Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE ASSOCIATION BETWEEN EQUINE PAPILLOMAVIRUS TYPE 2 AND EQUINE SQUAMOUS CELL CARCINOMAS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Science

> at Massey University, Manawatū, New Zealand.

CAMERON GREIG KNIGHT 2015

ABSTRACT

Squamous cell carcinomas (SCCs) are malignant epithelial neoplasms affecting most species. Equine SCCs are most common on the penis, where they result in significant welfare and economic costs and frequently necessitate euthanasia. In humans, half of penile SCCs are caused by infection with papillomaviruses (PVs). The research described in this thesis investigated whether PVs similarly cause equine penile SCCs (EPSCCs).

Testing of equine penile samples using conventional PCR and consensus primers amplified PV DNA significantly more frequently from SCCs than from non-SCC lesions. Sequencing of the amplified DNA showed that there was just one PV type present, and that it was a newly-discovered PV called equine papillomavirus type 2 (EcPV-2). *In situ* hybridization and immunohistochemistry localized PV DNA and antigen to neoplastic cells but not to adjacent tissue. These results suggested that EcPV-2 could influence the development of EPSCCs.

A quantitative PCR assay was then developed to test for EcPV-2 presence and load in a large number of equine samples from the penis and from other SCC-prone body sites. This showed that EcPV-2 is present significantly more frequently, and at significantly higher loads, in EPSCCs than in non-SCC tissues. Furthermore, some equine pharyngeal SCCs contained low EcPV-2 loads. However, as EcPV-2 was also sometimes present in grossly normal pharyngeal samples, the significance of this was uncertain. EcPV-2 DNA was only rarely detectible in grossly normal vulvovestibular mucosal samples and never in nictitating membrane samples.

To help determine whether EcPV-2 causes cancer or is an incidental bystander, immunostaining for three cellular regulatory proteins (transformation-related protein 53 (p53), retinoblastoma protein (pRb), and cyclin-dependent kinase inhibitor 2A) was performed. This showed that, unlike high-risk human PVs, the presence of EcPV-2 DNA within a SCC was not associated with degradation of the tumor suppressor proteins

iii

p53 or pRb. While these results do not support a causative association between EcPV-2 and equine SCCs, the possibility that EcPV-2 causes cancer by changing other cell regulatory proteins cannot be excluded.

Overall, evidence from our and others' research strongly suggests that EcPV-2 is involved in EPSCCs, but does not prove unequivocally that it causes these neoplasms.

A PhD research project is a team effort. Many people helped me in the course of this PhD research and I would like to thank them.

I am sincerely grateful to my supervisors, Dr. John Munday and Dr. Magda Dunowska, for their guidance, support and encouragement. John started me on this PhD as one of my oldest friends; that he finished the same way is testament to his limitless patience. He introduced me to research, and guided me from my first day of considering a PhD project to the very last sentence of this thesis. Saying thank you doesn't begin to express my gratitude. When Magda took me on I was completely new to lab work, and she spent an enormous amount of time teaching me techniques, troubleshooting when I stumbled, and explaining results. It seemed that she was never too busy to help me, although I know she was. I can't thank Magda enough either. It has been a privilege to have John and Magda as my mentors, and it's still a privilege to have them as friends.

Inside IVABS I greatly appreciated the help I received from Dr. Matthew Perrott and Dr. Dani Aberdein with immunohistochemistry; Mrs. Gaya Gopakumar with PCR and plasmid construction; and Dr. Keren Dittmer with spectrophotometry. Their assistance and guidance were invaluable. Thank you also to Massey University for awarding me the BRCSRA staff doctoral training fund that allowed me to juggle my research and my teaching position in IVABS in 2010.

Outside the IVABS building I was helped by numerous people and animals who provided the samples without which my research couldn't have happened: Dr. Jeanine Peters from Cornell University who collected archived equine tissues and sent them to New Zealand; all the staff at Clover Export who generously gave me space, time and help on the slaughter floor during one very long day in Gore; and the owner of the horse described in chapter three, who allowed his horse to be biopsied and photographed. I also gratefully acknowledge all the horses whose tissues I collected and studied; I know that animal research is a privilege. Thank you to all of you.

Thanks to my family. To beautiful Stella and Owen, who were born during this PhD work and have never known a life without Dad putting off his thesis writing. To my wonderful parents and brothers, who have always supported me and often laughed at me, beginning in 1969, not 2009. To my extended American family for their generosity, help and kindness. And to Lily and Gary Davies, who took four new immigrants under their wing and made Canada feel like home. Thank you all so much.

Finally, in chapter three I wrote, "One veterinarian contacted me after seeing Horse A, a 9-year-old Standardbred cross gelding …" The veterinarian was my wife, Brielle. Her observation, curiosity and willingness to biopsy on my behalf provided me with New Zealand's first recognized case of EcPV-2 infection, which in many ways allowed this thesis to progress past chapter 3. That alone would have been enough, but it was her endless and loving support that let me reach the end, and I need to thank her more than anyone else. I could never have done this without her. While I worked on this thesis, she finished her own PhD, gave birth to and reared our two fantastic children, moved us to Canada, and looked after me more than I deserve. She never stops smiling, and she brightens life for everyone around her. Thank you, Brielle.

TABLE OF CONTENTS

Chapter 1 Background and Literature Review

1.1 Introduction	1
1.2 Overview of Squamous Cell Carcinomas	2
1.3 SCCs in Horses	3
1.3.1 Equine Penile SCCs (EPSCCs)	3
1.3.2 Equine Ocular or Adnexal SCCs (EOSCCs)	5
1.3.3 SCCs of the Oral Cavity and Pharynx	7
1.3.4 SCCs of the Vulva and Vestibule	8
1.3.5 SCCs in Other Locations in Horses	8
1.4 Papillomaviruses	10
1.4.1 Overview	10
1.4.2 Genome	11
1.4.3 Classification	12
1.4.4 Life cycle & replication	13
1.4.5 Diagnosis of PV Infection	15
1.4.6 Host Response to PV Infection	17
1.4.7 Vaccination	18
1.5 Papillomaviruses and SCCs	20
1.5.1 Papillomaviruses and SCCs in Humans	20
1.5.1.1 Oncogenic Mechanisms of PVs	
1.5.2 Papillomaviruses and SCCs in Horses	25
1.5.3 Papillomaviruses and SCCs in Other Species	
1.6 Evidence Supporting a Causative Association between PVs and SCCs	28
1.6.1 Detection of PV DNA in Lesions	29
1.6.2 Immunohistochemical Evidence of PV Oncogenic Activity Within Lesions	31
1.6.2.1 pRb	32
1.6.2.2 p16 ^{CDKN2A}	32
1.6.2.3 p53	33
1.6.3 Expression of Oncogenic PV mRNA Transcripts	33
1.6.4 Progression of PV-Infected Lesions to SCCs	34
1.6.5 Success of Vaccination	35
1.7 Other Risk Factors for Development of SCCs	35
1.7.1 Ultraviolet Radiation	
1.7.1.1 UV Exposure and SCCs in Humans	36
1.7.1.2 UV Exposure and SCCs in Horses	37
1.7.2 Miscellaneous Risk Factors for Development of SCCs	41
1.7.2.1 Miscellaneous Risk Factors for SCCs in Horses	
1.7.2.2 Miscellaneous Risk Factors for SCCs in Humans	42
1.8 Conclusion	43
1.9 References	45
Chapter 2 Investigation into Papillomaviral Presence in Penile Lesions	

2.1	Introduction	65
2.2	2 Materials and Methods	

2.2.1 Case Material	
2.2.2 DNA Extraction from Samples	67
2.2.3 PCR	
2.2.4 Sequencing and Sequence Analysis	
2.2.5 In Situ Hybridization	
2.2.6 Immunohistochemistry	
2.2.7 Statistical Analysis	69
2.3 Results	70
2.3.1 Case Material	
2.3.2 PCR	70
2.3.3 Sequencing	72
2.3.4 In Situ Hybridization	
2.3.5 Immunohistochemistry	
2.4 Discussion	
2.5 Chapter Summary	
2.7 References	

Chapter 3 Refinement of Diagnostic Techniques for EcPV-2

3.1 Introduction	83
3.2 Objective 1: Identification of a Horse Infected with EcPV-2	
3.2.1 Materials and Methods	
3.2.2 Results	
3.3 Objective 2: Designing and Testing EcPV-2-Specific PCR Primers	
3.3.1 Materials and Methods	
3.3.2 Results	
3.4 Objective 3: Creation of a Positive Control Sample for EcPV-2 Testing	
3.4.1 Materials and Methods	
3.4.2 Results	
3.5 Objective 4: Testing a Non-Invasive Method for Diagnosis of EcPV-2 Infecti	on 94
3.5.1 Materials and Methods	
3.5.2 Results	
3.6 Discussion	
3.6.1 Identification of a Horse Infected with EcPV-2	
3.6.2 Designing and Testing EcPV-2-Specific PCR Primers	101
3.6.3 Creation of a Positive Control Sample for EcPV-2 Testing	103
3.6.4 Testing a Non-Invasive Method for Diagnosis of EcPV-2 Infection	103
3.7 Chapter Summary	107
3.8 References	108

Chapter 4 Development of a Quantitative PCR Assay for EcPV-2

Introduction	111
Optimization of a qPCR Assay for EcPV-2 using the MD.L1[A] Primer Set	112
4.2.1 Overview	112
4.2.2 Materials and Methods	113
4.2.2.1 Cloning	113
4.2.2.2 Screening by Colony PCR	114
4.2.2.3 Plasmid Isolation	114
	Optimization of a qPCR Assay for EcPV-2 using the MD.L1[A] Primer Set 4.2.1 Overview

4.2.2.4 Confirmation of the Inserted EcPV-2 Sequence Within the Plasmid 115
4.2.2.5 Creation of a Stock Solution of a Plasmid Containing an EcPV-2 Insert. 116
4.2.2.6 qPCR Assay Optimization
4.2.2.7 Investigation of Primer Design
4.2.3 Results
4.2.3.1 Screening by Colony PCR
4.2.3.2 Confirmation of Inserted EcPV-2 Sequence Within the Plasmids
4.2.3.3 Creation of a Stock Solution Containing a Linearized Plasmid
4.2.3.4 qPCR Assay Optimization
4.2.3.5 Investigation of Primer Design
4.3 Development of a qPCR Assay for EcPV-2 using the MD.L1[B] Primer Set
4.3.1 Overview
4.3.2 Materials and Methods
4.3.2.1 Design of the MD.L1[B] Primer Set
4.3.2.2 Initial Comparison of the MD.L1[A] and MD.L1[B] Primer Sets
4.3.2.3 Amplification of an EcPV-2 Fragment for Use as a Positive Control 124
4.3.2.4 Confirmation and Quantification of the EcPV-2 DNA Fragment
4.3.2.5 gPCR Assay Optimization and Generation of a Standard Curve
4.3.3 Results
4.3.3.1 Initial Comparison of the MD.L1[A] and MD.L1[B] Primer Sets
4.3.3.2 Creation of a Stock Solution Containing an EcPV-2 DNA Fragment 129
4.3.3.3 qPCR Assay Optimization and Generation of a Standard Curve
4.5.5.5 GPCK Assay Optimization and Generation of a Standard Curve
4.4.1 Overview
4.4.2 Primer Design
4.4.2.1 Optimal Primer Design
4.4.2.2 Choice of PV Primer Target
4.4.3 Standards
4.4.4 Assay Performance
4.4.4.1 Assay Efficiency
4.4.4.2 Assay Sensitivity
4.4.4.3 Assay Specificity 140
4.5 Chapter Summary
4.6 Glossary
4.7 References
Chapter 5 Investigation of EcPV-2 Load and Presence in Equine Tissues
5.1 Introduction
5.2 Materials and Methods
5.2.1 Sample Collection
5.2.2 Age Estimation
5.2.3 DNA Extraction
5.2.4 Confirmation of Amplifiable DNA in Samples150

5.2.5 qPCR Assay for EcPV-2	
5.2.6 Statistical Analysis	
5.3 Results	
5.3.1 Sample Collection	

5.3.2 Age Estimation	. 153
5.3.3 DNA Extraction and Confirmation of Amplifiable DNA	. 153
5.3.4 qPCR Assay for EcPV-2 and Statistical Analysis	. 153
5.4 Discussion	. 155
5.4.1 Investigation of EcPV-2 Viral DNA Load in Penile Samples	. 155
5.4.2 Investigation of EcPV-2 Viral DNA Load in Samples from Other SCC-Prone	
Body Sites	. 157
5.4.2.1 Oral and Pharyngeal Samples	. 157
5.4.2.2 Vulvar Samples	. 158
5.4.2.3 Nictitating Membrane Samples	. 159
5.4.3 Overall Interpretation of qPCR Results	. 161
5.4.3.1 Assay Design and Performance	. 161
5.4.3.2 Interpretation of EcPV-2 Viral DNA Load	. 162
5.5 Chapter Summary	. 163
5.6 References	

Chapter 6 Immunohistochemical Investigation of Oncogenic Mechanisms of EcPV-2

6.1 Introduction	169
6.2 Materials and Methods	171
6.2.1 Sample Collection	171
6.2.2 Immunohistochemistry	
6.2.2.1 p16	171
6.2.2.2 pRb	172
6.2.2.3 p53	172
6.2.3 Interpretation and Analysis of IHC slides	173
6.3 Results	173
6.3.1 Sample Collection	173
6.3.2 Immunohistochemistry	174
6.3.2.1 p16	174
6.3.2.2 pRb	174
6.3.2.3 p53	175
6.4 Discussion	177
6.4.1 pRb	178
6.4.2 p53	178
6.4.3 p16	180
6.4.4 Throat SCC Samples	181
6.5 Chapter Summary	181
6.6 References	183

Chapter 7 General Discussion and Conclusions

7.1 Introduction	87
7.2 Brief Summary of the Results Presented in this Thesis1	.88
7.3 Cumulative Knowledge about EcPV-2 to Date1	.89
7.3.1 EcPV-2 and EPSCCs1	.89
7.3.2 EcPV-2 and Penile Papillomas1	.89
7.3.3 EcPV-2 and Healthy or Non-SCC Genital Mucosa1	.90
7.3.4 EcPV-2 and Non-Genital Tissues1	92

7.3.5 Summary of Conditions Found to Contain EcPV-2 DNA	193
7.3.6 Progression of EcPV-2 Infection	193
7.3.7 Laboratory Techniques Used to Investigate EcPV-2	194
7.3.7.1 Swabbing or Cytobrushes	194
7.3.7.2 Quantitative PCR	194
7.3.7.3 In Situ Hybridization	195
7.3.7.4 Immunohistochemistry for p53, pRb, p16 and Ki67	196
7.3.8 Other Known Equine Papillomaviruses	197
7.3.8.1 In Genital Lesions	197
7.3.8.2 In Non-Genital Lesions	198
7.4 Conclusions	198
7.4.1 Evidence for Causality	198
7.4.1.1 Strength of Association	199
7.4.1.2 Consistency	200
7.4.1.3 Specificity	202
7.4.1.4 Temporality	202
7.4.1.5 Biological Gradient	203
7.4.1.6 Biological Plausibility	203
7.4.1.7 Experimental Evidence	204
7.4.1.8 Analogy	205
7.4.2 Summary	205
7.4.2.1 Does EcPV-2 Cause Cancer?	205
7.4.2.2 Is it Possible to Prove that EcPV-2 Causes Cancer?	206
7.4.2.3 What Directions should EcPV-2 Research Take in the Future ?	207
7.5 References	209
Annendix A	

Appendix A

List of Publications		213
----------------------	--	-----

LIST OF FIGURES

Chapter 1			
•	Figure 1.1. Papillomaviral life cycle14		
Cha	Chapter 2		
•	Figure 2.1. In situ hybridization, penile squamous cell carcinoma		
•	Figure 2.2. Immunohistochemistry, penile squamous cell carcinoma		
Cha	pter 3		
•	Figure 3.1. Penile papillomatosis in a 9 year old gelding		
•	Figure 3.2. Photomicrograph of equine penile papilloma: hematoxylin & eosin 89		
•	Figure 3.3. Penis of horse with penile papillomatosis		
•	Figure 3.4. Photomicrograph of equine penile papilloma: immunohistochemistry &		
	<i>in situ</i> hybridization		
•	Figure 3.5. Four different PCR template preparation methods used for penile		
	lesions from a horse with EcPV-2-induced penile papillomatosis		
•	Figure 3.6. Representative PCR results from samples taken from a horse with EcPV-		
	2-induced penile papillomatosis		
•	Figure 3.7. Anatomy of the normal equine penis 100		
Cha	pter 4		
•	Figure 4.1. Schematic diagram of plasmid containing a 104 bp EcPV-2 insert 116		
•	Figure 4.2. Gel electrophoresis results from eight <i>E. coli</i> colonies screened by PCR		
	for the presence of a recombinant plasmid vector containing an inserted 104 bp		
	segment of the EcPV-2 L1 gene		
•	Figure 4.3. Gel electrophoresis results from two PCR assays confirming the		
	presence of the EcPV-2 L1 insert within plasmids		
•	Figure 4.4. Gel electrophoresis results from a PCR assay confirming that the EcPV-2		
_	control stock solution contains the ~4000 bp plasmid construct		
•	Figure 4.5. Schematic diagram of secondary structures predicted by mfold within		
_	the 104 bp PCR product amplified by the MD.L1[A] primer set		
-	Figure 4.6. BLAST results for the MD.L1[B] forward and reverse primers		
-	Figure 4.7. Schematic diagram of the circular EcPV-2 genome showing the 591 bp		
	fragment of the L1 gene amplified by using the forward primer from the MD.L1[A] set and the reverse primer from the MD.L1[B] set		
	Figure 4.8. Comparison of results from qPCR assay using two different primer sets		
-	and DNA extracted from an EcPV-2 positive tissue as test samples		
	Figure 4.9. An example of qPCR results using the MD.L1[B] primer set to generate		
	a standard curve using serial dilutions of a test sample		
•	Figure 4.10. EcoStudy results combining four qPCR assays for EcPV-2		
Cha	Chapter 5		

- Figure 5.1. EcPV-2 infection in different body sites as determined by qPCR...... 155
- Figure 5.2. Squamous cell carcinoma of the left aryepiglottic fold in a horse 158

Chapter 6

•	Figure 6.1. Immunostaining against tumor suppressor protein pRb from two
	representative horses with penile squamous cell carcinoma174
•	Figure 6.2. Immunostaining against tumor suppressor protein pRb from a
	representative horse with pharyngeal squamous cell carcinoma
•	Figure 6.3. Immunostaining against tumor suppressor protein p53 from two
	representative horses with penile squamous cell carcinoma177

Chapter 2		
• 1	Table 2.1. Identification numbers, ages, diagnosis and PCR, in situ hybridization	
(ISH) and immunohistochemistry (IHC) results	
Cha	pter 4	
• 1	Freparation of the ligation mixture for insertion of the 104 bp EcPV-2	
t	arget sequence into plasmid vectors	
• 1	Table 4.2. Preparation of the linearization and dilution reaction mix for circular	
	blasmid vectors containing an inserted 104 bp EcPV-2 target sequence	
	Table 4.3a. Different primer concentrations tested to optimize an EcPV-2 qPCR	
	assay using the MD.L1[A] primer set	
	Table 4.3b. Different amplification conditions tested to optimize an EcPV-2 qPCR	
	assay using the MD.L1[A] primer set	
	Table 4.4a. Reaction mixes used to compare the MD.L1[A] and MD.L1[B] primer	
	sets	
	Fable 4.4b. Amplification conditions used to compare the MD.L1[A] and MD.L1[B]	
	primer sets	
	Table 4.5a. Reaction mix used to amplify a 591bp segment of the EcPV-2 L1 gene	
	Table 4.5b. Amplification conditions used to amplify a 591bp segment of the EcPV-	
	2 L1 gene	
	Table 4.6a. Different primer concentrations tested to optimize an EcPV-2 qPCR	
	assay using the MD.L1[B] primer set	
	Table 4.6b. Different amplification conditions tested to optimize an EcPV-2 qPCR	
	assay using the MD.L1[B] primer set	
	Table 4.7. Amplification conditions for an EcPV-2 qPCR assay using the MD.L1[B] Table 4.7. Amplification conditions for an EcPV-2 qPCR assay using the MD.L1[B]	
	128	
	Table 4.8a. Inter-assay variation over three runs using duplicates of each dilution	
	of the standard	
	Table 4.8b. Intra-assay variation in a single run using 5 replicates of each dilution	
	of the standard	
	Table 4.9. Primer design criteria as they apply to the MD.L1[A] and MD.L1[B]	
k	primer sets	
Chapter 5		

•	Table 5.1. Summary of results of quantitative PCR evaluation of equine tissues for
	the presence of EcPV-2 DNA sequences 154

Chapter 6

-	Table 6.1. Immunostaining and viral load within 20 equine penile squamous cell
	carcinomas176