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Abstract

A unified development of the theoretical basis of
response surface methodology, particularly as it

applies to second order response surfaces, is
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-
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presented. A rigorous Jjusti ation of the various
tests of hypothesis usually used is given, as well
as a convenient means of making tests on whole
factors, rather than on terms of a given degree,
as is customary at present. Finally, the super-
~imposition of some elementary classificatien

desigrs on a response surface design is considered.
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1« Response Surface Methodologzye

Introdnction

Response surface methodology secks to estimate,
by regression methods, that linear combination of
previously specified graduating functions of a number
of independent variables which provides, in some sense,
the best fit to an observed response.

While the techniques of fitting are identical
with, or closely related to, those of multiple linear
is glightly different, in

[&]

regression, the emphasi

L4y]

that considerable stress ie laid on the design aspect
o b

of the problem. It is assumed that the levels of the

independent variatles may be pre-specified at will,

within broad limitse. The space defined on the independent

region of opera
in whick estimates of response are of interest tc the
experimenter, is termed the reglon eof interest.

Typically, a number of experiments are carried
out, accerding tc some previcusly decided experimental
plan. Each experiment consists of the measurement of
an observed response at a point defined bty some
combination of the independent variables. In some
cases, sequential designs are used - that is, the
curve fitted to date is used as information to assist
in the specification of the combination of independent
variables to be used in the next experiment.

The basic variability of the observed response



is measured by replication of experimental points,

or by the residual erro£ of the observed response

from the fitted surface. This latter error can arise
from a true observational error or from inadequate
specification of the model,.whereas the error based
on point replication estimates true experimental error
only. For this reason, when point replication is used,

the residual error may be used to test model adequacy.

The model is developed by assuming p independent

variables, given by

§= (&, -.r €))7 |
and k pre-specified vector graduating functions of
these variables, given by

X = 5(5) where x is kx1

The observational response is assumed (or known)

to be

Yy =1N+¢€
where € is a random variate with zero mean, and the
so-cal}ed "true response" n is given by the exact
relationship

7 =x8 (1.1)
where 8 is a vector of unknown coefficients. The
measurement of an observed y, for some known §, is

termed an experiment. The values of € arising from

different experiments are assumed to be statistically



incdependent, with constant, unknown, variance 02.

The aim of the sequence of experiments is to
estimate £ by bk, and, from this, to estimate the response
at any point of the region of interest by

y=xb

s

To achieve this, n experiments are conducted,
at the points gu, u=1, «ss n, yiclding n obsorved

responses

T
¥ = (y1 N yn)
Now let
= \T . .
= = (&, «o¢ § )" of dimension nxp
r it et 4 |
_ b
X =X
%, (Cu;
qﬁ
and X = (51 i gn)' of dimension nxk

so that y is the observed value of the true responsec Xg.

Properly epeaking, .= is the design matrix, since
is chosen, asccording
to some design criterion, it is convenient to refer to
X as the design matrix, since all operations are in
terms of X.

In the vast majority of applications, x consisis
of all powers of the §, separately or topgether, up to
some maximum degree d. The design is then referred
to as a dth order design. Thus, for a second order
design

X(E) = (15 & o+v €3 €7 o0 607 £,y «ooE 6"

For this type of desigi, it is convenient to

use the subscripts occurring in the corresponding



element of x to identify the elements of 8, thus,
for second order designs,
(ﬁ;ﬁ .‘.B;ﬁ oooﬁ ;ﬁgcraﬂ )T
0 1 P 11 PE 12 (p-1)p
In general, for a dth order design, there will
+d
be (pd\) coefficients.
Within this framework, _‘_’_ﬁ is a general dth
order polynomial in p variables.
The exceptions to this kind of polynomial are
of two tyyes. In the first type, the elements of x
are not jpowers of the elements of €. For example,

MedeBox (19068) considerdd the functions

X, = exp(gi)

0
+
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as well as other non-polysonmial functions.

of the polyneaial % B cannot be estimated, and must,

therefore, be omitted. For example, in the bivariate

™ E L 3
case (p=2), ify specified the points of a 3x5 fsctorial

design, necessarily the polynomial elements of x must

cq

be a subset of

s Bt s o e S e BB B
which omits the combinations E‘j’:, {;, and {‘;’62, whose
coefficients cannot be éstimated because an insufficient
number of levels of 61 was used. Similarly only two
coefficients of degree five or higher may be estimated
from this design. In practice it is unlikely that an
attempt wou;d bg_made %o estimate‘the coefficients

l s .
of €1§£ or &;éé. If it were, and if the factorial



were unreplicated, an exact fit would be obtained.

Estimation

Methods, culminating in the estimates b and ?,
may be divided into design procedures and estimation
prozedures. Design procedures are those used to specify

Lanip | - . . N - . -
o and hence X. Discussion on methods of seclecting the

design is outside the scope of this thesis. Bstimation

o
n
-3

The commonest estimator arises from minimizaticn

A A s il

ef the sum o squarcs of the errors y -y « This is
known as the least sguares estimater, and ie, in fact,

i

identical to tkat obtained when € is assuma2d to have a

-—

normal distribution, and maximum likelihood estimation

The quantity tec be minimized is
(y-x2) T (y-xb) (1.2)
Differentiation with respect to bt and equation to

zero yields

1o

—‘ij(E-}:E) =

from which

(X x)—1 T

o
I

(xTx)~"x 3

H
I

or



T T
. ~ EN . . . .
provided that XX is non-singular. If X'X is singular,

a generalized inverse may be used, but is unnecessary
in the present case.
This straight-forwerd estimator has many desirable

preperties. In particular,

E(b) = (XX Txg - B (1.3)
1 . 3 T \‘"‘1.T - ..T.. "'1 !'
Var(b) = (X“X) "X™ Varly) (X (1.4)

A

= 02 (.’( X)
from the assunptions abcut € « Hence the estinator
is unbiaced frow (1.3). Tt can also bhe shown
(1.4) gives the minimum variance arising from an unbiased
linear estimators.
Finally

T
Var(3) = Var(x b)

s
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tor srbitrary
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the various variances can easily be derived from (A7X

Thie leads naturally to the corcert of a rotatable
design, which is a polynomial design for which Var($)
depends only on.ca and 535- That is, Var(§) is invariant
under orthogonal rotation of the é-axes.

It should be emphasized that the estimator defined
above is not the only linear estimator pessible. In
particular, in conditions where the specified model
(1.1) is inadequate, that is, where y contains other
terms than those in a linear combination of the specified

x, a different estimator may assist in compensating,



in some degree, for this inadequacy, at the expense

of greater variance.

e n e A ¥
Hypothesis tesling

From this point hy

§
o

othesis testing will be

"

considered, and the additionnal assumption that the
€ are normally distributed will bte required.

Now let

1-x(xTx)~ T

N o= X(Xox)" %t

=
!

both ¥ and are idempoient matrices, nxn,

and that MN=0O, FX=C. Alsc

m A m
»t » i oy gt
te N o= tr{l\x )T}
iXa
= e (XN
g

since compatible matrices commu

operator. Hence

tr N g =5 5

I
PXp

tir Inxn - tr N = n-p

It

e M
The residual sum of sguares (1.2) is e¢qual, on

expansion, to

e (1.

i
g
e

It is necessary to recasll a theorem on the
distribution of quadratic forms (see, for example,

Graybill (1961)).
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Theorem: If y~u(u,0 "I), then z

is distributed

e
as X' (k,%), where X'  represents the non-central
- : T — 1 T . .
chi-squared distribution, and A= 5 pAp, if, and
20° 7
only if, A is an idexwpotert matrix and tr A = k.
. P e 2-—\
In the preyg sltuation, y~NiXB,09 1) and hence
m
o T My 2
e i) _ g 1 .
T = o X (n=-p,\)
o} o
T ) %)
where A= -—-——-ﬁ X"MXB = C» Thus SSE/o” has a central X°
pate]
distribution with n-p degrees of frecdom.
The s nd tern in (1.5) is the sum of sguares
accounted for by the regression, and is
T
SSR = y Ny
By a precess of reascning similar to that for
S8E, it is an easy matter to establish that
550 >
== '“(psA)
L
2 x P
v
A m m
BeRdE o - V"' '-"
rhere A= *—~ Ap ) LB
T 202
Aga;n Trom the theory of gquadratic forms, a
S— : 7, o
necessary and sufficient condition for y Ay and y By
to be independent is that AB=0.
Hence, since MN=0, SSE and SSR are independent
S8R .S8F
[ Py (L )
and F = [ —
p - u=p

has a non-central F-distribution wi
of freedom and non-centrality param
Thus F may be used to test the hypo
In response surface design it
subdivide S3E by taking advantage o
As a preliminary,

suppose tha

th p and n-p degrees

i L
E;Eié'k Xﬁ.

thesis that p=Q.

eter

is usual to further

f point replication.

+
-

the model



specification (1.1) is incorrect and that while the
model
B
N = %48y
has been assumed, the true model
T e
N = %BEBs

Using X1 and XR in an obvicus way,

(WA

[64]

m m
b = (x;x,)“1x;3
- i |~

In these circumstances

E(p) = (X

"
5ty
+
—
e
*
-
R
i
-~
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™
J

and b is a btiased estimator of ﬁh. The patrix

T.. y=1.T7, , i
A=(X X.) "A.X., is knosn as the aliazs matrix (Box and
Aa - 3
1} £.
Viilsor (1%51)) and measurces the extent of the biass
Putting
m m
I" = I - .l" (;-"‘.4" }—1”.
1 B T #
and using Lhe sanme expausion as before,
T
[od s - T, |
SOl = _l “1£

and ——--- x =Dy
howuve:‘, in the present case

Y Ii JL’P+ ap.\ e} ;

-

and thus

rT T.Ty.,
2 T 20l (P"”-'~ 1%q I (X4 Ry +X85)

= 1
_ﬁ Ty , £ 0
>0 2 ? 1 2

)%

in general, and the F-test described above is no longer
available.

Suppose, however, that point replication has

v
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been used, and that r distinct points have been included

in the design, the sth of them n_ times, s=1, ... r, and

e |

¢ H n_ = n. Also, let ¥ be the group mean of the

5=1 -85 s

y-values measured at the sth distinct point.

%ithout loss of genersality, the points may be
arranged in such a way that the n_ points in the sth
-l
group are together in the y and X matrices.

Now define

23 0
i I
K:I—' . _‘_I—J
0 i
n_n
S
where J is the n_xn_ matrix with all unit elements,
.S s e
so that, without point replication, n_=1, and K-0O.
2

+ 2nd hence X4

«+«» n_ didentical rows, Jx1=x1 and JX_ =X_, from

ich KX . =K =0. Herce KM _ =K and N.=0.
which uxq_ixa o ence KI1 K and K\1 0

—
-
3

If the y-values are standardized by I

where }g is the group mean contalning Pyt then

z = Ky
= K(X B +X B, +€)
= K-E-

Now SSW, the sum of squares within groups of
observations at the same point, is given by
SSW = ET‘% 2 ETKX::- §TK§_

: y 2 ;
and since €~N(Q,0°I), and tr K = n-r,

UE“I‘J 2
==~ X (n-r)
o
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by the theorem quoted for 55X. Also, SSW and SSR are

independent, since

KN1 = KX, (x g, y~ g ; s B

Now consider SSF (for sum of squares duec to
lack of fit), defined by

™

e B s
S58F = BS5FE - S5S%

R

= i ( 1-}{,.{
Wmany L 1 2 = 1.1“73 - ¥ 1 =
INOW (.1 K) = I‘1 '1}\ r‘111 + K

tr (Eq-K) = tr M, = tr K

Hence, from the thecrem,

A m om n
where A= —— (BSX +4.%, ) (M, -K) (X, B, +X,B,)
Z%L F‘-_'I- H
=R R
20
This requires, rezsonably enough, r>gp
Finally, SSR= y M,y where N =X, (%)X,
and SSR has ax'd(y,h} distribution where
1 f—
A E — (ﬁ \ g‘f 1 O - PED -2
20r_ i (=S
1 T T T B Tl
- — tﬁ w B +”511 x_pﬁ 3000 e e W
2c (=5 1 o

Now note that, where L is an arbitrary matrix,

E(yTLy) = E(tr y'ly) = E(tr Lyy")

I

w ' o
tr [LE(X B +ESB, g,(x1g1+A

n

T
tr [L(Kié1+xzﬁz)(X1§1+X2F§)‘+5213
;1 B8 I 2
trEXLAf_S_+otrL
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where
Q1 g x’I

>4

g2 2

From this, the expected values of the various
g

sums of squares are readily derived. The analysis 1is

given in table 1.

Table 1

Basic response surface AICV

Source Sum of squares pr B(YE
T 3 a @ T

R ession SER = ¥ ¥k C g=f X R ¥
Regressio SR = ¥ AR P "I_é “ =

" N : I B R .
lack of Tit SSF by subtraction r~p o© 4—@B ¥ 1 Y. B

=" e £
= ' 4
Error within
R e o T 2
replicatad goints S8V = y Ky n-r @
- ¢y

Tetal 0T =y ¥ n

Note that without replication n=r; and if QE:S, this
table reduces to the simpler form derived earlier.

While the above argument establishes the theoretical
justification for the use of the F-tests, the test of the
whole regression is, in practice, of 1little use.

However, it is perfectly general, and not dependent on
a polynomial specification of x. In the event that a
polynomial is used, the SSR is ordinarily broken down

into the classification shown in table 2.
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Conventional ANOV for regression

coefficients in polynomial model

Source D¥
Mean 1
toan, B
Linear terms r
4 1
Second order terms =p(p+1)
Third 3 3y e 1( 1)( '))
aird oraer terms &P ol § p+e
L A )
P d-1
dth crder terms i§1i

the importance, in the final response, of a particular

{. Section 3 of this thesis considers the structure of
T

gy second order polynomial m iy me
X"Xy for the ¢ crder polynomia odel, in sonm

detail, in order to facilitate tests aimed at establishing

the importance of particular elements ofé

Further topics

In field experimenis, each experiment usually
consists of a plot of ground. In most circumstances,
the number of such plots which can be assumed to
represent essentially the same external conditions

is quite limited.
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In order to control this type of environmental
variation, a block structure may be superimposed on
the response surface design, yielding a model of the

form

m

N =& +xp (1.6)

where ™ is the block effect associated with the wth

block, with Emw;o.
g
Designs including such block structures were
& &

introduced by DePazun (1956) and elaborzted by Box and

iy
572.)

Hunter (1257) in the case of rotatable desipgns. These

gipns allow adeguate ntrol of environmentzl
design 1low adeguate contre
variation.

A natural extensicn of this type cef desipgn is

something like a species effect. The model would be

where new T is the vth trealrzent effects As far as

treatments are concerned, suech a model is identica

(=]

to the analysis of covariance model, which uses the
regression variables x to reduce variation in the
response, major interest being focussed on the
superimposed treatment effects. A respounse surface
approach would have equal interest in both parts of
the fitted model.

Pursuing this line of ¢nquiry further, section 4
of this thesis considers‘the implications of combining

various classification designs with a response surface

design.



Cne obvious extension of the model described
by (1.6) is to allow B to vary with the block, giving
a model of the form

y
N IR

In many applicaticns the guestion of the degree

of corresrondence between the individual regressions

B, anc the overall regression B is of considerable importance.

"

D

{

Section 4 also considers, briefly, this aspect of

response surface methcdology.



