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Abstract 

A unified development of the theoretical basis of 

response sur fucc methodology , particul~rly as it 

applies to second ord~r re3ponse surfaces , in 

presented. ,\ ri. 6orous justification of th0 V(.lrious 

tests of hypothesis usually used is s~ven , as ~el l 

as a convcnic~t means of mukins tccts on who]c 

factors , rather than o~ ter~s of a ~iven dcgrcr , 

a s is c ustomary at present . Finally , the super-

- impos ition of so~e e lc~e~tary clas~~ ficati on 

ii 

dcsier:s on a 1'€1:;po:,s,· s-.trface :i.es:i.s,1 is consi.:::crcd , 
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1 • Response Surfarc .cthodology. 

Introduction 

Response surface methodology seeks t o estimate , 

by regression methods , that linear combination of 

previously specified gradu~t~ng functions of a number 

of inde pendent ~ariubles ~hich provides , in some scns e t 

t he best fit to an obs e rved response. 

While t h e technique s of fittinc are identical 

with , or closely related to , th ose of multiple linear 

regress io n , the emphasis is Elightly different , in 

that coc~ide rabl e stress i~ laid on the desicn as~cct 

of th ~ rroble~ . It is assu:1.cid t hat ~he 2. evels oi' the 

indepcn-:ie:it vari~0lc::.; rtay be p~e-sps~iL.ed at will , 

wi thir. k· oad 1 imi ts . The spac f! de fin cd on the in,ie pendent 

vari able~., , und v;ltLl!'"" the:~t: limits , ~~s terme1 the 

regio n of opera, ility. Th e ~ub-cpace o~ this r ecio~ , 

i n 1•1hicJ-: cstir::a:es o f resl'or::;c are of interes: to the 

experi menter , i 3 tcr~cd the r~gion of interest • 

Typically , a number of experiments are carried 

out , a ccnrdi~~ to so~e previously decided experimental 

p l an . Each experi men t c onsists of t he ~easurement o f 

an obser ved response at a point defined by so~e 

combinati on of the in dependent variables . I n sorr.e 

c ases , sequent ial designs are used - that i s , t he 

c u r ve fitted to date is used as informatio n to assis t 

in th e specifi cation of the combination of independen t 

va r iables t o be used i n the next experiment. 

The bas ic va ri ab ility of the obs e rved response 
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is measured by replication of experimental points, 

or by the residual error of the observed response 

from the fitted surface. This latter error can arise 

from a true observational error or from inadequate 

specification of the model, whereas the error based 

on point replication estimates true experi~ental error 

only • For this reason, when point replication is used, 

the residual error may be used to teat model adequacy. 

The model 

The model is developed by assuming p independent 

variables, given by 

and k pre-specified vector graduating functions of 

these variables, ~iven by 

The observational response is assumed (or known) 

to be 

y ;')+£ 

where e is a random variate with zero mean, and the 

so-called "true response" Y) is given by the exact 

relationship 

T 
1J = ~~ ( 1. 1) 

where~ is a vector of unknown coefficients. The 

measurement of an observed y, for some known~, is 

termed an experiment. The values of E arising from 

different experiments are assumed to be statistically 
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independent, wi th constant , unknown , varia nce 2 
a • 

The aim of the sequenc e of experiments i.s to 

e s timate ~ by~, and , from thi s , to es timate the response 

at any point of t he rccion of interes t by 

A 'I' 
y == X b 

To achieve thi s , n c xpcrjments ur e co ndu cte d , 

at the point s ~ , u=1 , • • • n 1 y ielding n obs e rved 
- u 

r esronses 

No·.v let 
rp 

Z - ( ~
1 

••• «; ) ... of diEien .<:~:; on nxp 
- - n 

X - x( ~ ) 
~ u - - u 

X :... ( x 
-1 

,T x, of di~ension nxk - n 

s o that l is t he observ e d value of the tru e r esponse X~-

Properly f.:peaki.nt,; 1 2 i s th e dcsi gr: rr:n t rix , s::.Lc e 

....-. ......... 
~ di.::· ter:;:::..r:e:::; x. !:owc "...~e r , on c e ~ i~ c !".:.osc:~r; , o c co r di!:t; 

to some desicn criteri on , it is co nv enient to r e f e r to 

X us th e dcsicn ~atrix , since all operations are in 

t errr:s of x. 

ln the v3s t ma jority of urpli cations , ~ consi s t s 

of all powers of the~, se para te ly or togethe r , up to 

some maximum degreed. The desi gn is then r eferred 

to as a dth order design. Thus , for a second order 

des ign 

For th~s type of ~esigu , it is conveni ent to 

use the subscripts occ urring in the correoponding 



element of ~ t o identify the elements of ~, th us , 

for second or de r designs , 
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In ccncral , for a dth order de sjgn , there wi ll 

be ( p:d ) coefficients. 

;'ii.thin tl: is fr ar.1cw o!'1; , !:.ft i.s .:1 i;ent:>ral dth 

order polyno~ial in p variables , 

The exceptions to this k ind of polynomial are 

of t~o ty !-~5 • In th e first type , the clements of x 

are I ot l!O\•;0r::; of tr.e elem<.:nts of ~ . For cxamr,le , 

V. J . Box (1 968) considcrdd the functions ;i vcn by 

x. :::. exp ( ~ .) 
J.. J 

as well as other no n-poly~omial functions , 

The seco~d ty pe occurs when certa~n of the tcr~s 
m 

of the polyno;;1~a::.. ·-5//J c.:.rnr: o t be estir~Dtcd , and must , 

t herefo:--e , be o:ni tt c::.. For ex~1--::ple , in ti:e bivc,,riute 
,......, 

Cilse ( p:=2) , i: ..::. ~-:pcci fied t.Le 1,oints of a 3x5 ff.lctorio.l 

design , r.cc essarily the pol;y 11or:1ial elc1N:nts of x nn,:., t 

be n. sul.Jsct of 

2 2 . " ? '"' L. ? :;:, 7 li ;:, !.i. 
1 , c;1 , ~ 2 ,E. ,i, ~.2 , ~~ ~2 ,c; 2 ,~,i( ~ ,~-.~~ ' ~ 2 ~s~~:, s/~~, ~/. _: ,e:~ t2 

?. I .., 
which o::iits the co rnbi,w.tion::, ~ 1, ~ ~ , CJ.nd c;' ~{ 2 , ·,:ho3e 

coeffici en ts cannot be es t imated because an i nsufficien t 

nu mber of levels of ~, was used , Similarly only two 

coeffici ents of degree five or higher may be es timQ ted 

fro m this design . In practice it i s unlikely tha t an 

attempt would be made to estimate the co e fficient s 

of ~1~~ or ~ ~~~- If i t were , and if the factorial 
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were unreplicated , an exac t fit would be obtained . 

Esti'.'cntion 

Methods, " cul~i~utin; in the estimates ~ and y , 

rnuy be divided into desig n proce d~rcs and e~ti~ati on 

procedures, Desigc rroccdur es are those used to specify 

,..., 
~ and hecce X. Disc~ssio~ 0!1 methods of selec ting the 

design is outside the .s c ofc of thi s t!-lesis , Bs tir--:atio!1 

procedur es arc those which, given X &nd y , se2k to 
~ 

estimate b , In general , ~ is assu~e d to be a line3r 

co ~b inat ion o f tte o bs8rvc d responses , of th e form 

b - T·-,· - ~ 

wh 0re '1:' depends only on X (not, fer exa::-.p l e , 0,1 ~ : . 

The co::..110J,cct csti,n2.tor a!'it::cc froc1 r.1in~1::ization 

of t.e s u m o~ squar es of the 
A ,.,-,, . 

y - y • k·nis 
u u 

is 

kno~n as the l east squ~ree csti~utcr 1 and ic , in fact , 

id~ntical to that obtained ~hen E ia assu~ed to ha\c a 

nor~al di~tribution , a nd ~axi~um l~kelitood e3ti~ation 

us ei . 

The quantity to be mini~izcd is 

T 
( y-Xb) (y-Xb) 

._ - - -
Differentiation with respect to~ a nd equation to 

zero yi elds 

f rom w:1i ch 

b = ( X
1

rX)- 1XTy 
-.. - -

or T = (XTX )- 1XT 

(1. 2 ) 
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. d . t t t XTX . . 7 If x'l'x . . 1 provi e~ 11a 1s non- singu~ar. . is singu ar , 

a gene r alized inverse may be used , but is unnecessary 

in the present case. 

This s traight-for&urd esti~ator haG many desirabJe 

prop~rties. Tn pc1 ·t:i.c:J.la;:· , 

E(12_) =.: o?:o-'1xTX .§ :: I?, ( 1 • 3) 

Vnr(b) = (XTX)- 1XT Var (r) X(XTX)- 1 

fro:n t~,c 2.ss 1;r.1:r_:.tions abcut e . !kne e the cstj ·:- a tor 

is unbiaccd r~a~ (1.3). !t can also he shc~n tha t 

(~. 4) gives the mini~u~ variance aris ine fro ~ an unbiased 

linear es ti~ator . 

Fin::-1] y 

for a .:::·b:. tr.:!.r -· ~ ' no:. necessarily or: c of the x • TlL1:_; 
- '..l 

rr. '1 
the vario:J. s v~rianccs c an ca~ily be derived fro~ (X~X)- · • 

ThiE l e3ds naturally to the cor.cept of a rotatnble 

cie~;.:..gn , ·>:hich is a polynomial design for which Va r(y) 

dei;erld s or.ly or. o
2 

and ~ T~. That is , Var(y) is invariant ~ ,.., 
under orthoconal rot ati on of th e ~ -axes , 

It should be emphasized that the estimator defined 

above is not the only linear estimat or possible . In 

particular , in conditions where the specified model 

(1.1) is inadequate , that is , where y contains other 

t erms than those- in a li.near combinat ion of the specified 

~, a different estima tor may a~sist in c ompensa ting , 
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in s ome degree , for thi s inadequacy i a t the e xpe nse 

of greate r variance • 

Hypoth osi~ t csti~g 

From thi .s point h:ypotL csis tc~tin6 will b e 

c o ,,s:: .~.-.: red 1 .:.J.:-id tL c ,L"i6 i ti0nn] as sun j ,t ion ih~ t tr:o 

€ are no r ~ally dis tribut ed ~il l be re quired. 

Ifo w l e t 

;fo te tha t bot :i :'. D- nd ~-: nro i de:npo t r.nt r:iat r iccs , nx n, 

-:- t {Y ' y ~ v ) - 1 '{ ~} tr 3 r .. \., , -"- . ,. 
:ix:: 

= t {()''.,:' ..,) - 1·/!:,f } r \ \,. .\. ~1,. .J .. 

p:,:r: 

sin~e co~pn tible ~atrices c o~mu tc ~~ dc r the trac e 

tr N = tr I = p 
pxp 

tr M = tr I - tr i\ = n-p 
nxn 

Th e r es i.dual su~ of squares (1.2) i s equal, on 

expans:ion, to 

,.. c- E T 'l',_., 
;::;0 = Y y-y l'. 0 - - - -

T 
= y My -

It is necessary to r ecall a th eore~ on the 

distribution of quadra tic forms ( see , for example , 

Gray bill (1 961) ). 

(1.5) 
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Theorem : I f y - N(µ , o2I), then yTAy/ o 2 i s distributed - - - -
as X.' 2 

( k ,),. ) , where X-' 2 
represents the non-central 

h . ' ' . t . ' t . d ' 1 'I'A c J-squarea uis riou ion, a n A=--2 µ µ , if, an d 
20 ~ -

onJy if, A i s an idempotn~t matrix and tr A - k . 

In the pr,.:-::;cnt 1,i t llil tion , i - r: (): ~, cl:;:) and hence 

SSE 
a?.. 

~ ~ 

'I'hus .SSE/ a"- ta.s a c en tral X'-
di~tribution with n-p aecrces of f reedom, 

The second ter~ in (1.5) is the sum of cquares 

a c ~ounte~ fer by the recression , a~d is 
m 

SSR ==- ( 1. Nl 

3y a proce s s of r eascnint si~i l ar to th3t for 

~SE , it is an easy matter to establish that 

wh ere 
1 rr m 

' -· - fe_ ~X1.''X f?_ I\ -~ -, .: • 'J 

..... r_ - -
cC'f 

1 rp m 
p., -vl. " P.. 

:.: --? f:::; I, .A j.:: 
2l) '- - ~ 

Agai n fro~ t he theory of quadr~tic for~s , a 

necessary and su ff i c ient c ondition for 

to be indepenirnt is th a t AB:O . 

and 

Hence , sinc e rN=O , SSE and SS H are independen t 

F ::: SSR/ SSE 
p n - p 

ha s a non-c entr a l F-distribution with p and n-p de grees 

f f d 1 t 1 . t t - 1- A TXTY f1. o ree om anc non-c e n r a i y parame er 2 r,:. · · ~ · 
20 

Thus F may be used to t es t the hypothesis that ~ =-=Q.• 

In r e sponse surface design it is us ua l to further 

subdivide S.S'E by . taking·advant age·o r point r eplication. 

As a pre limi nary, suppose that t he model 
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specific a tion (1.1) i s incorrect a nd tha t while the 

model 

T n - X J:l . I - ~ 1 t::1 

has be en assu~ed 1 th e true model is 

Using x
1 

and X~ in ~n obvious ~ay, 

r 'I' )-1T b = ,x1x1 x1l 

In these c ircu~st2n~es 

and bis a tiascd e,.; Lima tor of A _...,.·he t ' '".J+-.....,~ v r:::::1 • -- ~I,. .... L, .......... ~ 

\'iil E.;c .. ( 1951)) rt?d ::.-c~Llt:r<:s th e o:t c:, t of tJ; e bic:s, 

and 

Pu t :inz; 

--~ 
02 

! . I v ('•'T. , ,- 1,,T 
·-, ::. - ;,1 ' ·1 ;·1' ·'•1 

':1 
ss~ : . .- y· ;.~y ,-

How e ver, int~ , p~csent c ase 

and thu s 

= 1 A T). T , )' 11.. ..1 O 
- ~ t::'- 2 ' 2···1 ---.~ 2 r 
20 '- - C. 

in general , and the F-tcs t described above is no longer 

available. 

Suppose, however , that point replic a tion has 
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been use d, and that r di s tinct points have been included 

in the design, the sth of them n times , s=1 , ... r , and 
s 

r E
6

~ 1 n
5 

= n , Also, let y
5 

be the group mean of the 

y-valucs measur ed at the sth dist inct point, 

Without l oss of 5enerality , th e poin ts may be 

arranged in such a way tha t then points in the sth 
s 

group arc together in the land X matrices, 

Now define 

K = I -

0 

0 

1 
- J n n r r 

- I - J 

where J is then xn ~atrix with al~ unit elements, 
n s s 

s 
so tlw. t , without poir. t repljcation, n =1, a~d Ka 0, 

s 

No, K2 =K , hence K is idempotenti and tr K = n-r, 

,-, 
Al s o, since .=. , 2-r. d hence x

1 
and x

2
, consj_.st of r croup~, 

If the y-vulue~ are standardized by 

-where y
5 

i s the gr oup mean 

= Kf 

containing y , then 
u 

Now SSW , the sum of squares within groups of 

observations at the same point , is given by 

s s w = ~ T f = l TKl = ~ T K € 

and since ~ ~ N( Q, o
2 r) , and tr K = n-r, 

SS\'/ 2 
2 - X. ( n-r) 

a 
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by the theor em quoted for SSE. Also , SSW and SSR arc 

ind epe ndent, since 

Now cons ide r SSF ( for sum of squares due to 

l a ck of fit) , de fin ed by 

.SSF -- ssr~ - ss 1;: 

= y'r ( M -I-'. )y ~ 1 ::.. 

(M1-K) 2 
') 

K2 Now = ML - 1~
1 

K - KM + .., 1 I 

= M1-K 

tr (M 1-K) - tr ~-l 1 - tr }; 

= r - p 

Henc8 1 from the t nA cr e m, 

w:1ere . i A -K ) ( X ~ A A + z 2122) 
I !I- I 

Thi s require~ , reasonably enouch , r>p. 

Finally, SS~= T,, h ~· X ()'TX )- 1X J i,1y we re H1::;_ ,., '1,., ,A , 
,..,,. . I I I 

Now note that , where Lis an ar b1.trary matr ix, 

T T 
= E(tr t LI)= E(tr L]l ) 

= tr [LE(X1~ 1+X2~2+ f )(X 1~ 1+X2~2+€ )TJ 

= tr [L(X1~1 +Xz~2 ) (X 1~1+X2~2? +c/L] 

T T 2 
= tr P- X LX{i. + o tr L 
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whe r e 

(

~ 1 ) 
~ = 

~ 2 

Fr o m thi s , the expected va lues of the vario~s 

sums of squares are readily deri ved • Th e a nalysis l s 

given in t able 1. 

TabJ e 1 

Basic rcspon.se t1urfaCe A! :0 1
/ 

Sourc e 

Regressio:1 

Lac k of f::t 

Error within 
replic ~ ted ~oints 

Total 

of squu.rcG D? 

rn 
:: y' X t 

- 1 -
p 

SSF by subtraction r-p 

n- r S.S~'i T,. 
= l.. J\ l_ 

c· " rn T 
u.J ~ = 1. y n 

? 1 ',' T 
- _11,. -v~ ·· ·, p., 

0 + t:: ,, . , ,. ' /-::! 
}:; - I ._ 

2 1 ~-=1 
V 1'., . . a_ 

C •-- _ .... , : 1•'-· ,-.,_ ,._ r -p - L L C. - i:..:.,. 

Note that withou t replication n~r , and if ~ 2=J , 

t ab l e re duces to the simpler f or~ d e rive i earlier • 

While the above argument establishes the theoreti c al 

j ustification for the use of the F- tests , the test of t he 

wh ole regression is , in practice , of little use . 

Howe ver , it i s perfectly general , and n ot dependent on 

a polynomial specific a t i on of!· In the event that a 

polynomial i s used , the SSR is ordinarily broken down 

into the c lassification shown in table 2 , 



Table 2 

Conventional ANOV for regression 

c oefficient~ in polynomial model 

l-'.e a n , {!>
0 

Linear terr.is 

Second order ter~s 

Third order t~rms 

dth cr ct ·,r t erms 

DF 

1 

p 

1 
2p(p+1) 

1 7~( p+1) (p+2) 
t:;, 

p 
r, d- 1 

- '1 i l.= 

13 

~hil3 thi s is suitab l~ fo r establ i shin; t he true 

de~r0e of t h e poly no~ial , it 

th e i!r.porta:1 ::: e I in the finc1 l res1)0:1 ,:.c I of a p r,rticuL ... r 

~ - Sec tion 3 of thi s thesis cons iders the strac tur c of 
rp 

X£X, for the second order polyno~ial ~odcl , in some 

det ai l , in ord e r to f o.c ili ta te te sts a i med at es ta blj_sh:;.nc 

the importance of particulor elements of ~ 

Furt her topic s 

In field experiment s , each experiment usually 

c ons ists of a plot of ground , In most circumstances , 

th e number of such plots which can be assume d t o 

represent e ssen tlally the same external conditions 

is quite limite d, 
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In order to control this t ype of environmental 

variation, a block s tructure may be superimpoced on 

the response s urface design , yielding a mode l of the 

for:n 
m 

( 1. 6 ) 

where ~ is t he b]ock e ff ect ass ocia ted with the wth 
VI 

block , with r~ =0 · 
VI 

w 
De: ::; icns inc lu d in!__; such block s tr:.ic b:re:, were 

introduc ed by DcPa un (1956) and elnbor~ted by Box and 

Eu:itcr ( 1-757) in U:e co.se of rotat;,tle desir;i,0 • ~'he s e 

variatio:-1 . 

A n,~tura.l ext c:-::.s:i en of this type cf de sic:-, 

t o conside r the possibility of supcri~pos icg a ~urth er 

trcot~ent e ff ec t, ~t~ch , ~n pr3ctice , could rcprc5ent 

T n =, 0c +T +:· P, 
- , w v~t~ 

where n~~ T ~s the vth treaL~e nt ef~cct , As far as 
V 

trc &tment ~ are c o~cerncd , su ch a model is identical 

to the analysis of covariunce model , ~h ich uses the 

r egression variables! to reduce variation in the 

response , major interest being focus sed on the 

superimposed treati:.cnt e f fe c ts . A response s urface 

approac h would h ave equal interes t in both parts of 

the fitt ed model . 

Pursuing thi s line of enquiry further , section 4 

of this thesis conside rs the implications of combinin~ 

var iou s classi ficat ion designs with a respor.s e surfnce 

design. 
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One obvious extension of the rr.ociel de5cribed 

by (1 . 6) i s to allow~ to vary with th e block , giving 

a model of the for~ 

In ~any appl ic nt ic~s the question of the doGree 

t1f corrc.sror.dence bct·.v ::0 en t.he :iud ividual r•2cre--si ons 

A &nd the overall r egressi on ~ is of conside rable i~portaccc. ~ -.. ; 

Section 4 a~~ o considers , briefly, thi s aspect of 

r e sponse i, 1,rf<lce met:2c dology. 


