Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Functional analysis of *Penicillium paxilli* genes required for biosynthesis of paxilline

This thesis is presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

in

Biochemistry

at

Massey University, Palmerston North,

New Zealand

Sanjay Saikia 2006

ABSTRACT

Paxilline belongs to a large, structurally and functionally diverse group of indole-diterpenes and is synthesised by the filamentous fungus *Penicillium paxilli*. A gene cluster for paxilline biosynthesis in *P. paxilli* has been identified and characterised. However, none of the steps proposed in the biosynthesis of paxilline or paxilline-like indole-diterpenes have been validated. In some diterpene-producing filamentous fungi, including *P. paxilli*, two distinct copies of geranylgeranyl diphosphate (GGPP) synthase, that catalyses the committed step in diterpene biosynthesis, have been identified. However, the biological significance of the presence of two distinct GGPP synthases is not known. In this study, biochemical analysis of the paxilline gene products in *P. paxilli* and subcellular localisation of the two *P. paxilli* GGPP synthases, Ggs1 and PaxG, were carried out.

Transfer of constructs containing different combinations of pax genes into a pax cluster negative deletion derivative of P. paxilli identified four Pax proteins that are required for the biosynthesis of a paxilline intermediate, paspaline. These proteins are PaxG, a GGPP synthase, PaxM, a FAD-dependent monooxygenase, PaxB, a putative membrane protein, and PaxC, a prenyltransferase. Using precursor feeding experiments, it was confirmed that the indole-diterpenes paspaline and β -PC-M6 are substrates for the cytochrome P450 monooxygenase, PaxP, and are converted to 13desoxypaxilline. Further, it was confirmed that the indole-diterpene 13desoxypaxilline is a substrate for PaxQ, a cytochrome P450 monooxygenase, and is converted to paxilline. Unlike PaxQ, PaxP is specific for indole-diterpene substrates that have a β -stereochemistry. The detection of the indole-diterpene products was related to the expression of the transgene in the pax cluster negative background.

Reporter fusion studies of the two *P. paxilli* GGPP synthases, Ggs1 and PaxG, showed that the Ggs1-EGFP fusion protein was localised to punctuate structures whose identity could not be established, and the EGFP-GRV fusion

i

protein, containing the C-terminal tripeptide GRV of PaxG, was localised to peroxisomes.

ACKNOWLEDGEMENTS

I would like to express my extreme sense of thankfulness and appreciation to my supervisor, Barry Scott, for his invaluable and judicious guidance, constructive criticism and incessant encouragement throughout the period of my research and preparation of this thesis. Thank you Barry for giving me this opportunity to work on this project and for being an excellent supervisor! I would also like to thank my co-supervisor, Emily Parker, who with her knowledge, guidance and unremitting encouragement helped for a practical approach towards my research. I am thankful to the Royal Society of New Zealand for funding this project. I am also thankful to IMBS and NZSBMB for financial support for conference attendance.

I would like to express my sincere thanks to all my lab members, past and present, for their help, support and invaluable suggestions throughout my research. Andrea thanks a lot for your ever willingness to help and providing all the technical support in the lab. I really appreciate it. Jonathan thank you for helping me work on the HPLC and also for introducing me to the indoor cricket team. Carolyn thank you for supplying me with some of your lambda clones. Aiko and Daigo thank you for your friendship and unflinching help and support both inside and outside the lab. Matthew, Michelle and Ruth thank you for reading parts of my thesis and giving me critical and valuable suggestions. Ruth thank you for providing technical support in the lab. Thanks are also due to Shuguang, Rohan, Xiuwen, Brendon, Kim, Simon, Carla, Damien and Andrew for their helpful suggestions.

I would like to thank Albert for all the LC-MSMS analysis and for making me understand what the spectra meant. I would also like to thank Brian for discussions on indole-diterpene biosynthesis. I would like to thank Sarah for providing me with authentic samples of some indole-diterpenes.

I would like to thank Gill, Trev and Santanu for their help with HPLC. I would also like to thank Chad and Jeremy for their help and discussions on cellular

iii

staining and supplying me with a stain. Thanks also to Liz for helping me with the use of microscope. I would like to thank Cynthia for her help in the printing of my thesis.

I am extremely grateful to my friends Afreen, Asela, Nadika, Nilu, Tehzeeb, Nihad, Fahd, Karthik, Corey, Wayne, Olivia, Arne, Abhimanyu, Vivek and Sanj for sharing all my myriad moments of joy and despair. Words are inadequate to express my gratitude for Khura and Khuri who provided me with the much needed homely milieu during all these years in Palmy. Thanks also to my indoor and outdoor cricket team mates for a very good time both in winning and losing.

Finally, I could not have reached this stage without the support of my dear family. Ma and Baba words at my discretion are simply inadequate to express my veneration for you two. Your sacrifices have made me reach this echelon of education. I am heartfelt when I think of the love and care rendered by my sister Junu and brother Montu, who selflessly prayed for my success.

TABLE OF CONTENTS

Abstract		i
Acknowledg	gements	iii
Table of Co	ntents	v
CHAPTER		1
1.1	Fungal secondary metabolism	2
1.2	Secondary metabolite gene clusters	2
1.3	Chemical diversity of fungal secondary metabolites	4
1.3.1	Polyketides	4
1.3.2	Non-ribosomal peptides	6
1.3.3	Isoprenoids/ Terpenoids	8
1.3.3.1	Trichothecenes	10
1.3.3.2	Gibberellins	11
1.3.3.3	Aphidicolin	12
1.3.3.4	Indole-diterpenes	12
1.4	Evolution of secondary metabolite gene clusters	15
1.5	Regulation of fungal secondary metabolism	16
1.5.1	Nitrogen source regulation	17
1.5.2	Carbon source regulation	18
1.5.3	pH regulation	19
1.5.4	LaeA regulation	19
155	Pathway-specific regulators	20

1.6	Localisation of proteins involved in fungal secondary metabolism	21
1.7	Significance of studying paxilline biosynthesis in <i>Penicillium paxilli</i>	22
1.8	Aims and objectives	23
CHAPTER	TWO MATERIALS AND METHODS	25
2.1	Biological materials	26
2.2	Media	26
2.2.1	Bacterial media	26
2.2.1.1	Luria-Bertani (LB) medium	26
2.2.1.2	SOB medium	26
2.2.1.3	SOC medium	26
2.2.2	Fungal media	26
2.2.2.1	Aspergillus Complete medium (ACM)	26
2.2.2.2	Czapex-Dox Yeast Extract (CDYE) medium	33
2.2.2.3	Potato Dextrose (PD) medium	33
2.2.2.4	Regeneration (RG) medium	33
2.2.2.5	Trace elements mix	33
2.2.3	Media supplements	33
2.3	Growth conditions	33
2.3.1	Bacterial growth conditions	33
2.3.2	Fungal growth conditions	34
2.4	Glycerol stocks	34

i

...........

÷

2.5	DNA isolation and purification	34
2.5.1	Plasmid DNA isolation and purification	34
2.5.1.1	Quantum Prep [®] Plasmid Miniprep Kit (Bio-Rad Laboratories,	
	CA, USA)	34
2.5.1.2	High Pure Plasmid Isolation Kit (Roche Diagnostics GmbH,	
	Mannheim, Germany)	35
2.5.1.3	Plasmid DNA purification by alkaline lysis	35
2.5.1.3.1	Solution I	35
2.5.1.3.2	Solution II	35
2.5.1.3.3	Solution III	36
2.5.1.3.4	Alkaline lysis method	36
2.5.2	Genomic DNA isolation	36
2.5.2.1	Genomic DNA isolation from fungal spores for PCR	
	screening	36
2.5.2.2	Genomic DNA isolation from fungal mycelia using modified	
	Yoder method	37
2.5.3	Purification of PCR products using QIAquick PCR	
	Purification Kit (Qiagen)	37
2.5.4	Extraction and purification of DNA from agarose gels using	
	QIAquick Gel Extraction Kit (Qiagen)	37
2.6	DNA quantitation using fluorometer	38
2.6.1	Solutions	38
2.6.1.1	10X TNE buffer stock solution	38
2.6.1.2	Hoechst 33258 stock dye solution	38
2.6.1.3	Calf thymus DNA	38
2.6.1.4	Assay solution	38
2.6.2	Quantitation method	38
2.7	Restriction endonuclease digestion of DNA	38
2.8	DNA ligations	39
2.8.1	Dephosphorylation of plasmid DNA	39

 (\mathbf{x})

2.8.2	Preparation of pBluescript II KS (+)-T vector	39
2.8.3	DNA ligations	40
2.9	Agarose gel electrophoresis	40
2.9.1	Solutions	40
2.9.1.1	1X TBE buffer	40
2.9.1.2	SDS gel-loading dye	41
2.9.1.3	Ethidium bromide solution	41
2.9.2	Agarose gel electrophoresis	41
2.10	Southern Blotting	41
2.10.1	Solutions	41
2.10.1.1	Depurination solution	41
2.10.1.2	Denaturation solution	41
2.10.1.3	Neutralisation buffer	42
2.10.1.4	20X SSC	42
2.10.1.5	Denhardt's reagent	42
2.10.1.6	STE buffer	42
2.10.2	Southern blotting: capillary transfer	42
2.10.3	Preparation of radiolabelled DNA probes	43
2.10.4	Hybridisation of labelled probes to DNA fixed on membrane	s 44
2.10.5	Autoradiography	44
2.10.6	Stripping of hybridised membranes	44
2.11	DNA sequencing	44
2.12	Escherichia coli transformation	45
2.12.1	Preparation of electrocompetent E. coli	45
2.12.2	Transformation of <i>E</i> . <i>coli</i> by electroporation	45
2.12.3	Preparation of competent E. coli using CaCl ₂	45
2.12.4	Transformation of CaCl ₂ -treated E. coli	46
2.12.5	Screening of recombinant bacterial colonies	46

2.13	P. paxilli transformation	47
2.13.1	Preparation of <i>P. paxilli</i> protoplasts	47
2.13.1.1	Solutions	47
2.13.1.1.1	OM buffer	47
2.13.1.1.2	Glucanex solution	47
2.13.1.1.3	ST buffer	47
2.13.1.1.4	STC buffer	47
2.13.1.1.5	PEG buffer	47
2.13.1.2	Preparation of protoplasts	47
2.13.2	Transformation of <i>P. paxilli</i> protoplasts	48
2.13.3	Purification of transformants	49
2.14	PCR	49
2.14.1	Reagents	49
2.14.1.1	dNTPs	49
2.14.1.2	Oligonucleotide primers	49
2.14.2	Standard PCR	49
2.14.3	PCR using Expand High Fidelity PCR System (Roche)	52
2.14.4	PCR using TripleMaster [®] PCR System (Eppendorf)	52
2.14.5	RT-PCR	52
2.14.5.1	RT-PCR using cDNA	52
2.14.5.2	RT-PCR using SuperScript [™] One-Step RT-PCR with	
	Platinum [®] <i>Taq</i> (Invitrogen)	52
2.15	RNA isolation using TRIzol [®] Reagent (Invitrogen)	53
2.16	RNA quantitation	53
2.17	DNase I treatment of RNA	53
2.18	cDNA synthesis using SuperScript [™] First-Strand	
	Synthesis System for RT-PCR (Invitrogen)	54

2.19	Chemical synthesis of PC-M6 and paxitriol	54
2.19.1	Extraction and purification of 13-desoxypaxilline	54
2.19.2	Synthesis of PC-M6	55
2.19.3	Synthesis of paxitriol	56
2.20	Feeding of precursor metabolites to <i>P. paxilli</i>	56
2.21	Indole-diterpene analysis	57
2.22	Staining of <i>P. paxilli</i> cultures	58
2.22.1	Staining with MitoTracker [®] Red CMXRos (Molecular Probes) 58
2.22.2	Staining with FM 4-64 (Molecular Probes)	59
2.23	Microscopy	59

CHAPTER THREE RESULTS

3.1	Genes required for paspaline biosynthesis	62
3.1.1	Preparation and functional analysis of pSS8	62
3.1.2	pSS8 transformation of <i>pax</i> deletion mutants LM662 and	
	CY2	66
3.1.3	Preparation of pSS16	72
3.1.4	pSS16 transformation of <i>pax</i> deletion mutant CY2	72
3.1.5	Preparation of pSS20	75
3.1.6	pSS20 transformation of <i>pax</i> deletion mutant CY2	75
3.1.7	Preparation of pSS17	79
3.1.8	pSS17 transformation of <i>pax</i> deletion mutant CY2	79
3.1.9	Summary	87
3.2	paxP and paxQ complementations	91
3.2.1	Preparation of <i>paxP</i> and <i>paxQ</i> complementation constructs	91

61

3.2.2 Complementation of $\triangle paxP$ and $\triangle paxQ$ strains 93

3.2.3	Preparation of pSS7 with longer paxP promoter sequence	95
3.2.4	Complementation of $\Delta paxP$ strain with pSS7	95
3 3	Feeding studies with navilling precursor metabolites	aa
331	nSS1 transformation of nex deletion mutants I M662 and	00
5.5.1	CY2	99
3.3.2	Paspaline feeding of LM662/pSS1 and CY2/pSS1	
	transformants	102
3.3.3	pSS2 transformation of <i>pax</i> deletion mutants LM662 and	
	CY2	105
3.3.4	13-desoxypaxilline feeding of LM662/pSS2 and CY2/pSS2	
	transformants	107
3.3.5	PC-M6 feeding of pax deletion mutants	110
3.3.6	Paxitriol feeding of pax deletion mutants	118
3.3.7	Summary	122
3.4	Subcellular localisation of Ggs1 and PaxG	125
3.4.1	Search for subcellular localisation signals	125
3.4.2	Preparation of N- and C-terminal fusions of EGFP with ggs1	
	cDNA	129
3.4.3	Subcellular localisation of Ggs1	132
3.4.4	Preparation of N- and C-terminal fusions of EGFP with	
	paxG cDNA	136
3.4.5	Subcellular localisation of PaxG	140
3.4.6	Preparation of EGFP fusions with PaxG C-terminal	
	tripeptide GRV	140
3.4.7	Subcellular localisation of EGFP-GRV fusion	143
3.4.8	Preparation of DsRed-SKL fusion	143
3.4.9	Subcellular localisation of DsRed-SKL fusion	148
3.4.10	Co-localisation of EGFP-GRV and DsRed-SKL fusions	148
3.4.11	Oleic acid as a peroxisome proliferator	151
3.4.12	Strains containing Ggs1-EGFP and DsRed-SKL fusions	155
3.4.13	Summary	155

CHAPTER FOUR DISCUSSION

4.1	Biosynthesis of paxilline intermediates	160
4.2	Subcellular localisation of GGPP synthases	173
4.3	Summary	177

APPENDIX

179

159

5.1	RP-HPLC analysis of authentic PC-M6 and paxitriol	180
5.2	Vector maps	182
5.2.1	pBluescript II KS (+)	183
5.2.2	pGEM [®] -T Easy	184

REFERENCES

185

PAPER Saikia S, Parker EJ, Koulman A and Scott B (2006) Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. *FEBS Lett* **580**: 1625-1630.