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Abstract

The derivation of local scale climate information from experiments of coarse-
resolution general climate models (GCM) can be addressed with variety of
‘downscaling’ techniques. ‘Downscaling’ refers to attempts to address the scale
mismatch between information from the GCMs and that at which impacts occur.
Methods for downscaling range from simple interpolation of climate model outputs to
the use of regional climate models nested within larger-scale simulations. Some
methods use statistical representations and interpolations; some use dynamic
approaches. All of these methods depend on the quality of the initial simulation.
Downscaling models fitted to present climatological records are generally referred to
as empirical approaches. In a semi-dynamical approach, regional free atmospheric
circulation indices simulated by a GCM were employed in this study to derive local
climate variables from cross-scale relationships. The relationships were captured from
historical records of simultaneously observed local variables and regional-scale
circulation indices. Subsequent climate change scenarios were used in impact case

studies of two New Zealand catchments’ response and water resources.

The assessment of climate change impacts requires data at the spatial and temporal
resolution at which impacts occur. The outputs of the current GCMs cannot be used
directly in the development of specific climate change scenarios due to their coarse
resolution although semi-empirical downscaling of GCM outputs to desired scales
may offer an immediate solution by relating GCM outputs to single-site climate
elements. Artificial neural network (ANN) and multivariate statistics (MST) models
were adapted to derive the changes to a number of New Zealand site precipitation and
temperature characteristics from free atmosphere circulation indices in a comparative
study of their potential in downscaling outputs of GCM transient experiments. Both
downscaling models capture similar general patterns from free atmosphere circulation

indices.

Subsequently the ANN model was used to derive changes of mean monthly
precipitation and temperature characteristics from circulation variables projected in a
transient climate change experiment performed by the Hadley Centre coupled ocean-

atmosphere global climate model (HadCM2). HadCM2 validated well with respect to



the National Centers for Environment Prediction reanalysis for its ‘present climate’
simulation. The predicted changes in seasonal mean sea level pressure fields over the
‘New Zealand’ region include an intensified anticyclonic belt coupled with negative
pressure tendencies to the southwest, which is expected to squeeze stronger westerly

winds over southern and central New Zealand.

Monthly mean precipitation and temperature time series for 18 points on a
0.25%latitude x 0.25°longitude grid over New Zealand were derived from the
circulation indices. The indices were defined by anomalies (with respect to 1961-
1990) of mean sea level pressure, zonal and meridional mean sea-level pressure
gradients, atmospheric geopotential thickness between 850-700 hPa pressure surfaces,
and wind speeds at 10 m above the surface over New Zealand for the period 1980-
2099. Temperature and precipitation characteristics were examined for four tri-
decades (1980-2009, 2010-2039, 2040-2069 and 2070-2099), and changes projected
with respect to the pseudo-present tri-decade (1980-2009). An average temperature
increase of 0.3-0.4°C per tri-decade is projected. Precipitation distribution was
modelled using the Gamma probability function and the precipitation characteristics
determined by the ‘scale’ and ‘shape’ parameters of the Gamma function.
Precipitation is predicted to decrease over the north of North Island while marked
precipitation increases are projected over the western, central and southwestern areas
of the country. Changes in coefficients of variation of monthly precipitation exhibited
both increases and decreases in interannual variability of precipitation over the region.
Interannual variability in monthly precipitation increases to 1.2-2.2 and decreases to
0.5-0.9 times the pseudo-present coefficients of variations of monthly precipitation by
2070-2099 are projected. The tri-decade to tri-decade changes however, show no

trend and this may be attributed to high frequency variations in monthly precipitation.

A water balance model was adapted to assess the impacts of changes in precipitation
and temperature in two case studies of catchment response. Time series of monthly
flows were simulated for each tri-decade. Data for each tri-decade were modelled
using a lognormal distribution to generate a 3000-year data set, which was used in a
risk analysis to determine the reliability, resiliency and vulnerability of the two water
resource systems (hydro power and irrigation schemes). For both of these water

resource systems, the changes in operational risk-descriptors with respect to the
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pseudo-present tri-decade, are within limits in which adjustments can be made, taking
into account that traditional design criteria incorporate considerable buffering

capacity for extreme events.
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millimeter

Anomalies of mean sea level pressure anomalies
Multivariate Statistics model

Micrometer

Total day length

Bright sunshine hours per day

National centers for environmental prediction
National Institute for water and atmospheric research limited
National oceanic and atmospheric administration
Nitrous oxide

Artificial neural networks software package
Petagram of carbon

Ozone

Effective precipitation

Effective precipitation in month i

Observed precipitation in month i

Parts per billion by volume

Parts per million by volume

Principal component
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Prob Probability

Qo Observed monthly discharge

O Modelled monthly discharge

Ra Extraterrestrial radiation

Ro Baseflow

Ra Direct runoff

Ra Net radiation

R Surface runoff

Rss Sub-surface runoff

Ry Total runoff

RMSE Root mean square error

Smuas Maximum storage capacity (depth)

SAS Statistical analysis software

Sp Degree of distribution spread

r Mean air temperature

! Time

L) Anomalies of atmospheric thickness between 700 and 850 hPa
pressure surfaces

L United Kingdom

i Ultraviolet radiation

BN Water balance model

Wm'* Watts per square meter

Al World Meteorological Organization

SR Anomalies of wind speed at 10m above surface

x Mean

= Relative storage (0< z<1)

@ Reliability; sub-surface runoff proportionality coefficient; relative
humidity index

B Gamma function scale parameter; direct runoff coefficient

7 Gamma function shape parameter; resiliency; sub-surface runoff
exponential coefficient;, psychometric constant

I Gamma probability function

4 Vulnerability
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Surface runoff coefficient
Slope of the saturated vapour pressure curve

Stefan-Boltzmann constant





