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ABSTRACT

Two notable features of previous work on lipid
biosynthesis by isolated chloroplasts have been:- (a) The
inability of chloroplasts to incorporate more than small
amounts of acetate into the main comstituemt fatty acids of
the chloroplast lipids, namely linoleic (18:2) and linolenic
(18:3) acids. (b) The poor incorporation of fatty acids
synthesized into galactolipids, which are the main chloroplast
lipids. Both of these aspects of lipid biosynthesis were
investigated using chloroplasts isolated from spinach, maize
and sweetcorn. Initial attempts to improve the synthesis of
polyunsaturated fatty acids from [1-14C]acetate were not
successful. Consequently the main object of the investigation
was directed towards increasing the incorporation of long chain
fatty acids into galactolipids in the hope that increased
galactolipid synthesis might also lead to increased desaturation
of oleate to linoleate and linolenate,

Factors affectiﬁg the rates of acetate incorporation
into lipids by spinach, maize and sweetcorn chloroplasts were
investigated., Optimum concentrations of acetate, ATP and CoA
were found to be about 0.5mM-acetate (svwinach somewhat higher
at 0.75mM-acetate), 0.5mM-ATP and 0.25mM-CoA under the
incubation conditions used in the present study. Acetate
concentration had a major effect on the rate of incorporation;
optimisation of ATP amd CoA concentrations gave only small
enhancements of acetate incorporation. The effect of divalent
cations was also investigated for spinach chloroplasts.

Optimum Mg++ was 3.0mM; addition of 1mM-Mn*" in the presence

of 1mM-Mg++ gave a comparable stimulation of acetate
incorporation. Acetate incorporation by spinach chloroplasts
was also enhanced by the addition of Triton X-100, sn-glycerol-
3-phosphate and UDP-galactose.

Maximum incorporation rates obtained for maize and
sweetcorn chloroplasts were 20-30nmol of acetate/mg chlorophyll/h
which are up to 10-fold higher than previously reported rates
for maize. Rates of up to 500nmol of acetate/mg chlorOphyll/h’
were obtained for spinach chloroplasts which compare favourably
with the rates obtained by other workers using chloroplasts

isolated from younger leaf tissue.

Oleic and palmitic acids with small amounts of stearic
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acid were the main fatty acids synthesized from acetate by
isolated chloroplasts from all three sources. Little synthesis
of linoleic and linolenic acids was achieved and changes in
acetate, ATP and CoA ccncentrations had no significarit effect
on the synthesis of polyunsaturated fatty acids from acetate,
Triton X-100 and divalent metal ion concentrations also had
little effect on the synthesis of polyunsaturated tfatty acids by
spinach chloroplasts, 4

The synthesis of diglycerides (DG) by isclated
chloroplasts from spinach, maize and sweetcorn was enhanced by
the addition of sn-glycerol-3-phosphate (G-3-P). Synthesis of
monogalactosyldiglyceride (MGDG} was enhanced by the addition
of UDP~galactose particularly if G-3-P was also present.

Triton X-100 greatly enhanced the synthesis of DG and also

(in the presence of UDP-galactose) MGDG by spinach chloroplasts.
Spinach chloroplasts gave higher rates of DG and MGDG synthesis
than either maize or sweetcorn chloroplasts.

The synthesis of MGDG from DG by spinach chloroplasts
was investigated by double-~labelling experiments, using
[1(3~3H]§g-glycerol—}-phosphate and [1~]hC]acetate, fatty
acid analysis and positional distribution of the incorporated
fatty acids. The synthesis of MGDG was shown to occur without
prior modification of the fatty acid composition of the DG.

I't was evident from the incorporation of oleate and
valmitate into DG (and subsequently into MGDG) and from the
pesitional distribution of these two fatﬁy acids that a specific
acylation of G-3-P occurred synthesizing mainly 1-oleoyl, 2-
palmitoyl-sn-glycerol. The effects of altering the proportions
of oleate and palmitate synthesized on the relative amounts of
these fatty acids incorporated into DG (and MGDG) were
investigated. The results suggested that palmitate was
incorporated into position 2 first followed by oleate into
position 1. If there was more palmitate than oleate synthesized
some palmitate could be also incorporated into position 1.

The rates of DG synthesis calculated from [1(3}3H]—
En-glycerol-3-phosphate incorporation were considerably
greater than those calculated from [1-1uc]acetate incorporation
indicating that a considerable dilution of the label from
[1-14C]acetate had occurred and that a major proportion of the

fatty acid carbon had come from an alternative source.
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Bicarbonate, present in the reaction medium, was found to be
utilized by spinach chloroplasts for the synthesis of fatty acids
and lipids. Thus bicarbonate was probably the alternative
source of fatty acid carbon, The fatty acids anc¢ lipids
synthesized by spinach chloroplasts from exogenous acetate and
bicarbonate were very similar.

Although high rates of DG and MGDG synthesis have
been achieved in the course of the present stuay by the additicn
of appropriate metabolites, stimulation of synthesis of these
lipids did not alter the rates of synthesis of linoleic and
linolenic acids from acetate., Other attempts to increase
polyunsaturated fatty acid synthesis from acetate by isolated
chloroplasts were also unsuccessful. The use of chloroplasts
isolated from developing maize leaf sections had little effect
on the rates of linoleic and linolenic acids synthesized from
acetate. The addition of a 100,000 X g particulate preparation
from leaf homogenate to isolated maize and spinach chloroplasts
though stimulating overall incorporation of acetate, gave only
minor increases in the proportion of linoleic and linolernic
aclids synthesized. The stimulation of phosphatidylcholine
synthesis by the particulate fraction, in the presence of
isolated chioroplasts, failed to result in any dramatic
increases in tne proportions of polyunsaturated fatty acids
synthegized.

These findings are discussed in relation to the
current understanding of fatty acid and lipid synthesis and

recent in vivo and in vitro studies of rlant lipid synthesis.
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xxiii
NOMENCLATURE

For the specific structural designation of complex

lipids containing a glycerol moiety, the nomenclature
suggested by the IUPAC-IUB Commission on Biochemical
Nomenclature (Eur. J. Biochem. (1967) 2, 127-131) has been

followed. However, the trivial names of complex lipids are
used when it is more appropriate., ¥Widely used abbreviations,
e.g. MGDG for monogalactosyldiglyceride, have 2also been used
for the sake of brevity. These are defined on pp. xxi-xxii.
Fatty acids are designated by the shorthand notation
of number of carbon atoms:number of double bonds, e.g. 18:3
refers to linolenic acid.
Other abbreviations and the format for the figures
and tables in this thesis followed the guide lines set down
by the Biochemical Journal (Biochem, J, (1975) 145, 1-20).






