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ABSTRACT 

The reader of this thesis should already have a basic understanding of ideal theory. 

For this reason it is recommended that a good introduction to this subject would be gained 

from reading D. G. Northcott's book "Ideal Theory", paying special attention to chapters 

one and three. This thesis consists of three chapters, with chapter one providing the 

definitions and theorems which will be used throughout. Then I will be considering two 

problems on the arithmetic degree of an ideal, one posed by Sturmfels, Trung and Vogel 

and the other by Renschuch. These problems will be described in the introductions to 

chapters two and three. 
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CHAPTER 1 

PRELIMINARY RESULTS 

Let I be a homogeneous ideal of the polynomial ring S = F [xo, ... , xn] where 

F is any field. 

Let P be a prime ideal belonging to I. 

If P is isolated, we know from the corollary of theorem 3 of Northcott's book 

[6, p.19], that the primary component corresponding to P is the same for all normal 

decompositions of I . 

However, if P is embedded, then this is not true, as the following example [6, 

p.30] shows. 

Consider the ideal (x2 , xy) in the ring F [x, y], F any field. 

It is shown in Northcott's book [6, p. 30] that 

(x) n (y + ax , x2) (where a is any element of F), 

(x) n (y + bx, x 2
) (where b E F, b =f. a), 

and (x) n (x2
, xy, y 2

) 

are all normal decompositions of (x2 , :i;y) with (y + ax, x2 ), (y + bx, x2 ), (x2 , x y, y2) 

all (x, y) - primary. 

So the primary component corresponding to an embedded prime ideal need not 

be unique. 

Therefore, if we have two normal primary decompositions of I , one having a 

primary component Q1 corresponding to an embedded prime P, and the other having 

a primary component Q2 corresponding to P, Q1 =f. Q2, then in general, the classical 

length multiplicity of Q1 does not equal the classical length multiplicity of Q2. 

However, in arithmetic degree theory, we do have a way of defining the length 

multiplicity of an embedded component of an ideal which is well-defined. 
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The definitions that are needed to do this are given later in this chapter. 

We will also need some basic facts about the Hilbert function from the classical 

degree theory. 

Let V ( n + 1, t) denote the F - vector space consisting of all forms of degree t 

in X O, ... , X n , 

Then <limp V (n+ 1, t ) = C~n ), t 2: 0 , n 2: 0. 

Let V (I , t) be the F-vector space consisting of all forms in V ( n + 1, t) which are in I. 

Definition 1. The function H (I,-) : z+ - z+ [10, p.43] defined by 

H (I , t) = <limp V ( n + 1, t) - <limp V (I , t) is called the Hilbert function of I. 

For large enough t, the Hilbert function is a polynomial P (I , t) in t with 

coefficients in Z . The degreed (0 ::; d ::; n) of this polynomial is called the dimension 

of I and is denoted by dim (I ). 

The polynomial P (I , t) can be written in the following form: 

P (I , t) = ho(I) (~) + h1 (d~l) + .. . + hd [10, p.45] where ho (I) is a positive integer. 

The leading coefficient of P (I , t ), namely ho (I), is called the degree of I. 

There is of course a great deal of theory on the Hilbert polynomial, but for our 

purposes the following definition and theorem will suffice. 

Let I = (!1 , ... , ft). 

Definition 2. I is said to be a complete intersection if (!1, . . . , fi-1) Ii = 

(Ji , ... , h - 1) for all i = 1, ... , t. 

Theorem 1 [10, p.46]. Let the generators Ji, ... f t of I be forms of degrees 

s1, ... , St respectively. If I is a complete intersection then ho (I ) = s1 ... St, 
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We will now state the other definitions, theorems and propositions that will be 

used in chapters two and three. 

Definition 3 [5, p.l]. Given any homogeneous ideal I and prime ideal P in 

S, we define J to be the intersection of the primary components of I with associated 

primes strictly contained in P. We let J = S if there are no primes p belonging to I 

with p~P. 

Let Q be a ?-primary ideal belonging to I. 

Definition 4 [3]. We define the length-multiplicity of Q, denoted by multi (P), 

as the length of a maximal strictly increasing chain of ideals, I ~ I,,_ C h-1 C ... C 

h c Ji c J where each Jk equals q n J for some ?-primary ideal q. 

As we will be making repeated use of an algorithmic approach to calculate 

multi (P) it is convenient to state it here, followed by a theorem. 

Step 1. Take a maximal strictly increasing chain of primary ideals from Q to P. 

(1) QC ... C Q i -1 C Qi C ... P. 

Step 2. Intersect each primary ideal in (1) with J. 

(2) Q n J ~ ... ~ Q i-1 n J ~Qin J ~ ... ~ P n J = J. 

Step 3. Eliminate duplicates in (2) in order to get a strictly increasing chain of 

ideals in the sense of definition 4. 

(3) Q n J =: I,,_ C h-1 C ... C 11 C J. 

Note: If P is an isolated prime ideal of I, then multi (P) gives the classical length 

multiplicity of Q. 
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Theorem 2 [5, p.2]. Using the above notation we have f = multi (P) . 

D fl . . 5 [2 1] A 1 . J f th i: il i2 in h e mhon , p. . po ynom1a o e 1orm a(i)x1 x2 ... xn , w ere 

i1, i2, ... in are any non-negative integers and a(i) is any element of F, is a mono­

mial. 

Definition 6 [2, p.1]. If A is an ideal of S then A is a monomial ideal of S if 

and only if A is generated by monomials. That is, A = (m1, ... , ms), where mt are 

monomials for f = 1, ... , s. 

Proposition 1 [2, p.2]. Let P1 be a monomial ideal of S = F [xo, ... , xn]; Pi is 

a prime ideal if and only if Pi = (xi
0

, •• • , ,xi,) , ij E {O, ... , n} for j = 0, ... , r . 

Proposition 2 [2, p.2]. Let Pi, Q1 be monomial ideals of S = F [x0 , .•• , xn] 

where Pi is prime and, say Pi = (xio, ... , Xir), ij E {O, ... , n} for j = 0, ... , r. 

Q1 is P-primary if and only if Q1 = (x~~, ... , xt, mo, . .. , ms) where tj > 1 for 

j = 0, ... , r, and ml are monomials in Xia, ... , Xir for f = 0, ... , s. 

Definition 7. Consider a primary decomposition of I= Q1 n ... n Qk where Qi 

is Pi-primary. The arithmetic degree of I, denoted by arith-deg (I), is given by 
k 

arith-deg (I) : = L multr (Pi) degree (Pi) . 
i= l 

Let I = (!1, ... , ft). 

Definition 8. M (I) := max {degree (Ii)}. 
i=l to t 
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Theorem 3 (criterion of multr (P) = 1) (1, p.2]. 

Let R be a Noetherian ring. 

Let A and B be ideals in R such that B ~ A. 

Let P be a prime ideal such that all primes belonging to A and B are contained 

m P. 

Necessary and sufficient conditions, that there exists no ideal, say C, with 

B ~ C ~ A, and all primes that belong to C are also contained in P, are the following: 

(i) there exists an element x in A such that A = B + R · x. 

(ii) PA :B. 

Definition 9 (2, p.3]. Two monomials A and T are said to be relatively prime 

if, when 

Theorem 4 (2, p.3]. Let S = F [xo, ... , xn] be a ring of polynomials in n + l 

indeterminates. Let A, T , mo, ... , mr be monomials in F. If A and Tare relatively prime, 

then: 

( A . T ' mo , ... ' mr ) = (A , mo' ... ' mr) n ( T ' mo' . . . ' mr). 


