Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

.

é.

14

SELECTED DEFOLIATION STUDIES ON

BUTTERNUT <u>Cucurbita</u> moschata, Dunchesne. CV WALTHAM

A Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Plant Physiology(at Massey University

Syed Mohd bin Syed Ibrahim 1986

ABSTRACT

A field experiment was carried out in the summer 1983/84 at Massey University Campus, Palmerston, New Zealand, to study the effect of selective defoliation on both growth and partitioning of dry matter during reproductive growth in Butternut (<u>Cucurbita</u> <u>moschata</u>, Dunchesne).

The plants were trained to grow toward one direction, with one main vine through regular pruning of side branching. Defoliations was carried out at early flowering growth stage, leaving the treated plants with one, two or three block of leaves, at different positions, with different combinations on the stem. Each block has equall number on node, determined at the time of treatment. Newly developed leaves within the defoliated plant section were regularly removed.

Results showed that removal of basal leaves block, significantly increased the total dry weight and yield by 25% and 30% respectively. This was attributed to the high unit leaf rate and leaf area duration in the later period. Removal of one or more block of leaves from other part of the stem, all reduced plant growth and yield. The Butternut plants exhibited a very stable pattern of dry matter partitioning between their organs. The sign of "recovery" which resulted in the proportion of dry matter found in each organs similar to that of CON plants, was at the first harvest (7 days) after defoliation. observed Partitioning of dry matter to fruits was observed to become stronger toward the end of growing period irrespective of pattern of defoliations.

The pattern of fruit distributions on the plant was strongly influenced by the position of leaves. At final harvest, higher total fruit dry weight and fruit number was found on the stem section with leaves presence. High number of fruit abortions reduced the yield in the stem section without leaves.

The overall plant growth was strongly influenced by the age

and the total area of leaf present on the plant after defoliation. Plants with more proportion of younger leaves grew better than plants with older leaves.

ACKNOWLEDGEMENTS

I would like to extend my gratitude and appreciation to my Supervisor Mr. Angus G. Robertson, for his close supervision and guidance during the entire masterate programme. His criticisms and recommendations were useful not only in the preparation of this thesis, but also he has helped to develop the skills associated with more effective thinking in scientific research.

I am very grateful to Dr. R.J. Hume of the Horticulture Department for his invaluable advice and help during the initial stage of my research work. I wish to thank Dr. Ian L. Gordon, of the Agronomy Department and Mr. Greg C. Arnold of the Mathematics Department, for their advice in the statistical methods.

Thanks are also due to the postgraduate students and the staff of the Agronomy Department, Farm Machinery and Library for their assistance in various ways that made this study possible. My thanks are also due to the staff of the Computer Center for their help in the analysis of data, graphic work and word processing.

I am particularly grateful to M.A.R.D.I (Malysian Agriculture Research and Development Institute) for study leave and financial assistance. I also would like to extend my special thanks to Miss Andrea McCrostie for her help in the laboratory which has saved a lot of my time.

Finally, my deep appreciation and thanks are due to my wife Sharifah, who has spent most of her time helping me. Her encouragement and understanding have certainly made my study easier.

TABLE OF CONTENTS

	PAGE
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	xiii
LIST OF FIGURES	xvii
LIST OF PLATES	xix
APPENDIX	xx
CHAPTER	
1. INTRODUCTION	l
2. REVIEW LITERATURE	3
2.1 Introduction	3
2.2 The curcubits: a comparison between butternut and water melon	3
2.3 Plant growth analysis: functional and classical approach	λ [†]
2.3.1 Relative growth rate	6
2.3.2 Unit leaf rate	7
2.3.3 Leaf area ratio	7
2.3.4 Leaf are duration	8

	2.3.5 Specific	leaf area	8
2.4	Partitioning of plants	dry matter in flowering	9
	2.4.1 Long dist	tance transport	9
	2.4.1.1	Phloem structure and function	9
	2.4.1.2	Properties of exudates	13
	2.4.1.3	Concentration and pressure gradient	15
	2.4.1.4	In search for structural framework	15
	2.4.1.5	The hypothesis	15
	2.4.1.6	Electro-osmosis mechanism	16
	2.4.1.7	Transcellular streaming	17
	2.4.1.8	Transcellular tubules	17
	2.4.1.9	Pressure-driven flow	18
	2.4.1.10	An alternative mechanism	19
	2.4.2 Phloem lo	bading	19
	2.4.3 Phloem un	loading	23
2.5	Pattern of assim	ilates partitioning	24
2.6	Agronomic import in crop plants .	ant of dry matter partitioning	27
3.	EXPERIMENTAL MAI	ERIALS AND METHODS	28

vi

3.1	Object	tive	28
3.2	Treatr	nents and location	28
3.3	Experi	imental design	31
3.4	Schedu	ale of destructive sampling	31
3.5	Experi	imental materials	34
	3.5.1	Wind breaks	34
	3.5.2	The seeds	34
	3.5.3	The fertilizer	34
	3.5.4	The chemicals	3]4
	3.5.5	Planting medium and pots	34
	3.5.6	E Polythene sheet	35
	3.5.7	Pollination	35
3.6	Experi	mental procedure	35
	3.6.1	In the glasshouse	35
		3.6.1.1 Fumigation	35
		3.6.1.2 Temperature control	35
		3.6.1.3 Potting and sowing	35
		3.6.1.4 Watering	36
		3.6.1.5 Thinning	36

viii

	3.6.2	In the field	36
		3.6.2.1 Field preparation	36
		3.6.2.2 Transplanting	38
		3.6.2.3 Irrigation	38
		3.6.2.4 Trained pruning	38
		3.6.2.5 Pest and diseases control	38
		3.6.2.6 Defoliation treatments	41
3.7	Analyt	ical technique	41
	3.7.1	Sampling method	41
	3.7.2	Determination of leaf area	41
	3.7.3	Determination of plant dry weight	41
	3.7.4	Subsampling	42
3.8	Statis	tical methods	42
	3.8.1	Data transformation	42
	3.8.2	Covariance analysis	42
	3.8.3	Analysis of variance	43
	3.8.4	Duncan multiple range test	43
	3.8.5	Coefficient of variation	43
	3.8.6	Partial analysis	44

.

	3.8.7	Regressi	on analysis	45
4.	EXPERI	MENTAL RE	ESULTS	47
4.1	Introd	luction		47
4.2	Climat	ic data .		47
4.3	Adjust	ment for	"without-neighbour effect"	48
4.4	Plant	growth an	d development	49
	4.4.1	Whole pl	ant data	49
		4.4.1.1	The control plants	49
		4.4.1.2	Total dry weight accumulation	49
		4.4.1.3	Relative growth rate	54
		4.4.1.4	Unit leaf rate	54
		4.4.1.5	Leaf area ratio	59
		4.4.1.6	Leaf area duration	59
		4.4.1.7	Specific leaf area	59
		4.4.1.8	Overall growth component data	64
	4.4.2	Stem dat	a	66
		4.4.2.1	Total stem dry weight	66
		4.4.2.2	Relative growth rate of stem	66
		4.4.2.3	Stem length and number of node	66

ix

		4.4.2.4	Dry weight of stem from	
			different sections	66
	4.4.3	Leaf dat	a	73
		4.4.3.1	Total leaf dry weight	73
		4.4.3.2	Total leaf area	79
		4.4.3.3	Relative growth rate of leaf	79
		4.4.3.4	Leaf area duration from different sections	83
		4.4.3.5	Specific leaf area from different sections	83
	4.4.4	Flower da	ata	90
	4.4.5	Fruit da	ta	90
		4.4.5.1	Total fruit dry weight	90
		4.4.5.2	Relative growth rate for fruit	97
		4.4.5.3	Total number of fruits	97
		4.4.5.4	Fruit dry weight from different sections	100
		4.4.5.5	Fruit number from different sections	104
4.5	Partit	ioning of	dry matter to	
	differe	ent organ		107

• •

x

	4.5.1	Leaves	110
	4.5.2	Stems	110
	4.5.3	Flowers	110
	4.5.4	Fruits	114
4.6	Correl	lations and regressions data	114
	4.6.1	Partial correlation	114
	4.6.2	Regression analysis	117
5.	DISCUS	SSIONS	119
5.1	Intro	luction	119
5.2	Plant	growth and development	119
	5.2.1	The control plants	119
	5.2.2	Leaf growth	120
	5.2.3	Stem growth	123
		5.2.3.1 Dry weight	123
		5.2.3.2 Stem length and number of nodes per plant	124
	5.2.4	Flower development	124
	5.2.5	Fruit growth	125
		5.2.5.1 Total fruit dry weight	125

xi

	5.2.5.2 Fruit abortion	• 125
	5.2.5.3 Distribution of fruit dry weight and fruit number on the plants	. 127
	5.2.6 Whole plant growth	• 129
5.3	Partitioning of dry matter between organs	. 130
6.	CONCLUSIONS	. 132
7.	REFERENCES	. 13 ¹ 4
8.	APPENDIX	. 157

xii

·· .

xiii

LIST OF TABLES

				PAGE
Table	3.1	:	Schedule of destructive sampling	33
Table	3.2	•	Schedule of irrigation and spraying programme	40
Table	4.1	:	Mean values of total dry matter (g plants ⁻¹)	52
Table	4.2	:	Mean values of unit leaf rate (E) (mg cm ⁻² day ⁻¹)	55
Table	4.3	:	Mean values of relative growth rates (R) (mg g ⁻¹ day ⁻¹)	57
Table	4.4	:	Mean values of leaf area ratio (F) (cm ² g ⁻¹)	бі
Table	4.5	:	Mean values of leaf area duration (D) (cm ² day)	62
Table	4.6	:	Mean values of specific leaf area (SLA) (cm ² g ⁻¹)	63
Table	4.7	:	Mean values of overall growth components data	65
Table	4.8	:	Mean values of total stem dry weight (g plants ⁻¹)	68

Table 4.9	:	Mean values of $R_{S_{1}}$ for total stem dry weight (mg g ⁻¹ day ⁻¹)	69
Table 4.10	:	Mean values of total length of stem (cm plants ⁻¹)	70
Table 4.11	:	Mean values of total number of nodes per plant	71
Table 4.12	:	Mean values of stem dry weight from section A (g plants ⁻¹)	72
Table 4.13	:	Mean values of stem dry weight from section B (g plants ⁻¹)	74
Table 4.14	:	Mean values of stem dry weight from section C (g plants ⁻¹)	75
Table 4.15	:	Mean values of stem dry weight from section D (g plants ⁻¹)	76
Table 4.16	:	Mean values of total leaf dry weight (g plants ⁻¹)	77
Table 4.17	:	Mean values of total leaf area (cm ² plants ⁻¹)	80
Table 4.18	:	Mean values of R for total leaf dry weight (mg $g^{-1} day^{-1}$)	82
Table 4.19	:	Mean values of lad for section A (cm ² day)	84
Table 4.20	:	Mean values of lad for section B (cm ² day)	85

Table 4.21	: Mean values of lad for section C (cm ² day)	86
Table 4.22	: Mean values of lad for section C (cm ² day)	87
Table 4.23	: Mean values of sla for section A (cm ² g ⁻¹)	88
Table 4.24	: Mean values of sla for section B (cm ² g ⁻¹)	89
Table 4.25 :	: Mean values of sla for section C (cm ² g ⁻¹)	91
Table 4.26 :	Mean values of sla for section C (cm ² g ⁻¹)	92
Table 4.27 :	Mean values of total flowers dry weight (g plant ⁻¹)	93
Table 4.28 :	Mean values of total fruit dry weight (g plants ⁻¹)	94
Table 4.29 :	Mean values of R_F for fruit dry weight (mg g ⁻¹ ~ day ⁻¹)	98
Table 4.30 :	Mean values of total number of fruits per plant	99
Table 4.31 :	Mean values of fruit dry weight from section B (g plants ⁻¹)	101
Table 4.32 :	Mean values of fruit dry weight from section C (g plants ⁻¹)	102

xv

Table 4.33 : Mean values of fruit dry weight from section D (g plants⁻¹) 103 Table 4.34 : Mean values of number of fruits from section B 106 Table 4.35 : Mean values of number of fruits from section C 108 Table 4.36 : Mean values of number of fruits from section D 109 Table 4.37 : Mean values of dry matter partitionings to leaves (%) 111 Table 4.38 : Mean values of dry matter partitionings to stems (%) 112 Table 4.39 : Mean values of dry matter partitioning to flowers (%) 113 Table 4.40 : Mean values of dry matter partitionings to fruits (%) 115 Table 4.41 : Partial correlation coefficients between total fruit dry weight and fruit size, total fruit dry weight and fruit number and between fruit number and fruit size 116

xvi

PAGE

Figure 2.1 :	Possible control point for regulating the partitioning of assimilated corbon and the export of phloem-mobile compounds	22
Figure 2.2 :	A simplified classification of sink organs	26
Figure 3.l :	Pattern of defoliation treatments	29
Figure 3.2 :	Lay out of the plot	32
Figure 4.1 :	Changes in total dry weight of CON plants with time: The broken line shows dry weight on log _e scale	50
Figure 4.2 :	Relative growth rate (a), net assimilation rate (b) and leaf area ratio (c) of CON plants	51
Figure 4.3 :	Effect of treatments on the total plant dry weights accumulation	53
Figure 4.4 :	Effect of treatments on the relative growth rates	56
Figure 4.5 :	Effect of treatments on the net assimilation rates	58
Figure 4.6 :	Effect of treatments on the leaf area ratios	60
Figure 4.7 :	Effect of treatments on the stem dry weights accumulation	67
Figure 4.8 :	Effect of treatments on the leaf dry weights accumulation	78
Figure 4.9 :	Effect of treatments on the leaf areas expansion	81

xviii

Figure	4.10	:	Effect of treatments on the fruit	
			dry weights accumulation	95
Figure	4.11	:	Effect of treatments on the fruit dry	
			weights per plant	96
Figure	4.12	:	Effect of treatments on the number of	
			fruits per plant	96
Figure	4.13	:	Effect of treatments on the fruit dry	
			weights per plant section	105
Figure	4.14	:	Effect of treatments on the number of	
			fruits per plant section	105
Figure	4.15	:	Linear regressions of total plant dry	
			weight and fruit dry weight with total	
			leaf area duration	118

LIST OF PLATES

· • •

PAGE

Plate l	₹£ \$	General view of experimental area	30
Plate 2	:	A beehive	37
Plate 3	:	Laying down the polythene sheet	37
Plate 4	:	A butternut seedling at transplanting	39
Plate 5	:	The plants, immediately after defoliation treatments	39

APPENDIX

PAGE

Appendix l	:	Total percipitation, maximum and	
		minimum temperature and bright	
		sunshine hours during the	
		experimental period	157

 $\mathbf{x}\mathbf{x}$

1 INTRODUCTION

Due to limited land resource, maximising the production per unit area has been the most important crop production research objective in Malaysia. This is especially true in the production of cash crops which act as a supplement to small farmers' household incomes. In another words, a technology with quite high labour input is acceptable to a certain degree for the small farmers who normally own between 1.0 to 5.0 hectares only of arable land.

Crops in the family <u>Cucurbitaceae</u> are one of the important cash crops normally grown by farmers. In this family, water melon (<u>Citrullus vulgaris</u> Schrad or <u>Citrullus lanatus</u> (Thunb.) Matsum and Nakai) is the most popular due to its characteristic of being a heavy producer: yields between 23 - 30 t ha⁻¹ are easy to achieve. With present management practices, one crop may give a net profit of M\$2000.00 to M\$4000.00 per ha. This would be a substantial contribution to the farmer's income.

Under the concept of source and sink relationships, water melon production may be limited by three factors namely the source, the sink and translocation (Tanaka 1980). With our present knowledge of these relationships, the capacities of these three factors can be improved practically through breeding work. However, on an area basis, these factors can be altered by increasing the number of individual plants per unit area (Wilson 1972). The number of plants per unit area is however limited by size and the effectiveness of the canopy. More plants per unit area can be grown if the canopy size is reduced through pruning or defoliation, so increasing yield per unit area.

Studies on other crops showed that partial defoliation stimulates the photosynthetic capacity of those leaves that remain on the plants (Sweet and Wareing, 1966; Wareing, Khalifa and Treharne, 1968; Neales, Treharne and Wareing, 1971; Stacey, 1983) and delays the senescence of remaining leaves (Woolhouse, 1976; Alderfer and Eagler, 1976). The principle of reducing thecanopy size to allow closer planting has been used in theproduction of some perennial crops (Yoshida 1980). In Malaysia, cocoa, coffee and some orchards are planted at close spacing while the plant canopies are maintained from overlapping by regular pruning. However, there is no such practice as yet being carried out in annual crops. This probably due to the large number of plants per unit area normally used in annual crops which may increase eventually the cost of labour to a level that will exceed the possible beneficial effect of pruning itself. Nevertheless, the possibility of increase yield through such practices might be a worthwile study in high value crops such as water melon.

It would appear therefore, that there is a need to study the possible effect of pruning practices on the growth, yield and partitioning of dry matter in water melon. Since the climate at Massey University is too marginal for the successful cultivation of water melon, another Cucurbit, <u>Cucurbita moshata</u> L.cultivar Waltham (a Butternut type of squash), which is quite similar in general characteristic and growth habit to water melon, is used.