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Abstract

Language modeling has been widely used in the application of natural language

processing, and therefore gained a significant amount of following in recent years.

The objective of language modeling is to simulate the probability distribution for

different linguistic units, e.g., characters, words, phrases and sentences etc, using

traditional statistical methods or modern machine learning approach. In this the-

sis, we first systematically studied the language model, including traditional discrete

space based language model and latest continuous space based neural network based

language model. Then, we focus on the modern continuous space based language

model, which embed elements of language into a continuous-space, aim at finding

out a proper word presentation for the given dataset. Mapping the vocabulary space

into a continuous space, the deep learning model can predict the possibility of the

future words based on the historical presence of vocabulary efficiently than tradi-

tional models. However, they still suffer from various drawbacks, so we studied a

series of variants of latest architecture of neural networks and proposed a modified

recurrent neural network for language modeling. Experimental results show that

our modified model can achieve competitive performance in comparison with exist-

ing state-of-the-art models with a significant reduction of the training time.

This thesis is organized as follows:

1) Language model has become one central component for various applications about

artificial intelligence, therefore, we briefly introduced the objective and basic knowl-

edge of language modeling in Chapter 1.

2) Secondly, we reviewed some closely related literature with our work in Chapter 2

and 3, also point out potential problems of existing models. Variants of Deep Neural

Networks (DNNs) models for language modeling are analyzed in Chapter 3, merits

and shortcomings are presented, some potential solutions to the shortcomings are

also analyzed.

3) Latest popular framework for language modeling and our proposed model are

described in Chapter 4. More details about convolutional neural networks and re-

current neural network are showed before we describing our proposed extension
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framework based on Recurrent Neural Networks model.

4) Experiments and results are presented in Chapter 4. Overall, results with higher

performance have been reported by our proposed framework. The experiments also

shed some light for comprehending and interpreting the success of our proposed

model for language modelling. We argue that our proposed model perform better

than traditional models, due to the ensemble architecture that make it possible to

discover the underlying statistical patterns and amplify the performance of RNN’s

model.

5) We conclude this work in Chapter 6, and predicted the future work. It shows

that apart from the high training (computational) complexity, the extension of RNN

models are much better than the standardized n-gram and simple neural network

based language model in terms of perplexity.
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Chapter 1

Introduction

In this Chapter, we first introduce some basic knowledge of language modeling,

including the objectives and two most popular approaches in the past decades.Then,

the metrics for measuring the quality of language model are presented. Lastly, we

described the structure of this research.

1.1 Objective of Language Modeling

Languages can be generally divided into two categories, formal languages and nat-

ural languages. Formal languages mainly refer to machine language and program-

ming languages, which can be well specified. Furthermore, all the usage of these

languages should be predefined, which cannot accept any grammatical errors or

logic mistakes. All the reserved words and phrases or grammars must be followed

when you use their languages, valid ways for usage are limited. Different with the

format languages, natural languages can not be precisely designed, and they keep on

changing. Natural languages involve huge numbers of words or phrases, and some

of them can be used in different ways, introducing different kinds of ambiguities for

each combination of different words. The biggest difference of these two kinds of

languages is that when we make some grammatical mistakes, the sentence still can

be understood by human easily, which is not the case for machine languages. This

difference increased the difficulty significantly for machines to understand or predict

natural languages.

However, there is a high demand for machines to understand the human lan-

guages and generate corresponding text data in different situations. Currently, the

most promising solutions for this demanding task is teach machines to learn from

language example and then mimic humans to generate reasonable responses in dif-
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ferent situations. In above described process, language models play an important

role, which affect the quality of the response from the machines directly, in order

to make a more natural conversation between humans and machines, we need a

sophisticated language model to predict the probability of seeing a specific sentence

in different specific environments.

Language modeling has become a fundamental topic in many research commu-

nities for speech recognition, video caption, machine translation and other robotics

programs. But up to now, there is no an official definition for language model. In

order to explain it clearly, we try to simply define the task of language modeling:

Language modeling is finding out the proper approach to estimate the

probability of a sentence in a specific language. For example, what is the

probability of seeing the sentence ”It is going to rain tomorrow”. In order to esti-

mate the probability of the whole sentence, we usually estimate the probability of

a given word or phrases to follow a series of words. For instance, we broke up the

previous problem into calculating the probability of seeing the word ”tomorrow”

after seeing the word sequence ”It is going to rain”.

As we know, it is impossible to predict the upcoming token given its previous

context exactly, but we want to get some reliable candidates. An ideal language

model should has the ability to provide same or less numbers of candidates for the

next word in a long context sentence in comparison with the expected number of

candidates by humans, which is a sign that the language model possess the human

level intelligence [Goldberg and Hirst, 2017]. The state-of-the art language model

haven’t achieved this goal, it still is a challenging topic. Though it is far away

to get our final target, the language models have been an important component

in a lot of widely used advanced applications, such as speech recognition, machine

translation and video captioning, to select the best candidates from the output

hypotheses of other components of the systems. For these potential applications of

language models, it has been becoming a key role in the machine learning, artificial

intelligence and robotics research community.

If we describe the language modeling problem with mathematics, the process can

be presented as follows: assigning a probability to any sequence of words w1, ..., wn

by using a trained language model (LM). The probability of the sequence w1, ..., wn

can be represented as P (w1, ..., wn), which is usually calculated by the chain rule as

following formula:

P (w1, ..., wn) = P (w1)P (w2|w1)...P (wn|w1, ..., wn−1)



Chapter 1. Introduction 3

This formula convert the original problem to calculating the probability of a word

conditioned on the preceding words. Calculating the probability of a word given

its preceding context seems much more easier than calculate the probability of the

whole sentence. But when n increase to the length of the sentence, the conditional

probability is the same as the the probability of the whole sentence, which is also

hard and usually raise some other problems when we calculate this probability.

In order to simplify this problem, the Markov-assumption helped to alleviate

this difficulty. They proposed that the future word in one sequence only relies on

the previous k words:

P (wn+1|w1:n) ≈ P (wi+1|wn−k:n)

With this assumption, the probability of the whole sentence then can be denoted

as a K-order Markov problem, which can be described as following formula:

P (w1, ..., wn) ≈
n∏

i=1

P (wi|wi−k:i1)

Up to now, the objective of language modeling is very clear: training a model on

large dataset to estimate the probability of P (wi|wi−k:i−1 accurately.

The above described language model is based on the Markov assumption, al-

though it achieved significant success in the past decades, there are some limita-

tions for this assumption. Taking a simple example, this model can not consider

longer dependence that is larger than k. So in this thesis, we study both tradi-

tional language model and the latest developed language modeling techniques, aim

to develop a novel model to improve the performance of the language model. In

addition, most of existing work about language models are based on word level, and

the trend of language modeling research is to consider more grainer details pertain-

ing to a language, e.g. character level or sub-word level, so we will also investigate

the character-level language models in this thesis.

1.2 Foundations of the Language Model

The theoretical foundation of language models are introduced in this section and

the introduction to the modern modeling techniques and corresponding metrics for

measuring quality of language model are also presented.
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1.2.1 Word Vector

As stated in the last section, the final target is to calculate the probability of one

word present in a specified position, P (wi|wi−k:i−1, given a series of historical words.

In order to explain easily, we can treat the estimation of the probability is a param-

eterized function: f(x), which take a series of words x and produce the probability

based on the input x. The function could be a simple linear model or a complex

neural networks, which is usually called a classifier. The problem is how to encode

the input x? One hot encoding and dense encoding are two popular approach to

encode the source data for language modeling.

1) One-hot encoding One-hot encoding is the most instinctive method to

encode a unique feature by assigning a unique dimension to a vector. For example,

when considering a bag-of-words representation over a small vocabulary of 20 items,

the word vector will be a 20-dimensional vector, where the first dimension number

1 corresponds to a word ”it”, and the second dimension number 1 corresponds to

the word ”is”. For a sentence with 6 words will be represented by a sparse 20-

dimensional vector in which only 6 dimensions have non-zero values. If we need

to input a window of context into the model, e.g. 6 words, and two positional

information as the output (one word for left and right side of the context), the

context can be represent as a 120 dimensional vector with only 6 non-zero elements.

This is called as a one-hot encoding, as each non-zero value represent one unique

feature.

2) Dense encoding Dense encoding is one efficient feature embedding method

compared with the one-hot representation method. This method use a much lower

dimensional vector to represent one word. Taking a huge vocabulary with 40,000

items as an example, each item can be represented by a 100 or 200 dimensional vector

instead of a 40,000 dimensional sparse vector. The dense encoding vector usually

produced by a model, such as neural networks. To some extent, the compacted

representation are usually treated as the parameters of the model, which are trained

together with other parameters of the model.

3) Difference between Dense encoding and One-hot encoding

Figure 1.1 showed an example representation for one sentence with the above

two approaches,the one-hot encoding and the dense encoding. The biggest differ-

ence between these two encoding approaches for language model is using different

dimensional feature vector to represent the same information in different models.

The dense encoding method reduced the dimension without losing any information

while improving the performance of the system.
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x = (0,  .... , 0, 1,  0, .... , 0, 1, 0 .... 0, 1, 0, ...., 0, 1, 0, 0, 1, 0, .... , 0, 1, 0, ...., 0)

w=it
w=is

w=going w=to 
w=rain w=tomorrow

it

is

going

to

rain

tomorrow

(0.6340,  0.2293, 0.1822,  0.1664, 0.1496, 0.2027, 0.9550, 0.0159)

(0.9711,  0.2976,  0.5251, 0.8623, 0.8964, 0.1890, 0.6607, 0.9412)

(0.9757,  0.1079,  0.1789, 0.7466, 0.0495, 0.0713, 0.4891, 0.8499)

(0.9970,  0.0044,  0.5426,  0.8613,  0.9091,  0.8454, 0.8789, 0.7462)

(0.1175,  0.5090,  0.1688,  0.8311,  0.9280,  0.1695,  0.8837, 0.3879)

(0.3826,   0.2715,   0.8679,  0.7415, 0.4479, 0.7096, 0.9443, 0.1741)

Figure 1.1: Two example encodings for one sentence ”There is a heavy rain tomor-
row”. (a) sparse feature vector. Each dimension indicates a unique feature, all the
values are binary, each value 1 represent one word. (b) Dense vector. Each item in
the sentence is represented as a small dimensional vector, which is learned from the
model (mapping function)

Some other characteristics of these two encoding methods can be identified as

follows: For one-Hot encoding approach, 1) Each word is represent by a fixed size

of vector with its own feature; 2) The dimensionality of one-hot vector equals to

the number of distinct features, the size of the vocabulary; 3) All the encodings

are totally independent from each other, which is not instinctive for human beings.

While for dense encoding approach, 1) Each feature vector is a d-dimensional vector,

which is much smaller than the size of the vocabulary; 2) the extraction process will

produce similar vectors for similar words, which is one significant advantage of this

method for natural language processing.

Encodings of the text symbols are very important for natural language processing

systems, because the text data serve as the core features. Learning the most proper

or effective word representation for these text data is the key to a successful language

model, which is also one of our targets of this research. Neural networks is powerful

in learning the feature representation, which alleviated the high demand of feature

engineering. However, there is still a need to well define the input features for

training the models. This is especially true for applications of natural language

process, whose data comes in the form of a series of discrete symbols. The word
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vector is a numerical vector, which will be used to represent symbols in the original

text data.

1.2.2 Language Model

Language modeling is the development of a probabilistic model to estimate the next

word in a sequence given the context words that precede it, which has been an

important component in natural language processing. Simpler models, e.g. count-

based models, only exploit a short context information contained in a short sequence

of words, while advanced models, e.g., neural network based models, can work

out the sentence-level or paragraph level information for the probability prediction.

Corresponding to the two different encoding approaches described in the previous

section, language models can also be categorized into two classes: discrete space

language model and continuous space language model.

Discrete space language model: Discrete space language model mainly re-

fer to the non-parametric approaches for language modeling, which is also called

as count-based language model. Before the machine learning method emerging,

the discrete space language models was the dominant solutions for language mod-

eling, which was widely used in large range of applications of natural language

processing. Some variants of this approach have been proposed, and some of them,

e.g., Kneser-Ney smoothed 5-gram models [Ney and Vi, 1995], achieved competitive

performance compared with the parametric approaches, e.g., neural network based

language models [Bengio et al., 2006]. The basic discrete space language model is

the N-gram model, we will detail this approach in Chapter 2.

Continuous space language model: Continuous space language model mainly

refer to the parametric approaches for language modeling, neural network based

model is the dominant of this approach. With the advance of the neural network

based methods, the use of neural networks to build a sophisticated language model

for projects of language understanding has gained increasing amount of attentions

in the last years because the curse of dimensionality of count-based language model.

It has been proved that neural network based approaches can achieve better re-

sults than the discrete space based language models. In addition, the advance of

the artificial intelligence techniques, e.g., speech recognition, machine translation,

have facilitated the progress of language modeling techniques. This approach use

a real-valued vector to indicate each word or phrases in a continuous space, which

can cluster words with similar usage or meanings together to produce similar rep-
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resentation. This kind of distributed representation approach make it possible to

scale better to large size of vocabulary without significant performance decrease.

1.2.3 Assessment of Language Modeling

In the literature, Perplexity (PPL), Cross Entropy (CE) are two widely used met-

rics for the assessment of a trained language models. There are also some other

application-centric metrics can evaluate the quality of the language model. For

example, in automatic speech recognition system, they measure the quality of a

language model by measuring the reduction of word error rate for speech transcrip-

tion when using different language modeling components, for example they report

how much reduced when switch the language model from A to B. In this thesis, we

use the standalone assessment metrics: perplexity.

Perplexity on new sentence is an intrinsic approach for evaluating the language

model, no effects come from other components of advanced applications. Perplexity

plays a key role in the information theoretic measurement, it was used to measure

how well a probability model can predict an example. Lower perplexity means a

better fit to the underlying model.

Given a corpus consists of n words, w1, ..., wn and a language model ”LM”, which

is trained on this database, the perplexity of this language model on this specified

corpus can be obtained by the following formula:

PPL = 2−
1
K

∑K
i=1 log2 LM(wi|w1:i−1) = K

√√√√ K∏
i=1

1

P (wi|w1,...,i−1)

It is evident to see that the perplexity are opposite proportional to the cross

entropy, larger cross entropy means lower perplexity. Because better language mod-

els will predict the probabilities of a word in the corpus more accurately, assigning

higher probability to the word, resulting in lower perplexity in the end. From an-

other perspective, good language models can generalize and gain the internal rules

of the structures or statistics of the natural languages, reflecting the valid usage of

the languages better.

In terms of the metrics selection, we recommend to use perplexity. Perplexity

is highly corresponding to cross entropy between the testing data and the model.

Perplexity is considered as the exponential of the mean per-word entropy of the

testing data. For instance, the perplexity is 64 if the model encodes every word in

6 bits. Some practical reasons can be provided to explain why perplexity is better
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than entropy to measure the quality of language model. Firstly, it is much easier

to remember the values in the perplexity scope from 100 to 200, than the number

scope of cross entropy from 6.64 to 7.64 bits. Secondly, it is much better to report

a reduction of 10% in perplexity, instead of 2% decrease of entropy even though

these two improvements may be equal. Moreover, given close association with the

entropy, the lower the perplexity or entropy a model yields, the closer it is to the

true model which generated the training data. Last but not least, perplexity can be

assessed easily (if we have some held out or test data).

1.3 Scope of this research

As we stated before, the Language Models (LMs) can be generally categorized into

two main categories: discrete space LM and continuous space LM. Discrete space LM

mainly includes traditional statistical language models (count-based models), which

is characterized by the fixed length of contexture words. These statistical language

models are all based on the naive Bayesian assumption or the n-th order Markov

assumption. They predict the probability of the next word by counting the frequency

of the previous n words, if the data is sparse, subsequent smoothing technique will

be utilized. In the literature, there are a wealth of reports about the successful

approaches for discrete space LM, e.g. modified Kneser-Ney smoothing, Jelinek-

Mercer smoothing [Zhai and Lafferty, 2001] etc. For continuous space LM, huge

amount of research reported positive outcomes obtained by Feed-Forward Neural

Probabilistic Language Models (FFNP-LMs), Convolutional Neural Network based

Language Models (CNN-LMs), also the Recurrent Neural Network based Language

Models (RNN-LMs). Mapping the vocabulary space into a continuous space, the

deep learning models can predict the possibility of the future words based on the

learned representation of the historical words. The most advancement of these

continuous space LMs is that they provided an efficient solution for the data sparsity

of the traditional discrete space LMs. The mapping matrix is learned through the

training process, which can map semantically close words into a compacted space, in

which the word is represent by the induced vector. In addition, another advantage

of these continuous space LMs is that they are flexible for modeling contextual

information at different level, such as sentence level, word level, corpus-level and

character-level.

In order to know more insight of the latest language modeling and the mechanism

of RNN-LM, we study the application of RNNs in language modeling extensively in
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this research, aiming to improve the performance of RNNs on language modeling.

1.4 Structure of this thesis

This thesis is divided into six Chapters. This Chapter first introduced the objectives

and application of language modeling technique, then two popular research lines

for language modeling are briefly described and followed by the and scope of this

research. Lastly, the structure of this thesis is introduced.

∗ In Chapter 2, the fundamental theories of the language model are presented

first, and then we reviewed several traditional language models. The disad-

vantages and advantages of these language modeling techniques are analyzed.

∗ The neural networks oriented language models introduced in Chapter 3. The

characteristics of different continuous space LMs summarized.

∗ In Chapter 4, our proposed model is presented.

∗ The results obtained with existing model and our proposed model on the Penn

Treebank Corpus are analyzed in Chapter 5.

∗ We conclude this thesis in Chapter 6. The restrictions of current work and

future work are summarized in this chapter.
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Chapter 2

Traditional Approaches for

Language Modeling

In this Chapter, we first introduce some basic knowledge of language model, and

then we review the literature about the discrete space language modeling techniques,

followed by summarizing their advantages and drawbacks.

2.1 The basic language model: N-gram model

As stated in Chapter 1, the basic N-gram language model assumes a k-order Markov

chain property, which simplified the probability of the whole sentence, P (wn+1|w1:n),

into a simple conditional probability as follows P (wn+1|wn−k:n).

The popular statistical approach for calculating this conditional probability is

based on corpus counts. For example, the number of occurrence of sequence of words

(wi, ..., wj) in the corpus can be represented as #(wi:j). Therefore, the maximum

likelihood of P (wn+1|wn−k:n) can be estimated as follows:

P (wn+1 = m|wn−k:n) ≈ #(wn−k:n+1)

#(wn−k:n)

The simplest n-gram model is the bigram model, in which we can estimate the

probability of wn with its preceding context by dividing the number of occurrences

of the combination [wn−1, wn] by the number of occurrences of word wn−1. Another

popular N-gram model is the trigram model, which estimate the trigram word pre-

diction probability by considering the previous two words. The probability of w3

given the previous two words w1andw2 can be calculated as following formula:
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p(w3|w1, w2) =
count(w1, w2, w3)∑
w count(w1, w2, w)

The most popular N-gram language models are bigram and trigram models,

which have achieved great success in the previous applications. Normally, the tri-

gram models is enough for large natural language processing applications, but in

order to improve the performance further there are various modification have been

conducted on this basic model.

2.2 Modified N-gram Language Models

Though this basic language model can works well on most real applications, they

are not powerful enough to fully express the natural language. There are some out-

standing drawbacks of this model, e.g., data sparsity, which makes it very hard to

improve its performance further. For example, the sequence of words wn−k, ..., wn+1

never appeared in the training dataset, which means (#(wn−k:n+1) = 0), leading to

the probability of this sequence of words to be zero, raising serious problems for

calculating the probability of sentences on the corpus. This kind of phenomena is

common even in a very big dataset. For example, we are going to train a bigram

language model, which is only depend on one previous word, on a very small vocab-

ulary of 1000 words. On this dataset, there are 10002 = 106 possible combinations,

it is evident to see that a large amount of them won’t be observed in a big training

dataset, e.g. 1010 words.

One of the most popular methods for eliminate zero probability phenomenon is

using some smoothing techniques, which ensure a very small probability assignment

to every possible sequences of words that may not observed in the dataset. The

simplest smoothing technique is called ”additive smoothing”, also named as add-α

smoothing [Chen and Goodman, 1998, Goodman, 2001]. This smoothing technique

assume that the sequence of words as least occurred α times apart from the obser-

vations in the corpus, then it can be estimated as follows:

P (wn+1 = m|wn−k:n) ≈ #(wn−k:n+1)

#(wn−k:n) + α|V |

Another approach for avoiding zero probability is ”back-off”: use the probability

of lower order N-gram model to replace the probability of higher order N-gram

model. For example, if k-gram was not observed, we use the k-1 gram model to

estimate the probability of k-gram. One of the famous work of this approach is
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”Jelinek Mercer” interpolated smoothing method [Jelinek, F. & Mercer, 1980]:

P (wn+1 = m|wn−k:n) ≈ λwn−k:n

#(wn−k:n+1)

#(wn−k:n)
+ (1− λwn−k:n

)P (wn+1 = m|wn−k+1:n)

This limitation of this approach is that it is hard to find the optimal parame-

ter, λwn−k:n
, whose value should be selected depend on the content of the sequence

of words wn−k, ..., wn. There are some other advanced traditional language mod-

els based on the basic N-gram language model, such as modified ”Kneser-Ney”

smoothing technique [Chen and Goodman, 1998], which can achieve competitive

performance with the feed-forward neural network based language models.

2.3 Summary

Despite the aforementioned various smoothing techniques and modification for N-

gram model, there are some problems hindered the usability of N-gram language

model in real application.

1) Firstly, the sparsity of the data and the high dimensionality of the word vector

is the standing problems that need to be handled.

2) Secondly, the combinations method of different words in real world is huge, the

N-gram model has difficulty to discriminate all of them. For example, a sentence

with 10 words selected from a vocabulary of 100,000, there are 1050 candidates com-

binations. The N-gram model is hard to consider all the possible combinations.

3) Thirdly, the N-gram models rely on the exact pattern, you cannot train a robust

model which can embed rich linguistic information. For instance, the N-gram model

cannot learn the syntactical and semantical similarity of the following two sentences:

a) The cat is sleeping on the bed.

b) A dog was barking on the bed.

4) Lastly, the last problem of the discrete space language models is that the Markov

assumption for N-gram language model limited the learning of dependency between

words in a fixed window. When we estimate the probability of a word, we only

consider the contexture information in one window. This means that we cannot
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model the real conditional probability with this model, cannot reflect the human’s

linguistic habit accurately.
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Chapter 3

Neural Network based Language

Model

Neural network based language model, known as continuous space based language

model, has gained significant interests in the machine learning research community.

With the advance of the deep learning techniques, the neural network based language

model has been widely used in various applications. The most three popular types

of neural network based language models are feed-forward neural networks based

language models (FFNN-LMs), convolutional neural networks based language mod-

els (CNN-LMs) and recurrent neural networks based language models (RNN-LMs).

In this Chapter, we introduce the basics of these typical continuous space language

models and summarize their merits and shortcomings respectively, and point out

our future direction for language modeling.

3.1 Neural Networks based Language Model

Neural networks, as a general machine learning technique, are good at feature ex-

traction from the raw data acquired with different approaches. Neural networks

based techniques are introduced into language modeling to deal with the afore-

mentioned problems of N-gram language models, e.g. data sparsity and contexture

information learning problem. Neural networks based language model facilitated

the progress of the language modeling research, which make it possible to extract

character-level, word-level and sentence-level syntactic meanings of document. The

recent proposed convolutional and recurrent neural network based language model

and their variants enhance the learning ability of the neural network based language

model, and achieved significant improvement in the probability prediction from the
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word-level. With these advance, some of these models have demonstrated superior

performance in comparison with classical methods both standalone and in the down-

stream advanced natural language processing applications [Bengio et al., 2006]. For

example, the machine translation can take advantage of these models to gain the

internal rules of the structures or statistics of one language and translate it to a

more proper version of the target language.

In order to train a basic neural network based language model, it is essential

to prepare the training data, including the input and output labels, also select the

fast training strategy. For word level neural network based language models, the

training examples are simply a sequence of words, N-gram, from the corpus, in

which the first N-1 words can be used as features, and the last word is used as the

target label for the prediction. Cross-entropy is one widely used loss function for

training a neural network.

In the next three sections, we will introduce the latest developed neural net-

work based language models, e.g., feed-forward neural network based language

model, convolutional neural network based language model and recurrent neural

network based language model. The first neural network based language model,

feed-forward neural network based language model, was popularized by Bengio et

al. [Bengio et al., 2006]. And the later two language models are much more popular

in recent years.

Generally, the neural network approach for language modeling are characterized

by the following properties [Bengio et al., 2003]: 1) Represent all the entries in the

vocabulary as a compacted feature vector, embedding rich linguistic information.

2) Estimate the joint probability of a sequence of words using the learned feature

vectors of the words that occurred in the sequence. 3) Train the model to learning

the feature representation and all the parameters of the probability function simul-

taneously. This means the neural network based framework make it easy to learn

the representation and probabilistic model from the raw text data directly.

3.2 Feed Forward Neural Networks based Lan-

guage Models (FFNN-LMs)

3.2.1 FFNN-LM

Feed-forward neural networks were initially introduced to the language modeling

area by [Bengio et al., 2006, Bengio et al., 2003] for tackling the data sparsity prob-
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lem of N-gram language model. The first continuous space language model was used

to estimate the conditional probability distribution of a simple N-gram language

model [Bengio et al., 2003]. The parameters of a three layers of feed-forward neural

network are learned by given previous n− 1 words and the target n− th word. The

architecture of the feed-forward neural network is shown in Figure 3.1.

Figure 3.1: The framework for first neural network based probabilistic language
model, Figure is referenced from [Bengio et al., 2006]

Below is a brief description of the work-flow for the above language model suggested

by [Bengio et al., 2006]:

Extract core linguistic features:

1) Using the previous mentioned one-hot-encoding technique, we can get the

word vector for all the word in the vocabulary, denoted as w1, ..., wn. The size of all

these word representation vector should equal to the size of the vocabulary.

2) Building a mapping matrix C, according to the framework, map all the words

wi of the vocabulary V into a compacted space, representing each word with a real-

valued feature vector C(i) ∈ Rm, m is the dimensionality of the converted vector.

The size of the mapping matrix C should be |V |×m, the i− th row of C is the eigen

value for word wi. The function of matrix C can also be a trained neural network

model. After the training process is finished, all the parameter of the neural network

model is fixed, which means all the input vectors should share this matrix to get
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the lower-dimension representation of the input vector.

Training the language model

1) Finding a function g over words, mapping a sequence of words (C(wt−n+1), ..., C(wt−1))

to a conditional probability distribution of words in the vocabulary for the next word

wt. The input sequence is the contexture information that can be treated as some

reference for the upcoming word.

2) Lastly, training the model to learn the mapping matrix C or the parameters

of neural network to form a composite function f . The last model can be denoted

as following formula:

f(i, wt−1, ..., wt−n+1) = g(i, C(wt−1), ..., C(wt−n+1))

For this simple neural network model, two significant advantages can be identi-

fied. Firstly, in this neural network language model, the final joint probability func-

tion of a sequence of words is denoted as a function of the raw one-hot-embedding

of these words in the sequence. The training process of this model can learn the

mapping matrix for word feature vector conversion and the parameters of the final

probability function at the same time. Secondly, this model can efficiently solve the

sparsity problem of the N-gram language model, and have proved to be more robust

than the traditional N-gram models in terms of perplexity. However, the above de-

scribed model also suffer from some serious drawbacks, e.g., training is slow. It need

large amount of training data and the training process is time consuming, which still

is an open questions for researchers to address in our opinion. Find out strategies to

speed up training, extract discriminative and compact feature representations, and

incorporate some priori knowledge into the model model to reduce the difficulty of

the training process are promising solutions.

3.2.2 Modified FFNN-LMs

In order to improve the performance of feed-forward neural network based language

models, some tricks are introduced for this baseline models in [Pham et al., 2016].

The architecture of their model is shown in Figure 3.2, in which they used dropout

as an extra regularization and added a highway layer [Srivastava et al., 2015].

Shown as Figure 3.2, they first convert the ”N-gram” into a low-dimensional

vector by looking up the shared lookup table. Then, feed the converted vector

into the highway layer [Srivastava et al., 2015], which can increase the gradient of

the network by combining the input (they called it as ”carry”), and the non-linear
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Figure 3.2: Overview of the enhanced FFNNLM model, referenced from [100]

transformation of the input. This modification ensured that the gradient cannot be

zero, so that it will always receive the back-propagation update signal through the

carry stream. Lastly, the final softmax layer output the prediction for the upcoming

word.

There are some other literatures reported similar modification to the basic feed

forward neural network. [Morin and Bengio, 2005, Mnih and Hinton, 2008] are two

typical work for speeding up the training and testing of the feed forward neural net-

work based language models, they introduced a topic concept into language model,

clustering similar words before calculate the final conditional probability. This idea

is trying to input more prior knowledge into the language model, which was ignored

by the previous work. [Morin and Bengio, 2005] proposed a hierarchical probabilis-

tic neural network based language model, which utilized a binary hierarchical tree for

the words in the vocabulary based on the expert knowledge. The binary tree predict

a future word by considering a hierarchical description of the word and answering a

series of questions. This model is faster, but perform not as good as non-hierarchical

models. While, [Mnih and Hinton, 2008] presented another hierarchical log-bilinear

(HLBL) model, the binary tree in this model is built by a data-driven approach.

They first trained a model to extract the word representations and then perform

clustering based on the extracted word representation. In this approach, predicting
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the probability of the next word wn is the probability of evaluating a series of bi-

nary decisions given the specific word representation and its context encoding. The

computing process can be described as the following formula:

P (wn = w|w1:n−1) =
∏
i

P (di|qi, w1:n−1)

where di is the extracted representation for word wi, and qi is the feature vector for

the i− th node in the path to the corresponding word encoding. This formula can

be extended into multiple senses for better modeling the semantic meanings of one

word in a context.

A well trained feed-forward neural network can well represent the distribution of

the word in the full vocabulary by the output of the output layer. For example, the

output layer of 5-gram feed forward neural networks stand for the distribution of

probability P (wt|wt−4, wt−3, wt−2, wt−1) of all the word in the vocabulary. However,

in this ”N-gram” feed forward neural network approach, only a limited number of

historical words can be considered, though it can automatically learn the distribu-

tion of the word in the vocabulary given the training dataset in a continuous space,

setting the lexical and semantically similar words together in the continuous space.

The target words are still constrained by the limited information by the fixed length

of words presented in the history, as the target words may be highly related to some

prior words other than the only input 4 words. In order to deal with this issue,

more powerful convolutional neural network and recurrent neural networks are used

to extract more rich information from the input text data.

3.3 Convolutional Neural Networks based Lan-

guage Models (CNN-LMs)

In the last decades, the convolutional neural networks have demonstrated powerful

feature extraction ability from the static image, and achieved significant success

in the computer vision tasks. The application of convolutional neural networks in

the natural language processing received less interests compared with the vision sur-

rounded problems, and it has mainly been used in some static classification problem,

e.g., sentence classification and relationship analysis of text data [Kim, 2014b]. Con-

volutional neural networks for language modeling can be constructed by extending

the aforementioned feed-forward neural network based language models (FFNN-
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LMs).

Figure 3.3: The framework for first neural network based probabilistic language
model, figure is referenced from [4]

In 2014, Kim [Kim, 2014a] used a convolutional neural network model to deal

with the sentence classification problem, which produced a competitive results. The

structure of the proposed convolutional neural network model is shown in Figure

3.3. They introduced multiple sizes of kernels to learn complementary features

with a hierarchical way. A novel convolutional architecture for sentence classifica-

tion were proposed by Kalchbrenner [Kalchbrenner et al., 2014a] in the same year,

which stacked several convolution layers vertically with independent kernels. The

architecture of the CNN models used in this paper is demonstrated in Figure 3.4.

These two typical convolutional neural networks based language models adopt to

add one convolutional layer followed the input layer to project the input vector into

a series of word embeddings. And the produced word embeddings xi ∈ Rk are

concatenated transversely to form a matrix xi:n ∈ Rn×k, where n is the length of

the input vector and k is the number of kernels. Then this matrix is fed into the

subsequent time-delayed layer, which convolves a sliding window of w input vectors

centered on each word vector using the a weight matrix W ∈ Rw×k to produce a

scalar recursively. The scalar indicates how much information represented by the

kernel W . They also used batch normalization [Sergey Ioffe, 2014] and dropout

tricks to facilitate the learning and avoid the covariate shift problem during the
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training process. The left part is almost same as the feed-forward neural networks

to convert the extract features to the last probability that we expected. The latter

framework is much more complex than the previous one by using multiple kernels

with different sizes, because they want to extract more patterns that exist in the raw

text data, but they demonstrate that the performance of this model is not better

than the first one.

Figure 3.4: Enhanced framework for convolutional neural network based probabilis-
tic language model, figure is referenced from [4]

Similar architectures of convolutional neural networks are used for other docu-

ment categorization problems, such as semantic matching [Hu et al., 2014], relation

extraction, and search engine optimization [Nguyen and Grishman, 2015]. In 2011,

Collobert et al. [Collobert et al., 2011] expanded the application of CNN mod-

els to deal with more challenging sequential NLP problems, such as part-of-speech

tagging, named entity recognition and language modeling. Inspired by this work,

Ngoc-Quan et al. [Pham et al., 2016], exploited the potential of CNN models in

language modeling systematically.

Generally speaking, the convolutional neural networks cam gain some under-

standing of languages in a high level, and the model can exploit longer historical

information than feed-forward neural networks, but are not flexible enough com-
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pared with the recurrent neural networks. The performance of CNN models on the

language modeling task are better than the feed-forward language model, and com-

parable or higher performance in comparison with similarly-sized recurrent neural

networks, and lower performance regard to the larger recurrent language models

[Zaremba et al., 2014]. Though previous research of CNN models related with lan-

guage modeling has achieved outstanding success, they consider words as the small-

est linguistic unit, and thus analysis the document at the word level with convolu-

tional neural network. In summary, convolutional neural network based language

models are usually characterized as following properties:

1) The input for the convolutional neural network are a sequence of words with

a fixed length, but they are usually can be an imcomplete sentence.

2) For the prediction of next word given preceding words, there are huge amount

of classes to predict. The size of the prediction result is same as the size of the

vocabulary.

3) Convolutional neural network can better modeling the temporal information

that exist in the sentence compared with the feed-forward neural network based

language model and the traditional count-based language models. The reported

advantage of CNN models in language modeling is that it can learn to extract rich

grammatical, semantic, and topical information from words of all across the input

window.

3.4 Recurrent Neural Networks based Language

Models

Recurrent neural network is one very popular neural network architecture that are

especially designed for modeling time series problems, or those questions that have

some sequential phenomena and can be treated as sequential problems. As shown

in Figure 3.5, the output of the hidden layer of last timestep is used as part of the

input for current input, the historical information are transmitted in this way. An

unfolded graph of the recurrent neural network is shown in Figure 3.6. As you can

see, the recurrent neural network receive both the input vector xt ∈ Rn and the

state information, ht−1 ∈ Rm, of the last time step at all the steps along the time

axis. With these input feature vectors, the recurrent neural network produce the

state information of the next time step by the following formula recursively:
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Figure 3.5: Recurrent neutral network’s architecture
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Figure 3.6: The unfolded graph of recurrent neutral network

ht = f(Wxt) + Uht−1 + b)

where W ∈ Rm×n, U ∈ Rm×m, b ∈ Rm are the weight parameters and bias vector,

f is an activation function, usually being the sigmoid function or ReLU function.

3.5 Training of Recurrent Neural Networks

In order to make this section self-contained, we here briefly introduce the training

process of the recurrent neural network. The training process can be divided into

to phases: forward propagation and backward propagation.

Forward Propagation:
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Hidden state:

sj(t) = f(
∑
i

wi(t)uji +
∑
l

sl(t− 1)wjl)

Output:

yk(t) = g(
∑
j

sj(t)vkj)

in which f(z) = 1
1+exp−z , g(zm) = expzm∑

k expzk
. All the above formula can be denoted

with matrix as follows:

s(t) = f(Uw(t) +Ws(t− 1))

y(t) = g(V s(t))

where U is the weight matrix between input layer and hidden layer, V is the weight

matrix between hidden layer and output layer, W is the weight between hidden

layers.

Back Propagation:

As we stated in Chapter 1, the target is to maximize the conditional maximum

likelihood, so the loss function can be defined as follows:

f(λ) =
T∑
t=1

logylt(t)

where t is the number of samples, T is the number of word in the training dataset.

lt is the label of the t− th sample.

Next we need to calculate the errors for every iteration. The error is the difference

between the prediction and the ground truth label, which can be calculated as

following formula:

eo = d(t)− y(t)

in which, we use ok(t) =
∑

j sj(t)vkj to denote the k-th output of the output layer.

L = logeyl(t) = logeg(ol(t)) = loge
eol(t)∑
k e

ok(t)
= ol(t)− loge

∑
k

eok(t)

and then the partial derivative of L respect to the output is:
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σL

σok(t)
= 1k==l − yk(t) = dk(t)− yk(t) = eok(t)

The partial derivative of L respect to all the outputs will be:

σL

σo(t)
= eo(t) = d(t)− y(t)

We need to maximize the L, so we use the gradient increase algorithm to update

the parameters of the model as following formula:

w(t+ 1)← w(t) + α
σL

σw(t)

where w is the parameter of the networks. The back propagation process can be

automatically done by modern deep learning toolkits, for more details, readers are

suggested to refer to [Republic and Mikolov, 2012]. When we train the recurrent

neural networks, the Backpropagation through time (BPTT) is used to update the

parameters.

Theoretically, all the units in the recurrent neural network can remember or

summarize all the historical information stored in the previous hidden states ht.

However, opposite to our expectation when we design the recurrent neural networks,

training a vanilla recurrent neural network to encode long-range dependencies is a

difficult job due to the gradient explosion and vanishing problem [Bengio et al., 1994].

In order to address this learning problem, some variants of recurrent neural network

are proposed to address existing problems. In next section, we only detail the most

popular and effective recurrent neural network – Long Short Term Memory (LSTM)

networks.

ct

Figure 3.7: Architecture of a LSTM cell
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Chapter 4

Our Approach

As discussed in the previous Chapters, both the feed-forward neural network based

language models and convolutional neural network based language models are using

fixed length of contexture information. This is sometimes conflict with the fact

that our humans’ communication or writing habits, we usually opt to exploit very

long context information. In addition, most of existing work build the language

models based on the ”word” units, they ignored the subword information, such as

morphemes and other character-level or sub-word level information. In order to deal

with this problem, more advanced models are introduced into the language modeling

technique, which made it possible to transmit information inside the models for

arbitrary length of steps and provide further generalization on the multiple level for

language modeling. Our model will be built upon these advanced techniques.

Our proposed framework can be viewed as a synthesis of word-level model and

character-level model as well as RNN model and CNN model. It mainly consists of

a word embedding network, a character-level CNN network, a Highway network and

a LSTM network. As illustrated in figure 4.1, our model is quite straightforward.

The model takes a word of a word sequence as input. On one hand, the word goes to

the embedding layer of our network to output its word vector. On the other hand,

this word is decomposed to characters which are taken by character embedding

layer as its input. The output character vectors are then concatenated to form a

character vector matrix. We then use a CNN network with different size of filters

to extract various character-level features from the input word. A concatenation

of aforementioned word-level vector and character level vector is followed. This

concatenation vector is taken by a Highway network as its input. Then the vector

flows to a LSTM network. We then apply a full connected network to every output

of the LSTM in a word sequence. The target vector of next word can be obtained.



Chapter 4. Our Approach 27

Figure 4.1: Architecture of Character level recurrent neural network based language
model(with a convolutional layer)

We will illustrated all the parts in detail in the following sections.

4.1 Long short term memory (LSTM)

In 1997, Hochreiter et al. first proposed the Long short term memory (LSTM)

[Hochreiter and Urgen Schmidhuber, 1997] to alleviate the training problem of vanilla

recurrent neural networks by introducing an extra memory cell and three gates for

each unit. With this modification to the recurrent neural networks, the model be-

come much more flexible to process the historical information. The architecture of

one LSTM unit is shown in Figure 3.7, the information are processed as following

formulas:

it = sigm(Wixt + Uiht−1 + bi)

ft = sigm(Wfxt + Ufht−1 + bf )

ot = sigm(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg)

ct = ct−1 � ft + it � gt
ht = tanh(ct)� ot



Chapter 4. Our Approach 28

in which ht−1 is the LSTM hidden status at the prior time step, xt is the input vector

at time step t, bandW are biases and weights. The element wise multiplication is

denoted by the symbol �. The it, ft, ot are referred as input gate, forget get and

output gate respectively. In the first timestep, when t = 1, h0 and c0 are initialized as

zero vectors. The W j, U j, bj are the weight matrix for the LSTM model. This model

can efficiently alleviating the gradient vanishing problems, because the memory cells

c in the LSTM unit are additive along the time axis. In order to prevent the gradient

exploding problem, gradient clipping are proposed in [Pascanu et al., 2012], which

is one popular approach to mitigate this problem. LSTMs have been widely used in

language modeling, and it demonstrate superior performance than the vanilla RNNs

[Sundermeyer et al., 2012].

4.2 Character-level Convolutional Neural Network

The recurrent neural networks are good at modeling the temporal information,

but are limited at learning ability of the word representation, moreover, the RNN

networks are far more computationally expensive than CNN network. So in this

research we introduce the convolutional neural network into the language modeling

technique. The convolutional neural network can help extract sub-word level infor-

mation from the context for language modeling. The sub-word level information is

important in understanding the language, because the word-level language model

can not get the difference between ”careless”, ”careful” and ”carefully”, but they

should have structurally related representation in the continuous space.

Convolutional neural network is one of the famous neural network models that

mimic animal’s visual cortex function by embedding a convolutional layer to extract

field information from the environment. There are a huge amount of successful

attempts that applied the convolutional neural networks into computer vision for

many different problems, such as objection recognition, video captioning and scene

parsing [Girshick, 2015]. It has been proved that the convolution layer can learn

to extract representation from different positions of a input matrix or vector by

scanning the learnable filters over the input matrix. Recent researches have also

applied the convolutional neural networks into various natural language processing

problems and promising results have been reported.

Convolutional neural networks were initially proposed to process hierarchical

representation learning in computer vision [LeCun and Bengio, 1995], but it can be

tailed to language modeling problem, as shown in Figure 4.2. Convolutional neural
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networks were introduced to natural language processing community by Collobert et

al. [Collobert et al., 2011] in 2011, who employed them to do semantic recognition.

The target of convolution neural network is to identify local patterns in a large

structure, and concatenate all the detected patterns to get he final representation

of the structure. For language processing, the core idea behind the convolutional

neural network is to apply the designed learnable kernel to each instantiation of

the context window over the input sequence. Convolutional neural network have

two important operations: convolution and pooling, shown as Figure 4.2. In this

section, we briefly introduce these basic operations.

it

is

going

to

rain

tomorrow

d
emd

=5

Max Pooling

Convolution

Figure 4.2: Image Reference : http://www.wildml.com/2015/11/understanding-
convolutional-neural-networks-for-nlp/

4.2.1 1D Convolution

Convolution is one signal process method, the results will be activated if the special

pattern is detected by the filter. For example, in Figure 4.2, there are 6 filters, each

filter is designed to detect special pattern existed in the input matrix. In order to

discover multiple sizes of patterns, there are three different size of filters are utilized

in this example. Specifically, may be the top filter is sensitive to the characters and

the property of this sequence will be reflected in the activation results.
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The 1D convolution process is shown in Figure X. With the help of GloVe pack-

age, we can get the word embeddings for a sequence of words c1, ..., cn, we represent

the embedding of character ci as E[ci], the dimensionality is demb. In order to ex-

tract features from this sequence, we use a 1D convolution of width of k to scan the

sequence along the time axis.

The input vector can be formed as xi, which includes a window of words that

came from the sequence, the dimensionality is k · demb, so xi ∈ Rk·demb . We use the

symbol ⊕(wi:i+k−1) to represent the concatenation operation of word embeddings

for w1, ..., wk, represented as following formula:

xi = ⊕(wi:i+k−1), xi ∈ Rk·demb

Then, we apply a dot-product on the input vector xi and the filter u. This

process is represented as following formula:

pi = g(xi · u), pi ∈ R, u ∈ Rk·demb

where g is the nonlinear activation function.

In order to extract more rich features, multiple filters can be used to do this.

For example, we use ` filters, u1, ..., u`, which can be stacked into a big matrix U ,

and a bias vector b is often added:

pi = g(xi · U + b), pi ∈ R, b ∈ R`xi ∈ Rk·dembU ∈ Rk·demb

Here, each pi denotes a collection of vectors that is the result of different filters

over the whole sequence. With more filters, it is expected to capture more different

linguistic features, making the result vector can encode more meanings and the

complexity of the sentence. In the real practice, we usually have to method to

decide the size of resulting vector pi we can get from this convolution, padding or

without padding, but this normally make no big different to the performance in our

experiment. In summary, the convolution layer in the text processing it to apply

the learnable filter to a window of text data, creating several vectors to represent

the whole sequence, with different linguistic features encoded in the vectors.

4.2.2 Pooling

In the last section, we got m vectors from the convolution operation, p1:m, each

pi ∈ R`. In order to refine the extracted features and reduce the parameters in
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the subsequent calculation, a pooling layer is usually followed by the convolutional

layer, which pool the extract vectors into one vector c ∈ R`. So now, we use the

pooled vector to represent the entire sentence. There are several types of pooling

functions, in this section we only introduce two most popular functions: max pooling

and average pooling.

Max-Pooling Max pooling function is the most popular pooling function in the

deep learning area, which keep the maximum value of the resulting vector. This

pooling function is effective because it keeps the discriminative information, and

discard unrelated information. One example max pooling operation is shown in

Figure 4.2. The max-pooling can be denotes as follow formula:

c[j] = max pi[j] , ∀j ∈ [1, `]

in which, pi[j] is the j-th component of pi. As you can see, the max pooling function

is trying to keep the most informative signals to represent the whole sentence.

Average-Pooling Average pooling is another popular pooling function, which

average all the value of each index for the extracted vector as follows:

c =
1

m

m∑
i=1

pi

Pooling operation is used to reduce the parameters and refine the extracted

features hierarchically. As shown in the Figure, the max pooling layer reduced the

size of the extracted features from 5 to 1, 4 to 1 and 5 to 1 respectively for three

different size of filters.

With these two operations, the convolutional architecture can be expanded to

a hierarchical structure by stacking these two operation iteratively to form a multi

layer convolutional neural network. This kind of architecture are widely used as a

feature-extracting architecture, because this network can be used as a basic compo-

nent in other larger networks. There are also some successful attempts for employing

the CNNs to do linguistic analysis, where they are fed with a representation of a

sequence of linguistic units. For example, document classification for sentiment

analysis or topic categorization [Kalchbrenner et al., 2014b, Kim, 2014b] is one typ-

ical application of CNNs model in the natural language processing area. In most

of these researches, the CNNs are used as a ”N-gram” detector, using the CNN

models’ learnable property to help figure out the important information from the

input sequences. Inspired by this, we incorporate convolutional neural network into
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our framework to extract more informative information from the input sequence.

4.3 Highway network

Highway network is a learnable threshold mechanism under which some information

flows through directly (just like driving on the highway) and others are forced to

be transformed by non-linear transformation. Which part of the data are needed

to be transformed and which part of the data are needed to remain the same are

mutually decided by the input data and weight matrix mutually.

This concept was proposed by Srivastava et al(2015), and modified by Yoon Kim

et al(2016). It is an advanced technique which help us to train a deep network with

a simple SGD. Moreover, it simplifies the optimization and converges faster when

we train our deep network. In this paper we adopt the method of Yoon Kim et

al(2016). The formulas are as follows. We first extract features via an MLP layer

and a non-linear transformation:

z = g(Wy + b)

then followed by the highway layer:

z = t� g(WHy + bH) + (1− t)� y

Where t = σ(WTy + bT )both g and σ are non-linearity t is called the transform

gate and (1− t)is called the carrying gate.

4.4 GloVe.6B pre-trained word vector

As mentioned in the first chapter, applying word embedding layers helps us to

reduce the dimensions of our input and extract different levels of features. There is

another advantage encourage us to apply word embedding in our thesis. That is,

we can use pre-trained word embedding. This technique benefits us from two main

aspects. The first thing is that by using the word embedding pre-trained from other

corpus, extra information is introduced. This is extremely useful in training models

from a relatively small corpus such as PTB. The other advantage is that we need

only searching and lookup operation to form the target word vector and no need to

learn the weight of embedding layer. This operation saves our precious computation

resources.
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In our work, we will adopt GloVe.6B word embedding which is publicized by

Stanford researchers. This dataset is trained on six billion tokens. It consist of

pre-trained word vectors of 50, 100, 200, 300 dimensions.
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Chapter 5

Experiments and Results

In order to verify the performance of the proposed ensemble language model, we

evaluate our model on Penn Treebank dataset. In order to make a fair comparison

with existing approaches, we follow the original evaluation protocol.

5.1 Datasets

Penn Treebank collected one million text data from the newspaper with more than

10K words in the vocabulary. We followed the experiment protocol of [Mikolov et al., 2015],

spiting the dataset into three subparts: training, testing and validation, and report

the perplexity on the validation and test dataset.

5.2 Keras

Keras is the most popular deep learning framework nowadays. It provides a simpler

and faster way to build and train models on the basis of the most powerful frame-

works such as TensorFlow, Theano and CNTK. It is based on python and compatible

with main stream operating systems. The main focus of Keras’ development is to

support rapid experimentation. So we can turn our ideas into experimental results

with minimal delay, so we choose it to build our proposed model.

5.3 Model Setup

The classical metric used for reporting the quality of language models is perplexity,

which is the average log-probability for every word on the validation dataset, details
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about perplexity are introduced in Chapter 1. We follow the evaluation protocol of

the creator of these datasets[Mikolov et al., 2015, Bojar et al., 2015].

The batch size of our model is set to 20. We train our proposed model for 25

epochs. Random uniform distribution initialization is applied to the parameters.

The word sequence is 35. The max word length is set to 50. Our model consist of

two layers of layers networks, two LSTM layers and two Highway layers.

For the sub-model that consume characters as inputs, we split the words into

characters and then feed the sequence of characters into the CNN layers. The di-

mension of our character embedding is set to 15. Then 1D convolution is adopted.

The filter width is set to [1,2,3,4,5,6,7] of size [50,100,150,200,200,200,200] respec-

tively. We use max pooling after the filter. BPTT algorithm are used to train the

LSTM layer. The dropout regularization is applied and the probability is set to

0.5. Learning rate decay is adopted, the initial learning rate is set to 1.0 and will

be decreased to 50% of the previous rate if the perplexity decreases less than 1.0.

The RNN layers are unfolded for 35 steps. tanh is our activation function, softmax

is the recurrent activation fuction. In terms of the hidden nodes of the recurrent

layer, we set it as 650. The model is illustrated figure 5.1.

[Kim and Rush, 2016] has assessed the LSTM-CNN-Character model and ob-

tained a good performance over predecessor models on PTB. We implemented our

proposed model based on the opensource code released by JARFO, in which they

implemented the model proposed by [Kim and Rush, 2016] with the Keras toolkit.

With these configurations, we found the model performs consistent and is easy to

train. The experiments are conducted on a workstation, provided by Zuiguo Tech

Company of Shenzhen.

5.4 Results

5.4.1 Perplexity and size

The experimental results on Penn Treebank dataset are listed in Table 5.2. First of

all, we can see that our Ensemble language model achieve better results than the

baseline model even with no pre-trained word embedding. After the introduction

of pre-trained word embedding, the superiority became even larger. Specifically, we

can observe that there is a significant reduction respect to the sizes of the models

with pre-trained embeddings in comparison with the baseline language models with-

out pre-trained embeddings even though they are better performed. The ensemble
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Figure 5.1: Model architecture

model also perform consistently better than the model that only use word-level

information.

In comparison with other existing language models of different paradigms, our

ensemble language model can obtains the newly recorded performance. Figure 5.2
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Table 5.1: Results on Penn Treebank dataset
Model PPL size

No Pre-trained word Embedding LSTM [Kim and Rush, 2016] 85.4 20m
Char-CNN LSTM [Kim and Rush, 2016] 78.9 19m

Ensemble LM with no Pre-trained Embedding 78.7 40.8m
Ensemble LM with 50d Pre-trained Embedding 74.1 20.4m
Ensemble LM with 100d Pre-trained Embedding 73.2 21.5m
Ensemble LM with 200d Pre-trained Embedding 73.3 23.8m
Ensemble LM with 300d Pre-trained Embedding 73.7 26.1m

illustrates the details.

Table 5.2: compared with more models on PTB

Model PPL size

KN-5 [Mikolov et al., 2011] 141.2 2m
RNN-LDA [Mikolov and Zweig, 2012] 113.7 7m
FOFE-FNNLM [Pascanu et al., 2013] 108.0 6m

Deep RNN [Mikolov et al., 2011] 107.5 6m
LSTM-1 [Zaremba et al., 2014] 82.7 20m
LSTM-2 [Zaremba et al., 2014] 78.4 52m

Ensemble LM with 100d Pre-trained Embedding 73.2 21.5m

It is predictable that our proposed model performs better than the traditional

and early neural network based model. However, the surprising thing is that our

model outperformed the currently state-of-the-art LSTM language model with only

around half of parameters on PTB. Moreover, our model is even better than the

combination model with perplexity of 74.1 proposed by [Mikolov and Zweig, 2012],

but their results are incomparable with our models because they need much more

preliminary work and then linearly combine several models.

5.4.2 convergence speed

There is an aforementioned advantage to introduce the pre-trained word embedding-

faster convergence. This superiority can be identified easily through the figure 5.2.

The curve labeled none represent our model without pre-trained word embedding.

Other curves labeled 50d, 100d, 200d, 300d represent our model with pre-trained

word embedding of dimensions of 50, 100, 200, 300 respectively. The none pre-

trained embedding model not only converges at a higher perplexity but also converge

slower than other models.
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Figure 5.2: Model architecture

5.4.3 The dimensions of embedding vector

We further tested the model with pre-trained embedding of different dimensions and

found that the divergence of dimensions has little effect on the result perplexities and

convergence speed. This phenomenon can be discovered according to table 5.2 and

figure 5.2. Intuitively, longer embedding vectors are able to represent more semantic

and linguistic features which will result in lower perplexity and faster convergence.

However, our experiments didnt support this inference. We will dive into this topic

in our future work.

5.4.4 Future works

[Kim and Rush, 2016] report that word embedding is superfluous in a model when

combined with character CNN models. This resulted in a weaker performance than

the pure character level CNN/LSTM language model. However, in our experiment,

it shows that word embedding provides supplementary information for pure char-

acter level models. The reason why this happened will be illustrated in our future

work.

The vectors generated by character CNN network mainly represent the morpho-

logical features and the pre-trained word embedding represent the semantic and

linguistic information. However, the information contained in the concatenation of

these two vectors is unclear. Whether the concatenation is a better word embed-
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ding in comparison with other pre-trained embedding should be tested in our future

work. The size of corpus plays a really important role in building a language model.

The database we applied in this work is a relatively small corpus. However, we hope

to test our model on some large corpus and assess the performance.
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Chapter 6

Conclusions

In this presented thesis, we systematically investigated the existing work about

language modeling techniques. And proposed an ensemble framework for language

modeling based on the existing works. We then tested our models under different

dimensions of pre-trained word embedding and obtained a good performance on a

relatively small corpus-PTB. Performance analysis was achieved. Several unsolved

questions are put forward. We hope to answer these questions in the near future.
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