Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Integration of Database Programming and Query Languages for Distributed Object Bases

Markus Kirchberg

A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems at Massey University

Supervisor: Prof. Dr. Klaus-Dieter Schewe

Co-Supervisor: Associate Prof. Dr. Ray Kemp

Internal Examiner: Dr. Alexei Tretiakov

Australasia Examiner: Prof. Dr. Xiaofang Zhou

International Examiner: Prof. Dr. Bernhard Thalheim

Date of Examination: July 13, 2007

Abstract

Object-oriented programming is considered advantageous to other programming paradigms. It is believed to provide more flexibility, simplify development and maintenance, better model real-world situations, and is widely popular in large-scale software engineering. The idea behind object-oriented programming is that a program is composed of objects that act on each other. While programming languages mainly focus on processing, data storage and data sharing only play a minor role. Database management systems, on the contrary, have been built to support large bodies of application programs that share data. In todays database marketplace, relational and object-relational database systems are dominant. Object-oriented database systems were originally deemed to replace relational systems because of their better fit with object-oriented programming. However, high switching costs, the inclusion of objectoriented features in relational database systems, and the emergence of object-relational mappers have made relational systems successfully defend their dominance in the DB marketplace. Nevertheless, during the last few years, object-oriented database systems have established themselves as a complement to relational and object-relational systems. They have found their place as embeddable persistence solutions in devices, on clients, in packaged software, in real-time control systems etc.

In order to utilise the combined power of programming languages and SQL-like database query languages, research has focused on the embedded and integrated approaches. While embedded approaches are more popular, they suffer from the impedance mismatch, which refers to an inadequate or excessive ability of one system to accommodate input from another. This situation worsens when considering the numerous conceptual and technical difficulties that are often encountered when a relational database system is being used by a program that is written in an object-oriented language.

Research presented in this thesis addresses the integration of programming languages, database query languages, object-oriented programming and traditional database concepts. We investigate the stack-based approach to database programming and querying. The major objectives of our research are to:

- Develop a database architecture that is suitable to integrate database programming languages, object-oriented programming and more traditional database system features;
- Propose an intermediate-level database programming and querying language that combines the advantages of object-oriented programming and database querying languages. Before such a powerful language design can be achieved, a number of conceptual and technical challenges have to be investigated;
- Define a suitable run-time environment, which permits an efficient and effective evaluation of such an integrated language in a distributed database environment; and
- Provide proof of concept implementations.

Acknowledgement

I would like to thank *Klaus-Dieter Schewe* for giving me the opportunity to pursue an academic career under his supervision. This thesis would not have been possible without his invaluable input, constant support and understanding.

My thanks also goes to *Ray Kemp* who kindly agreed to act as co-supervisor of this thesis.

Thanks to Massey University and the Department of Information Systems for their financial support.

Special thanks to *Sebastian Link*, *Sven Hartmann* and *Faizal Riaz-ud-Din* for their support, useful discussions and their friendship.

I am grateful to my wife *Gowri* for her love, encouragement and understanding. It is her support that gave me the strength to complete this work.

Finally, I would like to thank my parents *Sigrid* and *Dieter Kirchberg*, who have always been there for me and supported me in every way possible.

Table of Contents

1	Introduction	9
	1.1 Database Systems and Programming Languages	10
	1.1.1 The Impedance Mismatch	14
	Objects and RDBMSs	15
	Objects and Object-Relational Databases.	15
	Objects and Pure Object Databases.	15
	1.1.2 On the Integration of Programming and Query Languages	16
	1.1.3 DBPL vs. Conventional Programming Languages	18
	1.2 Contributions	19
	1.3 Assumptions	21
	1.4 Outline	22
2	A Review of DBPLs and Related Concepts	23
	2.1 The Stack-Based Approach	23
	2.2 Overview of DB Programming Environments	25
	2.2.1 The Database Programming Language DBPL	25
	2.2.2 The O_2 Object Database System \ldots	26
	2.2.3 The Object Base Management System TIGUKAT	26
	2.2.4 The Parallel Database Programming Language FAD	27
	2.2.5 Additional Relevant Research Results on DBPLs	28
3	An Integrated Approach to DB Programming and Querying	31
	3.1 A Distributed Object-Oriented Database System	31
	3.1.1 Architecture Overview	32
	3.1.2 Properties of the OODM	36
	Notes on the Choice of the Data Model.	37
	3.1.3 Fragmentation	37
	3.1.4 Linguistic Reflection	38
	3.1.5 A Simple University Application	39
	The Global OODM Database Schema.	39
	Distributing the University Database.	43
	3.1.6 A Note on the Contribution of the Proposed ODBS	50
	3.2 Processing User Requests	50

4 The Database Programming and Query Language iDBPQL		57
4.1 Language Overview	• •	57
4.2 Basic Language Concepts		58
4.2.1 Challenges		59
4.2.2 Conventions		60
4.2.3 Literals, Names and Other Rudimentary Language Elements		61
Literals.		61
Identifiers		61
Comments.		61
Names		61
4.2.4 Types and Values		62
Primitive Types		62
The Record Type		63
Type Definitions	* *	67
Type Deminions.		68
Collection Types	• •	60
Will table Transformer	• •	09 71
NULLADIE Types. \dots	• •	71
value Initialisation and Default Values.	• •	12
Sub-typing and Type Conversion.	• •	73
Variables.	• •	74
Default Type Operations.	• •	74
Type Definitions for the University Application.	• •	75
4.2.5 Classes and Objects	• •	78
Structure of a Class.	• •	78
Variables and Reference-Types.	× 4	80
Methods.		81
(Multiple) Inheritance.		82
Variables, Types, Objects, and Classes.		88
The FINAL and the ABSTRACT Modifiers.		88
The UNION-Type.		89
Special Pre-Defined Classes.		91
Class-Collections.		93
Constraints.		94
Database Schemata and Classes.		95
Bun-Time MetaData Catalogue Entries		96
Persistence		97
Class Definitions for the University Application	• •	98
4.3 Evaluation Plans	•••	100
4.5 Evaluation Trans	• •	100
4.3.1 Chanenges	• •	100
4.3.2 Components of Evaluation Flans	• •	101
4.5.5 Evaluation blocks and Their Properties	• •	102
4.3.4 Statements	• •	104
Assignment Statements.	• •	104
Control Flow Statements.	• •	105
Type Operation Invocation, Method Calls and Object Creation	on.	107
4.3.5 Expressions	• •	108

Markus Kirchberg

4.4 S 4.5 E	imulta 4.4.1 4.4.2 4.4.3 Xamp	Simple Expressions	108 108 108 108 109 110 114 114 117 120 120 124 125
5 On th	e Im	plementation of iDBPOL	131
5 01 th	letaD	ata Catalogues and Evaluation Plans	131
J.1 IV	511	Challenges	132
	512	MetaData Entries and Associated Information	132
	0.1.2	Representing Type Information	134
		Representing Class Information	135
		Representing Descriptors.	137
		Representing Other Attributes.	137
		Inheritance Relations.	138
	5.1.3	The Representation of Objects and Values	138
	5.1.4	The Representation of Evaluation Plans	141
	5.1.5	Overview of Annotations	144
5.2 E	BS C	omponent Interface Definitions	145
	5.2.1	A Persistent Object Store	145
		An Object Model for POS	146
		Access Methods.	150
		The Architecture of POS.	150
		The Service Interface.	151
		POS as a Platform for iDBPQL	159
	5.2.2	A Multi-Level Transaction Management System	162
		The Service Interface	165
	5.2.3	The Remote Communication Module	166
		The Database Agent Communication Language (DBACL)	166
5.3 T	The Ex	xecution of Evaluation Plans	167
	5.3.1	Challenges	168
	5.3.2	The Run-Time Environment	169
		The REE Stack Area.	171
		The Environment Stack (ES).	172
		The Result Stack (RS)	174
		Operations on Stacks and Queues	175
		Initialising Result Queues.	178

Binding Behaviour Names to Evaluation Plans	179 179
The SYSTEMcall Primitive.	179 180
The TMScall Primitive.	180
5.3.4 Overview of the Evaluation Process	180
Machine Instructions	180
Unnesting Objects and Values.	181
The Main Evaluation Routine.	183
5.3.5 Maintaining the Run-Time Environment	186
5.3.6 Evaluating Individual Statements and Expressions	187
Simple Expressions: Literals and Names.	187
Object Identifiers and Stacks.	187
Expressions with Unary and Binary Operators.	188
Boolean Expressions.	190
Renaming Expressions.	194
Accessing Data Objects	195
Accessing Persistent Data: Beyond Direct Access	199
More Query Expressions	201
Controlling the Flow of Serial Data Processing	209
Invocation of Behaviours	213
Object Creation and Assignments	210
Cast Expressions SUPER and THIS	214
5.3.7 Evaluating Statements and Blocks of Statements	216
Blocks of Statements	216
Simple Transactions	210
Atomia Statement Blocks	217
5.2.8 Processing Evolution Dlang	221
5.2.0 Simultaneous Evaluation of Statements and Europesians	222
5.2.10 Distributed Dressessing of Evaluation Dlang	222
5.5.10 Distributed Processing of Evaluation Plans	223
Migrating Objects.	223
Processing Evaluation Plans on a Remote Node.	224
Distributed Transactions.	224
5.4 Optimisation of the Evaluation Process	226
6 Proof of Concept	229
6.1 Simultaneous Stack-Based Abstract Machines	229
6.2 The iDBPQL Prototype System	231
7 Summary	239
7.1 Main Contribution	239
7.2 Future Plans and Open Problems	241
Bibliography	245

Markus Kirchberg

A The Syntax of iDBPQL 2	55
A.1 The Lexical Syntax of iDBPQL	255
A.2 The Syntax of MetaData Catalogue Entries	256
A.2.1 Syntax of DBS MetaData Units	256
A.2.2 Syntax of Run-Time MetaData Units	256
A.2.3 Common Syntax of Type-System-Related Definitions 2	256
A.2.4 Common Syntax of iDBPQL Types	257
A.3 The Remaining Syntax of iDBPQL 2	258
A.3.1 Syntax of Evaluation Units	258
A.3.2 Syntax of Evaluation Blocks	258
A.3.3 Syntax of Statements	258
A.3.4 Syntax of Expressions	259
A.3.5 Identifiers, Labels, Values and More	259
B The <i>Parentage</i> Database Example 2	261

5

List of Figures

2.1	Relationship Between Data Models and SBQL's Abstract Storage Model ([131, Figure 1]).	23
$3.1 \\ 3.2 \\ 3.3$	Architecture of the Distributed Object-Oriented Database System HERM Diagram of the University Database	33 40 51
4.1 4.2	The Type System of iDBPQL	71 91
$5.1 \\ 5.2$	Sample Evaluation Graph for the verifyEnrolment Method Overview of Embedded References Between Instances of Classes of the	143
	University _{CC} Schema Fragment as Considered in Example 5.3	149
5.3	Architecture of the Persistent Object Store.	151
5.4	Architecture of the Transaction Management System	163
5.5	Local Heap with Embedded POS and RCM Shared Memory Areas	170
5.6	Logical View of the Environment and Result Stacks	173
5.7	Logical View of the Effects of evalMultiES () Evaluation Procedures	
	on ES	184
5.8	Overview of the Evaluation Process of the verifyEnrolment Method	
	from Figure 5.1	186
61	Overview of a Stack-Based Abstract Machine with Distribution Capa-	
0.1	bilities	230
6.2	Overview of a Local Stack-Based Abstract Machine.	231
6.3	Usage Diagram for the iDBPQL Prototype.	234
6.4	Evaluation of the <i>Hello World</i> Example.	235
6.5	iDBPQL and Internal Representations of the <i>Parentage</i> Database	236
6.6	Executing Requests on the Parentage Database.	237

List of Tables

4.1 4.2	The Primitive Types of iDBPQL	$\begin{array}{c} 62 \\ 64 \end{array}$
5.1	Modifier Flags and Their Interpretation.	135
0.2	4.12	140
5.3	(Binary) Path-Operators that are Supported by POS	152
5.4	Type Information Mapping to Machine Instructions.	181
5.5	Overview of Machine Instructions for Binary Expressions without Side	
	Effects.	189
5.6	Overview of Machine Instructions for Assignment Expressions with Side	
	Effects.	190
5.7	Overview of Additional Boolean Expressions and their Machine Instruc-	
	tions	191