Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

IN VITRO DETERMINATION OF THE ILEAL DIGESTIBILITY OF PROTEIN AND AMINO ACIDS IN NEW ZEALAND BARLEYS

.

Nigel Desmond Meads

February, 1997

A thesis presented in partial fulfilment for the degree of Master of Agricultural Science at Massey University, Palmerston North, New Zealand.

CONTENTS

Acknowledgements	
List of Abbreviations	
List of Tables	
Abstract	
INTRODUCTION 1	
Chapter 1 LITERATURE REVIEW 4	
1.1 Protein digestion in the pig. 4	
1.2 Determination of amino acid digestibility. 9	
1.3 Measurement of endogenous amino acid loss. 2	0
1.4 The rat as a model for the pig. 3	2
1.5 <i>In vitro</i> techniques for determination of protein digestibility. 3	9

14

Chapter 2 A DESCRIPTION OF NEW ZEALAND BARLEYS: CHEMICAL AND PHYSICAL MEASUREMENTS AND APPLICATION OF A MULTI-ENZYME *IN VITRO* PROTEIN DIGESTIBILITY ASSAY

2.1 Introduction	41
2.2 Materials and Methods	42
2.3 Results	48
2.4 Discussion	54

Chapter 3 A DESCRIPTION OF NEW ZEALAND BARLEYS: THE ILEAL DIGESTIBILITY OF PROTEIN AND AMINO ACIDS AS MEASURED USING AN *IN VIVO* LABORATORY RAT ASSAY

3.1 Introduction	57
3.2 Materials and Methods:	58
3.3 Results	63
3.4 Discussion	69

Chapter 4 A DESCRIPTION OF NEW ZEALAND BARLEYS: THE PREDICTION OF PROTEIN AND AMINO ACID DIGESTIBILITIES

4.1 Introduction	72
4.2 Materials and Methods	73

iii

	4.3 Results	75
	4.4 Discussion	79
Chapter 5 G	ENERAL DISCUSSION	82
References		86
Appendices	1) Chemical reagents for the <i>in vitro</i> trial.	103
	2) Amino acid contents of seventeen New Zealand barleys.	105
	3) <i>In vitro</i> digestibilities (Nd _{vitro} %) of the two replicates for ten New Zealand barleys determined in both the present study and in a Danish laboratory.	106
	4) Undigested Dry Matter (UDM, g/kg DM) for the present study a results from a Danish laboratory.	and 107
	5) Apparent ileal protein digestibilities for ten New Zealand barley determined in the growing laboratory rat.	/s as 108
	6) Voluntary feed intakes of the rats in the study to determine endogenous lysine loss.	109

iv

<u>ACKNOWLEDGEMENTS</u>

My deep gratitude goes to Professor Paul J. Moughan, my chief supervisor, who believed in me right from the beginning sufficiently enough to allow me the opportunity of a lifetime, my thesis. For his untiring assistance particularly at the closing stages, I am especially grateful. My co-supervisor, Dr. Patrick Morel has shown great understanding and encouragement, especially when I needed it the most. To Professor Paul Moughan, and Dr. Patrick Morel, thank you.

My parents have been constantly at the forefront of my mind as I composed this work. For their generous financial support and patience, I am indebted. I hope to make them proud. To Mum and Dad, thank you so much.

Great encouragement has come from my colleague and close friend, Mrs. Jiai Chen. My mate Phil Walker has also always offered me support and encouragement. I am appreciative of these people, and all my other friends who kept giving encouragement and offering prayers for me. I think especially of Mr. Terry MacGrath. To all my friends, thank you.

The priceless assistance of technical staff is fully acknowledged and appreciated. Special thanks to Maggie Zhou, Liesel Trezise, Joseph Bateson, Florence Chung, Hian Voon, Suzanne Hodgkinson. I especially thank Mr. Shane M. Rutherfurd, who helped, encouraged and educated me tirelessly in many laboratory procedures and technical work. His friendly nature and relaxed manner are gratefully recognised. Mr Graham Pearson is owed a special debt of thanks for his part in managing and directing the collection of barley samples and teaching me ileal sampling procedures from the rat.

Thank you also to Dr. Sigurd Boisen for all his help and especially for his work done in Denmark.

Above all my thanks to God, who has remained faithful to me, his servant.

This work was undertaken at the Monogastric Research Centre, Massey University, with funding from the New Zealand Pork Industry Board.

ABBREVIATIONS

AA	amino acid
Ala	Alanine
Arg	Arginine
ANF	anti-nutritional factor
Asp	Aspartic acid
APU	Animal Physiology Unit
СР	crude protein
CF	crude fibre
cw	compare with
Cys	Cysteine
Da	daltons
DM	dry matter
DP	digestible protein
EHC	enzymically hydrolysed casein
EAAL	endogenous amino acid loss
EL	endogenous loss
EPL	endogenous protein loss
FCR	feed conversion ratio
FIA	flow injection analysis
GI	gastro-intestinal
Glu	Glutamic acid
Gly	Glycine
HA	homoarginine
His	Histidine
HPLC	high performance liquid chromatography
Iso	Isoleucine
IV	intravenous
kgs	kilograms
Leu	Leucine
Lys	Lysine

MBM	meat and bone meal
Met	Methionine
MWCO	molecular weight cut off
Ν	Nitrogen
OMIU	O-methylisourea
Phe	Phenylalanine
Pro	Proline
SD	standard deviation
Ser	Serine
SAPU	Small Animal Production Unit
SPF	specific pathogen free
Thr	Threonine
Tyr	Tyrosine
UDM	undigested dry matter
Val	Valine
VFI	voluntary food intake
w/w	weight for weight

LIST OF TABLES

Table 2.1: Variety, location and harvest date for seventeen barley samples harvested	
in New Zealand in 1995	44
Table 2.2: Production data for seventeen New Zealand barleys including yield, interval from sowing to barvast and sowing rate	15
interval from sowing to harvest and sowing rate	43
and moisture.	49
Table 2.4: Crude Protein (CP, % dry matter) for the seventeen New Zealand barleys	
Table 2.5: Neutral Detergent fibre (NDF), Acid Detergent fibre (ADF) and lignin	
contents for seventeen New Zealand barleys.	51
Table 2.6: Total and gastro intestinal (GI)-extracted β -Glucan for ten New Zealand	
barleys.	52
Table 2.8: Mean† in vitro digestibilities (Ndvitro %) for ten New Zealand barleys and	
undigested dry matter (UDM, g/kg DM)	54
Table 3.1: Apparent ileal digestibility of N in the growing rat given ten barley	
samples	64
Table 3.2: Mean apparent ileal amino acid digestibility (%) for ten New Zealand	
barleys as determined with the growing rat	65
Table 3.3: Mean apparent (ApLD, %) and true (TLD, %) ileal lysine digestibility	
determined using the homoarginine technique for six New Zealand barleys	66
Table 3.4: Determined mean (\pm SE) endogenous lysine losses (EL, μ g/g DMI) in the	
growing rat fed barley based diets	67
Table 3.5: Estimates of true digestible nitrogen (g/kg DM) contents for six New	10
Zealand barleys	68
Table 3.6: Endogenous ileal protein loss (EPL, g/kgDMI) determined using	70
guanidination and that calculated based on <i>in vitrolin vivo</i> comparison	/0
Table 4.1: Correlation coefficients [†] between various physical characteristics (% DM)	
of New Zealand barleys and apparent ileal digestibility of N (Ndapp,) or true digestibility of lysine (TLD) or the apparent ileal digestibilities of the essential amino	
acids	77
Table 4.2: Correlation coefficients† between various chemical characteristics (%)	/ /
DM) of New Zealand barleys and apparent ileal digestibility of N (Ndapp,) or true	
digestibility of lysine (TLD) or the apparent ileal digestibilities of the essential amino	
	78

Abstract

The aim was to evaluate a recently developed *in vitro* digestibility assay for predicting the apparent ileal digestibility of protein and amino acids in barley, and secondly to evaluate the statistical prediction of apparent ileal digestibility of protein in barley based on chemical and physical measurements.

Seventeen barleys were collected from six growing regions from throughout New Zealand in 1995. Ten of these were selected to provide a range in crude protein from 8.5 to 13.3% (DM basis). The ten barleys were subjected to several physical and chemical measurements, and to the *in vitro* assay. The barleys were given as sole sources of protein to growing rats (n=6) and ileal digesta were collected at slaughter and nitrogen and amino acid digestibility determined with reference to the marker, chromic oxide. Six of the barleys were treated with O-methylisourea to convert lysine to homoarginine, a synthetic analogue of lysine, to allow determination of endogenous ileal lysine and protein flows.

Mean *in vivo* apparent ileal digestibility of nitrogen ranged from 71.4% to 80.3%. *In vivo* true lysine digestibility ranged from 73.2% to 100% while endogenous protein loss ranged from 6.4 to 44.8 g/kg DMI.

Physical measures made on the barley included grain bulk density (kg/hecto litre), screenings (%) and 1000 seedweight (g) and were highly variable. They provided no significant (p>0.05) predictive ability for protein digestibility or endogenous ileal protein loss. Chemical measures included CP (%), NDF (%), ADF (%), lignin (%), total β -glucans (%) and gastro-intestinal (GI) extracted β -Glucans (%) and were also highly variable. True lysine digestibility was able to be predicted based on the levels of GI extracted β -glucans and crude protein (r²= 0.97). *In vivo* endogenous ileal protein loss was predicted based on total β -glucans (r²= 0.77).

In vitro protein digestibility was not significantly correlated with *in vivo* values. The *in vitro* technique requires more development before it can be used for the routine evaluation of digestible protein in barleys.