Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

LIPID BIOSYNTHESIS IN ISOLATED

CHLOROPLASTS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University

Joseph William Adair McKee

1979

ABSTRACT

Two notable features of previous work on lipid biosynthesis by isolated chloroplasts have been:- (a) The inability of chloroplasts to incorporate more than small amounts of acetate into the main constituent fatty acids of the chloroplast lipids, namely linoleic (18:2) and linolenic (18:3) acids. (b) The poor incorporation of fatty acids synthesized into galactolipids, which are the main chloroplast lipids. Both of these aspects of lipid biosynthesis were investigated using chloroplasts isolated from spinach, maize and sweetcorn. Initial attempts to improve the synthesis of polyunsaturated fatty acids from $\left[1-\frac{14}{C}\right]$ acetate were not successful. Consequently the main object of the investigation was directed towards increasing the incorporation of long chain fatty acids into galactolipids in the hope that increased galactolipid synthesis might also lead to increased desaturation of oleate to linoleate and linolenate.

Factors affecting the rates of acetate incorporation into lipids by spinach, maize and sweetcorn chloroplasts were investigated. Optimum concentrations of acetate, ATP and CoA were found to be about 0.5mM-acetate (spinach somewhat higher at 0.75mM-acetate), 0.5mM-ATP and 0.25mM-CoA under the incubation conditions used in the present study. Acetate concentration had a major effect on the rate of incorporation; optimisation of ATP and CoA concentrations gave only small enhancements of acetate incorporation. The effect of divalent cations was also investigated for spinach chloroplasts. Optimum Mg⁺⁺ was 3.0mM; addition of 1mM-Mn⁺⁺ in the presence of 1mM-Mg⁺⁺ gave a comparable stimulation of acetate incorporation. Acetate incorporation by spinach chloroplasts was also enhanced by the addition of Triton X-100, <u>sn</u>-glycerol-3-phosphate and UDP-galactose.

Maximum incorporation rates obtained for maize and sweetcorn chloroplasts were 20-30nmol of acetate/mg chlorophyll/h which are up to 10-fold higher than previously reported rates for maize. Rates of up to 500nmol of acetate/mg chlorophyll/h were obtained for spinach chloroplasts which compare favourably with the rates obtained by other workers using chloroplasts isolated from younger leaf tissue.

Oleic and palmitic acids with small amounts of stearic

acid were the main fatty acids synthesized from acetate by isolated chloroplasts from all three sources. Little synthesis of linoleic and linolenic acids was achieved and changes in acetate, ATP and CoA concentrations had no significant effect on the synthesis of polyunsaturated fatty acids from acetate. Triton X-100 and divalent metal ion concentrations also had little effect on the synthesis of polyunsaturated fatty acids by spinach chloroplasts.

The synthesis of diglycerides (DG) by isolated chloroplasts from spinach, maize and sweetcorn was enhanced by the addition of <u>sn-glycerol-3-phosphate</u> (G-3-P). Synthesis of monogalactosyldiglyceride (MGDG) was enhanced by the addition of UDP-galactose particularly if G-3-P was also present. Triton X-100 greatly enhanced the synthesis of DG and also (in the presence of UDP-galactose) MGDG by spinach chloroplasts. Spinach chloroplasts gave higher rates of DG and MGDG synthesis than either maize or sweetcorn chloroplasts.

The synthesis of MGDG from DG by spinach chloroplasts was investigated by double-labelling experiments, using $[1(3)-^{3}H]sn$ -glycerol-3-phosphate and $[1-^{14}C]$ acetate, fatty acid analysis and positional distribution of the incorporated fatty acids. The synthesis of MGDG was shown to occur without prior modification of the fatty acid composition of the DG.

It was evident from the incorporation of oleate and palmitate into DG (and subsequently into MGDG) and from the positional distribution of these two fatty acids that a specific acylation of G-3-P occurred synthesizing mainly 1-oleoyl, 2palmitoyl-<u>sn</u>-glycerol. The effects of altering the proportions of oleate and palmitate synthesized on the relative amounts of these fatty acids incorporated into DG (and MGDG) were investigated. The results suggested that palmitate was incorporated into position 2 first followed by oleate into position 1. If there was more palmitate than oleate synthesized some palmitate could be also incorporated into position 1.

The rates of DG synthesis calculated from $[1(3)-{}^{3}H]$ -<u>sn</u>-glycerol-3-phosphate incorporation were considerably greater than those calculated from $[1-{}^{14}C]$ acetate incorporation indicating that a considerable dilution of the label from $[1-{}^{14}C]$ acetate had occurred and that a major proportion of the fatty acid carbon had come from an alternative source. Bicarbonate, present in the reaction medium, was found to be utilized by spinach chloroplasts for the synthesis of fatty acids and lipids. Thus bicarbonate was probably the alternative source of fatty acid carbon. The fatty acids and lipids synthesized by spinach chloroplasts from exogenous acetate and bicarbonate were very similar.

Although high rates of DG and MGDG synthesis have been achieved in the course of the present study by the addition of appropriate metabolites, stimulation of synthesis of these lipids did not alter the rates of synthesis of linoleic and linolenic acids from acetate. Other attempts to increase polyunsaturated fatty acid synthesis from acetate by isolated chloroplasts were also unsuccessful. The use of chloroplasts isolated from developing maize leaf sections had little effect on the rates of linoleic and linolenic acids synthesized from acetate. The addition of a 100,000 X g particulate preparation from leaf homogenate to isolated maize and spinach chloroplasts though stimulating overall incorporation of acetate, gave only minor increases in the proportion of linoleic and linolenic acids synthesized. The stimulation of phosphatidylcholine synthesis by the particulate fraction, in the presence of isolated chloroplasts, failed to result in any dramatic increases in the proportions of polyunsaturated fatty acids synthesized.

These findings are discussed in relation to the current understanding of fatty acid and lipid synthesis and recent in vivo and in vitro studies of plant lipid synthesis. iv

ACKNOWLEDGEMENTS

I wish to express my appreciation to my supervisor, Dr. J. C. Hawke, for his advice and encouragement during this study. I am also indebted to Dr. G. G. Pritchard for his supervision and encouragement during the absence of Dr. Hawke.

I would like to thank Drs. I. Warington and A. Hardacre, of the Plant Physiology Department of the DSIR, for the use of the climate control rooms for the growing of the maize and sweetcorn plants used in this study; Mr. D. Hopcroft, of the DSIR, for the electron microscopy work and Dr. R. L. Prestidge for the help in the preparation of <u>E. coli</u> acyl carrier protein.

In preparation of the thesis, thanks are due to Mrs. J. Trow for the preparation of the figures.

Finally, I am grateful to my parents for their support and encouragement.

V

To my Parents

41

÷

Chapter	c 1.	INTRODUCTION	Page 1
	1.1	General Introduction	1
	1.2	Fatty Acid Biosynthesis	3
	1.2.(a)	De <u>novo</u> Biosynthesis	3
	1.2.(b)	The Source of Acetyl-Coenzyme A in Plant Leaves	5
	1.2.(c)	The Effect of Light on Fatty Acid Biosynthesis	7
	1.2.(d)	Elongation of Palmitate by Chloroplasts	8
	1.3	The Biosynthesis of Unsaturated Fatty Acid	ds 9
	1.3.(a)	Biosynthesis of Oleic Acià	10
	1.3.(b)	The Biosynthesis of Linoleic and Linolenic Acids	11
	1.3.(c)	Substrates for Desaturation of Oleate and Linoleate	14
	1.4	Diglyceride and Monogalactosyldiglyceride Biosynthesis	18
	1.4.1	Diglyceride Biosynthesis	18
	1.4.2	Monogalactosyldiglyceride Biosynthesis	20
	1.4.2.1	Substrate Specificity of the Galactosyl- transferase	22
Chapte	r 2.	AIMS OF THE PRESENT STUDY	24
Chapte	r 3.	MATERIALS AND METHODS	25
	3.1	Materials	25
	3.1.(a)	Reagents	25
	3.1.(b)	Plant Materials	25

3.2	Methods	Page 26
3.2.1.(a)	Preparation of <u>E. coli</u> Acyl Carrier · Protein	26
3.2.1.(b)	Preparation of [1(3)- ³ H] <u>sn</u> -glycerol-3- phosphate	26
3.2.2	Isolation of Chloroplasts	27
3.2.2.(a)	Method 1	27
3.2.2.(b)	Method 2	28
3.2.3	Preparation of the Non-chloroplastic Particulate Fraction from Leaf Homogenate	28
3.2.4	Preparation of Maize Leaf Sections	28
3.2.5	Microscopy of Chloroplasts	29
3.2.5.(a)	Phase-contrast Microscopy	29
3.2.5.(b)	Electron Microscopy	29
3.2.6	Incubation of Chloroplasts with Substrates	5 33
3.2.6.(a)	Incubation Medium A	33
3.2.6.(b)	Incubation Medium B	33
3.2.6.(c)	Incubation Conditions	33
3.3	Analytical Methods	33
3.3.1	Chlorophyll Determination	33
3.3.2	Lipid Extraction and Thin-Layer Chromatography	34
3.3.3	Gas-Liquid Chromatography of Methyl Esters of Fatty Acids	35
3.3.3.(a)	Preparation of Methyl Esters of Fatty Acids	35
3.3.3.(b)	Gas-Liquid Chromatography	37

viii

	3.3.3.(c)	Collection of Radioactive Effluent	ix <u>Page</u> 37
	3.3.4	Measurement of Radioactivity	38
	3.3.5	The Determination of the Positional Distribution of Radioactive Fatty Acids in MGDG and DG Synthesized by Spinach Chloroplasts	38
Chapter	4.	RESULTS	40
	4.1	The Incorporation of [1- ¹⁴ C]acetate into Total Lipid and Constituent Fatty Acids by Isolated Chloroplasts	40
	4.1.1	A Comparison of Chloroplast Isolation Methods and Incubation Conditions on [1- ¹⁴ C]acetate Incorporation into Lipid	40
	4.1.2	The Effect of ATP and CoA Concentration on [1- ¹⁴ C]acetate Incorporation into Lipid and Constituent Fatty Acids by Isolated Chloroplasts	41
	4.1.3	The Effect of Acetate Concentration on the Incorporation of [1- ¹⁴ C]acetate into Lipid and Constituent Fatty Acids by Isolated Chloroplasts	43
	4.1.4	Rates of [1- ¹⁴ C]acetate Incorporation into Lipid and Constituent Fatty Acids by Isolated Chloroplasts	49
2	4.2	Attempts to Improve Polyunsaturated Fatty Acid Biosynthesis by Isolated Chloroplasts	53
	4.2.1	The Influence of Chloroplast Development on [1- ¹⁴ C]acetate Incorporation into Lipid and Constituent Fatty Acids	53
	4.2.2	The Effect of a Non-chloroplastic Particulate Fraction on the Incorporation of [1- ¹⁴ C]acetate into Lipid and	55

Constituent Fatty Acids by Isolated Maize Chloroplasts

- 4.2.3 The Effect of <u>sn-glycerol-3-phosphate</u> 57 and UDP-galactose on the Incorporation of $[1-^{14}C]$ acetate into Lipids and Constituent Fatty Acids by Chloroplasts
- 4.2.3.1 Influence of <u>sn-glycerol-3-phosphate</u> and 57 UDP-galactose Concentrations

4.2.3.2 Incorporation Rates of $[1-^{14}c]$ acetate in 66 the Presence of <u>sn</u>-glycerol-3-phosphate and UDP-galactose

- 4.2.3.2.(a) Rates of Acetate Incorporation into Lipid 66
- 4.2.3.2.(b) Influence of <u>sn-glycerol-3-phosphate</u> and 66 UDP-galactose on the Lipids Synthesized by Chloroplasts
- 4.2.3.2.(c) Influence of <u>sn</u>-glycerol-3-phosphate and 70 UDP-galactose on the Fatty Acids Synthesized by Chloroplasts
- 4.3 Diglyceride and Monogalactosyldiglyceride 74 Biosynthesis by Spinach Chloroplasts
- 4.3.1 The Influence of <u>sn-glycerol-3-phosphate</u> 74 and UDP-galactose on the Incorporation of Fatty Acids into Diglycerides and Monogalactosyldiglycerides
- 4.3.2 The Influence of Triton X-100 76 Concentration on the Incorporation of [1-¹⁴C]acetate into Lipid
- 4.3.3 The Effect of Triton X-100 on the Rates 76 of [1-¹⁴C]acetate Incorporation into Lipids and Constituent Fatty Acids

		ХТ
4.3.3.(a)	The Incorporation of [1- ¹⁴ C]acetate into Lipids	<u>Page</u> 76
4.3.3.(b)	The Incorporation of $\left[1-\frac{14}{4}C\right]$ acetate into Oleic and Palmitic Acids	78
4.3.3.(c)	The Incorporation of Oleate and Palmitate into Lipids	78
4.3.4	The Effect of UDP-galactose on the Rates of [1- ¹⁴ C]acetate Incorporation into Lipids and Constituent Fatty Acids	82
4.3.4.(a)	The Incorporation of [1- ¹⁴ C]acetate into Lipids	82
4.3.4.(b)	The Incorporation of [1- ¹⁴ C]acetate into Oleic and Palmitic Acids	82
4.3.4.(c)	The Incorporation of Oleate and Palmitate into Lipids	82
4.3.5	The Conversion of Diglycerides to Monogalactosyldiglycerides by Spinach Chloroplasts	86
4.3.5.(a)	The Stimulation of Monogalactosyl- diglyceride Biosynthesis by the Addition of UDP-galactose	86
4.3.5.(b)	The Incorporation of [1(3)- ³ H] <u>sn</u> -glycerol- 3-phosphate and [1- ¹⁴ C]acetate into Lipids by Spinach Chloroplasts	86
4.3.5.(c)	Rates of Incorporation of $[1(3)-{}^{3}H]$ <u>sn</u> - glycerol-3-phosphate and $[1-{}^{14}C]$ acetate into Lipids by Spinach Chloroplasts	90
4.3.5.(d)	The Effect of UDP-galactose on the Incorporation of Oleate and Palmitate into Diglycerides and Monogalactosyl- diglycerides by Spinach Chloroplasts	97

xi

	4.3.6	The Positional Distribution of the Constituent Fatty Acids of Diglycerides and Monogalactosyldiglycerides Synthesized by Spinach Chloroplasts	99
	4.3.7	The Incorporation of [¹⁴ C]bicarbonate into Lipids and Constituent Fatty Acids by Spinach Chloroplasts	104
	4.3.8	The Effect of Magnesium and Manganese Ion Concentrations on the Incorporation of [1- ¹⁴ C]acetate into Lipids and Constituent Fatty Acids by Spinach Chloroplasts	108
	l _{+ •} l ₊	A Possible Role for Phospholipids and Non-chloroplastic Fractions in the Biosynthesis of Polyunsaturated Fatty Acids	113
	4.4.1	The Effect of CDP-choline on the Incorporation of [1- ¹⁴ C]acetate into Lipids by Spinach Chloroplasts	113
	<u>4.4.2</u>	The Effect of the Non-chloroplastic Particulate Fraction on the Incorporation of [1- ¹⁴ C]acetate into Lipids and Constituent Fatty Acids by Spinach Chloroplasts	115
Chapter	5.	DISCUSSION	117
	5.1	The Biosynthesis of Diglycerides and Monogalactosyldiglycerides by Isolated Chloroplasts	117
	5.1.1	Rates of Diglyceride and Monogalactosyl- diglyceride Biosynthesis by Isolated Chloroplasts	117
	5.1.1.1	Diglyceride Biosynthesis	117
	5.1.1.1.(a)Effect of <u>sn</u> -glycerol-3-phosphate	117

xii

Page

		xiii
		Page
5.1.1.1.(b)	Effect of Triton X-100	119
5.1.1.1.(c)	Comparison of the Rates of Diglyceride Synthesis Calculated from $[1(3)-{}^{3}H]sn-$ glycerol-3-phosphate and $[1-{}^{14}C]$ acetate Incorporation	121
5.1.1.2	Monogalactosyldiglyceride Biosynthesis	122
5.1.2	The Specific Acylation of <u>sn</u> -glycerol- 3-phosphate by Isolated Spinach Chloroplasts	124
5.1.3	The Utilization of Diglycerides for Monogalactosyldiglyceride Biosynthesis	129
5.1.4	The Incorporation of [14C]bicarbonate into Lipids and Constituent Fatty Acids	131
5.1.5	Model of Lipid Biosynthesis in Isolated Spinach Chloroplasts and Its Relevance to <u>In Vivo</u> Biosynthesis	1.33
5.2	Factors Affecting the Rate of Acetate Incorporation into Lipids by Isolated Chloroplasts	138
5.2.(a)	Structural Integrity of the Chloroplasts	138
5.2.(b)	Composition of the Incubation Medium	139
5.3	The Biosynthesis of Polyunsaturated Fatty Acids by Isolated Chloroplasts	143
5.3.1	Effect of Cofactors	144
5.3.2	Effect of Chloroplast Maturity	144
5.3.3	Effect of Addition of a Non-chloroplastic Particulate Fraction	145
5.3.4	Effect of Stimulating Acyl Lipid Synthesis	146
5.4	Summary and Suggestions for Further Study	147
	BIBLIOGRAPHY	151

LIST OF TABLES

Table		Page
1	A comparison of chloroplast isolation methods and incubation conditions on $\left[1-{}^{14} ext{C} ight]$ acetate incorporation into lipids	42
2	The effect of acetate concentration on the incorporation of $\left[1-\frac{14}{4}C\right]$ acetate into fatty acids by isolated chloroplasts	50
3	The incorporation of $\left[1-^{14}C\right]$ acetate into lipids and fatty acids by isolated chloroplasts from maize leaf sections	54
4	The effect of <u>sn</u> -glycerol-3-phosphate and 6 UDP-galactose on the rates of $[1-^{14}C]$ acetate incorporation into lipids by isolated chloroplasts	769
5	The effect of <u>sn-glycerol-3-phosphate</u> and UDP-galactose on the oleate:palmitate ratio of lipids synthesized by spinach chloroplasts	75
6	The effect of Triton X-100 on the oleate:Palmitate ratio of total lipids, diglycerides and free fatty acids synthesized from $\left[1-^{14}C\right]$ acetate by spinach chloroplasts	81
7	The effect of UDP-galactose on the oleate:palmitat ratio of total lipids, monogalactosyldiglycerides, diglycerides and free fatty acids synthesized from [1- ¹⁴ C]acetate by spinach chloroplasts	e 85
8	The influence of <u>sn-glycerol-3-phosphate</u> concentration on the incorporation of [1- ¹⁴ C]acetate and [1[3- ³ H] <u>sn-glycerol-3-phosphate</u> into lipids by spinach chloroplasts	89
9	Rates of $[1-^{14}C]$ acetate and $[1(3)-^{3}H]$ sn-glycerol- 3-phosphate into lipids by spinach chloroplasts	91
10	The distribution of radioactivity in the constituent fatty acids of diglycerides and in	100

xiv

Table		Page
	the monoglycerides obtained from these	
	diglycerides by hydrolysis with pancreatic lipase	
11	The distribution of radioactivity in the	101
	constituent fatty acids of monogalactosyl-	
	diglycerides and in the monogalactosyl-	
	monoglycerides obtained from monogalactosyl- ,	
	diglycerides by hydrolysis with pancreatic lipase	
12	The incorporation of $\begin{bmatrix} 14\\ C \end{bmatrix}$ bicarbonate into lipids	107
	by spinach chloroplasts	
13	The effect of CDP-choline on the incorporation	114
-	of $\left[1-\frac{14}{C}\right]$ acetate into lipids by spinach	
	chloroplasts	
14	The influence of the particulate fraction on	116
	[1- ¹⁴ C]acetate incorporation into lipids	
	and constituent fatty acids by isolated	
	spinach chloroplasts	

.

.

xv

LIST OF FIGURES

	LISI OF FIGURES	
Figure 1.1	The structures of MGDG and DGDG	Page 2
1.2	The reaction sequence catalyzed by the fatty acid synthetase system of <u>E.</u> coli	4
3.1	The modified two-dimensional thin-layer chromatography of lipids	36
4.1	The effect of ATP concentration on the incorporation of $\left[1-\frac{14}{C}\right]$ acetate into lipid and constituent fatty acids by isolated chloroplasts	44-45
4.2	The effect of Coenzyme A concentration on the incorporation of $\left[1-^{14}C\right]$ acetate into lipid and constituent fatty acids by isolated chloroplasts	46-47
4.3	The effect of acetate concentration on the incorporation of [1- ¹⁴ C]acetate into lipid by isolated chloroplasts	48
l _{4 •} l ₄	Rates of $\left[1-^{14}C\right]$ acetate incorporation into lipid and constituent fatty acids by isolated chloroplasts from spinach, maize and sweetcorn	51-52
4.5	The effect of the particulate fraction: chloroplast ratio on the incorporation of $\left[1-^{14}C\right]$ acetate into total lipid and constituent fatty acids by maize chloroplasts	56
4.6	The effect of the particulate fraction on the rates of $\left[1-^{14}C\right]$ acetate incorporation into total lipid and constituent fatty acids by maize chloroplasts	58-59
4.7	The effect of <u>sn-glycerol-3-phosphate</u> concentration on the incorporation of $[1-^{14}C]$ - acetate into lipids by spinach chloroplasts	60
4.8	The effect of <u>sn-glycerol-3-phosphate</u> concentration on the incorporation of [1- ¹⁴ C]- acetate into lipids by maize chloroplasts	61

xvi

		xvii
Figure 4.9	The effect of <u>sn-glycerol-3-phosphate</u> concentration on the incorporation of $[1-^{14}C]$ - acetate into lipids by sweetcorn chloroplasts	Page 62
4.10	The effect of UDP-galactose concentration on the incorporation of $\left[1-{}^{14}C\right]$ acetate into lipid in the presence of <u>sn-glycerol-3-phosphate</u> by spinach chloroplasts	64
4.11	The effect of UDP-galactose concentration on the incorporation of $\left[1-{}^{14}C\right]$ acetate into lipid in the presence of <u>sn</u> -glycerol-3-phosphate by maize and sweetcorn chloroplasts	65
4.12	The effect of <u>sn-glycerol-3-phosphate</u> and UDP-galactose on the rates of $[1-^{14}C]$ acetate incorporation into lipid and constituent fatty acids by spinach chloroplasts	71
4.13	The effect of <u>sn-glycerol-3-phosphate</u> and UDP-galactose on the rates of [1- ¹⁴ C]acetate incorporation into lipid and constituent fatty acids by maize chloroplasts	72
4.14	The effect of <u>sn</u> -glycerol-3-phosphate and UDP-galactose on the rates of $[1-^{14}C]$ acetate incorporation into lipid and constituent fatty acids by sweetcorn chloroplasts	73
4.15	The influence of Triton X-100 concentration on the incorporation of $\left[1-^{14}C\right]$ acetate into lipids by spinach chloroplasts	77
4.16	The effect of Triton X-100 on the rates of $[1-^{14}C]$ acetate incorporation into lipids and constituent oleic and palmitic acids by spinach chloroplasts	79
4.17	The effect of UDP-galactose on the rates of $[1-^{14}C]$ acetate incorporation into lipids and constituent oleic and palmitic acids by spinach chloroplasts	83

		Y AT
Figure		Page
418	The stimulation of monogalactosyldiglyceride biosynthesis by the addition of UDP-galactose	87
4.19	Rates of $[1-^{14}C]$ acetate and $[1(3-^{3}H]sn-g]ycerol-3-phosphate incorporation into monogalactosyl-$	92
	diglyceride, diglyceride and free fatty acids by spinach chloroplasts	
4.20	The molar ratio of G-3-P:acetate incorporated into monogalactosyldiglyceride and diglyceride by spinach chloroplasts	94
4.21	Stimulation of the rates of $[1-^{14}C]$ acetate and $[1(3)-^{3}H]$ sn-glycerol-3-phosphate incorporation into monogalactosyldiglyceride by UDP-galactose	95
4.22	The molar ratio of G-3-P:acetate incorporated by spinach chloroplasts into monogalactosyl- diglyceride following UDP-galactose addition 30min after commencement of the incubation	96
4.23	The levels of palmitate and oleate in diglycerides and monogalactosyldiglycerides synthesized by spinach chloroplasts in the absence of UDP-galactose and after the addition of UDP-galactose	98
4.24	The major diglyceride and monogalactosyl- diglyceride species synthesized by spinach chloroplasts	103
4.25	Incorporation of [¹⁴ C]bicarbonate into lipid by spinach chloroplasts	105
4.26	The effect of Mg ⁺⁺ concentration on 109 [1- ¹⁴ C]acetate incorporation into lipids and constituent fatty acids by spinach chloroplasts	9-110
4.27	The effect of Mn ⁺⁺ concentration on [11] [1- ¹⁴ C] acetate incorporation into lipids and constituent fatty acids by spinach chloroplasts	-112

xviii

		xix
Figure		Page
5.1	The two pathways for the acylation of	127
	sn-glycerol-3-phosphate	
5.2	Model of lipid biosynthesis in isolated	134-135
	spinach chloroplasts	

.

.

LIST OF PLATES	
Electron micrograph of spinach (Spinacia	
<u>oleracea</u>) chloroplasts	

Plate 1

- 2 Electron micrograph of maize (Zea mays var. 31 Wisconsin 346) chloroplasts
- 3 Electron micrograph of sweetcorn (Zea mays 32 var. Golden Cross Bantam) chloroplasts

Page

30

ABBREVIATIONS

ACP	acyl carrier protein
ATP	adenosine 5'-triphosphate
A645	absorbance at 645nm
BCCP	biotin carboxyl carrier protein
BSA	bovine serum albumin
°C	degrees Celsius
CDP-choline	cytidine 5'-diphosphate choline
Ci	Curie
CM	centimetre
cm ³	cubic centimetre
CoA	coenzyme A
DCCD	N,N'-dicyclohexylcarbodiimide
DCMU	3-(3,4-dichlorophenyl)-1,1-dimethylurea
DEGS	diethylene glycol succinate
DG	diglyceride (or diacylglycerol)
DGDG	digalactosyldiglyceride (or digalactosyl-
	glycerol)
d.p.m.	disintegrations per minute
DTT	dithiothreitol
E. coli	Escherichia coli
FCCP	4-trifluoromethoxyphenylhydrazone
FFA	free fatty acids
ft-candle	foot-candle (1 ft-candle = 10.7639 lx)
g	gram
0	force of gravity
G-3-P	sn-glycerol-3-phosphate
g.l.c.	gas-liquid chromatography
h	hour
i.d.	internal diameter
kv	kilovolt
1	litre
lyso-PA	lyso-phosphatidic acid (or monoacyl- <u>sn</u> -
	glycerol-3-phosphate)
lx	lux
М	molar
mg	milligram
MG	monoglyceride (or monoacylglycerol)
MGDG	monogalactosyldiglyceride (or monogalactosyl-
	diacylglycerol)

MGMG	monogalactosylmonoglyceride (or monogalactosyl-
	monoacylglycerol)
min	minute
mM	millimolar
mmol	millimole
mol	mole
NADH	nicotinamide adenine dinucleotide, reduced
NADPH	nicotinamide adenine dinucleotide phosphate,
	reduced
nm	nanometre
nmol	nanomole
p., pp.	page, pages
PA	phosphatidic acid
PC	phosphatidylcholine
PE	phosphatidylethanolamine
PEP	phosphoenolpyruvate
PG	phosphatidylglycerol
2-PGA	2-phosphoglyceric acid
3-PGA	3-phosphoglyceric acid
POPOP	1,4 bis[2-(5-phenyloxazolyl)]-benzene
PPO	2,5-diphenyloxazole
S	second
sn	stereospecific numbering
SQDG	sulphoquinovosyldiglyceride (or sulphoquinovosyl-
	diacylglycerol)
TG	triglyceride (or triacylglycerol)
t.l.c.	thin-layer chromatography
Tricine	N-Tris(hydroxymethyl) methylglycine
Tris	Tris(hydroxymethyl) aminomethane
UDP-galactose	uridine 5'-diphosphate <u>D</u> -galactose
(UDP-gal)	
UK	unknown compound (see Methods, p. 36)
v	volume
wt	weight
M	micro

xxii

NOMENCLATURE

For the specific structural designation of complex lipids containing a glycerol moiety, the nomenclature suggested by the IUPAC-IUB Commission on Biochemical Nomenclature (<u>Eur. J. Biochem.</u> (1967) <u>2</u>, 127-131) has been followed. However, the trivial names of complex lipids are used when it is more appropriate. Widely used abbreviations, e.g. MGDG for monogalactosyldiglyceride, have also been used for the sake of brevity. These are defined on pp. xxi-xxii.

Fatty acids are designated by the shorthand notation of number of carbon atoms:number of double bonds, e.g. 18:3 refers to linolenic acid.

Other abbreviations and the format for the figures and tables in this thesis followed the guide lines set down by the Biochemical Journal (<u>Biochem. J.</u> (1975) <u>145</u>, 1-20).