is on the playing field. The temporal and spatial resolution requirements were

specified in the first section of this chapter.

 Compute subsystem

The following block diagram, Figure 3-9, represents the overall compute/control system hardware and

sensors:

Figure 3-9 - Compute system input and output signals

The DE1-SoC is a development board which combines an 85,000 logic element FPGA chip with a dual

core 800 MHz ARM A9 microprocessor on the same die, interconnected via 3 bridges known as the HPS

to FPGA bridge (H2F), the FPGA to HPS bridge (F2H), and the lightweight HPS to FPGA bridge (LWH2F).

The FPGA component is responsible for:

1. Configuring the camera module via I2C

2. Providing clocks to all system components

3. Receiving the pixels coming from the camera

4. Performing Bayer interpolation

5. Colour space conversion

6. Performing colour filtering operations

7. Performing morphological erosion and dilation

8. Performing connected components analysis

9. Displaying image stream on screen via VGA

•Image data

•Camera pixel clock
returnD5M

•Rotational "kicking"
homing signal

•Horizontal "sliding"
homing signal

Homing
switches

•Hard reset

•Soft reset

•Camera reset

User
inputs

•Lid interlock singal
System

interlock

•Serial input
System

JTAG

DE1-SoC

Development

Board

•Video output
Image
display

(debugging)

•I2C control data

•Pixel clock out D5M

•8x Pulse

•8x Enable

•8x Direction

Stepper
motor
control

•Serial output

System JTAG

33

10. Passing detected object coordinates (x_min, x_max, y_min, y_max) and stepper motor

positions to HPS via AXI bridge

11. Receiving stepper motor control data from HPS via AXI bridge

12. Performing stepper motor control

13. Overall accepting any user input signals including JTAG, resets, and interlock

The HPS (ARM core) is responsible for:

1. Receiving object coordinates and stepper motor data from FPGA

2. Use object coordinates (past and current) and stepper motor data to calculate:

a. Trajectory for the ball

b. Interception points for the foosmen rods

c. Distances required for each foosman to reach the interception point for its respective

rod

d. Which foosman should take the intercept on each rod

e. Number of steps required for each rod and which direction to travel

3. Passing the above calculated values to the FPGA

4. Overall accepting any user inputs including JTAG, resets, and other debug related signals

34

4. Mechanical subsystem

4.1. Introduction

This chapter will discuss in detail the overall mechanical system. This includes the dimensions, materials,

similarities to official USTSA foosball tables, and the differences. Where relevant to the thesis topic, the

engineering design choices for the mechanical subsystem will be justified.

 Custom aspects of foosball table design

There are a few major design differences between this table and regular foosball tables. These things

include:

1. The automated modules which take the place of one human player/team

2. The glass base for the vision system to track the ball from beneath

3. The glass lid, to prevent injury to the human players during operation

4. The LED lighting around the outside of the playing field, to illuminate the ball

Automated modules

The automated modules shown in Figure 4-1, perform the kicking and sliding movement that a human

player would normally perform.

Figure 4-1 - Render of automated modules of CAD model

The modules are actuated by Nema 23 stepper motors with peak torque of around 130Ncm as seen in

Figure 4-2.

35

Figure 4-2 - Pull out torque curve of Nema 23 bi-polar stepper motor - (Pololu, 2018)

The purpose of these actuation modules, shown in more detail in Figure 4-3, Figure 4-4, and Figure 4-5,

is to intercept the ball when the opposing (human) team attempts to play offensive shots such as

forward passes and scoring shots, and to play offensive shots for the autonomous team.

There are two main movements required by the actuation modules. These are a rotation of the rod on

which the foosmen are mounted, and a linear sliding motion of the same rod. These movements are

achieved using the stepper motors connected with belt drives to the main rod. One stepper motor

performs the rotational kicking movement, while the other performs the linear sliding movement.

Figure 4-3 - Render of actuation modules

The motor mounted horizontally, labelled “motor 1” above as a CAD model in Figure 4-3, is connected

via a two-stage belt arrangement to the main rod. This motor is responsible for the kicking motion. The

belt arrangement for motor 1 is shown in Figure 4-4. The right hand image in Figure 4-4 shows belt

assembly 1 behind the mounting plate shown on the left-hand size of Figure 4-4. Belt assembly 1

Motor 1

Motor 2

To
rq

u
e

Pulses per second

36

transfers the drive from the horizontally mounted stepper motor to the square shaft. Then belt

assembly 2 transfers the drive from the square shaft to the main shaft on which the foosmen are fixed.

There is a 1:1 gear ratio from the stepper motor to the main shaft.

Figure 4-4 - Foosball table actuation module - rotational drive assembly

The vertically mounted motor, labelled motor 2 in the CAD model Figure 4-3, is connected to the shaft

via a belt and connector shown in more detail in Figure 4-6 below. The system has been designed such

that the rotational and linear motion is combined into the same shaft, much the way a human would

actuate the shaft to move the foosmen. The ratio of steps to distance for the linear motion is 25mm per

100 steps. There is some backlash (around 2-3 mm) in the linear drive system, however this is easily

corrected for with a small offset after the homing sequence. The stepper motor shown below in Figure

4-5, drives the belt which is connected to the main shaft via the connector shown in Figure 4-6.

Mounting plate

Belt assembly 1

Belt assembly 2

Main shaft

Stepper motor

37

Figure 4-5 - Foosball table actuation module - linear drive assembly

Figure 4-6 – Close-up of belt connector on actuation module

Stepper motors were used so that after initial setting of a datum (homing) was performed, high levels of

accuracy and repeatability would be possible without the use of encoders. Additionally, they offered

high levels of torque without the need for reduction gearboxes.

Toothed timing belts were used to ensure no slippage, and minimal backlash were achieved in the drive

assembly for both linear and rotational motion.

Glass protector and playing field

To protect the human players from the automated modules, the table was built with a glass lid. The

system is interlocked such that the motors will only be actuated when the lid is completely shut. This

Stepper motor

Belt connector

38

system disables the motors when the lid is open as the motors are powerful and could cause harm.

Figure 4-7 shows the base, interlock switch, and lid on the system.

Figure 4-7 - From left to right a bottom-up view of the glass base, the interlock switch and the safety lid

The glass base was included so that the camera could be mounted beneath the table and look vertically

upwards at the playing field. This solved a few problems that were present in the work of other authors:

1. Partial or full occlusion of the ball by the rods or players, respectively, as discussed by (Janssen

et al., 2012)

2. Ergonomic issues with the camera mounted overhead, as discussed by (Weigel, 2005)

3. Occlusion issues where a human player would accidentally put their hands, heads or other

objects between the camera and the playing field, as discussed by (Weigel, 2005)

4. Extra mounting costs and cable/electronics management issues – due to power supplies,

compute system, stepper motor drivers being housed separately. This is not discussed explicitly

by other authors but is an obvious problem

However, it also introduced new problems:

1. Reflectance from any illumination beneath the table such as LEDs on the FPGA development

board, or from ambient lighting reflecting off the ground

2. Silhouetting or bright spots from any lights directly above the playing field within the camera

field of view

3. Potential misidentification of the ball if human players, visible to the camera, are wearing

clothing of a sufficiently similar colour to the ball

LED playing field lighting

This feature was included in the design as it was necessary to illuminate the ball to assist the image

processing software to effectively segment the ball from its surroundings. In the absence of the field

illumination, the contrast between the ball and the other items in the camera field of view was

insufficient for the colour filtering operations to segment the ball from its surroundings. This can be

39

seen in Figure 4-8. In Figure 4-8, on the left-hand side the field illumination is on, which increases the

illumination of the ball, while simultaneously reducing the exposure on the vision system’s auto

exposure, due to the brightness of the LEDs. This decreases the amount of background that the camera

detects. The contrast can be seen in the right-hand image of Figure 4-8, in which the background is very

visible.

Figure 4-8 - From left to right - bottom-up view of foosball playing field with field illumination on and off respectively

4.2. Materials

The table body was manufactured out of MDF and finished with high quality Vinyl as shown in Figure

4-9.

Figure 4-9 - Image of completed, vinyl wrapped semi-automated foosball table – from front right

The actuation module frames were built from aluminium end plates and steel joining rods. All bearing

housings, pulleys and mounts were manufactured from aluminium. The drive belts are polyurethane

Ball Ball

40

timing belts with internal steel tension bands. The foosmen rods are steel hollow tube running on

nylon/acetal bushes on the internal solid steel rods. The playing field and protective cover over the

playing field are both made of glass.

4.3. Design aspects meeting official specifications

The foosball table is built to the same dimensions as a standard USTSA foosball table. The specifications

are as follows: 56.5 inches in length, 34.5 inches in width and 29 inches in height. These dimensions are

shown in Figure 4-10.

Figure 4-10 - Render of foosball table CAD model

The table consists of 8 rods in total, with four rods per team. The foosmen on the automated side have

been suppressed (made invisible) to highlight which rods are actuated by the human players. Therefore,

up to two players can play on the human side, as can be seen in Figure 4-10. The rods are spaced evenly

apart at 6-inch (152.4 mm) intervals. The foosmen figurines used are of the USTSA dimensions. As with

USTSA tables, the foot height is adjustable so that the table can be made perfectly level.

47.24”

1.2m
27.28”

693mm

41

Figure 4-11 - Render of foosball goal on CAD model

The goals dimensions match those of USTSA foosball tables at 8.375 inches (213 mm) in width. This is

shown in Figure 4-11. Both ball return chutes (one per goal) were designed to deliver the ball back to

the human side for easy access and playability. Figure 4-12 shows one of the ball return chutes on the

manufactured system.

Figure 4-12 - Semi automated foosball table right hand ball return chute

8.375”

213mm

42

4.4. Accurate vision system placement

Given that the vision system is used to accurately estimate the position of the ball being tracked, a

placement jig was required to ensure accurate repeatable placement of the vision system beneath the

foosball table. This was done so that after initial calibration of the vision system, the electronics

enclosure could be moved and replaced sufficiently accurately that no noticeable error would be

introduced into the interception system. Figure 4-13 shows a CAD model of the placement jig, and

Figure 4-14 shows the physical manufactured system. The top left and right images in Figure 4-13 show

close up views from either side of the homing mechanism. The oval shaped tabs slot into the acrylic

(transparent) backplate on the electronics enclosure.

Figure 4-13 - CAD model of the placement jig for the foosball table vision system

43

Figure 4-14 - Manufactured calibration homing jig with rotating locking tabs

As can be seen in Figure 4-14, the oval tabs rotate so that the enclosure, once locked in place, cannot be

moved without unlocking the tabs.

44

5. Vision subsystem

Accurate, low latency, low noise data acquisition is very important in controlling a fast, dynamic system

(Franklin et al., 2015). This is the case regardless of what system is being controlled – if it operates at a

high speed, obtaining reliable measurements with minimal latency is imperative. On these grounds, a

method to obtain, process and utilize visual data (image data) with minimal overall system latency is

required when visual feedback is used in the context of a robotic control system.

This chapter will discuss control system latency and its importance both generally, and for the specific

example of high-speed image processing, for control of an automated foosball table. The proposed

vision system can be used as either the reference signal (the position of the ball which the foosball table

rods are trying to match for interception), or both the reference and the feedback sensor element in the

control loop.

Two types of latency are important to consider. Novel event recognition latency is the time it takes for a

system to identify that a novel event (for example the appearance of an object) has occurred. In tracking

applications, steady state latency is the time it takes for a vision system to report the updated position

of a target object. Unfortunately, most papers only discuss image processing latency, rather than

complete measurement system latency. These can be misleading in terms of estimating performance of

feedback control.

For this reason, the performance of several different implementations of computer vision systems will

be evaluated and compared in this chapter. These systems have been designed for high speed control.

As such, latencies have been minimized where possible. The aim of the experiments was to determine

both novel event recognition and steady state latencies associated with each of the candidate test

systems.

5.1. Background

 Latency in control systems

Control systems are designed to accept some bounded input and provide some bounded output, both

within a specified range (Engelberg, 2015). Many dynamic control systems are run in closed-loop mode.

This means that the system output (controlled variable) feeds back, via some sensor, into the controller

of the system, and the system uses that feedback to adjust its control input (Franklin et al., 2015).

Within a control system, sensor latency can be viewed as the time between an event occurring, and the

data associated with the event being captured by the measurement system and passed to the controller

(Engelberg, 2015). In the experiments documented here, these events are the appearance or movement

of an object. The image is captured with a camera and image processing is used to provide the position

of the object.

45

In the control of an automated foosball table, the position of the ball is measured, and fed into the

control algorithms to control the positions of the foosmen to intercept the ball. This is the feedback

element of the positional control. In practice, the control is a little more complex than simple positional

control. The ball’s current and past positions are used to predict the motion of the ball which

determines the position at which the rods controlling the foosmen will need to arrive when, or just

before, the ball reaches the interception point. The system therefore represents a type of tracking

control system with the predicted ball intercept position as the reference signal and the foosmen’s

position as the controlled variable (Franklin et al., 2015).

In control systems, two important parameters which determine stability and robustness of a system are

phase and gain margins (Engelberg, 2015). The phase and gain margins indicate how much external

disturbance (subtracted phase and added gain) the system can withstand without becoming unstable

(oscillating) or failing entirely (Engelberg, 2015). Latency plays a strong part in this problem. If the sensor

feedback is delayed by some amount, then this delay corresponds to a linear phase delay with

frequency, with the delay proportional to the sensor and measurement system latency. As this appears

within the loop gain, the latency reduces the phase margin, and reduces the actual performance of the

system making it more difficult to control. If the latency exceeds a critical value, the system will become

unstable.

Vision based control systems typically consist of some image capture hardware (camera), image

transmission interface, image processing system (hardware or software compute engine),

communication interface and actuator or output control hardware. The transmission of the data,

processing, and communication delays all add up to cause substantial system latency. Some of the

latency is caused by the sheer volume of data being transmitted and processed. Various methods

including pipelining, stream-processing, and simply increasing the processing power of the compute

engine, have been used to improve the performance of frame-based vision systems over time. However,

the latency is ultimately limited by the system frame rate since the data is transferred from the sensor

to the compute engine serially.

 Related work

The literature describes several arrangements which use vision systems to capture and utilize motion

data of various objects. The limiting factors of latency are mostly system-dependent; however, the

general principle is that excessive latency can lead to instability. This is the primary motivation for

efforts to minimize latency.

The most similar system (Janssen et al., 2012), was also an automated foosball table with a camera that

operated at 200 FPS with a measurement system latency of 17.5 ms. The camera transmitted 8-bit

monochrome images with a resolution of 657×446 to a PC. This was done via Gigabit Ethernet. The

system’s inability to defend against certain shots was determined to be due to latency in controlling the

rods.

46

An FPGA SoC was used by (Čížek et al., 2016) for hardware acceleration of complex image processing

tasks for vision-based navigation systems. The authors used a frame rate of 60 FPS at 640×480

resolution. For their application, they claimed an image processing latency of approximately 17ms.

Two different realizations of high-speed control of UAVs using stereo vision were discussed by (Barry et

al., 2015). They achieved 2 ms image processing latency with the FPGA implementation and a worst case

16.6 ms image processing latency with the ARM processor implementation. Given the lower image size

of 320×240, and the relatively low computational power required for the matching algorithm, the

latency achieved in this work appears reasonable. Hardware based processing gave approximately an

eightfold improvement over the equivalent ARM based processing. These reported latencies are only for

the image processing, and not the complete system latency for object detection (including image

capture). It does give a representation of the effectiveness of hardware image processing platforms such

as FPGAs compared to traditional systems, such as the ARM processor.

(Andersson, 1990) demonstrated a 60 FPS, real time stereo vision system achieved through custom

hardware with around 32 ms latency. The system’s performance was achieved through custom

hardware and software. The reported 32 ms latency was reasonably effective for the real time

autonomous control of their robotic manipulator. However, it is likely that the latency and throughput

requirements for their application are less demanding than an automated foosball table due to the

relatively slow speeds at which their robot manipulator was actuated.

(Cigliano et al., 2015) discusses a distributed computing and control platform for a robotic arm and

gripper assembly to catch a ball thrown at it. This represents a tracking control system. Latency was

simply estimated and used to synchronize events between the various subsystems, rather than latency

being minimized.

Many others (Berner, Brandli, Yang, Liu, & Delbruck, 2013; Censi et al., 2013; Conradt et al., 2009;

Mueller et al., 2015) also discuss the use of dynamic vision sensors (DVS) for event based image

processing systems with extremely low latencies, ranging from 12 μs to 15 μs. DVS sensors work by

detecting changes in intensity in each pixel which can result in very low latencies, however DVS sensors

appear to be more suited to highly structured environments and would not be suitable for the dynamic

environment associated with a semi-autonomous foosball table. Additionally, due to the lower

resolution of these sensors, between 128×128 and 240×180 pixels, and the lower level of configurability,

they do not meet the requirements for automating a foosball table. The foosball table requires higher

resolution due to the size of the ball relative to the size of the table, and the precision required for

interception by the foosmen. They do, however, reflect the importance of high-speed, low latency

vision-type sensors in the control of robotics.

 Hardware tested

Based on the findings of this review, it was determined that for the application of semi-automated

foosball, some experimentation was required to determine the true system latencies of several off-the-

47

shelf image capture systems, as opposed to optimistic estimates based purely on image processing

speeds. Figure 5-1 shows the key hardware for each of the test systems.

Figure 5-1 - Image capture test systems

1. Altera DE1-SoC FPGA development board with a Terasic D5M camera module.

The camera is capable of capturing image at resolutions of up to 5 MP. At 640×480 resolution, the

system can capture images at a rate of up to 127 FPS. The image data was streamed from the sensor

and the FPGA performed the image processing operations directly on the image data stream. The FPGA

and D5M camera were selected for their efficiency in the required image processing applications, as well

as being relatively low cost.

2. CMUcam5 (PixyCam) embedded vision platform.

The system is capable of colour object tracking at 50 FPS with a resolution of 320×240. The image

processing is done onboard the camera module with the object data sent to a microcontroller via either

SPI, I2C or UART. I2C was used in this experiment. The microcontroller used was an Arduino Uno,

clocked at 16 MHz. The CMUcam5 was selected as it represents a small, low power, embedded object

tracking vision system that can be purchased inexpensively.

3. PS3 EYE.

This camera can capture images at around 75 FPS at 640×480 resolution and greater than 100 FPS at

320×240 resolution. It transmits the image data via USB 2.0. Note, the PS3 EYE was used for 2

experiments. The PS3 eye was selected as it was capable of high frame rates and could be purchased at

very low cost.

48

4. Logitech C920 Pro Webcam.

This webcam is internally limited to 30 FPS. However, it is capable of many different resolutions,

including 640×480. It also transmits the image data over USB 2.0. This camera was selected as it had

higher image quality and was also relatively low cost. It was chosen as a reference point for

performance from a camera with a lower framerate.

Additionally, a quad-core i7 Windows laptop (Asus N550-JV) was used for the MATLAB based image

processing for the PS3 EYE and the Logitech C920 webcam.

For the timing of latencies, an Arduino Uno was used to implement a high precision timer, and an STM-

F429ZI discovery board was used as the display unit. The display unit displayed the reference image for

the vision systems to recognize.

5.2. Novel event detection latency

 Aim

The aim was to measure and compare the novel event detection latency of several different realizations

of computer vision systems.

 Methodology

The experiment was carried out for each of the systems with the following steps:

1) An LCD display unit on an STM F429ZI is set to display a target object after a random time interval of

between 5 and 10 seconds. The display latency is fixed and was the same for all experiments.

2) When the STM unit displays the object, it starts a high precision timer on a separate microcontroller

(an Arduino Uno)

3) The vision system being tested continuously captures and processes images checking for the target

object to appear on the display unit. This involves the following steps:

a) Capture images at given resolution and best frame rate

b) Colour space conversion (YUV for coloured object segmentation)

c) Filtering – colour detection, morphological filtering (erosion and dilation)

d) Blob analysis and centroid calculation

4) Once the object is correctly recognized, an “object recognized” signal is output. Where possible this

output signal is in the form a logic high written to a GPIO pin. On systems where this was not

practical, a serial command was output via a USB port to the precision timer.

5) Once the timer receives the object recognized signal, it immediately stops and outputs the elapsed

time. This is the total latency from the time the object was displayed until the time the object was

recognized by the vision system and the stop signal sent, closing the loop.

Each system was tailored to reduce latency as much as possible, and to make the comparisons as fair as

possible. These methods included:

1. Where possible, using the same resolution for all the systems – 640×480;

2. Using the same image format and colour depth for all the image streams;

49

3. Not displaying the images on the PC based systems when performing the actual tests, as this can

add processing overhead in these systems;

4. Minimizing the amount of data sent in the communication systems – as would be done on

similar implementations;

5. Using the highest baud rate available if serial communication was required;

6. Using the maximum available framerate for all systems apart from the FPGA. The FPGA system

was fixed at 60 FPS due to display timing constraints.

The overall latency is the combination of several components:

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 + 𝐿𝑖𝑚𝑎𝑔𝑒 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 + 𝐿𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝐿𝑐𝑜𝑚𝑚𝑠 (3)

 Results

The experiments consisted of 20 samples for each test platform, resulting in a total of 100 samples.

Minitab was used to analyze the data and produce a visual representation of the results. The boxplot in

Figure 5-2 shows the latency for the 5 experiments. The latency data is presented in Table 5.1.

Figure 5-2 – Novel event detection latency results for all 5 experiments including PS3 eye at both resolutions

50

Table 5.1 - Important novel event detection latency data

Hardware Mean latency

(ms)

Std dev Min Max Range Resolution Nominal

framerate

FPGA 26.4 5.4 12.9 36.8 23.9 640×480 60

PixyCam 39.7 6.5 28.3 49.6 21.3 320×240 50

PS3 EYE

640×480

229.2 48.4 144.4 307.4 163 640×480 75

PS3 EYE

320×240

94.6 43.5 46.6 154.2 107.6 320×240 >100

Logitech C920 260.7 31.3 211.5 313.2 101.7 640×480 30

The reason for the PS3 EYE test being performed at both 640×480 and 320×240 was to test it at the

specified resolution, as well as to compare it with the PixyCam, which operates at a resolution of

320×240. It can be seen in Figure 5-2 that as the average latency of novel event recognition increased,

the variability increased too. This would be very unhelpful if implemented in a robot control system that

requires prediction because the latency, upon which predictions are partially based, would vary

significantly, making it difficult to accurately estimate the ball motion parameters such as velocity,

heading angle, and curvature. This is also true with changing ball motion parameters, such as in

acceleration or deceleration situations, which a constant velocity prediction model may not be able to

account for.

5.3. Steady state latency

In addition to novel event detection, another type of system latency is also important in characterising

overall system response. The second series of experiments conducted were to measure the steady state

latency. This latency is the continuous time difference between an event occurring and the image

processing system recognising/measuring the event or change. Steady state latency is not dependent on

the relative timing between an event and the frame capture phase of the image processing algorithm as

it is measured over a period of time.

 Aim

The aim was to determine and compare the steady state latency of the various systems for continuous

object tracking.

 Methodology

To simulate a moving target, with precisely known position, a coloured marker was moved on a circular

path. The movement was controlled by a stepper motor so that the position of the target was known. By

the time the imaging system has estimated the location of the target, it will have moved, with the angle

51

difference between the current and reported position being proportional to the steady state latency.

The assembly used is shown in Figure 5-3.

Figure 5-3 - CAD model of object marker apparatus used in steady state latency experiment

Note – the motor speed used for the FPGA and PixyCam was 600 degrees per second while the motor

speed used in the PC system was 225 degrees per second. This was due to the relatively low framerate

(around 10 FPS after processing operations were performed) achieved by the PC based systems. In order

to achieve adequate timing resolution with the PC based systems, a lower motor speed was required.

With the motor spinning the coloured marker at a constant rate, the experiment was carried out for

each of the systems with the following steps:

1) The vision system being tested continuously captures and processes images. This involves the same

steps as the novel event detection latency experiment, however running continuously

2) In the FPGA and the PC based system, the angle about the centre is calculated by the vision system.

The PixyCam, on the other hand, passes the x and y coordinates to the microcontroller-timer

system which then calculates the angle

3) For each new angle value received or calculated, the timer system records this alongside the

current known angle of the motor

4) These two angle values are output to the console in real time, and the differences in angle, 𝛿𝜃, can

then be calculated. The calculations are done using the following equations:

 Mathematics

The angle of the spinning marker about the centre of the image is

 𝜃1 = arctan (
𝑋 − 320

𝑌 − 240
). (4)

52

The difference in angle between the spinning marker and the known motor position is

 𝛿𝜃 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑡𝑜𝑟 𝑎𝑛𝑔𝑙𝑒 ∗ 360

400
− 𝜃1. (5)

Therefore, the latency is

 𝑡 =
𝛿𝜃

𝑉𝑟𝑜𝑡

 (6)

where 𝑉𝑟𝑜𝑡 is the rotational velocity of the motor in degrees per second.

 Results

The boxplot in Figure 5-4 shows the steady state latency for the 4 experiments. The latency data is

presented in Table 5.2.

Figure 5-4 - Steady state latency results for all 4 experiments

Table 5.2 –Important steady state latency data

Hardware Mean latency

(ms)

Std dev Min Max Range Resolution Nominal

framerate

FPGA 24.9 5.4 15 35 20 640×480 60

PixyCam 35.8 5.5 26.2 45.3 19.1 320×240 50

PS3 EYE

640×480

63 11.5 43.3 80.61 37.4 640×480 75

Logitech C920 58.9 21.19 20.9 96.2 75.3 640×480 30

53

As shown in Figure 5-4, the best performance was achieved using the FPGA based system. The

compounded latencies from image transfer, serial processing, and serial communication resulted in

much larger latencies in the USB based camera systems.

5.4. Discussion

 Immediate usefulness of results

It is impossible to have zero system latency, therefore experimentally determining the latency is

important for fully characterizing the system for accurate modelling and future development purposes.

It also serves as a benchmark to measure future improvements. Additionally, as mentioned before, it is

useful to have accurately measured latencies as these can assist greatly with predictive compensations

in systems with unavoidable latency.

 Comparison of performance

Firstly, it should be noted that these experiments were performed with the FPGA system running at less

than half of the maximum image capture and processing speed of which it is capable. This was done for

display synchronization and development reasons, however future work will see the frame rate

increased to above 120 FPS and the latency (and variability of latency) should, thus, decrease

proportionately, due to the streamed nature of the processing.

Compared with the results for novel event recognition, the latencies seen in steady state are lower, with

lower variability. This, despite more processing being required, is likely due to relative timing differences

being minimized.

In systems with lower framerates, the relative timing made a larger difference than in those with higher

framerates. Overall, systems with low latency and high framerate performed the best across both tests,

in terms of both latency and variability.

It can be seen from the results that, even with the currently capped frame rate, the FPGA system still

yielded the best performance in both novel event detection and steady state latency. 25 ms latency is

similar to the latency experienced by the human eye when detecting new stimulus.

The PixyCam, which yielded the second lowest latency in both experiments was only running at a

resolution of 320×240, so cannot truly be considered a close contender, given that the specifications for

this application are a minimum resolution of 640×480. However, it was included for reference as it is

representative of a simple system for embedded image processing where high resolution is not

required. It appears that the lower resolution and the application specific hardware are the primary

reasons for the PixyCam’s low latency.

The PS3 EYE, running at 640×480 at 75 FPS, yielded a higher latency than the PixyCam, despite the

higher frame rate. The experimental data demonstrates the importance of efficient image processing

54

algorithms and communication strategy. Because the image processing algorithms were implemented in

MATLAB, there were processing overheads (within the operating system and within MATLAB) which

likely slowed down the processing. Additionally, the communication overheads caused by using a non-

streamed image acquisition method caused additional latency.

Finally, the test system using the Logitech C920 webcam, which was internally limited to 30 FPS, yielded

the poorest performance of the tested systems. The latency was the highest (an order of magnitude

higher than the FPGA system in novel event detection), and the most variable in both tests. It is likely

that the combination of inefficient processing, combined with relative timing of the event and the image

being captured was the cause of the latency. This, in a highly dynamic control system, would likely result

in poor system stability.

Overall, the FPGA system yielded the best performance in steady state latency and in novel event

detection. In addition to yielding the best latency performance, the FPGA based vision system also met

all the requirements for the application of a semi-automated foosball table. These are minimum

640×480 resolution, 60 FPS, less than 30 ms latency, continuous display of the image, and non-

saturation of the processing unit to enable other tasks, such as actuator control, to be carried out.

 Potential improvements

In the FPGA system, the angle was calculated according to equation (4). This was done using a Nios II

core instantiated in FPGA logic. The Nios II core is significantly less powerful than the HPS (ARM A9) core

which is part of the DE1-SOC FPGA development board; 50 MHz versus 800 MHz. This will have

contributed to some of the latency seen in the steady state latency results for the FPGA, however this

can be improved by using the HPS rather than the Nios II core.

Some improvements could be made to the serial processing systems by using more powerful desktop

processors, and more efficient image transfer protocols such as ethernet. However, without custom

communication solutions, and streamed image processing, the serial processing systems would still

likely be unable to achieve the same latency performance as the FPGA based systems. Additionally,

increasing the power of the components without using a more efficient method of processing the

images, such as streamed image processing, would cause the system to no longer meet the

requirements of low power consumption (less than 20 W) stated in section 3.4.

 Automated foosball

In the context of automated foosball, and of robotic control in general, it is obvious from the data that

the best choice from the systems tested is the FPGA based image processing platform. The low latency is

desirable from a control perspective (Honegger et al., 2014). Additionally, based on human systems,

“predictive control is essential for the rapid movements commonly observed in dexterous behavior”

(Wolpert & Flanagan, 2001). In foosball, there are very high speeds involved, relative to the size of the

playing field. This means that high-speed image processing is imperative a reasonable level of response

55

is to be possible. Not only does the sensing need to be excellent, so do the actuation techniques. Using

reconfigurable FPGA hardware to create stepper motor controllers, or general-purpose actuator control,

could be an extremely effective method to solve the problems involved with the automated foosball

table.

By combining low latency image processing (streamed image processing on Altera DE1 SoC FPGA), and

low latency communication (high speed AXI bridge from FPGA to the embedded ARM cores), computer

vision can be used as both a reference signal and a feedback element in a control loop. The system

becomes even more powerful when actuator control and other general system functions (for example

safety interlocks and user inputs) are also implemented within the FPGA. This results in comparatively

low overall system latency for all elements of the control loop. Additionally, the use of an FPGA SoC

enables scalability at a cost of minimal additional latency or scheduling issues present in conventional

microcontrollers.

5.5. Conclusions

The novel event detection latencies ranged from 26.4 to 260.7 ms, and steady state latencies ranging

from 24.95 ms to 62.99 ms, with the FPGA system yielding the lowest latency.

The experimentally determined latency values will be useful in future work for the prediction

capabilities of the system, as well as for modelling purposes.

For the FPGA system to be a completely vision-controlled closed loop system, the camera could be used

for tracking both the position of the foosmen, and for tracking the ball.

5.6. Implementation of final vision system

The implementation of the system involved many stages of concept, design, prototype, troubleshooting,

debugging, simulation and testing. This is represented in Figure 5-5.

Figure 5-5 - Vision system development process

The first system developed and tested was the computer vision system. This included prototypes of

software and hardware-based colour object tracking systems.

 Terasic D5M camera module

The image capture device used for the FPGA-based image processing was the TRDB-D5M. The TRDB-

D5M camera module, made by Terasic, shown in Figure 5-6, is a 5MP (2,592 H x 1,944 V) CMOS sensor

on a development board which connects to the FPGA via a 40 pin 2 row header. The camera is

controlled by an I2C communication interface. The gain, exposure, white balance, resolution, triggering,

and windowing can be controlled via the I2C interface.

Investigative
vision prototype

Vision test in
FPGA

Vision and
motor control

simulation

Lens calibration
and homing
mechanism

Vision test in
final hardware

Final vision
implementation

56

Figure 5-6 - Terasic TRDB-D5M camera development board

The camera is capable of operating in windowed mode with numerous different resolutions and

framerates – governed by the selected pixel clock. Additionally, the window can be shifted to be placed

anywhere on the active region of the CMOS chip, in 2-pixel increments due to the Bayer pattern

readout.

The module is capable of a maximum data rate of 96 Mp/s at 96 Mhz clock speed.

The output image from the camera is in Bayer pattern format, as illustrated in Figure 5-7.

Figure 5-7 - Bayer RGB pattern representation

 Prototypes

Prototypes were used for testing the image processing algorithms prior to implementing them in FPGA.

To simply implement an image processing algorithm in FPGA without testing the effectiveness of the

algorithm previously is generally a waste of time, given that implementing and testing the algorithm in

software is typically a much shorter process.

Given this information, a test system was implemented using a Windows PC, MATLAB, and a Logitech

C170 USB webcam. The MATLAB image acquisition and image processing toolboxes were used for this

testing. The prototype vision system was used to determine the following:

57

• Which colour space to use

• Morphological filter structuring element size

• Whether other filtering methods like median filtering were required

• Blob detection parameters – minimum and maximum blob size of detected object

• Initial estimates for radial distortion correction requirements

These values assisted with the final implementation in FPGA as reconfiguring multiple times to

determine initial ballpark values would have been a tedious, inefficient process. The MATLAB code used

to perform this image processing is shown in Appendix A.

The vision system was then implemented in a Terasic DE1-SoC development board in order to test the

image processing algorithms and determine what the resource consumption would be. This included

hardware resources such as logic elements, GPIO pins, and PLL’s.

This process involved several iterations of editing and compiling the VHDL design each time adding new

components according to the methodology described in (Bailey, 2011). The order in which components

were added was as follows:

1. Display simple pattern on VGA display

2. Capture and stream image data directly from camera with PLL in place to sync camera pixel

stream with pixel stream of display

3. Implement Bayer interpolation, known as demosaicing, and display demosaiced camera image

on screen

4. Implement colour-space conversion and colour filtering on row buffered image data

5. Implement bounding box and filtered pixel overlay to display

6. Implement noise reduction filtering – morphological erosion and then dilation – and display

image on screen

7. Implement connected components analysis (CCA)

Table 5.3 - Resource consumption on DE1-SoC of basic image processing design

Resource type Resource consumption

Logic utilisation in ALMs 1,259/32,070 (4%)

Total registers 1,460

Total pins 151/457 (33%)

Total block memory bits 110,694/4,065,280 (3%)

Total DSP blocks 0/87 (0%)

Table 5.3 gives the resources required by this minimum design used as a baseline for comparison in

subsequent chapters.

58

 Foosball table interception simulation

A vision and motor control simulation was done using MATLAB. The simulation received object

coordinates from the FPGA, plotted the coordinates in image space, calculated the trajectory of the ball,

and the interception points on each of the automated module rods. Finally, the difference between each

of the foosmen and the predicted ball interception point (including the effects of bounces) was

calculated. Using this value, the correct foosman for interception on each module was reported.

Figure 5-8 - Output window of simple trajectory calculation and interception coordinate simulation

Figure 5-8 shows the interception simulation output performed in MATLAB. The vertical lines represent

the 4 actuation module rods with the circles representing the foosmen in their central locations. The red

circles plotted on each of the lines indicate the predicted interception locations on each of the rods.

 Lens changes

The angle of view captured by the camera is calculated using the following method:

Y
ax

is
, m

m

X axis, mm

Ball starting

position

Bounce location

𝑑 = 765 𝑚𝑚

Angle of view 𝜙

𝑙 = 1200 𝑚𝑚

59

For a given angle of view 𝜙 and field of view length 𝑙, the required distance for the camera to capture

the entire field of view is

𝑑 = (
𝑙

2 ∗ tan (
𝜙
2

)
).

(7)

The required final angle of view is therefore

 𝜙 = 2 ∗ arctan (
𝑙

2∗𝑑
). (8)

For the semi-automated foosball table, the required angle of view was 76° at 1024 × 768 resolution. The

original lens provided with the D5M camera module, shown in Figure 5-9, had a 15° angle of view at

1024 × 768. This was insufficient, so a new lens was required. The selected lens, shown in Figure 5-10,

was a Sunex DSL215 miniature fisheye lens with 185° field of view. As can be seen in Figure 5-10, the

Sunex DSL215 has a large, convex front element which provides the large angle of view.

Figure 5-9 - Long focal-length (narrow angle) lens provided with the D5M camera module

Figure 5-10 - Sunex DSL215 fisheye lens

60

While this lens enabled the vision system to capture the entire playing field, it did introduce severe

barrel distortion. A method was required to correct the image for this distortion. Rather than correct the

entire image before performing the image processing operations, the image was processed first

according to the method presented next, in section 5.6.5, and the calculated object coordinates were

corrected for the distortion.

 Distortion correction

To correct the barrel distortion caused by the wide-angle lens, the method discussed in section 2.3.3

was used. This involved the following steps:

1. Capture image of a uniform, square grid using the D5M camera, with the image sent to the

PC using RS232

2. Load the image into MATLAB

3. Convert the image into a binary image using Otsu’s automatic threshold selection

algorithm (Otsu, 1979)

4. Morphologically erode the vertical lines using a rectangular structuring element of 1 × 8

pixels and save the result as a new image

5. Morphologically erode the horizontal lines using a rectangular structuring element of 8 × 1

pixels and save the result as a new image

6. Find the horizontal and vertical lines in their respective images

7. Track along the vertical lines to find all the interception points

8. Save all the interception points into a large array

9. Using the array as a representative map of the original image’s distortion, apply the

mapping function, given by equation (2)

10. Use Levenberg-Marquardt optimisation to determine the values of K1, K2 and K3 that

minimise the squared error with the undistorted coordinates

11. Apply the mapping function to the received object coordinates in the HPS as shown in

Appendix B.

An image of the two morphologically eroded images with all the interception points found and displayed

is shown in Figure 5-11. The black lines are the detected grid lines and the circles plotted on the vertices

are the detected intersection points.

61

Figure 5-11 - MATLAB output image of all calibration grid intersection points found by distortion correction
algorithm

The calibrated and uncalibrated representations of the distortion map are shown in Figure 5-12. As can

be seen, the calibrated map is corrected such that the curvature has been straightened.

Figure 5-12 - Uncalibrated (left) and calibrated (right) distortion point map

The final steps to utilising this calibration method is to determine the correct X and Y offsets in the final

system. This is done by first applying the mapping function in the final system, and then inserting the

correct offsets such that when the ball is in the corner corresponding to (x,y) = (0,0), the vision system

outputs 0,0 as the true object coordinates. This is done retrospectively by testing the outputs.

 Final implementation

The final image processing algorithm was implemented in the Terasic DE1-SoC development board with

the D5M camera module. This section will discuss the image processing hardware and FPGA design,

while section 0 will discuss the FPGA and HPS contained in the DE1-SoC development board.

The final image processing algorithm is represented by the block diagram shown in Figure 5-13.

62

Figure 5-13 - Representation of overall image processing system

All the image processing operations mentioned in section 5.6.2 were included, however in the CCA

instantiation, blob size checking was implemented to only output the coordinates of the detected blob if

they met size constraints matching the ball size.

The above processes are implemented in FPGA hardware such that where possible, pipelined stream

processing is utilised. Successive operations were pipelined, enabling a throughput of 1 pixel per clock

cycle to be maintained. First a Bayer interpolation filter is used (see Figure 5-14) to demosaic the input

image and give a full-colour image for subsequent processing.

Figure 5-14 - Block diagram of 3x3 windowed Bayer interpolation (demosaicing) hardware implemented in FPGA.
(Bailey, 2018). Reprinted with permission.

Following this, the image is converted from RGB colour space to YCbCr because the luminance and

chrominance components are separated, which typically offers superior segmentation performance to

the RGB or HSV/HIS colour spaces (Janssen et al., 2012; Jianping et al., 2001). This is done using the

combinatorial logic shown in Figure 5-15.

Figure 5-15 - Block diagram of simplified RGB to YCbCr conversion implemented in FPGA hardware
(Bailey, 2018). Reprinted with permission.

Image
stream
from
D5M

Bayer
interpolation

Colour
space

conversion
and filtering

Morph
erosion &
dilation

CCA

Transfer
object
coords
to HPS

HPS
applies

mapping
functions

63

After colour space conversion, the coloured ball is detected using predetermined colour thresholds and

a binary image pixel stream is output. This pixel stream is then filtered using a morphological opening

(using a 5×5 window) to remove small noise pixels.

Figure 5-16 - Block diagram of a 5×5 morphological filter (erosion) implemented in FPGA hardware – for dilation,
AND gates were replaced with OR gates. (Bailey, 2018). Reprinted with permission.

The final hardware-based image processing operation is connected components analysis. Connected

components analysis extracts feature data from each set of connected pixels in the image (Klaiber,

Bailey, Baroud, & Simon, 2016). Here the blob size was used to filter non-ball objects, and the bounding

box was used to give the ball position. In this implementation, only blobs smaller than 1000 pixels were

considered to be the ball. No minimum blob size was implemented as, due to the lighting on the table,

there were times when the ball size would appear greatly reduced due to bright spot illumination when

the ball was too close to the field illumination LEDs. The field illumination will be discussed in a

subsequent chapter.

Figure 5-17 - Block diagram of the high-level architecture for connected components analysis (CCA) implemented in
FPGA
(Bailey, 2018). Reprinted with permission.

64

These pipelined processes were all used in the vision system tested in sections 5.2 and 5.3. As was seen

in the experimental results, they provide low latency in both novel event detection and steady state

latency.

The combination of the morphological erosion and dilation effectively removes the noise pixels and

replaces the eroded pixels in the detected ball. The connected components analysis detects individual

blobs and creates the bounding box for the detected ball. Without connected components analysis, the

bounding box was created around the entire detected region from the colour thresholding. After the

addition of connected components analysis, even with multiple separate objects in the detected region,

the ball could still be identified.

65

6. Compute subsystem

This chapter will discuss the computational system including the hardware, software and control

strategy. A detailed description will be given regarding the methodology for high-speed communication

between the FPGA and ARM cores. The hardware-based motor control modules will also be discussed in

detail.

The overall flow of data for one image capture –> system response cycle is shown in Figure 6-1.

Figure 6-1 - Representation of vision-actuation control system data cycle from input to response

The data cycle for the entire compute system begins with image capture and processing, discussed in

section 5.6.6. Once the ball has been successfully detected, its coordinates (x_min, x_max, y_min,

y_max) are passed to the ARM core in the HPS via the high bandwidth AXI bridge. The HPS then

performs the lens distortion calibration mapping, calculates the interception points for each automated

module, and then returns the required actuation data to the FPGA. The motor control modules within

the FPGA then output the required waveforms to control the 8 stepper motors concurrently. The data

transfer methods, interception calculations, and motor control methodology will be described in detail

in the following sections.

6.1. Terasic DE1-SoC FPGA development board

The DE1-SoC is a development board by Altera with a system on chip (SoC) which contains an FPGA and

an 800 MHz Dual-core ARM Cortex-A9 MPCore processor on the same die, connected by a high-

bandwidth communication interface. The interface consists of two high performance bridges which can

Image capture

Image data streamed to
FPGA

FPGA performs image
processing operations on

row buffered data

FPGA outputs object
coordinates to HPS via

AXI bridge

HPS calculates required
action of stepper motors
based on object motion

HPS returns actuator
control data to FPGA via

AXI bridge

FPGA performs actuation
concurrently

66

be configured in 32, 64 and 128-bit data width configurations, and one lower performance bridge which

can only operate in 32-bit data width configuration. The two high performance bridges are called the

FPGA to HPS bridge (F2H) and HPS to FPGA bridge (H2F). The lower performance bridge, mostly used for

control and status registers and passing small data packets and commands, is called the lightweight HPS

to FPGA bridge (LWH2F). The H2F, F2H and LWH2F bridges are all shown, including their master/slave

capabilities, in Figure 6-2. The “L3 interconnect” in Figure 6-2 refers to the L3 cache within the HPS

component.

Figure 6-2 - Block diagram showing the master/slave relationship for each of the bridges between the FPGA and HPS
(Altera, 2016).

The Global Programmers View (GPV shown in Figure 6-2), gives the programmer control over the

behaviour of the three bridges through the lightweight HPS to FPGA bridge. In this design, the H2F

bridge has been used for bidirectional data transfer, while the LWH2F bridge is used for commands and

control/status registers. This will be detailed in later sections.

 FPGA component

The FPGA chip consists of 85,000 logic elements, 4,450 Kbits of embedded memory, 457 pins, 87 DSP

blocks, 6 fractional PLLs, and 4 DLLs.

67

The FPGA component of the system is programmed either with a .SOF file from the Quartus software, a

.RBF file loaded by the Linux OS, or a .JIC file using the EPCQ programmer device which automatically

loads a specified file into the FPGA portion of the chip when the board is powered up. The EPCQ chip is

originally programmed from within the Quartus software.

For this design, the Quartus programmer is used to load the .SOF file onto the FPGA. This is done via the

Intel FPGA Monitor Program, which accesses the Quartus programmer to load the .SOF file when the

HPS C project is first opened.

 HPS component

The HPS portion of the DE1-SoC consists of:

• 800 MHz Dual-core ARM Cortex-A9 MPCore processor

• 1GB DDR3 SDRAM (32-bit data bus)

• 1 Gigabit Ethernet PHY with RJ45 connector

• 2-port USB Host, normal Type-A USB connector

• Micro SD card socket

The HPS is either programmed with using the Intel FPGA Monitor Program or using the bootloader built

into the Linux distributions provided by Altera and Terasic. There are several different distributions of

Linux which run on the ARM core and they vary in size, speed and user interface – from simple

command line to full desktop GUI.

In this design, the Intel FPGA Monitor Program is used to load bare-metal C code onto the ARM core.

This is done after the .SOF file has been loaded onto the FPGA portion of the SoC. Using the Intel FPGA

Monitor Program enables cross-compilation of the C code for the HPS. Native compilation requires an

OS to be running on the system. This introduces two main problems:

1. In the development process, if the C code causes a major error that freezes the ARM core,

the entire device needs to be restarted to clear the error

2. Cross compilation is faster on a desktop PC due to the much more powerful processor

present in the PC, than the 800 MHz dual core ARM processor

Bare-metal C code was selected instead of running one of the Linux operating systems available. This

was done to avoid any additional latency caused by the OS, and to avoid previously mentioned

development issues introduced by native compilation.

 SoC design

The HPS is instantiated into the FPGA design using the Qsys GUI, by following the design guidelines

provided by Intel (2017a). Other methods are possible such as reverse engineering the pre-built design

from the Altera University Program, called “DE1-SoC Computer”. This is a less effective approach than

the bottom up method of starting with a blank project and only instantiating the necessary components.

68

That was the method used for this project. The complete Qsys design is shown in Appendix C.

Figure 6-3 - Example Qsys HPS component

Figure 6-3 shows the top component in the Qsys project, the HPS component. For explanation on the

Qsys tool, Altera University Program documentation can be consulted (Intel, 2017b). The important

aspects of the HPS instantiation will be discussed, however.

On the far left-hand side, under the connections tab, the black lines show which components are

connected to various parts of the HPS components. The important parts of the HPS component are the

communication bridges: h2f_master, f2h_slave, and the lwh2f.

To transfer data between the FPGA and HPS, a communication interface is required in conjunction with

the bridges. These communication interfaces are called PIOs (parallel input/output). As is shown in

Figure 6-4, when creating a PIO various settings data width, direction (input, output or bidirectional),

reset vector and interrupt options need to be set. In Figure 6-4 the settings for a 16-bit input into the

HPS are shown. This input (x_min_pio) is used to transfer one of the 4 object coordinate data values

from the FPGA to the HPS. The other 3 are 𝑥_max_𝑝𝑖𝑜, 𝑦_min_𝑝𝑖𝑜, and 𝑦_max_𝑝𝑖𝑜.

69

Figure 6-4 - Setup options for PIO in Qsys

Once these settings have been set, the internal connections are then made. This step determines which

bridge the FPGA and HPS will communicate over.

Figure 6-5 - PIO connections and addresses in Qsys

As can be seen in Figure 6-5, the row highlighted in blue shows the connections on the left-hand side,

and the memory start and end addresses. The two connections in Figure 6-5 are to the h2f_master, and

to the f2h_slave. The values transmitted via the PIOs are accessed in the HPS by reading the values

stored at the corresponding memory address. This is shown in Appendix D, which shows the interrupt

service routine (ISR) which runs once for each new frame of image data received.

The return of data from the HPS to the FPGA is also performed with a PIO, however in the settings

section, the direction is set to “output”. The HPS then writes to the address, an example of this is shown

below in Figure 6-6, and the FPGA reads this data by assigning the value in the component instantiation

of the HPS to an internal signal in the FPGA design. This is shown in Figure 6-7.

70

Figure 6-6 - C code used to send an "active" signal to the FPGA, and disable all the stepper motors temporarily

Figure 6-7 - VHDL code to receive data/signals from the HPS

The signals “stepCmd” and “HPS_ACTIVE” are then used to drive the stepper motors and enable the

interception modules, respectively. A simplified block diagram of the data transfer method is shown

below in Figure 6-8.

Figure 6-8 – Representation of data transfer method between FPGA and HPS

Any of the three bridges can be used for data transfer in either direction between the FPGA and HPS,

however Intel recommends using the LWH2F bridge for control and status registers, and the “heavy

weight” bridges (H2F and F2H) for data transfer (Intel, 2017a). This methodology has been used for the

design of this control system. The following figure shows the address map and masters/slaves within the

Qsys design of the SoC. The F2H bridge allows the FPGA master access to the HPS peripherals, while the

H2F and LWH2F bridges provide the HPS master access to the FPGA peripherals (Altera, 2016).

printf("dis step strobe\n en HPS_ACTIVE \n");

*(stepCmd_0_ptr) = 0b00000000; // write all stepper strobe signals low

*(HPS_ACTIVE_ptr) = 0xF; // tell the FPGA that the HPS is active

signal stepCmd : std_logic_vector(7 downto 0) := "00000000";

signal HPS_ACTIVE : std_logic;

--inside HPS component instantiation

step_cmd_0_external_connection_export => stepCmd,

hps_active_external_connection_export => HPS_ACTIVE,

HPS

H2F

PIO_1

PIO_n

FPGA

Ball position Ball position

received

StepCmd

HPS_ACTIVE

StepCmd

received

HPS_ACTIVE

received

LWH2F

PIO_1

PIO_n

71

Figure 6-9 - Address map for Qsys SoC design

As is shown in Figure 6-9, numerous PIOs have been instantiated in the Qsys design. The PIOs used in

this design perform communication and command tasks between the FPGA and the HPS according to

Table 6.1.

72

Table 6.1 - System PIOs and their respective functions

PIO name Direction Function description

HPS_ACTIVE HPS->FPGA Signal for HPS to inform FPGA that HPS is running

RS232_HPS_CMD FPGA->HPS Command pass though for user input RS232

RS232_HPS_CMD_ready FPGA->HPS Interrupt generation signal for RS232 data

RS232_HPS_CMD_RETURN HPS->FPGA Generic channel to send any command to FPGA

from HPS

button_pio FPGA->HPS PIO to interrupt HPS with pushbuttons

frequency_from_HPS HPS->FPGA PIO to send stepper motor frequency to FPGA

hps_0.f2h_axi_slave HPS->FPGA Channel for HPS to master F2H

hps_cold_reset FPGA->HPS Signal for FPGA to reset HPS

hps_debug_reset FPGA->HPS Signal for FPGA to reset HPS

hps_warm_reset FPGA->HPS Signal for FPGA to reset HPS

img_data_ready FPGA->HPS Signal for FPGA to interrupt HPS when each new

frame of image data is ready

intr_capturer_0.avalon_slave_0 FPGA->HPS Interrupt capturer module for FPGA to HPS

interrupts

jtag_uart.jtag_avalon_slave User Input User input for master access to bridges

onchip_memory2_0 Both On chip memory for memory mapped devices –

bridges, peripherals etc

step_cmd_0 HPS->FPGA PIO for HPS to send strobe signal to initiate stepper

module operation

step_data_0 HPS->FPGA PIO for HPS to send distance for stepper modules

step_pos_0 FPGA->HPS PIO for stepper module to send distance values to

HPS – used primarily for homing sequence

stepper_0_busy FPGA->HPS PIO for stepper motor busy flags from FPGA to HPS

sysid_qsys.control_slave Internal System ID PIO for checking correct function of

bridge

x_max_pio FPGA->HPS PIO for maximum x coordinate of ball - send to HPS

x_min_pio FPGA->HPS PIO for minimum x coordinate of ball - send to HPS

y_max_pio FPGA->HPS PIO for maximum y coordinate of ball - send to HPS

y_min_pio FPGA->HPS PIO for minimum y coordinate of ball - send to HPS

73

6.2. Motor Control

This section will discuss the algorithms, mathematics, methodologies, hardware and software used to

implement FPGA-based stepper motor control. Figure 6-10 shows the order of the development process

of the FPGA-based motor control modules.

Figure 6-10 - Development process for the motor control design

As can be seen in Figure 6-10, the motor control algorithm mathematics were first simulated and

developed within MATLAB. The resultant variable-acceleration ramping algorithm was then

implemented in an Arduino microcontroller for qualitative performance testing relative to a trapezoidal

(constant acceleration) ramping curve. The next phase involved testing a simple motor control module

in FPGA hardware which accepted inputs such as distance, direction and speed and ran the motor at the

specified velocity, for the specified distance, in the specified direction. The variable-acceleration

ramping algorithm was then implemented in FPGA. Finally, multiple modules were implemented and

tested in FPGA to establish resource requirements, compilation times and correct functionality. The

motor control modules were developed in parallel with the SoC system design.

 Background

For the semi-automated foosball table, stepper motors were selected as the actuators due to the

combination of the ability to run in a semi-open loop, and their power density. A stepper motor is a DC

driven electric motor which operates in discrete “steps”. The following data were considered important

for the design of the semi-automated foosball table:

1. Torque vs speed curve

2. Voltage range

3. Current at a particular voltage – rated current

The selected stepper motors are Nema 23, bipolar stepper motors with 200 steps per rotation,

maximum voltage of 40 V DC, and 2.8 A per phase.

The selected stepper drivers have 3 inputs, 5 A current delivery and are based on the TB6600 driver

chip. The drivers are capable of up to 1/16th steps. For the semi-automated foosball table, full stepping

is used for the linear sliding motion, and half stepping is used for the kicking motion. These settings

correspond to 200 and 400 steps per revolution of the stepper motor, respectively. Figure 6-11 shows

the stepper motor and driver used.

Motor control
acceleration and

deceleration
equations

Simple motor
control test in

FPGA

Matlab motor
control

simulation

Multiple
instantiation

motor control
system

74

Figure 6-11 - Nema 23 bipolar stepper motor - 200 steps per revolution

 Mathematical approximation

To control a stepper motor, a pulse generation system must be used. This can be a simple constant rate

square wave, or it can be more complex, incorporating velocity changes, or even varying acceleration to

smoothly change the velocity. To achieve the fastest acceleration from a stepper motor, the

acceleration of the pulse rate should match the torque curve of the motor being used. Figure 6-12

shows the torque curve of the motors being used in this application. The following section will discuss

the approximation used to match the acceleration parameters of that curve, and the other

considerations necessary to achieve maximum performance from the actuation modules.

Figure 6-12 - Pull out torque curve of Nema 23 bi-polar stepper motor

In the semi-automated foosball table, stepper motors drive belt assemblies which either perform the

kicking motion (rotation to rotation) or the sliding motion (rotation to linear). For the sliding motion,

used for intercepting the ball, the motors must overcome the static friction to initiate the sliding and

kicking movement. For interception, however, there is constant sliding friction of the outer shaft over

the inner shaft, separated by acetal bushings, which the motor must overcome. For many materials, as

the sliding speed increases, given a constant normal force, the coefficient of friction decreases (Chen,

Kato, & Adachi, 2002; Chowdhury, Khalil, Nuruzzaman, & Rahaman, 2011). This implies that as the

sliding speed of the interception rod increases, the amount of torque required to accelerate the rod may

To
rq

u
e

Pulses per second

75

decrease. Given that the motor torque decreases with speed, there may be some cancellation of effects

caused by these two occurrences. The acceleration curve used by the stepper motors on the semi-

automated foosball table, therefore, had to be empirically derived.

 Stepper motor basic control algorithm

The basic stepper motor control algorithm takes the target position (number of steps) and automatically

determines the ramping algorithm required. If the input distance is below 800 steps, the motor does not

reach full speed in the time available therefore for the entire cycle of the stepper motor travel, it is

either accelerating or decelerating. If input distance is greater than 800 steps, the motor can reach a

maximum “cruise” speed. During this cruise phase the motor is neither accelerating nor decelerating.

This is a potential time where the interception destination of the module could be changed on-the-fly,

however this has not been implemented to improve reliability in the testing phase. Future work could

include this feature. The following figure shows the MATLAB code used to test the functionality of the

acceleration and deceleration algorithm used later in the FPGA implementation.

distance = 1600; %input distance

stepsTaken = 0; %keep track of where we are in step cycle

clcArray = zeros(distance);%array to record clock cycles at each step increment

stepFreq = 50000; %initial stepping frequency

accelerator = 20; %accelerator initial value

accelIncrement = 1; %integer to increment or decrement accelerator value

c = 0; %counter for when to take a step (when reaches stepFreq value)

c2 = 0; %counter for when to incr/decr accelIncrement

i=0; %counter to keep track of clock cycles

distThresh = 800; %distance threshold for cruise or not

while(stepsTaken < distance)

 i = i+1; %% equal to clock cycles

 c = c+1; %% counter used to take a step on overflow

 if c == stepFreq

 fprintf('toggled\n');

 c=0;

 stepsTaken = stepsTaken + 1; %% increment step counter

 clcArray(stepsTaken) = i; %% clock cycle val at current step converted to sec

 if distance < distThresh

 if stepsTaken <= distance/2

 stepFreq = stepFreq - accelerator;

 c2 = c2 + 1;

 if c2 == 5 %% every 5 steps increase the rate of acceleration

 accelerator = accelerator + accelIncrement;

 c2 =0;

 end

 end

 if stepsTaken > distance/2

 stepFreq = stepFreq + accelerator;

 c2 = c2 + 1;

 if c2 == 5 %% every 5 steps decrease the rate of acceleration

 accelerator = accelerator - accelIncrement;

 c2 =0;

 end

 end

 end

76

Figure 6-13 - Acceleration and deceleration equations for stepper motor ramping

In Figure 6-13, the code to increment and decrement the pulse timer are shown. The lines of code that

increment and decrement the overflow counter are marked with green arrows for the acceleration

phase, and red arrows for the deceleration phase. The first two arrows are for the condition where the

input distance is less than 800, and the second two arrows are for when the distance is greater than or

equal to 800.

The parameters used in this code are not the exact parameters used in the FPGA stepper modules. As

will be shown in the next section, those parameters and the starting speed were empirically derived.

Figure 6-14 and Figure 6-15 show example outputs of the time period between steps “period”, and the

frequency of stepping “velocity”. They are inverse of each other, in accordance with

𝑇 =

1

𝑓

(9)

where 𝑇 is period, and 𝑓 is frequency.

Figure 6-14 - Stepper motor simulation output curve for input distance = 600

if distance >= distThresh

 if (stepsTaken <= (distThresh/2)) && (stepsTaken < (distance-400))

 stepFreq = stepFreq - accelerator;

 c2 = c2 + 1;

 if c2 == 5 %% every 5 steps increase the rate of acceleration

 accelerator = accelerator + accelIncrement;

 c2 =0;

 end

 end

 if stepsTaken > (distance-400)

 stepFreq = stepFreq + accelerator;

 c2 = c2 + 1;

 if c2 == 5 %% every 5 steps decrease the rate of acceleration

 accelerator = accelerator - accelIncrement;

 c2 =0;

 end

 end

 end

 end

end

77

Figure 6-15 - Stepper motor simulation output curve for input distance = 1200

The “cruise” period, shown in Figure 6-15, was achieved because the input distance was greater than

the 800-step threshold, therefore the motor could reach maximum speed.

For comparison, the 1200 step output has been replicated with a constant velocity model (no

acceleration), and a trapezoidal ramping curve as done by (Wang et al., 2011). These output figures with

execution times are shown in Figure 6-16 and Table 6.2, respectively.

Figure 6-16 - Output curves for constant velocity (top 3) and trapezoidal velocity (bottom 3) profiles

Cruise

Constant

velocity

Trapezoidal

velocity

78

Table 6.2 - Time taken and maximum velocity for 3 simulated stepper motor velocity profiles

Ramping type Time taken for 1200 steps (s) Maximum velocity (PPS)

Constant velocity (no ramp) 1.2 1000

Constant acceleration

(trapezoidal ramp profile)

1.072 1190.5

Variable acceleration 0.8635 1908.4

The stepping speed was initialised at 1000 pulses per second for all 3 models. In the trapezoidal and

variable acceleration profile, the acceleration increment was set to 20. In the variable acceleration

model, the acceleration increment was set to 1, incrementing or decrementing every 5 steps taken, as

shown in the simulation code.

For the constant acceleration model, the accelerator and incrementer were both set to 0. While for the

trapezoidal model, only the incrementer was set to 0. As shown in Table 6.2, the variable acceleration

achieves the fastest time for 1200 steps, and the highest top speed. Additionally, this type of curve

offers the smoothest acceleration and deceleration, minimising jerks (Wang et al., 2011).

 Stepper motor control on FPGA

In FPGA hardware, the variable acceleration ramping algorithm shown in Figure 6-13 was implemented.

The main limiting factor is the difficulty to perform floating point calculations on FPGA, therefore the

original simulation code was written only using integer counters to ensure the code could be correctly

ported. A block diagram representing the required inputs and outputs for each stepper module is shown

in Figure 6-17. The internal pulse generation method within the motor control module is then shown in

Figure 6-18, however for simplicity some of the inputs and outputs such as the distance input, reset,

stop command, homing switches, flags, and direction inputs and outputs have been omitted. The block

diagram focusses on the pulse generation using the variable acceleration model outlined in Figure 6-13.

Figure 6-17 - Stepper module entity diagram showing inputs and outputs

Inputs:

Clock_In

Distance_In

Speed_In

Direction_In

Strobe_In

HomingSwitch1

HomingSwitch2

Stop

Reset

Stepper

Module

Entity

Outputs:

Pulse_Out

Direction_Out

Enable_Out

Busy_Flag

Status

Position

79

Figure 6-18 - Block diagram of simplified variable acceleration pulse generation method, implemented in FPGA

The key difference between the simulation and the FPGA realisation is that the number of steps taken

by the motor is half the number of steps output by the simulation. This is because the stepper motor

driver moves the motor by one step only on the rising edge of the pulse signal. Therefore 2 toggles of

the pulse pin are required to perform a single step on the physical system. So, a pulse rate of 700 pulses

per second in the simulation equates to 350 pulses per second on the physical system.

In Figure 6-18, the 50 MHz input clock drives the counter which is compared every clock cycle with the

speed compare variable. If they are the same, the pulse output pin is toggled, and the second counter is

incremented. When the second counter and the counter compare variable are equal, the accelerator

(used to decrement or increment the speed compare variable each step) is incremented or

decremented. The following table shows whether the accelerator and speed compare variables are

incremented or decremented relative to the stepper motor cycle – acceleration, cruise, or deceleration.

Table 6.3 - Increment or decrement based on current stepper motor cycle position

Acceleration or deceleration Speed compare Accelerator

Acceleration - accelerator +1

Deceleration + accelerator - 1

Counter 1 CMP

CMP

Take step Pulse out

Counter 2

Counter

compare

Speed

compare

Accel: +

Decel: -

Accel: -

Decel: +

Accelerator variable is

incremented or

decremented by 1

Speed compare

variable is

decremented or

incremented using

accelerator value

Accelerating

OR

decelerating

Clock_in

Value initially set

when stepping

initiated

80

The VHDL code for the FPGA based stepper motor control algorithm with variable acceleration is shown

in Appendix E and Appendix F. Appendix E shows the entity declaration, while Appendix F shows the

architecture.

Wang et al. (2011) implemented a trapezoidal stepper motor velocity profile on an FPGA. Their control

algorithm consumed 1276 logic elements. In our FPGA based variable acceleration ramping profile, each

control module consumed an average of 1085 ALUTs, while also being completely parameterizable

(variable speed, distance, direction, and the ability to create any of the 3 types of velocity profile), and

including the homing functionality discussed in section 6.2.7.

While these resource utilisation values cannot be compared directly (because of differences in

technology), they do give a reasonable comparison of the low resource requirements of our stepper

motor control algorithm.

 Determining acceleration parameters

Each of the 4 actuation modules on the semi-automated foosball table is slightly different, due to

material imperfections, manufacture tolerances, bolt tightness, bearing friction, dirt build-up and many

more factors. To compensate for this, the acceleration curve parameters such as initial frequency,

secondary counter overflow value, accelerator initial value and increment value had to be determined

by testing various parameters, finding the most aggressive ramping curve the module could tolerate,

and then reducing this by a small margin as a factor of safety.

The starting frequency of around 350 motor pulses per second (speed counter initial value of 70000 and

simulated initial pulse rate of 700 pulses per second) was chosen as this was the speed at which the

motors produced the maximum torque. An initial value of 2 was selected for the accelerator, and 1 for

the incrementer. The measured completion time for this cycle was around 2.9 seconds.

These values were progressively increased until the stepper motor began to skip steps. The combination

of values at which this occurred was around 25000, 20 and 1 for speed counter, accelerator, and

incrementer, respectively. The initial motor speed was 1000 pulses per second. The simulated

completion time for this cycle was 0.8635 seconds. The measured completion time corresponded well to

this value when steps were not skipped, however this was often not the case.

The starting frequency value was therefore dropped to improve reliability, and a starting frequency

value of 27000 (corresponding to 926 motor pulses per second) was selected as this starting frequency

reliably did not cause the system to miss steps. Further optimisation work could be done to improve the

maximum speed of the modules, or to dynamically change the aggressiveness of the ramping profile

depending on the input distance, however this was not included in the scope of this research.

 Kicking algorithm

The gearing ratio from the stepper motor to the output shaft is a 1:1 ratio. So, one full rotation of the

motor output shaft causes one full rotation of the kicking rod. For obvious reasons, the kicking algorithm

81

should accrue maximum momentum of the kicking rod before it collides with the foosball. Given that

the rotational inertia of the rod doesn’t change when the rod spins, in order to maximise angular

momentum of the rod, maximum possible rotational velocity must be reached when the ball is kicked.

The rules of foosball state that a full 360° spin prior to or after kicking the ball is illegal. Therefore, this is

the limiting factor in terms of maximum speed that can be achieved and therefore momentum that can

be imparted by the kicking rod. The rod therefore is accelerated from 0 rad/s to maximum rotational

speed possible in less than 360° of rotation, the foosman’s “foot” collides with the ball, and then the rod

is decelerated back to 0 rad/s in less than 360°.

The method to achieve this is as follows:

1. Intercept the ball and ensure it is stationary – done by storing the ball position values in a

buffer and calculating the positional difference. When the difference is small enough, the ball is

deemed to be stationary

2. Move the foosman’s “foot” around the ball involving

a. Sliding to one side a sufficient distance to miss the ball (approximately 40mm)

b. Positive rotation sufficient angle to place foosman “foot” in front of the ball

c. Equal but opposite direction slide as was performed in step 2a

3. Accelerate and kick ball in under 360° of rotation – around 40 degrees of rotation required to

miss the foosball – this leaves 320 degrees or less in which to accelerate and kick the ball

4. Foosman “foot” collides with ball, transferring as much kinetic energy as possible

5. Decelerate and stop the rod in ~359° (398 steps input to stepper module) of rotation

Considerations required for the algorithm

1. If the module is all the way to one side of the table, the rod may have to slide in the opposite

direction to move around the ball

2. If the ball moves, the new position of the ball will need to be used as the location from which to

kick the ball

By using the homing switches attached to the rotational assembly, combined with the fixed relationship

between pulses and angle, the angle of the stepper motor and of the kicking rod is always known.

 Homing and sliding algorithm

The gearing ratio of the sliding mechanism is 1:1, therefore only input steps to output linear distance

had to be measured. The key information required by the module is the end limits for each of the

modules, as they each have different work envelopes. Additionally, on initialisation of the semi-

automated foosball table, the position of the rods is unknown to the system. Therefore, a method of

calibrating each foosmen rod was required. This section will address that problem.

82

The objective of the homing sequence is for the modules to find the end limits for each rod. This is

achieved by performing the following functions for each rod:

1. Step at low speed for a distance greater than the workspace (input distance greater than

2000 steps) in a predefined direction (let direction = 1)

2. When the switch on the corresponding end of the table is pressed, set the module output

distance to 0, reverse the direction of travel (let direction = 0) and initiate a new stepping

sequence with the same high distance of greater than 2000 steps

3. When the switch on the opposite side is eventually pressed, stop the module and output

the distance reached 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑠𝑡 to the HPS,

4. Finally, reverse the module to the centre of the table – this is the output distance

𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑠𝑡/2 with the direction of travel set to the same as in step 1 (let direction = 1)

The code for this homing sequence is shown in Appendix G.

Figure 6-19 – Birds-eye view of foosball table CAD model with automated rods annotated

The total number of steps required for the total travel of each rod, which are numbered in Figure 6-19,

are as follows:

1 2 3 4

83

Rod 1 – 241 mm = 964 steps

Rod 2 – 415 mm = 1660 steps

Rod 3 – 170 mm = 680 steps

Rod 4 – 287 mm = 1148 steps

The ratio of steps to mm is therefore 4:1. The total workspace for each of the rods (from one limit

switch to another) is 690 mm, or 2760 stepper motor steps.

 Interception algorithm and image to table spatial mapping

Once the image had been corrected for the radial distortion introduced by the wide angle lens, using the

method discussed in section 5.6.5, the measured position of the ball needed to be converted to physical

space for the interception calculations to be performed. Since both spaces are linear, this requires an

offset and a scale factor.

These were obtained using the following steps:

1. Place ball at minimum Y position on the playing field – this corresponds to the human side

of the table as close to the edge of the playing field as possible

2. Obtain lens distortion corrected ball coordinates – let this be 𝑌1 – this is equal to the offset

3. Place ball at maximum Y position on the playing field – this corresponds to the automated

module side of the table as close to the edge of the playing field as possible

4. Record value – let this be 𝑌2

5. Calculate the difference between the two obtained Y values

6. Scale from image space (pixels) to the corresponding workspace (in stepper motor steps) –

note that this is not the same as the total travel mentioned in section 6.2.7

7. Apply an offset in the Y direction such that the lowest position recorded for the ball is

equal to 0 (this offset is equal in value and opposite in sign to the first recorded Y value)

The values obtained in this process were 𝑌1 = 240, 𝑌2 = 912.

As mentioned in the above steps, the total workspace for the module is equal to the width of the table

in mm minus around 3mm (to compensate for the limit switches), converted to steps. This value is 𝐷𝑇 =

690 𝑚𝑚 × 4
𝑠𝑡𝑒𝑝𝑠

𝑚𝑚
= 2760 𝑠𝑡𝑒𝑝𝑠.

After offsetting the image Y values by -240 pixels the output map becomes

 𝑌𝑜𝑢𝑡 = (𝑌𝑖𝑛 − 𝑌1) ∗ (
𝐷𝑇

𝑌2 − 𝑌1

) (10)

After correctly calculating the Y position of the ball, and applying the offset and scalar required to

correct image coordinates into actuation module workspace, the interception points can be calculated.

For all 4 modules the following parameters are constant and pertain to Figure 6-20:

84

 𝐷𝑇 = 690 𝑚𝑚 = 2760 𝑠𝑡𝑒𝑝𝑠 (11)

 𝑓𝑜𝑜𝑠𝑚𝑎𝑛 𝑤𝑖𝑑𝑡ℎ 𝐹𝑤 = 32.5 𝑚𝑚 (12)

 𝑑1 + 𝑑2 + 𝑑3 = 𝑑4 + 𝑑5 + 𝑑6 = 𝑑7 + 𝑑8 + 𝑑9 = 𝑑10 + 𝑑11 + 𝑑12 = 690 𝑚𝑚 (13)

Figure 6-20 – Birds-eye view of foosball rods - Module 4 to 1 from left to right

Module 4 Module 3 Module 2 Module 1

𝑑10 + 𝑑12 = 287 𝑚𝑚 𝑑7 + 𝑑9 = 170 𝑚𝑚 𝑑4 + 𝑑6 = 415 𝑚𝑚 𝑑1 + 𝑑3 = 241 𝑚𝑚

𝑑11 = 690 − 287 𝑑8 = 690 − 170 𝑑5 = 690 − 415 𝑑2 = 690 − 241

𝑑11 = 403 𝑚𝑚

= 1612 𝑠𝑡𝑒𝑝𝑠

𝑑8 = 520 𝑚𝑚

= 2080 𝑠𝑡𝑒𝑝𝑠

𝑑5 = 275 𝑚𝑚

= 1100 𝑠𝑡𝑒𝑝𝑠

𝑑2 = 449 𝑚𝑚

= 1796 𝑠𝑡𝑒𝑝𝑠

4 3 2 1

𝐷𝑇

𝐹𝑤

𝑑10

𝑑11

𝑑12

𝑑7

𝑑8

𝑑9

𝑑4
𝑑1

𝑑5

𝑑6

𝑑2

𝑑3

85

Figure 6-21 – Birds-eye view of foosball table with positions of each foosman on each module labelled

Module 4 Module 3 Module 2 Module 1

𝑝1 = 𝑑10 +
𝐹𝑤

2
 𝑝1 = 𝑑7 +

𝐹𝑤

2
 𝑝1 = 𝑑4 +

𝐹𝑤

2
 𝑝1 = 𝑑1 +

𝐹𝑤

2

𝑝2 = 𝑑10 +
𝑑11

2
 𝑝2 = 𝑑7 +

𝑑8

4
+

𝐹𝑊

4
 𝑝2 = 𝑑4 + 𝑑5 −

𝐹𝑤

2
 𝑝2 = 𝑑1 +

𝑑2

2

𝑝3 = 𝑑10 + 𝑑11 −
𝐹𝑤

2
 𝑝3 = 𝑑7 +

𝑑8

2

𝑝3 = 𝑑1 + 𝑑2 −

𝐹𝑤

2

𝑝4 = 𝑑7 + 𝑑8 ∗

3

4
−

𝐹𝑊

4

𝑝5 = 𝑑7 + 𝑑8 −

𝐹𝑤

2

With the above calculations for each module’s position, and each foosman’s position on each module,

the intercept can now be calculated.

For brevity, example interception calculations will be shown for module 2. Figure 6-22 shows the C code

section which calculates the difference between each foosman’s current position and the ball’s

calibrated Y position.

𝑝1

4 3 2 1

𝑝2

𝑝3

𝑝1

𝑝2

𝑝3

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝2

𝑝1

86

Figure 6-22 - C code used to calculate differences between ball and foosmen positions

In Figure 6-22, the variable “decide_possession” is used to determine which foosman should take

possession of the ball, depending on the ball’s coordinates. The differences between the ball’s Y

coordinate (Ycor – the corrected Y position of the ball), and the two foosmen’s linear position is then

calculated, and the possession decider determines which “delta” to use.

The values 1035 and 1725 represent the positions on the foosball table which correspond to the

maximum reach of each foosman on rod 2. If the ball is at or below Y = 1035, only the first foosman can

reach the ball. If the ball is at or above Y = 1725, only the second foosman can reach the ball. In between

these values and either foosman can reach, therefore the closest foosman performs the intercept.

The relevant interception data is then sent from the HPS to the FPGA motor control modules with the

direction in which to travel to intercept the ball. This is the non-predictive model. The predictive model

uses multiple ball locations (X and Y) to calculate the velocity and heading angle of the ball. The

intercepts are then calculated based on the heading angle and the appropriate foosman is used for

interception.

Future work could factor the current motion of the foosmen rods into the equation and use the

minimum time to intercept as the deciding variable for which foosman is used for interception. This

would include the speed and direction of the module’s current motion and determine which foosman

would take the least time to intercept the ball. The time-taken model was out of scope for this research,

however.

int decide_possession = (int)(Ycor);

if (decide_possession > 1725)

POSSESSION = 2;

else if (decide_possession < 1035)

 POSSESSION = 1;

else if ((decide_possession < 1725) && (decide_possession > 1035))

 POSSESSION = 3;

else

 POSSESSION = 0;

DELTA1 = (LIN_POS_GLOBAL+65) - Y2;

DELTA2 = (LIN_POS_GLOBAL+1035) - Y2;

if (POSSESSION == 1)

{

 DELTA_USE = (int)DELTA1;

}

else if (POSSESSION == 2)

{

 DELTA_USE = (int)DELTA2;

}

else if (POSSESSION == 3)

{

 if ((fabs(DELTA1)) < (fabs(DELTA2)))

 {

 DELTA_USE = (int)DELTA1;

 }

 else if ((fabs(DELTA2)) < (fabs(DELTA1)))

 {

 DELTA_USE = (int)DELTA2;

 }

}

87

6.3. Resource requirements

The final consideration with the SoC and motor control module design was resource utilisation and

compilation time. The required elements in the complete SoC design are:

1. Vision – capture, process and display image

2. Code to send object coordinates to HPS

3. RS232 communication – user inputs

4. 8x motor control modules – 4x linear, 4x rotational

5. Homing code and limit switch reading – 12x limit switches total

6. HPS component and all required PIOs

Figure 6-23 - Block diagram representing entire SoC system design

Figure 6-23 shows the high-level block diagram for the entire SoC system. M0 to M7 represent the 8

motor modules, with all the limit switch inputs.

In order to reduce compilation time, most of the development was done with a single motor module

implemented. This resulted in a compilation time of around 11 minutes, and resource utilisation shown

in Table 6.4.

HPS FPGA

Data sent

to HPS

Data

received

from FPGA

Data sent

to FPGA

Data

received

from HPS

M0

M1

M2

M3

M4

M5

M6

M7

RS232 User Input

Vision –

capture,

process,

display

F2H

PIO_1

PIO_n

H2F

PIO_1

PIO_n

LWH2F

PIO_1

PIO_n

Commands

sent to and

received

from HPS

Commands

sent to and

received

from FPGA

88

Table 6.4 - Comparison of resource utilisation for minimal design through to full SoC design

Resource name Vision only Vision + HPS + 1 motor Vision + HPS + 8 motors

Logic utilisation 1,259 (4 %) 7784 (24 %) 12, 437 (39 %)

Registers used 1,460 9636 10936

Pins used 151 (33 %) 311 (68 %) 347 (76 %)

Memory used 110,694 (3 %) 644,966 (16 %) 644,966 (16 %)

DSP blocks used 0 (0 %) 2 (2 %) 16 (18 %)

Table 6.4 shows the resource utilisation for the minimal vision system, the vision system with the HPS

and one motor module instantiated, and the full SoC design with all 8 motor modules instantiated.

Compilation time for the full system is around 15 minutes.

6.4. Summary

Overall, the FPGA and HPS pass data to one another with the FPGA effectively functioning as a hardware

accelerator for the HPS, and the HPS providing a platform for implementing algorithms which would be

difficult and inefficient in terms of resource requirements if implemented in hardware.

The FPGA is responsible for tasks which can utilise parallelism, such as vision, communication and motor

control, while the HPS is responsible for tasks requiring algorithmic processing such as overall system

operation, ball trajectory prediction and strategic gameplay control tasks.

89

7. System integration

This chapter will discuss all the steps required to integrate all the required subsystems including the

vision, compute system, electronics, power delivery, mechanical components and other miscellaneous

tasks. The process for developing the mechanical/electrical system is shown in Figure 7-1.

Figure 7-1 - Development process for the mechanical/electrical system

In a previous project we designed and built the foosball table and actuation modules. The electronics

and power delivery were also implemented in that project along with a rudimentary object tracking and

interception system. This system was based on the CMUcam5 tested in sections 5.2 and 5.3, which

provided sub-optimal interception performance due to excessive system latency, and lack of lens

distortion correction.

In this project the electronics enclosure was fitted with upgraded interface and service panels, improved

development features, a calibration/homing jig and a completely redesigned image capture-processing-

compute-control platform, as was discussed in previous sections.

7.1. Electrical system

 Overall electrical system architecture

The architecture of the electrical system is represented by the block diagram shown in Figure 7-2.

Table design and
build

Electronics
enclosure design

and build

Electrical system
install and test

Modification
oforiginal system

design - new image
capture and
processing
hardware

Addition of new
electrical

components and
homing mechanism

90

Figure 7-2 - Electrical system architecture for the semi-automated foosball table

The whole system is powered by two 36V DC, 400W power supplies in parallel providing a maximum

total system power of 800W. The power supplies take one AC input and an external 10A fuse is in place

at the system power switch shown in Figure 7-3.

Figure 7-3 - Panel with 2 USB-B sockets, 1 D-Sub socket, 1 IEC socket, and a high-current switch

2x 400W 36V PSU

8x Stepper motor
drivers

4x "Kicking"
stepper motors

4x "Sliding"
stepper motors

Step down
voltage regulator
module

Terasic

DE1-SoC FPGA

Terasic D5M
camera

12x Limit
switches

2x 120mm
cooling fans

Field
illumination
LEDs

Main AC power switch and fuse

High-

current

switch

91

 36V stage

The 36V outputs are fed directly from the power supplies to the stepper motor drivers, thus the stepper

motors are driven by 36V DC.

The stepper motors used are Nema 23 bi-polar stepper motors, as mentioned previously. These were

selected for their high-power and high-torque from low speeds. This torque is required to accelerate the

linear and kicking motion necessary for foosball. Additionally, stepper motors, when used correctly,

offer high-precision open loop control.

The stepper motor drivers used are 5A peak, up to 40V DC, stepper motor drivers based on the TB6600

chip. They are capable of microstepping resolution up to 1/16 steps (3200 steps per revolution). They

are used in full step mode (200 steps per revolution), however, as this setting offers the best

acceleration characteristics. The drivers require 3 inputs; pulse, enable and direction.

After initial testing, it was determined that the ability to deactivate power to the stepper motors while

retaining power to the compute unit was necessary, therefore the high-current switch, also shown in

Figure 7-3, was added. This catered for situations when the stepper motors needed to be deactivated

and the rods reset, due to debugging issues.

 12V stage

The following components are driven by the 12 V supply:

1. DE1-SoC FPGA

2. D5M camera

3. Field illumination LEDs

The voltage regulator module used is an XL4015 based module. With input voltage from 4.0V to 38V,

and output from 1.25V to 36V, and maximum current of 5A. The module has a maximum power output

of 75W with appropriate cooling. Due to the switching regulator chip used, this voltage regulator

module produces far less waste heat than a linear regulator. Additionally, the module provides input

and output voltage readouts which are useful for development.

The DE1-Soc requires a 12V DC input and consumes a maximum of 24W including the D5M camera and

HPS.

The system runs two additional 120mm cooling fans, each of which can consume around 4W of power.

7.1.3.1. DE1-SoC 40 pin header expansion board

The 40-pin expansion board is a custom PCB with 8x pluggable 4 pin screw terminal blocks for the

stepper motor drivers and 2x 5 pin pluggable screw terminal blocks for the linear and rotational homing

switch inputs to the FPGA. This PCB design is shown in Figure 7-4 and the physical PCB is shown in Figure

7-5.

92

Figure 7-4 - PCB layout of 40-pin expansion board created using Altium Designer

Figure 7-5 - PCB with pluggable screw terminals and a 40-pin header

This board was created for tidy, reliable, robust wiring between the FPGA and the stepper motor drivers.

It also enables easy removal of the FPGA development board, the PCB, or any one of the stepper motor

drivers without using any tools, and without damaging any of the components.

 Limit and homing switches

In order to run the stepper motors in a semi-open loop, homing switches were required for the

rotational drive assembly, and limit switches were required for the linear drive assembly. Using one

switch for the rotational homing, and two switches for linear homing (one at each end of the module),

the system could be precisely homed to avoid collisions and improve accuracy in calibration. A datum

could be set, as well as providing the ability to measure the total workspace of each linear drive

assembly, given that each assembly had a different work envelope due to the differing number of

players per rod. The switches are shown in Figure 7-6.

93

Figure 7-6 - One actuation module with each of the homing/limit switches labelled

 Wiring management and cabling

All the wiring for the stepper motors and limit switches is run through the conduit shown on the left in

Figure 7-7. Two of the conduits are for motor cabling and one is for limit switches. The conduits connect

to the electronics enclosure with standard electrical screw glands, also shown in Figure 7-7 on the right.

Figure 7-7 - Wiring conduits on left of image and electrical screw glands on right

 Field illumination

The field illumination is provided by a series of LEDs of approximately 4,000 to 5,000 K colour

temperature. The LEDs, shown in Figure 7-8, are run on 12V DC, however this can be increased or

decreased depending on the illumination intensity required, given the background illumination

conditions.

Rotational switch

Linear switch 1

Linear switch 2

94

Figure 7-8 - Semi-automated foosball table with field illumination LEDs switched on

The trimpot screw of the variable resistor on the XL4015 board, shown in Figure 7-9, can be used to

adjust the voltage and, therefore, the brightness of the LEDs. This also increases the power consumed so

care should be taken not to exceed the power output capability of the XL4015 module.

Figure 7-9 - XL4015 DC-DC voltage regulator module with adjustable output voltage

Trimpot screw

95

8. Testing and system performance

To quantitatively determine the performance of the high-speed vision-based control system, an

experiment was required. The interception performance was identified as a key performance indicator

that would be sensitive to detection and system latency. The thesis statement for this work was that by

developing a system with sufficiently low latency, sufficiently high-performance stepper motor control,

and enough spatial and temporal resolution, the capability for high-performance interception would be

greatly improved.

In this chapter the system performance is tested relative to the interception requirement set out in

chapter 3. This requirement is that for straight shots of sub-maximal velocity (significantly below 10

metres per second), each rod must successfully intercept 100% of shots. In these experiments a single

rod is tested, and justification given for the selection of that rod.

One important aspect of the experiment described in this chapter is that “full coverage” was tested to

ensure that the interception performance was spatially consistent. This means that regardless of the

ball’s Y position at the time of interception, the module would be able to intercept the ball with the

same efficacy.

8.1. Aims

• Spatial invariance for interception - the first aim was to establish the baseline interception

performance of the semi-automated foosball table at all possible interception positions on the

tested rod.

• Close-up interception - The second test was to test the close-up interception performance of

the interception module relative to the performance requirements stated in chapter 3. Close-

up means the distance between the release apparatus and the interception module is equal to

the distance between the human team’s front most rod and the automated goal keeper rod.

The requirements are for 100% interception performance for straight shots.

• Close-up interception with added latency - The third was to test the close-up performance of

interception with varying quantities of artificial latency added to the system. This was to

provide quantitative evidence that as the latency of the system increases, system performance

(interception) decreases.

8.2. Spatial invariance for interception

 Testing method

The method for carrying out each trial involves the following steps:

1. Disable the interception module

2. Set up the ball release apparatus by

96

a) Aligning it with the corresponding position for the current trial number

b) Placing the ball in the relevant speed slot – the highest obviously resulting in the

highest release velocity

3. Enable the interception module

4. Send the calibration command to the interception module, causing it to perform the

homing sequence detailed in section 6.2.7, to ensure that no positional errors had

accumulated prior to each test

5. Release the ball from the release apparatus at the top speed setting – 1 meter per second

6. If the ball is successfully intercepted by the module record result as a pass, otherwise

record result as a fail

Interception performance was tested 10 times for each of the 19 positions at the back of the table as

shown in Figure 8-1 to ensure 100% interception capability in the best-case defence scenario – the

scenario where each module would theoretically have as much time as possible to intercept.

Additionally, this was done to qualitatively ensure correct functionality of the lens distortion and

mapping functions shown in sections 5.6.5 and 6.2.8 respectively.

 Overview of apparatus

Using the apparatus shown in Figure 8-1, the ball was released with the jig lined up with each of the

black lines. The ball release jig is lined up on position 8 out of a total of 19 release positions.

Figure 8-1 - Ball release apparatus positioned at the back of foosball table (closest to human goal)

Release

position

sheet

97

The purpose of the release position sheet shown in Figure 8-1 is twofold; the primary purpose of the

sheet is to consistently align the ball release apparatus for the experiments. This is to ensure

repeatability of the test such that each trial is identical in terms of how far the module had to travel to

intercept the ball, and that the ball is released at the same (zero) heading angle for each test. The

second purpose is to block the ball from view of the camera until the ball is released. This will be

explained further in subsequent sections.

Rod 2 was used for all interception experiments, as it represents the worst case in terms of how far the

foosmen may have to travel to intercept the ball. Rod 2 has the largest workspace of 415.5mm because

it has only 2 foosmen attached. Figure 8-2 shows the module used. The red lines indicate the

approximate range of travel in either direction from the centre of the table.

Figure 8-2 - Experimental setup using module 2 for interception

 Data analysis

For statistical validity, the results were analysed with a 95% confidence interval. For attribute data

(pass/fail) the number of samples, 𝑛, required to provide a given confidence interval (𝐶𝐼) is (Minitab,

2017)

 𝑛 =
ln(1 − 𝐶𝐼)

ln(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
 (14)

Module 2

98

where 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the non-defect rate. 59 samples are required to be 95% confident that our results

are 95% reliable:

𝑛 =
ln(0.05)

ln(0.95)
= 58.40397.

 Results

The experimental results show that using a single module, 100% interception performance was achieved

for straight sub-maximal shots. The raw experimental attribute data (pass or fail) is shown in Appendix

H.

 Discussion

Given the 190 samples obtained we can calculate the achieved reliability of results, by rearranging

equation (14):

 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒
ln(𝐶𝐼)

𝑛 = 𝑒
ln(0.05)

190 = 0.98436 (15)

The reliability of these results is 98.4%.

Therefore, the results show, with 95% confidence and 98.4% reliability, that rod 2 can intercept sub-

maximal straight shots at any interception point. This also shows that the lens distortion calibration and

spatial mapping functions discussed in sections 5.6.5 and 6.2.8 were effective.

8.3. Close-up interception performance

Close-up interception performance was tested to verify that rod 2, with the furthest distance to travel,

could intercept close-up shots at sub-maximal speeds. “Close-up” was defined as the distance between

the front human rod, and the automated goalie rod. This position is shown in Figure 8-2.

The sub-maximal speed of 1 meter per second was selected for the following reasons:

1. Average shots during foosball gameplay are around 1 meter per second. This was

measured using a 240 FPS slow motion camera.

2. Using the release position sheet to block the ball from view of the camera means that the

system must respond to novel event data. In maximal speed (goal scoring) shots in actual

gameplay, the ball will always be in sight prior to the shot being taken. This means that

unless the ball is hit at a non-zero heading angle, the interception rod will already have

placed the appropriate foosman in the required interception position. In order to test the

responsiveness of the system, the ball was hidden from view of the camera and a slower

release speed selected. Maximal speed shots at the close-up distance, combined with

limited ball view time would likely result in zero successful intercepts.

3. Finally, to test the effect of additional latency, shots where the system is responding to

novel event data are required. Note that the use of angle shots would not have provided

an alternative as the latency can be compensated for with prediction (Behnke et al., 2004)

99

 Testing method

The testing method was the same as the method described in section 8.2.1, however 59 samples were

taken at a single position, to provide 95% confidence and 95% reliability.

The total ball view distance that the vision system had was 300 mm of ball travel. At 1 meter per second,

this corresponds to a maximum of 18 visible frames before interception.

The position on the release sheet selected for these 59 samples was position 10, as this was half way

between the two foosmen on rod 2. Additionally, the central position is the most important defence

position because if the intercept is missed, the opposing team will most likely score a goal.

 Results

The results for close-up interception performance show that 100% of the sub-maximal speed shots were

intercepted by rod 2. The raw data is shown in Appendix I.

 Discussion

Given the 59 samples taken, this shows with 95% confidence and 95% reliability, that rod 2 can intercept

sub-maximal speed shots with limited view time of the ball.

At 1 metre per second the ball is visible for 300 ms. Therefore, maximum system response time is 300

ms, including actuation. Given the higher distance travelled on rod 2, it is likely that the response time of

the remaining 3 modules is significantly lower, due to the shorter interception distances, and that

actuation is a significant portion of the response time.

The interception performance shown above indicates that the vision system has sufficiently low latency

to be used as the measurement system for interception in the semi-automated foosball table.

Additionally, the results show that the stepper motor control algorithm is effective.

Future work on the close-up interception performance could include increased ball release speeds up to

and including maximal speeds, however this should only be done in the case that the ball is in view of

the camera at all times, including before the ball is released. This would mimic real-life maximal or near-

maximal speed shots the system would have to intercept. Performing maximal ball release, in

conjunction with the ball being blocked form view would not accurately represent the interception

performance required by the foosball table.

8.4. Close-up interception performance with added latency

The final part of the experiment involved artificially delaying the HPS access to the ball coordinates from

the vision system.

 Method to artificially add latency

In a vision system operating at 60 FPS, with a given amount of latency 𝐿, provided no frames are lost in

processing (frame processing period does not exceed frame capture interval), the latency can be

100

expressed as a function of the incoming frames, where the system is responding to object coordinates

that are delayed by a number of frames 𝑁:

 𝐿 = 𝑁 ∗ (
1

60
) (16)

The implementation code for artificially delaying the result is shown in Figure 8-3.

Figure 8-3 - Code snippet of algorithm used to artificially delay system by 20 frames

As is shown in Figure 8-3, two arrays are created as buffers for the ball X and Y coordinates. The length

of these arrays is the number of frames, and therefore the time period, by which to delay the system.

First, the X and Y values used by for interception calculations are set to the values of the first element of

each array, provided the values are non-zero (they will only be non-zero once the image data arrives at

the first array element). Then the values in the array are shifted left by one index value. Finally, the most

recent image data is stored at the end of the buffers (index 19). This delays the system by 20 frames.

The section labelled “Procedure” is called every time a new frame is received.

 Testing method

The testing method was the same as the method described in section 8.2.1, however only 10 samples

were taken for each added latency value. The ball release speed for these samples was kept at 1 meter

per second, and the visible ball distance kept at 300 mm.

 Results

As shown in Figure 8-4, as the added latency increased, the interception performance decreased. An

increase in latency resulted in a lower proportion of successful intercepts.

volatile float coordsX [20]; // set up arrays to store X and Y values

volatile float coordsY [20];

if (coordsX[0] != 0) //as soon as values start arriving at start of array, start

using them

 X = coordsX[0]; //set X & Y vals to the 1st element of each array,

respectively

if (coordsX[0] != 0)

 Y = coordsY[0];

int i;

for (i = 0;i<19;) //shift end element back by 1 index value

{

 coordsX[i] = coordsX[i+1];

 coordsY[i] = coordsY[i+1];

 i++;

}

coordsX[19] = Xin; //set end element of arrays to input values of image data

coordsY[19] = Yin;

P
ro

ce
d

u
re

101

Figure 8-4 - Output graph of interception performance versus artificially added latency for straight goal shots

The raw data for the added latency trials is provided in Appendix J.

 Discussion

For the results of the added latency, the reliability of the results is calculated below:

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒

ln(0.05)
10 = 0.74113

(17)

The lower sample size was used for the added latency tests to give a reasonably accurate, overall picture

of the effects of added latency. For the purpose of providing a clear picture of the effects of adding

latency to the system, approximately 75% reliability is sufficient.

The interception performance shown in Figure 8-4 indicates that at around 100 ms of additional latency,

the interception performance drops to approximately 40% for straight goal shots. As little as 50 ms of

additional latency causes the performance to drop appreciably.

The results clearly show that increased latency decreases interception performance. This decreased

performance was due to the decreased responsiveness of the system, as it was operating on delayed

object coordinates. Because the ball was hidden from view of the vision system, the modules did not

have time to intercept the ball once the delayed ball coordinates had been processed, and interception

commands given. This demonstrates the importance of low system latency.

+50 ms +100 ms

102

8.5. Automated foosball

In a game of foosball, the majority of shots performed by amateur players are either passes from one of

their foosmen to another on one rod, or straight kicks in the direction of the opposition goal. By

maximising the ability of each module to intercept high speed straight shots, the defensive ability of the

foosball table can be maximised.

For this experiment, the non-predictive model was used, as was described in section 6.2.8. By

incorporating prediction, additional latency of at least 1 frame is added, which adds unnecessary latency

when only straight shots are being tested with limited view time of the ball. Prediction was therefore

excluded for the straight shot interception performance testing.

Once the foosball table has claimed possession of the ball, the strategic programming of the automated

modules will determine the win/lose rate of the system.

8.6. Potential improvements or additions

In these experiments, angle shots were not tested. They are a part of the game of foosball, however for

amateur players they happen far less frequently, and are usually unintentional. In future work it may be

useful to test the system with angle shots directed toward the goal. This could provide some more

useful information regarding the system performance and could give some further insight into the

performance degradation experienced when latency is added to the system.

Only a single module was used for interception of straight shots with zero heading angle. It would be

useful to establish real world performance tests with 4 modules performing interception and trials

carried out in which a representative population of human players attempt to perform goal scoring

shots, and the 4 modules attempt to block these. Work could be done to create intelligent defence

strategies in which the maximum percentage of the goal is defended, depending on the ball’s position

on the table.

Finally, the interception performance of the whole system could be put to the test against semi-skilled

or highly skilled players performing technical or high-speed shots.

8.7. Conclusions and recommendations

The results presented in this chapter show that the use of an FPGA SoC enabled interception of a

moving target, using high-speed low-latency vision as the measurement.

A single module can defend straight shots 100% of the time, at all interception positions on the rod.

As the latency increases, the interception performance decreases.

Further work is required to complete the performance testing of the foosball table with all 4 modules

defending against human players.

Further work involving defence against skilled players would be valuable as a final step in validation.

103

9. Final conclusions and recommendations

In this project, the objective was to research and develop a method to use computer vision for the high-

speed control of robotics, where the image sensor functioned as the input to the tracking/interception

control system. The testbed was a semi-automated foosball table in which one human team had been

replaced by electromechanical modules which performed the sliding and rotational movements a

human would normally perform to intercept and kick the ball.

The key metric for successfully controlling a robotic system at high-speed was that the robotic control

system – the semi-automated foosball table – would be able to intercept shots equivalent to those that

would normally be encountered in a vigorous game of amateur foosball. The quantitative requirement

was that for straight shots, the automated system would be able to intercept 100% of straight-shots in

which there was no heading angle. The qualitative requirement was that there would be no interception

coordinate for which the module was unable to intercept the path of the ball.

The system developed was an FPGA SoC where image data was streamed from the sensor and image

processing was performed on the streamed data. The foosball ball coordinates were then sent via high-

bandwidth communication bridges to the embedded ARM cores, where the lens distortion and spatial

calibration operations, and interception calculations were performed. The HPS then returns stepper

motor commands back the FPGA which performs concurrent stepper motor control. Overall, the

combination of all of these operations which were designed for low latency results in low system

latency, and a high level of system responsiveness.

Scalable, parameterizable, variable acceleration stepper motor control modules were also implemented

in FPGA hardware. The modules provided high levels of versatility, improved smoothness and improved

performance compared to related work, with comparable resource requirements.

The effectiveness of the vision and actuator control was experimentally tested in section 8. The results

of the experiments showed that at a 95% confidence interval, the foosball could intercept 100% of

straight shots with a statistical reliability of 98.4%. Additionally, the experimental results showed that as

artificial latency was added to the system, the performance dropped in an approximately linear fashion.

Future work could include testing real world performance of the foosball table which includes play

versus amateur and trained players. Improved defence strategies could then be tested and compared to

the work of other authors.

104

References

Altera. (2016). Cyclone V Hard Processor System Technical Reference Manual. Retrieved from
https://www.intel.com/content/www/us/en/programmable/documentation/sfo14101
43707420.html

Andersson, R. L. (1990, 5-7 Sep 1990). A low-latency 60 Hz stereo vision system for real-time
visual control. Paper presented at the Proceedings. 5th IEEE International Symposium
on Intelligent Control 1990, Philadelphia, PA, USA.

Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance Comparison of FPGA, GPU and
CPU in Image Processing. Paper presented at the Fpl: 2009 International Conference
on Field Programmable Logic and Applications, Prague, Czech Republic.

Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., & Dillmann, R.
(2006, 4-6 December 2006). ARMAR-III: An Integrated Humanoid Platform for Sensory-
Motor Control. Paper presented at the 2006 6th IEEE-RAS International Conference on
Humanoid Robots, Genova, Italy.

Bailey, D. G. (2002). A new approach to lens distortion correction. Paper presented at the
Proceedings Image and Vision Computing New Zealand, Auckland, New Zealand.

Bailey, D. G. (2011). Design for Embedded Image Processing on FPGAs. Singapore: John Wiley
and Sons (Asia) Pte Ltd.

Bailey, D. G. (2018). Image Processing in VHDL on FPGAs, in Massey University / IEEE NZ Central
Section Three Day Workshop: Palmerston North, NZ.

Baklouti, M., & Abid, M. (2014). Multi-Softcore Architecture on FPGA. International Journal of
Reconfigurable Computing, 2014, 1-13. doi:10.1155/2014/979327

Barreto, J. P., Swaminathan, R., & Roquette, J. (2007). Non Parametric Distortion Correction in
Endoscopic Medical Images. Paper presented at the 2007 3DTV Conference, Kos Island,
Greece.

Barry, A. J., Oleynikova, H., Honegger, D., Pollefeys, M., & Tedrake, R. (2015). Fast onboard
stereo vision for UAVs. Paper presented at the Vision-based Control and Navigation of
Small Lightweight UAV Workshop, International Conference On Intelligent Robots and
Systems (IROS).

Behnke, S., Egorova, A., Gloye, A., Rojas, R., & Simon, M. (2004). Predicting Away Robot Control
Latency. Paper presented at the RoboCup 2003: Robot Soccer World Cup VII, Berlin,
Heidelberg.

Berner, R., Brandli, C., Yang, M., Liu, S. C., & Delbruck, T. (2013). A 240 x 180 10mW 12us
latency sparse-output vision sensor for mobile applications. Paper presented at the
2013 Symposium on VLSI Circuits.

Brookner, E. (1998). Tracking and Kalman Filtering Made Easy. New York: John Wiley & Sons,
Inc.

Censi, A., Strubel, J., Brandli, C., Delbruck, T., & Scaramuzza, D. (2013). Low-latency localization
by active LED markers tracking using a dynamic vision sensor. Paper presented at the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan.

Chen, M., Kato, K., & Adachi, K. (2002). The comparisons of sliding speed and normal load
effect on friction coefficients of self-mated Si3N4 and SiC under water lubrication.
Tribology International, 35(3), 129-135. doi:10.1016/S0301-679X(01)00105-0

Chowdhury, M., Khalil, M. K., Nuruzzaman, D. M., & Rahaman, M. (2011). The effect of sliding
speed and normal load on friction and wear property of aluminum. International
Journal of Mechanical and Mechanics Engineering, 11, 53-57.

Christopherson, H. B., Pickell, W. J., Koller, A. A., Kannan, S. K., & Johnson, E. N. (2004). Small
Adaptive Flight Control Systems for UAVs Using FPGA/DSP Technology. Paper

https://www.intel.com/content/www/us/en/programmable/documentation/sfo1410143707420.html
https://www.intel.com/content/www/us/en/programmable/documentation/sfo1410143707420.html

105

presented at the AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop
and Exhibit.

Cigliano, P., Lippiello, V., Ruggiero, F., & Siciliano, B. (2015). Robotic Ball Catching with an Eye-
in-Hand Single-Camera System. IEEE Transactions on Control Systems Technology,
23(5), 1657-1671. doi:10.1109/TCST.2014.2380175

Čížek, P., Faigl, J., & Masri, D. (2016). Low-latency image processing for vision-based navigation
systems. Paper presented at the 2016 IEEE International Conference on Robotics and
Automation (ICRA).

Conradt, J., Berner, R., Cook, M., & Delbruck, T. (2009). An embedded AER dynamic vision
sensor for low-latency pole balancing. Paper presented at the 2009 IEEE 12th
International Conference on Computer Vision Workshops, ICCV Workshops.

de la Malla, C., & Lopez-Moliner, J. (2015). Predictive plus online visual information optimizes
temporal precision in interception. J Exp Psychol Hum Percept Perform, 41(5), 1271-
1280. doi:10.1037/xhp0000075

Delbruck, T., & Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4% CPU load using
event-based dynamic vision sensor. Frontiers in Neuroscience, 7(223).
doi:10.3389/fnins.2013.00223

Dougherty, E. R., & Laplante, P. A. (1995). Introduction to Real-Time Imaging: Wiley-IEEE Press.
Edwards, S. A. (2006). The Challenges of Synthesizing Hardware from C-Like Languages. IEEE

Design & Test of Computers, 23(5), 375-386. doi:10.1109/MDT.2006.134
El-Desouki, M., Jamal Deen, M., Fang, Q., Liu, L., Tse, F., & Armstrong, D. (2009). CMOS Image

Sensors for High Speed Applications. Sensors, 9(1). doi:10.3390/s90100430
Engelberg, S. (Ed.) (2015). A Mathematical Introduction to Control Theory (2nd ed. Vol. 4).

London: Imperial College Press.
Fowers, S. G., Lee, D. J., Tippetts, B. J., Lillywhite, K. D., Dennis, A. W., & Archibald, J. K. (2007).

Vision Aided Stabilization and the Development of a Quad-Rotor Micro UAV. Paper
presented at the 2007 International Symposium on Computational Intelligence in
Robotics and Automation, Jacksonville, FL, USA.

Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (Eds.). (2015). Feedback Control of Dynamic
Systems (7th ed.). New Jersey: Pearson.

Frese, U., Bauml, B., Haidacher, S., Schreiber, G., Schaefer, I., Hahnle, M., & Hirzinger, G.
(2001). Off-the-shelf vision for a robotic ball catcher. Paper presented at the
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems., Maui, HI, USA.

Gamal, A. E., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine,
21(3), 6-20. doi:10.1109/MCD.2005.1438751

García, J. G., Jara, A. C., Pomares, J., Alabdo, A., Poggi, M. L., & Torres, F. (2014). A Survey on
FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power
Sensors for Computer Vision, Control and Signal Processing. Sensors, 14(4).
doi:10.3390/s140406247

Gönner, C., Rous, M., & Kraiss, K.-F. (2005). Real-Time Adaptive Colour Segmentation for the
RoboCup Middle Size League. Paper presented at the RoboCup 2004: Robot Soccer
World Cup VIII, Berlin, Heidelberg.

Graham, P. S. (2001). Logical Hardware Debuggers for FPGA-based Systems. (Doctor of
Philosophy PhD), Brigham Young University,

Gribbon, K. T., Johnston, C. T., & Bailey, D. G. (2003). A real-time FPGA implementation of a
barrel distortion correction algorithm with bilinear interpolation. Image and Vision
Computing NZ, 408-413.

Guo, Z., Najjar, W., Vahid, F., & Vissers, K. (2004). A quantitative analysis of the speedup
factors of FPGAs over processors. Paper presented at the ACM/SIGDA 12th
international symposium on Field programmable gate arrays, Monterey, CA, USA.

106

Honegger, D., Oleynikova, H., & Pollefeys, M. (2014). Real-time and low latency embedded
computer vision hardware based on a combination of FPGA and mobile CPU. Paper
presented at the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems.

Hornberg, A., & Jahr, I. (2017). Lighting in Machine Vision. In A. Hornberg (Ed.), Handbook of
Machine and Computer Vision (Vol. 2, pp. 63-178).

Huimin, L., Zhiqiang, Z., Fei, L., & Xiangke, W. (2008). A robust object recognition method for
soccer robots. Paper presented at the 2008 7th World Congress on Intelligent Control
and Automation, Changsha, Hunan Province, China.

Intel. (2017a). Intel FPGA Technical Training - Designing with an ARM*-Based System on Chip.
Intel. (2017b). Introduction to the Qsys System Integration Tool. Retrieved from

ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Introduction_to_th
e_Qsys_Tool.pdf

Intel. (2018). Video and Image Processing Suite Intel® FPGA IP. Retrieved from
https://www.intel.com/content/www/us/en/programmable/products/intellectual-
property/ip/dsp/m-alt-vipsuite.html?wapkw=image+processing

Janssen, R., de Best, J., & van de Molengraft, R. (2010). Real-Time Ball Tracking in a Semi-
automated Foosball Table. Paper presented at the RoboCup 2009: Robot Soccer World
Cup XIII, Berlin, Heidelberg.

Janssen, R., Verrijt, M., de Best, J., & van de Molengraft, R. (2012). Ball localization and tracking
in a highly dynamic table soccer environment. Mechatronics, 22(4), 503-514.
doi:10.1016/j.mechatronics.2012.02.009

Jianping, F., Yau, D. K. Y., Elmagarmid, A. K., & Aref, W. G. (2001). Automatic image
segmentation by integrating color-edge extraction and seeded region growing. IEEE
Transactions on Image Processing, 10(10), 1454-1466. doi:10.1109/83.951532

Jing, L., & Vadakkepat, P. (2010). Interacting MCMC particle filter for tracking maneuvering
target. Digital Signal Processing, 20(2), 561-574. doi:10.1016/j.dsp.2009.08.011

Jing, Z., & Sclaroff, S. (2003). Segmenting foreground objects from a dynamic textured
background via a robust Kalman filter. Paper presented at the Proceedings Ninth IEEE
International Conference on Computer Vision, Nice, France.

Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). A multiscale retinex for bridging the gap
between color images and the human observation of scenes. IEEE Transactions on
Image Processing, 6(7), 965-976. doi:10.1109/83.597272

Johnston, C. T., Gribbon, K. T., & Bailey, D. G. (2004). Implementing image processing
algorithms on FPGAs. Paper presented at the Eleventh Electronics New Zealand
Conference, Palmerston North, NZ.

Klaiber, M. J., Bailey, D. G., Baroud, Y. O., & Simon, S. (2016). A Resource-Efficient Hardware
Architecture for Connected Component Analysis. IEEE Transactions on Circuits and
Systems for Video Technology, 26(7), 1334-1349. doi:10.1109/TCSVT.2015.2450371

Kondo, T., Kikuchi, A., Kato, F., & Hirota, K. (1991). 5,093,716. United States Patent.
Korkalo, O., & Honkamaa, P. (2010). Construction and Evaluation of Multi-touch Screens Using

Construction and Evaluation of Multi-touch Screens Using. Paper presented at the
International Conference on Interactive Tabletops and Surfaces, Saarbrucken,
Germany.

Kryjak, T., Komorkiewicz, M., & Gorgon, M. (2014). Real-time background generation and
foreground object segmentation for high-definition colour video stream in FPGA
device. Journal of Real-Time Image Processing, 9(1), 61-77. doi:10.1007/s11554-012-
0290-5

Leeser, M., Miller, S., & Haiqian, Y. (2004). Smart camera based on reconfigurable hardware
enables diverse real-time applications. Paper presented at the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, Napa, CA, USA.

ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Introduction_to_the_Qsys_Tool.pdf
ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Introduction_to_the_Qsys_Tool.pdf
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/dsp/m-alt-vipsuite.html?wapkw=image+processing
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/dsp/m-alt-vipsuite.html?wapkw=image+processing

107

Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., Delbruck, T., &
Lichtensteiner, P. (2007). Using FPGA for visuo-motor control with a silicon retina and a
humanoid robot. Paper presented at the 2007 IEEE International Symposium on
Circuits and Systems, New Orleans, LA, USA.

Lu, H., Zhang, H., Yang, S., & Zheng, Z. (Eds.). (2010). A Novel Camera Parameters Auto-
adjusting Method Based on Image Entropy. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Maxim, V., & Zidek, K. (2012). Design of High Performance Multimedia Control System for
UAV/UGV Based on SoC/FPGA Core. Procedia Engineering, 48, 402-408.
doi:10.1016/j.proeng.2012.09.532

Mayer, G., Utz, H., & Kraetzschmar, G. (2002). Towards autonomous vision self-calibration for
soccer robots. Paper presented at the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Lausanne, Switzerland.

Mealy, B., & Tappero, F. (2016). Free Range VHDL. In digital book released under the Creative
Commons Attribution-ShareAlike Unported License. Retrieved from
http://www.freerangefactory.org/

Meeus, W., Van Beeck, K., Goedemé, T., Meel, J., & Stroobandt, D. (2012). An overview of
today’s high-level synthesis tools. Design Automation for Embedded Systems, 16(3),
31-51. doi:10.1007/s10617-012-9096-8

Minitab. (2017). How Many Samples Do You Need to Be Confident Your Product Is Good?
Retrieved from http://blog.minitab.com/blog/the-statistical-mentor/how-many-
samples-do-you-need-to-be-confident-your-product-is-good

Monmasson, E., & Cirstea, M. N. (2007). FPGA Design Methodology for Industrial Control
Systems - A Review. IEEE Transactions on Industrial Electronics, 54(4), 1824-1842.
doi:10.1109/TIE.2007.898281

Mueller, E., Censi, A., & Frazzoli, E. (2015). Low-latency heading feedback control with
neuromorphic vision sensors using efficient approximated incremental inference. Paper
presented at the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka,
Japan.

Ngo, H. T., & Asari, V. K. (2005). A pipelined architecture for real-time correction of barrel
distortion in wide-angle camera images. IEEE Transactions on Circuits and Systems for
Video Technology, 15(3), 436-444. doi:10.1109/TCSVT.2004.842609

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., & Regnier, S. (2012). Asynchronous Event-Based
Visual Shape Tracking for Stable Haptic Feedback in Microrobotics. IEEE Transactions
on Robotics, 28(5), 1081-1089. doi:10.1109/TRO.2012.2198930

Nister, D., Stewenius, H., & Grossmann, E. (2005, 17-21 Oct. 2005). Non-parametric self-
calibration. Paper presented at the Tenth IEEE International Conference on Computer
Vision Beijing, China.

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions
on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/TSMC.1979.4310076

Padon, O. (2003). Development Of Robotic Foosball As A Versatile Platform For Robotics
Research and Contests.

Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., & Mehring, C. (2008). Prediction of arm
movement trajectories from ECoG-recordings in humans. Journal of Neuroscience
Methods, 167(1), 105-114. doi:10.1016/j.jneumeth.2007.10.001

Pololu. (2018). Stepper Motor: Bipolar, 200 Steps/Rev, 57×76mm, 3.2V, 2.8 A/Phase. Retrieved
from https://www.pololu.com/product/1478/resources

Pratt, G. A., Willisson, P., Bolton, C., & Hofman, A. (2004, June 30 2004-July 2 2004). Late motor
processing in low-impedance robots: impedance control of series-elastic actuators.
Paper presented at the Proceedings of the 2004 American Control Conference, Boston,
MA, USA.

http://www.freerangefactory.org/
http://blog.minitab.com/blog/the-statistical-mentor/how-many-samples-do-you-need-to-be-confident-your-product-is-good
http://blog.minitab.com/blog/the-statistical-mentor/how-many-samples-do-you-need-to-be-confident-your-product-is-good
https://www.pololu.com/product/1478/resources

108

Prevost, C. G., Desbiens, A., & Gagnon, E. (2007). Extended Kalman Filter for State Estimation
and Trajectory Prediction of a Moving Object Detected by an Unmanned Aerial Vehicle.
Paper presented at the 2007 American Control Conference, New York, NY, USA.

Proctor, F., & P. Shackleford, W. (2001). Real-time Operating System Timing Jitter and its
Impact on Motor Control. Paper presented at the Intelligent Systems and Advanced
Manufacturing, Boston, MA, USA.

Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constantinides, K., Demme, J., . . . Burger,
D. (2014). A reconfigurable fabric for accelerating large-scale datacenter services.
SIGARCH Comput. Archit. News, 42(3), 13-24. doi:10.1145/2678373.2665678

Ramakoti, N., Vinay, A., & Jatoth, R. K. (2009). Particle Swarm Optimization Aided Kalman Filter
for Object Tracking. Paper presented at the 2009 International Conference on
Advances in Computing, Control, and Telecommunication Technologies, Trivandrum,
Kerala, India.

Rosales, R., & Sclaroff, S. (1998). Improved Tracking of Multiple Humans with Trajectory
Prediction and Occlusion Modeling. Paper presented at the IEEE Workshop on
Interpretation of Visual Motion, Santa Barbara, CA, USA.

Rowe, A., Rosenberg, C., & Nourbakhsh, I. (2002). A low cost embedded color vision system.
Paper presented at the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Lausanne, Switzerland.

Saber, E., Murat Tekalp, A., & Bozdagi, G. (1997). Fusion of color and edge information for
improved segmentation and edge linking. Image and Vision Computing, 15(10), 769-
780. doi:10.1016/S0262-8856(97)00019-X

Safaei, A., Wu, Q. M. J., & Yang, Y. (2018). System-on-a-chip (SoC)-based hardware acceleration
for foreground and background identification. Journal of the Franklin Institute, 355(4),
1888-1912. doi:10.1016/j.jfranklin.2017.07.037

Singer, R. A. (1970). Estimating Optimal Tracking Filter Performance for Manned Maneuvering
Targets. IEEE Transactions on Aerospace and Electronic Systems, AES-6(4), 473-483.
doi:10.1109/TAES.1970.310128

Tanaka, H., Ohnishi, K., Nishi, H., Kawai, T., Morikawa, Y., Ozawa, S., & Furukawa, T. (2009).
Implementation of Bilateral Control System Based on Acceleration Control Using FPGA
for Multi-DOF Haptic Endoscopic Surgery Robot. IEEE Transactions on Industrial
Electronics, 56(3), 618-627. doi:10.1109/TIE.2008.2005710

Thomas, D. B., Howes, L., & Luk, W. (2009). A comparison of CPUs, GPUs, FPGAs, and massively
parallel processor arrays for random number generation. Paper presented at the
Proceedings of the ACM/SIGDA international symposium on Field programmable gate
arrays, Monterey, California, USA.

Tianjian, L., & Fujimoto, Y. (2006). A control system with high speed and real time
communication links. Paper presented at the 9th IEEE International Workshop on
Advanced Motion Control, Istanbul, Turkey.

Tsutsui, H., Nakamura, H., Hashimoto, R., Okuhata, H., & Onoye, T. (2010). An FPGA
implementation of real-time retinex video image enhancement. Paper presented at the
2010 World Automation Congress, Kobe, Japan.

Wang, B., Liu, Q., Zhou, L., Zhang, Y., Li, X., & Zhang, J. (2011). Velocity profile algorithm
realization on FPGA for stepper motor controller. Paper presented at the 2nd
International Conference on Artificial Intelligence, Management Science and Electronic
Commerce (AIMSEC), Dengleng, China.

Wei, Z., Byung Hwa, K., Larson, A. C., & Voyles, R. M. (2005). FPGA implementation of closed-
loop control system for small-scale robot. Paper presented at the ICAR '05.
Proceedings., 12th International Conference on Advanced Robotics, 2005., Seattle,
WA, USA.

109

Weigel, T. (2005). KiRo - A Table Soccer Robot Ready for the Market. Paper presented at the
Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain,.

Willson, R. G., & Shafer, S. A. (1994). What is the center of the image? Journal of the Optical
Society of America A, 11(11), 2946-2955. doi:10.1364/JOSAA.11.002946

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729-R732.
Xia, G., & Ludwig, S. A. (2016). Object-tracking based on particle filter using particle swarm

optimization with density estimation. Paper presented at the 2016 IEEE Congress on
Evolutionary Computation (CEC), Vancouver, BC, Canada.

Zelnik-Manor, L., & Irani, M. (1996). Some Aspects of Zoom Lens Camera Calibration. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 18(10), 1105-1116.
doi:10.1109/34.544080

Zhao, Y., Paine, N., Kim, K. S., & Sentis, L. (2015). Stability and Performance Limits of Latency-
Prone Distributed Feedback Controllers. IEEE Transactions on Industrial Electronics,
62(11), 7151-7162. doi:10.1109/TIE.2015.2448513

110

Published work

Lues, J., Gupta, G. S., & Bailey, D. (2017). Evaluation of High-Speed Image Processing for Low Latency

Control of a Mechatronic System. Paper presented at the International Conference on Robot

Intelligence Technology and Applications, Daejeon, South Korea.

111

Appendices

Appendix A : Matlab computer vision prototype code

This section of code has been taken from a MATLAB Graphical User Interface (GUI) where the vision

code ran continuously, capturing images and displaying the results of the filtered images. It has been

shortened, with many of the unnecessary lines of code removed for brevity.

%initialise video object vid

vid = imaq.VideoDevice('winvideo', 2, 'MJPG_640x480');

% initialise winvideo 2 - number 1 is built in webcam

vid.ReturnedColorSpace = 'rgb'; % set colourspace of output vid to RGB

%create global array to store ball coordinates

global centroidArray

centroidArray = zeros(5,2);

global angleArray

angleArray = zeros(3,1);

%serial device setup

global Duino

Duino = serial('COM6','BaudRate',250000);

fopen(Duino);

%snap one frame of vid object

pic = step(vid);

%filter image using built-in matlab function from their colour thresholding app

filteredImage = createMaskBall(pic);

%create structuring elements for morphological filters - erosion and dilation

SE = strel('square',10);

SE2 = strel('square',20);

%morphologically erode the image with structuring element SE

eroded = imerode(filteredImage, SE);

%morphologically dilate the image with structuring element SE2

dilated = imdilate(eroded, SE2);

%acquire the ball coordinates

ballProps = regionprops(dilated, 'Centroid');

%catch all statement as error thrown if ballCentroids accessed when no object found

try

 ballCentroids = ballProps.Centroid;

 %save x and y coordinates of ball to elements x1 and y1 of array

 centroidArray(1,1) = ballCentroids(1);

 centroidArray(1,2) = ballCentroids(2);

 %circularly shift the elements backwards so latest centroid is at 5th

 %element of array - largest element = latest, smallest element = oldest

 centroidArray = circshift(centroidArray,-1);

 display(centroidArray)

catch

 fprintf('error - no ball found yet')

end

112

The next section of code, also taken from the GUI and edited for brevity, plots a line between the 5 most

recent detected object coordinates. This was simply to show a “trail” of where the ball had been in

recent frames, and to estimate whether the ball was travelling straight or not.

%draw last 5 centroids on the axes

scatter([0 640 centroidArray(1:5)], [0 480 centroidArray(6:10)])

%plot lines between each element of centroid array in order of their capture

line(centroidArray(1:2), centroidArray(6:7))

line(centroidArray(2:3), centroidArray(7:8))

line(centroidArray(3:4), centroidArray(8:9))

line(centroidArray(4:5), centroidArray(9:10))

line(centroidArray(5:1), centroidArray(10:6))

%calculate current trajectory in degrees

currentX = centroidArray(5,1);

currentY = centroidArray(5,2);

oldX = centroidArray(4,1);

oldY = centroidArray(4,2);

angle = atan2(currentY - oldY, currentX - oldX)*(180/pi);

display(angle)

angleArray(1,1) = angle;

angleArray = circshift(angleArray, -1);

display(angleArray);

%tell us whether the ball is going straight

deltaAngle = angleArray(3)-angleArray(2);

if deltaAngle < 5

 fprintf('ball is going straight')

else

 fprintf('ball has curved')

end

113

Appendix B : C code for calibrating image space for radial distortion in the HPS

X = Xin + pad;

Y = Yin + pad;

r = sqrt((centreX - X)*(centreX - X) + (centreY - Y)*(centreY - Y));

theta = atan((centreY - Y)/(centreX - X));

r = r/R;

s = r*(1+ (K1*r) + (K2*(r*r)) + (K3*(r*r*r*r)));

s2 = s*R;

X1 = s2*cos(theta);

Y1 = s2*sin(theta);

if (X < centreX)

{

 X2 = centreX - X1;

 Y2 = centreY - Y1;

}

if (X >= centreX)

{

 X2 = centreX + X1;

 Y2 = centreY + Y1;

}

X2 = X2 + 50;

Y2 = Y2 - 240;

Y2 = Y2*4.107;

114

Appendix C : Qsys connections view of entire system

115

116

Appendix D : Interrupt service routine for HPS receiving image data from FPGA

volatile int * xMin_ptr = (int *) (ALT_FPGA_F2H_BASE + F2H_X_MIN_PIO_OFFSET);

volatile int * xMax_ptr = (int *) (ALT_FPGA_F2H_BASE + F2H_X_MAX_PIO_OFFSET);

volatile int * yMin_ptr = (int *) (ALT_FPGA_F2H_BASE + F2H_Y_MIN_PIO_OFFSET);

volatile int * yMax_ptr = (int *) (ALT_FPGA_F2H_BASE + F2H_Y_MAX_PIO_OFFSET);

void img_data_ready_ISR(void)

{

volatile int * IMG_READY_ptr =(int *)(ALT_LWFPGA_BASE+ALT_LWFPGA_IMG_READY_OFFSET);

 int xMinVal, xMaxVal, yMinVal, yMaxVal;

 xMinVal = *(xMin_ptr); // read from image data PIO signals

 xMaxVal = *(xMax_ptr);

 yMinVal = *(yMin_ptr);

 yMaxVal = *(yMax_ptr);

 Xin = (float)(xMinVal + xMaxVal)/2;

// calculate centre of gravity in x and y directions

 Yin = (float)(yMinVal + yMaxVal)/2;

 press = *(IMG_READY_ptr + 3);

// read the interrupt register

 *(IMG_READY_ptr + 3) = press;

// Clear the interrupt

}

117

Appendix E : VHDL entity declaration for stepper motor module

entity stepperModules is

 generic(MODULE_NUM : integer;

 STEP_DIR : std_logic);

 port(--INPUTS

 clock_in : in std_logic;

 distanceIn : in integer;

 freqIn : in integer;

 strobe : in std_logic;

 homeSwitch : in std_logic;

 homeSwitch2 : in std_logic;

 resetKey_in : in std_logic;

 direction_in : in std_logic;

 STOP : in std_logic;

 --OUTPUTS

 stBusy : out std_logic;

-- flag used to let HPS know the module is busy

 STATUS : out integer := 0;

 direction_out : out std_logic;

 pulse_out : out std_logic;

 enable_out : out std_logic;

 position_out : out unsigned

);

end entity stepperModules;

118

Appendix F : VHDL code for stepper motor module (architecture)

architecture implementation of stepperModules is

begin

process(clock_in)

variable clkDivide : integer := 0; --Variable used to divide the clock speed

variable stepFreq : integer := 60000;--clkDivide increments to the value of stepFreq

variable toggleFlag : std_logic; --this flag is used to assign the value of the output pin

variable accelerator : integer := 20;-- used to change the frequency - change motor speed

variable distance : integer := 50; --2x the number of steps the motor is to take (steps = distance/2)

variable distCntr : unsigned(15 downto 0) := (others => '0');--used to check position vs total dist

variable startFlag : std_logic := '1';

variable distBy2 : integer := 0;

variable distSub400 : integer := 0;

variable modCntr : integer := 0;

variable modCmpr : integer := 10;

variable hitLimSwitch : integer := 0;

begin

if rising_edge(clock_in) then

 if ((distCntr <= distance) and (startFlag = '1')) then

 clkDivide := clkDivide + 1;--increment clock divider counter

 if (clkDivide > stepFreq) then--if clock divider counter reached, take a step. Then

 --reset counter to 0

 pulse_out <= toggleFlag; --output value of toggleflag to stepper pulse pin

 distCntr := distCntr + 1; --one step taken so increment distance counter

 toggleFlag := not toggleFlag;--toggles the flag for stepper output pin

 clkDivide := 0; --resets clock divider counter to 0

 position_out <= distCntr;

 if distance < 800 then

 if (distCntr < (distBy2)) and ((distCntr < (distance-(distBy2)))) then

 stepFreq := stepFreq - accelerator;

 modCntr := modCntr + 1;

 if modCntr = modCmpr then --Every nth (n = modCmpr) toggle of

--the pulse pin, the accelerator

--increases by 1- exponential ramp

 accelerator := accelerator + 1;

 modCntr := 0;

 end if;

 end if;

 if (distCntr > (distance - (distBy2))) then

 stepFreq := stepFreq + accelerator;

 modCntr := modCntr + 1;

 if modCntr = modCmpr then

 accelerator := accelerator - 1;

 modCntr := 0;

 end if;

 end if;

 end if;

 if distance >= 800 then

 if (distCntr < 400) and ((distCntr < (distSub400))) then

 stepFreq := stepFreq - accelerator;

 modCntr := modCntr + 1;

 if modCntr = modCmpr then

 accelerator := accelerator + 1;

 modCntr := 0;

 end if;

 end if;

 if (distCntr > (distSub400)) then

 stepFreq := stepFreq + accelerator;

 modCntr := modCntr + 1;

 if modCntr = modCmpr then

 accelerator := accelerator - 1;

 modCntr := 0;

 end if;

 end if;

 end if;

 end if;

 end if;

 if (distCntr >= distance) then --this stops the stepping after enough steps are taken

 startFlag := '0';

 enable_out <= '1';

 pulse_out <= '0';

 accelerator := 20;

 stBusy <= '0';

 position_out <= distCntr;

 STATUS <= 0;

 end if;

119

Appendix G : VHDL code for homing switch functionality

if homeSwitch2 = '1' and STATUS = 1 then -- home switch pressed first time

 STATUS <= 2;

 stBusy <= '0';

end if;

if homeSwitch2 = '0' and STATUS = 2 then -- home switch released after being

 -- pressed first time

 STATUS <= 3;

end if;

if homeSwitch = '1' and STATUS = 3 then -- second home switch pressed (will be

-- opposite side of foosball table)

 STATUS <= 4;

 stBusy <= '0';

end if;

if homeSwitch = '0' and STATUS = 4 then -- second home switch un-pressed

 STATUS <= 5;

end if;

if STATUS = 5 and (distCntr = distance-1) then -- module backed off after

-- pressing second home switch

 STATUS <= 6;

end if;

if STOP = '1' then -- stops all motion and outputs current distance to HPS signal

 startFlag := '0';

 enable_out <= '1';

 pulse_out <= '0';

 accelerator := 20;

 stBusy <= '0';

 position_out <= distCntr;

 STATUS <= 0;

end if;

120

Appendix H : Raw data (pass/fail) for preliminary interception test

121

Appendix I : Raw data (pass/fail) for goal interception test – 59 samples total

122

Appendix J : Raw data for added latency interception experiment

