Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GCM-derived Climate Change Scenarios and their Impacts on New Zealand Water Resources

This thesis is presented in partial fulfilment of

the requirements of the degree of

Doctor of Philosophy

in

Science

at

Massey University, Palmerston North,

New Zealand

Freddie Simon Mpelasoka

S Massey University

2000

Abstract

The derivation of local scale climate information from experiments of coarseresolution general climate models (GCM) can be addressed with variety of 'downscaling' techniques. 'Downscaling' refers to attempts to address the scale mismatch between information from the GCMs and that at which impacts occur. Methods for downscaling range from simple interpolation of climate model outputs to the use of regional climate models nested within larger-scale simulations. Some methods use statistical representations and interpolations; some use dynamic approaches. All of these methods depend on the quality of the initial simulation. Downscaling models fitted to present climatological records are generally referred to as empirical approaches. In a semi-dynamical approach, regional free atmospheric circulation indices simulated by a GCM were employed in this study to derive local climate variables from cross-scale relationships. The relationships were captured from historical records of simultaneously observed local variables and regional-scale circulation indices. Subsequent climate change scenarios were used in impact case studies of two New Zealand catchments' response and water resources.

The assessment of climate change impacts requires data at the spatial and temporal resolution at which impacts occur. The outputs of the current GCMs cannot be used directly in the development of specific climate change scenarios due to their coarse resolution although semi-empirical downscaling of GCM outputs to desired scales may offer an immediate solution by relating GCM outputs to single-site climate elements. Artificial neural network (ANN) and multivariate statistics (MST) models were adapted to derive the changes to a number of New Zealand site precipitation and temperature characteristics from free atmosphere circulation indices in a comparative study of their potential in downscaling outputs of GCM transient experiments. Both downscaling models capture similar general patterns from free atmosphere circulation indices.

Subsequently the ANN model was used to derive changes of mean monthly precipitation and temperature characteristics from circulation variables projected in a transient climate change experiment performed by the Hadley Centre coupled oceanatmosphere global climate model (HadCM2). HadCM2 validated well with respect to the National Centers for Environment Prediction reanalysis for its 'present climate' simulation. The predicted changes in seasonal mean sea level pressure fields over the 'New Zealand' region include an intensified anticyclonic belt coupled with negative pressure tendencies to the southwest, which is expected to squeeze stronger westerly winds over southern and central New Zealand.

Monthly mean precipitation and temperature time series for 18 points on a 0.25° latitude x 0.25° longitude grid over New Zealand were derived from the circulation indices. The indices were defined by anomalies (with respect to 1961-1990) of mean sea level pressure, zonal and meridional mean sea-level pressure gradients, atmospheric geopotential thickness between 850-700 hPa pressure surfaces, and wind speeds at 10 m above the surface over New Zealand for the period 1980-2099. Temperature and precipitation characteristics were examined for four tridecades (1980-2009, 2010-2039, 2040-2069 and 2070-2099), and changes projected with respect to the pseudo-present tri-decade (1980-2009). An average temperature increase of 0.3-0.4°C per tri-decade is projected. Precipitation distribution was modelled using the Gamma probability function and the precipitation characteristics determined by the 'scale' and 'shape' parameters of the Gamma function. Precipitation is predicted to decrease over the north of North Island while marked precipitation increases are projected over the western, central and southwestern areas of the country. Changes in coefficients of variation of monthly precipitation exhibited both increases and decreases in interannual variability of precipitation over the region. Interannual variability in monthly precipitation increases to 1.2-2.2 and decreases to 0.5-0.9 times the pseudo-present coefficients of variations of monthly precipitation by 2070-2099 are projected. The tri-decade to tri-decade changes however, show no trend and this may be attributed to high frequency variations in monthly precipitation.

A water balance model was adapted to assess the impacts of changes in precipitation and temperature in two case studies of catchment response. Time series of monthly flows were simulated for each tri-decade. Data for each tri-decade were modelled using a lognormal distribution to generate a 3000-year data set, which was used in a risk analysis to determine the reliability, resiliency and vulnerability of the two water resource systems (hydro power and irrigation schemes). For both of these water resource systems, the changes in operational risk-descriptors with respect to the pseudo-present tri-decade, are within limits in which adjustments can be made, taking into account that traditional design criteria incorporate considerable buffering capacity for extreme events.

Aknowledgements

I am very grateful to my supervisors, Prof. John Flenley, Mr. Richard Heerdegen (Massey University), Dr. Brett Mullan and Dr. James Salinger (National Institute for Water and Atmospheric Research) for their patient supervision. Indeed, I am indebted to Mr. Richard Heerdegen, Dr. Brett Mullan and Prof. John Flenley because I feel privileged to have had such friendly support, encouragement and constructive criticisms and suggestions that have enriched this work. Their time and commitment are highly appreciated.

Many thanks to the Climate Impacts LINK Project, University of East Anglia (Norwich, UK) for providing GCM data from HadCM2 experiments. I am grateful to Mr. Daniele Denaro (Rome, Italy) and Dr. Ping Li (Vancouver, Canada) for support in the neural networks software application and Dr. Ted Drawneek (Massey University Computing Services) for his consultancy time and co-operation. I am also thankful to Dr David Roper (Mighty River Power) for permission to access the Taupo/Waikato hydro scheme hydrological records.

I am also indebted to my wife Bussakorn and our daughter Amy for their patience and encouragement throughout the programme. In a way this thesis belongs to them as much as it does to me.

I would like to take this opportunity to extend my sincere gratitude to all people who assisted me in one way or another during all stages of my PhD. programme.

I dedicate this thesis to our daughter Amy for whom all this seems worthwhile.

Table of Contents

Abstract	i
Acknowledgements	iv
Table of Contents	v
List of Figures	xi
List of Tables	xv
List of Abbreviations and symbols	xix
Chapter One: General Introduction	1
1.1 General overview	1
1.2 Greenhouse effect and global climate	4
1.2.1 The enhanced greenhouse effect	6
1.2.2 Temperature trends	7
1.2.3 Global warming uncertainties	9
1.3 Observed trends in other global climate elements	9
1.4 Trends in New Zealand's climate	11
1.5 Future climate change	12
1.6 Global warming and water resources	12
1.7 Study justification	15
1.8 Research objectives	17
1.9 Thesis organisation	18
Chapter Two: Climate and the climate system	20
2.1 Climate	20
2.2 The climate system	22

V

2.2.1	The Atmosphere	23
2.2.2	The Oceans	26
2.2.3	The Cryosphere	27
2.2.4	The Biosphere	28
2.2.5	The Geosphere	28
2.2.6	State of climate	28
2.3 Cau	uses of climate change	30
2.3.1	Orbital Variations	31
2.3.2	Solar Variability	33
2.3.3	Volcanic Activity	33
2.3.4	Atmospheric Composition	33
2.4 Mo	delling climate	34
2.4.1	Climate system response	36
2.4.2	Feedbacks	36
2.4.3	Regional climate response	38
2.5 Clin	mate change in the 21 st century	38
2.5.1	Climate model simulations	38
2.5.2	Greenhouse feedbacks	39
2.5.3	Water Vapour Feedback	40
2.5.4	Cloud Feedback	40
2.5.5	Ice-Albedo Feedback	40
2.5.6	Expected climate change in the future	40
Chapter T	hree: Research Framework Outline	44
3.1 Res	search framework	44
3.2 Dat	a	45
3.2.1	Observed data	45
3.2.2	GCM outputs	46
3.3 Cli	mate change scenarios	48
3.4 Cat	chments' response	48
35 400	ressment of impacts on water resources	40
J.J 133	besiment of impacts on water resources	77

vi

Chapter Four: Climate change	scenarios construction	50
4.1 Overview		50
4.2 Semi-empirical cross-scale	e relationships	57
4.3 Artificial neural networks	and Multivariate statistics models	63
4.3.1 The ANN model		64
4.3.2 Multivariate statistics	s model	67
4.3.2.1 Principal compone	nts	67
4.3.2.2 Canonical correlation	ion	69
4.3.2.3 Inflated multiple re	egression	70
4.3.1 Comparison of mode	l reproduction of means and standard deviations	73
4.3.2 Comparison of mode	l distribution of modelled and observed anomalies	74
4.4 Conclusion		79
Chapter Five: New Zealand pre	esent and future climate	81
5.1 Present climate		81
5.1.1 Precipitation		82
5.1.2 Wind and temperatur	re regime	82
5.2 Climate change scenarios		84
5.3 HadCM2 climate change i	nformation	86
5.3.1 Mean sea level press	ure fields	87
5.3.2 Atmospheric thickne	SS	92
5.4 HadCM2-derived scenario	DS	92
5.4.1 Mean temperature		93
5.4.2 HadCM2-derived pre	ecipitation scenarios	97
5.5 Precipitation characteristic	CS	101
5.6 Conclusions		108
Chapter Six: Impacts on hydrol	logy and water resources	110
6.1 Introduction		110
6.2 Impacts on the hydrologic	al cycle	110

vii

6.3 Hyd	rological sensitivity to climate change	112
6.4 Sea	level rise	113
6.5 Carl	oon dioxide effects	114
6.6 Wat	er demand	115
6.6.1	Irrigation water use	115
6.6.2	Domestic water use	116
6.6.3	Industrial and thermoelectric power water uses	116
6.6.4	Instream water uses	117
6.6.5	Non-climate factors influencing future water availability and demand	117
6.7 Sun	nmary and conclusion	118
Chapter Se	even: Water resources impact assessment	121
7.1 Hyc	Irological Models	121
7.1.1	Empirical models	122
7.1.2	Water balance models	122
7.1.3	Conceptual lumped-parameter models	124
7.1.4	Process-based distributed-parameter models	125
7.2 Mo	delling aspects	126
7.2.1	Parameter estimation	126
7.2.2	Scale	127
7.2.3	Model validation	127
7.2.4	Model suitability	128
7.3 A w	vater balance model (WBM) adapted to assess catchment response	130
7.3.1	Modelling elements within WBM	131
7.3.	1.1 The soil moisture balance	132
7.3.	1.2 Direct runoff (R _d)	133
7.3.	1.3 Evapotranspiration (ETa)	133
7.3.	1.4 Surface runoff (<i>R</i> _s)	134
7.3.	1.5 Sub-surface runoff (R_{ss})	134
7.3.	1.6 Total runoff (R ₁)	135
7.3.2	Effective precipitation	136
7.3.3	Priestly Taylor method for potential evapotranspiration	137

7.3.4 Radiation	138
7.3.5 Albedo	140
7.4 Impact on water resource systems performance	141
7.4.1 Reliability	143
7.4.2 Resiliency	144
7.4.3 Vulnerability	145
Chapter Eight: New Zealand water resources	148
8.1 Value of New Zealand	148
8.2 Natural water environment	150
8.3 Water from precipitation	151
8.4 Surface water	151
8.4.1 Rivers	151
8.4.2 Lakes	154
8.4.3 Wetlands	155
8.4.4 Groundwater	156
8.4.5 Ambient groundwater	157
8.4.6 Geothermal groundwater	157
8.5 Floods and drought in New Zealand	158
8.6 Drought	159
8.7 Pressures on New Zealand water environment	160
8.8 Impacts case studies	161
8.8.1 Lake Taupo catchment	161
8.8.2 Opihi River catchment	163
8.9 Catchment response modelling	164
8.9.1 Calibration and validation of WBM for the Lake Taupo inflows	165
8.9.2 Calibration and validation of WBM for the Opihi River runoff	167
8.9.3 The WBM performance	168
8.10 Evaluation of catchment response to predicted climate change	169
8.11 Future flow regime	175

8.12 Performance of water resource system: Case studies	s 176
8.12.1 The Lake Taupo water resource	177
8.12.1.1 Lake Taupo storage (levels)	178
8.12.1.2 Performance of Lake Taupo as a reservoir	180
8.12.2 The Opihi River water resource	183
8.12.2.1 The Opihi River system	183
8.12.2.2 The Opihi River system performance	185
8.13 Conclusions	186
Chapter Nine: General discussion and conclusions	188
References	200
Appendices	221

List of Figures

Figure 1.1	The greenhouse effect arises the Earth's atmosphere tends to trap heat	
near the sur	face. The numbers are given in terms of percentage each arrow represents	
relative to E	Earth-averaged solar constant, about 342 Wm ⁻² . (Schneider, 1989)5	
Figure 1.2	Global warming in the 20 th century (Adapted from Houghton et al., 1996)8	
Figure 1.3	The hydrological cycle (after Mosley, 1998.)	
Figure 2.1	The climate cube. Divisions of climate domains depicted here are	
arbitrary, ar	nd many more could exist. (Adapted from McGuffie and Henderson-	
Sellers, 199	7)21	
Figure 2.2	Schematic illustration of the components and interactions in the climate	
system (mo	dified from Houghton et al., 1996)	
Figure 2.3	The great ocean conveyor belt (Adapted from Broecker, 1991)27	
Figure 2.4	Orbit eccentricity, obliquity and precession: the three astronomical cycles	
involved in	solar input and climate variation (Imbrie <i>et al.</i> , 1984). 32	
Figure 2.5	Graphical illustration of calculated variations in in eccentricity, obliquity	
and precess	ion (0-800 ka) by Berger, 1977 (Imbrie <i>et al.</i> , 1984). 32	
Figure 3.1	Elements of a model-assisted methodology for estimation of the impact	
of climate c	hange on resource system performance45	
Figure 3.2	Location of selected 18 precipitation study points on a 0.25° latitude x	
0.25° longit	ude grid	
Figure 4.1	Construction of a simple artificial network. (Modified after Hewitson and	
Crane, 1994	4)	6
Figure 4.2	New Plymouth January (summer) modelled versus observed temperature	
anomalies v	with respect to 1961-1990, where (A) and (B) refers to neural networks and	
multivariate	e statistics models respectively7	6

Figure 4.3 Point4 January (summer) modelled versus observed precipitation anomalies with respect to 1961-1990, where (A) and (B) refers to neural networks and multivariate statistics models respectively
Figure 4.4 Milford January (summer) modelled versus observed temperature anomalies with respect to 1961-1990, where (A) and (B) refers to neural networks and Multivariate Statistics models respectively
Figure 4.5 Point18 July (winter) modelled versus observed precipitation anomalies with respect to 1961-1990, where (A) and (B) refers to neural networks and Multivariate Statistics models respectively. 79
Figure 5.1 'A' Plot of monthly mean sea level pressure simulated by HadCM2 versus NCEP-reanalysis values over 'New Zealand region' and 'B' quantile-quantile plot of HadCM2 and NCEP monthly MSL pressure anomaly distribution. A comparison based on data for the tri-decade 1980-1989 for both NCEP and HadCM288
Figure 5.2 HadCM2 mean sea level pressure difference (hPa) between 1980-2009 and 2070-2099 tri-decades: presented in A and B for summer and winter respectively
Figure 5.3 HadCM2 model atmospheric thickness in between 850 and 700 hPa pressure surfaces in geopontential metres for the months of January (let-hand panel) and July (right-hand panel) for the period 1980-2099. 92
Figure 5.4 HadCM2-model derived mean temperature changes for 2010-2039 with respect to 1980-2009, contours every 0.1°C. Upper panels: left-hand for January (summer), right-hand for April (autumn). Lower panels: left-hand for July (winter), right-hand for October (spring). .94
Figure 5.5 HadCM2-model derived mean temperature changes for 2040-2069 with respect to 1980-2009, contours every 0.1°C. Upper panels: left-hand for January (summer), right-hand for April (autumn). Lower panels: left-hand for July (winter), right-hand for October (spring)
Figure 5.6 HadCM2-model derived mean temperature changes for 2070-2099 with respect to 1980-2009, contours every 0.1°C. Upper panels: left-hand for January

(summer), right-hand for April (autumn). Lower panels: left-hand for July (winter), Figure 5.7 HadCM2 model derived precipitation changes for 2010-2039 with respect to 1980-2009, contours every 10%. Upper panels: left-hand for January (summer), right-hand for April (autumn). Lower panels: left-hand for July (winter), right-hand Figure 5.8 HadCM2 model derived precipitation changes for 2040-2069 with respect to 1980-2009, contours every 10%. Upper panels: left-hand for January (summer), right-hand for April (autumn). Lower panels: left-hand for July (winter), right-hand Figure 5.9 HadCM2 model derived precipitation changes for 2070-2099 with respect to 1980-2009, contours every 10%. Upper panels: left-hand for January (summer), right-hand for April (autumn). Lower panels: left-hand for July (winter), right-hand Figure 5.10 Precipitation distribution characteristics to demonstrate the sensitivity of changes in the gamma scale (β) and shape (γ) parameter at study point 2.....104 **Figure 5.11** HadCM2-model derived precipitation Coefficient of variation (CV) ratios for 2010-2039 to 1980-2009; contours every 0.2. Upper panels: left-hand for January (summer), right-hand for April (autumn). Lower panels: left-hand for July Figure 5.12 HadCM2-model derived precipitation Coefficient of variation (CV) ratios for 2040-2069 to 1980-2009; contours every 0.2 (ratio). Upper panels: left-hand

Figure 7.1 Conceptualisation of the water balance model (Yates and Strzepek, 1994).131

Figure 7.2 Variable system performance with infrequent failures (left) and without	
failures (right)	
Figure 8.1 Main river catchments and typical flow patterns in the North Island. Adapted from Taylor et al., 1997 (after Duncan, 1992)	
Figure 8.2 Main river catchments and typical flow patterns in the South Island. Adapted from Taylor et al., 1997 (after Duncan, 1992)	
Figure 8.3 Mean monthly precipitation, natural inflow and potential evapotranspiration for the Lake Taupo catchment, 1961-1998)
Figure 8.4 Mean monthly precipitation, runoff and potential evapotranspiration of the Opihi River catchment at Saleyards Bridge, 1965-1979	ŀ
Figure 8.5 Observed versus modelled Lake Taupo monthly mean inflows for calibration and validation series 166	Ś
Figure 8.6 Modelled versus observed mean monthly runoff for calibration and validation series of the Opihi River catchment at Saleyards Bridge, 1965-1979	3
Figure 8.7 Simulated mean monthly Lake Taupo inflows for the pseudo-present tri- decade (1980-2009) and the following three tri-decades	
Figure 8.8 Simulated mean monthly runoff at Saleyards Bridge (Opihi River) for the pseudo-present tri-decade (1980-2009) and the following three tri-decades	5
Figure 8.9 Lake Taupo natural inflow duration curve for the pseudo-present tri- decade (1980-2009) and the following three tri-decades)
Figure 8.10 The Opihi River runoff duration curves at Saleyards Bridge based on month	ly
data for the four tri-decades starting in 1980	ł
Figure A1 Observed versus modelled monthly Lake Taupo inflows for calibration (1961-1990) and validation (1991-1996) periods	l
Figure A2 Observed versus modelled monthly runoff of the Opihi River at Saleyards Bridge for calibration (1965-1974) and validation (1975-1979) periods	2

List of Tables

Table 1.2 Storage and turnover in the major hydrological stores (Jones, 1997)...... 14 Correlations among the predictor variables for January (Jan) and July Table 4.1 (Jul) of 1961-1990. The predictor variables were regional anomalies of: X_1 = mean sea level pressure; X_2 = zonal mean sea level pressure gradient; X_3 = meridional mean sea level pressure gradient; X_4 = atmospheric geopotential thickness between 700 and Correlations between the predictand variables and the predictor variables Table 4.2 for January (Jan) and July (Jul) of 1961-1990. The predictand variables were: $Y_1 =$ precipitation at study point 1; Y_2 = precipitation at study point 12; Y_3 = precipitation at study 15; Y_4 = precipitation at study point 17; Y_5 = temperature at Kaitaia; Y_6 = temperature at Dunedin. The predictor variables were regional anomalies of: $X_1 =$ mean sea level pressure; X_2 = zonal mean sea level pressure gradient; X_3 = meridional mean sea level pressure gradient; X_4 = atmospheric geopotential thickness between

Table 4.3Canonical correlations (January and July 1961-1990).61

Table 4.4Test of H0: The canonical correlations in the current row and all thatfollow are zero for January and July62

Table 4.5Explained standardised variance of the predictand variables by canonical
variables (CV) of their own and of the predictor variables, for January and July (1961-
1990). The predictand variables were: precipitation at study points 1, 12, 15, 17; and
temperatures at Kaitaia and Dunedin. The predictor variables were regional anomalies
of mean sea level pressure, zonal and meridional mean sea level pressure gradients,
atmospheric geopotential thickness between 700 and 850 hPa pressure surfaces and
wind speed at 10 m above the ground.62

Table 4.6 Principal component loadings, where $Prin_1$ and $Prin_2$ represent the first and second principal components respectively. Mslp', dp_z', dpm', thk' and wsp'' are anomalies of mean sea-level pressure, zonal pressure gradient, meridional pressure **Table 4.8** Observed (Obs) and modelled, artificial neural networks (ANN) and multivariate statistics (MST), precipitation means (\bar{x}) and standard deviations (σ) for summer (December - February) using independent data sets. RMSE represents Root mean square error. 74

Table 4.9Observed (Obs) and modelled, artificial neural networks (ANN) andmultivariate statistics (MST), precipitation means (\bar{x}) and standard deviations (σ) forwinter (June - August) using independent data sets. RMSE represents Root meansquare error.74

Table 5.3Degree of distribution spread (Sp), coefficient of variation (CV) andexpected magnitude (E[x]) in response to the gamma distribution parameterhypothetical changes at study point 2.104

 Table 7.1
 Albedo values for different land covers included within WBM

 Shuttleworth (1993)
 141

Table 8.2Calibration (1965-1973) and validation (1974-1979) of statisticalassociation between the observed and modelled mean monthly runoff for the OpihiRiver at Saleyards Bridge.167
Table 8.3Seasonal precipitation change scenarios for the Lake Taupo catchmentwith respect to pseudo-present tri-decade (1980-2009)
Table 8.4 Seasonal temperature change scenarios for the Lake Taupo catchmentwith respect to pseudo-present tri-decade (1980-2009)
Table 8.5Seasonal precipitation change scenarios for the Opihi River catchmentwith respect to the pseudo-present tri-decade (1980-2009).170
Table 8.6 Seasonal temperature change scenarios for the Opihi River catchmentwith respect to the pseudo-present tri-decade (1980-2009).171
Table 8.7 Estimated mean monthly relative humidity (%) for the pseudo-present tri-decade (1980-2009) and the following three tri-decades for the Lake Taupo atchment. 173
Table 8.8 Estimated mean monthly sunshine hours/day for the pseudo-present tri-decade (1980-2009) and the following three tri-decades for the Lake Taupo atchment. 173
Table 8.9 Estimated mean monthly relative humidity (%) for the pseudo-present tri-decade up to the tri-decade 2070-2099 for the Opihi River catchment.174
Table 8.10 Estimated mean monthly sunshine hours per day for the pseudo-presenttri-decade up to the tri-decade 2070-2099 for the Opihi River catchment.174
Table 8.11 Lake Taupo projected specific exceedence of natural inflows in a given percentage of time. 180
Table 8.12 Reliability, resiliency and vulnerability (severity s and sequence $\{x\}$) ofLake Taupo levels as a reservoir system for the Waikato hydro scheme with respect tothe current operation policy of water releases182
Table 8.13 Specific exceedence runoff in a given percentage of time for the OpihiRiver at Saleyards Bridge.185

Table 8.14 Reliability, resiliency and vulnerability (severity s and sequence of
occurrence {x}) of the Opihi River water available for LPIS irrigation purposes while
meeting the other users' demands

List of abreviations and symbols

Ai	Snow accumulation in month i
alb	Albedo (short-wave radiation reflection coefficient)
ANN	Artificial neural networks model
CFC	chlorofluorocarbons
CH ₄	Methane
CLIMPACTS	Climate change, variability and environment effects programme
CO ₂	Carbon dioxide
CSIRO	Commonwealth Scientific and Industrial Research Organization
°C	Degrees Celsius
C_p	Specific heat at constant temperature
Cv	Coefficient of variation
DJF	December, January and February
dp _m '	Anomalies of meridional mean sea level pressure gradient
dp _z '	Anomalies of zonal mean sea level pressure gradient
E	Evaporation estimate
Ea	Evaporation estimate which assumes an unlimited availability of
	energy
Er	Evaporation estimate that assumes the ability of the system to
	remove moist air is not limiting
Erc	Reference crop evapotranspiration
E[x]	Expected value
e _d	Vapour pressure
ENSO	El Niño South Oslillation
ЕТа	Actual evapotranspiration
ЕТр	Potential evapotranspiration
f	Cloudiness factor
G	Soil heat flux
GCM	Global circulation model
GG	Greenhouse gases
gpm	Geopotential meter

HadCM2	Hadley Centre coupled ocean-atmosphere global climate model
hPa	Hekta pascal
IISA	The International Institute for Applied Systems Analysis database
IPCC	Intergovernmental panel for climate change
IPO	Inter-decadal Pacific oscillations
IR	Infrared radiation
J	Joules
JJA	June, July and August
K_w	Diffusivity
1	Mixing length
LAM	June, July and August
LPIS	Level plains irrigation scheme
m	Meter
mf _i	Snow melt factor in month i
mm	millimeter
Mslp'	Anomalies of mean sea level pressure anomalies
MST	Multivariate Statistics model
μm	Micrometer
Ν	Total day length
п	Bright sunshine hours per day
NCEP	National centers for environmental prediction
NIWA	National Institute for water and atmospheric research limited
NOAA	National oceanic and atmospheric administration
N ₂ O	Nitrous oxide
NREBP	Artificial neural networks software package
PgC	Petagram of carbon
O ₃	Ozone
P_{eff}	Effective precipitation
P _{effi}	Effective precipitation in month i
Pm _i	Observed precipitation in month i
ppbv	Parts per billion by volume
ppmv	Parts per million by volume
Prin	Principal component

Prob	Probability
Q_o	Observed monthly discharge
Q_p	Modelled monthly discharge
R_a	Extraterrestrial radiation
R_b	Baseflow
Re	Direct runoff
R _n	Net radiation
R _s	Surface runoff
R_{ss}	Sub-surface runoff
Rt	Total runoff
RMSE	Root mean square error
S _{max}	Maximum storage capacity (depth)
SAS	Statistical analysis software
Sp	Degree of distribution spread
Т	Mean air temperature
1	Time
thk'	Anomalies of atmospheric thickness between 700 and 850 hPa
	pressure surfaces
UK	United Kingdom
UV	Ultraviolet radiation
WBM	Water balance model
Wm ⁻²	Watts per square meter
WMO	World Meteorological Organization
wsp'	Anomalies of wind speed at 10m above surface
$\frac{1}{x}$	Mean
2	Relative storage ($0 \le z \le 1$)
α	Reliability; sub-surface runoff proportionality coefficient; relative
	humidity index
β	Gamma function scale parameter; direct runoff coefficient
γ	Gamma function shape parameter; resiliency; sub-surface runoff
	exponential coefficient; psychometric constant
Γ	Gamma probability function
V	Vulnerability

- ε Surface runoff coefficient
- Δ Slope of the saturated vapour pressure curve
- σ Stefan-Boltzmann constant