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ABSTRACT 

The movement of nutrients within the root zone of orchard crops is important in 

determining both fruit yield and quality. Currently much of the research on solute 

movement in field soils concerns movement of chemicals to ground water. Little 

attention has been paid to smaller scale movement. In this study the movement of 

solutes in response to intermittent soil water flow was investigated in columns of 

repacked silt loam in the laboratory and in a similar soil in the field. 

In the laboratory study a 5mm pulse of a solution of potassium bromide and urea in 
tritiated water was applied to columns of repacked soil, left for three or ten days, and 

then leached with 30 mm of distilled water. Twelve days after the solute pulse was 

applied, the distributions of water, tritiated water, applied and resident nutrients and pH 

were measured. 

The bulk of the bromide and tritiated water was moved to between 50 and 1 50 mm 

depth in both water treatments. As the nitrogen applied in urea was mainly in the form 

of ammonium after three days, the water applied then caused little movement of 

nitrogen. But the water applied after 10 days caused the nitrogen, now in the form of 

nitrate, to move in a similar fashion to the bromide. 

The soil solution anion concentration determined the amount of cations leached. 

Calcium and magnesium were the dominant cations accompanying the nitrate and 

bromide downwards. The added potassium remained near the soil surface. 

Given the soil hydraulic properties, the behaviour of water and solutes could be 

simulated by coupling the water flow equations with the convection-dispersion equation, 

and by using solute dispersion , diffusion and adsorption parameters derived from the 

literature. The model assumed the Gapon relationship for cation exchange, and that 

hydrogen ion production during nitrification reduced the effective cation exchange 

capacity. It was able to simulate closely the experimental data. 
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Two field experiments were conducted. The first involved application of a 5 mm pulse 

of potassium bromide solution followed by 50 mm of water to pasture plots of 

contrasting initial water content. Twenty-four hours later core samples of soil were 

collected and the distribution of water and bromide measured. Bromide applied to 

initially dry soil was much more resistant to leaching than bromide applied to moist 

soil. 

The second experiment lasted 12 days and was essentially an analogue of the laboratory 

experiment. The final nutrient distributions however differed considerably from those 

obtained in the laboratory, due to non-uniform flow in the structured field soil. 

Coupling a mobile-immobile variant of the convection-dispersion model with a 

description of the water flow provided a mechanistic model. When combined with the 

submodels developed in the laboratory study describing nutrient interactions and 

transformations, this model successfully described the solute movement under the four 

different field regimes of water and solute application. Evaporation and plant uptake, 

and diffusion between mobile and immobile phases emerged as key processes affecting 

nutrient movement. It is suggested some control over nutrient movement is possible 

by varying the relative timing of water and fertiliser applications. 
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