Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SOLUTE MOVEMENT ASSOCIATED WITH INTERMITTENT SOIL WATER FLOW

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

RUSSELL WOODFORD TILLMAN

1991

Massey University Library Thesis Copyright Form

Title of thesis: Solute Movement Associated with
 (1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.
(b) I do not wish my thesis to be made available to readers without my written consent for months.
(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.
(3) (a) I agree that my thesis may be copied for Library use.
(b) I do not wish my thesis to be copied for Library use for months.
Signed Ru Willman
Date 18/12/91
The copyright of this thesis belongs to the author. Readers must

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

Soil Science

.

15

1

Palmerston North New Zealand Telephone (063) 69-099

TO WHOM IT MAY CONCERN

This is to state that the research carried out for my Ph.D thesis entitled "Solute Movement Associated with Intermittent Soil Water Flow" in the Soil Science Department at Massey University, Palmerston North, New Zealand is all my own work.

This is also to certify that the thesis material has not been used for any other degree.

W Jelon

. Russell Woodford TILLMAN

Date

.

ABSTRACT

The movement of nutrients within the root zone of orchard crops is important in determining both fruit yield and quality. Currently much of the research on solute movement in field soils concerns movement of chemicals to ground water. Little attention has been paid to smaller scale movement. In this study the movement of solutes in response to intermittent soil water flow was investigated in columns of repacked silt loam in the laboratory and in a similar soil in the field.

In the laboratory study a 5mm pulse of a solution of potassium bromide and urea in tritiated water was applied to columns of repacked soil, left for three or ten days, and then leached with 30 mm of distilled water. Twelve days after the solute pulse was applied, the distributions of water, tritiated water, applied and resident nutrients and pH were measured.

The bulk of the bromide and tritiated water was moved to between 50 and 150 mm depth in both water treatments. As the nitrogen applied in urea was mainly in the form of ammonium after three days, the water applied then caused little movement of nitrogen. But the water applied after 10 days caused the nitrogen, now in the form of nitrate, to move in a similar fashion to the bromide.

The soil solution anion concentration determined the amount of cations leached. Calcium and magnesium were the dominant cations accompanying the nitrate and bromide downwards. The added potassium remained near the soil surface.

Given the soil hydraulic properties, the behaviour of water and solutes could be simulated by coupling the water flow equations with the convection-dispersion equation, and by using solute dispersion, diffusion and adsorption parameters derived from the literature. The model assumed the Gapon relationship for cation exchange, and that hydrogen ion production during nitrification reduced the effective cation exchange capacity. It was able to simulate closely the experimental data. Two field experiments were conducted. The first involved application of a 5 mm pulse of potassium bromide solution followed by 50 mm of water to pasture plots of contrasting initial water content. Twenty-four hours later core samples of soil were collected and the distribution of water and bromide measured. Bromide applied to initially dry soil was much more resistant to leaching than bromide applied to moist soil.

The second experiment lasted 12 days and was essentially an analogue of the laboratory experiment. The final nutrient distributions however differed considerably from those obtained in the laboratory, due to non-uniform flow in the structured field soil.

Coupling a mobile-immobile variant of the convection-dispersion model with a description of the water flow provided a mechanistic model. When combined with the submodels developed in the laboratory study describing nutrient interactions and transformations, this model successfully described the solute movement under the four different field regimes of water and solute application. Evaporation and plant uptake, and diffusion between mobile and immobile phases emerged as key processes affecting nutrient movement. It is suggested some control over nutrient movement is possible by varying the relative timing of water and fertiliser applications.

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following people:

Dr D.R. Scotter for his enthusiasm, encouragement and assistance above and beyond the call of duty. Thanks Dave!

Dr B.E. Clothier for his great enthusiasm, helpful comments and for the seminar on solute movement many years ago which inspired this study.

Prof. R.E. White for his helpful comments and also for his assistance and encouragement as my Head of Department, in enabling me to complete this thesis.

My colleagues in the Department, particularly Dr M.J. Hedley and Dr P.E.H. Gregg, for the increased workload they have carried during this protracted study.

Ian Furkert, Bronwyn White, Alistair Picken, Malcolm Boag and Lance Currie for valued technical assistance.

Ann Rouse for typing the original papers and for her patient assistance with the thesis.

Anne West for assistance with the diagrams.

Robyn, Duncan, Christopher and Cresina for their love, support and understanding, despite the holidays that were foregone, the jobs that remained undone and the bed-time stories that were never read.

CONTENTS

ABSTRACT ii				
ACKNOWLEDGEMENTS iv				
CONTENTS				
LIST OF TABLES viii				
LIST OF FIGURES				
LIST OF SYMBOLS				
CHAPTER 1: Introduction and Literature Review				
The Purpose of the Study1				
Review of Solute Movement in Soil				
Introduction				
The Convection-Dispersion Equation				
Adsorption and Solute Movement				
Other Solute Movement Models				
Conclusion				
The Structure of the Study				
CHAPTER 2: Movement of Non-reactive Solutes				
Associated with Intermittent Water Flow				
in Repacked Soil				
Introduction				
Theory				
Materials and Methods				
Experimental Results and Discussion				
Simulation Results and Discussion				
Conclusions				

CHAPTER 3:	Movement of Reactive Solutes Associated						
	with Intermittent Water Flow in						
	Repacked Soil						
Introduction							
Theory							
Materials and	Materials and Methods						
Experimental	Results and Discussion						
Simulation R	esults and Discussion						
Conclusions							
CHAPTER 4:	Movement of a Non-reactive Solute						
	During Intermittent Water Flow in a						
	Field Soil						
Introduction							
Theory							
Materials and	1 Methods						
Experimental	Experimental Results and Discussion						
Simulation R	esults and Discussion						
Conclusions							
CHAPTER 5:	The Movement of Potassium and Nitrate						
	During Intermittent Water Flow in a						
	Field Soil						
Introduction							
Theory							
Materials and	Methods						
Experimental	Results and Discussion						
Simulation R	esults and Discussion						
Conclusions							

CHAPTER 6:	Conclusions and Directions for Future
	Work
Introducti	on
Laborator	y Experiment
Field Exp	eriments
Conclusio	ns and Future Work
REFERENCES	
APPENDIX 1:	Water Repellency and its Measurement
	using Intrinsic Sorptivity 129

LIST OF TABLES

Table

Page

Table 4.1.	Daily	rainfall,	irriga	ation,	and	esti	mated	
	evapotr	anspiration	during	g the se	cond e	experi	iment.	
	EW a	nd LW d	lenote	early	and	late	water	
	treatme	nts respecti	vely, I	denotes	s irriga	tion,	and R	
	rainfall							68

LIST OF FIGURES

Figure	Page
Fig. 1.1.	Comparison of molecular diffusion and hydrodynamic dispersion as a function of flow velocity (from Campbell, 1985; after Olsen and Kemper, 1968)
Fig. 2.1.	Measured draining retentivity data (o), and assumed retentivity () and hydraulic conductivity () relationships for the soil
Fig. 2.2.	Measured average soil water contents for early-water (\bullet) and late-water (\circ) treatments and their standard deviations. Also shown are the simulated profiles for the early-water () and late-water () treatments
Fig. 2.3.	Measured (•) and simulated () tritiated water content profiles for (a) the early-water treatment, and (b) the late-water treatment. Means and standard deviations are shown for the measured values
Fig. 2.4.	Measured (•) and simulated (and) bromide content profiles for (a) the early-water treatment, and (b) the late-water treatment. Means and standard deviations are shown for the measured values. The difference between the two simulations is explained in the text

- Fig. 3.4. Measured potassium concentration profiles for early- (●) and late- (○) water treatments and their standard deviations. Also shown are the simulated profiles for early- (_____) and late- (____) water treatments 46
- Fig. 3.5. Measured calcium concentration profiles for early- (●) and late- (○) water treatments and their standard deviations. Also shown are the simulated profiles for early- (_____) and late- (____) water treatments 47
- Fig. 3.6. Measured magnesium concentration profiles for early- (●) and late- (○) water treatments and their standard deviations. Also shown are the simulated profiles for early- (_____) and late- (____) water treatments 48

Fig. 4.6.	Simulated bromide concentration profiles for the second
	experiment with early water. The solid line is redrawn
	from Fig. 4.5. The dashed line is as for the solid line,
	but with uniform water extraction with depth. The dotted
	line is as for the solid line, but with no immobile water.
	The dotted and dashed line is as for the solid line, but
	with all the water loss from the soil surface and no
	immobile water
Fig. 5.1.	Potassium distribution at the completion of the first
0	experiment. Bars indicate standard errors of the mean
Fig. 5.2.	Potassium distribution at the completion of the second
	experiment. Bars indicate the standard errors of the
	means
Fig. 5.3.	Nitrate-nitrogen distribution at the completion of the
	second experiment. Bars indicate the standard errors of
	the means
Fig. 5.4.	Measured (symbols) and simulated (lines) potassium
	distributions for treatment 1 in the first experiment. The
	solid line is when cation exchange capacity is assumed to
	be distributed between immobile and mobile phases. The
	dotted line is when all cation exchange capacity is
	assumed to be solely in the immobile phase

Fig. 5.5.	Measured (symbols) and simulated (lines) potassium distributions for treatment 2 in the first experiment. The solid line is when cation exchange capacity is assumed to be distributed between immobile and mobile phases. The dotted line is when cation exchange capacity is assumed to be solely in the immobile phase
Fig. 5.6.	Measured (symbols) and simulated (lines) potassium distributions in the second experiment, assuming cation exchange capacity is distributed between mobile and immobile phases
Fig. 5.7.	Measured (symbols) and simulated (lines) potassium distributions in the second experiment, assuming cation exchange capacity is solely in the immobile phase
Fig. 5.8.	Measured (symbols) and simulated (line) nitrate-nitrogen distributions in the unirrigated control area in the second experiment. The initial distribution is \bigcirc and the final distribution is \triangle
Fig. 5.9.	Measured (symbols) and simulated (lines) final nitrate- nitrogen distributions in the irrigated control plots in treatment 2 of the second experiment
Fig. 5.10.	Measured (symbols) and simulated (line) final nitrate- nitrogen distributions in the fertilised early-water treatment in the second experiment
Fig. 5.11.	Measured (symbols) and simulated (line) final nitrate- nitrogen distributions in the fertilised late-water treatment in the second experiment

Fig. 5.12.	Measured (symbols) and simulated (lines) final nitrate-					
	nitrogen distributions in the fertilised early-water					
	treatment in the second experiment. The solid line is					
	when θ_c is set at 0.18. The dotted line is when θ_c is set					
	at 0.001					

- Fig. 5.13. Measured (symbols) and simulated (lines) final nitratenitrogen distributions in the fertilised late-water treatment in the second experiment. The solid line is when θ_c is set at 0.18. The dotted line is when θ_c is set at 0.001 106

LIST OF SYMBOLS

ARABIC

а	empirical coefficient [m]
b	empirical coefficient [dimensionless]
С	soil solution concentration [mol m ⁻³ solution]
C _{ent}	soil solution concentration at input surface [mol m ⁻³ solution]
C _{ex}	soil solution concentration at exit surface [mol m ⁻³ solution]
С	empirical constant [m s ⁻¹]
d	empirical constant [dimensionless]
D	molecular diffusion coefficient [m ² s ⁻¹]
D_o	molecular diffusion coefficient in pure solution
Ε	dispersion coefficient [m ² s ⁻¹]
f	probability density function [m ⁻¹] (Chapter 1)
f	porosity [m ³ m ⁻³] (Chapters 2 & 4)
Ι	cumulative drainage [m]
j	solute flux density [mol m ⁻² s ⁻¹]
K	hydraulic conductivity [m s ⁻¹]
K _d	distribution coefficient [m ³ kg ⁻¹]
k _a	rate constant for ammonia nitrification [s ⁻¹]
k _G	selectivity coefficient in Gapon equation [(mol m ⁻³) ^{1/2}]
k _u	rate constant for urea hydrolysis [s ⁻¹]
М	adsorbed plus solution solute concentration [mol m ⁻³ soil]
Р	cation exchange capacity [mol charge m-3 soil]
р	number of compartments in model
q	Darcy flux density of water [m s ⁻¹]
R	retardation factor [dimensionless]
S	sink for root water uptake [m ³ water m ⁻³ soil s ⁻¹]
t	time [s]
v	average velocity in soil [m s ⁻¹]
X	amount of cation charge balanced [mol m ⁻³ soil]
Y	adsorbed solute concentration [mol kg ⁻¹]
Z	depth [m]

.

•

GREEK SYMBOLS

- ϵ empirical constant [dimensionless] (Chapter 2)
- $\alpha \qquad M_k + M_a + M_s \text{ [mol m}^3 \text{ soil] (Chapter 3)}$
- α rate coefficient for mobile-immobile exchange [s⁻¹] (Chapters 1,4 & 5)
- $\beta \qquad M_c + M_g \text{ [mol m}^{-3} \text{ soil]}$
- γ ($\alpha + 2\beta P$)/ Θ [mol m⁻³ sol] (Chapter 3)
- γ empirical constant [m⁻¹] (Chapter 4)
- $\Theta \qquad \theta \theta_x$
- θ soil water content [m³ m⁻³]
- θ_c water content dividing mobile and immobile water
- θ_k water content used in describing $K(\theta)$ in Chapter 2
- θ_x water content of double-layer
- λ dispersivity [m]
- μ mean
- ρ_b bulk density [kg m⁻³]
- σ standard deviation
- ψ matric potential [m]

COMMON SUBSCRIPTS

- a ammonium
- *B* bivalent cations
- c calcium
- g magnesium
- *i* chemical species of interest (Chapters 2 and 3)
- *i* immobile phase (Chapters 1,4 and 5)
- k potassium
- M monovalent cations
- m mobile phase
- *n* nitrate or compartment number
- s sodium
- u urea