Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of novel secondary metabolism genes in plant-endophytic *Epichloë* fungi

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Genetics

at Massey University, Manawatu,

New Zealand

Daniel Berry

2016

ABSTRACT

Plant-endophytic fungi of the genus Epichloë are symbionts of cool season grasses. Epichloë infections are generally asymptomatic, with endophyte and host growth synchronised to form an interconnected hyphal network in the intercellular spaces separating host cells. In return for the sustenance received from the host apoplast, *Epichloë* spp. produce a range of bioprotective secondary metabolites (SM) that deter both vertebrate and invertebrate herbivores. Peramine is an Epichloëderived insect-deterring SM produced by the two-module non-ribosomal peptide synthetase (NRPS) PerA, encoded by the gene perA. The perA gene is widespread across *Epichloë*, but peramine production is much more discontinuous. Through an *Epichloë*-wide survey it is shown that the peramine chemotype of *Epichloë* isolates can be accurately predicted through a combination of PCR and sequencing methods. Furthermore, the protein encoded by the widespread peramine-negative $perA-\Delta R$ allele is analysed in detail. The perA- ΔR allele has a transposable element inserted into the 3' end of the gene, and was previously assumed to be non-functional. Evidence for ongoing *perA-\Delta R* functionality is presented, with the PerA- ΔR protein shown to exhibit altered substrate specificity relative to PerA. A PerA/PerA- ΔR domain swap is shown to restore peramine production to PerA- ΔR , providing insight into the functional changes that separate this protein from PerA.

Another major project investigated the role SM genes may play in *Epichloë* sexual development. Many *Epichloë* spp. are transmitted vertically through infection of the host seed. However, sexual *Epichloë* spp. may also undergo a reproductive cycle that involves formation of pre-sexual stromata structures over developing host inflorescences. This sexual cycle culminates in horizontal transfer of the endophyte to endophyte-free host plants. Deletion of the symbiotically regulated endophyte gene *irlA* induced a symbiosis-defective phenotype *in planta*, and this observation led to the identification of a novel *Epichloë* SM cluster. Synteny analysis and comparison to previously characterised fungal SM gene clusters defines a five-gene cluster centred on *irlA* that is shown to be upregulated in stromata. A model is

proposed whereby this SM cluster controls initiation of the proliferative hyphal growth associated with stromata formation.

ACKNOWLEDGEMENTS

Firstly, a big thank you to my primary supervisor Prof. Barry Scott, whose outstanding guidance throughout both my MSc and PhD has enabled me to reach this point. Thank you for the unceasing enthusiasm and support you bought to my projects. Thanks also to my co-supervisors A. Prof. Carolyn and Dr Paul Dijkwel, who have both been there throughout this long process to provide the guidance and support required.

I would like to express my gratitude to Dr Katrin Grage for her assistance with the PerA- Δ R project. Without Katrin's help it would not have been possible to get this project to the point it is at today. Thanks also to Dr. Wade Mace of AgResearch, whose chemical expertise continues to be of great assistance to our collaboration on the PerA- Δ R project. Thanks also Prof. Murray Cox for his assistance in assembling the *P. paxilli* genome, and to Arvina and all the members of Scottbase lab that have helped me over the years. Stepping into the wider Massey University community, the services provided by the MMIC and the Massey Genome Service were outstanding and invaluable for completing these projects.

The projects presented within this thesis would not have been possible without the collaborations formed with members of the wider research community. In particular, I would like to acknowledge the immensely helpful genomics resources and insight provided by Prof. Chris Schardl at the University of Kentucky, who also kindly gave access to unpublished genomes and RNAseq data to aid these projects. I also thank Dr. Richard Johnson from AgResearch for providing sequence from the AR1 and AR37 genomes; Devish Singh (Barenbug) and A. Prof Shaun Bush (USDA) for providing access to their field trials to obtain stromata samples; Prof. Geoff Jameson for his insight into IrIA function and A. Prof David Ackerley for his insights on NRPS functionality. Thanks also to my biology teacher Mike Seawright, who went above and beyond the call of duty and undoubtedly influenced where I am today.

Grateful acknowledgments are made to the financial support provided by the Massey University Doctoral Scholarship, the BioProtection Research Centre and the RSNZ Marsden fund. Thanks also to the Samuel Roberts Noble Foundation for hosting me on several occasions, those visits were hugely helpful for enabling the research presented here.

Finally, thanks to my parents for the unconditional love and support they have provided throughout my years of studies.

1	Intr	odu	iction	1
	1.1	Epi	chloë spp., endophytes of cool-season grasses	2
	1.1	L.1	The symbiotic spectrum	4
	1.1	L.2	Epichloë sexual reproduction	5
	1.1	L.3	Epichloë phylogeny, host specificity and hybridisation	6
	1.1	L.4	Epichloë secondary metabolism	7
		1.1.4	1.1 Comparison of SM in <i>Epichloë</i> to other fungi	. 10
	1.2	Noi	n-ribosomal peptide synthetases	.12
	1.2	2.1	AMPylation domains	13
	1.2	2.2	Thiolation domains	14
	1.2	2.3	Condensation domains	15
	1.2	2.4	N-Methylation domains	15
	1.2	2.5	Termination domains	16
	1.2	2.6	Type II thioesterases	16
	1.2	2.7	Adenylate-forming reductases	17
	1.2	2.8	NRPS genes in <i>Epichloë</i> spp	. 18
	1.3	E. f	estucae Fl1–Lolium perenne as a model symbiosis	.20
	1.4	Ain	ns	.22
2	Ma	teria	als and Methods	.24
	2.1	Pre	face	.24
	2.2	Мо	lecular and biological material	.25
	2.3	Gro	wth media	.35
	2.3	3.1	Czapek Dox-yeast extract + trace elements (CDYE + TE) media	. 35
	2.3	3.2	Lysogeny broth (LB) medium (Miller, 1972)	35
	2.3	3.3	Potato dextrose (PD) medium	35
	2.3	3.4	SOC medium	. 35
	2.3	3.5	YPD medium	. 35
	2.3	8.6	Trace element solution	. 35
	2.4	Gro	wth and storage of microbiological cultures	.36
	2.4	4.1	Escherichia coli (E. coli)	. 36

ons
stucae) 37
ons
ons
suspensions
<i>coli</i> transformation-derived colonies
n from Saccharomyces cerevisiae
IA (gDNA) from fungal liquid cultures
from fungal colonies 41
from fungal spores41
solation from infected plant material
les42
on enzymes 42
nucleic acids
tions
ications 42
PCR reactions 43
) using Roche LC48043
) using ABI 7900HT43
technique lia from liquid cultures coli liquid cultures coli transformation-derived on from Saccharomyces cere IA (gDNA) from fungal liquid from fungal colonies from fungal spores from fungal spores on enzymes nucleic acids cultions CR reactions) using Roche LC480) using ABI 7900HT

	2.6.12	Gibson assembly (Gibson et al., 2009)	45
	2.6.13	DNA sequencing	46
2.7	RN/	A isolation and manipulation	46
	2.7.1	RNA isolation using TRIzol®	46
	2.7.2	RNA isolation using the Qiagen RNeasy Plant Mini Kit	47
	2.7.3	Reverse transcription	47
2.8	8 Pre	paration and probing of Southern blots	47
	2.8.1	Preparation of Southern blots	47
	2.8.2	DIG-dUTP labelling of DNA probe	48
	2.8.3	Probe hybridisation	48
	2.8.4	Colourimetric development of Southern blots	48
2.9) Tra	nsformation techniques	48
	2.9.1	Preparation of fungal protoplasts (Yelton et al., 1985)	48
	2.9.2	Transformation of fungal protoplasts (Oliver et al., 1987)	49
	2.9.3	Transformation of chemically-competent E. coli cells	50
	2.9.4	Transformation of electrocompetent E. coli cells	50
2.1	LO PI	ant methods	51
	2.10.1	Plant inoculation (Latch and Christensen, 1985)	51
	2.10.2	Standard plant growth conditions	51
	2.10.3	Endophyte infection status determination by immunoblot	51
	2.10.4	Endophyte isolation from infected plant material	52
2.1	1 M	etabolite extraction and analysis	52
	2.11.1	Peramine extraction method	52
	2.11.2	Analysis of peramine by LCMS (standard method)	53
	2.11.3	Analysis of peramine by LCMS (linear ion-trap method)	53
2.1	2 M	icroscopy	54
	2.12.1	Visualisation of endophyte in planta by aniline blue staining	54
	2.12.2	Identification of fusion events by inverted fluorescence microscop	зу
		(Lukito et al., 2015)	54
	2.12.3	Confocal laser-scanning fluorescence microscopy	54
2.1	l3 Bi	oinfomatic techniques	55
	2.13.1	Multiple sequence alignments	55
	2.13.2	Phylogenetic reconstruction of multiple sequence alignments	55
2.1	.4 Ni	ucleotide sequence resources	56

3	Disparate independent genetic events disrupt the secondary		
	met	tabo	olism gene <i>perA</i> in certain symbiotic <i>Epichloë</i> species57
4	Cha	rac	terisation of PerA-ΔR proteins70
	4.1	Нур	oothesis: PerA-ΔR proteins remain functional71
	4.2	Res	ults: Bioinformatic analysis of PerA-ΔR proteins71
	4.2	.1	PerA-ΔR proteins contain unique changes to their A1-domain
			substrate-binding residues71
	4.2	.2	PerA- ΔR proteins contain additional unique changes to the A2/M-
			domain junction and T2-domain72
	4.2	.3	Evidence for recombination between <i>perA</i> and <i>perA-ΔR</i> alleles72
	4.2	.4	Analysis of the PerA A1-domain N-terminal extension79
	4.3	Res	ults: Establishment of Penicillium paxilli as a heterologous expression
		hos	t for <i>perA</i> genes79
	4.3	.1	Rationale for heterologous gene expression in <i>P. paxilli</i>
	4.3	.2	Draft genome sequence of the filamentous fungus Penicillium paxilli
			(ATCC 26601)
	4.3	.3	Expression of <i>perA</i> in <i>P. paxilli</i> as a pilot study
	4.3	.4	Optimisation of culture growth time for peramine production in <i>P</i> .
			paxilli
	4.3	.5	Optimisation of culture growth temperature for peramine production
			in <i>P. paxilli</i>
	4.3	.6	Comparison of peramine production between <i>P. paxilli</i> wt and ΔPAX
			strains expressing perA
	4.4	Res	ults: Functional characterisation of PerA-ΔR proteins91
	4.4	.1	Comparison of A1-domain substrate specificity between PerA and
			PerA-ΔR proteins
	4.4	.2	Identifying key changes in PerA- ΔR proteins by domain-swap analysis94
	4.4	.3	Analysis of product release in PerA-ΔR proteins97
	4.4	.4	Identification of novel PerA-ΔR products
	4.5	Dis	cussion104
5	Idei	ntifi	cation and characterisation of the symbiotically regulated gene
	irlA	•••••	
	5.1	Inti	oduction: transcriptome analyses identifies a gene of interest114

5.2	Res	ults: Bioinformatic analysis of a putative <i>nmrA</i> -like gene114
5.2	2.1	In silico analysis defines irlA, a gene encoding an isolflavone reductase-
		like protein
5.3	Res	ults: generation and phenotypic analysis of <i>irlA</i> deletion mutants116
5.3	3.1	Generation of transformants 1-200 from a pDB02-derived irlA deletion
		construct
5.3	3.2	Generation of transformants 201-600 from a pDB36-derived irlA
		deletion construct
5.3	3.3	Analysis of $\Delta irlA$ mutant phenotypes
5.3	3.4	Analysis of pDB02-derived $\Delta irlA$ mutant phenotypes
5.3	3.5	Ectopic reintroduction of irlA failed to complement the Δ irlA-62
		phenotype
5.3	3.6	Analysis of pDB36-derived $\Delta irlA$ mutant phenotypes
	5.3.6	.1 Analysis of single-copy integration mutant Δ <i>irlA</i> -487130
	5.3.6	Analysis of pDB36-derived tandem integration $\Delta irlA$ mutants
5.4	Res	ults: comparing <i>irlA</i> locus gene expression between pDB02-derived
	and	pDB36-derived Δ <i>irlA</i> mutants135
5.4	4.1	Analysis of <i>irlA</i> locus gene expression in liquid culture
5.4	4.2	Analysis of <i>irlA</i> locus gene expression <i>in planta</i>
5.5	Dise	cussion143
6 IrlA	۱ is p	art of a five gene secondary metabolism gene cluster linked to
str	oma	formation151
6.1	Res	ults: synteny analysis defines a five-gene cluster centred on <i>irlA</i> 152
6.2	Def	ining putative functions for <i>irlA</i> cluster gene products152
6.3	Ide	ntification of potential irlA cluster gene orthologs in other
	Clay	vicipitacean genera155
6.3	3.1	The five-gene <i>irlA</i> cluster is present in <i>Aciculosporium take</i>
6.3	3.2	Degenerate <i>irlA</i> clusters are present in <i>Metarhizium</i> spp 156
6.4	A h	omologous gene cluster is present in the Leotiomycete <i>Glarea</i>
	lozo	oyensis157
6.5	The	irlA gene cluster is conserved in sexual Epichloë spp. only164
6.6	The	irlA gene cluster is upregulated in Epichloë stromata165
6.7	Ger	neration of individual <i>irlA</i> cluster gene deletion strains
6.8	Phe	notype of <i>irlA</i> cluster gene deletions177

	6.9	Dise	cussion18	2
7	Cor	clus	sions19	0
	7.1	Cor	nclusions: Chapters 3 & 419	1
	7.2	Con	nclusions: Chapters 5 & 619	3
8	Fut	ure	work19	5
	8.1	Fut	ure work based on the results of Chapters 3 & 419	6
	8.2	Fut	ure work based on the results of Chapters 5 & 6	8
9	Арг	oend	dices	2
	9.1		companying digital media20	
	9.2	Sup	oplementary material for Chapter 320	4
	9.3	Plas	smid gene maps21	5
	9.3	8.1	Details of plasmid pRS426 21	5
	9.3	8.2	Details of plasmid pSF15.15	6
	9.3	8.3	Details of plasmid pAN7-1 21	7
	9.3	8.4	Details of plasmid pII9921	8
	9.3	8.5	Details of plasmid pDB0221	9
	9.3	8.6	Details of plasmid pDB0522	0
	9.3	8.7	Details of plasmid pDB0822	1
	9.3	8.8	Details of plasmid pDB0922	2
	9.3	8.9	Details of plasmid pDB1522	3
	9.3	8.10	Details of plasmid pDB17 22	4
	9.3	8.11	Details of plasmid pDB18 22	5
	9.3	8.12	Details of plasmid pDB19 22	6
	9.3	8.13	Details of plasmid pDB2022	7
	9.3	8.14	Details of plasmid pDB2422	8
	9.3	8.15	Details of plasmid pDB2522	9
	9.3	8.16	Details of plasmid pDB2623	0
	9.3	8.17	Details of plasmid pDB2723	1
	9.3	8.18	Details of plasmid pDB2923	2
	9.3	8.19	Details of plasmid pDB30 23	3
	9.3	8.20	Details of plasmid pDB31 23	4
	9.3	8.21	Details of plasmid pDB32 23	5
	9.3	8.22	Details of plasmid pDB3423	6

9.3.23	Details of plasmid pDB35237
9.3.24	Details of plasmid pDB36238
9.3.25	Details of plasmid pDB43239
9.4 Su	pplementary graphs240
9.4.1	Sliding window protein sequence comparison between E. festucae Fl1
	PerA and <i>E. amarillans</i> E57 PerA240
9.4.2	Sliding window protein sequence comparison between E. festucae Fl1
	PerA and <i>E. typhina</i> E8 PerA 241
9.4.3	RT-qPCR analysis of <i>hph</i> expression for <i>irlA</i> mutants in culture
9.4.4	RT-qPCR analysis of hph expression for irlA mutants in planta
9.4.5	RT-qPCR analysis of EF320 expression in E. typhina-infected D.
	glomerata tillers exhibiting unfertilised stromata ¹
9.4.1	RT-qPCR analysis of esdC expression in E. typhina-infected D. glomerata
	tillers exhibiting unfertilised stromata ¹
9.4.1	RT-qPCR analysis of <i>esdC</i> expression in <i>E. elymi</i> -infected <i>Elymus</i> sp.
	tillers exhibiting unfertilised stromata and asymptomatic
	inflorescences ¹
9.4.2	RNA-seq comparison between choked and asymptomatic
	inflorescences of E. festucae E2368-infected Festuca pratense plants
	(tall fescue) ¹
9.5 Mu	ultiple sequence alignments246
9.5.1	Multiple sequence alignment of proteins related to IrlA ^{1, 2}
9.6 Su	pplemental nucleotide sequences248
9.6.1	Gene sequence for <i>pdtA</i> in <i>E. festucae</i> Fl1 ¹ 248
9.6.2	Gene sequence for <i>afrA</i> in <i>E. festucae</i> Fl1
9.6.3	Gene sequence for <i>irlA</i> in <i>E. festucae</i> Fl1
9.6.4	Gene sequence for <i>mfsB</i> in <i>E. festucae</i> Fl1 ¹ 250
9.6.5	Gene sequence for <i>fxbA</i> in <i>E. festucae</i> Fl1 ¹
9.6.6	Gene sequence for <i>tesB</i> in <i>E. festucae</i> Fl1 ¹
10 Refer	ences

LIST OF FIGURES

Figure 1.1	<i>E. festucae</i> hyphae growing <i>in planta</i>
Figure 1.2	E. typhina stromata on orchardgrass
Figure 1.3	Cladogram approximating the taxonomy of representative non-hybrid
	Epichloë spp
Figure 1.4	Peramine biosynthetic pathway as proposed by Tanaka et al., (2005).19
Figure 4.1	Comparison of the A1-domain substrate-binding region between PerA
	and PerA- Δ R proteins74
Figure 4.2	Comparison of PerA and PerA- ΔR protein sequences
Figure 4.3	Multiple sequence alignment of M-domain76
Figure 4.4	Multiple sequence alignment of T2-domain77
Figure 4.5	Evidence for recombination between <i>perA</i> and <i>perA</i> - ΔR alleles78
Figure 4.6	RT-PCR analysis of <i>P. paxilli</i> pDB05, pDB15 and pRS426
	transformants 84
Figure 4.7	Peramine concentration time course
Figure 4.8	Effect of growth temperature on peramine production
Figure 4.9	RT-PCR analysis of ΔPAX pDB05 transformants
Figure 4.10	Comparison of A1-domain substrate specificity between PerA and
	PerA-ΔR proteins93
Figure 4.11	RT-PCR screening of <i>P. paxilli</i> transformants
Figure 4.12	Reconstruction of peramine production in PerA-ΔR96
Figure 4.13	Constructs for analysis of Per-∆R product and product release
Figure 5.1	Plylogeny analysis places IrlA with plant IFR proteins
Figure 5.2	Southern blot of pDB02-derived Δ <i>irlA</i> mutants
Figure 5.3	Southern blot of pDB36-derived Δ <i>irlA</i> mutants
Figure 5.4	Colony morphology of Δ <i>irlA</i> mutants123
Figure 5.5	Phenotype of L. perenne plants infected with pDB02-derived $\Delta irlA$
	mutants
Figure 5.6	Phenotype of ∆ <i>irlA</i> -62 mutant <i>in planta</i> 125

Mean tiller length for E ⁻ , wt infected and $\Delta irlA$ -62 infected L. perenne
plants 126
Phenotype of Δ <i>irlA</i> -62 mutant <i>in planta</i> 127
Δ <i>irlA</i> -62 mutants retain the ability to fuse in culture
Phenotype of Δ <i>irlA</i> -487 infected <i>L. perenne</i> plants
Phenotype of Δ <i>irlA</i> -487 mutant <i>in planta</i> 133
Phenotype of L. perenne plants infected with pDB36-derived tandem
integration $\Delta irlA$ mutants
Location of regions amplified for RT-qPCR analysis of <i>AirlA</i>
mutants
RT-qPCR analysis of <i>irlA</i> locus RNA expression in culture
RT-qPCR analysis of <i>irlA</i> cluster gene expression for $\Delta irlA$ mutants <i>in</i>
planta
Model of biosynthetic pathway involving IrlA as described in Chapter
6
Synteny analysis of the <i>irlA</i> locus across the Clavicipitaceae 152
Cladogram approximating the taxonomy of family Clavicipitaceae153
Predicted domains of PdtA, AfrA, MfsB and FxbA 159
A. take and Metarhizium spp. contain irlA cluster homologs 160
Comparison of the homologous irlA gene clusters from E. festucae and
G. lozoyensis
Conservation of irlA cluster genes is not maintained in asexual Epichloë
spp
Expression of E. typhina irlA cluster genes is upregulated in
stromata 169
Expression of E. elymi irlA cluster genes appears to be upregulated in
unfertilised stromata 170
PCR screen of spore-derived strains172
Southern blot of mutant Δ <i>pdtA</i> -168173
Southern blot of mutant Δ <i>afrA</i> -11174
Southern blot of Δ <i>mfsB</i> mutants175
Southern blot of Δ <i>fxbA</i> mutants176

Figure 6.14	Phenotype of Δ <i>pdtA</i> -168-infected plants
Figure 6.15	Phenotypes of plants infected with <i>irlA</i> cluster mutants 179
Figure 6.16	Mean tiller length of plants infected with <i>irlA</i> cluster gene deletion
	mutants 180
Figure 6.17	Microscopic phenotype of <i>irlA</i> cluster deletion mutants <i>in planta</i> 181
Figure 6.18	Locus map and products of the Ina and Inb clusters of Aspergillus
	flavus as reported by Forseth et al., (2013) 184
Figure 6.19	Speculative biosynthetic pathway for the <i>irlA</i> cluster gene
	products 189

LIST OF TABLES

Table 2.1	Details of strains used in this study 25
Table 2.2	Plasmids used in this study 29
Table 2.3	Primers used in this study 30
Table 4.1	Peramine production in <i>P. paxilli perA</i> transformants
Table 4.2	Peramine production by ΔPAX05 strains
Table 4.3	Relevant P. paxilli strains for PerA- Δ R A1-domain substrate specificity
	and domain swap analyses97
Table 4.4	BLAST search results using <i>E. festucae</i> Fl1 TEII queries 100
Table 4.5	Relevant <i>P. paxilli</i> strains for PerA- Δ R product release and novel product
	identification analyses 103
Table 4.6	Substrate diversity in LpsA proteins 106
Table 5.1	Host interaction phenotype of $\Delta irlA$ -62 complementation strains 130
Table 5.2	Primer pairs used for RT-qPCR analysis of <i>irlA</i> locus gene expression in <i>E</i> .
	<i>festucae</i>
Table 6.1	Top E-values from BLASTn searches using <i>E. festucae</i> Fl1 irlA cluster gene
	queries
Table 6.2	Top E-values from tBLASTn searches using E. festucae Fl1 irlA cluster
	protein seqeunce queries 162
Table 6.3	Primer pairs used for RT-qPCR analysis of <i>irlA</i> locus gene expression in <i>E</i> .
	typhina and E. elymi

COMMON ABBREVIATIONS

10AA	The 10 amino acid A-domain substrate specificity-conferring code
4'PP	4'-phosphopantetheine
4'PPTase	4'-Phosphopantetheinyl transferase
A-domain	NRPS AMPylation domain
аа	amino acid(s)
ABI	Applied Biosystems Inc.
AFR	Adenylate-forming reductase
Amp	Ampicillin
AMP	Adenosine monophosphate
Amp ^R	Ampicillin resistance
ATP	Adenosine triphosphate
BBE	Berberine bridge enzyme
BLAST	Basic local alignment search tool
BLASTn	BLAST search against a nucleotide sequence database with a
	nucleotide sequence query
BLASTp	BLAST search against a protein sequence database with a protein
	sequence query
bp	Base pairs
C-domain	NRPS condensation domain
cDNA	Complementary DNA
CDS	Coding sequence
CDYE	Czapek Dox yeast extract
CLSM	Confocal laser-scanning (fluorescence) microscopy
CRISPR	Clustered regularly-interspaced short palindromic repeats
DEPC	Diethylpyrocarbonate
DIG	Digoxigenin
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
dNTP	deoxyribose nucleoside triphosphate

E	Not infected by endophyte
EAS	Ergot alkaloid synthesis
EDTA	Ethylene diamine tetra-acetic acid
eGFP	Enhanced green fluorescent protein
FAD	Flavin adenine dinucleotide
g	Acceleration due to gravity on Earth (9.8 m s ²)
gDNA	Genomic DNA
Gen	Geneticin
Gen ^R	Geneticin resistance
GFP	Green fluorescent protein
h	Hour(s)
hph	Hygromycin resistance-conferring gene
Нуд	Hygromycin
Hyg ^R	Hygromycin resistance
IDT	Indole-diterpene
IFR	Isoflavone reductase
IRL	Isoflavone reductase-like
kb	kilo base pairs
LB	Lysogeny broth
LCMS	Liquid chromatography-mass spectrometry
LOL	Loline
Μ	Moles per liter
M-domain	NRPS methylation or methyltransferase domain
min	Minute(s)
mRNA	Messenger RNA
MS or MS ¹	Mass spectrometry
MS ²	Tandem mass spectrometry
NAD	Nicotinamide adenine dinucleotide
NADPH	Nicotinamide adenine dinucleotide phosphate
NCM	Nitrocellulose membrane
nptll	Geneticin resistance-conferring gene

NRP	Non-ribosomal peptide
NRPS	Non-ribosomal peptide synthetase
P5C	1-pyrroline-5-carboxylate
PAMP	Pathogen-associated molecular pattern
PAX	Paxilline
PCP	Peptide carrier protein
PCR	Polymerase chain reaction
PD	Potato dextrose
PEG	Polyethylene glycol
PER	Peramine
PIP	Pinoresinol-lariciresinol reductase/Isoflavone reductase/
	Phenylcoumaran benzylic either reductase family proteins
PKS	Polyketide synthetase
PLP	Pyridoxal phosphate
PPi	Phyrophosphate
qPCR	Quantitative polymerase chain reaction
R-domain	Reductase domain
RNA	Ribonucleic acid
RNA-seq	RNA sequencing
RNase	Ribonuclease
RPM	Revolution per minute
RT-PCR	Reverse transcription polymerase chain reaction
RT-qPCR	Reverse transcription quantitative polymerase chain reaction
S	Second(s)
SAM	S-adenosylmethionine
SDS	Sodium dodecyl sulfate
SM	Secondary metabolism OR secondary metabolite
SNP	Single nucleotide polymorphism
T-domain	NRPS thiolation domain (aka PCP domain)
TBE	Tris-boric acid-EDTA

tBLASTn	BLAST search against a translated nucleotide sequence database
	with a protein sequence query
TE	Trace elements (or thioesterase; context dependent)
TE-domain	NRPS type I thioesterase domain
TEII	Type II thioestease
TF	Transcription factor
ТМ	Trans-membrane
TSP	Trans-species polymorphism
v/v	Volume:volume ratio
w/v	Weight:volume ratio
WGA	Wheat germ agglutinin
wt	Wild type