
Copyright is owned by the Author of the thesis. Permission is given for a 
copy to be downloaded by an individual for the purpose of research and 
private study only. The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



  
 

Improving the measurement of live weight 

and body condition score in sheep 

 

 

 

 

 

 

A thesis presented in fulfilment of the requirements for the degree of: 

 

Doctor of Philosophy 

in 

Animal Science 

 

 

Massey University, Turitea, Palmerston North 

New Zealand. 

 

 

 

 

Jimmy Semakula 

2021





 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Supervisors: 

 

Chief supervisor:  

Professor Paul Richard Kenyon 

 

Co-supervisors: 

Professor Hugh Thomas Blair 

Dr Rene Anne Corner-Thomas 

Professor Stephen Todd Morris 





 

Page | i  
 

Abstract 

Liveweight (LW) and body condition score (BCS) are important performance indicators 

in sheep management, providing a basis for decision making. Therefore, accurate measurement 

of these traits is imperative. The overall aims of this thesis were to: 1) Determine the factors 

affecting the rate of LW loss of fasting sheep, 2) derive equations to predict LW and LW change 

over a short time period (1 to 8 hours), 3) evaluate the factors affecting the relationship between 

ewe LW and BCS, and 4) derive equations for predicting ewe BCS.  In the LW studies, lambs were 

offered three herbage availability levels (Low, Medium and High) in autumn or winter. Similarly, 

mixed-aged ewes at different physiological states were offered two herbage levels (Low or High). 

These studies were conducted in two stages: A) calibration stage and B) validation stage.  

Equations to predict without delay LW were developed at the calibration stage and 

validated on data collected from independent ewes from different farms. The rate of ewe LW 

loss was influenced by herbage type and availability, and season. Further, in pregnant ewes, 

liveweight loss was influenced by stage of pregnancy, but not pregnancy-rank. Applying 

correction equations improved the prediction accuracy of without delay LW estimates up to 55% 

and 69% in ewe lambs and mixed aged ewes compared with using the delayed weights, 

respectively.  

For the BCS studies, LW and BCS data of ewes were collected at regular times of the 

annual production cycle until they were six years of age. Using a ewe’s LW and BCS records to 

predict their current BCS using a linear model gave moderately accurate estimates. A different 

dataset, which included foetal- and fleece weight-adjusted LW and height at withers was then 

used. It was found that equations combining LW, LW change and previous BCS explained more 

variability in current BCS and were more accurate than LW-alone based models but the addition 

of adjusted LW and height at withers gave no further benefit to the BCS prediction models. 

Applying machine learning classification algorithms such as extreme gradient boosted trees and 

Random forest on a 3-point BCS scale achieved very good BCS prediction accuracies (> 85%).  

These combined findings provide useful prediction equations that could be incorporated 

into weighing systems, which along with EID would improve sheep production by aiding 

management decision making. 
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The New Zealand sheep industry relies on extensive grazing pastoral systems with 

average flock sizes greater than 2500 sheep (Cranston et al., 2017). Ewes undergo an annual 

production cycle with four critical stages of economic importance at which critical 

management decisions are made. Key management decisions are made about nutrition, 

reproduction and health for improved ewe performance and productivity. Such 

management decisions should be based on credible and accurate data. For example, 

inaccurate liveweights could lead to poor decisions when a comparison of liveweights is 

required.  

Liveweight (LW) is a broadly accepted proxy for the energy status of sheep at a given 

time, while change in liveweight is indicative of whether it is in either a positive energy 

balance (liveweight gain) or a negative energy balance (liveweight loss) (Young and Corbett, 

1972; Brown et al., 2005; Wishart et al., 2017). Ewe management decision making is based 

on performance target thresholds and optimal ranges around these targets. For example, 

the threshold breeding liveweight for ewe lambs to reach puberty is between 40% and 70% 

of their mature liveweight (Dyrmundsson, 1973; Jainudeen et al., 2000). Further, several 

studies have reported a positive relationship between ewe reproductive rate with liveweight 

which becomes less significant after reaching  an optimum threshold weight (Rutherford et 

al., 2003; Kenyon et al., 2004b; Corner-Thomas et al., 2015b). Therefore, it is imperative that 

accurate liveweight data measurement is achieved.  

Ewe liveweight is relatively stable over a short period of time (a few minutes), but 

alters over longer time periods in response to environmental and physiological conditions 

(Coates and Penning, 2000b; Wishart et al., 2017). The accuracy of liveweight measurements 

is affected by a number of factors including: gut-fill (digesta and urine), growth, nutrition, 

health, stress, fleece weight, physiological state and genotype (Kenyon et al., 2014; Brown 

et al., 2015). The contents of the rumen (fluid and feed) can account for between 10 and 

23% of total liveweight in ruminants (Hughes, 1976; Moyo and Nsahlai, 2018). Liveweight 

fluctuations due to gut-fill in ruminants can be affected by factors influencing feed intake 

such as age and size of the animal, time of day, ambient temperature, grazing behaviour and 

time since last meal (Hughes, 1976; Coates and Penning, 2000b; Hogan et al., 2007; Burnham 

et al., 2009; Gregorini, 2012; Wilson et al., 2015; Wishart et al., 2017).  

Automatic weighing systems can record up to 400 weights per hour without 

interruptions (https://www.livestock.tru-test.com), thus, requiring six to seven hours to 

weigh an average New Zealand flock (2500 sheep). Further, mustering and routine on-farm 

sheep handling in addition to weighing can increase the length of time sheep are restricted 
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from accessing feed and water supplies while waiting to be weighed. Delays in weighing 

ewes can lead to weight loss due to a reduction in gut-fill and body fluids (Hogan et al., 2007; 

Burnham et al., 2009; Wilson et al., 2015). Varying levels of weight loss have been reported 

within flocks waiting to be weighed. In ewe lambs, losses between 1.8% and 9.8% of initial 

liveweight after six hours have been reported (Hughes, 1976; Burnham et al., 2009; Wishart 

et al., 2017). In mature ewes, losses of 1.78 kg (2.7% of initial liveweight) and 1.69 kg (2.6% 

of initial liveweight) in single and twin bearing ewes at day130 of pregnancy after six hours, 

and 3.4 kg (5.3% of initial liveweight) and 2.9 kg (4.5% of initial liveweight) after 12 hours 

have been reported (Burnham et al., 2009). These levels of liveweight loss can significantly 

interfere with the accuracy of comparison of liveweights, and changes in liveweight over 

time.  

Pre-fasting gut-fill is important in determining the rate of sheep liveweight loss during 

fasting (Kirton et al., 1968; Kirton et al., 1971; Thompson et al., 1987). The degree of gut-fill, 

retention time of particles in the gastrointestinal tract and passage rate can be affected by 

the quality and quantity (including particle size and consistence) of dry matter intake in 

ruminants (Alwash and Thomas, 1971; Haaland and Tyrrell, 1982; Varga and Prigge, 1982; 

Kaske and Groth, 1997). Therefore, it is likely that differences in herbage type and availability 

offered to sheep can result in variation in the rate of liveweight loss during fasting.   

Several  strategies can be used to reduce variability in liveweight including removal of 

feed and water for fixed periods of time prior to weighing, standardizing weighing 

procedures, taking multiple liveweights readings per individual per day over successive days, 

weighing at a specific time relative to sunrise, standardizing the feed offered prior to 

weighing and/or increasing the number of animals and repetitions of a study (Coates and 

Penning, 2000b; Wishart et al., 2017). Implementing such methodologies to reduce 

variation, however, can be time-consuming and therefore, are not generally utilized, except 

in experimental situations. Thus, there is a need for a new approach to determine and adjust 

for variations in liveweight among animals, across time. The on-going improvements in 

weighing equipment, software and data management (Brown et al., 2015; Wilson et al., 

2015) may offer a solution, as there is capacity for the time stamping of individual animal 

weights. To date, technology companies have not yet incorporated weighing methodology 

in their systems to deal with this variation.  Using the time at which animals were collected 

for weighing in equations for predicting liveweight change post removal from feed, makes it 

possible to calculate more consistent liveweight measurements (Burnham et al., 2009; 

Wilson, 2014; Wilson et al., 2015; Wishart et al., 2017). Modern weighing systems should be 
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able to provide this information to farmers instantaneously. However, liveweight loss and 

thus, the methodologies to adjust for liveweight are likely to differ according to herbage type 

and availability, season and ewe physiological state and their interactions, but it is not clear 

to what extent. Therefore, there is need to interrogate if these factors affect the rate of 

liveweight loss of ewes and, if they do, methodologies need to be developed to adjust 

liveweight for these factors. 

Body condition score is a subjective measure which provides an estimate of an 

animal’s soft tissue reserves, predominantly fat, that can be used by farmers and researchers 

to determine the physiological state of an animal (Morris et al., 2002; Vieira et al., 2015). 

Like LW, BCS  is related to ewe production and reproductive traits and there are thresholds 

or ranges of BCS values that are optimal for productivity (Kenyon et al., 2004a; Kleemann 

and Walker, 2005; Scaramuzzi et al., 2006; Kenyon et al., 2011b; Kenyon et al., 2014). Body 

condition score can circumvent the shortcomings of liveweight (LW) mentioned above. 

Further, body condition score can be easily learned and is cost-effective and requires no 

specialized equipment (Kenyon et al., 2014). Despite the advantages of using BCS over 

liveweight to better manage flocks, it is uncommon (7−40%) for farmers, especially in 

extensive production systems, to regularly and objectively do so (Jones et al., 2011). The 

reasons for low BCS uptake among farmers include the subjective nature, labour burden and 

constant recalibration of assessors (Kenyon et al., 2014). Strategies to increase the adoption 

and use of BCS among farmers and the reliability of measures have been limited to 

promotional workshops and hands-on training (Kenyon et al., 2014). However, these 

strategies do not directly address how to reduce the labour burden associated with hands-

on BCS. Therefore, it is argued that, consistent and accurate alternative methods to estimate 

body condition score of sheep that require less hands-on measurement would likely be 

advantageous and improve uptake and use. To date there are no known attempts to exploit 

the relationship between liveweight and BCS to predict the later. This thesis aims to unlock 

the potential of exploiting the relationship between LW and BCS to allow both 

measurements automatically recorded on a single weighing head screen. The aims of this 

thesis, therefore, are firstly to determine the factors affecting the rate of LW loss of fasting 

ewes, 2) derive equations to predict LW and LW change over the short term (1 to 8 hours), 

3) evaluate the factors affecting the relationship between ewe LW and BCS, 4) derive 

equations predicting ewe current ewe BCS.  
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Specific objectives of this thesis were to:  

1) Determine the effect of feed type on the rate of ewe lamb liveweight loss 

during fasting (Chapter 3) 

2) Determine the effect of herbage availability and season on the rate of ewe 

lamb liveweight loss during fasting (Chapter 4) 

3) Determine the effect of herbage availability, physiological state (non-

pregnant or pregnant), stage of pregnancy (100 or 130 days of pregnancy) and 

pregnancy-rank (single- or twin-bearing) on the rate of mixed-aged ewe liveweight 

loss during fasting (Chapter 5) 

4) Determine the effect of ewe age, stage of annual production cycle and 

pregnancy-rank on the relationship between liveweight and body condition score 

(Chapter 6) 

5) Predict the current body condition score from a ewe’s liveweight, liveweight 

change and previous body condition record (Chapter 7) 

6) Determine if machine learning algorithms could be a better alternative to the 

linear model in predicting ewe BCS from liveweight records (Chapter 8) 

7) Determine if using adjusted liveweight, liveweight change, previous BCS and 

height at withers would improve the accuracy of current ewe BCS prediction (Chapter 

9)
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2.1 Preamble 

Liveweight (LW) and body condition score (BCS) are indicators of the body condition and 

body reserves providing a basis for management decisions of sheep. Therefore, it is imperative 

that they are measured accurately. Liveweight affects productivity and these relationships are 

summarised in this review. Accurate measurement of liveweight depends on the instrument 

used, animal factors, environmental factors and human factors (Wilson, 2014; Elwood, 2017). 

With the advent of automatic electronic weighing systems, potential error due to human effects 

and instrumentation is becoming obsolete leaving animal and environmental factors as having 

the greatest effect on the accuracy of a given weight measurement (Wilson, 2014; Wilson et al., 

2015).  Accordingly, this literature review focuses on the animal factors (predominantly in sheep) 

affecting liveweight measurement with an emphasis on gut-fill (fluid and feed). Gut-fill  can 

account for between 10 and 23% of total liveweight in ruminants (Hughes, 1976; Moyo and 

Nsahlai, 2018). Factors affecting gut-fill will thus be reviewed. Body condition score 

measurement is considered more reliable than liveweight as it circumvents the factors that 

compromise the accuracy of liveweight measurement (van Burgel et al., 2011; Kenyon et al., 

2014; Brown et al., 2015; Morel et al., 2016). However, BCS measurement is a subjective (hands-

on) method for assessing animal performance (Russel et al., 1969; Morris et al., 2002; van Burgel 

et al., 2011; Kenyon et al., 2014). Reliability and repeatability of BCS measurements are of 

concern (Evans, 1978; Calavas et al., 1998; Curnow et al., 2011; van Burgel et al., 2011; Phythian 

et al., 2012; Kenyon et al., 2014). Therefore, this review focuses on factors affecting sheep BCS 

measurement reliability and repeatability.  Further, BCS is not popular among most farmers 

because it can be labour intensive and requires training (Jones et al., 2011; Corner-Thomas et 

al., 2016). For this reason, a review has been done on probable indicators (proxy variables) of 

BCS and research has been undertaken to study the possibility of indirectly predicting BCS. 

Lastly, the importance of liveweight and BCS in sheep productivity, the various methods of 

measuring liveweight and BCS, advantages, and disadvantages associated with them will also be 

discussed. This review concentrates specifically on sheep, however, where appropriate, 

references have been made to other species.  

2.2 Effect of liveweight in sheep productivity  

The effects of liveweight on the performance of a ewe and its progeny are well 

documented (Ferguson et al., 2011; Oldham et al., 2011; Hickson et al., 2012; Kenyon et al., 

2012a; Brown et al., 2015) and will be briefly reviewed. The review section is a summary of these 

relationships. 
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2.2.1 Breeding, fertility, productive rates  

Liveweight of ewes affects attainment of puberty, fertility (pregnant ewes per 100 ewes 

exposed to rams) and productive rates (foetuses in utero per 100 ewes exposed to rams) of 

ewes, which impacts  its productivity (Newton et al., 1980; Stephenson et al., 1980; Smith, 1982; 

Saul et al., 2011; Brown et al., 2015). Previous studies have demonstrated the relationship 

between liveweight and the reproductive traits of puberty onset (Meyer and French, 1979; 

McMillan and Moore, 1983; Rosales et al., 2013), ovulation rate (Michels et al., 2000; Kenyon et 

al., 2004b; Kleemann and Walker, 2005; Scaramuzzi et al., 2006; Rosales et al., 2013), conception 

and multiple birth rate (Kenyon et al., 2004b; Kenyon et al., 2014; Aktaş et al., 2015) and lamb 

growth and survival (Hinch et al., 1985; Oldham et al., 2011; Kenyon et al., 2014; Aktaş et al., 

2015). A summary of the studies on the relationship between liveweight and reproductive 

performance of ewes from puberty onset to pregnancy is given in Table 2.1. 

Liveweight is a major factor influencing puberty onset in sheep (Quirke et al., 1985; 

Khalifa et al., 2013; Zarkawi and Al-Daker, 2016). A positive relationship between liveweight and 

time to puberty has been demonstrated (Ferra et al., 2010), with the threshold breeding 

liveweight for ewe lambs to reach puberty being between 40% and 70% of their mature 

liveweight (Hafez, 1952; Dyrmundsson, 1973; Jainudeen et al., 2000).  Furthermore, the heavier 

ones within a flock are more likely to show oestrus and successfully join as lambs compared with 

their lighter contemporaries (Kenyon et al., 2010). Heavier ewe lambs and adult ewes are more 

likely to mate in the first 17 days of the breeding period and are more likely to have multiple 

offspring (Kenyon et al., 2004a; Kenyon et al., 2005; Kenyon et al., 2006). Liveweight at mating 

has also been reported to have positive effects on the proportion of ewe lambs displaying 

oestrus (Meyer and French, 1979; McMillan and Moore, 1983; Kenyon et al., 2005; Kenyon et 

al., 2006).  

Ewe ovulation rate is a major driver of ewe fecundity and is sensitive to liveweight 

(Rhind et al., 1984a; Rowe, 2003). Liveweight during breeding has been reported to be positively 

associated with increased ovulation rates in both ewe lamb and adult ewes (Morley et al., 1978; 

Kenyon et al., 2004b; Scaramuzzi et al., 2006). Morley et al. (1978) working on a wide range of 

sheep genotypes reported an average increase of 2% in ovulation rates for every 1 kg increase 

in liveweight while Edey (1968), working on Peppin Merinos between 35 and 53.5 kg, reported 

a 2-5% increase per 2.5 kg liveweight change. Kenyon et al. (2004b) reported that ovulation rates 

increased with liveweight, plateauing after 62.6 kg and 48.5 kg in mixed aged Romney and two-

tooth composite ewes respectively. Rutherford et al. (2003), reported that in mature 

predominantly Coopworth ewes, any increase in liveweight above 67.5 kg at mating had no 
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positive effect on ovulation rate. The studies combined indicate that there is a positive 

relationship between ewe ovulation rate and liveweight, however, the relationship becomes less 

significant after reaching an optimum threshold weight, which is  different for each breed.  

A curvilinear relationship between fertility rate and a ewe’s premating liveweight has 

been reported (Thomson et al., 2004; Kenyon et al., 2010; Aktaş et al., 2015; Corner-Thomas et 

al., 2015b). Both fertility and conception rates increase with increasing liveweight in commercial 

ewe-lamb flocks of up to 47.5 kg above which increases in liveweight resulted in no additional 

gains (Corner-Thomas et al., 2015a). Ewe lamb liveweight at mating has also been reported to 

be positively related to conception rate (McMillan and Moore, 1983) and lambing percentage 

(Dyrmundsson, 1973; Craig, 1982; Kenyon et al., 2004b). Liveweight is also positively related to 

litter size (Thomson et al., 2004; Kenyon et al., 2004b; Brown et al., 2005; Aktaş et al., 2015). 

Brown et al. (2005) and Ferguson et al. (2011) have demonstrated that when mated, heavier 

ewes tend to give more lambs per ewe. 
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Table 2.1 Summary of studies examining the relationship between liveweight and puberty onset, ovulation rate, conception rate and birth rate. 

Reference Animal details Puberty onset 
Ovulation rate per unit kg liveweight 
change 

Ewe liveweight and 
Conception rate 

Multiple birth rate/lambing 
percentage 

Gunn and Doney (1975)   + curvilinear, plateaus after 53 kg 
  

Allison AJ (1978) 2-tooth and older, 
Corriedale ewes 

  
+ + linear, twinning rate 

increased by 6% per 4.5 kg.  
Morley et al. (1978) 5-year Corriedale ewes 

 
+ linear, rate was 2% /1 kg difference 
in ewe live weight 

  

Meyer and French ( Finn-Romney cross + + + 
 

Kelly and Johnstone (1982) 
  

+ linear, rate was 1.6%/1 kg difference 
in ewe live weight 

  

McMillan and Moore (1983) 
 

+ + + 
 

Davis et al. (1987) >= 1.5 years old Romney 
type 

 
+, ewes with multiple ovulations at 
1.5 years of age and at older age were 
heavier compared with ewes with one 
ovulation.   

  

Michels et al. (2000) Mature merino 
 

 No association below 35-37.5 kg at 
mating. In heavier ewes 4%/ 1 kg 
within the rage 40-48 kg and 2%/1 kg 
increase in ewe live weight up to 53.5 
kg 

  

Rutherford et al. (2003) Mixed aged, Romney type 
ewes 

 
+, at joining in small framed (2%) ewes 
but no significant in large framed 
(0.5%/1 kg) ewes. Overall, heavier 
ewes had greater ovulation rates 
compared with their lighter 
counterparts. 

  

Kenyon et al. (2004b) 3−5-year Romney & 2 tooth 
Romney composites 

 
+, plateaus after 48.5 kg in composite 
Romney and at 58.7 kg in Romney 

  

Thomson et al. (2004) 2-tooth and older, Romney 
cross ewes 

   
+ linear, lambing percentage 
increase of 1 % per kg of ewe 
live weight 

Thompson and Oldham (2004) 
   

+ linear, 3 
foetuses/100 ewes 
joined 
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Brown et al. (2005) 
    

+ linear, lambing percentage 
increased by 0.2 per kg of 
ewe live weight 

Kleemann and Walker (2005) Merino 
 

+ linear, rate was 1.8% /1 kg 
difference in ewe live weight 

  

Scaramuzzi et al. (2006) 
   

+ 
 

Ferguson et al. (2011) 2.5−3.5 years old Merino 
ewes 

  
+ linear, 1.7 to 2.4 
foetuses per 100 lambs 
joined 

 

Aktaş et al. (2015) Central Anatolian Merino 
   

+ 
Corner-Thomas et al. (2015a) Composite (Romney type) 

  
+linear from <32.5 to 
47.5–52.4 kg  

 

Gabr et al. (2016) 2−8 years old Iranian 
Afshari ewes 

   
+ 

+ indicates positive relationship; − : negative relationship; blank space: not indicated. 
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2.2.2 Lamb birth, survival, growth and weaning  

The period between birth and weaning is very critical in sheep production, given that 

both the stock for replacement and sale are selected from the same mob of lambs produced in 

a season. During that time, growth and survival rates are essential selection criterion and are 

monitored over the season. The relationship between ewe liveweight and lamb birth weight, 

growth, survival and weaning weight has been extensively studied (Kelly and Johnstone, 1982; 

Kenyon et al., 2004a; Oldham et al., 2011; Thompson et al., 2011; Schreurs et al., 2012; Corner-

Thomas et al., 2015a). A summary of studies on the effect of ewe liveweight and liveweight 

change on lamb growth, survival and weaning are given in Table 2.2. 

Liveweight of the ewe at mating and liveweight change during pregnancy have been 

used to predict birthweight of the lamb in Australian studies (Oldham et al. 2011). Heavier ewes 

tend to give birth to lambs with heavier birth weights, which grow faster than low birth weight 

lambs, and are more efficient energy utilizers for tissue deposition (Kelly et al., 1996; Kenyon et 

al., 2004b; Oldham et al., 2011; Thompson et al., 2011; Schreurs et al., 2012; Behrendt et al., 

2019; Hocking et al., 2019).  Further, progeny growth rates are correlated with changes in 

maternal liveweight during pregnancy (Kenyon et al., 2004b; Morel et al., 2009). Progeny of 

ewes that are heavier at mating or have increased maternal weight at pregnancy grow faster to 

weaning (Greenwood et al., 1998; Kenyon et al., 2004b). However, Oldham et al. (2011) and 

Schreurs et al. (2012) in a meta-analysis of several studies, reported that ewe liveweight and 

liveweight change during gestation appear to give varying responses on the lamb birthweight, 

lamb weaning weight.  

Lamb survival is also affected by ewe liveweight pre-mating and throughout pregnancy 

(Brown et al., 2005; Morel et al., 2009; Hocking. et al., 2011; Oldham et al., 2011; Aktaş et al., 

2015). All studies suggest that heavier ewes at joining tend to have progeny with greater survival 

rates. Further, for a one unit liveweight gain during ewe pregnancy, lamb survival has been 

reported to increase by 0.38 % (Morel et al., 2009). However, Oldham et al. (2011) found little 

influence of liveweight and weight change during gestation on lamb birth and survival. Literature 

suggests that ewe liveweights can be managed to increase lamb survival, and this should be 

possible through nutritional management from a cost-benefit point of view (Morley et al., 1978; 

Rowe, 2003). Further, lamb birth weight plays a pivotal role in its perinatal lamb survival (Morley 

et al., 1978; Rowe, 2003). Optimum lamb birth liveweights range between 4 to 6.5 kg, and either 

below or above this range results in increased mortality (Greenwood et al., 1998; Greenwood et 

al., 2010; Hatcher et al., 2010; Thompson et al., 2011). 
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Table 2.2 Summary of studies examining the relationship between liveweight and lamb birth weight, growth, survival, weaning weight.  
Reference Animal details  Lamb birth weight Lamb growth Lamb survival Lamb weaning weight 

Hinch et al. (1985) Booroola-Merino 
crossbred, on research 
station 

 
 

Quadratic association with lamb 
birth weight declining at birth 
weight extremes. 

 

Holst et al. (2002) Merino and 
crossbreeds, on 
research station. 

  (+), at less than 3 kg, no effect 
between 3 to 6 kg and (−) 
beyond 6 kg lamb birth for twin 
and triplet 

 

Thomson et al. (2004) Romney crossbreeds 
under commercial 
conditions. 

  (+), at less than 3 kg, no effect 
between 3 to 9 kg and (−) 
beyond 9 kg lamb birth 

 

Brown et al. (2005) Australian and New 
Zealand meat sheep 
and dual-purpose 
studs records. 

0.012 kg per extra ewe 
liveweight gain pre-mating. 

  0.106 kg per extra ewe 
liveweight gain pre-mating 

Casellas et al. (2007) Ripollesa lambs under 
semi-intensive 
management. 

  Quadratic association with lamb 
birth weight declining at birth 
weight extremes. 

 

Morel et al. (2009) Romney crossbreeds 
under commercial 
conditions. 

+, 0.1 kg per 4.4 kg increase in 
ewe liveweight pre-lambing. 

+, ADG of 0.001 
kg/day per kg ewe 
liveweight gain pre-
lambing 

+, increased by 0.38 % per kg 
extra ewe liveweight gain during 
pregnancy 

 

Hatcher et al. (2009) Merino sheep under 
commercial 
conditions. 

  Quadratic association with lamb 
birth weight declining at birth 
weight extremes. 

 

Van Der Linden et al. (2009) Romney under 
commercial 
conditions. 

+    

Oldham et al. (2011) Wool merino ewes 
under different 
feeding levels (800, 
1100, 1400, 2000 and 
>3000 kg DM/ha). 

an extra 10 kg of ewe 
liveweight at joining increased 
lamb birthweight by approx 
0.25 kg. A loss of 10 kg in ewe 
liveweight between joining 
and Day 100 of pregnancy 
reduced lamb birthweight by 

 
Increased by 0.5% per extra kg of 
ewe liveweight at joining for 
lambs with low birthweight 
assuming maintenance of 
liveweight during pregnancy, 
1.2% to Day 100 of pregnancy 
and 1.7% during late pregnancy. 
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approx. 0.33 kg, whereas 
gaining 10 kg from Day 100 to 
lambing increased birthweight 
by approx. 0.45 kg. 

+ with lamb birth weight 
increased up to a birthweight of 
4.5 kg and declined for single 
lambs weighing > 6.5 kg at birth. 

Greenwood et al. (2010)  Increase in birth weight by 
0.03, 0.03 and 0.05 kg per 
extra ewe liveweight gain pre-
mating, mating to 90 days and 
90 days to lambing. 

 
  

Schreurs et al. (2012) Romney ewes + with single birth but (−) with 
multiple birth. 

   

Aktaş et al. (2015) Central Anatolian 
Merino sheep on-farm 

+, with ewe liveweight pre-
mating.  

 
+ with ewe liveweight pre-
mating. 

+ with ewe liveweight pre-
mating 

Hocking et al. (2019) Merino and Border 
Leicester crossbreeds 
raised on a research 
station. 

  Quadratic association with lamb 
birth weight declining at birth 
weight extremes. 

+, a 10 kg higher ewe 
liveweight at conception 
resulted in 2.3 to 0.24 kg 
increase in lamb weaning 
weight. A 10 kg increase in 
early pregnancy weight 
resulted in a 2.4 to 0.47 kg 
and in late pregnancy 
resulted in 1.6 to 0.54 kg.  

Behrendt et al. (2019) Composite breeds 
under commercial 
conditions 

  Linear and quadratic association 
with lamb birth weight declining 
at birth weight extremes. 

+, 10 kg change in ewe 
liveweight from joining to 
Day 90 resulted in a 1.8 to 
2.0 kg difference in 
weaning weight. 

+: positive relationship; −: negative relationship and blank space: not indicated. 
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2.2.3 Summary of liveweight relationships 

The literature above suggests that liveweight plays a pivotal role in determining the 

outcome of production and reproduction traits and thus, underpins the importance of 

liveweight in sheep productivity. Liveweight affects puberty onset, fertility rates, pregnancy 

rate, fecundity, lamb growth and survival, all of which are critical in the sheep production cycle. 

It appears that there is a “minimal” or optimal range of liveweights for the best performance. 

Those threshold liveweight values can be used for decision making concerning selection for 

breeding and efficient resource allocation. It is thus imperative that farmers can accurately 

measure liveweight.  

2.3 Liveweight measurement technique in sheep  

The record of individual sheep performance can allow for differential management of 

sheep based on their respective liveweight change (Richards et al., 2006; Brown et al., 2014). 

There are several individual or collective methods of obtaining liveweight information of sheep. 

These methods range from the less efficient visual assessments (Suiter, 1994), laborious static 

manual balances, predictive body measurements as a proxy for liveweight, growth models, static 

electronic balances, walk-over balances and recently stereo imaging (Wilson, 2014; Brown et al., 

2015). In commercial and research settings, conventional static weighing systems remain the 

principal technique of collecting liveweight information of sheep either individually or 

collectively (Brown et al., 2015). This review, therefore, will concentrate on the static electronic 

balance. The process of liveweight determination has made significant strides from manual 

recording to highly efficient automated balances.   

Electronic weigh scales (Figure 2.1) have revolutionized liveweight measurement. These 

types of weighing scales can be managed automatically and can read the liveweight 

autonomously compared with manual weigh sales. Furthermore, these automated scales can be 

equipped with radio frequency identification (RFID) capacity and can store thousands of 

individual records. Consequently, automated electronic systems can produce liveweight data 

with minimal recording error. In combination, electronic identification and modern weigh 

systems allows individual lifetime data to be collected, thus, improving management outcomes. 

The usefulness of that data is dependent on consistent liveweights being collected over time. 

Currently, there are two common systems; static and walk-over weighing. Using the electronic 

scales, measurement  efficiency is increased, whether it is placed within a confined area (Figure 

2.1a) or strategically placed in the paddock for the animal to traverse over (Figure 2.1b) as part 

of their daily routine (Brown et al., 2015).  
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Figure 2.1 Current weighing systems used to collect sheep liveweight data. (a) Static weigh scale 
and (b) Walk over weigh scale 

The electronic weighing scale uses two methods to estimate an animal’s weight; (i) a 

measurement is taken when stability in animal movement (static) is detected or (ii) a 

measurement is determined by using a statistical process in which several readings taken by the 

processor are averaged over time (Smith and Turner, 1974). The first method is suitable for 

docile and restrained animals. It can be affected by fluctuations resulting from frequent 

movements in agitated and nervous animals leading to inaccuracies. The second method 

circumvents the challenges of the first method and therefore, it is more useful in field conditions 

with an accuracy of +1% achievable (Smith and Turner, 1974; Brown et al., 2015). 

The RFID system is composed of three major components; an electronic tag on the 

animal, the RFID tag reader which links data to a transponder and a data processing unit 

(Richards et al., 2006; Geenty et al., 2007; Lee et al., 2008).  Sheep getting weighed, have their 

liveweight recorded against a unique individual number, resulting in a RFID-linked weight record 

that can allow the liveweight of individual sheep to be tracked over time (Wilson, 2014; Brown 

et al., 2015).  

2.4 Error in sheep liveweight measurement 

In research and commercial livestock production, liveweight data can be used to make 

comparisons between liveweights at different time points, both within and between animals 

and groups (Wishart et al., 2017). To be able to generate consistent and comparable liveweights, 

the variation and error associated with these data need to be identified and controlled. Error 

can be defined as the difference between the “true” and the observed value (Drosg, 2009), 

arising from random or systematic effects (Taylor and Kuyatt, 1994; Bich et al., 2012). Whereas 

random error cannot be controlled, systematic error can be minimised. In theory, if this was 

(a) (b) 
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achieved, then random effects would contribute all the unexplained variability in the 

measurement. Therefore, this review will concentrate on systematic error. Errors may arise from 

data collection, data recording, and computation of results (Elwood, 2017). Bich et al. (2012) 

listed a catalog of possible sources of error during measurement including incomplete definition 

of the measurement, imperfect realization of the definition of the measurement, 

nonrepresentative sampling, inadequate knowledge of the effects of environmental conditions 

on the measurement or imperfect measurement of environmental conditions, personal bias in 

reading instruments, finite instrument resolution or discrimination threshold, inexact values of 

measurement standards and reference materials, inexact values of constants and other 

parameters obtained from external sources and used in the data-reduction algorithms, 

approximations and assumptions incorporated in the measurement method and procedure, and 

variations in repeated observations of the measurement under apparently identical conditions. 

Wilson (2014) summarised the errors sources as either measurement (human and scale error) 

or animal related liveweight error. Furthermore, biological processes that are dynamic and can 

vary over time due to factors such as growth, physiological state, diurnal and seasonal variation, 

may cause within-subject variability (Kenyon et al., 2014; Brown et al., 2015; Wishart et al., 

2017).  

For indirect liveweight determination methods from N other independent variables 

through a functional relationship, the independent variable is assumed to be measured without 

error and that all error is attributed to the measurement of the dependent variable (Poole and 

O'Farrell, 1971; Greene, 2003; Alexopoulos, 2010; Bich et al., 2012; Dosne et al., 2016). However, 

when the independent variable is measured with error, this may lead to an alteration of the 

association between the outcome and the observed change in the independent variable (Cain 

et al., 1992; Bich et al., 2012). When the measurements of the independent variable are not 

exact, estimation based on the standard assumption leads to inconsistent parameter estimates 

even in very large samples (Hausman et al., 1995; Hausman, 2001; Pischke, 2007). It is therefore, 

imperative that only prediction models with minimum error rates or greater accuracy be used 

(Efron, 1983; Tibshirani and Tibshirani, 2009). Several measures of prediction model accuracy 

have been described (Moriasi et al., 2007; Li, 2017; Botchkarev, 2019).  Alexander et al. (2015) 

suggested that mean absolute error percent or root mean square error percent of a prediction 

equation, should be less than 10% of the range of target or actual values. The following section 

will discuss potential causes of error with liveweight measurements. 

https://en.wikipedia.org/wiki/Consistent_estimator
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2.4.1 Human error 

Liveweight data obtained under field conditions are subject to an array of estimation 

biases. In the past weighing and recording liveweights were somewhat separate processes that 

were both manual and labour intensive. Individual tag numbers and animal’s liveweight reading 

were recorded on paper by the operator (Wilson, 2014). Data were further entered into 

spreadsheets, validated, and analysed. The manual process, therefore, relied on the ability of 

the operator to accurately record information while operating the weighing apparatus (Collins 

and Atwood, 1981; Wilson, 2014). In a study to examine the presence and potential influence of 

these apparent investigator biases associated with spring-balance, Collins and Atwood (1981), 

reported that one out of the 11 participants had significantly different results and that 1.7% of 

the errors were due to the misreading of the scale.  With the advent of automated electronic 

identification and scales, the potential for human error has been greatly reduced.  

2.4.2 Technique and machine related error 

Scale error results, are defined as dissimilar values of measurements obtained using 

different machines or when there is variation (spatial) in the results from the same machine 

(temporal). Lee et al. (2008) reported varying liveweight repeatability between static (0.99) and 

walk over weigh systems (crude, 0.35; crate base, 0.90, walk over base, 0.91). Galwey et al. 

(2013) reported that multiple weight recordings increased the accuracy of weight estimates in 

sheep. However, Bean (1946) observed that the use of a three day mean weight in swine 

introduced further error (2.1%) into the results instead of minimising it. Similarly, Bean (1948) 

and  Wilson (2014) reported that a single weight in sheep was as reliable as the average of three 

consecutive daily weights, a conclusion supported by (Baker et al., 1947) in calves when uniform 

conditions were maintained.  

2.4.3 Skeletal size, length, and fleece weight 

Liveweight is not a good indicator of condition due to skeletal and frame size variations. 

A mature animal with medium fatness and with average liveweight, would weigh less when 

extremely thin. However, the same animal, when extremely fat would weigh  more. Hammack 

and Gill (2001), suggested that if liveweight is to be used as an accurate measure of size, it must 

consider body condition.  In addition, Brown et al. (2015) stated that, liveweights should be 

considered relative to the breed’s mature average liveweight, and the animal’s recent reference 

liveweight.  Skeletal size increases with age as does liveweight but the rate of increase steadily 

decreases until mature liveweight is achieved (Wiener, 1967; Ho et al., 1989). In European and 
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Australian sheep, age at maturity varies from 25 to 50 months (Smith, 1956; Wiener, 1967; Cake 

et al., 2006). 

The association of fleece weight  on liveweight can depend on the sheep’s age (Gonzalez 

et al., 1997), breed (Elliott et al., 1978; Gonzalez et al., 1997), and the season (Story and Ross, 

1960). Elliott et al. (1978) reported that wool per unit liveweight for Coopworth, PerendaIe, and 

Cheviot were 10%, 18% and 39% respectively, which is less than Romney ewes. For seasonal 

effects, the rate of wool growth in Romney crossbred ewes varies considerably during the year, 

being highest in the summer and lowest in the late winter-early spring period (Story and Ross, 

1960; Sumner et al., 1994). Cottle and Pacheco (2017) have also reported seasonality in the 

growth of wool of Romney sheep, with maximum wool length of 150 mm for single shorn and 

75 mm for sheep shorn twice in a year (Table 2.3). Sheep with longer fleece and those in a wet 

environment weigh more than those with trimmed fleece (Story and Ross, 1960; Wiener, 1967; 

Elliott et al., 1978) and those in a dry environment. The contribution of fleece weight to the 

liveweight of the animal, can be accounted for through the use of liveweight-adjustment 

equations, while avoiding weighing sheep during or immediately after rain events generally 

negates the issue of fleece moisture content affecting liveweight (Brown et al 2015). However, 

those equations are not being used or adjusted for in electronic systems. 

 

Table 2.3 Estimated insulation of the fleece (°C m2 d/MJ) in each month of the year for 

different shearing months of Romneys, assuming a shorn fleece length of 150 mm, seasonality 

amplitude of 19% of the mean, radius of 120mm, coat insulation of 0.141°Cm2/MJ/mm and rain 

and wind velocity (average 6.3 mm/rainy day and 13.1 km/h respectively). 

  Insulation (°C m2 d/MJ) 

Shearing month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

January 1.12 2.08 2.90 3.78 4.38 4.86 5.49 5.86 5.96 6.44 6.91 7.35 
February 7.53 1.10 2.01 2.91 3.56 4.10 4.74 5.17 5.35 5.86 6.37 6.92 
March 7.12 7.61 1.06 2.00 2.72 3.31 3.98 4.47 4.73 5.28 5.82 6.40 
April 6.63 7.23 7.65 1.08 1.87 2.53 3.23 3.77 4.11 4.70 5.29 5.90 
May 6.17 6.80 7.32 8.07 1.03 1.76 2.49 3.10 3.52 4.15 4.78 5.41 
June 5.73 6.38 6.92 7,76 8.06 1.00 1.77 2.44 2.95 3.62 4.28 4.95 
July 5.29 5.96 6.53 7.37 7.78 7.97 1.03 1.77 2.37 3.08 3.79 4.48 
August 4.83 5.52 6.11 6.95 7.38 7.69 8.16 1.03 1.74 2.50 3.26 3.99 
September 4.30 5.03 5.64 6.49 6.94 7.27 7.84 7.98 1.01 1.84 2.65 3.42 
October 3.68 4.45 5.10 5.95 6.42 6.78 7.37 7.62 7.44 1.05 1.94 2.76 
November 2.95 3.77 4.46 5.32 5.82 6.22 6.81 7.10 7.06 7.40 1.07 1.96 
December 2.09 2.98 3.73 4.59 5.14 5.57 6.18 6.51 6.54 6.98 7.33 1.02 

Adapted from Cottle and Pacheco (2017) 

2.4.4 Pregnancy and lactation 

Pregnancy, especially foetus weight affects the gross weight of a ewe. The contribution 

by the foetus increases as the pregnancy progresses to maturity. Liveweight increases with 
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increasing pregnancy-rank or number of foetuses carried by the ewe (Rattray et al., 1974; Russel, 

1984). Conceptus and uterine weights have been reported to vary at Day 70 of pregnancy and 

near term in twin-bearing ewes (1.8−2.5 kg and 14−16.9 kg, respectively; (Rattray et al., 1974; 

Kenyon et al., 2007b). Conceptus weight can be accounted for through the use of generic or 

customised liveweight-adjustment equations (Wheeler et al., 1971; Freer et al., 1997; Brown et 

al., 2015; Ridler et al., 2017). The equations can vary by stage of pregnancy and plane of nutrition 

(Wheeler et al., 1971; Freer et al., 1997).   

Ewe liveweight declines in early lactation then increases in late lactation. The decline in 

liveweight can be affected by the plane of nutrition, being highest in ewes on low and lowest in 

those on high (Peart, 1970; van der Linden et al., 2010). Lactation is the stage of highest nutrient 

requirement in the ewe’s annual production cycle. Restrictions of nutrient intake in lactating 

ewes may result in the loss of body weight and body reserves of the ewe (Peart, 1982). The 

situation can be exacerbated by the number of lambs being reared, with liveweight losses being 

highest in multiple than single-bearing ewes. 

2.4.5 Gut-fill variations and passage rates 

Liveweight is a measure of the total body mass and includes muscle, fat, bone, organs 

and body fluids, gut-fill and fibre (Wishart et al., 2017). Liveweight is relatively stable over a short 

time period, although alters over time in response to environmental and physiological 

conditions (Coates and Penning, 2000b; Wishart et al., 2017).  

The contents of the rumen (fluid and feed) can account for between 10 and 23% of total 

liveweight in ruminants (Hughes, 1976; Kingenberg, 2003; Moyo and Nsahlai, 2018).  Liveweight 

fluctuations due to gut-fill in ruminants are known to be affected by time since last meal, feed 

and water consumption, age and size of the animal, time of day relative to sunrise, ambient 

temperature, and differences in grazing behaviour (Hughes and Harker, 1950; Whiteman et al., 

1954; Hughes, 1976; Gregorini, 2012; Wilson, 2014; Wilson et al., 2015; Wishart et al., 2017).  

During gestation and lactation, animals undergo structural and functional changes. 

Behavioural changes such as increased or decreased water intake, and gain or loss of appetite 

may be observed during these periods (Foot and Russel, 1979; Little et al., 1980; Kischel et al., 

2017). Digesta’s rate of passage through the rumen could also be altered by these changes. 

Rueda et al. (1990) showed that rates of particulate and liquid passage through the rumen were 

faster for pregnant than non-pregnant animals, higher in lactating animals than their non-

lactating counterparts, however lower during the late than the early stages in gestation. 

Similarly, Hanks et al. (1993) working on beef cattle reported that particulate passage rate was 

greater for pregnant than non-pregnant cows. In pregnancy, the gut space is reduced by the 
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growing foetus. A negative relationship between rumen volume and uterus volume in pregnant 

ewes has been reported (Forbes, 1969). Forbes (1969) reported that at day 72 of the gestation 

period the uterus and rumen volumes were 4.1 ± 0.7 litres and 6.6 ± 0.9 litres respectively, 

however by day 144 they were 7.7 ± 0.4 litres and 3.8 ± 0.4 litres respectively. In contrast, non-

pregnant ewes had rumen volumes of 9.2 ± 0.6 litres throughout the same period. With reduced 

volume, animals in gestation period increase intakes and increase digesta retention time which 

results in reduced passage rate. These studies indicate that the variability in liveweight 

fluctuations seems to be influenced in a multifactorial way.  

Several strategies can be used to reduce liveweight variation due to gut-fill. This includes 

removal of feed and water for fixed periods of time prior to weighing, standardizing weighing 

procedures, taking an average of multiple liveweights in a day or across a number of successive 

days, weighing at a specific time relative to sunrise, standardizing the feed offered before 

weighing and increasing the number of animals and repetitions of the study (Shrestha et al., 

1991; Coates and Penning, 2000b; Burnham et al., 2009; Wilson et al., 2015; Wishart et al., 

2017).  Implementing such methodologies to reduce variation can, however, costly, be time-

consuming and therefore not generally utilized except in experimental situations. It is also 

possible that farmers collecting liveweights are oblivious to the possible variability of the data.  

Several studies have, however, demonstrated that the accuracy of liveweight 

measurement can vary because of differences of gut-fill and differential loss in gut-fill (Table 2.4) 

due to loss of ruminal content through faecal matter weight in each fasting period. It implies 

that all factors influencing gut-fill rate of passage should be investigated if accurate adjustment 

equations are to be generated. To date, technology companies have not yet incorporated 

weighing methodology in their systems to deal with this variation. 
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Table 2.4 Summary of studies examining the relationship between liveweight loss and nutrition, breed, age, reproductive status and time in pregnancy, and time off 
feed in ewes 

Reference Breed Feeding level Age 
Reproductive 
status 

Time in 
pregnancy 
(days) 

Total 
time held 
(hours) 

Weight loss in kg 
or % of initial 
weight Liveweight loss prediction equation 

Hughes (1976) 
  

Lambs Non pregnant 
 

42−56 0.7−2 kg after 
eight hours; 
1.0−2.0 kg after 
12 hours 

 

   Two tooth Non pregnant  36 1.5 to 3.3 kg 
after eight hours 
and 2.0 – 4.0 kg 
after 12hours 

 

Burnham et al. 
(2009) 

Romney Ryegrass/white 
clover pasture 

10 months ewe 
lambs 

  
24 After 2four 

hours ewe lambs 
had lost 25.1%, 
ewes at day 70 
lost 9.8% while 
ewes at day 130 
lost 7.5% 

Y=0.01−0.014T+0.0007T2−0.000016T3, 
R2=0.94  

Mature ewes 70 days in 
pregnancy 

70 24 Y=0.01−0.012T+0.0006T2−0.000011T3, 
R2=0.72  

Mature ewes 130 days in 
pregnancy 

130 24 Y=0.01−0.007T+0.0003T2−0.000004T3, 
R2=0.72  

Mature ewes Single-bearing, 
130 days in 
pregnancy 

130 24 Y=0.01−0.007T+0.0003T2−0.000004T3, 
R2=0.82 

 
Mature ewes Twin-bearing, 130 

days in pregnancy 
130 24 Y=0.01−0.006T+0.0003T2−0.000004T3, 

R2=0.82 
Wilson et al. 
(2015) 

Coopworths Ryegrass/white 
clover pasture 
removed from 
feed 2 hours 
before weighing 

Mixed age ewes Pregnant 
 

24 After 12 hours 
they lost 6% and 
up to 7.9% after 
20 hours 

Y=0.0077x + 0.0002x2, (R2=0.9794) 

 
Coopworths kept in the yards 

after shearing 
and fed baleage 
prior to the 
experiment 

Mixed age ewes Pregnant 
 

24 After 12 hours 
they lost 1.5 % 
and up to 2.0 
after 20 hours 

Y=0.0018x + 2E−05x2, (R2=0.9954) 
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Wishart et al. 
(2017) 

Scottish 
blackface, 
Lleyn ewes, 
their 
crossbred 
lambs 

Improved 
pasture 

1.5, 2.5, 3.5 
&4.5 years 

Non pregnant, 
non-lactating 

 
6 after 3 hours, 

3.5%; after 6 
hours 5.6% 
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2.4.6 Species, Grazing and diurnal variation 

Ruminants have different feeding habits depending on whether they are grazers (cattle, 

sheep) or browsers (goats). The differences in the diets and processes associated with feeding 

behaviour among these classes of animals can effect on rates of passage of liquid and solid 

phases in the rumen and their rumen fill (Lechner et al., 2009; Moyo and Nsahlai, 2018). Sheep 

have lower mean retention times of solid in the rumen than cattle (Lechner-Doll et al., 1991; 

Bartocci et al., 1997). Parra (1978) also demonstrated that there were higher passage rates for 

lighter herbivores than larger herbivores with diet quality held constant. 

The pattern of grazing events dictates how much an animal ingests within a given time 

and thus influences the liveweight and liveweight change throughout the day. Grazing strategy 

differences are known to affect passage rates and rumen fill levels in cattle (Oshita et al., 2008).   

Ruminants have three to five grazing events every day, with the greatest intake periods being 

early in the morning and in the late afternoon (Gregorini et al., 2008; Gregorini, 2012). Rook and 

Penning (1991) reported that 70-99% of grazing occurs during daylight, with 25-48% occurring 

in the four hours prior to sunset. In cattle, close to one third of their total grazing time occurs 

during dawn (Gregorini et al., 2008; Hilario et al., 2017). Therefore, the time at which an animal 

is weighed can affect the amount of gut-fill and thus its liveweight.  

Grazing patterns vary between animals depending on quality and type of herbage and 

the environment (Kirby and Stuth, 1982; Ginane and Dumont, 2010; Lin et al., 2011). Orr et al. 

(1997) stated that herbage DM % varied during a 12-hour period between 15-24% grass and 12-

18% clover with the most significant change happening from morning to noon. Starch content 

also changed from 3.0-4.1% and 3.6-8.7%, for grass and clover, respectively. This further 

indicates the time of day can influence liveweight.  

According to Hamilton et al. (1995), the greatest diurnal variation in estimated 

liveweight was observed between 11am-1pm and the lowest variation reported at 9 am and 4 

pm, with sunrise at 6 am. Small ruminants are selective feeders (Ginane and Dumont, 2010; Lin 

et al., 2011) and are more inclined to feed on lower dry matter and lower starch pastures which 

are more easily digestible. It is likely that liveweight is overestimated when an animal is fed on 

low dry matter, lower starch, and high concentrate diets.  

2.4.7 Seasonal ambient temperature variations 

Seasonal temperature variations affect feed and water intake and consequently on the 

digesta passage rate, and thus liveweight loss. Animals kept in cold environment consume more 

feed, have increased digesta flow rate but grow slower as more energy is converted into heat to 

maintain their body temperature (Young, 1981). It appears that dry matter digestibility 
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decreases during winter conditions (Christopherson, 1976) which can be associated with 

increased gut motility, passage rate and circulating thyroid hormone. (Kennedy et al., 1976) 

demonstrated in a trial with sheep that the flow of dry matter and organic matter was greater 

through the abomasum during the cold exposure, −1.0° to 1.0°C, than during the warm 

exposure, 18° − 21°. It was also noted that when the ambient temperature was lowered from 21 

to 0oC, the mean retention time of solid digesta in the rumen decreased by 20% (Kennedy, 1985). 

Heat exposure effects counter to those of the cold exposure. Bernabucci et al. (1999) and Miaron 

and Christopherson (1992) working on heifer and steer trials, respectively, reported that the 

rumen outflow rate was lower at higher temperatures. There was also reduced dry matter intake 

and increased the water intake compared with the period under the thermal comfort zone. True 

liveweight seems to be overestimated in cold exposure and underestimated during the hot 

exposures. These data further indicate that time of day when the measurement occurs can 

influence liveweight and liveweight loss. 

2.5 Body condition score in sheep 

Body condition score (BCS) is a subjective measure which provides estimates of body 

condition for farmers and technicians to describe energy reserve levels under practical 

production conditions (Morris et al., 2002; Vieira et al., 2015). BCS circumvents the shortcomings 

of using liveweight alone to predict body condition. It is easily learned, cost-effective and 

requires no specialised equipment (Kenyon et al., 2014; Brown et al., 2015; McHugh et al., 2019). 

In addition, Jefferies (1961) suggested that BCS in sheep could be used to allocate feed 

efficiently, detect subtle changes in the body condition not noticeable by visual inspection, allow 

farmers to be more aware of major losses in body condition such as wasting and to be able to 

follow trends in nutrition and liveweight. The original purpose of the technique was four-fold 

and included; (1) control of condition/nutrition of sheep, for more efficient utilization of 

available food supplies; (2) detection of small differences in body condition not noticeable by 

outside appearance; (3) empowerment of farmers to be immediately aware of major losses in 

body condition; (4) monitoring of trends in nutrition and liveweight. BCS is thus considered a 

useful way for farmers to monitor the condition of their flock and estimate the required plane 

of nutrition (Kenyon et al., 2014). 

2.6 The effect of BCS in sheep productivity 

Body condition score is an indicator of the energy balance of a ewe which is an important 

factor in determining the number and weight of lambs weaned (Scaramuzzi et al., 2006; Kenyon 

et al., 2014). Therefore, it might be expected that ewes of lower BCS will display reduced 

reproductive performance in comparison with those of greater BCS (Kenyon et al., 2014). Several 
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authors have reported a positive relationship between BCS and reproductive traits (Tables 2.5 -

2.7). The following sections give a brief summary of the known relationships between BCS and 

sheep productivity. 

2.6.1 Breeding season, Ovulation rate and conception rates 

Body condition score is positively associated with breeding season, ovulation rate and 

conception rates (Kenyon et al., 2014). Table 2.5 gives a summary of the known relationship 

between BCS and reproductive traits from breeding to pregnancy. The relationships, however, 

seems to be confined to specific BCS ranges and can be affected by breed differences (Gunn and 

Doney, 1979; Gunn et al., 1991; Gunn et al., 1991a; Kenyon et al., 2014). Body condition score 

is also positively related to conception rate within certain BCS ranges above which the 

relationship changes (Gunn et al., 1991a; Sejian et al., 2010; Kenyon et al., 2014). At BCS 

between 2.5 and 3.5, the relationship with fertility and pregnancy rates plateau.    

2.6.2 Number of foetuses, Number of lambs born and lamb survival 

The relationship between BCS and number of foetuses, number of lambs born and lamb 

survival is established (Gunn et al., 1969; Adalsteinsson, 1979; Kleemann and Walker, 2005; 

Abdel-Mageed, 2009; Kenyon et al., 2014). The results indicate that generally, the relationship 

is positive although it is affected by breed differences (Kleemann & Walker 2005; Gunn et al. 

1998, 1991a).   

Most authors (Table 2.5) have reported a positive relationship between BCS and the 

number of lambs born per ewe (Gunn et al., 1969; Adalsteinsson, 1979; Kleemann and Walker, 

2005; Abdel-Mageed, 2009; Aliyari et al., 2012; Kenyon et al., 2014). In contrast, McInnes and 

Smith (1966), Geisler and Fenlon (1979) and (Rozeboom et al., 2007), all reported that the 

number of lambs born per ewe is independent of ewe BCS in Merino. The observed variation 

between studies could be attributed to breed differences as well as the possibility that the 

positive relationship between BCS and the number of lambs born may not be linear and instead 

curvilinear. At body condition score between 2.5 and 3.5 the relationship appears to plateau and 

later decline. 

Body Condition Score has been reported to have either no effect on lamb survival to 

weaning (Al-Sabbagh et al., 1995; Oldham et al., 2011) or a positive effect (Litherland et al., 

1999; Dodds and Everett-Hincks, 2008). Kleemann and Walker (2005) and Rozeboom et al. 

(2007), observed a positive curvilinear relationship between BCS and singleton lamb survival in 

Merino ewes, with a diminishing response as BCS increased above 3.0 but in twins, the 

relationship remained linear (Table 2.6). Lamb survival is a binomial trait and therefore, 
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relatively large numbers of lambs are needed to be able to detect differences. Inadequate 

numbers may have contributed to the lack of effect observed in some lamb survival data. 

2.6.3 Lamb birth, growth and weaning weight 

The relationship between BCS and change in BCS, and lamb growth to weaning is also 

well studied (Thompson et al., 2011; Kenyon et al., 2014; Behrendt et al., 2019). Ewe BCS has 

been reported to have either no influence on lamb growth to weaning (Gibb and Treache, 1980; 

Litherland et al., 1999; Thompson et al., 2011) or weaning weight (Al-Sabbagh et al., 1995; 

Litherland et al., 1999; Aliyari et al., 2012; Verbeek et al., 2012), or a positive effect on lamb 

growth (Gibb and Treache, 1980; Kenyon et al., 2004a; Kenyon et al., 2011a; Mathias-Davis et 

al., 2013; Behrendt et al., 2019) and weaning weight (Molina et al., 1991; Sejian et al., 2010; 

Behrendt et al., 2019). Table 2.7 outlines a summary of studies examining the relationship 

between BCS and lamb growth, survival and weaning. The variation between studies may be due 

to differences in the timing of the BCS measurement, the levels of BCS being compared, the 

plane of nutrition, and the number of lambs born and reared per ewe.  For those studies 

reporting a positive effect, the relationship appears to be observed at BCS range of 2.5 to 3.0.  

As indicated previously, BCS and productivity for many sheep traits are positively 

related. However, at higher BCS there is a plateauing effect. This non-linear relationship means 

that the biggest gain can be achieved by reducing the number of ewes with the lowest BCS in a 

flock or ensuring that all individuals are above a target threshold. To manage an animal to its 

optimum BCS, it must be accurately and repeatedly measured. 
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Table 2.5 Summary of studies examining the relationship between BCS and breeding season, ovulation rate and conception rate  

Reference Breed 
When BCS recorded and 
range tested 

Nutritional 
treatment(s) during 
examination perioda 

Length of breeding 
season relationship 

Ovulation rate 
relationship 

Conception rate 
relationship 

Gunn et al. (1969) Scottish Blackface Breeding, 1.5 and 3.0 Low, maintenance, 
high 

   

Gunn et al. (1972) Scottish Blackface Breeding, 1.5 and 3.0 Fed to maintain of BCS 
 

+ 
 

Gunn and Doney 
(1975) 

Scottish Blackface Breeding, 1.0 to 3.0 Low, maintenance, 
high 

 
+ 

 

Gunn and Doney 
(1979) 

Cheviot Breeding, 2.0 and 3.0 Fed to maintain of BCS 
 

+ 
 

Newton et al. 
(1980) 

Masham Breeding, 2.0 and 4.0 Fed to maintain of BCS + late in breeding 
season 

+ 
 

Knight (1980) Romney Pre-breeding Commercial conditions 
 

+ 
 

Rhind et al. (1984a) Scottish Blackface Breeding, 1.8 and 2.8 Fed to maintain of BCS 
 

+ 
 

Rhind et al. (1984b) Greyface Pre-breeding, 2.5−3.0 and 
3.25−3.75 

Fed to maintain of BCS 
 

+ 
 

McNeilly et al. 
(1987) 

Scottish Blackface Pre-breeding, 1.8−2.9 Fed to maintain of BCS 
 

+ 
 

Gunn et al. (1988) Beulah-Speckled-face 
& Brecknock Cheviot 

Breeding, 
<=1.5,1.75−2.5,2.25−2.5 
and >=2.75 

Low, high 
 

+ and + to 2.25−2.5 
in two differing 
breeds 

 

Gunn et al. (1991a) Welsh Mountain & 
Brecknock Cheviot 

Pre-breeding, <=2.25, 2.5 
and 2.75 

Low, high 
 

+ and + to 2.5 in 
two differing 
breeds 

+ and + to BCS 2.5 
in two differing 
breeds 

Gunn et al. (1991a) Welsh Mountain & 
Brecknock Cheviot 

Pre-breeding, <=2.25, 2.5 
and >=3.0 

Low, maintenance 
 

+ and + to BCS 2.5 
− 2.75 

+ and + to BCS 2.5 
− 2.75 

Forcada et al. 
(1992) 

Rasa Aragonesa Breeding, <=2.25 and 2.75 Fed to maintain of BCS + + 
 

Rondon et al. (1996) Rasa Aragonesa Breeding, <=2.5 and >=2.75 High + 
  

Kleemann and 
Walker (2005) 

Merino Breeding Commercial conditions 
 

+ 
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Sejian et al. (2010) Malpura Pre-breeding, 2.5,3.0−3.5 
and 4.0 

Fed to maintain of BCS     + to BCS 3.0−3.5 
then − 

Corner-Thomas et 
al. (2015a) 

Romney type Pre-breeding, 2.0, 2.5, 3.0, 
3.5 and 4.0 

Commercial conditions   + to BCS 3.0 then 
NR 3.0−4.0  

Adapted from Kenyon et al. (2014) and modified. aunless otherwise stated there are no interactions between nutritional treatments and BCS. N/S, noted stated; +, positive relationship; 
− negative relationship. 
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Table 2.6 Summary of studies examining the relationship between BCS and the number of embryos/foetuses, number of lambs born and lamb survival 

Reference Breed 
When BCS recorded and 
range tested 

Nutritional 
treatment(s) during 
examination perioda 

BCS and number of 
foetuses per ewe 
relationship 

BCS and number of lambs 
born relationship 

BCS and lamb 
survival 
relationship 

Gunn et al. (1969) Scottish 
Blackface 

Breeding, 1.5 and 3.0 Low, maintenance, 
high 

  +   

Pollott and Kilkenny (1976)  Breeding, BCS range not 
stated 

N/S 
 

+ 
 

Adalsteinsson (1979) Icelandic Breeding, 2.0 and 4.0 Commercial 
conditions 

 
+ to BCS 3.0−3.5 

 

Newton et al. (1980) Masham Breeding, 2.0 to 4.0 Fed to maintain of 
BCS 

 
+ 

 

Gunn et al. (1988) Beulah-
Speckled-face & 
Brecknock 
Cheviot 

Pre-breeding, 
<=2.25,2.5−2.75,>=3.0  

Low, high 
 

BCS 2.5−2.75 greater than BCS 
<=2.25 and >=3.0 

 

Rhind et al. (1984b) Greyface Breeding, 2.75, 3.0, 
3.25,>=3.5;                         Pre-
breeding, 2.5−3.0 and 
3.25−3.75 

NS                                                                                          
Fed to maintain of 
BCS 

− − 
 

Gunn et al. (1988) Beulah-
Speckled-face & 
Brecknock 
Cheviot 

Breeding, 
<=1.5,1.75−2.5,2.25−2.5 
and >=2.75 

Low, high + in one breed,                
NR in second breed 

  

Gunn et al. (1991a) Welsh 
Mountain & 
Brecknock 
Cheviot 

Pre-breeding, <=2.25, 2.5 
and 2.75 

Low, high In high BCS + to 2.5, no 
effect low feeding 

  

Gunn et al. (1991) Cheviot Pre-breeding, <=2.25, 2.5 
and >=3.0 

Maintenance, high 
 

BCS 2.5−2.75 greater than BCS 
<=2.25 and >=3.0 

 

Al-Sabbagh et al. (1995) Norduz Pre-lambing, BCS 2.5, 3.0, 
3.5 

High 
  

NR 

Gonzalez et al. (1997) Merino & 
Corriedale 

Breeding, 2.0, 2.5, 3.0, 3.5 
and 4.0 

Commercial 
conditions 

 
+ 
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Litherland et al. (1999)  Pre-lambing, 1.5 and 2.5 Low, high 
  

+ in one of two 
studies 

Atti et al. (2001) Fat-tailed 
Barbarine 

Pre-breeding, BCS range 
not stated 

Commercial 
conditions 

 
+ to BCS 3.0−4.0 

 

Kenyon et al. (2004b) Romney Breeding, 1.5 to 4.0 Commercial 
conditions 

+ to BCS 2.0 in one 
breed and + to BCS 3.0 
in second breed 

  

Kleemann and Walker (2005) Merino Breeding, BCS range not 
stated 

Commercial 
conditions 

+ + + 

Rozeboom et al. (2007)  Pre-lambing, 1.5 to 3.5 N/S 
 

NR 
 

Abdel-Mageed (2009) Ossimi Pre-breeding Maintenance 
 

+ to BCS 2.5 then − after for 
BCS 4.0 

 

Kenyon et al. (2011a) Romney Mid-pregnancy, <=2.0, 2.5 
and >=3.0 

Maintenance, high 
  

BCS 2.5 lower 
than <=2.0 

Oldham et al. (2011) Merino Day 100 of pregnancy, 2.0 
and 3.0 

Various feeding 
levels 

  
NR 

Kenyon et al. (2012a) Romney type Mid-pregnancy,2.0, 2.5 
and 3.0 

Medium, high 
  

BCS 2.5 lower 
than 2.0 

Aliyari et al. (2012) Afshari Pre-breeding, 2.0, 2.5, 3.0 
and 3.5 

Ad libitum   NR   

Corner-Thomas et al. 
(2015a) 

Romney type Pre-breeding, 2.0, 2.5, 3.0, 
3.5 and 4.0 

Commercial 
conditions 

+ to BCS 3.5 then NR 
3.5−4.0 

  

Adapted from Kenyon et al (2014).  aUnless otherwise stated there are no interactions between nutritional treatments and BCS. NR, no relationship or effect; N/S, not stated; +, positive 
relationship; −, negative relationship.
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Table 2.7 Summary of studies examining the relationship between BCS and lamb birth and weaning weight and lamb growth to weaning 

Reference Breed 
When BCS recorded and 
range tested 

Nutritional 
treatment(s) during 
examination perioda 

BCS and lamb birth 
weight relationship 

BCS and lamb 
growth 
relationship 

BCS and lamb 
weaning weight 
relationship 

Gibb and Treache (1980)  Pre-breeding, 2.4 and3.2 Low, high NR + 
 

Gibb and Treacher (1982)  Day 90 pregnancy, 2.6 
and 3.3 

Low, high in 
pregnancy, high in 
lactation 

NR NR 
 

Molina et al. (1991) Machega lambs Pre-lambing, <2.5, 
2.5−3.0, >3.0 

 
+ 

 
+ to BCS>3.0 

Al-Sabbagh et al. (1995) Fat-tailed 
Barbarine 

Pre-lambing, BCS 2.5, 3.0, 
3.5 

High NR 
 

NR 

Atti et al. (2001) Norduz Pre-lambing, <2 and >3 Maintenance 
 

+ 
 

Litherland et al. (1999)  Pre-lambing, 1.5 and 2.5 Low, high 
 

NR NR 
Kenyon et al. (2004a) Romney Breeding, 1.5 to 4.0 Commercial 

conditions 
BCS 3.5−4.0             
>3.0 

+ 
 

Sejian et al. (2010) Malpura Pre-breeding, 2.5, 
3.0−3.5 and 4.0 

Fed to maintain BCS + 
 

+ to BCS 3.0−3.5 

Kenyon et al. (2011a) Romney Mid-pregnancy, <=2.0, 
2.5 and >=3.0 

Medium, high NR 
 

BCS <=2.0 lower than 
2.5 

Oldham et al. (2011) Merino Day 100 of pregnancy, 
2.0 and 3.0 

Various feeding 
levels 

+  in two of four 
studies 

  

Kenyon et al. (2012a) Romney Mid-pregnancy,2.0, 2.5 
and 3.0 

Medium, high NR 
 

+ to BCS 2.5 

Kenyon et al. (2012b) Romney Mid-pregnancy, 2.0, 2.5 
and 3.0 

Medium, high NR 
 

+ to BCS 2.5 

Verbeek et al. (2012)  BCS mid pregnancy, 2.0, 
2.9 and 3.7 

Fed to maintain BCS NR 
 

NR 

Aliyari et al. (2012) Afshari Pre-breeding, 2.0, 2.5, 
3.0 and 3.5 

Ad libitum NR 
 

NR 

Behrendt et al. (2019) Composite breeds 
under commercial 
conditions 

Pre-mating, mating to 
pregnancy, pregnancy to 
lambing, 2.4−2.5, 
2.8−3.0, 3.2−3.4 and 
3.6−3.8 

Fed to maintain BCS + + + 
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Hocking et al. (2019) Merino and 
Border Leicester 
crossbreeds 
raised on a 
research station. 

Pre-mating to pregnancy 
(50, 90 140 days), 2.5, 
2.8, 3.2, 3.6 

Fed to maintain BCS +  + 

 Adapted with modifications from Kenyon et al (2014).   aUnless otherwise stated there are no interactions between nutritional treatments and BCS. 
NR, no relationship or effect; Blank space, not stated; +, positive relationship; −, negative relationship. 
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2.7 BCS techniques in sheep 

The BCS of an animal is assessed by the palpation of the lumbar region, specifically on 

and around the backbone (spinous and transverse processes) in the loin area, immediately 

behind the last rib and above the kidneys to inspect the degree of fat and tissue coverage 

(Jefferies, 1961; Teixeira et al., 1989; Kenyon et al., 2014; Brown et al., 2015; Morel et al., 2016). 

First published by Jefferies (1961) in Scotland sheep, the technique was based on a 0 to 5 scale, 

including only whole units (Table 2.8). The scoring system was subsequently modified by Russel 

et al. (1969), working on English meat sheep who introduced the concept of 0.5 and 0.25 units. 

Different scales have been used to estimate BCS including; 0 to 5 (Russel et al., 1969; Russel, 

1984; Sezenler et al., 2011); 1 to 5 (Thompson and Meyer, 1994; Kenyon et al., 2004a, 2004b; 

Morel et al., 2016) and a scale of 1 to 10 (Everitt, 1962; Sanson et al., 1993). The point intervals 

used in the studies has also differed; 0.5 and 0.25 (Russel, 1984; van Burgel et al., 2011). 

 

Table 2.8 Description of the BCS technique and an illustration of the vertebra and ribs and 
approximate muscle and fat distribution. 

 
Adapted from Kenyon et al. (2014). 
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2.8 Reliability of technique 

Due to the subjective nature of BCS, its reliability within and between assessors could 

be a significant stumbling block to the potential use and effectiveness of this technique. 

Evidence from studies suggests that the repeatability of the BCS within assessor has varied from 

low to high (Table 2.9). Overall, the data suggest that inexperienced assessors can have difficulty 

achieving consistency between assessments (Everitt, 1962; Yates and Gleeson, 1975), whereas 

experienced assessors appear to be able to achieve high herbage levels of consistency, even 

when assessing ewes to 0.25 units (Teixeira et al., 1989; van Burgel et al., 2011; Phythian et al., 

2012). 

Body condition score technique has been demonstrated to exhibit high repeatability 

with up to between 80% and 90% within for experienced assessors (Teixeira et al., 1989). Body 

condition score techniques has, however, been reported to also have low (5 – 27%) between 

and 16 – 44% within repeatability for inexperienced assessors (Yates and Gleeson, 1975). Yates 

and Gleeson (1975), also stated that assessors found the later stages of pregnancy particularly 

difficult to assess. This may suggest that changes in the shape of a ewe in late pregnancy can 

influence the ability of the assessor to accurately determine BCS and may warrant investigation. 

All studies suggest that reliability and repeatability appear to be the primary limitations of BCS 

measurement. 

Some guidelines have been suggested to improve consistency in BCS estimation; (i) the 

variation could be reduced by having two different assessors providing an estimate for each ewe 

(ii) use of ‘condition score’ models (score 1−5, in 0.5 units) such as those developed by ‘Lifetime 

wool’ to reduce between-operator bias, (iii) allowing for assessor calibration and training and 

(iv), a short period of recalibration of assessors (Evans, 1978; Calavas et al., 1998; Curnow et al., 

2011; van Burgel et al., 2011; Phythian et al., 2012; Corner-Thomas et al., 2015b).  Adherence to 

such guidelines can be, costly, time consuming and may require committed operators. 
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Table 2.9 Repeatability of the BCS technique between and within assessors 

 
ra = correlation. kb = weighted kappa analysis: <0.4 (poor level agreement); 0.4−0.75 (fair−good); >0.75 (excellent). 
Adapted from Kenyon et al. (2014) 

 

2.9 Use of BCS by the sheep industry 

Use of BCS to actively monitor body condition changes at key stages in production (i.e. 

mating, pregnancy diagnosis, lambing and weaning) is recommended as a cheap and cost-

effective complement to liveweight measurement, as it circumvents the aforementioned 

limitations of the liveweight (van Burgel et al., 2011; Kenyon et al., 2014; Brown et al., 2015; 

Morel et al., 2016) . Despite the numerous advantages of using BCS over liveweight alone to 

better manage their flocks, it is uncommon for producers/farmers to regularly and objectively 

do so. A survey of sheep producers indicated that even though 96% reported monitoring the 

body condition of their sheep, only 7% of the producers did hands-on BCS assessment of ewe 

condition to estimate the energy requirements of their sheep (Jones et al., 2011). In New 

Zealand, a greater proportion of farmers who do hands-on BCS Corner-Thomas et al. (2016) 

reported that the proportion of farmers using BCS as a management tool at 40%. Combined 

these findings indicate that there is a sizable number of farmers not using BCS. Instead, most 
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farmers relied on the visual inspection, a method that has been demonstrated to be  inaccurate 

(Besier and Hopkins, 1989). The possible reasons for the low uptake of BCS are that, firstly, 

although the ideas in the guidelines appear plausible, they are somewhat unpractical and 

secondly, end users of the technique may be unaware of the guidelines (Kenyon et al., 2014). It 

is possible that if BCS can be accurately indirectly measured without the physical touching of the 

sheep, BCS use may be increased within the industry. 

The use of BCS still remains low by the sheep farmers mainly due to its perceived 

arduous practical requirements. However, given BCS’s numerous advantages (such as 

circumventing the effects of gut-fill, skeletal size, fleece weight and wetness and physiological 

state of sheep) over liveweight as a flock management tool, better technology (i.e. hands-free) 

is needed to increase its uptake.  

2.10  Other methods for body condition assessment 

2.10.1 Digital image analysis  

Manual determination of body condition score can be labour intensive, requires a 

trained and experience hand and is not conducive to the frequent collection of data in an 

extensive commercial context. Digital image analysis offers an alternative method to 

continuously collect and automatically monitor body conformation measurements for BCS 

estimation BCS in real-time (Bell et al., 2018). Using digital cameras, animal images are taken 

from above the animal to relate body shape angels/curvatures around the hook bones and 

caudal area to the body condition. This method has been successfully used to estimate the BCS 

of cattle (Bewley et al., 2008; Azzaro et al., 2011) and may have potential for estimating the BCS 

of sheep in a paddock (Burke et al. 2004). The accuracy of the method is affected by the camera 

angle used to obtain the image, requires that images will need to have clearly defined 

boundaries that enable the measurement of certain truss points and curvatures given that 

colour uniformity and wool cover will likely distort such images (Burke et al. 2004). Given these 

challenges and the impracticality of strict restraint of animals for imaging, it is unlikely that the 

technology will be used by livestock managers to produce BCS estimates of sheep. 

2.10.2 Ultrasound 

Backfat thickness determined by ultrasonography along with the BCS can be used to 

assess the energetic and body state in a number of animal species (Zulu et al., 2001; Broring et 

al., 2003; Chay-Canul et al., 2016; Silva et al., 2016). In sheep, several studies have reported a 

positive correlation (0.45 ≤ r ≤ 0.67) between ultrasound measurements and body composition 

in wool and non-wool bred sheep (Junkuszew and Ringdorfer, 2005; Chay-Canul et al., 2016; 

Chay-Canul et al., 2019).  Chay-Canul et al. (2019) stated that ultrasound measurements around 
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the area of the Longissimus dorsi muscle (LDA) had stronger correlation with BCS than 

measurements at the thoracic region and was a better indicator of body reserves. All studies in 

sheep, expressed misgivings about the relative difficulty in taking ultrasound measurements in 

sheep due to the fleece cover and the looseness of the outer layer of subcutaneous fat. 

Ultrasound is a potential method for body condition assessment in sheep. However, it is hands-

on, requires a knowledgeable operator and may not be appropriate for woollen sheep. Given 

the practical limitations above, it is also unlikely that the technology will be used by livestock 

managers to produce BCS estimates of sheep. 

2.10.3 Liveweight and liveweight change  

There are well established positive relationships between liveweight and BCS.  Most 

authors have reported a linear relationship (Koycu et al., 2008; Kenyon et al., 2014; Morel et al., 

2016) while Teixeira et al. (1989) suggested a curvilinear relationship (Table 2.10). The 

magnitude of the liveweight difference per unit BCS is affected by a number of factors including 

breed, age and physiological status of the animal (Frutos et al., 1997; Kenyon et al., 2004a, 

2004b; Freer et al., 2007; Kenyon et al., 2014; McHugh et al., 2019). The variations in breeds are 

likely due to differences in frame size, conformation, standard reference weight and differences 

in fat distribution throughout the body (Geisler and Fenlon, 1979; Russel, 1984). Ho et al. (1989) 

stated that as animals grow, their frame size increases, until the bones cannot grow further, and 

this is their mature size. Ewes attain their mature liveweight between 25 to 50 months of age 

(Smith, 1956; Wiener, 1967; Cake et al., 2006), after which the relationship between the 

liveweights difference per unit BCS would be expected to be stable and more predictable.  

Consequently, it should be possible, although not yet known to predict the BCS using liveweight 

as a proxy. It has been stated that an additional unit of BCS equates to 3.3−11 kg in liveweight 

(Table 2.10). Due to the number of factors that can potentially affect kg/BCS unit change, it is 

difficult to use a simple standard weight change to predict BCS or BCS change. However, if a 

model could be developed to predict the relationship between weight and BCS, it would likely 

be used by farmers when they weigh sheep to estimate BCS.
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Table 2.10 Average change required in liveweight per unit of BCS and nature of association across breeds and sheep classes 

Reference Timing of measurement Breed 
Sample 
size 

Age 
(years) 

Scale       
(decimal units) 

Nature of 
Relationshipa 

Liveweight 
change R2 

Jefferies (1961)   
   

 6.8 
 

Russel et al. (1969)  Scottish Blackface 273 Adult 0−5 (0.25,0.5) linear 10.6 0.87 
Geisler and Fenlon (1979) Breeding Eight breeds 

  
0−5 (0.5) linear 3.3−7.8 

 

Hossamo et al. (1986) Breeding Awassi 
   

 5.8 
 

Teixeira et al. (1989) Dry Rasa Aragonesa 
 

10 0−5 (0.25) Curvilinear 7.0−16 
 

Sanson et al. (1993) Dry Western-range 14 mature 1−9 (0.5) Linear 5.1 0.78 
Frutos et al. (1997) Non pregnant, Non lactating Churra 35 5−7 

 
Linear 5.6 

 

Kenyon et al. (2004a) Breeding /mating) Romney 435 5.0 1.0−5.0 (0.5) Linear 7.3 0.99 
Kenyon et al. (2004b) Breeding /mating) Romney 1780 3−5 1.0−5.0 (0.5) Linear 7.9 0.99 
Kenyon et al. (2004b) Breeding /mating) Romney composite 692 3−5 1.0−5.0 (0.5) Linear 4.8 0.99 
Freer et al. (2007) Dry Polwarth X SA Merino 47 Adult 0−5 Linear 6.3 0.27 

 Dry  Polwarth X SA Merino 60 maiden 0−5 Linear 7.3 0.28 

 Dry Saxon Merino 44 Adult 0−5 Linear 5.6 0.29 

 Dry Saxon Merino 42 maiden 0−5 Linear 7.0 0.31 

 Lactating South Aust Merino 10 
 

0−5 Linear 5 0.28 

 Lactating Saxon Merino 10 
 

0−5 Linear 5.5 0.16 

 Wethers Saxon Merino 
90, 58 

 
0−5 

Linear 7,10 
0.49, 
0.70 

 Wethers Saxon Merino 37 weaners 0−5 Linear 9.3 0.67 

 Weaners, ewes Saxon Merino 
  

0−5 Linear 7.0 0.52 
van Burgel et al. (2011) Gestation & Lactation Merino, Leister X Merino 1500 

 
0−5 (0.25, 0.5) Linear 9.2 

 

Sezenler et al. (2011)   156 
 

0−5 (0.5) Linear  
 

Morel et al. (2016) Dry, ewes Romney cross 28 4−6 1.0−5.0 (0.5) Linear 7.7 0.66 
McHugh et al. (2019) pregnancy Multiple breeds & crossbreds 

  
1.0−5.0 Linear 4.9 0.14 

  Lambing Multiple breeds & crossbreds   1.0−5.0 Linear 6.3 0.18 

 Lambing Multiple breeds & crossbreds 
  

1.0−5.0 Linear 6.3 0.18 

 Pre-weaning Multiple breeds & crossbreds 
  

1.0−5.0 Linear 4.8 0.21 

 Weaning Multiple breeds & crossbreds 
  

1.0−5.0 Linear 4.7 0.23 

 Post-weaning Multiple breeds & crossbreds 
  

1.0−5.0 Linear 6.9 0.32 

 Mating Multiple breeds & crossbreds 
  

1.0−5.0 Linear 4.1 0.23 

  Belclare 540 
 

1.0−5.0 Linear 6.4 0.16 

  Charollais 1484 
 

1.0−5.0 Linear 8.7 0.29 
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  Suffolk 885 
 

1.0−5.0 Linear 6.9 0.32 

  Texel 1695 
 

1.0−5.0 Linear 5.2 0.18 

  Vendeen 140 
 

1.0−5.0 Linear 9.8 0.38 
Adapted with modifications from Kenyon et al. (2014). aNature of association if listed. 
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2.10.4 Height at withers 

There are documented relationships between BCS and height at withers in sheep 

(Maurya et al., 2008; Holman et al., 2012; Anusha, 2016). Maurya et al. (2008) working on 247 

mature Maplura ewes reported that height at withers was lower in ewes of BCS 2.5 (59.7 cm) 

and increased with BCS being higher in ewes of BCS 4.0 (60.5 cm). In a different study by the 

same author working on 119 mature Garole x Malpura ewe crosses, they reported that height 

at the wither was highest in ewes with BCS 3.0 (53.7 cm) compared with the ewes with BCS 2.5 

(51.0 cm) and 3.5 (52.5 cm). Body condition score has been reported to be significantly 

correlated with height at withers in sheep (Holman et al., 2012). Both studies have reported a 

linear association with moderate correlation coefficients of 0.58 and 0.44 respectively. Anusha 

(2016), however, reported a weak correlation between BCS and height at withers of 0.28 in 

Nellore brown sheep. All the three studies combined suggest that BCS is linearly related to 

height at withers in ewes and the strength of association appears to range from weak to 

moderate. It is not yet known how the association between sheep BCS and height at withers 

varies over time. These factors affecting wither height and its association with BCS need to be 

investigated over time.  

Physical measurements such as liveweight and wither height are positively correlated 

with body condition score. If the relationship between BCS and such measurements can be 

predicted, then, it should be possible to use such measurements as proxies for BCS singly or in 

a combination. Tapping into the association between BCS and these easy-to-determine variables 

would, therefore, establish an indirect way of generating BCS estimates. 

2.11 Perspective and proposal 

Although it has been shown, both LW and BCS are related to sheep performance, studies of 

liveweight and BCS in sheep have reported inconsistencies associated with their measurement. 

Liveweight measurement error has been associated with fluctuations in gut-fill based on several 

factors such as feed type offered, feeding level, physiological status and season. It is, therefore, 

of interest to gain a greater understanding of the impacts of such factors on liveweight loss 

profiles associated with handling and weighing of ewes. Further, it is also of interest to generate 

time-dependent liveweight adjusting equations that could be incorporated into weighing 

systems for correction of losses due to gut-fill changes which is the focus of research Chapters 

3, 4 and 5. Literature has further shown that BCS which is another indicator of sheep 

performance has low adoption rates among farmers. Body condition score measurement 

employs a hands-on procedure which can be time-consuming. It is therefore of interest to 

explore indirect faster means of measuring BCS. A greater understanding of the relationship 
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between BCS and physical measurements and the possibility of using such measurements as 

proxies for BCS in sheep may be of advantage which is the focus of research Chapters 6, 7, 8 and 

9. Furthermore, evaluation of animal condition can be a complex process requiring improved 

accuracy of measuring both liveweight and BCS and a greater understanding of this process will 

be achieved when all available information is synthesized, transformed into algorithms and 

integrated into weighing systems.



 

Foreword to Chapters 3 to 5  

Chapters 3, 4 and 5 of this thesis present work on factors affecting ewe liveweight loss and 

methodologies to correct for weight losses during delayed weighing of ewe lambs. The 

methodology of Chapter 3 presents liveweight loss profiles of ewe lambs offered ryegrass- and 

herb-clover-based swards in order to determine if the rates of weight losses differ between the 

two feed types. Chapter 4, examines the effect of herbage availability and season on the rate of 

weight loss in ewe lambs while Chapter 5, examines the effect of herbage availability and 

physiological state on the rate of weight loss in mixed-aged ewes. In both Chapters 4 and 5, 

correction equations were developed to correct for liveweight losses and provide accurate 

estimates of “without delay” liveweights.
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Abstract 

This experiment examined the hypothesis that herbage type, would affect the rate of 

liveweight loss of Romney lambs after a period of fasting. Lambs (n=80) were allocated to one 

of two herbage types: grass (ryegrass and white clover) and herb-clover (chicory, plantain, red 

clover, white clover). Lambs grazed their respective treatments for one month prior to the start 

of the experiment. Lambs were weighed immediately after being removed from their herbage 

treatment and then at one-hour intervals for eight hours. Herbage type had a significant effect 

(p < 0.01) on the rate of liveweight loss over the eight-hour fast. Lambs grazing herb-clover 

swards had a greater (p < 0.05) rate of weight loss after four hours than did lambs grazing grass 

(0.55 vs. 0.23 kg/h, respectively). Similarly, after eight hours, lambs grazing herb-clover lost 

weight more rapidly (p < 0.05) than did those grazing grass (0.39 vs. 0.22 kg/h, respectively). 

These results support the hypothesis that herbage type influenced the rate of liveweight loss 

during fasting and indicate that farmers need to consider the type of herbage and time off 

herbage in order to obtain accurate liveweight data. 

 



Effect of herbage type on ewe liveweight loss rate 

Page | 45  
 

3.1 Introduction 

Liveweight (LW) is an indicator of the current physical state of an animal, and change in 

LW is a useful tool in assessing how an animal is responding to its current environment (Brown 

et al., 2005; Wishart et al., 2017). Liveweight provides a basis for decision making regarding 

sheep management, therefore, accurate determination of LW is important. New advances in 

technology have led to commercially available automated-weighing systems. In addition, the 

advent of electronic weighing scales and use of radio frequency identification (RFID) make it 

easier to regularly collect liveweights of individuals over time (Brown et al., 2015). However, 

liveweight measurements can be affected by a number of factors including: growth, nutrition, 

health, stress, physiological state and genotype (Kenyon et al., 2014; Brown et al., 2015).  

Liveweight is a measure of total body mass and includes muscle, fat, bone, organ, body 

fluids and gut-fill (Wishart et al., 2017). It is relatively stable over a short period of time, but 

alters over longer time periods in response to environmental and physiological conditions 

(Coates and Penning, 2000b; Wishart et al., 2017). The contents of the rumen (fluid and feed) 

can account for between 10 and 23% of total liveweight in ruminants (Hughes, 1976; Moyo and 

Nsahlai, 2018).  Liveweight fluctuations due to gut-fill in ruminants are known to be affected by 

time since last meal, feed and water consumption, age and size of the animal, time of day 

relative to sunrise, ambient temperature, and differences in grazing behaviour (Hughes, 1976; 

Gregorini, 2012). 

A number of  strategies can be used to reduce liveweight variation including removal of 

feed and water for fixed periods of time prior to weighing, standardizing weighing procedures, 

taking an average of multiple liveweights in a day or across a number of successive days, 

weighing at a specific time relative to sunrise, standardizing the feed offered before weighing 

and increasing the number of animals and repetitions of the study (Coates and Penning, 2000b; 

Wishart et al., 2017). Such methodologies to reduce variation are time consuming and, 

therefore, not generally utilised except in experimental situations.  

Routine on-farm sheep handling and weighing may involve many animals and mustering 

from fields of varying distances from the weighing location. This can result in significant delays, 

where individuals are held for many hours without access to food and water prior to weighing. 

Delays in weighing can lead to weight loss due to a reduction in gut-fill and body fluid (Burnham 

et al., 2009; Wilson et al., 2015). In lambs, varying levels of weight loss have been reported within 

flocks while waiting to be weighed. Hughes (1976) reported losses of 0.5 to 1.2 kg (1.8 to 3.8% 

of initial liveweight) after six hours and 1 to 1.7 kg (3.7 to 5.3% of initial liveweight) after 12 

hours. Burnham et al. (2009), Wilson (2014) and Wishart et al. (2017) reported liveweight losses 
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of 4.2 kg (9.8% of initial liveweight), 4.8 kg (7.8% of initial liveweight) and 2.9 kg (5.6% of initial 

liveweight), respectively after six hours. These levels of liveweight loss are likely to interfere with 

a comparison of live weight particularly when small liveweight changes are being investigated. 

Thus, there is a need for a new approach to determine and adjust for variations in live weight 

among animals and specific periods of time when sheep do not have access to feed and water 

while waiting to be weighed. The on-going improvements in weighing equipment, software and 

data management may offer a solution, as they have capacity for the time stamping of individual 

animal weights.  

To date, no study has investigated the effect of diet on the liveweight loss of sheep. The 

aim of this study, therefore, was to investigate the effect of feed type (ryegrass-based pasture 

and herb-clover mix) on the rate of liveweight loss in lambs when removed from herbage.  

3.2 Materials and methods  

This research investigated the effect of herbage type: to profile liveweight and 

liveweight loss of ewe lambs offered two diets (ryegrass-based pasture and herb-clover mix), 

over eight hours of fasting within a handling facility. This study was a subset of another study 

not related to this thesis. Brief details on that study are in Appendix II. 

3.2.1 Location and climate of study area 

The experiment was conducted at Massey University’s Keeble farm, 5 km southeast of 

Palmerston North (40°24’ S and 175°36’ E), New Zealand from April 27/2018 to April 04/2018 

(late Autumn). In New Zealand, the shortest day is June 21st. Weather data for study week is 

presented in Appendix I Figure 1. 

3.2.2 Study animal conditions, experimental design and feed management 

The lambs used in this study were part of an on-going experiment (Protocol number: 

MUAEC 18/10). Six-month-old ewe lambs (n = 80) were allocated to one of two herbage types: 

an established ryegrass (Lolium perenne) and white clover (Trifolium repen) dominated sward 

(grass, n = 40) or a chicory (Cichorium intybus), plantain (Plantago major), red (Trifolium 

pratense) and white clover mix (herb-clover, n = 40). Within each herbage type, half (n = 20) of 

the lambs were allowed access to drinking water and the other half (n = 20) restricted (Appendix 

II). In the current study, all subsamples from the nested study were pooled for the herbage type 

level analysis. The lambs were on these herbage type diets for 30 days prior to weighing. The 

dry matter percentage for grass and herb-clover was 22.2% and 12.2% respectively. The pasture 

masses were 1272.9 kg DM/ha and 1301.2 kg DM/ha for grass and herb-clover respectively. 
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3.2.3 Herbage mass determination, sampling, and nutritional composition 

To determine the grazing herbage dry matter (DM) mass and ensure that the herbage 

availability levels were maintained within the desired ranges over the study period, rising plate 

meter heights were recorded at least two days before weighing of the ewe lambs and on the 

day of weighing. Herbage masses were estimated using a rising herbage plate meter (plate 

diameter of 355 mm; Jenquip, Feilding, New Zealand) calculated from 200 readings (R) per 

herbage availability level/paddock. Sward heights were calculated using plate meter readings 

using the equation below. 

 

Sward height (cm) = [
R2−R1

200
]        3.1 

where R2 is the final meter reading and R1 is the rising plate meter reading before the first 

measurement of the plate. Sward height data collected within each paddock were converted to 

herbage mass according to an equation developed by Hodgson et al (1999) as shown below. 

Herbage mass (kg DM/ha) = 200 + 158 x sward height (cm)                           3.2

  

3.2.4 Liveweight measurement 

The lambs were weighed in their respective treatment groups in the same sequence 

(i.e., first group to be weighed was always weighed first and last group last), immediately after 

arriving at the weighing facility from their paddock, and thereafter, they were weighed once 

every hour for the following eight hours. The eight-hour fasting period was considered as it fell 

within the stipulated time for fasting sheep in the Sheep and Beef Cattle Code of Welfare of  

New Zealand (Ministry of Primary Indistries, 2018). After eight hours, they were returned to 

their paddocks. This generated a dataset containing 640 records of liveweights, from 80 sheep. 

The lambs were weighed using Tru-TestTM MP600 load bars and XR5000 weigh head (Tru-Test 

Group, Auckland, New Zealand). The weighing system collected liveweights at a resolution of 

0.1 kg for weights between 0 and 50 kg.   

3.2.5 Statistical analyses 

All analyses were conducted using  R program version 3.4.4 (R Core Team, 2016).  During 

the analysis, residuals were visually explored using residual plots (i.e. for potential outliers based 

on Cook’s distances (Dhakal, 2018), for normality using qqplots and heteroscedasticity using 

residual vs fitted plots. Additional tests undertaken included, Shapiro-wilk test (Shapiro and 

Wilk, 1965; Peat and Barton, 2008) for normality and the Breush-Pagan test for 

heteroscedasticity (Breusch and Pagan, 1979). Extreme outlier and influential values were 
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excluded from the final analysis based on their influence (Cook's Distances for the outliers 

greater than 4 / (Sample size – Number of predictor variables – 1), were are considered the 

influential points) on the final model (Hair et al., 2006).  The final model residuals met the 

assumption of normality, linearity and homoscedasticity. There was, however, temporal 

autocorrelation in the residuals.  

Following the data exploration, a linear mixed-effects model with polynomial time effect 

was fitted using “nlme”, a package for fitting regression for linear and nonlinear models 

(Pinheiro et al., 2018). Herbage type was fitted as a fixed variable, fasting time (linear and 

quadratic) as a covariate while an individual sheep effect was fitted as a random effect. Two-

way herbage type x time interactions were also fitted. An autoregressive correlation structure 

with was fitted, to account for temporal dependency of nearby time. Effects in the model were 

contrasted based on Tukey’s adjustment method using the R program extensions emmeans 

(Russell, 2018) and multcomp (Hothorn et al., 2008) packages. Initially the maximum likelihood 

method was used to fit the model, after, the final model, was generated using restricted 

maximum likelihood (ReML) method, and relative goodness of fit determined based on Akaikes’s 

information criterion (AIC) values where the model with lowest value was retained. Average 

herbage availability (mass) was estimated using a general linear model with herbage type fitted 

as fixed effect.  

3.3 Results 

Within those models, both linear (p < 0.001) and quadratic time effects were significant 

(p < 0.05). There were also significant (p < 0.05) two-way time x herbage type and time2 x 

herbage type interactions indicating differential weight loss rates. Grass being the predominant 

herbage in New Zealand, was used as the reference group for all comparisons. Average 

liveweight loss among the two herbage types did not differ significantly (p > 0.05) in the entire 

fasting time. Overall, lambs that had previously grazed the grass-based diet had a lower rate of 

liveweight loss compared with those on herb-clover (p < 0.01). Consequently, the liveweight loss 

rates and, thus, the prediction equations for grass and herb-clover based diets were significantly 

different (p < 0.01) (Table 3.1, Figure 3.1).
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Table 3.1 Prediction parameters with standard errors in parentheses for lamb liveweight loss 
(kg) for herbage types (grass and herb-clover).  

  Herbage type 

Parameter Grass Herb-clover 

Initial weight 38.9±0.73 43.0±0.83 
Final weight 36.9±0.68 40.4±0.80 
Intercept 0.11 (0.056) 0.07 (0.068) 
Time 0.28a (0.033) 0.58b (0.061) 
Time2 −0.06a (0.005) −0.03b (0.005) 
Adjusted R2 0.66 0.75 

ab: different superscripts denote significant difference at p < 0.05 across row. Liveweight loss predictive equations for 
grass-based diet (weight loss (kg) = 0.11+0.28Time − 0.06Time2); for herb-clover based diet (weight loss (kg) = 
0.07+0.58Time – 0.03Time2) respectively. Model goodness of fit: the higher adjusted R2 and lower RMSE the better. 
All Tests and contrasts based on Tukey’s multiple comparison methods. 

 

 

Figure 3.1 Change in liveweight (with 95% confidence interval, dotted lines) after removal from 
herbage, for grass (solid red line) and herb-clover (dashed blue line). Liveweight loss predictive 
equations for grass-based diet (weight loss (kg) = 0.11+0.28Time−0.06Time2, R2=0.66); for herb-
clover based diet (weight loss (kg) = 0.07+0.58Time–0.03Time2, R2=0.75) respectively. 

Initial liveweights for lambs on grass and herb-clover treatments were 38.9±0.93 kg and 

40.2±1.03 kg, respectively. Sheep on the herb-clover treatment had a significantly greater (p < 

0.05) rate of liveweight loss compared with those on grass. When all data were combined, the 

rate of liveweight loss (0.28kg/h) was higher in the first four hours of the study compared with 

the later four hours (0.11 kg/h). The results further indicated that lambs fed grass lost less (0.39 

kg/h., 0.22 kg/hr) weight than those on herb-clover (0.55 kg/h, 0.23 kg/h) during the first four 

and the entire eight hours, respectively. Results from each of the two treatment groups (grass 

and herb-clover), in descending order of liveweight loss, showed that lambs lost a significant 
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amount of live weight after four (1.9±0.15 kg or 4.9% of live weight and 1.1±0.13 kg or 2.6%) 

and (2.8±0.16 kg or 7.3% and 1.80±0.11 4.4%) after eight hours (p < 0.001). 

3.4 Discussion 

The findings of the current study indicated that lambs lost a substantial amount of 

liveweight between each weighing throughout the eight-hour fasting period. The magnitude of 

this change is likely to influence the reliability of liveweight measures which may have 

implications for research and management decisions unless it can be corrected for. The lambs 

in the current study lost liveweight at a higher rate over the first four hours compared with the 

second four hours. A similar pattern of liveweight loss has been previously reported in sheep 

(Hughes, 1976; Wishart et al., 2017). This was previously attributed to the daily biological 

rhythms where the digesta from the previous day is passed from the animal in the early morning 

(Whiteman et al., 1954), or due to the law of diminishing returns (Wilson, 2014; Wishart et al., 

2017). The liveweight losses in this study were comparable to those reported by Hughes (1976) 

in two-tooth sheep, Burnham et al. (2009) in hogget ewes at 10 months of age and Wishart et 

al. (2017) in non-pregnant dry ewes at 1.5 to 4.5 years of age, but slightly greater than those 

reported by Hughes (1976) in weaned and un-weaned lambs.  

Lambs grazing the herb-clover diet had higher liveweight losses per unit time compared 

with those on the grass-based diet.  This may be expected because the herb-clover mix contains 

a higher concentration of readily fermentable carbohydrate (soluble sugars and pectin) and 

lower concentrations of structural carbohydrate (i.e. cellulose and hemicellulose) than grass-

based diets (Barry et al., 1999; Moyo and Nsahlai, 2018). Further, herb mixes are known to have 

lower Neutral Detergent Fibre (NDF) (24−49%) but correspondingly higher organic matter 

digestibility (68−83%) than grass-based-swards (NDF, 36−62%; OMD, 64−74%) (Golding et al., 

2011; Somasiri et al., 2016) and therefore faster rumen passage (Moyo and Nsahlai, 2018). The 

higher hemicellulose fraction in grasses than in herbs results in higher water holding capacity 

and a lower digesta passage rate (Van Weyenberg et al., 2006; Moyo and Nsahlai, 2018). 

Hodgson et al. (1999) stated that increases in NDF concentration can restrict animal feed intake 

due to low rumen outflow.  This suggests that the greater the hemicellulose content in the 

forage, the greater the amount of water it can hold. This would then result in a decrease in the 

fractional rate of fluid passing through the rumen and help explain the results.  

To improve the reliability and comparability of liveweights it is recommended that there 

is standardization of feed prior to weighing of sheep and adjusting for delays. The data here 

provides information for farmers and scientists to correct liveweight with time off pasture. 

However, further work is required to validate the equations generated in the current study. In 
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addition, further studies are needed to examine factors such as breed, age and sex of lamb, 

feeding levels, ambient temperature and physiological status that might interact to account for 

total liveweight loss. 

3.5  Conclusion 

For lambs fed a grass or herb-clover diet, the present study identified liveweight loss 

profiles during an eight-hour period when feed and drinking water were withheld. This study 

demonstrated that sheep lose a significant amount of liveweight over a short period and this 

loss rate depended on their diet type under the study conditions observed.
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 The effect of herbage availability and season of year 

on the rate of liveweight loss during weighing of fasting ewe 

lambs 
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Abstract 

Sheep (Ovis aries) liveweight and liveweight change can contain errors when collection 

procedures are not standardized, or when there are varying time delays between removal from 

grazing and weighing. A two-stage study was conducted to determine the effect of herbage 

availability and season of year on the rate of liveweight loss during fasting and to develop and 

validate correction equations applied to sets of delayed liveweights collected under commercial 

conditions. Results showed that ewe lambs offered the Low herbage availability lost up to 1.5 

kg and those offered the Medium or High herbage availability lost 2.6 kg during eight hours of 

delayed weighing without access to feed or drinking water. The rate of liveweight loss varied by 

season, herbage availability and farm (p < 0.05). Applying correction equations on matching 

liveweight data collected under similar conditions, provided more accurate estimates (33–55%) 

of “without delay” liveweight than using the delayed liveweight. In conclusion, a short-term 

delay of up to eight hours prior to weighing which is commonly associated with practical 

handling operations significantly reduced the liveweight recorded for individual sheep. Using 

delayed liveweights on commercial farms and in research can have significant consequences for 

management practices and research results globally, therefore, liveweight data should be 

collected “without delay”. However, when this is not feasible delayed liveweights should be 

corrected, and in absence of locally formulated correction equations, the ones presented in this 

paper could be used.
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4.1 Introduction 

Liveweight (LW) is an indicator of the physical state of an animal, and change in LW is a 

useful tool to assess how an animal is responding to its current environment (Brown et al., 2005; 

Wishart et al., 2017). Liveweight is a measure of total body mass and includes muscle, fat, bone, 

organ, body fluids and gut-fill (Wishart et al., 2017). Advances in technology have led to 

commercially available automated weighing systems which combine electronic scales and use 

of radio frequency identification (RFID). These automated systems make it more easier to 

regularly collect and utilize liveweight  data of individuals over time (Brown et al., 2015).  

Liveweight is relatively stable over a short period of time (a few minutes), but alters over 

longer time periods in response to environmental and physiological conditions (Coates and 

Penning, 2000b; Wishart et al., 2017). Liveweight measurements can be affected by a number 

of factors including: gut-fill (digesta and urine), growth, nutrition, health, stress, physiological 

state and genotype (Kenyon et al., 2014; Brown et al., 2015). The contents of the rumen (fluid 

and feed) can account for between 10 and 23% of total liveweight in ruminants (Hughes, 1976; 

Moyo and Nsahlai, 2018). Liveweight fluctuations due to gut-fill in ruminants can be affected by 

factors influencing feed intake such as age and size of the animal, time of day relative to sunrise, 

ambient temperature, and differences in grazing behaviour, and time since last meal (Hughes, 

1976; Coates and Penning, 2000b; Hogan et al., 2007; Burnham et al., 2009; Gregorini, 2012; 

Wilson et al., 2015; Wishart et al., 2017).  

In the southern hemisphere sheep production is mainly extensive in nature and pastoral 

based. In New Zealand, the flock sizes on average are greater than 2500 sheep (Cranston et al., 

2017). Automatic weighing systems can record up 400 weights per hour without interruptions 

(https://www.livestock.tru-test.com), thus, requiring six to seven hours to weigh an average 

flock. Further, mustering and routine on-farm sheep handling in addition to weighing can 

increase the length of time sheep are restricted from accessing feed and water supplies while 

waiting to be weighed. Delays in weighing can lead to weight loss due to a reduction in gut-fill 

and body fluids (Hogan et al., 2007; Burnham et al., 2009; Wilson et al., 2015). In ewe lambs, 

varying levels of weight loss have been reported within flocks waiting to be weighed. Previously 

in Chapter 3, it was reported that losses of 1.8 (4.7% of initial weight) to 2.9 (6.7% initial weight) 

kg occur after eight hours. Hughes (1976) reported losses of 0.5 to 1.2 kg (1.8 to 3.8% of initial 

liveweight) after six hours and 1 to 1.7 kg (3.7 to 5.3% of initial liveweight) after 12 hours. 

Burnham et al. (2009) and Wishart et al. (2017) reported liveweight losses after six hours of 4.2 

kg (9.8% of initial liveweight), 4.8 kg (7.8% of initial liveweight) and 2.9 kg (5.6% of initial 
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liveweight), respectively. These levels of liveweight loss can interfere with the accuracy of 

comparison of liveweights, and changes in liveweight over time.  

Several  strategies can be used to reduce variability in liveweight including removal of 

feed and water for fixed periods of time prior to weighing, standardizing weighing procedures, 

taking multiple liveweights readings per individual per day over successive days, weighing at a 

specific time relative to sunrise, standardizing the feed offered prior to weighing and/or 

increasing the number of animals and repetitions of a study (Coates and Penning, 2000b; 

Wishart et al., 2017). Such methodologies to reduce variation are time consuming and, 

therefore, not practical for on-farm commercial use. Thus, there is a need for a new approach 

to determine and adjust for variations in liveweight among animals across time. The on-going 

improvements in weighing equipment, software and data management (Brown et al., 2015; 

Wilson et al., 2015) may offer a solution, as there is capacity for the time stamping of individual 

animal weights. Liveweight is used as a measure of an animal’s productivity providing a basis for 

decision making regarding sheep management. Inaccurate liveweights can lead to wrong 

conclusions where individual animal performance or a comparison of liveweights is required. It 

is, thus, imperative that accurate liveweights are determined and used in sheep management.    

Pre-fasting gut-fill has been found to be important in determining the rate of sheep 

liveweight loss during fasting (Kirton et al., 1968; Kirton et al., 1971; Thompson et al., 1987). The 

degree of gut-fill, retention time of particles in the gastrointestinal tract and passage rate can 

be affected by the quality and quantity of dry matter intake in ruminants (Alwash and Thomas, 

1971; Haaland and Tyrrell, 1982; Varga and Prigge, 1982; Kaske and Groth, 1997). In Chapter 3, 

it was demonstrated the effect of herbage type on the rate of ewe lamb liveweight loss. It is 

likely that differences in the type and amount of herbage mass offered to sheep can result in 

variation in liveweight loss during fasting.   

To date, the effect of herbage availability, season and their interaction on the liveweight 

loss of young sheep during fasting has not been reported. The aim of this study, therefore, was 

to firstly, investigate the effect of herbage availability (Low, Medium and High) and season on 

the rate of liveweight loss in ewe lambs when removed from herbage. Secondly, to generate 

and validate ewe lamb liveweight loss correcting equations. If such equations could be 

developed, they could then be incorporated into modern weighing systems to allow for more 

accurate liveweight data recording. It is hypothesized that differences in herbage availability and 

season would affect the rate of liveweight loss when ewe lambs were fasted.  
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4.2  Materials and methods 

This study was conducted in two stages namely, stage one (calibration stage) which profiled 

the liveweight and liveweight loss of ewe lambs offered three feeding herbage availability levels 

(Low, Medium, and High) over two seasons (autumn and early winter), and stage two (validation 

stage) which evaluated liveweight loss correction equations developed from stage one, on 

different ewe lambs. 

4.2.1 Stage one: Calibration  

4.2.1.1 Location  

The experimental site was at Massey University’s Keeble farm, 5 km south of Palmerston 

North (40°24′ S and 175°36′ E), New Zealand. The experiment was conducted from 22nd March 

2019 to 4th April 2019 (autumn) and repeated from 18th June 2019 to 1st July 2019 (winter). 

Weather data for both seasons is presented in Appendix III Figures 1a and 1b. 

4.2.1.2 Study animal conditions, experimental design, and feed management 

A total of 180 Romney ewe lambs were used in this study. In autumn (from 30 March to 

16 April 2019), 90 ewe lambs (6–7 months of age) were selected for the study. In winter (27 May 

to 13 June 2019) a different group of 90 ewe lambs (8–9 months of age) were selected. The 

lambs were obtained from Massey University’s Keeble farm and all had electronic identification 

ear tags (EID) and were weighed individually. The ewe lambs were randomly assigned on day 

one, to one of three ryegrass-based herbage availability levels; 700–900 kg DM/ha (Low herbage 

availability target range, n = 30), 1100–1300 (Medium, n = 30), and ≥1400 (High, n = 30) (Figure 

2), ensuring that the overall groups weights were not different (p < 0.05). These three herbage 

availability levels were selected as they represented the range of potential masses these ewe 

lambs might be offered in normal farm practice in New Zealand. Previous studies have shown 

that herbage levels of 800–1000 kg DM/ha, 1200–1400 kg DM/ha have been associated with 

maintenance and daily liveweight gains of 120–160 g/d, respectively (Penning and Hooper, 

1985; Nicol and Brookes, 2007). The herbage areas were 1.9 ha (Low), 2.1 ha (Medium), and 2.0 

ha (High). Herbage availability levels were achieved by grazing the herbage using other mobs 

prior to allocation of study sheep. The study had the approval of Massey University ethics 

committee (protocol number: MUAEC 18/98). 
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Figure 4.1 Herbage availability (Low herbage level target range: 700–900 kg DM/ha, Medium: 
1100–1300 kg DM/ha, High: >1400 kg DM/ha) offered to ewe lambs during the study time. 

4.2.1.3 Liveweight measurement 

Ewe lambs were weighed using Tru-TestTM MP600 load bars and XR5000 weigh head 

(Tru-Test Group, Auckland, New Zealand) as in Chapter 3. The weighing system collected 

liveweights at a resolution of 0.1 kg for liveweights between 0 and 50 kg and 0.2 for weights 

between 50 and 100 kg. At day seven, lambs were weighed immediately after arriving at the 

weighing facility from their paddock (Without delay weight: within ten minutes of removal from 

herbage), and then again at hourly intervals (delayed weight) for the following eight hours, in 

their respective treatment groups which were weighed in the same group sequence. During 

their stay at the weighing facility, ewe lambs did not have access to feed or water. After eight 

hours, the ewe lambs were returned to their paddocks. This procedure occurred on two more 

occasions within each season, while the lambs grazed their respective herbage availability levels 

(autumn: day 7, day 11 and 14; winter: day 7, day 12 and 14).  

4.2.1.4 Herbage sampling, mass and quality  

To determine the grazing herbage dry matter (DM) mass and ensure that the herbage 

availability levels were maintained within the desired ranges over the study period, rising plate 

meter heights were recorded at least two days before weighing of the ewe lambs and on the 

day of weighing. Masses were estimated using a rising herbage plate meter using the procedures 

described in Chapter 3 (Equations 3.1, 3.2).  

Herbage grab samples to represent what the lambs were consuming were collected at 

random for nutritional quality analysis across herbage availability levels and pooled within 

herbage availability level and day of collection, at days 7, 11, and 14 in autumn (n = 9) and 7, 12, 

and 14 in winter (n = 9). Samples were collected between 9.00 AM and 12.00 PM at each 

sampling time. Samples were divided into two and either freeze-dried and stored for further 

Low Medium High 
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chemical analysis or used for dry matter determination (percentage dry matter and the ratio of 

live/green to dead matter). 

Samples for each herbage availability level collection on each day, were mixed and a 

subsample of approximately 50 g fresh weight was recorded. The subsamples were then oven 

dried at 70 °C to a constant weight. The oven-dried herbage was then ground to pass through a 

1-mm sieve and analysed for crude protein (CP), Acid detergent fibre (ADF), neutral detergent 

fibre (NDF), and digestible organic matter (OMD) using near-infrared reflectance spectroscopy 

(NIRS; Model: FOSS NIRSystems 5000, Maryland, USA) (Corson et al., 1999; Haese et al., 2020) 

calibrated for high water soluble carbohydrate (WSC) grasses (FeedTech, AgResearch 

Grasslands, Palmerston North). Additionally, a prediction of the metabolizable energy (ME) of 

the feed was determined using organic matter digestibility (OMD*0.16 MJ/kg) (Roughan and 

Holland, 1977; Dowman and Collins, 1982). The NIRS system estimates forage composition by 

comparing the spectral scan with a database of spectral and analytical information 

(predetermined from wet chemistry) to give an estimate of chemical composition (Corson et al., 

1999).  

The fresh herbage sample was weighed before being oven dried at 70°C for 48 hours, 

and then reweighed to determine its dry matter content (DM) % using the formula below.   

DM % = 100 − [
(Fresh weight−Dry weight)

Fresh weight
x 100]                                                                           4.1 

Further, a subsample (approximately 20 g) of fresh herbage was sorted into live and 

dead matter and then oven dried for dry matter estimation. The dry samples (live and dead) 

were then weighed separately to determine their dry weights. The proportion of live (green) 

matter to dead was calculated per herbage availability level as follows. 

Live matter % = 100 ∗ (
Dry weight of green herbage

Total dry weight (green+dead)
)           4.2 

4.2.1.5 Statistical analyses 

All analyses were conducted using the R program version 3.4.4 (R Core Team, 2016).  The 

data were explored and analysed using procedures in Chapter 3. During the analysis, residuals 

(error term) were visually explored using residual plots (i.e. for potential outliers based on cook’s 

distances (Dhakal, 2018), for normality using qqplots and heteroscedasticity using residual vs 

fitted plots). Additional tests undertaken included, Shapiro-wilk test (Shapiro and Wilk, 1965; 

Peat and Barton, 2008) for normality and the Breusch-Pagan test for heteroscedasticity (Breusch 

and Pagan, 1979). Extreme outliers were excluded from the final analysis based on their 

influence (Outliers with Cook's Distances > 4/sample size, were then considered influential 
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points) in the final model (Cook, 1977). The final model residuals met the assumption of 

normality, linearity and homoscedasticity. There was, temporal autocorrelation in the residuals 

based on visual inspection of the autocorrelation plots.   

Prior to analysis, data were partitioned into two while maintaining the class balance for 

different herbage levels and physiological state of groups as follows; 70% of the measurements 

were used to train the model (training set), and the remaining 30% were used to cross-validate 

the model (test dataset). The ewe lamb liveweight loss training dataset was expanded using a 

1000 fold cross validation resampling technique and using different splits each time, To predict 

ewe lamb weight loss, a mixed effects model with a first order correlation structure was fitted 

using R program (R Core Team, 2016) with the nlme package extension (Pinheiro et al., 2018).  

Herbage availability (H) together with season (S) were fitted as fixed variables, holding 

time (T: first and second order polynomial) as covariate while an individual sheep effect was 

fitted as a random effect. Initially, all variables were fitted including their two-way (S x H, S x T, 

S x T2, H x T, H x T2) and three-way (S x H x T and S x H x T2) interactions and then the 

nonsignificant ones eliminated through backward selection. The model with the least Akaike’s 

information criterion (AIC) values (minimal model) was retained. 

Herbage mass was estimated using a general linear model fitted using the generalized 

least squares method (GLS) in nlme package with herbage availability level, season, and sample 

days as fixed effect. Two-way herbage availability x season interactions nested within sample 

days, or three-way herbage availability x season x sample days were tested. The model with 

nesting structure having had the least AIC value was selected as most fitting for further analysis. 

All model effects were compared using the minimal model, based on Sidak’s multiple-

comparisons tests as in Chapter 3.  

4.2.2 Stage two: Validation  

4.2.2.1 Location  

Data collection for the validation of the equations was conducted on two different 

Massey University farms (Tuapaka and Riverside), New Zealand. Tuapaka farm located 15 km 

north-east of Palmerston North City (40°20′ S, 175°43′ E) and Riverside farm was located 11 km 

north to north-west of Masterton (40°50′ S, 175°37′ E). The weather details for the validation 

sites are presented in Appendix III Figure 2a and 2b. 

4.2.2.2 Study Animals, Experimental Design, and Feed Management 

Validation was conducted using eight-month-old Romney ewe lambs (n = 90) at Tuapaka 

farm from the 30th July to 8th June and at Riverside farm from the 7th to 16th July (n = 90) in 

the winter of 2020. On day one, ewe lambs (n = 30) were randomly allocated on to one of three 
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herbage availability levels (Low, Medium, and High as per the calibration stage). The herbage 

was a ryegrass and white clover-based sward mix. The herbage availability areas were 1.5 ha 

(Low), 3.7 ha (Medium), and 2.0 ha (High) for Tuapaka, and 3.0 ha (Low), 4.1 (Medium), and 3.1 

ha (High) for Riverside. 

4.2.2.3 Liveweight Measurement 

Ewe lambs were placed on their respective herbage availability levels/paddocks (only one 

paddock per herbage availability level) for three days (days −3 to day 0) prior to start of the 

study. The ewes were weighed on days 4 and 6 at Tuapaka farm and days 4 and 7 at Riverside 

farm. Ewe lambs were weighed in their respective herbage availability groups immediately after 

arriving at the weighing facility from their paddock (within 10 min of removal from herbage to 

get the “without delay” weight), and then hourly in the same group sequence for the following 

six hours. During their stay at the weighing facility, ewe lambs did not have access to feed and 

water. After six hours, the ewe lambs were returned to their paddocks. The study had the 

approval of Massey University ethics committee (protocol number: MUAEC 19/53). 

4.2.2.4 Herbage Sampling, Availability Determination, and Herbage Quality 

Herbage availability was recorded on the first day (day one), first weighing (within 2–4 days) 

and last weighing day (within 5–7 days) of the study only. Herbage samples were collected on 

each day of weighing and analyzed for quality parameters and for dry matter percentage and 

proportion of live to dead matter as per the calibration stage of study. 

4.2.2.5 Statistical Analyses 

The validation datasets generated in stage two were collected using different groups of 

ewes. Two datasets, each containing 630 records of liveweights (seven weights taken in six hours 

including the “without delay”) from 90 ewe lambs were collected at each study farm. The six-

hour fasting period was considered a more practical period of delay that may occur during 

routine handling and weighing of a flock of sheep (Wishart et al., 2017).  

To determine if the rate of liveweight loss was consistent across farms and study stages, 

data from the winter season in stage one, from Keeble farm (n = 1730), using up to six hours of 

fasting, was pooled with the two validation datasets from Tuapaka farm (n = 1078) and Riverside 

farm (n = 1257). A mixed effects model with a first order correlation structure was fitted using R 

program (R Core Team, 2016) with the nlme package extension (Pinheiro et al., 2018).  All effects 

in the model were compared as in stage one. Herbage availability (H) and farm (F) were fitted as 

fixed variables, holding time (T: first and second order polynomial) as covariate, and individual 

ewe lamb was fitted as a random effect. All variables were fitted including their two-way (F x H, 

F x T, F x T2, H x T, H x T2) and three-way (F x H x T and F x H x T2) interactions. Additionally, 
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models were refitted with herbage availability and time effects nested within farm. The model 

without nesting structure having had the smallest AIC and BIC values (loglikelihood ratio, p < 

0.001) was selected as most appropriate for further analysis. The nonsignificant model terms 

were eliminated, and the minimal model subsequently selected as in the calibration stage. 

Season was not considered as validation data were only collected in winter. 

For prediction of average mass in each herbage availability level, a general linear model 

was fitted as in calibration stage with herbage availability level, farm and sample days as fixed 

effect. Further, two-way farm x herbage availability interactions nested within sample days, and 

three-way herbage availability x farm x sample days were tested. The model with nesting 

structure was selected as most fitting for further analysis. All model effects were compared using 

the minimal model. 

Following the linear mixed effects regression model analysis in stage one, six separate 

correction equations were generated at stage one, representing each herbage availability 

offered (Low, Medium, and High) and season (autumn, winter). This resulted in six liveweight 

loss equations. The formula for computing the corrected liveweight (cW0) is given below). 

cW0 = dWt + Wlt        4.5 

where, dWt was the delayed or observed weight measurement at time (t) and Wlt was ewe 

weight loss after time (t) off feed (t = 0, …, six hours) computed using the separate or 

consolidated weight loss equations generated in stage one. 

Even though up to six hours of fasting would be the quintessential delayed time during 

on-farm weighing, eight hours were preferred for developing the Live weight correction 

equations and the subsequent without LW predictions. This is because the eight-hour-based 

correction equations covered more data (time points) and thus, more accurately modeled the 

liveweight loss trend within and after the six-hour fasting period. 

Correction equations were deployed to predict the “without delay” Live weight on 

validation datasets collected during winter from two farms (Tuapaka and Riverside). Validation 

data could not be collected on ewes in autumn due to the COVID-19 lockdown imposed in New 

Zealand from March to June. Several metrics (Table 4.1) were used to assess the quality of 

models, including the coefficient of determination (R2: multiple regression or r2: simple 

regression), Lin’s concordance correlation coefficient (CCC), bias, root mean squared error 

(RMSE), residual prediction deviation (RPD), and the ratio of performance to interquartile 

distance (RPIQ) (Moriasi et al., 2007; Bellon-Maurel et al., 2010; McDowell et al., 2012; 

Botchkarev, 2019). The success of the predictions for individual samples was determined using 

the relative percent error (RPE). The best model would have the highest R2 or r2, CCC, RPD, and 
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RPIQ, and the lowest RMSE and RPE.  In addition, RPD has been classified (Bellon-Maurel et al., 

2010; Kodaira and Shibusawa, 2013) into three different categories, weak prediction (RPD < 1.4), 

reasonable (1.4 < RPD < 2.0) and excellent (RPD > 2.0). In a similar manner, RPIQ has been divided 

into four categories, very poor prediction (RPIQ < 1.4), fair (1.4 < RPIQ < 1.7), good (1.7 < RPIQ < 

2.0), very good (2.0 < RPIQ < 2.5) and excellent (RPIQ > 2.5) (Nawar and Mouazen, 2017).  

Each validation was conducted using 1000-fold cross validation (bootstrap) with three 

repeats. In theory as the number of times a bootstrap is conducted increases (large number of 

folds), the bootstrap standard deviation approximates sample standard error (Efron, 2014). 

Consequently, 1000 bootstraps were conducted to estimate the descriptive statistics on 

accuracy and error metrics (mean, standard deviation, inter-quartile range). 

Table 4.1 Goodness of fit and accuracy measures of the calibration (stage one) equations applied 
to the validation (stage two) data sets. 

Metric Equation 

Bias Bias =
1

n
∑ (xj − yj)

n
j=1                     

Root mean square error RMSE = √
∑ (xj−yj)

2n
j=1

n
                     

Relative Prediction Error  RPE =
RMSE

x̅
∗ 100                           

Residual prediction deviation RPD =
SDyj

RMSE
                                    

Ratio of performance to interquartile distance RPIQ =
(Q3−Q1)

RMSE
                               

Coefficient of determination 
R2 =

∑ (xjyj−xy̅̅̅̅ )2n
j=1

(∑ xj
2− x̅2)(∑ yj

2−y̅2)n
j=1

n
j=1

            

Adjusted R2 (Adj.R2) Adj. R2 = 1 − [
(1−R2)+(n−1)

n−k−1
] 

Lin’s concordance correlation coefficient 
CCC =

2𝜌SDxSDy

SDx
2+SDy

2+(x̅ – y̅ )2                     

Where n is sample size, xj and yj are the actual and predicted values, respectively, and 𝑥̅ and 𝑦̅ are their respective 
means. 𝞺 is the Pearson’s correlation coefficient between the observed and predicted values. SD is standard 
deviation, Q1 and Q3 are the 25th and 75th quartiles respectively. 

 

4.3 Results 

4.3.1 Calibration Stage 

4.3.1.1 Herbage availability and Chemical Composition 

The estimated mass of available herbage (kg DM/ha), differed among herbage availability 

target levels (F2,12 = 153.7, p < 0.001) and between seasons (F1,12 = 4.60, p < 0.05) but not (F2,12 = 

0.06, p = 0.941) period of study (time from day 0 to day 14) (Appendix IV Table 1a). Further, the 

interaction between herbage availability and season was not significant (F2,12 = 0.50, p = 0.613). 

The proportion of herbage that was considered live (green) and thus edible differed by season 

(F1,12 = 9.4, p < 0.001) and increased with herbage availability (F1,12 = p < 0.05). 
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The herbage chemical composition varied (p < 0.01) by season of year but not (p > 0.05) 

herbage availability (Appendix IV Table 1b). Dry matter, NDF, and ADF were greater (p < 0.05) in 

autumn, while, DM, CP, and ME were greater (p < 0.01, Appendix IV Table 1b) in winter. Within 

herbage availability, there were seasonal differences (p < 0.05) for all components. Within 

season, however, the herbage availability levels did not differ (p > 0.05) in all components. 

 

4.3.1.2 Effect of Herbage Availability and Season on Liveweight Loss 

Overall, the liveweight loss data were highly variable as indicated by the coefficient of 

variation (CV = 31–48%) (Table 4.2). The overall liveweight loss of lambs did not vary by herbage 

availability (F2, 4173 = 0.53, p = 0.589) or season (F1, 4173 = 0.13, p = 0.722) over the eight-hour 

period. However, this loss in Live weight varied linearly (F1,4173 = 114.6, p < 0.001) but not 

nonlinearly (F1,4173 = 0.34, p = 0.558) with fasting time. All two-way and three-way interactions 

were nonsignificant (p > 0.05) except for herbage availability x time (first order polynomial) 

(F2,4173 = 4.35, p = 0.01). After eight hours of fasting in autumn ewe lambs lost 1.54 kg (4.2% of 

initial weight), 1.60 kg (4.3% of initial weight), and 2.0 kg (5.3% of initial weight) for Low, 

Medium, and High herbage availability levels, respectively. In winter, ewe lambs lost 1.50 kg 

(3.2% of initial weight), 2.60 kg (4.8% of initial weight), and 2.62 kg (5.4% of initial weight) for 

Low, Medium, and High herbage availability levels, respectively (Figure 4.2). 

The rate of liveweight loss stayed uniform (straight line) over time in autumn for each 

herbage availability level and for ewe lambs offered the Low herbage level during winter (Figure 

4.2). However, for ewe lambs offered the Medium and High herbage levels in winter, liveweight 

loss was greater in the first four hours of fasting (p < 0.05) compared with the last four hours in 

winter. Although overall ewe lamb liveweight loss was comparable (p > 0.05) among herbage 

level availability levels and seasons, the rates of weight loss varied by herbage availability and 

season (p < 0.01) (Table 4.2). Generally, the rate of liveweight loss was greater (p < 0.01) for 

winter than autumn. In autumn the rate of liveweight loss was greater (p < 0.05) among lambs 

offered the high herbage level than either Medium or Low herbage level. In winter, the rate of 

liveweight loss was greater (p < 0.01) for lambs offered either High or Medium than Low herbage 

availability level (Table 4.2). 



Effect of herbage availability and season on ewe lamb Liveweight loss rate 

Page | 64  

 

Figure 4.2 Change in Live weight (with 95% CI, grey shade) for herbage availability (Low: solid 
line, Medium: dashed line, High: long dashed line) in autumn and winter over eight hours of 
fasting. 
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Table 4.2 Mean initial (“without delay”) and final weight and prediction parameters with standard errors in parentheses, for ewe lamb liveweight loss 
(kg) based on herbage availability (L: Low, M: Medium, H: High) offered to ewes by season (autumn, winter) and fasting time (1–8 hours). CV is the 
coefficient of variation and adjusted R2 is a measure of goodness of fitness of the model. All models were significant at p < 0.05. 

  Live weight (kg)   Predictor 

Coefficient of variation 
(CV) 

  

Herbage availability Initial  Final    Intercept Time Time2 
Adjusted  
R2 

 Autumn 
LA 36.8±0.42 35.0±0.39  0.01(0.08) 0.20a(0.02)** ns 0.31 0.69 
MA 37.6±0.43 35.9±0.41  0.11(0.08) 0.23a(0.02)** ns 0.41 0.69 
HA 37.6±0.40 35.6±0.38  0.05(0.08) 0.27ab(0.02)** −0.020ab(0.003)* 0.45 0.71 
 Winter 
LW 47.3±0.33 45.4±0.32  0.10(0.08) 0.22a(0.02)** ns 0.48 0.60 
MW 48.1±0.32 46.0±0.32  0.13(0.09) 0.35bc(0.02)** −0.012a(0.002)** 0.39 0.71 
HW 48.5±0.34 46.3±0.32  0.02(0.08) 0.42c(0.02)** −0.020ab(0.002)** 0.42 0.67 
     Overall    
LA+MA+LW 39.6(0.37) 38.8(0.36)  0.03(0.03) 0.21a(0.01)** ns 0.42 0.64 
HA 37.6(0.40) 35.6(0.38)  −0.01(0.05) 0.27ab(0.02)** −0.0 2ab(0.003)* 0.45 0.71 
MW+HW 47.5(0.23) 46.5(0.23)   0.13(0.05) 0.39bc(0.02)** −0.016(0.002)** 0.37 0.67 

Initial Live weight: Live weight “without delay”. Final Live weight: Live weight after eight hours of fasting. LA+MA+LW and MW+HW are pooled combinations of herbage 
availability with similar regression models. Subscripts A,W indicate season. abc superscripts within the predictor columns (Time and Time 2) per category (autumn, winter, 
overall), denote significant difference at p < 0.05. ns denotes not significant at p > 0.05. *, ** denote significance at p < 0.05 and p < 0.01, respectively. Model goodness of fit: 
the higher R2 the better. All contrasts based on Sidak’s multiple-comparisons tests. 
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4.3.2  Validation Stage 

4.3.2.1 Herbage Mass and Chemical Composition 

Herbage mass differed among herbage availability target levels and farms (p < 0.01) but 

not period between sample days (F1,12 = 0.90, p = 0.361) (Appendix IV 2a). Except for herbage 

availability x farm (F2,12 = 4.48, p = 0.035), all interactions between herbage availability, farm, 

and sample days (p > 0.05) were not significant. The variability (range) in herbage mass was 

greatest in the High availability target level. Although the aim was to maintain the herbage 

availability within the preset target ranges (i.e., 700–900, 1100–1300, and ≥1400 kg DM/ha), at 

Tuapaka farm the availability levels were slightly out of range due to unpredictable pasture 

growth. Consequently, Tuapaka farm had greater herbage availability levels offered to ewe 

lambs in both the Medium and High groups than on Riverside farm. The proportion of herbage 

that was considered live (green) and thus edible differed by season and increased with herbage 

availability (p < 0.05). Further, Tuapaka farm had greater live matter proportions than Riverside 

farm. 

All herbage chemical components varied by herbage availability (p < 0.01) (Appendix IV 

2b). There were no significant herbage availability x farm interactions (p > 0.05) for all chemical 

components. Metabolizable energy was greater at Tuapaka farm than Riverside farm (p < 0.05). 

Dry matter was lower for Medium and High herbage availability levels but was comparable (p > 

0.05) for all herbage availability levels at Riverside farm. Crude protein and NDF increased with 

herbage availability while ADF decreased with increasing herbage availability across farm (p < 

0.05). 

4.3.2.2 six-hour variability in liveweight loss at calibration and validation 

This section presents a comparison in the ewe liveweight loss trends during a six-hour 

fasting period between the calibration dataset (from Keeble farm) and two validation datasets 

(from Tuapaka farm and Riverside farm) (Table 4.3). The overall mean liveweight loss did not 

vary (F2,261 = 0.54, p = 0.581) between farms and among herbage availability (F2,261 = 0.78, p = 

0.460) over the six-hour fasting period. However, the overall liveweight loss varied linearly 

(F1,3778 = 21.43, p < 0.001) but not nonlinearly (F1,3778 = 0.21, p = 0.650) with fasting time. All two-

way time-based interactions were significant (p < 0.001). However, the herbage x farm 

interaction was not significant (F1,261 = 0.45, p = 0.769) and all three-way interactions were not 

significant (p > 0.05). The rate of liveweight loss varied among farms (F2,3778 = 11.9, p < 0.001) 

and among herbage availability levels (F2,3778 = 46.7, p < 0.001). The proportion of variance 

explained by each model (adjusted R2) was greatest for Riverside farm and least for Keeble farm. 
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Further, the variability in data were highest at Tuapaka farm (CV = 44 – 55%) and was lowest on 

Riverside farm (CV = 23 – 31%). 
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Table 4.3 Mean initial (“without delay”) and final weight and prediction parameters with standard errors in parentheses, for ewe lamb liveweight loss 
(kg) during a six-hour fasting period in winter, by herbage availability (Low, Medium, High) and farm (Keeble, Tuapaka, and Riverside). CV is the 
coefficient of variation and adjusted R2 is a measure of goodness of fitness of the model. All models were significant at p < 0.05. 

  Live weight (kg) Predictor Coefficient of 
Variation (CV) 

Adjusted R2 
Farm Herbage Availability Initial Final Intercept Time Time2 

* Keeble Low 47.3 (0.33) 45.4 (0.32) −0.28 (0.107) e 0.23 (0.033) a 0.01 (0.005) e 0.48 0.48 
 Medium 48.1 (0.32) 46.0 (0.32) 0.35 (0.117) cd 0.45 (0.036) c −0.02 (0.006) cd 0.39 0.62 
 High 48.5 (0.34) 46.3 (0.32) −0.62 (0.117) bcd 0.55 (0.036) cd −0.03 (0.005) bc 0.42 0.58 
         
† Tuapaka Low 38.1 (0.26) 37.1 (0.24) −0.62 (0.146) abcd 0.40 (0.046) bc −0.03 (0.007) bcd 0.55 0.50 
 Medium 41.5 (0.39) 39.5 (0.33) −1.24 (0.150) a 0.80 (0.046) e −0.06 (0.007) a 0.43 0.65 
 High 42.6 (0.40) 40.3 (0.36) −1.13 (0.153) ab 0.79 (0.047) e −0.06 (0.007) a 0.44 0.65 
         
† Riverside Low 40.6 (0.45) 39.3 (0.44) −0.13 (0.13) de 0.27 (0.041) ab −0.01 (0.006) de 0.31 0.75 
 Medium 43.8 (0.46) 41.8 (0.44) −0.39 (0.137) cd 0.46 (0.043) c −0.02 (0.006) cd 0.24 0.84 
 High 43.9 (0.49) 41.4 (0.47) −0.75 (0.144) abc 0.68 (0.045) de −0.04 (0.007) ab 0.23 0.85 

Initial Live weight: Live weight “without delay”. Final Live weight: Live weight after eight hours of fasting. Asterisks *,† attached to farm name indicate the dataset used for the analysis (*: 
Calibration dataset, †: Validation dataset). abcde: different superscripts within the predictor columns (Time and Time2) per herbage availability and season denote significant difference at p 
< 0.05. Subscripts A,W indicate season. Herbage availability (Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–1300, High: ≥1400). Model goodness of fit: the higher 
R2 the better. All contrasts based on Sidak’s multiple-comparisons tests. 
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4.3.2.3 Using Separate Correction Equations on Validation Datasets to Predict “without delay” 

Live weight. 

The regression equations derived in the calibration phase (eight hours of fasting) were 

validated against two independent datasets (six hours of fasting) collected on lambs from two 

different farms (Tuapaka and Riverside) using the correction equations (equation 4.5). The 

validated results showed that the ewe lamb Live weight correction equations for all feeding 

levels by season developed in stage one of the present study, predicted Live weight with 

substantial accuracy as shown by their low RPE (0.75 – 2.93%) and high r2 (87.9 – 99.3%) and 

RPIQ (3.33 – 16.8) values as compared with not using any correction method (Table 4.4, Figure 

4.3). 

Prediction error varied (p < 0.05) with time of fasting, herbage availability, and farm. The 

prediction error (RMSE) increased with ewe lamb liveweight loss over time (Figure 4.5). 

Prediction error was highest in the High herbage availability and lowest in the Low herbage 

availability. The prediction error was also greater (p < 0.05) for Tuapaka farm than Riverside farm 

in all herbage availability levels. Further, prediction error varied by season from which the 

prediction model was developed (p < 0.05). Live weight correcting models developed in winter 

were more accurate in predicting the “without delay” Live weight (i.e., directly off herbage) than 

those from autumn for Medium and High herbage availability levels but not for the Low herbage 

availability. Low herbage availability weight correcting equations had comparable accuracy or 

prediction error regardless of model season. Using the herbage availability and season specific 

correcting models to predict the “without delay” Live weight when lambs were offered the High 

herbage availability prior to fasting increased the prediction accuracy of the “without delay” Live 

weight estimates by 50.5% and 58.8% for models developed in autumn and winter, respectively, 

compared with using the delayed weights (not immediately off herbage). The correcting 

equations increased the accuracy of the “without delay” Live weight estimates in lambs offered 

Medium herbage availability by 48.1% and 58.8% using models developed in autumn and winter, 

respectively, compared with the delayed weights. The correcting equations increased the 

accuracy of the “without delay” Live weight estimates in lambs offered Low herbage availability 

by 44.1% and 41.2% using models developed in autumn and winter, respectively, compared with 

the delayed weights. 
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Figure 4.3 Change in root mean square error (RMSE) with associated standard deviation for the 
prediction of true ewe Live weight over time of fasting when individual respective correction 
equations (solid line with circular points: no model, dotted line with triangular points: autumn 
model, dashed line with square points: winter model) for each target herbage availability (Low, 
Medium, and High) and season generated in stage one were applied to the data collected in the 
winter season of 2020 to predict the “without delay” Live weight by farm (Tuapaka or Riverside). 
Herbage availability (Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–
1300, High: ≥1400). 
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Table 4.4 Initial, final, and predicted live weights, measures of goodness of fit and accuracy (Bias, RMSE, RPE, RPD, RPIQ, r2, CCC) for live weight correction 
models based on eight hours of fasting (from autumn and winter, 2019) applied onto the independent datasets (validation datasets) collected from 
Tuapaka farm and Riverside farm in Winter (2020) during a six-hour fasting period after the lambs were offered the Low, Medium, and High herbage 
availability. 

Farm 
Correction Equation*  
(Model) 

Herbage 
Availability 

Live weight (kg) 

Bias RMSE RPE % RPD RPIQ r2 % CCC % Actual Initial Actual Final 
Predicted  
Final 

Tuapaka None Low 38.2 (0.26) 37.1 (0.24)  −0.75 1.06 2.78 1.92 2.45 87.9 80.8 
  Medium 41.5 (0.38) 39.5 (0.33)  −1.49 1.77 4.26 1.67 2.34 80.6 75.6 
  High 42.6 (0.40) 40.3 (0.36)  −1.62 1.91 4.49 1.63 2.26 81.9 73.2  

From autumn Low 38.2 (0.26) 37.1 (0.24) 38.5 (0.24) −0.06 0.75 1.96 2.72 3.95 87.9 92.4 
  Medium 41.5 (0.38) 39.5 (0.33) 41.2 (0.33) −0.62 1.05 2.53 2.82 3.95 92.6 94.8 
  High 42.6 (0.40) 40.3 (0.36) 41.9 (0.36) −0.58 1.06 2.49 2.93 4.08 92.6 91.8 
 From winter Low 38.2 (0.26) 37.1 (0.24) 38.6 (0.24) 0.25 0.78 2.04 2.62 3.33 87.9 91.6 
  Medium 41.5 (0.38) 39.5 (0.33) 41.0 (0.33) −0.24 0.87 2.10 3.40 4.77 92.6 94.0 
  High 42.6 (0.40) 40.3 (0.36) 42.7 (0.36) −0.35 0.94 2.21 3.31 4.60 92.6 95.5 

Riverside None Low 40.6 (0.45) 39.3 (0.44)  −0.84 0.96 3.55 2.42 3.00 87.0 92.9 
  Medium 43.8 (0.46) 41.8 (0.44)  −1.27 1.41 3.90 2.18 3.25 84.9 85.5 
  High 43.9 (0.49) 41.4 (0.47)  −1.67 1.80 4.10 2.10 3.07 89.4 80.9  

From autumn Low 40.6 (0.45) 39.3 (0.44) 40.6 (0.44) −0.16 0.34 0.84 10.26 12.12 99.3 99.5 
  Medium 43.8 (0.46) 41.8 (0.44) 43.5 (0.44) −0.42 0.55 1.26 6.46 10.10 99.2 99.2 
  High 43.9 (0.49) 41.4 (0.47) 43.0 (0.47) −0.64 0.77 1.76 4.91 7.18 99.1 96.6 
 From winter Low 40.6 (0.45) 39.3 (0.44) 40.7 (0.44) 0.14 0.33 0.81 10.57 13.11 99.3 99.5 
  Medium 43.8 (0.46) 41.8 (0.44) 43.4 (0.44) −0.04 0.33 0.75 10.77 16.82 99.2 98.9 
  High 43.9 (0.49) 41.4 (0.47) 43.8 (0.47) −0.42 0.57 1.30 6.62 9.69 99.1 99.4 

Herbage availability (Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–1300, High: ≥1400). Interpretation of measures: The best model has the highest RPD (residual prediction 
deviation), RPIQ (ratio of performance to interquartile distance), r2 (coefficient of determination), CCC (Lin’s concordance correlation coefficient), and the lowest root mean square error and RPE 
(relative prediction error). RPD (<1.4: weak, 1.4 < RPD < 2.0: reasonable, >2.0: excellent). RPIQ (<1.4: very poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ < 2.0: good, 2.0 < RPIQ < 2.5: very good, >2.5: excellent). 
Correction equation* (None indicates delayed live weight considered). 
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4.3.2.4 Using consolidated or pooled correction equations  

Measures of accuracy and changes in the standard error of prediction or the RMSE based 

on the combined or consolidated correction equations are given below (Table 4.5, Figures 4.4 

and 4.5). Over time, the “without delay” live weight prediction accuracy was generally greater 

at the Riverside farm when ewe lambs were offered the Low and Medium herbage levels than 

on Tuapaka farm (p < 0.05, RMSE ± 2SD). The live weight prediction errors for High herbage level 

on both farms were comparable (p > 0.05). When applying the corresponding correction 

equations, the “without delay” live weight accuracies on Riverside farm were 20% higher for the 

High herbage level, 38% for the Medium and 37% for the Low herbage level than on Tuapaka 

farm (Figure 4.4). Regardless of the effect of farm or grazing location (Figure 4.5), the accuracy 

of the “without delay” live weight correction equations when applied to Low herbage data were 

consistently greatest (p < 0.05) for the LA+LW+MA equation and HA, compared with the MW+HW 

equation or using the delayed weights. For the Medium and High herbage levels the prediction 

accuracy was greatest using the MW+HW model and least when using the delayed weights.  

The greatest improvement in accuracy when corresponding herbage availability level 

correction equations were used, was in the Low herbage level (55%) and lowest in the High 

herbage level (33%). Deploying any of the correction equations onto the delayed live weights 

regardless of whether they were matching with the herbage level or not, improved the “without 

delay” live weight estimation by 48% for the Low herbage level, 37% for the Medium and 15% 

for the High compared with only using the delayed live weight in place of actual weight.  

 
 
 
 
 
 
 



Chapter 4 

Page | 73  
 

Table 4.5 Measures of goodness of fit and accuracy (Bias, RMSE, MAPE, RPE, RPD, RPIQ, CCC, r2) 
for overall live weight correction models (HA: for ewe lambs offered the High herbage level in 
autumn, MW+HW: for ewe lambs offered the Medium or High herbage level in winter and 
LA+MA+LW: for ewe lambs offered the Low or Medium herbage level in autumn or offered the 
Low herbage level in autumn) applied onto the independent datasets (validation datasets) 
collected on Tuapaka farm and Riverside farm in winter (2020) during a six-hour fasting period 
after the lambs were offered the Low, Medium and High herbage availability levels. 

Farm Model 
Herbage 
availability Bias RMSE RPE % RPD RPIQ r2 % CCC % 

Tuapaka LA+MA+Lw Low 0.08 0.67 1.75 4.35 5.37 96.8 97.0 

  Medium −0.67 0.98 2.36 4.49 4.54 96.5 94.3 

  High −0.79 1.07 2.51 2.91 4.12 96.7 93.3 

 HA  Low 0.17 0.69 1.81 4.21 5.2 97.2 95.2 

  Medium −0.57 0.93 2.24 4.72 4.78 97.0 96.6 

  High −0.69 1.01 2.38 3.08 4.35 97.0 95.1 

 Mw+Hw Low 0.58 0.80 2.10 3.62 4.46 77.2 79.3 

  Medium −0.16 0.79 1.90 5.57 5.63 85.7 91.7 
    High −0.29 0.85 2.01 3.64 5.15 85.8 91.5 

Riverside LA+MA+Lw Low −0.03 0.26 0.65 13.21 16.65 97.2 98.5 

  Medium −0.46 0.52 1.19 6.82 11.33 97.0 97.0 

  High −0.85 0.89 2.03 4.23 6.4 97.0 94.2 

 HA  Low 0.11 0.27 0.68 12.73 16.05 97.2 98.2 

  Medium −0.34 0.41 0.94 8.6 14.29 97.0 97.8 

  High −0.75 0.78 1.77 4.84 7.32 97.0 95.8 

 MW+Hw Low 0.41 0.46 1.14 7.52 9.48 98.5 97.7 

  Medium −0.04 0.30 0.68 11.87 19.73 98.3 99.1 
    High −0.44 0.51 1.15 7.46 11.28 98.2 98.1 

Overall LA+MA+Lw Low −0.01 0.47 1.19 6.6 7.94 98.6 98.4 

  Medium −0.60 0.78 1.83 4.42 5.83 98.5 96.2 

  High −0.87 1.02 2.36 3.43 5.08 98.5 94.1 

 HA  Low 0.14 0.48 1.22 6.46 7.77 98.6 97.6 

  Medium −0.45 0.67 1.57 5.15 6.79 98.5 97.2 

  High −0.72 0.89 2.06 3.93 5.82 98.5 96.2 

 Mw+Hw Low 0.50 0.63 1.60 4.92 5.92 98.6 95.9 

  Medium −0.1 0.45 1.05 7.67 10.11 98.5 98.3 
    High −0.36 0.68 1.57 5.15 7.62 98.5 97.5 

Herbage availability (Low herbage target range: 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, High: ≥ 1400 kg 
DM/ha). Interpretation of measures: The best model has the highest RPD (Residual prediction deviation), RPIQ (Ration 
of performance to interquartile distance), r2 (Coefficient of determination), CCC (Lin’s concordance correlation 
coefficient), and the lowest Root mean square error and RPE (Relative prediction error). Ranges for values: r2 (0: 
indicates that the model explains none of the variability of the response data around its mean, 1.0 indicates that the 
model explains all the variability). RPD (< 1.4: weak, 1.4 < RPD < 2.0: reasonable, > 2.0: excellent). RPIQ (< 1.4: very 
poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ < 2.0: good, 2.0 < RPIQ < 2.5: very good, > 2.5: excellent). A,W subscripts indicate 
the autumn and winter seasons respectively. 
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Figure 4.4 Change in root mean square error (RMSE) with associated standard deviation for the 
prediction of true ewe live weight over time of fasting when the consolidated correction 
equations (long dashed line with plus sign points: No model, dotted line with triangular points: 
Combined model LA+ MA+LW, solid line with circular points: Model for HA and dashed line with 
square points: Combined model for HA+HW) representative of treatments with similar rates 
developed in stage one were applied on data collected in winter to predict true live weight by 
herbage availability level (Low herbage target range: 700–900 kg DM/ha, Medium: 1100–1300 
kg DM/ha, High: ≥ 1400 kg DM/ha) and Farm (Tuapaka, Riverside). Models: HA: for ewe lambs 
offered the High herbage level in Autumn, MW+HW: for ewe lambs offered the Medium or High 
herbage level in Winter and LA+MA+LW: for ewe lambs offered the Low or Medium herbage level 
in autumn or offered the Low herbage level in Autumn. A,W subscripts indicate the autumn and 
winter seasons respectively. 
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Figure 4.5 Change in root mean square error (RMSE) with associated standard deviation for the 
prediction of true ewe live weight over time of fasting when the consolidated correction 
equations (dot-dashed line with plus signed points: No model, dotted line with triangular points: 
Model for LA+MA+LW, solid line with circular points: Model for HA, and long dashed line with 
square points: Model for MW+HW )  representative of treatments with similar rates developed in 
the calibration stage were applied on data collected in winter (to predict true live weight by 
herbage availability (Low herbage target range: 700–900 kg DM/ha, Medium: 1100–1300 kg 
DM/ha, High: ≥ 1400 kg DM/ha). HA: for ewe lambs offered the High herbage level in Autumn, 
MW+HW: for ewe lambs offered the Medium or High herbage level in Winter and LA+MA+LW: for 
ewe lambs offered the Low or Medium herbage level in autumn or offered the Low herbage 
level in autumn. Subscripts A, w indicates autumn and winter respectively. 

4.4 Discussion 

The current study was conducted in two stages aimed; (i) to determine the effect of 

herbage availability and season on the rate of liveweight loss of ewe lambs during fasting and 

(ii) to determine if “without delay” live weight of ewe lambs could be accurately predicted from 

delayed live weights. 

4.4.1 Calibration stage 

The findings indicated that ewe lambs lost a significant amount of live weight (autumn: 

between 4.2 to 5.3% of initial weight, winter: 3.2 to 5.4% of initial weight) between each 

weighing throughout the fasting period. The magnitude of this change is likely to influence the 

reliability of live weight measures which may have implications for management decisions on-

farm and for research unless it can be corrected for. The findings support the previous study 

which profiled liveweight losses of Romney ewe lambs offered grass or herb-clover-based 

swards in Chapter 3.  

The current study indicated that the rate of liveweight loss was affected by both herbage 

availability and season of year, suggesting that different equations may be required to accurately 
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correct for live weight if animals are off pasture for periods of greater than 60 min. The variation 

in ewe lamb liveweight loss rate by herbage availability was likely due to differences in gut-fill 

volume and differences in the chemical composition of the pasture (Crampton and Jackson, 

1944). The DM content of the herbage was consistently lower in the High and Medium herbage 

availability levels than Low herbage availability level. It is, therefore, possible that the ewe lambs 

were consuming more water from the Medium and High herbage availability levels than the Low 

herbage, with this excess water being excreted faster through urine, than would herbage via 

fecal defecation. The seasonal differences in the chemical composition of the feeds may also 

have been responsible for the differential lamb liveweight loss. The lower proportions of CP and 

ME, but with correspondingly higher fiber (DM, NDF, and ADF) may have been responsible for 

the lower rate of lamb liveweight loss in autumn compared with winter. Greater structural 

carbohydrate and higher levels of fiber are known to increase water holding capacity in the 

sheep gut and thus reduce the rate of ruminal flow (Moyo and Nsahlai, 2018). In drier seasons, 

the proportion of fermentable carbohydrates and pectin content decrease while the structural 

carbohydrates (NDF and ADF) increase, however, in wetter seasons the reverse is true 

(Bernabucci et al., 1999; Litherland et al., 2002; Warly et al., 2004; Särkijärvi et al., 2012; Mir and 

Ahmed, 2017; Ekanayake et al., 2019). Therefore, it is not surprising that autumn (dry season) 

herbage had the highest DM and fiber and thus, the lowest rate of lamb liveweight loss 

compared with winter. The seasonal differences in liveweight loss could also be attributed to 

the higher ambient temperature experienced in autumn compared with winter during the study 

period. Exposure to colder temperatures can increase reticulo-rumen motility, increase the 

passage rate of gut particles, and reduce the gut-fill retention time (Kennedy et al., 1976; 

Kennedy, 1985). 

4.4.2 Validation Stage 

The significant polynomial regression obtained between liveweight loss and time off feed, 

and the subsequent linear association between delayed and “without delay” live weight, 

suggests there is a relationship between weight loss and “without delay” live weight. This is 

predicated on the hypothesis that the amount of weight lost per unit time varies depending on 

herbage availability and season. It was observed that the weight prediction equations tended to 

be more linear rather than curvilinear when animals were offered low herbage availability, or 

high DM%, but were curvilinear when herbage availability or when time off herbage was 

increased. 

A comparison of liveweight loss trends using calibration and validation datasets 

demonstrated significant differences in overall liveweight loss and liveweight loss rates between 
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farms. A significant farm x time interaction indicates differences in overall liveweight loss rates 

among farms. Further, the results indicated a greater CV % associated with this liveweight loss, 

which was highest at Tuapaka farm and lowest at Riverside farm. The herbage availability target 

ranges varied in availability levels and dry matter content which might explain the differential 

weight losses on different farms. Additionally, at both Keeble farm and Tuapaka farm, live 

weights were recorded manually by the operator whereas at Riverside farm, weights were 

automatically recorded. Comparison weighing was done using two 20 kg loads at the start of 

each weighing. However, it is possible that some error was introduced while the operator forgot 

to readjust the scale reading to zero each time a “shy” ewe rapidly and violently rammed into 

the crate gates shifting the position of the crate. An automated weighing system regularly 

readjusts the scale to zero, thereby reducing the error introduced due to shifts in the position 

of the crate. 

Ideally, weighing without any delay (immediately off pasture) should provide ewe lamb 

live weight measurements with the least error. However, if this is not achievable, the validating 

process has demonstrated that correction equations can be used to supply corrected live 

weights (cW0) that are more accurate estimates of the “without delay” live weight (aW0) than a 

delayed live weight (dWt). This provides a major step towards achieving improved (precise) live 

weight measurement in sheep production. 

All correction equations were based on the eight-hour fasting period. This provided 

more data and, therefore, explained more variability in ewe liveweight loss. The precision of the 

correction equations was significantly impacted by herbage availability, season, the period of 

delay in recording, animal weight, and farm. This is in partial agreement with Wishart et al. 

(2017) who reported a significant impact of grazing location on the precision of live weight 

correction equations, but not time of delay before the weighing of ewes. Their study showed 

that the precision of the correction equations was affected by the factors associated with 

fluctuations in gut-fill (Coates and Penning, 2000b; Wishart et al., 2017). 

The correction equations were substantially more stable when predicting “without 

delay” liveweight in ewe lambs offered the Low herbage availability than the Medium or High 

herbage availability. The consistently stable precision associated with the Low herbage 

availability was likely due to the higher DM% which might have caused greater water retention 

in the gut than for ewe lambs feeding on a lower DM% (Medium and High). In addition, the lower 

quantity (kg DM/ha) of herbage within the Low availability could have restricted the gut-fill 

thereby eliciting a response to reduce ruminal emptying. Lambs offered the High herbage 

availability had access to wider herbage availability ranges (1400–2200 kg DM/ha) than those 
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offered the Low availability (700–900 kg DM/ha) which likely explains their greater error rates. 

However, it has been previously reported with mature ewes that intakes do not increase above 

a herbage availability of approximately 1400 kg DM (Morris and Kenyon, 2004). 

Riverside farm had more accurate live weight estimates regarding the calibration 

dataset than Tuapaka farm and these differences in prediction accuracy could be explained by 

the variations in herbage availability levels offered to ewe lambs especially in the Medium and 

High herbage availability. The herbage availability estimates (Medium and High) offered to ewe 

lambs on the Tuapaka farm were slightly greater than those on Riverside farm. Further, the 

differences in prediction accuracy could also be attributed to variation in herbage dry matter 

percentage DM % between farms at the time of the study. This was not unexpected as Tuapaka 

farm is located in an area which receives more rainfall compared with Riverside farm. Overall, 

the results appear to suggest that increased DM % resulted in a more accurate estimate of 

“without delay” live weight. 

In the current study, all predictions were executed on a dataset collected over one 

season (winter). However, all the live weight correcting equations developed from the two 

seasons (autumn and winter) were validated. It was not surprising that the correction equations 

developed for winter gave more accurate estimates than those for autumn, given the timing of 

the validations. However, results suggest that applying an equation from a different season to 

predict the “without delay” live weight from delayed live weight is a better option than using 

the delayed weights themselves. 

The validations were conducted using a range of herbage availability levels and live 

weights which should cover most situations for an extensive sheep system grazing a ryegrass-

based pasture. The use of simple and multiple linear regression equations based on time stamps 

to predict liveweight loss and to predict “without delay” live weight in sheep has been previously 

reported (Wishart et al., 2017). They predicted the “without delay” liveweight based on time off 

pasture with no reference to nutritional differences and did not provide an indication of how 

accurate their models were compared with not using the equation. The current study 

corroborates the suggestions made by Wishart et al. (2017) that the differences in quality and 

quantity of herbage as well as environmental factors (Hughes, 1976; Moyo and Nsahlai, 2018) 

which impact liveweight variation, contribute to the differences between sheep from across 

different farms and feeding levels. 

The results of the present study demonstrated that it is possible to obtain substantially 

accurate estimates of “without delay” live weight of lambs offered varying availability levels of 

herbage prior to weighing and in different seasons of the year. It is important to correct for 
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liveweight losses associated with handling and delayed weighing of sheep. The developed 

equations utilized time recorded by the weighing systems to compute the period from pasture 

to weighing and adjust for weight. To use these equations if incorporated into modern weighing 

systems, the time when ewe lambs are removed off pasture, would need to be manually 

entered. 

4.5 Conclusion 

The present study showed that ewe lambs lose a significant amount of live weight while 

feed and drinking water are restricted in support of findings in Chapter 3. This study 

demonstrated that the rate of ewe lamb liveweight loss can be predictable over a period and is 

dependent on herbage availability offered and season. Further, the study demonstrated that 

these liveweight losses can be substantially accounted for using sets of correcting equations. 

These equations could be incorporated into weighing systems to quickly supply farmers 

accurate, “without delay”, live weight measurements. Future studies should explore how to 

understand location-related variability in liveweight loss observed in the current study. Further, 

the extent to which the live weight correcting equations can be generalized to ewe lambs from 

different locations and breed is warranted.
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 The effect of herbage availability on the rate of 

liveweight loss of fasting non-pregnant and pregnant ewes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

Aspects of this Chapter have been published as: Semakula J, Corner- Thomas R.A, R, Morris S.T, 

Blair, H.T, Kenyon, P.R. The Effect of Herbage Availability, Pregnancy Stage and Rank on the Rate 

of Liveweight Loss during Fasting in Ewes. Agriculture 2021, 11, 543.  It excludes sections on non-

pregnant ewe studies. 
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Abstract 

Sheep live weight and liveweight change are vital tools both for commercial and 

research farm management. However, they can be unreliable when collection procedures are 

not standardised, or when there are varying time delays between sheep removal from grazing 

and weighing. This study had two stages with different objectives: 1) a liveweight loss study, to 

determine the effect of  herbage availability (For non-pregnant ewes: Low, Medium and High 

herbage levels and Low and High for pregnant ewes) on the rate of liveweight loss of ewes at 

different physiological states (non-pregnant and pregnant); 2) a follow-up liveweight loss study 

on , to  develop and validate correction equations for delayed live weights by applying them to 

data sets collected on different farms under commercial conditions. Further, under the pregnant 

ewe study, ewes were evaluated at two stages of pregnancy/days of pregnancy (approximately 

100 days: P100, 130 days: P130) and pregnancy-ranks (single- and twin-bearing). Results from 

each stage showed that the non-pregnant ewes lost up to 2.4 kg, 3.1 kg and 3.6 kg when offered 

the Low1 (700 – 900 kg DM/ha), Medium (1100 – 1300 kg DM/ha) and High (≥1400 kg DM/ha) 

herbage levels (prior to fasting), respectively, during eight hours of delayed weighing without 

access to feed or drinking water. Single-bearing ewes at 100 days of pregnancy (P100) lost 3.3 

kg and 5.0 kg for the Low2 (900 –1100 kg DM/ha) and High (≥1400 kg DM/ha)  herbage levels, 

respectively, while the twin-bearing ones lost, 3.1 kg and 4.8 kg. At 130 days of pregnancy 

(P130), the single-bearing ewes lost 2.8 kg and 3.5 kg for Low2 and High, respectively, while the 

Twin-bearing ones lost 2.9 kg and 3.5 kg. The rate of liveweight loss varied by herbage 

availability, ewe physiological state and farm (p < 0.05). Applying live weight correction 

equations rightly (using appropriate equations on matching live weight data corrected under 

similar conditions) increased the accuracy of “without delay” live weight estimates in -pregnant 

ewes by 38% for the Low1, 42% for the Medium and 58% for the High herbage level compared 

with using the delayed live weight. Within P100 ewes, the accuracy of “without delay” live 

weight estimates was increased by 56% and 45% for single- and twin-bearing ewes, offered the 

Low2 level, respectively. The accuracy of “without delay” live weight estimates was increased by 

53% and 67% for single- and twin-bearing ewes, offered the High herbage level, respectively. 

Among P130 ewes, the accuracy of “without delay” live weight estimates was increased by 43% 

and 37% for single- and twin-bearing ewes, respectively, offered the Low2 herbage level. The 

accuracy of “without delay” live weight estimates was increased by 60% and 50% for single- and 

twin-bearing ewes, offered the High herbage level, respectively. Similarly, using a correction 

equation, not developed to predict “without delay” live weight using mismatching data (data 

collected under dissimilar conditions) gave more accurate estimates (13−60%) than using the 
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delayed live weight. In conclusion, a short-term delay of up to eight hours prior to weighing 

which is commonly associated with practical handling operations significantly reduced the live 

weight recorded for individual sheep. Using delayed live weights on commercial farms and in 

research can have consequences for management practices and research results globally, 

therefore, live weight data should be collected “without delay”. However, when this is not 

feasible delayed live weights should be corrected, and in the absence of locally formulated 

correction equations, the one presented in this paper could be used on farms with similar 

management conditions and herbage type. 
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5.1 Introduction 

Live weight (LW) is a broadly accepted proxy for the energy status of sheep at a given 

time, while change in live weight is indicative of whether the animal is in either a positive energy 

balance (liveweight gain) or a negative energy balance (liveweight loss) (Young and Corbett, 

1972; Brown et al., 2005; Wishart et al., 2017). Live weight is a measure of total body mass and 

includes muscle, fat, bone, organ, body fluids and gut-fill (Wishart et al., 2017). Live weight is 

relatively stable over shorter time periods (i.e. a few days), but alters over longer time periods 

in response to environmental and physiological conditions (Coates and Penning, 2000b; Wishart 

et al., 2017). Live weight measurements can be affected by a number of factors including: 

growth, nutrition, health, wool length and wetness, stress, physiological state and genotype 

(Kenyon et al., 2014; Brown et al., 2015). Further, the contents of the rumen (fluid and feed) can 

account for between 10 and 23% of total live weight in ruminants (Hughes, 1976; Moyo and 

Nsahlai, 2018). Liveweight fluctuations due to gut-fill (which includes the rumen and digestive 

tract) in ruminants are affected by factors influencing feed intake such as age and size of the 

animal, time of day relative to sunrise, ambient temperature, differences in grazing behaviour 

and time since last meal (Hughes, 1976; Coates and Penning, 2000b; Hogan et al., 2007; 

Burnham et al., 2009; Gregorini, 2012; Wilson et al., 2015; Wishart et al., 2017).  

In countries in the southern hemisphere such as New Zealand, commercial sheep 

production is largely extensive in nature with flock size averages greater than 2500 sheep 

(Cranston et al., 2017). Commercially available automated weighing systems, combined with 

electronic scales and radio frequency identification (RFID), have now made it easier to regularly 

collect and utilize live weight data of individual animals over time (Brown et al., 2015). These 

weighing systems can record up to 400 weights per hour without interruptions (livestock.tru-

test.com), requiring six to seven hours to weigh an average flock. Further, mustering and routine 

sheep handling can increase the length of time sheep are off the feed and drinking water during 

the weighing process. Therefore, any delays in an individual animal’s weighing can lead to 

significant liveweight loss, due to a reduction in gut-fill and body fluids (Burnham et al., 2009; 

Wishart et al., 2017). In both non-pregnant and pregnant ewes, varying levels of weight loss 

have been reported within flocks waiting to be weighed. Burnham et al (2009) reported losses 

of 1.78 kg (2.7% of initial live weight) and 1.69 kg (2.6% of initial live weight) in single- and twin-

bearing ewes at approximately 130 days of pregnancy after six hours, and 3.4 kg (5.3% of initial 

live weight) and 2.9 kg (4.5% of initial live weight) after 12 hours.  

Herbage availability effects gut-fill and can influence the rate of ewe lamb liveweight 

loss during fasting (Chapter 4). Moreover, the physiological state of a ewe can affect intake, gut-
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fill and the rate of passage of fibrous food (Forbes, 1970; Rueda et al., 1990; Kaske and Groth, 

1997; Moyo and Nsahlai, 2018). These levels of liveweight loss can affect the precision and 

accuracy of comparison of live weights and changes in live weight over time, particularly with 

smaller changes. Strategies aimed to reduce variability in live weight include fasting for fixed 

periods of time prior to weighing, standardizing weighing procedures, taking multiple live weight 

measurements of an individual per day or on successive days, weighing at a specific time of day 

relative to sunrise, standardizing the feed offered and/or increasing the number of animals and 

repetitions of a study (Coates and Penning, 2000b; Wishart et al., 2017). However, such 

methodologies to reduce variation are time consuming and, therefore, are not practical for 

commercial sheep farm application.   

Live weight is used as a measure of an animal’s productivity providing a basis for decision 

making regarding its management (i.e. growth rate between time points and prediction of 

conceptus free live weight). Inaccurate live weights can lead to incorrect conclusions where 

individual animal growth performance or a comparison of live weights and changes in live weight 

is required, for example when a ewe gains, maintains or loses conceptus free weight during 

pregnancy and how accurate data, coupled with known pregnancy equations can help with this. 

To date, it appears no studies have investigated the interaction of herbage availability and ewe 

physiological state (pregnancy-rank) on liveweight loss of mature ewes during fasting. Recently, 

it has been reported that the rate of liveweight loss in non-pregnant ewe lambs is influenced by 

herbage availability (Chapter 4). It was hypothesised that, a change in herbage availability 

offered to sheep would likely interact with its physiological status to alter the rate of liveweight 

loss when sheep were fasted. The aim of this study was to firstly, investigate the effects of 

herbage availability prior to fasting in two different reproductive stages on the rate of liveweight 

loss in ewes during an eight-hour period. Secondly, to generate and validate ewe liveweight loss 

correcting equations. If developed such equations are accurate predictors of without delay 

weight, they can be incorporated into modern weighing systems to allow for more accurate live 

weight data measurement. 

5.2 Materials and methods 

This research was carried out in two stages, each with different objectives. Stage one 

(calibration) explored the profile of live weight and liveweight loss of non-pregnant ewes offered 

three feeding herbage levels (Low1: 700 – 900 kg DM/ha, Medium: 1100 – 1300, High: ≥1400), 

and pregnant ewes offered two feeding herbage levels (Low2: 900 – 1100 kg DM/ha, and High: 

≥1400) at 100 and 130 days of pregnancy. Stage two (validation stage) assessed the liveweight 
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loss correcting equations established from stage one. The methodology utilized in this two-stage 

study was like those in Chapter 4 in ewe lambs. 

5.2.1 Calibration study 

5.2.1.1 Location  

The study sites for the current study were like those utilised in Chapter 4 in ewe lambs. 

The liveweight loss profiles and correcting equations for non-pregnant ewes and ewes that were 

130 days pregnant were conducted at Massey University’s Keeble farm 5 km southeast of 

Palmerston North (40°24’S and 175°36’E), New Zealand. The study of ewes that were 100 days 

pregnant was conducted at Riverside farm located 11 km north to north-west of Masterton 

(40°50′S, 175°37′E). Weather data for the non-pregnant ewe study, Pregnant ewe study at 100 

days and 130 days of pregnancy during the calibration study is presented in Appendix V as 

Figures 1a, 1b1 and 1b2, respectively. The study had the approval of Massey University ethics 

committee (protocol number: MUAEC 18/98, MUAEC 19/53). All weather data were gathered 

from https://cliflo.niwa.co.nz. 

5.2.1.2 Study animals, experimental design, and feed management 

5.2.1.2.1 Non-pregnant ewe study 

The study of non-pregnant ewes was undertaken from 21st January to 3rd February 2020.  

Mixed-aged Romney ewes (3 to 5 years of age, n = 90) were allocated on day one to one of three 

Ryegrass-based herbage  availability levels (Low1 target range of: 700–900 kg DM/ha, Medium: 

1100–1300 kg DM/ha, High: ≥1400 kg DM/ha) with 30 ewes in each group (Table 5.1). A 

description of the herbage type used in the current study is given in Chapter 3. Previous studies 

have shown that herbage levels of 800 to 1000 kg DM/ha, and 1200 to 1400 kg DM/ha were 

associated with maintenance requirements resulting in no liveweight change and daily 

liveweight gains of 120 to 160 g/d, respectively (Penning and Hooper, 1985; Morris et al., 1993). 

The range selected represents pasture availability that ewes in New Zealand are most likely to 

experience during the annual production cycle (Penning and Hooper, 1985; Morris and Kenyon, 

2004). The areas for each herbage availability level were 1.9 hectares, 2.1 hectares and 2.0 

hectares for Low1, Medium and High herbage levels, respectively. 

5.2.1.2.2 Pregnant ewe study 

Studies of pregnant ewes were conducted at approximately 100 days from midpoint of 

a 17-day breeding period (P100) and 130 days from midpoint of breeding period (P130). The 

P100 ewe study was conducted between 1st and 14th July 2020 on Riverside farm. The P130 ewe 

study was conducted between 8th and 22nd August 2019 at Keeble farm. Ewes were assigned on 
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day one to one of the two pre-grazing herbage availability levels (Low2 target range of: 900–

1100 kg DM/ha, High: ≥1400 kg DM/ha). A summary of the treatment combinations, sample size 

and weighing days is given in Table 5.1. The areas for each herbage availability level in the P100 

group were Low2 (3.9 hectares) and High (4.0 hectares). The areas for each herbage availability 

level in the P130 group were Low2 (3.9 hectares) and High (3.1 hectares).  

5.2.1.3 Live weight measurement 

Ewes were weighed using Tru-TestTM MP600 load bars and XR5000 weigh head (Tru-Test 

Group, Auckland, New Zealand). The weighing system collected live weights at a resolution of 

0.1 kg for live weights between 0 and 50 kg and 0.2 for weights between 50 and 100 kg. Prior to 

the start of the study, ewes were individually weighed to ensure they were randomly allocated 

to their respective groups. A summary of the calibration study conditions, weighing days and 

number of records is given in Table 5.1. 

5.2.1.3.1 Non-pregnant ewe study 

At day seven of after allocation to different herbage levels, non-pregnant ewes were 

weighed immediately after arriving at the weighing facility from their paddock (within five to ten 

minutes of removal from herbage to obtain the “without delay” weight), and then again hourly 

for the following eight hours. Ewes were kept in their respective herbage availability levels which 

the herbage availability levels were weighed in the same sequence. After eight hours, the ewes 

were returned to their pasture paddocks. This procedure occurred on two more occasions (at 

day 10 and 13), while the ewes grazed their respective herbage availability levels (Table 5.1). 

These weighing events generated datasets containing 2430 records (nine live weights including 

the “without delay” weight), from 90 ewes.  

5.2.1.3.2 Pregnant ewe’s study 

 P100 ewe study 

At day six, P100 ewes were weighed immediately after arriving at the weighing facility 

from their paddock (within five to ten minutes of removal from herbage), and then hourly for 

the following eight hours in their respective herbage availability levels in the same sequence. 

After eight hours, they were returned to their paddocks. This procedure occurred on two more 

occasions (at day 14 and 16) while the ewes were grazing their respective herbage availability 

levels (Table 5.1).  

 P130 ewe study 

At day seven, P130 ewes were weighed immediately after arriving at the weighing 

facility from their paddock (within five to seven minutes of removal from herbage), and then 
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hourly for the following eight hours in their respective herbage availability levels in the same 

sequence. After eight hours, they were returned to their paddocks. This procedure occurred on 

two more occasions (at day 12 and 15) while the ewes were grazing their respective herbage 

availability levels. Datasets of 2700 records (Live weights including weight recorded immediately 

on arrival at the weight facility) were generated from live weights of the P100 ewes and 2700 

records from the P130 ewes (Table 5.1).  

5.2.1.4 Herbage sampling, mass, and quality  

Herbage sampling, mass determination and quality assessment were conducted 

following the procedures described in Chapter 4. Herbage mass was estimated with the help of 

a rising plate meter (plate diameter of 355 mm; Jenquip, Fielding, New Zealand) and herbage 

masses were computed using the equation by Hodgson et al. (1999) as described in Chapter 3 

(Equations 3.1 and 3.2). 

Representative herbage grab samples were collected on the day of weight 

measurement (1 sample each day for each of the three herbage availability levels) at random, 

for nutritional quality analysis across each herbage availability level and pooled by day of 

collection to determine what the ewes were consuming. A total of 9 samples for the non-

pregnant ewe study, 6 samples for P100 study and 6 samples for P130 ewe study were taken. 

Herbage samples were collected between 9.00 AM and 12.00 PM at each sampling time. 

Samples were divided into two and either freeze-dried and stored for further chemical analysis 

or used for dry matter determination (percentage dry matter and the ratio of live/green to dead 

matter). The samples were subjected to subsequent analyses using procedures described in 

Chapter 4. Sample dry matter and the proportion of live to dead were determined using 

Equations 4.1 and 4.2, respectively, while crude protein (CP), Neutral detergent fibre (NDF), Acid 

detergent fibre (ADF), Organic Matter Digestibility (OMD) and metabolizable energy (ME) were 

determined using the near-infrared spectroscopy (NIRS) method as described in Chapter 4. 

5.2.1.5 Statistical analyses 

All analyses were executed using  R program version 3.4.4 (R Core Team, 2016), applying 

procedures described in Chapter 4. During the analysis, model residuals were explored for 

normality (Shapiro and Wilk, 1965; Peat and Barton, 2008) and heteroscedasticity (Breusch and 

Pagan, 1979). Outliers were detected  based on cook’s distances (Dhakal, 2018) and Cook’s 

distances > 4/sample size were considered significant in the final model (Cook, 1977). The 

diagnostics above were corroborated with visual inspection of residual plots including qqplots 

and autocorrelation plots.   
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The current study data were collected on ewes of different physiological states raised in 

different seasons of the year, making it impossible to separate the confounding effects of season 

and physiological state (pregnant vs non-pregnant). Further, the experimental design was 

unbalanced (i.e. non-pregnant ewes were offered three levels of herbage (Low1, Medium, High) 

while the pregnant ewes had two levels (Low2, High)). Consequently, data were analysed for 

each of the physiological states separately.   

The herbage levels were not the same across the physiological states (i.e. non-pregnant 

ewes were offered three levels of herbage (Low1, Medium, High) while the pregnant ewes had 

two levels (Low2, High). Therefore, for meaningful comparisons (including interactions) between 

and within physiological state, a separate model was fitted for each physiology state study (non-

pregnant or pregnant ewe study). For each study, a mixed model (LMM) with linear and 

quadratic time effects and a first order auto-regressive correlation structure was fitted using R 

program (R Core Team, 2016) with the nlme package (Pinheiro et al., 2018). All significant model 

effects were reported using p-values whereas exceptional effects that were non-significant both 

F-and p-values were considered.  

5.2.1.5.1 Non-pregnant ewe study 

The LMM model fitted herbage availability (H) as fixed variable and fasting time (T: first 

and second order polynomial) as covariate and individual sheep effect as random effect. Two-

way interactions between herbage availability and time (H x T, H x T2) were also fitted. All effects 

were significant and were thus, retained in the final model.  

  Pregnant ewe study 

In the pregnant ewe study, herbage availability (H), stage of pregnancy (PD) and 

pregnancy-rank (PR) were fitted as fixed variables, fasting time (T: first and second order 

polynomial) as covariate while an individual sheep effect was fitted as a random effect. Up to 

four-way interactions (H x PD x PR x T/T2) were fitted. Initially the maximum likelihood method 

was used to build each of the models. The nonsignificant model effects were eliminated through 

backward selection. The model with the least Akaike’s information criterion (AIC) value (minimal 

model) was retained. Final (minimal) models were generated using restricted maximum 

likelihood (REML) method. Liveweight loss equations that did not differ (p < 0.05) were pooled 

into one equation (combined).  

Herbage mass was estimated using a general linear model fitted based on the 

generalized least squares method (GLS) in nlme package (Pinheiro et al., 2018). Herbage 

availability (H) was fitted as fixed effect while sample day (D) was fitted firstly, as fixed, and later 

as random effect. A nesting structure for herbage availability nuzzled within sample day was also 
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investigated. The model with nesting structure having had the least AIC and BIC values was 

selected as most fitting for further analysis. All model effects were compared using the minimal 

model. Model effect means were compared based on Sidak’s adjustment method (Alberts and 

Abdi, 2007) using the R program extensions emmeans (Russell, 2018) and multcomp (Hothorn 

et al., 2008) packages.  

Prior to analysis, data were apportioned into two sets (70% of the measurements: 

training dataset for model training; 30% of the measurements: test dataset for cross-validation). 

Model parameters were calculated and compiled through a 1000-fold bootstrapping technique.   
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Table 5.1 Sample size, weighing day (D) (pregnancy day in parenthesis) and live weight records of ewes by study stage, physiological state, stage of pregnancy, 
pregnancy-rank, farm, and herbage availability. 

Study stage Physiological 
state 

Stage of 
pregnancy 

Pregnancy-
rank 

Farm Herbage 
availability 

Ewe/paddock 
(n) 

Weighing 
day 1 

Weighing 
day 2 

Weighing 
day 2 

Records 

Stage 1 
(Calibration) 
                                           

Non-pregnant   Keeble Low1 30 D7  D10  D13  810 
    Medium 30 D7  D10  D13  810 
    High 30 D7  D10  D13  810 
          
Pregnant P100 Single Riverside Low2 25 D7 (107) D10 (110) D16 (116) 675 
    High 25 D7 (107) D10 (110) D16 (116) 675 
  Twin  Low2 25 D7 (107) D10 (110) D16 (116) 675 
    High 25 D7 (107) D10 (110) D16 (116) 675 
 P130 Single Keeble Low2 25 D7 (127) D12 (132) D15 (135) 675 
    High 25 D7 (127) D12 (132) D15 (135) 675 
  Twin  Low2 25 D7 (127) D12 (132) D15 (135) 675 
    High 25 D7 (127) D12 (132) D15 (135) 675 

           

Stage 2 
(Validation) 

Non-pregnant   Keeble Low1 30 D3  D6   540 
    Medium 30 D3  D6   540 
    High 30 D3  D6   540 
   Riverside Medium 30 D4    540 
          
Pregnant P100 Single Tuapaka Low2 25 D3 (102) D5 (107)  450 
    High 25 D3 (102) D5 (107)  450 
  Twin  Low2 25 D3 (102) D5 (107)  450 
    High 25 D3 (102) D5 (107)  450 
  Single Keeble Low2 25 D3 (98) D5 (100)  450 
    High 25 D3 (98) D5 (100)  450 
  Twin  Low2 25 D3 (98) D5 (100)  450 
    High 25 D3 (98) D5 (100)  450 
          
 P130 Single Keeble Low2 25 D3 (127) D5 (132)  450 
    High 25 D3 (127) D5 (132)  450 
  Twin  Low2 25 D3 (127) D5 (132)  450 
    High 25 D3 (127) D8 (132)  450 
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  Single Tuapaka Low2 25 D3 (127) D8 (132)  450 
    High 25 D3 (127) D8 (132)  450 
  Twin  Low2 25 D3 (127) D8 (132)  450 
    High 25 D3 (127) D8 (132)  450 
  Single Riverside Low2 25 D6 (129) D8 (131)  450 
    High 25 D6 (129) D8 (131)  450 
  Twin  Low2 25 D6 (129) D8 (131)  450 
    High 25 D6 (129) D8 (131)  450 

Stage of study (Stage 1: calibration phase for profiling ewe liveweight loss based on eight hours of fasting as well as development of the correction equations, Stage 2: validation phase for evaluation of live 
weight correction equations when applied on other data collected different ewes based on six hours of fasting). Stage of pregnancy (P100: 100 days of pregnancy from the midpoint of a 17-day breeding 
period, P130: 130 days). Herbage availability (for non-pregnant ewes, Low1 target range herbage availability of: 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, High: ≥1400 kg DM/ha; for pregnant ewes, 
Low2 target range herbage availability of: 900 − 1100 kg DM/ha, High: ≥ 1400 kg DM/ha;). Pregnancy-rank (Single: single-bearing, Twin: twin-bearing). Weighing (values outside parenthesis denote the day of 

trial/study i.e. from day of animal allocation to the herbage levels while those in parenthesis indicate the average number of days of pregnancy from the midpoint of a 17-day breeding period). 

Ewes were weighed within 10 minutes after removal from pasture and water on Keeble farm and Tuapaka farm, and within 15 minutes for Riverside farm). Ewes were weighed in their respective herbage 
availability levels immediately after arriving at the weighing facility from their paddock, and then hourly in the same herbage availability level sequence for the following eight (calibration) or six (validation) 
hours 
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5.2.2 Validation study 

5.2.2.1 Location  

The study was approved by Massey University ethics committee (protocol number: 

MUAEC 19/53). The validation phase was carried out at Massey University’s Keeble farm, 

Tuapaka farm and Riverside farm. The locations of both Keeble farm and Riverside farm were 

used in the calibration stage, while Tuapaka farm was located 15 km north east of Palmerston 

North city (40°20′S, 175°43′E). The current study stage utilized sites like those in Chapter 4 

validation stage. The weather data for the three different studies and different farms during the 

validation study is presented in Appendix V (Figures 2a, 2b1, 2c). All weather data were gathered 

from https://cliflo.niwa.co.nz. 

5.2.2.2 Study animals, experimental design, and feed management 

The liveweight loss equations generated at calibration, were used to develop the “without 

delay” live weight correcting equations for the respective physiological states. The validation 

was conducted using both non-pregnant (n = 90) and pregnant (n = 100) mixed-aged ewes. The 

sample size used in the current study was based on a 0.91 power (effect size: 0.48 and non-

sphericity: 0.70), it is therefore, it was sufficient to detect any effects and or differences between 

treatment effects. 

5.2.2.2.1 Non-pregnant ewe study 

Two validation studies were conducted using mixed-aged (3-5 years old) non-pregnant 

ewes not previously used in study one (calibration) (Table 5.1). The first study was conducted 

from 3rd to 10th February 2020 at Keeble farm. Ninety ewes (n = 90) were initially individually 

weighed. These were allocated (day one) to one of three herbage levels (Low1 target herbage 

range: 700–900 kg DM/ha; Medium: 1100–1300 kg DM/ha; High: ≥1400 kg DM/ha) with 30 ewes 

in each group. The resulting ewe herbage level groups had similar average weight. The herbage 

availability areas were 1.9 hectares, 2.1 hectares and 2.0 hectares for Low1, Medium and High 

herbage levels respectively. A second non-pregnant ewe validation was conducted at Riverside 

farm from 10th to 14th March 2020 using 30 ewes offered the Medium herbage level of area 14.9 

hectares. It was not possible to obtain all three herbage levels due to a scarcity of pasture.  

5.2.2.2.2 Pregnant ewe study 

 P100 ewe study 

Two validation studies were conducted using mixed-aged ewes at 100 days of pregnancy 

not previously used in study one (calibration) (Table 5.1). In the first study, ewes were studied 

from 7th to 14th July 2020 at Keeble farm (n = 100) and in the second study from 23rd to 29th July 

https://cliflo.niwa.co.nz/
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at Tuapaka farm (n = 100). During each study a hundred ewes (n = 100) were initially individually 

weighed and then allocated (day one) to one of two herbage availability levels (Low2 (L2) target 

range of 900–1100 kg DM/ha, High (H): ≥1400 kg DM/ha) with 50 ewes (25=single and 25=twin-

bearing) in each group, such that the overall group live weight mean did not differ. The herbage 

availability areas were 3.7 hectares and 2.0 hectares for Low2 and High herbage levels 

respectively at Tuapaka farm and 3.9 hectares and 3.0 hectares for Low2 and High herbage levels 

respectively at Riverside farm.  

 P130 ewe study 

Three validation studies were conducted using mixed-aged ewes at 130 days of 

pregnancy not previously used in study one (Table 5.1). The first study was conducted from 24th 

to 31st July 2020 on Riverside farm (n = 100), the second study from 1st to 10th August 2020 at 

Keeble farm (n = 100) and the third study from 14th to 24th August 2020 on Tuapaka farm (n = 

100). During each study a hundred ewes (n = 100) were initially individually weighed and then 

allocated (day one) to one of two herbage availability levels (Low2 (L2) target range of 900–1100 

kg DM/ha, High (H): ≥1400 kg DM/ha) with 50 ewes (25 = single and 25 =t win bearing) in each 

group. The herbage availability areas were 2.1 hectares and 2.7 hectares at Keeble farm, 2.0 

hectares and 3.7 hectares at Tuapaka farm, and 3.9 hectares and 3.0 hectares at Riverside farm 

for Low2 and High herbage levels, respectively. The ewes had access to herbage and water ad lib 

up to the time they were picked from the paddock for the initial weighing. 

In all pregnant ewe validation studies, ewes had been bred over a 17-day period and 

half were carrying single and the other half (n = 50) twin pregnancies. The ewes were placed on 

their respective herbage availability/paddocks (only one paddock per herbage availability level) 

for three days (days −3 to day 0) prior to start of the study. 

5.2.2.3 Live weight measurement 

Ewes were weighed as in stage one during six hours of fasting. The six-hour fasting 

period was considered a more practical period of delay that may occur during routine handling 

and weighing of a flock of sheep (Wishart et al., 2017). Without delay live weight was defined as 

weight taken immediately on arrival at the weighing facility from paddock. A summary of the 

validation study conditions, weighing days and number of records is given in Table 5.1. The ewes 

were weighed on two occasions on Keeble farm and at one occasion for Riverside farm.  Ewes 

at approximately 100 days (P100) of pregnancy were weighed on two occasions two days apart 

on Keeble farm and Tuapaka farm. At approximately day 130 (P130) of pregnancy, ewes were 

weighed on two occasions two days apart on Keeble farm, five days apart for Tuapaka farm and 
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three days apart for Riverside farm. After each day’s weighing, the ewes were returned to their 

paddocks.  

5.2.2.4 Herbage sampling, mass, and quality  

Herbage mass determination and target range monitoring over the study period, was 

conducted as in calibration with sward height measurements recorded twice (on each day ewes 

were weighed) using a rising herbage plate meter. Representative herbage grab samples were 

also collected and analysed for quality parameters as per stage one.  A total of 6 samples for 

non-pregnant ewes, 4 samples for P100 and 4 samples for P130 ewes were collected.  

5.2.2.5 Statistical analysis 

The current study data were collected on ewes of different physiological states raised 

on different farms, in different seasons, making it impossible to account for the confounders of 

ewe liveweight loss. Therefore, data were analysed for each of the physiological states as in 

stage one.   

5.2.2.5.1 Non-pregnant ewe study 

In the non-pregnant ewes, two datasets, each containing 630 (from ewes offered the 

Low, Medium  and High herbage levels) live weights (7 weights taken in six hours including the 

“without delay”) from 90 ewes were collected at Keeble farm and one dataset containing 210 

live weights (from ewes offered the Medium herbage level) from Riverside farm from 30 ewes.  

A mixed effects model including the fixed effects of Herbage availability (H) (only for Keeble 

farm), and fasting time (first (T) and second order (T2) polynomial) was fitted to the data with 

measurement days as replicates. Two-way (H x T, H x T2) interactions were also tested for Keeble 

farm.  To estimate the herbage availability and quality in the non-pregnant ewe study, herbage 

levels and chemical composition parameters were averaged to obtain the overall Medium 

herbage availability. In the pregnant ewe study, a general linear model was used after adjusting 

for herbage availability as fixed effects while day of collection was considered a replicate to 

estimate both availability and chemical composition. 

5.2.2.5.2 Pregnant-ewe study 

In the pregnant ewes, two datasets, each containing 700 live weights (100 ewes, 7 

weights taken in six hours including the “without delay”), from 100 ewes (in both 100 and 130 

days of pregnancy) were collected at each farm (Keeble and Tuapaka). Data from stage one, 

from Riverside farm  for P100 (n = 1730), using up to six hours of fasting and from Keeble farm 

for P130 (n = 1730), was pooled with two P100 (Keeble farm: n = 1260; Tuapaka farm: n = 1302) 

and three P130 (Keeble: n = 1200; Tuapaka farm: n = 1078; Riverside farm: n = 1257) validation 
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datasets. A mixed effects model with a first order correlation structure was fitted to the resulting 

dataset. Study stage (K), Herbage availability (H), physiological state (P), pregnancy-rank (R), 

stage of pregnancy (S) and farm (F) were treated as fixed variables, fasting time (first (T) and 

second order fasting time polynomial (T2)) as covariate while an individual ewe effect was fitted 

as a random effects. Initially a mixed effects model was fitted including all main effects and up 

to five-way interactions (K x H x R x S x T and K x H x R x S x T2) nested within farm (because the 

data were not balanced). Later, a separate model was fitted for each of the stages of pregnancy 

to include the fixed effect of farm. Each of the two models were fitted with up to five-way 

interactions (K x H x F x R x T; K x H x F x R x T2). Minimal models were selected using the least 

AIC and BIC.  

Following the linear mixed effects model analysis in the calibration stage, eleven 

separate correction equations were generated during stage one, representing each herbage 

availability offered (Low1, Medium and High for non-pregnant ewes; Low2 and High for pregnant 

ewes) and physiological state (Non-pregnant and pregnant) and days of pregnancy (P100, P130) 

(Table 5.2). To predict the ewe live weight immediately after leaving the paddock (“without 

delay” live weight), correction equations were developed for each of the eleven liveweight loss 

equations. The “without delay” live weight (cW0) was calculated as in Chapter 4.  

Live weight correction equations were deployed to predict the “without delay” live 

weight on validation datasets collected from the farms. These correction equations were applied 

on corresponding (i.e. collected under similar conditions: Separate) or on a non-matching 

(Mistaken) dataset, and the “without delay” live weight predictions compared with the delayed 

weights (where no prediction equations were used: None). Additionally, the equations that were 

not different (p < 0.05, Table 5.2), were consolidated to give the combined equations 

(Combined) which were also applied to marching datasets. It was not possible to collect data 

from all farms due to herbage scarcity (non-pregnant ewes) and synchronized breeding. Several 

metrics (Table 5.2) were computed to assess the quality of the live weight correcting equations 

as in Chapter 4.  

5.3 Results 

5.3.1 Calibration stage 

5.3.1.1 Herbage mass and proportion of live/green matter 

Overall, the recorded herbage masses were within the target ranges for all herbage 

availability levels and physiological states (pregnancy status), stages of pregnancy and 

pregnancy-ranks except for the Low1 herbage level offered to non-pregnant ewes at Keeble farm 

(Appendix VI Table 1a). Average herbage mass also varied between herbage availability levels (p 
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< 0.05) for both non-pregnant (p < 0.001) and pregnant ewes (p < 0.001). In the pregnant ewe 

study, herbage availability did not vary between stage of pregnancy (P100 vs P130) (F1,21 = 1.41, 

p = 0.248).  In the non-pregnant ewe study, the Low1 herbage levels were slightly outside (above) 

the target range. In the pregnant ewe study, herbage levels were within the target ranges with 

the High herbage level having consistently greater (p < 0.05) masses than the Low2 level, 

irrespective of stage of pregnancy.  

Overall, the proportion of herbage that was considered live (green) and thus edible 

increased with herbage availability (p < 0.05) in non-pregnant ewes but was comparable for all 

herbage levels in pregnant ewes (Appendix VI Table 1a). The herbage levels offered to pregnant 

ewes had greater proportions (p < 0.01) of live or green herbage than that offered to non-

pregnant ewes. Within the non-pregnant ewes, the proportions of live/green matter were as 

low as 57% for the Low1 herbage level and as high as 65% for the High herbage level.   

5.3.1.2 Herbage chemical composition 

In the non-pregnant ewe study, all herbage chemical composition parameters did not 

vary (p > 0.05) with herbage availability level except for % DM (p < 0.05) (Appendix VI 1b). The 

herbage levels offered to non-pregnant ewes had greater Dry matter, NDF and ADF, but were 

correspondingly lower in CP and ME compared with that offered to their pregnant counterparts.  

In the pregnant ewe study, all chemical composition parameters varied (p < 0.05) with 

herbage availability except (p > 0.05) for DM and CP. Among pregnant ewes, dry matter was 

greater for the Low (Low1 and Low2) levels than High herbage level (p < 0.05). Further, within 

pregnant ewes, herbage chemical composition did not differ among stage of pregnancy studies. 

5.3.1.3 Effect of herbage availability and physiological state on the overall and rate of liveweight 

loss  

Overall, liveweight loss varied over fasting time (6-8 hours) (p < 0.01) , but not 

pregnancy-rank of a ewe (p > 0.05). The ewes lost liveweight over the fasting period in all studies 

(Table 5.2, Figures 5.1 and 5.2). The overall liveweight losses over the eight-hour fasting period 

for non-pregnant ewes were 2.4 kg (3.8 % of the initial live weight), 3.1 kg (4.7%) and 3.6 kg 

(5.3%) for Low1, Medium and High herbage levels, respectively. In the pregnant ewes, single-

bearing ewes at P100 lost 3.3 kg (5.1% of the initial live weight) and 5.0 kg (7.2%) for the Low2 

and High herbage levels, respectively. Twin-bearing ewes at P100 lost, 3.1 kg (4.5%) and 4.8 kg 

(6.5%) for Low2 and High. Single-bearing ewes at P130 lost 2.8 kg (4.0%) and 3.5 kg (4.8%) for 

Low2 and High, respectively. Twin-bearing ewes at P130 lost 2.9 kg (4.0%) and 3.5 kg (4.6%) for 

the Low2 and High herbage levels, respectively. Additionally, the variability in liveweight loss 

data were comparable (CV ± 2SD) across physiological state (CV = 20 − 31%) and herbage levels 
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except for the Low1 (CV = 58%) and medium (CV = 47%) herbage level s offered to non-pregnant 

ewes.  

The liveweight loss regression equations differed by physiological state and herbage 

availability resulting in different rates of loss and the loss was nonlinear (p < 0.001) over the 

eight-hour fasting period (Table 5.2). Further, non-pregnant ewes had lower liveweight loss 

rates than their pregnant counterparts (p < 0.01). The rate of ewe liveweight loss increased with 

herbage availability, having been greatest in ewes offered the High rather than Low (Low1, Low2) 

herbage levels (p < 0.01). In the pregnant ewe study, the rate of ewe liveweight loss was greater 

at P100 than P130 (p < 0.01). Both herbage availability and stage of pregnancy significantly (p < 

0.01) interacted to influence the rate of ewe liveweight loss. Pregnancy-rank did not affect (p > 

0.05) the rate of ewe liveweight loss, and thus, individual liveweight loss regression equations 

for single- and twin-bearing ewes were pooled to generate the combined or consolidated 

equations.   
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Table 5.2 Mean initial and final delayed weight and prediction parameters with standard errors in parentheses and adjusted R2 for ewe liveweight loss 
(kg) based on herbage availability level s (Low, Medium, High) offered to ewes of two physiological states (non-pregnant, pregnant),  stage of pregnancy 
(P100: 100 days of pregnancy from the midpoint of a 17-day breeding period,  P130: 130 days), pregnancy-rank (S: single-bearing, T: twin-bearing) 
during eight hours of fasting. Adjusted R2 is the goodness-of-fit of the model. 

Physiological state 
Herbage 
availability 

Initial live 
weight (kg) 

Final live 
weight (kg) Intercept Time Time2 

Coefficient of 
variation 
(CV)% 

Adjusted 
R2 

Non-pregnant Low1 64.0(0.82) 61.6(0.80) 0.10(0.153) 0.21a(0.038)  0.008b(0.005)  0.58 0.58 
 Medium 65.3(0.72) 62.2(0.70) 0.17(0.158) 0.32b(0.039)  0.005ab(0.005)  0.47 0.63 
 High 67.9(0.92) 64.3(0.89) 0.09(0.162) 0.54c(0.040)  −0.011a(0.005)  0.31 0.76 
Pregnant P100 
       Single (S100) Low2 64.1(0.79) 60.8(0.81) −0.683(0.089) 0.65ab(0.015)  −0.030a(0.002)  0.23 0.72 

 High 69.7(0.85) 64.7(0.81) −0.688(0.089) 0.78c(0.015)  −0.031a(0.002)  0.30 0.67 
      Twin (T100) Low2 69.2(0.90) 66.1(0.81) −0.694(0.089) 0.64ab(0.016)  −0.030a(0.002)  0.24 0.75 

 High 73.8(1.09) 69.0(1.81) −0.768(0.090) 0.77c(0.015)  −0.032a(0.002)  0.31 0.67 

 P130 
      Single (S130) Low2 69.9(0.88) 67.1(0.87) −0.727(0.090) 0.59a(0.015)  −0.030a(0.002)  0.32 0.72 

 High 72.5(0.91) 69.0(0.86) −0.706(0.089) 0.70b(0.015)  −0.030a(0.002)  0.31 0.72 
      Twin (T130) Low2 72.9(0.69) 70.0(0.65) −0.704(0.089) 0.61a(0.015)  −0.030a(0.002)  0.29 0.63 

 High 76.4(0.87) 72.9(0.82) −0.649(0.090) 0.70b(0.016)  −0.031a(0.002)  0.28 0.77 
 Combined (overall) 
     (ST)P100 Low2 66.4(0.64) 63.2(0.62) 0.11(0.064) 0.64ab(0.027) −0.025a(0.003) 0.23 0.73 
     (ST)P100 High 71.7(0.71) 66.8(0.69) −0.06(0.068) 0.81d(0.030) −0.037a(0.004) 0.30 0.81 
     (ST)P130 Low2 71.4(0.57) 68.5(0.55) 0.06(0.055) 0.56a(0.023) −0.027a(0.002) 0.30 0.68 
     (ST)P130 High 74.5(0.65) 70.9(0.62) −0.04(0.060) 0.71d(0.019) −0.039ab(0.002) 0.29 0.75 

abcd: different superscripts denote significant difference at p ≤ 0.05 in a column per physiological state. Herbage availability (for non-pregnant ewes, Low1 target range herbage of: 700–
900 kg DM/ha, Medium: 1100 −1300 kg DM/ha, High: ≥ 1400 kg DM/ha; for pregnant ewes, Low2 target range herbage of: 900 − 1100 kg DM/ha, High: ≥ 1400 kg DM/ha;). Pregnancy-
rank (S: single-bearing, T: twin-bearing, ST: Combination of single- and twin-bearing ewes). Stages of pregnancy (P100: 100 days of pregnancy from the midpoint of a 17-day breeding 
period, P130: 130 days). The best model has the highest R2 and the lowest RMSE. The best model has the highest R2 and the lowest RMSE. 
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Figure 5.1 Change in live weight (with 95% CI, grey shade) of ewes offered the Low1 target range 
herbage availability of (solid line), Medium (long dashed line) and High (dotted line) herbage 
levels during fasting of pregnant ewes. Herbage availability (Low1 target range herbage 
availability: 700–900kg DM/ha; Medium: 1100–1300 kg DM/ha; High: ≥1400 kg DM/ha). 

 

 

Figure 5.2 Change in live weight (with 95% CI, grey shade) of ewes (single: long dash line and 
twin: two dashed line) offered the Low2 target range herbage availability and those (single: solid 
line and twin dotted line) offered the High herbage level at 100 days (P100) of pregnancy from 
the midpoint of a 17-day breeding period and 130 (P130) days. Herbage availability (Low2 target 
range herbage availability: 900–1100 kg DM/ha; High ≥1400 kg DM/ha).     

P100 P130 
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5.3.2 Validation stage  

5.3.2.1 Herbage availability and proportion of live/green matter 

 The recorded average herbage masses were within the target ranges for all herbage 

availability levels and across studies except for the Low1 herbage level (above) offered to non-

pregnant ewes at Keeble farm (Appendix VI 2a). Overall, average herbage mass differed by 

availability level for all ewe studies (p < 0.01). In pregnant ewe studies, average herbage mass 

differed by farm and availability level (p < 0.01). Herbage mass was greater and more varied in 

the High than the Low2 herbage level regardless of stage of pregnancy and farm. There was a 

significant herbage availability x farm interaction (F1,16 = 10.12, p = 0.006) in the P100 but not 

(F2,18 = 3.23, p = 0.53) in the P130 study. Average herbage mass offered to ewes also did not 

differ by stage of pregnancy (p > 0.05). In the pregnant ewe studies, average herbage masses 

offered in the High herbage level irrespective of stage of pregnancy varied greatly (1716 to 2226 

kg DM/ha) for Keeble farm, Tuapaka farm (1712 − 2170) than Riverside farm (1442 to 1631 kg 

DM/ha) (p < 0.05). However, the masses offered under the Low2 herbage level were comparable 

for all three farms (p > 0.05). Within farm, most herbage variability was observed in the High 

herbage level.  

Overall, the proportion of herbage that was considered live (green) increased with 

herbage availability (p < 0.05). Further, the herbage levels offered to pregnant ewes had greater 

proportions (p > 0.01) of live or green herbage than that offered to non-pregnant ewes. Farm 

and/or farm x herbage availability did not (p > 0.05) affect the proportion of live matter. 

5.3.2.2 Herbage chemical composition 

The chemical composition of the herbage offered to non-pregnant ewes did not vary (p 

> 0.05) with herbage availability except for NDF (p < 0.05) (Appendix VI 2b). The herbage levels 

offered to non-pregnant ewes were also greater (p < 0.05) in DM, NDF and ADF, but were 

correspondingly lower (p > 0.05) in CP and ME compared with those offered to pregnant ewes. 

In the pregnant ewe study, all herbage chemical composition parameters varied with herbage 

availability and farm except for CP and ME. There was also a significant herbage availability x 

farm interaction (p < 0.05) for all herbage chemical composition parameters except for CP and 

ME. Stage of pregnancy and thus, time of year did not affect the chemical composition of 

herbage except for DM. The DM% of herbage increased with decreasing herbage level across 

ewe physiological status and farm (p < 0.05). There was variability in the rest of the herbage 

quality parameters with no predictable pattern across herbage availability and farm.   



Chapter 5 

Page | 101  
 

5.3.2.3 Liveweight loss trends during calibration and validation stage 

Six-hour ewe liveweight change trends were compared for both calibration and 

validation stages. The regression equations derived after six hours of fasting during the 

validation stage are presented in Tables (5.3, 5.4 and 5.5).  Overall liveweight loss varied among 

farms (p < 0.001) across ewe physiological state but not (p > 0.05) between herbage availability 

levels. The rate of liveweight loss differed (p < 0.05) between herbage levels and farm regardless 

of physiological state.  

5.3.2.3.1 Non-pregnant ewe study 

In the non-pregnant ewe study, the rate of liveweight loss was higher (p < 0.05) in both 

Medium and High herbage levels than the Low group (Table 5.3). Though not compared across 

farm, the rate of liveweight loss among the non-pregnant ewes offered the Medium herbage 

level was lowest at Riverside farm.  

5.3.2.3.2 Pregnant ewe study 

In the pregnant ewe study, all main effects were not significant (p > 0.05) except for time 

effects (first and second order fasting time polynomial) were significant (p < 0.001) (Tables 5.4 

and 5.5). Further, among interactions, only, herbage availability x fasting time, stage of 

pregnancy x (first and second order fasting time polynomial), Study stage x fasting time and farm 

x fasting time were significant (p < 0.05).  

 P100 study 

At P100, on both Keeble farm and Tuapaka farm, the rate of liveweight loss was greater 

for the High herbage level than the Low group regardless of pregnancy-rank (Table 5.4). Within 

pregnancy-rank, the rate of liveweight loss was comparable (p > 0.05) except for the Low 

herbage level on Tuapaka farm where the rate of liveweight loss was greater for twin than single-

bearing ewes.  

 P130 study 

At P130, on the Keeble farm, the rate of liveweight loss was comparable (p > 0.05) for 

all herbage levels across pregnancy-ranks (Table 5.5). On both Keeble farm and Riverside farm, 

ewes offered the Low2 herbage level had comparable liveweight loss rate trends (p > 0.05). 

However, in ewes offered the High herbage level, the rate of liveweight loss was greater (p < 

0.05) at Riverside farm than Keeble farm. The magnitude and rate of liveweight loss was 

comparable (p > 0.05) for Low2 and High herbage levels at both Keeble farm and Tuapaka farm 

except (p > 0.05) for the twin-bearing ewes offered the High herbage level. 
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5.3.2.4 Variability in liveweight loss at calibration and validation  

Results showed high variability in liveweight loss data (Tables 5.3, 5.4, 5.5). In non-

pregnant ewes the greatest variability was observed (CV = 0.43−0.83) during the validation and 

least (CV = 0.39−78) observed during the calibration stage (Table 5.3). The greatest and most 

variable portion of variance explained by each model was observed (R2 = 0.36−0.70) during the 

validation stage, and the least (R2 = 0.33−0.65) for the calibration stage. Further, the highest 

CV% was consistently observed in the Low herbage availability level (CV = 51−78%) while the 

lowest CV was in the High group (CV = 39−43%) for both calibration and validation stages. The 

calibration stage of the non-pregnant ewe study conducted at Riverside farm using the Medium 

herbage level had the least liveweight loss rate and the most variable live weight data (CV% = 

87%). Within the pregnant ewes, the liveweight loss rate within six hours of fasting was 

comparable (p > 0.05) for all herbage availability levels across stage of calibration except for the 

High. 

In pregnant ewes, the greatest and most variable variability was observed (CV = 

0.33−0.59) during the validation and least (CV = 0.33−37) observed during the calibration stage. 

However, the greatest and most variable portion of variance explained by each model was 

observed (R2 = 0.47−0.78) during the validation stage, and the least (R2 = 0.67−0.77) for the 

calibration stage (Tables: 5.4 and 5.5). The liveweight loss rate within six hours of fasting was 

comparable (p > 0.05) for all herbage availability levels across stage of calibration except for the 

High herbage level. 
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Table 5.3 Mean initial (“without delay”) and final weight and prediction parameters with standard errors in parentheses, for non-pregnant ewe 
liveweight loss (kg) during a six-hour fasting period, by herbage availability level (Low, Medium, High) and farm (Keeble, Riverside). CV is the coefficient 
of variation and adjusted R2 is a measure of goodness of fitness of the model. All models were significant at p < 0.01. 

    Live weight (kg)  Predictor   
Coefficient of 
variation (CV) 

  

Farm 
Availability 
level Initial Final  Intercept Time Time2 Adjusted R2 

*Keeble Low 67.9(0.92) 65.3(0.92)  0.08(0.142)b 0.25(0.045)a 0.00(0.007)c 0.78 0.33 

 Medium 64.0(0.82) 62.6(0.82)  −0.11(0.142)b 0.44(0.045)b −0.02(0.007)bc 0.63 0.47 

 High 65.3(0.72) 63.5(0.72)  −0.47(0.143)b 0.68(0.046)c −0.04(0.007)b 0.39 0.65 

          
†Keeble Low 65.9(1.07) 62.0(1.07)  −0.66(0.34)b 0.53(0.111)bc −0.02(0.021)bc 0.51 0.69 

 Medium 66.2(1.31) 62.8(1.31)  −2.19(0.362)a 0.80(0.121)d −0.15(0.022)a 0.44 0.67 

 High 67.0(1.23) 63.1(1.23)  −2.06(0.329)a 0.85(0.107)d −0.13(0.02)a 0.43 0.70 

          
†Riverside Medium 63.7(1.18) 62.8(1.18)  −0.07(0.070) 0.12(0.052) 0.10(0.008) 0.83 0.36 

Live weight (Initial: live weight “without delay”, Final: Live weight after eight hours of fasting). Asterisks *,† attached to farm name indicate the study stage dataset used for the analysis 
(*: calibration dataset, †: validation dataset). abc: different superscripts denote significant difference at p < 0.05 in within each column of predictors and farm. Availability level (Low 
herbage target range: 700–900 kg DM/ha, Medium: 1100 −1300, High: ≥ 1400). Model goodness of fit: the higher R2 the better. All contrasts based on Sidak’s multiple-comparisons tests.  
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Table 5.4 Mean initial (“without delay”) and final weight and prediction parameters with standard errors in parentheses, of P100 ewe liveweight loss 
(kg) during a six-hour fasting periods, by herbage availability level (Low, High), farm (Keeble, Riverside) and pregnancy-rank (single, twin-bearing). CV is 
the coefficient of variation and adjusted R2 is a measure of goodness of fitness of the model. All models were significant at p < 0.01. 

     Live weight (kg)     Predictor   

Coefficient of 
variation (CV) 

 
 
Farm TRT PD Initial Final   Intercept Time Time2 Adjusted R2 

*Riverside Low Single 64.8(0.65) 62.1(0.61)  −1.1(0.2)ab 0.86(0.063)abc −0.066(0.009)abc 0.33 0.73 
 Low Twin 70.0(0.76) 67.3(0.75)  −1.1(0.22)ab 0.84(0.068)abc −0.064(0.01)abc 0.29 0.77 
 High Single 69.7(0.69) 66.3(0.69)  −1.1(0.21)ab 0.98(0.063)bc −0.067(0.01)abc 0.34 0.72 
 High Twin 73.9(0.88) 70.6(0.87)  −0.9(0.21)ab 0.90(0.063)abc −0.055(0.01)abc 0.37 0.74 
†Keeble Low Single 65.4(0.92) 63.6(0.88)  −1.0(0.27)ab 0.67(0.083)ab −0.06(0.013)abc 0.59 0.46 
 Low Twin 68.6(1.02) 66.8(1.00)  −1.1(0.27)ab 0.69(0.082)ab −0.06(0.013)abc 0.57 0.51 
 High Single 70.9(1.08) 67.3(1.06)  −1.6(0.27)a 1.18(0.084)c −0.093(0.013)a 0.36 0.72 
 High Twin 72.4(0.87) 69.1(0.86)  −1.5(0.27)a 1.12(0.084)c −0.09(0.013)ab 0.35 0.70 
†Tuapaka Low Single 62.1(0.72) 59.1(0.67)  −0.3(0.26)b 0.58(0.08)a −0.022(0.012)c 0.48 0.58 
 Low Twin 67.6(0.63) 64.6(0.64)  −0.5(0.26)ab 0.66(0.08)ab −0.034(0.012)bc 0.43 0.61 
 High Single 67.3(1.09) 63.2(1.06)  −1.0(0.27)ab 1.01(0.081)bc −0.068(0.012)abc 0.33 0.72 
 High Twin 69.1(0.83) 65.2(0.78)  −1.0(0.26)ab 0.99(0.08)bc −0.066(0.012)abc 0.33 0.72 

Live weight (Initial: live weight “without delay”, Final: Live weight after eight hours of fasting). Asterisks *,† attached to farm name indicate the study stage dataset used for the analysis 
(*: calibration dataset, †: validation dataset). abc: different superscripts denote significant difference at p < 0.05 within each column of predictors. Availability level (Low herbage target 
range: 700–900 kg DM/ha, Medium: 1100−1300, High: ≥ 1400). Model goodness of fit: the higher R2 the better. All contrasts based on Sidak’s multiple-comparisons tests.  
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Table 5.5 Mean initial (“without delay”) and final weight and prediction parameters with standard errors in parentheses, of P130 ewe liveweight loss 
(kg) during a six-hour fasting periods, by herbage availability (Low, High), farm (Keeble, Riverside) and pregnancy-rank (single, twin-bearing). CV is the 
coefficient of variation and adjusted R2 is a measure of goodness of fitness of the model. All models were significant at p < 0.01. 

      Live weight (kg)  Predictor Coefficient of 
variation (CV) 

Adjusted 
 R2 Farm TRT PD Initial Final  Intercept Time Time2 

*Keeble Low Single 69.9(0.88) 67.6(0.86)  −0.2(0.21)a 0.50(0.068)a 0.026(0.011)b 0.38 0.67 
 Low Twin 72.9(0.69) 70.5(0.66)  −0.3(0.21)a 0.53(0.068)ab 0.032(0.011)ab 0.37 0.67 
 High Single 72.5(0.91) 69.6(0.88)  0.1(0.21)a 0.66(0.067)abc 0.014(0.01)b 0.37 0.70 
 High Twin 76.4(0.87) 73.4(0.83)  −0.6(0.2)a 0.82(0.066)abc 0.052(0.01)ab 0.35 0.70 
†Keeble Low Single 69.8(0.93) 68.0(0.91)  −0.6(0.19)a 0.66(0.061)abc 0.047(0.009)ab 0.54 0.60 

 Low Twin 75.8(1.11) 74.1(1.10)  −0.7(0.19)a 0.70(0.061)abc 0.052(0.009)ab 0.57 0.47 

 High Single 72.2(0.96) 68.8(0.88)  −0.8(0.2)a 0.78(0.063)abc 0.06(0.01)ab 0.41 0.65 

 High Twin 77.7(1.01) 75.4(1.00)  −0.8(0.2)a 0.81(0.064)abc 0.065(0.01)ab 0.39 0.64 
†Riverside Low Single 69.1(0.89) 66.7(0.84)  −0.4(0.22)a 0.63(0.07)abc 0.039(0.011)ab 0.45 0.65 

 Low Twin 74.7(0.87) 72.4(0.85)  −0.7(0.22)a 0.74(0.071)abc 0.056(0.011)ab 0.41 0.68 

 High Single 73.2(0.88) 70.3(0.87)  −0.8(0.23)a 0.97(0.075)c 0.084(0.013)a 0.32 0.78 

 High Twin 78.1(1.15) 75.4(1.13)  −0.8(0.23)a 0.86(0.074)bc 0.069(0.012)ab 0.32 0.77 
†Tuapaka Low Single 70.0(1.03) 67.2(1.00)  −0.5(0.21)a 0.64(0.068)abc 0.043(0.011)ab 0.35 0.71 

 Low Twin 75.5(0.83) 72.7(0.81)  −0.5(0.22)a 0.61(0.072)abc 0.04(0.012)ab 0.35 0.70 

 High Single 73.2(0.97) 69.5(0.94)  −0.5(0.22)a 0.67(0.07)abc 0.04(0.011)ab 0.33 0.78 

 High Twin 76.7(0.87) 73.3(0.83)  −0.3(0.21)a 0.58(0.069)ab 0.027(0.011)ab 0.36 0.74 
Live weight (Initial: live weight “without delay”, Final: Live weight after eight hours of fasting). Asterisks *,† attached to farm name indicate the study stage dataset used for the analysis 
(*: calibration dataset, †: validation dataset). abc: different superscripts denote significant difference at p < 0.05 within each column of predictors. Availability level (Low herbage target 
range: 700–900 kg DM/ha, Medium: 1100–1300, High: ≥1400). Model goodness of fit: the higher R2 the better. All contrasts based on Sidak’s multiple-comparisons tests.  
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5.3.2.5 Using correction equations can improve “without delay” ewe live weight estimation 

5.3.2.5.1 Non-pregnant ewe study 

The validated results showed that the ewe live weight correction equations for all 

feeding levels by feeding level and model developed in stage one, of the present study, predicted 

live weight with accuracy (Table 5.6, Figure 5.3) as shown by their low RPE and high r2 and RPIQ 

values as compared with not using any correction method. The data presented in the Figure 5.3 

is from Keeble farm. Riverside farm data is not presented on account of it being incomplete (only 

one availability level was evaluated). 

At Keeble farm, compared with using the delayed live weights in ewes offered the Low 

herbage level, the specific equations to predict “without delay” live weight reduced error by 

37.6% (0.91 kg) while using a mistaken equation (not meant for that herbage level) reduced 

error by 58.2% (1.38 kg). Within the ewes offered the Medium herbage level, using the specific 

equations to predict “without delay” live weight reduced error by 42.3% (1.28 kg) while using 

the mistaken equation reduced error by 40.4% (1.24 kg). Within the ewes offered the High 

herbage level, using the herbage-specific equations to predict “without delay” live weight 

reduced error by 57.6% (1.62 kg) while using the mistaken equation reduced error by 34% (0.95 

kg) at Keeble farm. At Riverside farm, for the Medium herbage level, using the specific equations 

to predict “without delay” live weight increased error (introduced more error) by 28.1% (0.23 

kg), and by 44.3% (0.36 kg) using the mistaken equation. The greatest accuracy was observed 

when estimating “without delay” live weight using the mistaken equations for the Low herbage 

level, both the mistaken and herbage level specific (separate) equation for the Medium herbage 

level and the specific equation for the High herbage level (Figure 5.3).  
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Figure 5.3 Change in root mean square error (RMSE) with associated standard deviation for the 
prediction of “without delay” live weight of non-pregnant ewes over fasting time when 
correction equations (dashed line with square points: no correction equation applied, dotted 
line with cross points: mistaken equation applied, solid line with circular points: availability level 
combination specific/separate equations applied) for each target herbage (Low, Medium and 
High) generated in stage one were applied on data collected in  the summer season of 2020 at 
Keeble farm. Availability level (Low herbage target range: 700–900 kg DM/ha, Medium: 1100–
1300 High: ≥1400). Correction equations: Herbage availability combination (separate: herbage 
specific equation correctly applied, mistaken any of the availability level specific equations 
wrongly applied to a different treatment combination). 
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Table 5.6 Measures of goodness of fit and accuracy (Bias, RMSE, RPE, RPD, RPIQ, r2, CCC) of live weight (“without delay”) prediction  models (None: no 
model applied, separate: a separate/specific model applied, combined: pooled model where results were not significantly different and mistaken: model 
not developed for that availability level was applied) of non-pregnant ewes offered the Low1, Medium or High herbage availability level during six hours 
of fasting tested on independent datasets (validation dataset) from Keeble farm and Riverside farm collected in 2020. Sample size (n) and weight ranges 
(kg). 

   Live weight (kg)        

Farm 
Herbage 
availability  Model 

Actual 
Initial 

Actual 
Final 

Predicted 
Final Bias RMSE RPE RPD RPIQ r2 % CCC % 

Keeble Low1 None 
65.2(1.31) 61.8(1.34) 

 −1.85 2.39 3.67 3.00 4.47 98.7 99.3 

  Separate 63.5(1.33) −0.87 1.48 2.28 4.85 7.21 98.7 99.4 

  Mistaken 64.7(1.34) 0.03 1.01 1.55 7.13 10.62 98.7 99.3 

 Medium None 
66.3(1.23) 62.9(1.23) 

 −2.64 3.08 4.46 2.19 3.09 97.1 85.0 

  Separate 64.4(1.22) −1.23 1.80 2.61 3.74 5.27 97.1 99.2 

  Mistaken 63.4(0.86) −1.21 1.84 2.67 3.66 5.15 97.1 99.1 

 High None 
65.9(1.07) 62.0(1.09) 

 −2.33 2.78 4.21 2.12 2.83 97.8 80.7 

  Separate 64.9(1.09) −0.51 1.16 1.76 5.08 6.77 97.8 99.0 
    Mistaken 63.6(1.09) −1.37 1.83 2.78 3.22 4.29 97.8 98.9 
Riverside Medium None 

63.7(1.18) 62.8(1.14) 
 −0.49 0.81 1.26 8.17 3.17 99.6 99.8 

  Separate 65.0(1.13) 1.85 1.04 1.63 6.33 2.66 99.6 99.8 
    Mistaken 65.1(0.80) 1.89 1.17 1.84 5.62 7.68 99.6 99.8 

Herbage availability level (Low1 target range herbage: 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, High: ≥ 1400 kg DM/ha). Interpretation of measures: The best model has the 
highest r2, RPD, and RPIQ, and the lowest RMSE. Ranges for values: r2 (0: indicates that the model explains none of the variability of the response data around its mean, 1.0 indicates that 
the model explains all the variability). RPD (< 1.4: weak, 1.4 < RPD < 2.0: reasonable, > 2.0: excellent). RPIQ (< 1.4: very poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ < 2.0: good, 2.0 < RPIQ < 
2.5: very good, > 2.5: excellent).  

 



Chapter 5 

Page | 109  
 

5.3.2.5.2 Pregnant ewe study 

 P100 study 

The validated results showed that the ewe live weight correction equations for all 

feeding levels by feeding level, pregnancy-rank and model developed in stage one, predicted 

live weight with accuracy (Table 5.7, Figure 5.4) as shown by their low RPE and high r2 and RPIQ 

values as compared with not using any correction method.  

At Keeble farm, compared with using the delayed live weights in single-bearing ewes 

offered the Low herbage level, the herbage level specific equations to predict “without delay” 

live weight reduced error by 37% (0.64 kg), the combined equation by 32% (0.56 kg) while using 

mistaken equation (not meant for that herbage level) reduced error by 13 % (0.23 kg). Within 

the twin-bearing ewes, error was reduced by 39.1 % (0.61 kg), 41.0% (0.64 kg), 7.7% (0.12 kg) 

for the specific equation, combined and mistaken equations, respectively. The live weight 

estimation error was reduced more significantly among those ewes offered the High herbage 

level (p < 0.01).  Single-bearing ewes offered the High herbage level, the specific equations to 

predict “without delay” live weight reduced error by 63% (1.87 kg), the combined equation by 

63% (1.86 kg) while using mistaken equation reduced error by 55 % (1.63 kg). Within the twin-

bearing, error was reduced by 61.0 % (1.68 kg), 63.0% (1.74 kg), 56% (1.54 kg) for the specific 

equation, combined and mistaken equations, respectively. 

At Tuapaka farm, single-bearing ewes offered the Low herbage level, the specific 

equations to predict “without delay” live weight reduced error by 56% (1.25 kg), the combined 

equation by 56% (1.25 kg) while using mistaken equation reduced error by 47% (1.05 kg) 

compared with using the delayed live weights. Within the twin-bearing, error was reduced by 

45 % (1.12 kg), 44.0% (1.11 kg), 40% (0.99 kg) for the specific, combined and mistaken equations, 

respectively. The estimation error reduction proportions were comparable for ewes offered 

both herbage levels (p > 0.05).  Single-bearing ewes offered the High herbage level, the specific 

equations to predict “without delay” live weight reduced error by 53% (1.77 kg), the combined 

equation by 54% (1.78 kg) while using mistaken equation reduced error by 56 % (1.52 kg). Within 

the twin-bearing, error was reduced by 67 % (1.94 kg), 68% (1.97 kg), 58% (1.70 kg) for the 

specific, combined and mistaken equations, respectively. 



Effect of herbage availability and physiology on ewe liveweight loss rate 

Page | 110  

Table 5.7 Measures of goodness of fit and accuracy (Bias, RMSE, RPE, RPD, RPIQ, r2, CCC) of live weight (“without delay”) prediction  models (None: no 
model applied, separate: a separate/specific model applied, combined: pooled model where results were not significantly different and mistaken: model 
not developed for that availability level was applied) of ewes offered the Low2, and High herbage levels by pregnancy-rank (PR ) at 100 days of pregnancy 
(from the midpoint of a 17-day breeding period)  and during six hours of fasting tested on independent datasets (validation dataset) from Keeble farm 
and Riverside farm collected in 2020. The range of values reflects the results of 30 random iterations of the models. 

Farm 
Herbage 
availability 

Pregnancy-
rank Model 

Live weight (kg) 

Bias RMSE RPE% RPD RPIQ r2% CCC% 
Actual 
Initial 

Actual 
Final 

Predicted 
Final 

Keeble Low2 Single None 

65.4 63.6 

 −1.47 1.74 2.67 3.69 5.75 98.3 96.9 
      Separate 65.2(1.53) 0.45 1.10 1.68 5.83 9.09 98.3 90.2 
      Combined 65.0(1.53) 0.32 1.18 1.81 5.44 8.47 98.3 94.9 
      Mistaken 66.1(1.53) 0.94 1.51 2.30 4.28 6.67 98.3 84.6 
  Low2 Twin None 

68.6 66.8 

 −1.28 1.56 2.27 4.55 7.50 98.9 99.1 
      Separate 69.6(2.1) 0.56 0.95 1.38 7.56 12.32 98.9 89.9 
      Combined 69.5(2.1) 0.51 0.92 1.34 7.81 12.72 98.9 94.8 
      Mistaken 70.6(2.1) 1.13 1.44 2.10 4.99 8.13 98.9 86.7 
  High Single None 

70.9 67.3 

 −2.62 2.97 4.19 2.57 2.79 97.8 98.2 
      Separate 71.0(1.06) −0.19 1.10 1.55 6.94 7.55 97.8 76.7 
      Combined 71.1(1.06) −0.14 1.11 1.55 6.94 7.55 97.8 99.9 
      Mistaken 70.0(1.06) −0.78 1.34 1.89 5.70 6.19 97.8 96.8 
  High Twin None 

72.4 69.1 

 −2.67 2.76 3.81 2.19 3.53 97.6 95.5 
      Separate 72.5(2.84) −0.39 1.08 1.49 5.6 8.94 97.6 64.7 
      Combined 72.9(2.84) −0.19 1.02 1.41 5.93 9.46 97.6 92.6 
      Mistaken 71.7(2.84) −0.83 1.22 1.68 4.96 7.91 97.6 99.4 
Tuapaka Low2 Single None 

62.1 59.1 

 −1.92 2.25 3.60 2.26 2.71 96.4 86.1 
      Separate 62.0(1.67) 0.08 1.00 1.57 5.10 6.11 96.4 83.8 
      Combined 61.8(1.67) −0.05 1.00 1.60 5.11 6.12 96.4 97.8 
      Mistaken 63.0(1.67) 0.60 1.20 1.90 4.24 5.08 96.4 84 
  Low2 Twin None 

67.6 64.6 

 −1.97 2.50 3.72 1.97 2.48 91.7 99.9 
      Separate 67.7(2.7) −0.05 1.38 2.01 3.56 4.52 91.7 58.8 
      Combined 67.6(2.7) −0.1 1.39 2.03 3.55 4.52 91.7 97.8 
      Mistaken 68.8(2.7) 0.55 1.51 2.21 3.26 4.13 91.7 98.8 
  High Single None 

67.3 63.2 

 −2.83 3.33 4.94 2.28 2.9 96.1 99.9 
      Separate 66.8(1.04) −0.37 1.56 2.26 4.86 6.18 96.1 77.9 
      Combined 67.0(1.04) −0.32 1.55 2.31 4.89 6.22 96.1 99.8 
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      Mistaken 65.8(1.04) −0.96 1.81 2.70 4.19 5.33 96.1 97.8 
  High Twin None 

69.1 65.2 

 −2.64 2.91 4.18 2.02 2.32 97.8 99.7 
      Separate 68.6(2.78) −0.33 0.97 1.36 6.03 6.93 97.8 63.4 
      Combined 69.0(2.78) −0.13 0.94 1.38 6.28 7.22 97.8 85.7 
      Mistaken 67.9(2.78) −0.77 1.21 1.69 4.85 5.57 97.8 97.6 

Herbage availability (Low2 target range herbage: 900–1100 kg DM/ha, High: ≥ 1400 kg DM/ha). Pregnancy-rank (PR: 1=single-bearing, 2=twin-bearing). Interpretation of measures: The 
best model has the highest r2, RPD, and RPIQ, and the lowest RMSE. Ranges for values: r2 (0: indicates that the model explains none of the variability of the response data around its 
mean, 1.0 indicates that the model explains all the variability). RPD (< 1.4: weak, 1.4 < RPD < 2.0: reasonable, > 2.0: excellent). RPIQ (< 1.4: very poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ < 
2.0: good, 2.0 < RPIQ < 2.5: very good, > 2.5: excellent). 
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Figure 5.4 Change in root mean square error (RMSE) with associated standard deviation for the prediction of “without delay” live weight of P100 ewes 
over fasting time when specific correction equations (dashed line with square points: no correction equation applied, dash dotted line with cross points: 
availability level combination specific equations, solid line with circular points: combined equations and dotted line with triangular points: mistaken 
equations) for each target herbage level (Low2 and High) and pregnancy-rank (single and Twin) generated in stage one were applied on data collected 
in  the winter season of 2020 by Farm (Tuapaka, Riverside). Availability level (Low2 herbage target range: 900–1100 kg DM/ha, High: ≥1400). Herbage 
availability combination correction equation (Separate: herbage, stage of pregnancy and pregnancy-rank specific, combined: consolidated equations 
with similar effect, mistaken any of the availability level specific equations wrongly applied to a different treatment combination).  
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 P130 study 

The validated results showed that the ewe live weight correction equations for all 

feeding levels by feeding level, pregnancy-rank and model developed, predicted live weight with 

substantial accuracy (Table 5.8, Figure 5.5) as shown by their low RPE and high r2 and RPIQ values 

as compared with not using any correction method. The reduction in the proportion of the live 

weight prediction error for ewes offered the Low or High herbage level was greatest at Riverside 

farm regardless of pregnancy-rank (p < 0.05). Although the proportion of the live weight 

prediction was comparable (p > 0.05) among ewes offered the Low herbage level, Tuapaka had 

greater error for ewes offered the High herbage level than Keeble farm (p < 0.05). 

 At Keeble farm, compared with using the delayed live weights in single-bearing ewes 

offered the Low herbage level, the herbage-specific equations to predict “without delay” live 

weight reduced error by 43.3% (0.68 kg), the combined equation by 42.0% (0.66 kg) while using 

mistaken equation reduced error by 27.4% (0.43 kg). Within the twin-bearing, error was reduced 

by 36.7% (0.61 kg), 38.6% (0.64 kg), 26.5% (0.44 kg) for the specific equation, combined and 

mistaken equations, respectively. The estimation error was reduced more significantly among 

those ewes offered the High herbage level (p < 0.01).  Among single-bearing ewes offered the 

High herbage level, the specific equations to predict “without delay” live weight reduced error 

by 60.3% (1.26 kg), the combined equation by 59.8% (1.25 kg) while using mistaken equation 

reduced error by 62.7 % (1.31 kg). Within the twin-bearing, error was reduced by 50.2% (1.14 

kg), 50.7% (1.15 kg), 52.4% (1.19 kg) for the specific equation, combined and mistaken 

equations, respectively. 

At Tuapaka farm, single-bearing ewes offered the Low herbage level, the specific 

equations to predict “without delay” live weight reduced error by 56.0% (1.17 kg), the combined 

equation by 56.0% (1.17 kg) while using mistaken equation reduced error by 53.6% (1.12 kg) 

compared with using the delayed live weights. Within the twin-bearing, error was reduced by 

58.5% (1.24 kg), 58.5% (1.24 kg), 57.5% (1.22 kg) for the specific, combined and mistaken 

equations, respectively. The magnitude of the decrease in the live weight prediction error was 

comparable for ewes offered both the Low2 and High herbage levels (p > 0.05).  In single-bearing 

ewes offered the High herbage level, the specific equations to predict “without delay” live 

weight reduced error by 61.6% (1.72 kg), the combined equation by 61.6% (1.72 kg) while using 

mistaken equation reduced error by 54.8 % (1.53 kg). Within the twin-bearing, error was 

reduced by 60.9 % (1.54 kg), 60.5% (1.53 kg), 58.9% (1.49 kg) for the specific, combined and 

mistaken equations, respectively. 
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Among single-bearing ewes offered the Low herbage level at Riverside farm, the specific 

equations to predict “without delay” live weight reduced error by 65.8% (1.25 kg), the combined 

equation by 65.8% (1.25 kg) while using mistaken equation reduced error by 61.1% (1.16 kg) 

compared with using the delayed live weights. Within the twin-bearing, error was reduced by 

68.2% (1.22 kg), 68.7% (1.23 kg), 60.3% (1.08 kg) for the specific, combined and mistaken 

equations, respectively. The accuracy in predicting the “without delay” live weights were 

comparable for ewes offered both herbage levels (p < 0.01).  In single-bearing ewes offered the 

High herbage level, the specific equations to predict “without delay” live weight reduced error 

by 69.0% (1.45 kg), the combined equation by 68.6% (1.44 kg) while using mistaken equation 

reduced error by 69.0 % (1.33 kg). Within the twin-bearing, error was reduced by 62.7% (1.21 

kg), 64.2% (1.24 kg), 68.9% (1.33 kg) for the specific, combined and mistaken equations, 

respectively. 
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Table 5.8 Measures of goodness of fit and accuracy (Bias, RMSE, RPE, RPD, RPIQ, r2, CCC) of live weight (“without delay”) prediction models (None: no model 
applied, separate: a separate/specific model applied, combined: pooled model where results were not significantly different and mistaken: model not developed 
for that availability level was applied)  of ewes offered the Low2, and High herbage levels by pregnancy-rank (PR) at 130 days of pregnancy and during six hours 
of fasting tested on independent datasets (validation dataset) from Keeble farm, Tuapaka farm and Riverside farm collected in 2020. Sample size (n) and weight 
ranges (kg).  

    
Herbage 
availability 

  
Pregnancy-
rank 

  Live weight (kg)               

Farm Model  
Actual 
Initial  Actual Final 

Predicted 
Final Bias RMSE RPE % RPD RPIQ r2 % CCC % 

Keeble Low2 Single None 

69.8(0.93) 68(0.91) 

 −1.29 1.57 2.24 4.18 6.07 98.6 95.8 

   Separate 70.5(0.91) 0.36 0.89 1.27 7.37 10.69 95 96.9 

   Combined 70.5(0.91) 0.41 0.91 1.31 7.17 10.4 98.6 98.6 

   Mistaken 71.1(0.91) 0.74 1.14 1.64 5.74 8.33 98.6 97.3 

  Twin None 

75.8(1.11) 74.1(1.1) 

 −1.34 1.66 2.19 4.74 8.06 98.6 97 

   Separate 76.7(1.1) 0.42 1.05 1.38 7.51 12.76 82.6 90.3 

   Combined 76.6(1.1) 0.36 1.02 1.35 7.7 13.08 98.6 98.8 

   Mistaken 77.2(1.1) 0.69 1.22 1.61 6.45 10.97 98.6 97.9 
Keeble High Single None 

72.2(1.36) 68.8(1.25) 

 −1.88 2.09 2.9 3.24 4.65 98.8 87.8 

   Separate 72(1.25) 0.25 0.83 1.15 8.14 11.73 98.8 99 

   Combined 72(1.25) 0.26 0.84 1.16 8.11 11.66 98.8 99 

   Mistaken 71.4(1.25) −0.09 0.78 1.08 8.72 12.55 98.8 98.4 

  Twin None 

77.7(1.02) 75.4(1.02) 

 −1.96 2.27 2.92 3.15 4.82 97.7 93.8 

   Separate 77(1.86) 0.26 1.13 1.46 6.3 9.66 83.9 76.7 

   Combined 78.5(1.01) 0.21 1.12 1.44 6.38 9.79 97.8 98.4 

   Mistaken 77.9(1.01) −0.15 1.08 1.39 6.6 10.13 97.8 98.8 
Tuapaka Low2 Single None 

70.0(1.02) 67.2(1.00) 

 −1.77 2.09 2.98 3.48 2.85 98.4 92.3 

   Separate 69.7(1.00) −0.05 0.92 1.31 7.89 6.47 98.4 99.1 

   Combined 69.8(1.00) 0.03 0.92 1 1.31 7.92 98.4 98.4 

   Mistaken 70.3(1.03) 0.35 0.97 1.13 1.39 7.44 98.4 98.4 

  Twin None 

75.5(0.83) 72.7(0.81) 

 −2.14 2.12 2.81 2.77 3.23 97.8 88.4 

   Separate 75.3(0.81) −0.32 0.88 1.16 6.71 7.82 79.7 89.2 

   Combined 75.2(0.82) −0.38 0.88 0.9 1.17 6.65 79.7 79.7 

   Mistaken 75.9(0.82) −0.03 0.9 0.94 1.2 6.51 79.6 79.6 
Tuapaka High Single None 

73.2(0.96) 69.5(0.94) 
 −2.53 2.79 3.82 2.39 3.13 97.9 85.6 

   Separate 72.7(0.93) −0.43 1.07 1.46 6.25 8.17 97.8 98.5 

   Combined 72.7(0.94) −0.42 1.07 1.06 1.46 6.27 97.8 97.8 
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   Mistaken 72.1(0.94) −0.77 1.26 1.31 1.72 5.3 97.8 97.8 

  Twin None 

76.7(0.87) 73.3(0.82) 

 −2.58 2.53 3.3 2.37 2.63 97.4 84.4 

   Separate 76.5(0.83) −0.44 0.99 1.29 6.05 6.71 78.7 88.6 

   Combined 76.4(0.83) −0.49 1 0.94 1.31 5.99 78.9 78.9 

   Mistaken 75.9(0.84) −0.83 1.04 1.09 1.36 5.76 78.7 78.7 
Riverside Low2 Single None 

69.1(0.89) 66.7(0.84) 

 −1.69 1.9 2.47 2.75 3.37 99.1 99.1 

   Separate 69.1(0.84) −0.06 0.65 0.69 0.94 9.86 99.2 99.2 

   Combined 69.2(0.84) −0.01 0.65 0.68 0.94 9.86 99.2 99.2 

   Mistaken 69.7(0.84) 0.32 0.74 0.8 1.07 8.66 99.2 99.2 

  Twin None 

74.7(0.87) 72.4(0.85) 

 −1.61 1.79 2.16 2.4 3.31 99.2 99.2 

   Separate 75.0(0.85) 0.13 0.57 0.6 0.76 10.4 99.2 99.2 

   Combined 74.9(0.85) 0.08 0.56 0.59 0.75 10.59 99.2 99.2 

   Mistaken 75.5(0.85) 0.41 0.71 0.76 0.95 8.35 99.2 99.2 

 High Single None 

73.2(0.88) 70.3(0.87) 

 −1.85 2.1 2.54 2.87 3.01 99 98.9. 

   Separate 73.3(0.87) 0.21 0.65 0.7 0.89 9.72 99 98.9 

   Combined 73.4(0.87) 0.22 0.66 0.71 0.9 9.58 99 98.9 

   Mistaken 72.8(0.87) −0.12 0.65 0.67 0.89 9.72 99 98.9 

  Twin None 

78.1(1.14) 75.4(1.12) 

 −1.69 1.93 2.18 2.47 4.28 99.5 99.5 

   Separate 78.5(1.13) 0.42 0.72 0.78 0.92 11.49 99.5 99.5 

   Combined 78.4(1.13) 0.37 0.69 0.75 0.88 11.99 99.5 99.5 

      Mistaken 77.9(1.13) 0.03 0.6 0.61 0.77 13.78 99.5 99.5 
Availability level (Low2 target range herbage availability: 900–1100 kg DM/ha, High: ≥1400 kg DM/ha). Pregnancy-rank (PR: 1=single-bearing, 2=twin-bearing). Interpretation of measures: The best 
model has the highest r2, RPD, and RPIQ, and the lowest RMSE. Ranges for values: r2 (0: indicates that the model explains none of the variability of the response data around its mean, 1.0 indicates 
that the model explains all the variability). RPD (< 1.4: weak, 1.4 < RPD < 2.0: reasonable, > 2.0: excellent). RPIQ (< 1.4: very poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ < 2.0: good, 2.0 < RPIQ < 2.5: very 
good, > 2.5: excellent).  
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Figure 5.5 Change in root mean square error (RMSE) with associated standard deviation for the prediction of “without delay” live weight of P130 ewes over 
fasting time when specific correction equations (dashed line with square points: no correction equation applied, dash dotted line with cross points: treatment 
combination specific equations, solid line with circular points: combined equations and dotted line with triangular points: mistaken equations) for each target 
herbage (Low and High) and pregnancy-rank (single and Twin) generated in stage one were applied on data collected in  the winter season of 2020 by farm 
(Keeble, Tuapaka, Riverside). Availability level (Low2 herbage target range: 900–1100 kg DM/ha, High: ≥1400). Correction equations: Treatment combination 
specific: herbage, stage of pregnancy and pregnancy-rank specific, combined: consolidated equations with similar effect, mistaken any of the availability level 
specific equations wrongly applied to a different treatment combination). 
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5.4 Discussion 

The aim of the present study was to determine the effect of herbage availability, 

physiological status of a ewe on the rate of liveweight loss in ewes during fasting and determine 

if “without delay” live weight of ewes can be predicted with substantial accuracy (reduced error 

of prediction) from delayed weight. 

5.4.1 Calibration stage 

The findings indicated that overall, the ewes lost live weight (non-pregnant: 2.4−3.6 kg 

(3.8−5.3% of initial ewe live weight); P100: 3.1.0−5.0.0 (4.9−6.9% of initial ewe live weight); 

P130: 2.8−3.5 kg (3.8−4.7% of initial ewe live weight) between each weighing throughout the 

fasting period. The magnitude of this weight change is likely to influence the reliability of live 

weight measures which may have implications for management decisions on-farm and for 

research unless it can be corrected for. The current study indicates that the rate of liveweight 

loss was affected by both feeding herbage availability and physiological state suggesting that 

different equations may be required to correct for liveweight loss across herbage availability 

levels and physiological state during a fasting event. Similarly, in ewe lambs, the rate of 

liveweight loss was found to be influenced by feeding level (Chapter 4).  

The variation in ewe liveweight loss by herbage availability was likely due to differences 

in gut-fill volume resulting from differences in feed composition notably dry matter (DM%) 

content of the herbage. The amount of DM% contained in the herbage was consistently lowest 

(highest moisture content) in the High herbage level and highest in the Low herbage level. It 

appears that the ewes were consuming more water from the High herbage levels than the Low 

herbage. The effect of DM% was greater among the pregnant ewes (study conducted during 

winter) than non-pregnant ewe (summer). Season affects the chemical composition of herbage 

which explains the higher herbage dry matter DM% and thus, relatively lower liveweight loss 

rate in summer than winter. The current studies were carried out in different seasons of the 

year and thus, different ambient temperature. However, since different physiological states 

were studied in different seasons, it was hard to separate the confounding effect of both season 

and physiological state. Exposure to colder temperatures has been reported to increase the 

reticulo-rumen motility, the passage rate of gut particles and to reduce the gut-fill retention 

time (Kennedy, 1985; Bernabucci et al., 1999). The ambient temperature in summer when the 

non-pregnant ewe trial was conducted, was higher than that for winter when the pregnant ewe 

trial was conducted which might explain the higher weight loss in the later. 

Though not directly comparable, the high dry matter % (47.4%) offered to non-pregnant 

ewes and the low dry matter  (15.7–19.6%) at 100 days in pregnancy and (15.9–18.8%) at 130 
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days in pregnancy in both High and Low herbage levels, respectively, meant they were likely to 

have consumed differing amounts of water in their herbage intake. Ewes need to consume 

approximately 3.0% of their live weight (Lloyd et al., 1978; McDonald, 2002). This suggests that 

in the current study a 66.4 kg ewe offered the any of the herbage levels, would have consumed 

an average of approximately 1.99 (0.03 x 66.4) kg DM. If non-pregnant and offered Low1 

herbage level (47.4% DM), it would have consumed 2.20 (1.99 x 1.10) litres of water. Similarly, 

the same non-pregnant ewe offered the High herbage level (34.4% DM) would have consumed 

3.8 (1.99 x1.91) litres of water.  At P100, offered the Low2 herbage level (19.6% DM), the same 

ewe would have consumed 8.2 (1.99 x 4.1) litres of water. Similarly, offered the High herbage 

level (15.7% DM), the same ewe, would have consumed 10.7 (1.99 x 5.4) litres of water. This 

extra water in herbage would be excreted faster through urine than herbage via faeces. The 

findings, therefore, suggest that the greater the DM% content of herbage the lower the rate of 

ewe liveweight loss and vice versa. Further, the greater proportions of CP and ME, but with 

correspondingly lower fibre (DM, NDF and ADF) may have been responsible for the lower rate 

of ewe liveweight loss in summer compared with winter. Dry matter and fibre have been 

reported to increase with herbage density (Toupet et al., 2020). Higher levels of fibre increase 

water holding capacity of the gut and thus the rumen clearance. The proportion of structural 

carbohydrates responsible (fibre) increases and that of fermentable carbohydrates and pectins 

decreases in drier seasons while in wet seasons the reverse is true (Crampton and Jackson, 1944; 

Litherland et al., 2002; Warly et al., 2004; Särkijärvi et al., 2012; Mir and Ahmed, 2017; 

Ekanayake et al., 2019). Therefore, it is not surprising that herbage in the non-pregnant ewe 

study (summer) had greater DM% and fibre, and thus, the lower rate of ewe liveweight loss than 

pregnant ewe study (winter). Greater structural carbohydrate results in a decrease in the 

fractional rate of fluid passing through the rumen thereby increasing the water holding capacity 

of the gut.  

The results indicated that the rate of liveweight loss was influenced by the physiological 

state (pregnancy status and stage of the pregnancy) but, not pregnancy-rank. The results 

support the liveweight losses (3.8 to 5.0% and 4.0 to 7.2%) reported by Hughes (1976) and 

Burnham et al. (2009) in two-tooth and  mature pregnant ewes respectively. The results from 

our study further indicated that ewe liveweight loss at day 100 was greater that at day 130. This 

finding is corroborated by Burnham et al. (2009) who reported greater ewe liveweight loss at 

day 70 of pregnancy than at day 130 (9.8 vs. 7.5%).  The greater liveweight loss at day 100 may 

be due to a relatively smaller uterus volume compared with day 130, resulting in less constraint 

on the rumen volume. Thus, the clearance of a larger rumen volume at day 100 having a greater 



Effect of herbage availability and physiology on ewe liveweight loss rate 

Page | 120  

effect on overall liveweight loss. A negative relationship has been reported between rumen 

volume and uterus volume in pregnant ewes between day 72 and day 144 of gestation (Forbes, 

1969). The authors reported a rumen volume decrease of 3.6 litres and uterus volume increase 

of 2.8 litres at days 72 and 144 respectively. The results, therefore, suggest that the rate of 

liveweight loss appears to decrease with advancing pregnancy. The finding that pregnancy-rank 

did not affect the rate of ewe liveweight loss, contrasts Burnham et al. (2009) who reported a 

greater proportional liveweight loss in single than twin-bearing ewes at day 130 of pregnancy. 

This discrepancy warrants further investigations. It appears pregnancy stage is likely more 

relevant in ewe liveweight loss than having single or twin foetuses. This might be attributed to 

greater energy needs that come with changes in pregnancy stage (days in pregnancy) compared 

with number of foetuses carried especially in early stages of pregnancy. Further, the observed 

differences in liveweight loss due to stages of pregnancy were not unexpected. The gestation 

period of a sheep is 147 days. The last trimester of gestation is the period of rapid conceptus 

growth (which includes foetus(es), fluid and placenta). Therefore, rapid changes in total weights 

are observed especially when one considers in these breed types the conceptus mass at term 

can be 16 to 18 kg in total weight(Kenyon et al., 2007a). Equations such as those by Gomptez 

(Freer et al., 2007) show just how exponential the foetal weight gain in this period is. Feeding 

guidelines clearly state that this is the period of rapid increase in feed demand to meet the 

nutritional increases required. Thus it is important for farmers to be able to determine if feeding 

levels are meeting the expected feeding requirements, allowing total weight of the ewe to 

increase with expected gains of the conceptus mass (i.e. so that she does not have to draw on 

her own body reserves significantly to meet this increased demand). 

 The current study utilized mixed-aged ewes of 3 – 5 years. A ewe reaches maturity at 3 

years after which age effect becomes minimal (Cake et al., 2006; Semakula et al., 2020a). 

Therefore, differences in age in the current study ewes were, not expected to affect the 

liveweight loss rate. There was in-flock and between-flock liveweight loss variation in the ewes 

used. The in-flock variations were comparable across farms. The in-flock variations were 

accounted for as random variability while the between-flock variations were captured under 

farm effect in the linear mixed effects model. Further, some individual animals remained highly 

mobile during weighing. TruTest weighing scales have an algorithm that can quickly stabilize 

weight measurements even in highly mobile animals. Therefore, it is unlikely that the scale 

accuracy was affected, hence impacting the findings. The findings indicated farms differences 

which could have affected the findings as stated in the discussion section.  
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5.4.2 Validation stage 

The significant polynomial regression between liveweight loss and time off feed and the 

subsequent linear association between delayed and “Without delay live weight” supports the 

concept of the relationship between weight loss and “Without delay” live weight. This is 

premised on the hypothesis that the amount of weight lost per unit time varies depending on 

herbage availability. It was observed that the weight prediction equations became more 

curvilinear than linear when herbage DM% decreased or as herbage availability was increased. 

Similar observations were made in a study with ewe lambs (Chapter 4). 

A comparison of liveweight loss trends using calibration and validation datasets 

demonstrated significant differences in overall liveweight loss between farms. The results also 

demonstrated significant liveweight loss rates between herbage levels and farms. Further, the 

results indicated high CV % associated with this liveweight loss, which was highest at Keeble 

farm and lowest at Riverside farm. These finding point to potential differences that may have 

existed between sites. Notably, the herbage target ranges varied in herbage levels and dry 

matter content which might explain the differential weight losses on different farms. 

Additionally, at both Keeble farms and Tuapaka farm, live weights were recorded manually by 

the operator whereas at Riverside farm, weights were automatically recorded. Comparison 

weighing was done using two 20 kg loads at the start of each weighing event and therefore, 

differences cannot be due to starting calibration error. However, an automated weighing system 

regularly readjusts the scale to zero, thereby reducing the error introduced due to shifts in the 

position of the crate, this does not occur in manual systems.  

Preferably, weighing without any delay (immediately off pasture) should provide ewe 

live weight measurements with least error. However, if this is not achievable, the validating 

process has demonstrated that correction equations can be used to supply corrected live 

weights (cW0) that are more accurate estimates of the “without delay” live weight(aW0) than a 

delayed live weight (dWt). This highlights a major step towards achieving improved (precise) live 

weight measurement in sheep production. 

The accuracy of the correction equations was significantly impacted by herbage 

availability, physiological state of a ewe, stage of the pregnancy-rank, the period of delay in 

recording the weight and farm. This supports our previous findings in Chapter 4, in which we 

found significant effects of herbage availability and season on the rate of liveweight loss of ewe 

lambs. Further, the results are in partial agreement with Wishart et al. (2017) who reported a 

significant impact of grazing location on precision of mature ewe live weight correction equation 

but, not time of delay. As expected, the authors showed that the precision of the correction 
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equations was affected by the factors associated with fluctuations in gut-fill (Coates and 

Penning, 2000b; Wishart et al., 2017).  

The correction equations had comparable stability/robustness overtime when 

predicting “without delay” live weight from the delayed live weights. The accuracy of ewe live 

weight correcting equations was greater for High herbage level than Low herbage level. This 

contrast with our previous findings (Chapter 4) where we reported more equation stability when 

predicting “without delay” live weight in ewe lambs offered the Low diet than the Medium or 

High herbage level. The lower quantity (kg DM/ha) of grazing herbage for the Low herbage level 

could have restricted the gut-fill thereby eliciting a response to reduce ruminal emptying. In 

addition, ewes offered the High herbage level had access to more variable herbage ranges 

(1500−2100 kg DM/ha) than those offered the Low herbage level (700–900 kg DM/ha for non-

pregnant and 1000−1200 kg DM/ha for pregnant ewes) which might explain their associated 

greater error rates. However, it has previously been reported that intakes do not increase above 

the herbage level of ≈ 1400 kg DM/ha (Morris and Kenyon, 2004) and thus, this potential 

explanation does not hold. 

In the validation study, we switched the correction equations applying them to 

mismatching ewe live weights and/or applied them on consolidated datasets regardless of study 

farm. Ideally, the greatest accuracy of “without delay” live weight prediction would be expected 

when herbage specific/separate equations were applied to delayed data. It is not clear why in 

the non-pregnant ewe study the mistaken equations gave greater accuracy than using a herbage 

availability level specific equation in ewes offered the Low herbage level or comparable 

accuracies for the Medium herbage level. Further, the results suggest that applying an equation 

from a different herbage level, stage of pregnancy or pregnancy-rank to predict the “without 

delay” live weight from delayed live weight would be a better option than using the delayed 

weights themselves. Further, applying the correction equations on consolidated rather than 

farm-specific datasets yielded mixed results, with greater, comparable or lesser live weight 

accuracies. The validations were conducted using a range of herbage availability levels and live 

weights which should cover most situations in an extensive sheep rearing system grazing a 

ryegrass-based diet. The use of simple and multiple linear regression equations based on time 

stamps to predict liveweight loss and to predict “without delay” live weight in ewe lambs has 

been previously reported in Chapter 4. In Chapter 4, the “without delay” live weight was 

predicted based herbage availability, season, and time off herbage with and supplied data on 

the levels of accuracy the equations had compared with not using the equation. The current 

study supports the hypothesis in Chapter 4 and by Wishart et al. (2017) that quality and quantity 
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of herbage, physiological state of a ewe as well as environmental factors such farm and grazing 

location (Hughes, 1976; Moyo and Nsahlai, 2018) impact liveweight variation. These factors may 

be interact causing the differences between ewes from different farming/grazing locations, 

physiological state and feeding levels.  

The results of the present study demonstrated that it is possible to obtain substantially 

accurate estimates of “without delay” live weight of ewes in different physiological states 

offered varying levels of ryegrass-based pasture prior to fasting. It is important to correct for 

liveweight losses associated with handling and delayed weighing of sheep. The developed 

equations utilized recorded time by the weigh systems to adjust for weight. To use these 

equations if incorporated into modern weighing systems, would require manual entry of the 

time when ewes are removed off pasture. Providing a supplement or water during the period 

off pasture would likely alter the reported ewe liveweight loss patterns, probably, maintaining 

the “true” live weights. This might be recommended for smaller flock sizes. However, in 

extensive sheep production systems with an average of 2500 ewes, supplementing ewes at the 

weighing facility each time of weighing would have serious practical and economic implications. 

5.5 Conclusion 

The present study has shown that ewes lose a significant amount of live weight when 

feed and drinking water are restricted. The study demonstrated that the rate of ewe liveweight 

loss follows a predictable trajectory over a period and is influenced by herbage availability 

offered, pregnancy-rank and stage of pregnancy. Further, the study demonstrated in support of 

Chapter 4 with ewe lambs that these liveweight losses can be substantially accounted for using 

sets of correcting equations. These equations could be incorporated into weighing systems to 

quickly supply farmers accurate “without delay” ewe live weight measurements. Future studies 

should explore how to control the unexplained source of variation and to see if differing 

herbages require different equations. Further, the extent to which the live weight correcting 

equations can be generalized to ewes from other breeds is warranted.
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Foreword to Chapters 6 to 9  

Not only can live weight be affected by type of feed and feeding level (Chapters 3 to 5). 

It can still be affected by other confounding factors such as body size/stature fleece weight and 

conceptus weight. Body condition score is an alternative indicator of animal performance, which 

circumvents these factors. Therefore, Chapters 6 to 9 present work on the relationship between 

a ewe’s body condition score (BCS) and live weight (LW) and other physical and physiological 

traits, and methodologies to predict current BCS using a ewe’s live weight records. Specifically, 

the methodology of Chapter 6 determines the nature of association between LW and BCS at a 

given time point and examines the factors affecting this relationship between LW and BCS. In 

Chapter 7, linear regression models are deployed to predict BCS from a ewe’s LW, LW-change 

and previous BCS record. While in Chapter 8, a set of machine learning algorithms are applied 

on live weight records to predict its current BCS in 43−54-month-old ewes. Chapter 9 examines 

if additional data (i.e. ewe wither height measurement, pregnancy status and fleece weight) in 

addition to LW, LW-change and previous BCS record would lead to improved BCS prediction.  
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 The effect of age, stage of the annual production cycle 

and pregnancy-rank on the relationship between live weight 

and body condition score in extensively managed Romney 

ewes 
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Abstract  

This study determined the nature of the relationship between live weight and BCS and 

assessed the influence of stage of the annual production cycle and pregnancy-rank on the 

relationship between live weight and body condition score (BCS) in Romney ewes. Data were 

collected from the same ewes at different ages (8−18, 19−30, 31−42, 43−54, 55−66 and ≥67 

months), stages of the annual production cycle (pre-breeding, at pregnancy diagnosis, pre-

lambing and weaning) and pregnancy-rank (non-pregnant, single or twin). Linear regression was 

determined as being sufficient to accurately describe the relationship between live weight and 

BCS. Across all data, a one-unit change in BCS was associated with 6.2 ± 0.05 kg live weight, 

however, this differed by stage of the cycle, pregnancy-rank and ewe age (p < 0.05). The average 

live weight per unit change in body condition score increased with age of the ewe, was greatest 

at weaning and lowest pre-lambing. Among pregnancy-ranks, the average live weight per unit 

change was also greater during pregnancy diagnosis than pre-lambing and was greatest among 

single and lowest in non-pregnant ewes. The results support the hypothesis that the relationship 

between live weight and BCS is affected by the interaction between stage of the annual 

production cycle, pregnancy-rank and ewe age. 
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6.1 Introduction 

Body condition score (BCS) is a subjective measure which provides an estimate of an 

animal’s soft tissue reserves, predominantly fat, and is used widely by farmers and researchers 

to determine the physiological state of an animal (Morris et al., 2002; Vieira et al., 2015).  Body 

condition score was first developed for sheep (Ovis aries) by Jefferies (1961) and was based on 

a 1.0−5.0 scale, using half units. Body condition score is assessed by the palpation of the lumbar 

vertebrae (spinous and transverse process) immediately caudal to the last rib and above the 

kidneys (Jefferies, 1961; Kenyon et al., 2014). Body condition score can circumvent the 

shortcomings of live weight (LW), which include the effect of gut-fill, frame size, fleece weight 

and physiological state (Kenyon et al., 2014; Brown et al., 2015; Morel et al., 2016). Body 

condition score can be easily learned and is cost-effective and requires no specialized equipment 

(Kenyon et al., 2014). In addition, it has been suggested that BCS could be used to provide proper 

feeding management of a grazing flock throughout the year, detect subtle changes in condition 

not noticeable by visual inspection, allow farmers to be more aware of major losses in condition 

and be used follow changes in nutrition(Jefferies, 1961). Body condition score is thus considered 

a useful way for farmers to monitor the condition of their flock and estimate the required plane 

of nutritional allowance (Kenyon et al., 2014).  

Despite the advantages of using BCS over live weight to better manage flocks, it is 

uncommon for producers/farmers to regularly and objectively do so. A survey of sheep 

producers  in Australia indicated that although 96% of respondents said they monitored the 

body condition of their sheep, only 7% conducted hands-on BCS assessment to estimate the 

energy requirements of their sheep (Jones et al., 2011). In New Zealand, Corner-Thomas et al. 

(2016) reported that the proportion of farmers using BCS as a management tool at 

40%.Combined these findings indicate that there is a sizable number of farmers not using BCS, 

especially in countries with large flocks. Besier and Hopkins (1989) reported that, farmers rely 

on a visual inspection method, that has been demonstrated to be very inaccurate or prefer to 

use live weight measures only. The reasons for low BCS uptake among farmers include; i) body 

condition score being subjective, depending on the judgement of the assessor; 2) it is labour 

intensive and 3) requires training of the assessors, who should regularly undergo recalibration 

(Kenyon et al., 2014).  Strategies to increase the adoption and use of BCS among farmers and 

the reliability of measures included; promotional farmers’ training workshops and regular 

assessor recalibration (Kenyon et al., 2014). However, given the apparent low rate of farmer use, 

these strategies appear not to have yielded the desired outcome presumably because they do 

not directly address how to reduce the labour burden associated with hands-on BCS. Therefore, 
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it is argued that, consistent and accurate alternative methods to estimate body condition score 

of sheep that require less hands-on measurement would likely be advantageous and improve 

uptake and use. Ideally, this prediction would be based on a management tool already utilized 

on farm, so that it reduces workload, it would be quick and not subjective in nature.   

Body condition score is correlated with live weight and have been reported to have either 

a positive linear relationship (Kenyon et al., 2014; Morel et al., 2016) or a curvilinear relationship 

in ewes (Teixeira et al., 1989). Factors such as breed, frame size, composition and patterns of fat 

distribution in the body (Kenyon et al., 2014; McHugh et al., 2019) have been reported to affect 

the average change in live weight associated with a one-unit change in BCS. The magnitude of 

the relationship between BCS and liveweight changes and with physiological status, age and 

breed of sheep (Sezenler et al., 2011; McHugh et al., 2019). Data on changes in either live weight 

or BCS reflects changes in an animal’s body condition and can be used to inform decisions on 

appropriate feed allocation at a given physiological status and breed (Keady et al., 2005). 

Therefore, assessment of the relationship between live weight and BCS can be a valuable tool 

to maximize animal productivity and feed utilization (Roche et al., 2006; Morel et al., 2016). The 

relationship between live weight and BCS has generally been described by simple linear 

regression (based on R2) likely due to the simplest linear relationship appearing to be as strong 

as more complex models. However, using the coefficient of determination of a regression alone, 

as the criterion for goodness-of-fit, is not suitable to validate models because it does not provide 

information about the degree to which the predicted values diverge from true values (Goopy et 

al., 2018; Wamatu et al., 2019). Moreover, models should be robust in predicting other datasets. 

The majority of the previous studies have been based on fixed BCS ranges (mostly from 2.5 to 

4.0) and it is unclear whether such a strong relationship would be observed in a wider range of 

BCS values (1 to 5). To date no known attempts have been made to establish the true nature of 

the relationship between LW and BCS using a whole range of BCS values. It was hypothesized 

that the relationship between LW and BCS would be adequately described by a linear regression.  

In cattle, the average liveweight change (gained or lost weight) associated with each BCS 

one-unit change is well associated with BCS (Berry et al., 2007; McHugh et al., 2019). Similar 

adjustment factors for sheep, however, have received less investigation. The current BCS 

adjustment factors in sheep have been generated from either relatively small-scale studies (n = 

28, Morel et al., 2016; n = 156, Sezenler et al. 2011) or single time point observations (point 

specific) based on within-flock studies (Sezenler et al., 2011; Kenyon et al., 2014; McHugh et al., 

2019). Ideally, the relationship between BCS and live weight should be investigated using the 

same individuals over time. To these authors knowledge no studies have conducted longitudinal 
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studies for this purpose. Both conventional and modern weighing systems combined with 

individual electronic identification can now allow lifetime data to be collected more easily and 

quickly on large sheep flocks. Using this technology combined with an individual BCS at a given 

point in their lifetime, therefore, can allow specific stage of life BCS live weight relationship to 

be developed. It was hypothesized that the relationship between live weight and BCS would be 

modified by stage of annual production cycle and pregnancy-rank over time. Therefore, this 

study had three objectives: i) to determine the nature of the relationship between live weight 

and BCS, using both coefficient of determination and prediction error; ii) to quantify the average 

liveweight change associated with each incremental change in BCS on a scale from 1.0 to 5.0, 

with 0.5-point intervals; and iii) to determine if the association differed by stage of the annual 

production cycle, pregnancy-rank, and over time in Romney ewes.  

6.2 Materials and Methods  

6.2.1 Farms and animals 

The current study utilized datasets from a database collected between 2011 and 2015. 

Data were collected as part of normal routine farm management from two commercial New 

Zealand sheep farms in which all ewes were bred as ewe-lambs at approximately eight months 

of age at breeding. Farm A was located in the Waikato region of New Zealand and consisted of 

Romney ewes. Two cohorts of ewes from Farm (A) were included in this study: 2010-born (n = 

3469) and 2011-born (n = 4572). Farm (B) was located in the Wairarapa region of New Zealand, 

with Romney ewes that were born in 2011 (n = 3760). The number of ewes monitored on each 

farm fluctuated by stage of the annual cycle. This was influenced by each farm owner’s decision 

to keep or dispose (cull) of ewes or failure to collect data during any period. Farm (A) did not 

collect live weight and BCS data during the pre-lambing period on two occasions. 

All ewes were weighed to the nearest 0.2 kg using static digital weighing scales (Tru-Test 

group, model XR5000) and were body condition scored (BCS) at the same time. Body condition 

score was assessed by palpating the soft tissue over the lumbar region on a 1.0−5.0 scale (1 = 

emaciated, 5 = obese) assessed to the nearest 0.5 unit (Jefferies, 1961; Kenyon et al., 2014).  BCS 

was assessed immediately prior to breeding (two to three weeks before start of mating), at 

pregnancy diagnosis (approximately 80 days after start of mating), pre-lambing (within three 

weeks before start of lambing) and at weaning (approximately 100 days after start of lambing). 

Body condition was measured over 6 years, beginning at approximately 8 months of age (age 

groups: 8−18, 19−30, 31−42, 43−54, 55−66, ≥67 months). Body condition score was determined 

by two experienced assessors (one for first 6 years (2011−2016) and one for the final year 
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(2016)). The timing of measurements and the number of animals measured are summarized in 

Tables 6.1 and 6.2. Additional information collected included farm, year of observation, 

pregnancy-rank and age. The pregnancy-rank of the ewes was determined using transabdominal 

ultrasound conducted by a commercial operator (non-pregnant (0), single foetus (1), twin (2)).  

Table 6.1 Number of ewes by age group (months), stage of the annual cycle (pre-breeding, 
pregnancy diagnosis, pre-lambing, weaning) and farm (A, B). 

Stage of the annual 
cycle Age group (months) Farm A Farm B Overall 

Pre-breeding 8−18 8046 3752 11798 
 19−30 5110 3626 8736 
 31−42 3884 3027 6911 
 43−54 3043 2294 5337 
 55−66 2504 1921 4425 
 ≥67 444 1044 1488 
Pregnancy diagnosis 8−18 7635 3760 11395 
 19−30 4805 3489 8294 
 31−42 3607 2961 6568 
 43−54 2882 2241 5123 
 55−66 2185 1829 4014 
 ≥67 477 919 1396 
Pre-lambing 8−18 6508 1624 8132 
 19−30 2382 3225 5607 
 31−42 NA 2840 2840 
 43−54 1461 1867 3328 
 55−66 1034 1759 2793 
 ≥67 NA 930 930 
Weaning 8−18 5039 3708 8747 
 19−30 4062 3177 7239 
 31−42 3100 2661 5761 
 43−54 2580 1986 4566 
 55−66 1658 1112 2770 
 ≥67 33 564 597 

NA: data not collected 
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Table 6.2 Number of ewes by pregnancy-rank (Non-pregnant, Single foetus, Twin), age group 
(months) and farm (A, B) during the different stages of the annual cycle (Pregnancy diagnosis, 
Pre-lambing).  

    Pregnancy diagnosis  Pre-lambing     

Pregnancy-rank Age group (months) Farm A Farm B  Farm A Farm B  Overall 

Non-pregnant 8−18 1051 482  NA NA  1533 
Non-pregnant 19−30 120 229  NA NA  349 
Non-pregnant 31−42 55 70  NA NA  125 
Non-pregnant 43−54 40 95  NA NA  135 
Non-pregnant 55−66 78 50  NA NA  128 
Non-pregnant ≥ 67 68   NA NA  68 
Single 8−18 3277 978  3229 957  8441 
Single 19−30 1287 1952  571 1890  5700 
Single 31−42 1038 1363  NA 1348  3749 
Single 43−54 650 854  267 798  2569 
Single 55−66 324 767  258 755  2104 
Single ≥ 67 83 204  NA 181  468 
Twin 8−18 3310 652  3249 637  7848 
Twin 19−30 3400 1315  1803 1262  7780 
Twin 31−42 2501 1535  NA 1498  5534 
Twin 43−54 2185 1299  1185 1065  5734 
Twin 55−66 1765 1019  768 981  4533 
Twin ≥ 67 284 722  NA 692  1698 

NA: data not collected 

6.2.2 Data Management 

Live weight and BCS data were first exported to Microsoft excel version 2010 for pre-

processing including cleaning, merging and validation. Data were then exported to the R 

statistical program version 3.3.4 (R Core Team, 2016) for further management. A total of 

128,753 records from 11,798 ewes were collected between 2011 and 2016 (Tables 6.1 and 6.2). 

Records were removed from the analysis dataset that had no identification (n = 15) or that had 

live weight for the calibration weights (test weights) recorded (n = 9), so were removed from the 

analysis. The independent variables included: age group, determined by number of months at 

the time of breeding time within a 12 month period (i.e. 8−18, 19−30, 31−42, 43−54, 55−66 and 

≥67 months); stage of annual production cycle (pre-breeding, at pregnancy diagnosis, pre-

lambing and weaning); and pregnancy-rank (non-pregnant: 0, single foetus: 1, twin: 2). In both 

farms, triplets (n = 67) were not considered due to fewer numbers and high variability in both 

live weight and BCS compared with their contemporaries. A variable labelled FarmYear was 

generated to account for the different birth years as well as farm of origin. When live weight 

was considered as the dependent variable, BCS was considered its covariate and vice versa. 

6.2.3 Statistical analyses 

All analyses were conducted in R program version 3.4.4 (R Core Team, 2016). Pearson’s 

correlation between BCS and live weight was estimated across all data and within each age 
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group and stage of the annual production cycle. Correlation coefficients were also estimated for 

each age group with adjustment for stage of the annual production cycle and pregnancy-rank 

(for measurements made at pregnancy diagnosis and pre-lambing). Any significant differences 

between correlation coefficients were determined based on Fisher’s r-to-z transformation.  

6.2.4 Model development and selection.  

To determine the true nature of the relationship between live weight and BCS, linear (LM), 

second order polynomial/quadratic (QUAD), Box-Cox and square root (SQRT) transformation 

regressions were compared. The best lambda (with greatest likelihood) for Box-Cox 

transformation was 0.67. Table 6.3 gives the formulae by which the models, their goodness of 

fit or coefficient of determination (r2: for simple and R2: for multiple regression) and error metric 

(Mean Absolute Error and Mean Absolute Percent Error) were defined (Moriasi et al., 2007; Li, 

2017; Botchkarev, 2019). For this comparison, the percent error and the goodness-of-fit were 

based on the testing dataset. The models were adjusted for the effects of stage of the annual 

production cycle, age group and FarmYear. The models were examined for normality of the 

residuals and heteroscedasticity and outliers were examined using residual plots.  In addition, 

Cooks distances were calculated for each model to assess the existence of outliers that may have 

influenced coefficients of the models. The leverage plots were used to detect data points with 

unusually high influence (Cook, 1977). Outliers highlighted on the diagnostic plots were 

investigated and corrected if identified as a simple typing error or removed. The resulting 

dataset was then reanalyzed to determine its influence. In total, six of the 128,753 live weight 

data points were removed.  
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Table 6.3 Formulae for live weight estimation models (Linear model (SLM), Quadratic 
transformation (QUAD), Box_Cox transformation (Box_Cox) and Square root transformation 
(SQRT)) using body condition score (BCS), adjusted R2, error metrics (Mean Absolute Error: MAE; 
Percent Error: PE) and coefficient of variation of the live weight (LW). 

Model / measure Formula 

Linear model (SLM) 
LW = α + BCS  

Quadratic transformation (QUAD) 
LW = α + b(BCS) + c(BCS)2  

Square root transformation (SQRT) 
LW0.50 = α + BCS  

Box_Cox transformation (Box_Cox) 
LW0.67 = α + BCS  

Coefficient of determination (R2) 
R2 = 1 −

MSRES

MSTot

 

Adjusted R2 (Adj.R2) 
Adj. R2 = 1 − [

(1−R2)+(n−1)

n−k−1
] 

Mean Absolute Error (MAE) 
MAE =

1

n
∑ (|yj − ŷj|)

n
j=1   

Mean Absolute Error Percent (PE) 
PE =

1

n
∑ (|

yj−ŷj

yj
|) n

j=1 ∗ 100  

Coefficient of variation (CV) 
CV = 100√

MSR

mean
  

α indicates the intercept. bc indicate the regression coefficients. yj indicates the actual expected output. ŷj indicates 
the model’s prediction. k indicates the number of independent predictors. n indicates the sample size/number of data 
points. MSR indicates variation due to the model. MSTot indicates total variation.  

6.2.5 Final model fitting (factors affecting the relationship between LW and BCS) 

The best linear model for final data fitting was selected by comparing two parameter 

estimation methods (a generalized least squares vs linear mixed-effects model). The linear 

mixed effects model (LMM) was selected for fitting the model, as it had the smallest likelihood 

value and Akaike’s Information Criterion (AIC) values (p < 0.001). To quantify the relationship 

between live weight and BCS and the factors associated with this relationship, the final analysis 

was based on the minimal LMM model (with minimum Akaike’s Information Criterion, AIC value 

retained during simplification) incorporating all significant effects using the nlme package 

(Pinheiro et al., 2018). Three separate live weight estimating models were constructed. The first 

model included body condition score (BCS) as a covariate, age group (A) and stage of the annual 

production cycle (T) as explanatory variables. To determine the impact of pregnancy-rank, two 

additional models (one for measurements at pregnancy diagnosis and another pre-lambing) 

were constructed, each of the models taking a similar form. In both models, BCS was treated as 

a covariate, age group and pregnancy-rank (P) as explanatory variables. To test whether BCS 

effects on live weight were modified by age group, stage of the annual production cycle and 
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pregnancy-rank, the models included up to three-way interactions (BCS x A x T or BCS x A x P). A 

similar approach was used when assessing the effect of all other factors on BCS. FarmYear and 

individual ewe electronic identification number (EID) were included as random variables. 

Variance functions to account for heteroscedasticity and an auto regressive temporal 

correlation structure to account for temporal dependency of nearby stage of the annual 

production cycle were also included. The differences among intercepts and slopes (beta 

coefficients) in the model were compared using Tukey’s pairwise contrasts on the final model 

using the multcomp, package (Hothorn et al., 2008). Statistical significance from the model using 

ANOVA type III are reported. To estimate the least squares means for BCS, the models above 

were refitted using BCS as the dependent variable and LW considered its covariate. 

All models were constructed, fitted and cross-validated using machine learning algorithms, 

implemented in four steps. The steps included i) data partitioning, ii) resampling, iii) model 

training and iv) validation. Data partitioning involved dividing the initial dataset (with 

stratification preserving the class proportions) into training and testing datasets in a ratio of 3:1, 

with replacement. Resampling involved using bootstrapping and aggregation procedures 

(Breiman, 1996; Tropsha et al., 2003) to select 10 subsamples from the training set and repeating 

the resampling five times. Model training involved fitting of the linear regression using the 

training dataset subsamples (10) from which, nine were used for computing the parameters (i.e. 

β) while the remaining one part was used for error estimation (ε). Finally, all parameters were 

to determine the final value (estimate). Model cross-validation involved using the trained model 

to predict BCS in the testing dataset. 

6.3 Results 

A total of 128,753 ewe records were included in the analysis (Tables 6.1, 6.2). The number 

of records (n) decreased with ewe age. The majority of ewes were diagnosed as pregnant 

(93.3%, n = 32,764) with more ewes carrying twin foetus (56.9%, n = 19,987) compared with 

single (36.9%, n = 12,777) (Table A 6.3). Body condition scores of 3.0 (41.6%, n = 56,381) and 2.5 

(39.4%, n = 53,470) formed the bulk of the records while 1.0 (0.0%, n = 19) and 5.0 (0.0%, n = 6) 

were the least frequent (Table 6.4). The overall mean live weight of ewes in this study was 54.2 

kg (SD = 9.3 kg) and BCS was 2.81 (SD = 0.42). There was relatively high variability in live weight 

for each BCS (mean CV = 15%, Table 6.4). 
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Table 6.4 Table 6.4 Number of records (n), mean and standard deviation (SD), coefficient of 
variation (CV %) for live weight across BCS. 

  Number of 
records (n) 

Live weight (kg)   

BCS (units) Mean SD CV % 

1.0 19 41.5 5.6 13.4 
1.5 350 45.6 8.1 17.7 
2.0 7735 49 8.1 16.6 
2.5 53470 51.6 8.6 16.7 
3.0 56381 55.8 8.8 15.7 
3.5 15051 59.4 9.7 16.4 
4.0 2350 62.2 10.7 17.2 
4.5 241 60.6 11.2 18.5 
5.0 6 67.8 3.6 5.3 

 

6.3.1 Nature of association between live weight and BCS  

The models were more stable at BCS from 2.5 to 3.5 (i.e. all model lines of best fit 

converged, Figure 6.1). All models had comparable statistical parameters (μ, SD) and not 

significantly different from the observed data (Appendix VII Figure 1a). Examination of the 

diagnostic plots for all four models that assessed the nature of the relationship between live 

weight and BCS (in the initial construction) revealed that at the tails of the datasets were 

“hanging” (not lying on the diagonal QQplot line, Appendix VII Figure 1b) an indication that all 

the models were sensitive to bias at the extremes of the dataset. In addition, all models had 

relatively similar goodness-of-fit (R2 = 0.69) and Cook’s distances suggesting relatively similar 

robustness of these models to outlier effects (Table 6.5).  

 

 
Figure 6.1 Ewe live weight (kg) as a function of BCS (1.0−5.0). Line of best fit is given for (linear 
model (SLM): black colour, Quadratic transformation (QUAD): grey, Box-Cox transformation 
(Box_Cox): red and square root transformation (SQRT): blue) 
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Table 6.5 Mean Absolute Error (MAE) , Percentiles of Percentage error, Adjusted R2 and 
percentiles of Cook’s distance of the models (Linear model (SLM), Quadratic transformation 
(QUAD), Box-Cox transformation (Box_Cox) and Square root transformation (SQRT)) for live 
weight predictions on testing dataset. 

Model SLM QUAD SQRT Box_Cox 

Adjusted R2 0.69 0.69 0.69 0.69 
MAE 4.12 4.11 0.28 0.74 
P-value *** *** *** *** 
Percentiles of PE 
75th  7.8% 7.7% 7.8% 7.8% 
90th  7.8% 7.8% 7.8% 7.8% 
95th  7.8% 7.8% 7.8% 7.9% 
Percentiles of Cook's distance 
75th 0.00001 0.00001 0.00001 0.00001 
90th 0.00003 0.00002 0.00003 0.00003 
95th 0.00005 0.00004 0.00004 0.00004 

*** indicate significance at p < 0.001 

 

6.3.2 Effect of age, stage of annual production cycle and pregnancy-rank on ewe LW and BCS 

Age group, stage of annual production cycle and pregnancy-rank all affected ewe LW (p < 

0.05).  As ewes increased in age their live weight increased (p < 0.05) across all stages of the 

annual production cycle, plateauing after 55−66 months (Appendix VII Figure 2a). Ewes were 

heaviest (p < 0.01) at pre-lambing in their last year of observation (≥67 months). Within age 

(except at 8−18 months), ewes were consistently heaviest (p < 0.05) at pre-lambing. Among 

pregnancy-ranks, live weight of ewes varied differently over time (p < 0.05) with no clear pattern 

observed (Appendix VII Figure 2b). There was, however, more variability in the live weights of 

non-pregnant ewes than those bearing singles or twins. At pregnancy diagnosis, live weight was 

lowest (p < 0.05) in non-pregnant ewes in the first four age groups (8−18, 19−30, 31−42 and 

43−54 months) compared with their contemporaries. Twin-bearing ewes consistently had 

greater (p < 0.05) live weight than single or non-pregnant ewes across age up to the 43−54 

months. Pre-lambing, live weight was greater in twin than single-bearing ewes (p < 0.01) up to 

the 55−66 months.  

Body condition score was influenced (p < 0.01) by age, stage of annual production cycle and 

pregnancy-rank (p > 0.05). Body condition score decreased as the ewe increased in age (p < 0.05) 

across all stages of the annual production cycle plateauing after 55−66 months (Appendix VII 

Figure 3a). However, when disaggregated by stage of the animal cycle and pregnancy-rank, BCS 

tended to decrease among the non-pregnant ewes at pregnancy diagnosis but with no clear 

pattern among other ranks (Appendix VII Figure 3b). With the exception of age groups 31−42 
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and 55−66 months, across age, BCS was lowest (p < 0.05) pre-lambing. Within the annual 

production cycle and over time, the BCS of ewes showed no clear pattern of decline. Among 

pregnancy-ranks, BCS at pregnancy diagnosis was greater (p < 0.05) in the first two years (8−18, 

19−30 months) after which, it decreased remaining comparable (p > 0.05) among pregnancy-

ranks. Pre-lambing, BCS was greater in single than twin-bearing ewes across age except for ≥67 

months.  

6.3.3 Effect of age, stage of annual production cycle and pregnancy-rank on the relationship 

between live weight and BCS 

Overall, the correlation between BCS and live weight was 0.47, indicating that 21% (R2 = 

0.21) of the variability in live weight was explained by differences in BCS. When adjusted for age, 

stage of annual production cycle and pregnancy-rank, the overall correlation decreased slightly 

to 0.44 (R2 = 0.18). The correlation between BCS and live weight was affected by both age of the 

ewe, stage of the annual production cycle and pregnancy-rank (p < 0.05). Overall, the correlation 

between live weight and BCS varied from 0.02 pre-lambing to 0.69 at pregnancy diagnosis 

(Tables 6.6, 7).  

The strength of the association between BCS and live weight differed significantly (p < 

0.05) across both age of ewe and stage of the annual production cycle. Within age group, the 

correlation between live weight and BCS was relatively similar except at ≥67 months. Within 

stage of the cycle, the correlation between live weight and BCS was strongest at weaning and 

weakest at pre-lambing. Within pregnancy-rank, the correlation between live weight and BCS 

varied from 0.02 (p > 0.05) pre-lambing to 0.69 (p < 0.01) at pregnancy diagnosis. There was no 

clear pattern in the strength of association among age groups and pregnancy-ranks (p > 0.05). 

Tables 6.6 and 6.7 summarize the regression equations of the relationship between live 

weight and BCS by age of ewe, stage of the cycle and pregnancy-rank. The regression intercepts, 

as well as the average change in live weight per one-unit change in BCS (incremental liveweight 

change), were affected by all three factors (p < 0.05). 

The incremental liveweight change increased (p < 0.001) as the ewes aged. The magnitude 

of the incremental liveweight change of ewes in the same age group (Table 6.6) was altered by 

the stage of the annual production cycle (p < 0.001). The increase in the average incremental 

liveweight change varied from 2.3 kg for younger ewes pre-lambing (8−18 month) to 9.5 kg for 

the older ewes at weaning (≥67 month). 

Within stage of the annual production cycle, the incremental liveweight change was lowest 

(p < 0.01) at 8−18 month but the maximum change varied by stage of the annual production 

cycle for example at ≥67 months for pre-breeding and at pregnancy diagnosis, 43−54 for pre-
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lambing and 55−66 for weaning. Weaning was associated with the greatest incremental 

liveweight change (5.6 to 9.5 kg) while pre-lambing was associated with the lowest (2.3 to 5.9 

kg) (p< 0.05).  

 
Table 6.6 Intercepts (α), coefficients (β), correlation coefficient (rxy) and adjusted R2 for the 
regression of the live weight with body condition score for each stage of the annual production 
cycle (pre-breeding, at pregnancy diagnosis, pre-lambing, weaning) and ewe age (8−18 months, 
19−30, 31−42, 43−54, 55−66 and ≥67).  

Stage of annual production cycle Age group α(SE) β(SE) rxy  Adj.R2 

Pre-breeding 8−18 33.2(0.25)  2.8(0.09) a 0.43bc  0.15 
 19−30 36.5(0.29)  6.0(0.10) d 0.49bc  0.24 
 31−42 36.9(0.36)  7.1(0.13) ef 0.50bc  0.26 
 43−54 39.5(0.4)  6.9(0.13) e 0.48bc  0.28 
 55−66 46.0(0.39)  5.8(0.14) d 0.48bc  0.23 
 ≥67 37.6(0.72)  8.4(0.23) g 0.58c 0.35 
At pregnancy diagnosis 8−18 34.9(0.25) 2.8(0.09) a 0.41bc  0.13 
 19−30 35.6(0.32)  5.0(0.12) c 0.34b 0.15 
 31−42 38.3(0.35)  5.9(0.12) d 0.49bc  0.26 
 43−54 38.4(0.41) 7.0(0.14) ef 0.45bc  0.21 
 55−66 40.8(0.49) 7.0(0.17) ef 0.45bc  0.23 
 ≥67 42.1(0.72) 7.2(0.22) ef 0.56c 0.31 
Pre-lambing 8−18 42.6(0.34) 2.3(0.12) a 0.06a 0.24 
 19−30 50.5(0.38) 2.4(0.14) a 0.14a) 0.06 
 31−42 48.9(0.54) 4.0(0.19) b 0.29a) 0.1 
 43−54 48.3(0.44) 5.9(0.16) d 0.13a 0.21 
 55−66 52.2(0.61) 5.3(0.21) cd 0.13a 0.1 
 ≥67 57.2(0.92) 4.8(0.35) bcd 0.32ab  0.07 
Weaning 8−18 30.9(0.25) 7.5(0.09) f 0.57c 0.45 
 19−30 38.3(0.27) 5.6(0.09) d 0.57c 0.28 
 31−42 35.9(0.34) 7.4(0.11) ef 0.58c 0.36 
 43−54 36.1(0.38) 8.3(0.14) g 0.62c 0.3 
 55−66 34.8(0.43) 9.5(0.16) h 0.62c 0.4 
  ≥67 39.8(0.86) 7.5(0.3) efg 0.64cd  0.41 

a-n, superscripts within column indicate significant difference at p < 0.05. SE denotes standard error 

Among pregnancy-ranks, the increase in incremental liveweight change was greater (p < 

0.01) at pregnancy diagnosis (4.3 to 13.6 kg) compared with pre-lambing and increased with age 

of ewe. Pre-lambing, the increase in incremental liveweight change had no clear pattern. 

Generally, incremental liveweight change for similar age groups appears to have varied 

randomly regardless of pregnancy-rank (Table 6.7). At pregnancy diagnosis, the incremental 

liveweight change was greater (p < 0.05) in single- and twin-bearing ewes than non-pregnant 

ewes at all age groups except at 8−18 and ≥67 months. The incremental liveweight change was 

also comparable (p > 0.05) for both single- and twin-bearing ewes except at 19−30 months. Pre-

lambing, the incremental liveweight change was unexpectedly low (0.4 to 3.8 kg) and varied with 

no clear pattern among pregnancy-ranks as the ewe aged.  
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Table 6.7 Intercepts (α), coefficients (β), correlation coefficient (rxy) and adjusted R2 for the 
regression of the live weight with body condition score value for each age (8−18 months, 19−30, 
31−42, 43−54, 55−66 and ≥67) by pregnancy-rank (non-pregnant, single and twin bearer) and 
stage of the annual production cycle (at pregnancy diagnosis and pre-lambing). 

Pregnancy-rank Age group (months) α(se) β(se) rxy Adj. R2 

At pregnancy diagnosis 
Non-pregnant 8−18 21.0(1.17)  9.4(0.41) d 0.59c  0.06 
Single  29.9(0.54) 7.5(0.19) b 0.37b  0.05 
Twin  29.3(0.55) 7.9(0.19b 0.44ab  0.17 
Non-pregnant 19−30 23.4(2.43) 8.3(0.9) de 0.69cde  0.15 
Single  27.2(0.56) 12.1(0.2) h 0.56c 0.16 
Twin  31.6(0.47) 7.2(0.16) b 0.41b 0.12 
Non-pregnant 31−42 36.7(3.08) 4.3(1.14) a 0.38c 0.43 
Single  20.9(0.62) 10.9(0.29) ef 0.53bc  0.31 
Twin  26.8(0.48) 8.9(0.17) cd 0.47bc  0.28 
Non-pregnant 43−54 28.8(2.43) 8.0(0.87) c 0.36b 0.47 
Single  20.5(0.75) 11.1(0.26) ef 0.52b 0.2 
Twin  23.7(0.51) 10.1(0.18) ef 0.48b 0.16 
Non-pregnant 55−66 27.5(2.51) 8.7(0.88) ef 0.53b 0.17 
Single  19.1(0.84) 11.6(0.29) fg 0.50ab  0.15 
Twin  22.8(0.55) 10.4(0.19) e 0.49b 0.15 
Non-pregnant ≥ 67 30.4(2.31) 7.8(0.80) bc 0.32cd  0.27 
Single  18.4(1.61) 11.8(0.55) g 0.47c  0.34 
Twin   13.2(0.85) 13.6(0.29) hi 0.52c  0.27 
Pre-lambing 
Non-pregnant 8−18     
Single  52.0(0.73) 1.2(0.26) c 0.06a  0.02 
Twin  45.9(0.78) 3.8(0.29) e 0.04a  0.01 
Non-pregnant 19−30     
Single  51.6(0.74) 1.6(0.46) cd 0.05b  0.01 
Twin  52.7(0.63) 1.3(0.43) cd 0.06b  0.12 
Non-pregnant 31−42     
Single  52.2(0.8) 1.6(0.29) cd 0.04bc  0.02 
Twin  52.7(0.64) 1.5(0.23) cd 0.06b  0.03 
Non-pregnant 43−54     
Single  50.5(0.96) 2.2(0.35) cd 0.11ab 0.01 
Twin  51.7(0.66) 2.0(0.24) cd 0.02b 0.1 
Non-pregnant 55−66     
Single  54.4(1.02) 0.9(0.36) abc 0.06ab  0.08 
Twin  50.1(0.71) 2.6(0.26) de 0.05ab 0.04 
Non-pregnant ≥ 67     
Single  50.3(1.94) 2.4(0.69) cde 0.15c  0.02 
Twin   58.8(1.03) 0.4(0.37) ab 0.02b  0.01 
a-j Different superscripts within column and stage of annual production cycle indicates differences at p < 0.05. 

 

6.4 Discussion 

This study was aimed to determine the nature of the association between live weight and 

BCS and to quantify the average liveweight change associated with each incremental change in 

ewe BCS as measured on a 1.0 to 5.0 scale with 0.5-point intervals. In addition, the extent to 

which this association differed by stage of the annual production cycle and pregnancy-rank and 



The relationship between liveweight and body condition score in ewes 

Page | 140  

ewe age, in extensively managed Romney ewes was investigated. It was hypothesized that the 

relationship between BCS and live weight was best described using a linear regression and would 

vary based on age group, stage of cycle and pregnancy-rank.  

In the present study, the linear regression was considered sufficient to describe the 

relationship between live weight and body condition score. This was not surprising as the 

majority of previous studies have reported a linear relationship between live weight and BCS 

(Kenyon et al., 2014). In addition, transforming data would add unneeded complexity to the 

model (Lazar, 2010). The percent error for all the four models (LM, QUAD, Box-Cox and SQRT) 

was within acceptable range (i.e. < 10%), for veterinary purposes (Leach and Roberts, 1981) and 

prediction models (Alexander et al., 2015). The findings show, therefore, that live weight and 

BCS vary together in a linear manner and this relationship ship can be predictable using simple 

linear regression. 

Live weight increased with the ewe age and began to plateau at 43 months of age. Ewe live 

weight increases with frame size when as an animal ages, until its mature size is achieved (Ho et 

al., 1989). In temperate (European) sheep breeds, this has been reported to occur between 

25−50 months of age (Wiener, 1967; Cake et al., 2006). The present findings are in agreement 

with other authors who reported a live weight increase with age, plateauing after 33 months of 

age in Romney ewes (Loureiro et al., 2012; Pettigrew et al., 2019). In three thin-tailed breeds of 

indigenous Turkish sheep live weight increased with age (Sezenler et al., 2011), although that 

study did not have age groups below two years to demonstrate the overall trend. 

Within age group, ewe live weight was highest at pre-lambing. During late pregnancy, the 

conceptus weight influences total ewe live weight, as single, twin and triplets near term can add 

5−8 kg, 12−17 kg and 17−21 kg, respectively (Kenyon et al., 2007b; Loureiro et al., 2010). Thus, 

it was perhaps not surprising that ewe live weight was heaviest pre-lambing and tended to be 

increase with pregnancy-rank. The observed low live weight among the non-pregnant ewes in 

the first three years, particularly during at pregnancy diagnosis may be explained by the fact that 

lighter ewes are less likely to conceive.  

There was a general decline in BCS with age of the ewe, which began to plateau from 55 

months of age across the stages of the annual production cycle. This finding is in agreement with 

a declining trend for BCS with age at breeding in Merino and Corriedale ewes (Gonzalez et al., 

1997). However, it has been reported that thin-tailed breeds of indigenous Turkish sheep had 

greater BCS scores pre-breeding but lower scores at lambing and weaning across age groups 

(Sezenler et al., 2011). The results of the current study contrast with others who reported 

greater condition scores as a ewe aged across all stages of the annual production cycle in mature 
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mixed sheep breeds and crossbreds (McHugh et al., 2019). Breed differences and nutritional 

conditions may explain the differences observed between studies. However, we did not collect 

data on nutritional status due to the extensive nature of the study and given that was conducted 

over multiple seasons and years. A declining BCS over time indicates that ewes used their body 

reserves to meet their nutritional demands, thus, suggesting that at times ewes in this study 

were likely not being fed to meet their theoretical nutritional requirements, particularly in 

lactation. The change in trend of BCS when data were disaggregated by pregnancy-rank 

highlights a potential interaction between factors affecting BCS in sheep. The ewes found to be 

non-pregnant during pregnancy diagnosis in the first two age groups (8−18 and 19−30 months) 

were also lighter.  The finding therefore agrees with previous studies (Kenyon et al., 2004a, 

2004b; Corner-Thomas et al., 2015a).  

The correlation between BCS and live weight was weak to moderate based on scale of 0 to 

1.0 (Chan, 2003; Akoglu, 2018), ranging between 0.18 and 0.67 across ages, stages of the annual 

production cycle and pregnancy-rank. By adjusting for age and stage of the annual production 

cycle, these results suggest that 6% to 45% of the variability in live weight was explained by 

differences in BCS and vice versa. These values are lower than those previously reported by 

others 0.60 to 0.82 (Sezenler et al., 2011) from data of 156 ewes and 0.81 from data of 28 mixed 

aged Romney ewes (Morel et al., 2016). They are comparable, however, to those reported for a 

study with multiple breeds (0.36 to 0.63) and stages of the annual production cycle (0.42 to 0.62) 

(McHugh et al., 2019). The between studies difference in correlation strength may be explained 

by variation in sample sizes, breed, stage of the annual production cycle and study design. The 

weaker correlation between BCS and live weight observed at pre-lambing could be attributed to 

the difficulty (data can be more variable) to body condition score heavily pregnant ewes (Yates 

and Gleeson, 1975; Kenyon et al., 2014). 

In this study, a linear relationship between live weight and body condition score was 

demonstrated. This relationship was affected by ewe age, stage of the annual production cycle 

and pregnancy-rank. These results are in agreement with previous findings showing significant 

age and stage of the annual production cycle effects (Kenyon et al., 2014; Morel et al., 2016; 

McHugh et al., 2019). A linear relationship suggests that, for a given breed type, a single 

incremental liveweight change across the entire BCS range can be applied. The incremental 

liveweight change increased with age of ewe and varied across stage of the annual production 

cycle being numerically lowest at 8−18 months and greatest at ≥ 67 months. Thus, as a ewe ages, 

a greater liveweight change is required to alter BCS by one unit, which translates into greater 

energy requirements in order to make the change (Freer et al., 2007; Morel et al., 2016).   
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The relationship between BCS and live weight also varied by stage of the annual production 

cycle. Overall, the liveweight change required to cause a one-unit change in BCS was greatest at 

weaning and lowest at pre-lambing. It is not clear why the regression coefficients of live weight 

on BCS at pre-lambing were consistently low. It may have been because the conceptus and 

uterine mass was not accounted for which is likely to have confounded the true liveweight 

change associated with a unit change in BCS. The conceptus mass has an influence on total ewe 

live weight from mid-pregnancy (Kenyon et al., 2008; Kenyon et al., 2011b) which coincides with 

pregnancy diagnosis. Additionally, it may have been due to the difficulty associated with body 

condition scoring of pregnant animals (Yates and Gleeson, 1975; Kenyon et al., 2014) as 

previously stated. Among mature ewes (≥43 months), the incremental liveweight change during 

mating/breeding was within the range reported for mixed-age Romney ewes (Kenyon et al., 

2014; Morel et al., 2016), but were greater than Romney composite ewes (Kenyon et al., 2004a, 

2004b; Kenyon et al., 2014).  

Pregnancy-rank significantly affected the live weight of ewes, their body condition scores 

(BCS) and eventually the relationship between live weight and BCS. The effect of pregnancy-rank 

on live weight was not surprising given that ewe live weight was potentially confounded by 

conceptus weight from mid to late pregnancy. The effect of pregnancy-rank on BCS is in 

agreement with earlier findings  in Romney sheep (Kenyon et al., 2004b), merino sheep 

(Kleemann and Walker, 2005), Cheviots (Gunn et al., 1988; Gunn et al., 1991), and in Scottish 

blackface ewes (Rhind et al., 1984a). 

The finding that the incremental liveweight change was lower in non-pregnant ewes at 

pregnant diagnosis was not surprising as their energy demand would be expected to be lower 

than for pregnant ewes. The energy demand is greater for pregnant ewes and increases with 

the number of foetuses (Nicol and Brookes, 2007). It is, however, not clear why the incremental 

liveweight change at pre-lambing varied randomly. The unexpectedly low incremental 

liveweight change among pregnancy-ranks at pre-lambing could have resulted from the 

confounding effect of the fully-grown conceptus weight.  

6.5 Conclusion 

In conclusion, the current study demonstrated that in a large population of ewes across a full 

range of BCS, live weight and BCS were linearly related and the relationship depended on the 

age of ewe, stage of the annual production cycle and pregnancy-rank, therefore, supporting our 

hypothesis. The results indicate that large variability exists in BCS, and BCS contributes 

substantially to the differences in live weight. The findings suggest that when predicting BCS 

from live weight consideration of these factors is required and different prediction equations 
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needed. Adjustments for differences between BCS should consider age group, stage of the 

annual production cycle and pregnancy-rank. The relationships found between live weight and 

body condition score support the possibility of using live weight as a proxy for body condition 

score.
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Abstract 

Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of 

body condition. Body condition score and live weight have been reported to be statistically and 

often linearly related in ewes. Therefore, it was hypothesized that current BCS could be 

accurately and indirectly predicted using a ewe’s lifetime live weight, liveweight change and 

previous BCS record. Ewes born between 2011 and 2012 (n = 11,798) were followed from 8 

months to approximately 67 months of age in New Zealand. Individual ewe data were collected 

on live weight and body condition score at each stage of the annual production cycle (pre-

breeding, pregnancy diagnosis, pre-lambing and weaning). Linear regression models were fitted 

to predict BCS at a given ewe age and stage of the annual production cycle using a ewe’s lifetime 

live weight records (liveweight alone models). Further, linear models were then fitted using 

previous BCS and change in live weight in addition, to the lifetime live weight records (combined 

models). Using the combined models improved (p < 0.01) the R2 value by 39.8% (from 0.32 to 

0.45) and lowered the average prediction error by 10 to 12% (from 0.29 to 0.26 body condition 

scores). However, a significant portion of the variability in BCS remained unaccounted for (39 to 

89%) even in the combined models. The procedures found in this study, therefore, may 

overestimate or underestimate measures by 0.23 to 0.32 BCS, which could substantially change 

the status of the ewe leading to incorrect management decisions. However, the findings do still 

suggest that there is potential for predicting ewe BCS from live weight using linear regression if 

key variables affecting the relationship between BCS and live weight are accounted for. This 

would benefit farmers by allowing for targeted nutritional management of individual animals to 

maximize overall flock productivity
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7.1 Introduction 

Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of the 

degree of body fatness (Jefferies, 1961; Russel et al., 1969; Morris et al., 2002; Vieira et al., 

2015). It examines the degree of soft tissue coverage (predominantly fat and muscle) in lumbar 

region (Jefferies, 1961; Kenyon et al., 2014). Body condition score utilizes a 1.0−5.0 scale using 

half units or quarter units, and is undertaken by the palpation of the lumbar vertebrae (spinous 

and transverse process) immediately caudal to the last rib and above the kidneys (Kenyon et al., 

2014). Unlike live weight (LW), BCS is not affected by factors such as variations in gut-fill, fleece 

weight, pregnancy and frame size that confound live weight as a measure of animal size to 

predict body condition (Coates and Penning, 2000b; Kenyon et al., 2014). Body condition score 

can be easily learned and is cost-effective and requires no specialist equipment (Kenyon et al., 

2014). Knowledge of sheep BCS ensures that available feed resources are efficiently utilized, 

subtle differences in body condition not visibly noticeable are determined, there is instant 

awareness by producers about major changes in body fatness and the monitoring of trends in 

nutrition and body weight. 

Even though using BCS offers several advantages over live weight (LW) to better manage 

flocks, farmers do not regularly use this technique. For example, while 96% of Australian 

producers indicated they monitored the body condition, only 7% conducted hands-on BCS 

(Jones et al., 2011). In New Zealand, 4% of farmers (Corner-Thomas et al., 2016) used BCS as a 

management tool. Farmers either rely on a visual inspection, which is inaccurate, or prefer to 

use live weight measures only (Besier and Hopkins, 1989). The reasons for low BCS adoption 

among farmers include: (1) the subjective nature of BCS, depending on assessor judgement; (2) 

being labor-intensive and (3) needs assessor training, that should be recalibrated over time 

(Kenyon et al., 2014). Strategies used to increase the use of BCS among farmers and its reliability 

included farmer training workshops and regular recalibration (Kenyon et al., 2014). However, 

given the apparently low rate of farmer uptake especially in large extensively managed flock 

systems, these strategies have been unsuccessful, likely due to not directly addressing how to 

reduce the labour burden with hands-on BCS. Therefore, it could be argued that, reliable and 

accurate alternative automated methods to estimate body condition score would be 

advantageous and would improve farmer uptake and use of BCS. Ideally, any automatic system 

to be utilized on extensive and intensive sheep farms would be based on a management tool 

already utilized on farms, to reduce workload and it would be quick and not subjective in nature. 

The relationship between BCS and LW is documented in sheep (Kenyon et al., 2014; 

McHugh et al., 2019) with BCS being positively and generally linearly associated with live weight 
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(Kenyon et al., 2014). In Chapter 6, the factors affecting the relationship between BCS and LW 

in ewes such as age, stage of the annual production cycle and breed of ewe were assessed. 

Studies suggest correlations between BCS and LW can be between 0.20 to 0.89 and are stronger 

in mature ewes (r = 0.73 to 0.89) (Morel et al., 2016; McHugh et al., 2019). If the relationship 

between BCS and LW is predictable, then in theory, measurements of the latter could be used 

as predictors of BCS. In European sheep breeds, mature live weight occurs between 25 to 50 

months of age (Wiener, 1967; Cake et al., 2006). Therefore, it could be postulated that, at 

approximately three years of age, when mature live weight is reached, a stable base BCS-LW 

relationship would be established. If this was indeed the case then, as a sheep ages further, 

future live weights, based on body condition score-live weight prediction equations could be 

used to predict a BCS or change in BCS with a fair degree of accuracy and reduce the need for 

hands-on BCS measurement.  

In large extensive flock systems farmers regularly weigh sheep and increasingly more are 

using electronic tags (Corner-Thomas et al., 2016). Both conventional and modern weighing 

systems combined with individual electronic identification can now allow lifetime data to be 

collected more easily and quickly on large sheep flocks. Using this technology, combined with 

an individual BCS at a given point in their lifetime, therefore, can allow a specific stage of life 

BCS live weight relationship to be developed.  Thus, using a set of established equations it should 

be possible to have a predicted BCS instantly calculated at each live weighing for each sheep. 

However, these have yet not been developed. If these could be developed, they could be 

incorporated into the electronic weigh heads of modern weigh systems to give farmers 

predictions of BCS. To date, this has not been tested. The aim of this study was to investigate 

the possibility of using lifetime live weight, liveweight change and previous BCS to predict a 

ewe’s current body condition score.  

7.2  Materials and Methods  

7.2.1 Farms and animals used and data collection 

The current study utilized data collected between 2011 and 2016 from two commercial 

New Zealand sheep farms (A and B) as part of normal routine farm management. All ewes 

(Romney breed) were weighed (to the nearest 0.1 kg) using static digital weighing scales (Tru-

Test group, model XR5000). Body condition score was undertaken by experienced assessors 

using a 1.0-5.0 scale (1.0 = thin, 5.0 = obese) with sheep assessed to the nearest 0.5 of a BCS 

(Jefferies, 1961; Kenyon et al., 2014) at four time periods within an annual production cycle 

namely, pre-breeding, pregnancy diagnosis, pre-lambing and weaning. Data were collected over 
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six individual years as ewes aged 8−18 to ≥67 months). A full description of the data used in the 

present study and sample characteristics is given in Chapter 6. In Chapter 6, the nature of 

association of the relationship between LW and BCS and the factors affecting this relationship 

were studied. The present study explores the possibility of utilizing the established relationship 

in the study above to indirectly predict a ewe’s current BCS using previous live weight, liveweight 

change and BCS record. Table 7.1 below gives a summary of the variables used in BCS prediction 

models.    
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Table 7.1 Explanation of live weight, liveweight change and body condition score variables by 
ewe age group and stage of the annual production cycle.  

Age (months) Stage of the annual production cycle *Live weight §BCS £Change in live weight 

8−18 Pre-breeding WM1 BM1  
 Pregnancy diagnosis WP1 BP1 WT11(WP1−WM1) 

 Pre-lambing WL1 BL1 WT12(WL1−WP1) 

 Weaning WW1 BW1 WT13(WW1−WL1) 
19−30 Pre-breeding WM2 BM2 T2-T1(VM2−WW1) 

 Pregnancy diagnosis WP2 BP2 WT21(WP2−WM2) 

 Pre-lambing WL2 BL2 WT22(WL2−WP2) 

 Weaning WW2 BW2 WT23(WW2−WL2) 
31−42 Pre-breeding WM3 BM3 T3-T2(VM3−WW2) 

 Pregnancy diagnosis WP3 BP3 WT31(WP3−WM3) 

 Pre-lambing WL3 BL3 WT32(WL3−WP3) 

 Weaning WW3 BW3 WT33(WW3−WL3) 
43−54 Pre-breeding WM4 BM4 T4-T3(VM4−WW3) 

 Pregnancy diagnosis WP4 BP4 WT41(WP4−WM4) 

 Pre-lambing WL4 BL4 WT42(WL4−WP4) 

 Weaning WW4 BW4 WT43(WW4−WL4) 
55-65 Pre-breeding WM5 BM5 T5-T4(VM5−WW4) 

 Pregnancy diagnosis WP5 BP5 WT51(WP5−WM5) 

 Pre-lambing WL5 BL5 WT52(WL5−WP5) 

 Weaning WW5 BW5 WT53(WW5−WL5) 
≥67 Pre-breeding WM6 BM6 T6-T5(VM6−WW4) 

 Pregnancy diagnosis WP6 BP6 WT61(WP6−WM6) 

 Pre-lambing WL6 BL6 WT62(WL6−WP6) 
  Weaning WW6 BW6 WT63(WW6−WL6) 

*Live weight; at pre-breeding (WM), pregnancy diagnosis (WP), pre-lambing (WL) and weaning (WW).  
§BCS; at pre-breeding (BM), pregnancy diagnosis (BP), pre-lambing (BL) and weaning (BW). 
£Change in live weight: WT; change in live weight between successive measurements within age groups, DT-T; change 
in live weight between successive measurements between age groups   

7.2.2 Statistical analyses 

Data were analyzed using R program version 3.3.4 (R Core Team, 2016) with package 

extensions in the caret package (Kuhn, 2008). It was not possible to observe a strict 

measurement collection protocol, therefore, missing values occurred in our dataset. To fill in the 

missing values, we used the preProcess function from the caret package in R (bagimput method). 

This method constructs a “bagging” model for each of the available variables based on 

regression trees, using all other variables as predictors while preserving the original data 

distribution structure(Kuhn, 2008). Live weight data were also normalized and centered during 

analysis using the same preProcess function above. 

Body condition score data is both discrete and ordered in nature, which makes multi class 

classification regression approaches such as ordinal logistic or nominal regression more suitable 

for its analysis. However, when the underlying assumptions are grossly violated or when classes 

are extremely imbalanced (Leevy et al., 2018), classification statistical methods become less 

accurate (Tharwat, 2020). Triguero et al. (2015) categorizes class imbalances above 50:1 for any 
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two outcomes as high-class imbalance. Strategies to overcome the challenge of class imbalance 

include oversampling, under-sampling and synthetic minority over sampling (Chawla et al., 

2002). Such methods of circumventing class imbalances hold in cases of “reasonable” imbalance 

(Triguero et al., 2015). In case of high-class imbalance, the samples generated become less 

representative of the true sample distribution leading to under or over fitting the model. In the 

present study it was not possible to conduct classification regression using a full BCS scale 

(1.0−5.0) due to high class imbalance (1:1 to 1:280). The mitigation approaches to high-class 

imbalance may include modification of scale to a size that improves the distribution of values 

(not favourable for full scale prediction) or the use of other statistical methods robust to class 

imbalance such as multivariate (multiple regression) methods for interval and continuous data 

(Norman, 2010). In cattle, multivariate regression has successfully been used to predict BCS from 

physical body measurements and 3-D camera image data (Martins et al., 2020).Therefore, based 

on the previously outlined points, multivariate linear regression was used to predict ewe BCS 

from live weight.  

7.2.3 Variable selection, model building and validation 

Initially, the best predictor combinations for each BCS were selected through the 

regularization and variable selection technique implemented in R program (R Core Team, 2016) 

using the elastic net method in the glmnet extension (Friedman et al., 2010) in caret package 

(Kuhn, 2008).  The elastic net method combines the power of two penalized-regularization 

methods (ridge and lasso regression) to search for the number of variables as well as handling 

collinearity (Archer and Williams, 2012).  

All models were constructed, fitted and validated using algorithms, implemented in four 

steps. The steps included i) data partitioning, ii) resampling, iii) model training and iv) validation. 

Data partitioning involved dividing the initial dataset (with stratification preserving the class 

proportions) into training and testing datasets in a ratio of 3:1, with replacement. Resampling 

involved using bootstrapping and aggregation (Tropsha et al., 2003) procedures implemented in 

R (R Core Team, 2016) using caret package (Kuhn, 2008) to select 10 subsamples from the 

training set, and repeating the resampling three times. Model training involved fitting of the 

model using the training dataset subsamples (10) from which, nine were used for computing the 

parameters (i.e. β) while the remaining one part was used for error estimation (ε). Finally, all 

parameter estimates or probabilities from each sub sample were averaged to obtain the final 

value (estimate) with a 95% confidence interval.  

Two multiple regression approaches were evaluated for the possibility of predicting BCS on 

a full scale namely, general linear model (LM) using the generalized least squares (GLS) and linear 
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mixed effects model (LMM) procedure in nlme package (Pinheiro et al., 2018). The LM was 

selected for subsequent analysis the variance between LMM and GLS showed no significant 

difference (p < 0.05). Using selected best predictors for each BCS, LM regression equations were 

fitted to predict the current BCS using lifetime (present and previous) live weight records 

(liveweight alone models). Later, the models were modified by using previous liveweight change 

and BCS scores in addition to lifetime (combined models). Consequently forty-eight (48) 

regression equations were generated for BCS prediction, half of which were from using 

liveweight alone models and the remaining half from the combined models. Lifetime 

measurements refer to those ewe measurements taken at same and previous time points, 

whereas previous measurements only refer to those preceding the current one. Liveweight 

change was defined as sequential retrospective change in liveweight between individual time 

points. 

7.2.4 Model performance evaluation 

The calibration model performance (based on training dataset) was assessed using two 

metrics (Theil, 1958; Botchkarev, 2019) adjusted coefficient of determination (Adj. R2) and the 

root mean square error (RMSE). The validation for each BCS prediction model was conducted 

using the testing dataset, each repeated 1000 times. Several metrics were considered when 

assessing the quality of BCS prediction models, including the coefficient of determination (r2), 

bias, root mean squared error (RMSE), residual prediction deviation (RPD), and the ratio of 

performance to interquartile distance (RPIQ) (McDowell et al., 2012). The formulae used to 

compute the error metrics and coefficient of determination are in Chapters 4 and 6. The success 

of the predictions for individual samples was determined using the percent error (MAPE or RPE). 

The best model would have the highest Adj. R2, r2, RPD, and RPIQ, and the lowest RMSE and PE. 

In addition, RPD has been classified (Bellon-Maurel et al., 2010) into three different categories, 

weak prediction (RPD < 1.4), reasonable (1.4 < RPD < 2.0) and excellent (RPD > 2.0). In a similar 

manner (Nawar and Mouazen, 2017), RPIQ has been divided into four categories, very poor 

prediction (RPIQ < 1.4), fair (1.4 < RPIQ < 1.7), good (1.7 < RPIQ < 2.0), very good (2.0 < RPIQ < 

2.5) and excellent (RPIQ > 2.5). 
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7.3 Results 

7.3.1 Correlation between all BCS and live weights 

There was association between live weight and BCS in all age groups and stage of the annual 

production cycle, but the association was characterized as being weak to moderate (Tables 7.2 

and 7.3). The relationships, however, were stronger when live weight and BCS measurements 

were from the same time point (0.25 ≤ r ≤ 0.67), compared with when lifetime (i.e. including the 

same time point and previous) records were used (−0.18 ≤ r ≤ 0.67). In terms of stage of the 

annual production cycle, the correlation was strongest at weaning (−0.08 ≤ r ≤ 0.67) and weakest 

pre-lambing (−0.18 ≤ r ≤ 0.49). 

7.3.2 Linear regression (coefficient of determination (R2) and number of predictors) 

To predict current BCS, all current and previous individual live weights (liveweight alone 

models) were included in linear regression equations (Appendix VIII Tables 1a and 1b for 

liveweight alone models and Appendix VIII Tables 2a and 2b for combined models). Across age 

groups, the change in adjusted R2 value showed no clear pattern (Figure 7.1). The adjusted R2 

values averaged 0.32 and did not get above 0.49, regardless of time point. There was no trend 

for R2 to improve at older ages, when a greater amount of previous live weight information was 

known. It was observed that in general the adjusted R2 value was highest at weaning but lowest 

at pre-lambing.  

The average number of live weight predictors (significant variables) for BCS prediction was 

seven (1 to 16) with no clear pattern of change over time. To improve the prediction of current 

BCS, a combination of all preceding BCS, and prior live weights and their sequential retrospective 

differences (change in live weight between individual time points) were included in the 

regression equations (combined models) and are shown in (Appendix VIII Tables 2a and 2b). The 

number of significant predictors for BCS was higher (average: 25, from 1 to 59) in the combined 

models compared with liveweight alone models.  

The adjusted R2 values (Figure 7.1) for ewe BCS prediction ranged from 0.11 to 0.61 for 

liveweight alone models or combined models. Although, there was no clear trend for R2 

improvement with age, it appeared to be affected by stage of the annual production cycle. 

Notable was the generally low R2 value at pre-lambing in both combined and liveweight alone 

models. The adjusted R2 increased with the number of variables in the combined model in a 

similar manner to the liveweight alone models. Using more predictors in addition to live weight, 

increased the adjusted R2 value by 39.8. % (from 32.5 to 45.4%) or 1.4 times and the number of 

significant predictors at each stage of the annual production cycle by 3.6 (average number of 
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variables for combined models liveweight alone models divided by average number of variables 

for liveweight alone models) times. A significant portion of the variability in BCS remained 

unaccounted for (38 − 89%) in the combined models, with some of the initial live weight 

variables in the liveweight alone models being considered non-significant (p > 0.05) in the 

combined models.  
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Table 7.2 Correlation coefficients between individual live weight and body condition scores across stage of the annual production cycle in ewes between 
8 and 42 months 

Weight n 

Body condition score 

BM1  BP1  BL1  BW1  BM2 BP2 BL2 BW2 BM3 BP3 BL3 BW3 

WM1  11,798 0.38 0.13 0.13 −0.05ns 0.00ns 0.08 −0.12 0.18 0.02ns 0.09 0.01ns 0.19 
WP1  11,124 0.32 0.36 0.46 0.11 0.00ns 0.10 −0.02ns 0.16 0.05 0.08 0.03ns 0.22 
WL1  8,074 0.28 0.18 0.49 0.25 −0.11 0.16 0.43 0.21 0.21 0.18 0.08 −0.04 
WW1  8,499 0.09 0.25 0.44 0.67 0.41 0.28 0.33 0.12 0.17 0.11 0.06 0.04 
WM2 8,393 0.12 0.25 0.33 0.54 0.49 0.25 0.26 0.15 0.16 0.14 0.09 0.11 
WP2 7,991 0.14 0.36 0.29 0.25 0.37 0.39 0.01ns 0.15 0.04 0.11 0.14 0.30 
WL2 5,362 0.15 0.34 0.45 0.41 0.29 0.40 0.25 0.11 0.10 0.14 0.07 0.15 
WW2 6,950 0.13 0.28 0.33 0.25 0.19 0.21 0.11 0.53 0.39 0.32 0.26 0.29 
WM3 6,651 0.14 0.06 0.12 0.20 0.16 0.24 0.21 0.48 0.51 0.45 0.29 0.21 
WP3 6,308 0.16 0.13 0.29 0.26 0.13 0.31 0.29 0.46 0.43 0.51 0.32 0.19 
WL3 2,700 0.13 0.17 0.15 0.20 0.13 0.25 0.24 0.33 0.38 0.45 0.32 0.16 
WW3 5,579 0.12 −0.03ns 0.01ns 0.09 0.12 0.21 0.10 0.38 0.23 0.32 0.26 0.60 
WM4 5,149 0.12 −0.04 0.02ns 0.11 0.12 0.22 0.16 0.32 0.24 0.32 0.24 0.43 
WP4 4,944 0.14 −0.11 0.01ns 0.13 0.08 0.27 0.30 0.34 0.27 0.39 0.27 0.34 
WL4 3,224 0.12 −0.03ns 0.02ns −0.03ns 0.09 0.22 0.13 0.34 0.18 0.31 0.19 0.37 
WW4 4,440 0.06 0.06 0.06 0.17 0.11 0.13 0.09 0.19 0.17 0.18 0.15 0.21 
WM5 4,314 0.07 −0.03ns −0.02ns 0.11 0.06 0.14 0.15 0.21 0.19 0.22 0.18 0.15 
WP5 4,146 0.09 −0.07 0.01ns 0.16 0.05 0.16 0.25 0.20 0.20 0.25 0.18 0.11 
WL5 2,677 0.10 −0.11 0.02ns 0.19 0.02ns 0.15 0.21 0.16 0.20 0.20 0.08 0.03 
WW5 2,695 0.08 −0.15 0.01ns 0.15 0.03ns 0.16 0.27 0.23 0.22 0.22 0.08 0.08 
WM6 1,437 0.09 −0.15 −0.06 0.12 −0.02ns 0.13 0.23 0.16 0.16 0.22 0.10 0.06 
WP6 1,334 0.09 −0.12 −0.05 0.13 −0.04 0.15 0.28 0.15 0.16 0.23 0.10 0.01ns 
WL6 879 0.08 0.09 0.02ns 0.11 0.01ns 0.02ns 0.05 0.08 0.08 0.15 0.09 0.11 
WW6 563 0.06 −0.03ns −0.03ns 0.11 −0.03ns 0.01ns 0.05 0.10 0.09 0.08 0.09 0.09 

BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively. WM, WP, WL, WW indicate live weight prior to 
pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively. Grey shade (major diagonal) indicates live weights and BCS correlation coefficient values from the same 
time point. n: indicates sample size. ns: superscript indicates no significance at p < 0.05. 
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Table 7.3 Correlation coefficients between individual live weight and body condition scores across stage of the annual production cycle in ewes above 
42 months of age 

Weight n 

Body condition score 

BM4 BP4 BL4 BW4 BM5 BP5 BL5 BW5 BM6 BP6 BL6 BW6 

WM1  11,798 0.03ns −0.05 0.3 0.11 0.18 0.06ns −0.03ns −0.03ns −0.09 −0.09 −0.03ns 0.01ns 
WP1  11,124 0.02ns −0.05 0.33 0.13 0.19 0.05ns −0.04ns −0.05 −0.11 −0.10 0.00ns 0.04 
WL1  8,074 0.20 0.10 −0.11 −0.04 −0.03ns 0.15 0.16 0.21 0.35 0.36 0.11 0.14 
WW1  8,499 0.13 0.09 −0.18 0.04 0.01ns 0.04ns 0.10 0.12 0.15 0.11 0.03ns 0.06 
WM2 8,393 0.14 0.08 0.01 0.07 0.10 0.07 0.07 0.08 0.09 0.08 0.06 0.08 
WP2 7,991 0.04 0.00ns 0.43 0.21 0.29 0.09 −0.04ns −0.08 −0.17 −0.15 0.12 0.04 
WL2 5,362 0.11 0.10 0.01ns 0.11 0.17 0.09 0.04ns 0.05 0.06 0.05 0.10 0.10 
WW2 6,950 0.13 0.06 0.30 0.19 0.25 0.10 0.04ns 0.03ns −0.07 −0.06 0.06 0.09 
WM3 6,651 0.23 0.11 0.20 0.12 0.20 0.14 0.11 0.13 0.10 0.11 0.11 0.15 
WP3 6,308 0.25 0.17 0.26 0.13 0.22 0.21 0.15 0.15 0.14 0.18 0.12 0.18 
WL3 2,700 0.22 0.14 0.09 0.12 0.20 0.14 0.09 0.15 0.10 0.14 0.12 0.15 
WW3 5,579 0.47 0.29 0.38 0.19 0.27 0.18 0.11 0.14 0.12 0.15 0.06 0.20 
WM4 5,149 0.53 0.35 0.33 0.17 0.27 0.22 0.16 0.16 0.17 0.16 0.10 0.22 
WP4 4,944 0.51 0.46 0.33 0.12 0.24 0.29 0.21 0.23 0.27 0.30 0.14 0.21 
WL4 3,224 0.32 0.17 0.46 0.20 0.32 0.23 0.10 0.11 0.07 0.11 0.07 0.13 
WW4 4,440 0.26 0.18 0.18 0.55 0.40 0.31 0.23 0.20 0.15 0.16 0.09 0.22 
WM5 4,314 0.26 0.16 0.19 0.30 0.48 0.39 0.28 0.20 0.25 0.26 0.15 0.29 
WP5 4,146 0.28 0.22 0.13 0.20 0.32 0.48 0.33 0.26 0.31 0.33 0.17 0.22 
WL5 2,677 0.24 0.16 0.03ns 0.12 0.16 0.20 0.31 0.26 0.24 0.25 0.03ns 0.16 
WW5 2,695 0.27 0.15 0.05 0.12 0.14 0.24 0.29 0.63 0.45 0.39 0.20 0.25 
WM6 1,437 0.28 0.15 0.03ns 0.06 0.14 0.18 0.25 0.38 0.59 0.49 0.24 0.32 
WP6 1,334 0.24 0.15 0.04 0.03ns 0.07 0.21 0.19 0.33 0.48 0.56 0.25 0.28 
WL6 879 0.17 0.07 0.05 0.15 0.22 0.13 0.09 0.25 0.25 0.34 0.28 0.28 
WW6 563 0.16 0.04 0.07 0.13 0.16 0.11 0.01ns 0.19 0.24 0.26 0.27 0.64 

BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively. WM, WP, WL, WW indicate live weight prior 
to pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively. Grey shade (major diagonal) indicates live weights and BCS correlation coefficient values from the 
same time point. n: indicates sample size. ns: superscript indicates no significance at p < 0.05. 
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Figure 7.1 Adjusted R2 (solid line: liveweight alone models, dashed: combined models) and number of predictors (dotted bar: liveweight alone models 
and white bar: combined models) for BCS prediction across the stage of the annual production cycle and ewe age group. BM, BP, BL, BW indicate body 
condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively.
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7.3.3 Prediction error metrics 

The BCS model prediction error metrics (MAE, RMSE, MAPE, RPE) and r2 varied within across 

age group and stage of the annual production cycle when live weight or combined models were 

used to predict BCS (Tables 7.5 and 7.6). The average prediction error associated with BCS 

prediction in live weight and in the combined models in terms of MAE and RMSE was 0.26 (0.23 

to 0.32) and 0.32 (0.28 to 0.41) body condition scores, respectively. The magnitude of the error 

values was categorized as being moderate to high in both live weight and in the combined 

models, given the scale of measurement and smallest unit of measurement (0.5). The BCS 

predictions using the liveweight alone models were, on average, 9.3 (7.60 to 11.50) to 11.6 (9.50 

to 14.62) % from the actual value. The models were categorized as weak (RPD: 1.02 to 1.39) or 

very poor to fair (RPIQ: 1.28 to 1.79).  

The model prediction error metrics for the combined models varied across age group and 

stage of the annual production cycle but were significantly (p < 0.01) reduced compared with 

the liveweight alone models. The average prediction error associated with BCS prediction using 

the combined models in terms of MAE and RMSE was reduced by 0.04 (10% to 12%) body 

condition scores. Overall, the combined models improved BCS prediction from weak to 

reasonable (PRD: 1.40) or good (RPID: 1.75). The results also showed positive and negative bias 

for both models, and indication of tendency to underestimate or overestimate BCs 

measurement. 
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Table 7.4 Coefficient of determination (r2), bias, root mean square error (RMSE), residual prediction deviation (RPD) and the ratio of performance to 
interquartile distance (RPIQ) based on testing data, for the prediction of BCS in ewes between 8 and 42 months by stage of the annual production cycle 
using live weight (liveweight alone models) and a combination of predictors (combined models). 

  Age group 

 8−18  19−30  31−42 

  BM1 BP1 BL1 BW1  BM2 BP2 BL2 BW2  BM3 BP3 BL3 BW3 

BCS range 1.5−4.5 1.5−4.5 1.5−4.0 1.5−4.5  1.5−5.0 1.5−4.0 1.5−4.0 1.5−5.0  1.5−4.5 1.5−4.0 1.5−4.0 1.0−4.5 

 Liveweight alone modelsa 
r2 % 15.7 9.1 6.1 45.4  39.4 22.6 26.9 43.7  42.2 24.1 12.4 40.1 
Bias 0.01 0.002 −0.01 0.00  0.01 −0.01 0.00 0.00  0.00 0.00 0.01 0.01 
MAE 0.30 0.31 0.32 0.27  0.24 0.24 0.25 0.30  0.23 0.24 0.28 0.26 
RMSE 0.38 0.43 0.38 0.53  0.27 0.30 0.32 0.38  0.28 0.31 0.35 0.33 
MAPE 11.11 13.15 10.54 9.27  11.06 9.11 9.33 10.78  8.29 8.39 9.77 8.94 
RPE 12.89 14.4 12.36 12.12  11.76 11.39 11.95 13.66  10.09 10.84 12.12 11.35 
RPD 1.12 1.06 1.03 1.36  1.20 1.14 1.16 1.22  1.28 1.23 1.09 1.31 
RPIQ 1.32 1.28 1.47 1.47  1.52 1.67 1.56 1.32  1.79 1.61 1.43 1.52 

 Combined modelsb 
r2 % 15.7 10.8 35.2 50.0  50.3 34.0 41.2 58.9  53.6 55.5 32.3 56.7 
Bias 0.01 0.00 −0.01 −0.01  0.004 0.00 −0.01 −0.01  −0.003 0.00 0.001 −0.01 
MAE 0.30 0.02 0.23 0.25  0.22 0.22 0.21 0.24  0.19 0.20 0.31 0.23 
RMSE 0.38 0.02 0.28 0.32  0.28 0.28 0.28 0.31  0.24 0.26 0.24 0.29 
MAPE 11.11 2.47 8.35 8.92  7.85 8.36 7.84 8.66  6.849 7.21 8.4 7.926 
RPE 12.89 2.47 10.17 11.41  9.98 10.64 10.45 11.19  8.65 9.37 10.85 9.99 
RPD 1.12 1.19 1.23 1.43  1.43 1.23 1.31 1.55  1.47 1.36 1.22 1.51 
RPIQ 1.32 1.50 1.78 1.56  1.79 1.79 1.78 1.62  2.08 1.92 1.61 1.72 

BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively. Interpretation of measures: The best model 
has the highest r2, RPD, and RPIQ, and the lowest RMSE and RPE. Ranges for values: r2 (0: indicates that the model accounts for none of the variability of the response data around its 
mean, 1.0 indicates that the model accounts for all the variability). RPD (< 1.4: weak, 1.4 < RPD < 2.0: reasonable, > 2.0: excellent). RPIQ (< 1.4: very poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ 
< 2.0: good, 2.0 < RPIQ < 2.5: very good, > 2.5: excellent). a Liveweight alone models indicates all previous and current weight. b Combined models indicates all previous and current 
weights, liveweight change and previous BCS. Bias (Positive value indicates overestimation; negative sign indicates underestimation). 
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Table 7.5 Coefficient of determination (r2), bias, root mean square error (RMSE), residual prediction deviation (RPD) and the ratio of performance to 
interquartile distance (RPIQ) based on testing data, for the prediction of BCS in ewes above 42 months of age by stage of the annual using live weight 
(liveweight alone models) and a combination of predictors (combined models). 

  Age group 

 43−54  55−66  ≥67 

  BM4 BP4 BL4 BW4  BM5 BP5 BL5 BW5  BM6 BP6 BL6 BW6 

BC range 1.0−4.0 1.0−4.0 1.5−4 1.5−4.0  1.0−4.0 1.0−4.0 2.0−4.0 1.0−4.0  1.5−4.0 1.5−4.5 1.5−3.5 1.5−4.5 

 Liveweight alone modelsa 
r2 37.5 32.1 15.3 40.2  33.7 25.9 15.1 42.4  34.9 36.2 12.6 41.8 
Bias −0.004 0.01 0.01 0.01  −0.01 −0.01 0 −0.02  0.01 −0.02 −0.01 −0.01 
MAE 0.25 0.24 0.24 0.24  0.24 0.24 0.26 0.27  0.24 0.31 0.25 0.27 
RMSE 0.31 0.31 0.32 0.31  0.29 0.33 0.32 0.34  0.31 0.38 0.32 0.34 
MAPE 8.28 8.30 8.90 9.05  10.03 8.29 9.21 10.38  7.86 9.80 9.61 9.69 
RPE 10.26 10.71 11.87 11.68  12.67 11.4 11.33 13.03  10.15 14.66 11.75 12.2 
RPD 1.27 1.21 1.26 1.30  1.13 1.14 1.02 1.32  1.34 1.13 1.06 1.39 
RPIQ 1.61 1.56 1.55 1.61  1.39 1.51 1.56 1.40  1.61 1.32 1.56 1.47 

  Combined modelsb 
r2 52.6 51.3 52.3 47.9  52.4 49.5 27.8 58.3  63.2 65.4 33.9 43.0 
Bias −0.003 −0.007 −0.013 0.012  0.002 0.009 −0.014 −0.001  0.011 −0.001 0.004 −0.007 
MAE 0.21 0.20 0.22 0.22  0.22 0.20 0.22 0.22  0.20 0.22 0.23 0.30 
RMSE 0.26 0.26 0.29 0.28  0.29 0.25 0.28 0.28  0.25 0.27 0.28 0.3756 
MAPE 6.94 6.9 8.19 8.28  8.30 6.89 7.78 8.35  6.53 6.75 8.52 10.68 
RPE 8.59 8.97 10.42 10.55  10.56 8.62 9.89 10.62  8.17 8.28 10.84 13.17 
RPD 1.48 1.42 1.47 1.38  1.53 1.42 1.16 1.53  1.61 1.71 1.25 1.31 
RPIQ 1.92 1.92 1.79 1.79  1.79 2.00 1.79 1.79  2.00 1.85 1.79 1.35 

BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing and at weaning respectively. Interpretation of measures: The best model 
has the highest r2, RPD, and RPIQ, and the lowest RMSE and RPE. Ranges for values: r2 (0: indicates that the model accounts for none of the variability of the response data around its 
mean, 1.0 indicates that the model accounts for all the variability). RPD (< 1.4: weak, 1.4 < RPD < 2.0: reasonable, > 2.0: excellent). RPIQ (< 1.4: very poor, 1.4 < RPIQ < 1.7: fair, 1.7 < RPIQ 
< 2.0: good, 2.0 < RPIQ < 2.5: very good, > 2.5: excellent). a Liveweight alone models indicates all previous and current weight. b Combined models indicates all previous and current 
weights, liveweight change and previous BCS. (Positive value indicates overestimation; negative sign indicates underestimation). 
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7.4 Discussion 

The aim of this study was to explore the possibility of predicting BCS from lifetime live 

weight, liveweight change and previous BCS over time in ewes as they aged from eight through 

to approximately sixty-seven months. This appears to be the first study to attempt this in sheep. 

Previous studies have examined the relationship between live weight and BCS at a given time 

point (Sezenler et al., 2011; McHugh et al., 2019).  

This study demonstrated that BCS prediction models based on a ewe’s live weight record 

or a combination of live weight, liveweight change and previous BCS improved the proportion 

of variability in current BCS accounted for above that observed in Chapter 6. Further, it was 

demonstrated that despite BCS and LW being linearly correlated (Kenyon et al., 2014; McHugh 

et al., 2019), the relationship is weak when predicting using linear regression, even in older 

individuals which would have attained maturity. The results also indicated that the role of prior 

live weight measurements in predicting BCS diminishes as the time gap between measurements 

points increased. This indicates that using early life live weights alone would likely be unreliable 

in predicting future BCS. Further, the effect of liveweight change on BCS prediction was more 

significant during the early years of a ewe than in her later years, which implies that, liveweight 

change may cease to be an important predictor of BCS after maturity is reached.  

The variability in BCS explained for both live weight and combined models increased with 

the number of predictors in the model. This was expected as it is known that as the number of 

predictors that significantly relate with the dependent variable increase, the proportion of the 

variance due to the regression increases (Li, 2017). However, in this study, a considerable 

amount of variability in BCS (0.58 ≤ R2 ≤ 0.91 and 0.39 ≤ R2 ≤ 0.89) remained unaccounted for in 

both liveweight alone and combined models, respectively. Potential reasons for the apparent 

failure for both liveweight alone and combined models to account for more of the variability in 

BCS include BCS binning (due to not being a continuous variable), assessor consistency over 

time, losses in live weight due to gut-fill and urination when ewes are weighed at different times, 

fleece weight and wetness, and confounding of live weight with conceptus weight. The 

consistency of the BCS data can vary between (5 to 27% and 40 to 60%) and within (16 to 44% 

and 60 to 90%) operator for inexperienced and experienced assessors, respectively (Yates and 

Gleeson, 1975; Kenyon et al., 2014). Liveweight losses resulting from fluctuations in the gut-fill 

can account for between 5 and 23% of total live weight in ruminants (Hughes, 1976; Semakula 

et al., 2019). Thus, when an individual’s live weight is recorded with respect to when the animal 

was fed, can influence the accuracy of a live weight. The present study did not measure for 

individual time off feed prior to weighing, a function that many electronic weighing systems have 
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the potential to do. As the pregnancy advances, conceptus weight increases depending on the 

number of fetuses carried (Kleemann and Walker, 2005), which could have affected the live 

weight and BCS differently. The present dataset did not have information on the individual stage 

of pregnancy for each ewe. Future studies should examine if the accuracy of the prediction can 

be ameliorated by incorporating these two variables. In regression, the independent variable 

measurement is assumed to be measured with high precision, thus, it is not expected to 

contribute to residual error (Dosne et al., 2016). Therefore, losses in live weight due to gut-fill 

changes and urination in relation to when ewes are weighed at different times and the effect of 

pregnancy on live weight are of concern, as they affect live weight which is an independent 

variable for BCS prediction. When independent variables are not exact, estimations based on 

the standard assumption leads to inconsistent parameter estimates even in very large samples 

(Hausman, 2001; Pischke, 2007). Thus, if errors in the measurement of live weight could be 

minimized, then the resulting error term in the regression could all be attributed to BCS 

measurement, which should improve the model goodness-of-fit and accuracy. In order to reduce 

this measurement error, it would be imperative that liveweight losses due to delayed weighing 

be accounted for with respect to time of delay (period from when the animal last fed to weight 

recording) in using prediction equations. Time-dependent, live weight adjusting equations for 

ewes have been developed but are not regularly used (Wishart et al., 2017).  

In the present study, the prediction models using liveweight alone had large error (MAE 

and RMSE) and low RPD and RPIQ values, which led to high error rates. Combined models 

reduced the magnitude of all the prediction error metrics to near acceptable levels. Although 

error (MAPE) up to 20% is acceptable for setting dosage rates in the veterinary pharmaceutical 

industry (Leach and Roberts, 1981), error of more than 10% can be problematic (Alexander et 

al., 2015; Hagerman et al., 2017; Lalic et al., 2018) in other agricultural filed MAPE or RMSPE. In 

this study, values were approximately 9 to 12% for liveweight alone models and 8 to 10% for the 

combined models. The moderate to large error values (one-half to two-thirds of the smallest 

unit on a 0.5 decimal scale) in BCS prediction in the present study (where a 0.5-unit change in 

BCS changes the performance-rank of a ewe) could greatly influence management decisions. In 

theory, both models should have had resolutions of approximately 0.02 (maximum span = 0.5 / 

smallest possible increment = (2) ^ maximum range of possible values) body condition score. 

However, due to the rigid nature (discrete or noncontinuous scale with no values in between 

the fixed points) of the scale used, such resolutions are not achievable. It has been suggested 

that decisions concerning targeted feeding and management of ewes to maximum performance 

are based on a minima BCS (i.e. 2.5) or a critical range of BCS values (i.e. 2.5 to 3.5) (Kenyon et 

https://en.wikipedia.org/wiki/Consistent_estimator
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al., 2014). The predictions found in this study may, therefore, overestimate or underestimate 

measures by 0.23 to 0.32 BCS, which could substantially change the status of the ewe leading to 

incorrect management decisions, which in turn could reduce flock productivity. 

7.5 Conclusion 

Applying a ewe’s live weight record or a combination of live weight, liveweight change and 

previous BCS increased the proportion of variability in current BCS accounted for above that 

observed in Chapter 6. This improvement in the proportion of variability in BCS accounted for 

was greatest in the combined models. Further, the BCS prediction accuracy metrics across age 

groups and stage of the annual production cycle and over time (years) were greater in combined 

models compared with the liveweight alone models. This indicates that BCS could be better 

predicted if additional variables (live weight, liveweight change and previous BCS) were included 

in the multiple regression equation rather than lifetime liveweight alone. These relationships 

could potentially be incorporated in electronic weighing systems that utilize lifetime data. This 

would be especially useful when applied to large extensively run sheep flocks. However, a 

significant portion of the variability in BCS remained unaccounted for (39 to 89%) even in the 

combined models. It is possible that the prediction models could be improved if additional 

information such as stage of pregnancy, number of foetuses carried, and time off feed were 

utilized and warrants further investigation. 
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Abstract 

Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of 

the degree of soft tissue coverage. Body condition score and live weight are statistically related 

in ewes; therefore, it was hypothesized that BCS could be accurately predicted from live weight 

using machine learning models. Individual ewe live weight and body condition score data at each 

stage of the annual production cycle (pre-breeding, pregnancy diagnosis, pre-lambing and 

weaning) at 43 to 54 months of age were used. Nine machine learning (ML) algorithms including 

Ordinal logistic regression, Multinomial regression, Linear Discriminant Analysis, Classification 

and Regression Tree, Random Forest, K-Nearest Neighbours, Support Vector Machine, Neural 

Networks and Gradient boosting decision trees) were applied to predict BCS from a ewe’s 

current and previous live weight record. A three class BCS (1.0−2.0, 2.5−3.5, >3.5) scale, was 

used due to high-class imbalance in the 5-scale BCS data. The results showed that using ML to 

predict ewe BCS at 43 to 54 months of age from current and previous live weight could be 

achieved with high accuracy (> 85%) across all stages of the annual production cycle. The 

gradient boosting decision tree algorithm (XGB) was the most efficient for BCS prediction 

regardless of season. All models had balanced specificity and sensitivity. The findings suggest 

that there is potential for predicting ewe BCS from live weight using classification machine 

learning algorithms.
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8.1 Introduction 

Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of the 

degree of soft tissue coverage (predominantly fat and muscle) of the lumbar vertebrae region 

(Jefferies, 1961; Kenyon et al., 2014). Body condition score is based on a 1.0−5.0 scale using half 

units or quarter units and is conducted by palpation of the lumbar vertebrae immediately caudal 

to the last rib above the kidneys (Kenyon et al., 2014). Unlike live weight (LW), BCS is not affected 

by fluctuations in gut-fill, fleece weight, and frame size which confound live weight as a measure 

of animal size to give an indication of body condition (Coates and Penning, 2000b). BCS can be 

easily learned and is cost-effective and requires no specialist equipment (Kenyon et al., 2014). 

The optimal BCS range for ewe performance is 2.5 to 3.5 (Kenyon et al., 2014), outside this range 

performance is either adversely affected or it is inefficient in terms of performance per kg of 

feed eaten (Morel et al., 2016). Farmers can use targeted feeding based on this optimal range 

to optimise overall performance.  

Despite the advantages of using BCS over live weight (LW) for flock management, many 

farmers in extensive farming systems do not regularly do so. For instance, only 7% and 40% of 

the farmers indicated that they conducted hands-on BCS in Australia and New Zealand, 

respectively (Jones et al., 2011; Corner-Thomas et al., 2016). Farmers often rely on visual 

inspection, a method which is inaccurate, or only use live weight measure (Besier and Hopkins, 

1989) which is influenced by factors including gut-fill variation, frame size, physiological stage 

and fleece weight (Kenyon et al., 2014). The low uptake of BCS among farmers may in some part 

be due to challenges such as assessor subjectivity and extra labour requirements (Kenyon et al., 

2014). Attempts to increase the uptake of BCS among farmers, including use of promotional 

training workshops and regular training, have not yielded the desired outcome, likely because 

they do not directly alleviate the labour burden related to hands-on BCS (Kenyon et al., 2014). 

Therefore, accurate and reliable alternative methods to estimate body condition score with less 

hands-on measurement would be advantageous and would likely improve the uptake of BCS 

technology, especially for large flocks. 

Ewe BCS and LW are correlated (Kenyon et al., 2014; McHugh et al., 2019). This relationship 

varies by age, stage of the annual production cycle (Chapter 6), and breed of animal (McHugh et 

al., 2019). In Chapter 6, it was reported that in Romney ewes, both LW and BCS plateaued after 

they reached 43−54 months of age, thereby establishing a stable base BCS-LW relationship. This 

means that, as a ewe ages, future live weights, based on BCS-LW prediction equations could 

potentially be used to predict a BCS with a degree of accuracy and reduce the need for hands-

on BCS measurement. 
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Modern automated weighing systems with individual electronic identification, offer an 

opportunity to collect lifetime data relatively easily and quickly. With such large datasets, it has 

become possible to process and extract valuable information. In Chapter 6, multivariate 

regression models were applied to predict ewe BCS from lifetime live weight data as a ewe aged 

from eight to sixty-seven months. At best, these multivariate models explained 49% and 21% of 

the variability in BCS using the 5-scale (9 points) and 3-scale (3 points), respectively. Further, BCS 

was skewed with little variability due to the limited nature of the BCS scale used (1.0−5.0, in 

increments of 0.5). Using only discrete values such as BCS can lead to the heaping or grouping 

of all possible values (i.e. noncontinuous) at isolated points, affecting the resolution and 

ultimately the accuracy of any prediction model. 

Approaches that circumvent the challenges of considering discrete as continuous data are 

required for BCS prediction. Classification-based models are recommended for discrete and 

categorical data analysis (Blaikie, 2003; Wicker, 2006; Sullivan and Artino, 2013; Bishop and 

Herron, 2015). Among these classification approaches, machine learning (ML) classification 

models have been used with greater success compared with traditional statistical methods in 

sheep production for early estimation of the growth and quality of wool in adult Australian 

merino sheep (Shahinfar and Kahn, 2018) and sheep carcass traits (Shahinfar et al., 2019) from 

early-life data. Machine learning utilizes algorithms whose logic can be learned directly from 

unique patterns in the data or inexplicitly through pre-programmed classical statistical methods 

(Khaledian and Miller, 2020). The successful use of ML algorithms in various fields of science, 

warrants their application in animal production problem-solving (Morota et al., 2018; Bakoev et 

al., 2020). Ideally, it should be possible to install this computer acquired intelligence into modern 

weighing systems to automatically explore patterns in lifetime live weights and predict BCS. The 

aim of this study was to investigate the use of machine learning algorithms to predict ewe BCS 

from current and previous live weight data. In the present study, ewe BCS was predicted for the 

ewes in their fourth year of life (43−54 months) at four stages of the annual system using 

previous live weight measurements. 

8.2 Materials and Methods  

8.2.1 Farms and animals used and data collection 

The current study was a follow-up of the previous two studies (Chapter 6 and 7).  In Chapter 

6, only, the nature of the relationship between LW and BCS (linear) and the factors affecting 

their relationship (ewe age, stage of annual production cycle and pregnancy-rank) were 

determined. In Chapter 7, the potential of predicting ewe BCS as a continuous variable from live 

weight and previous BCS records was demonstrated. The resulting linear models had high 
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prediction error (> 10%) and a greater part of the variability in BCS (from 39 to 89%) remained 

unexplained. The current study attempts to predict BCS from LW records in a more precise way, 

using machine learning algorithms. The details on how the animals were managed and data were 

collected were reported in Chapter 6. 

8.2.2 Statistical analyses 

Data were analyzed using R program version 4.3.4 (R Core Team, 2016) with caret package 

extensions (Kuhn, 2008). Data were initially explored to identify completeness and were 

summarized by BCS to determine class distribution. Missing values (n = 26) were imputed using 

the bagimput function from the caret package. This method constructs a “bagging” model for a 

given variable based on regression trees, using all other variables as predictors while maintaining 

the original data distribution structure (Kuhn, 2008). Live weight data were normalized and 

centered during analysis using the preProcess function from the caret package. The distribution 

of BCS at all stages of the annual production cycle showed that on a full BCS scale (1.0−5.0) there 

were high-class imbalances (more than 1:50 for any two classes) (Figure 8.1a and 8.1b). The 

average ratios of the class frequencies (minimum: maximum) were 1:216, 1:1336, 1:498 and 

1:97 for pre-breeding, pregnancy diagnosis, pre-lambing and weaning, respectively (Figure 8.1a). 

The high-class or extreme imbalance was due to too few extreme BCS cases with the majority of 

individual BCS measurements ranging from 2.5 to 3.5.  

Triguero et al. (2015) categorized class imbalances above 50:1 for any two outcomes as 

high-class imbalance. Body condition score data is both discrete and ordered in nature, which 

makes multi-class classification regression approaches more suitable for its analysis. However, 

when the underlying assumptions are grossly violated or when classes are extremely imbalanced 

(Leevy et al., 2018), classification statistical methods become less accurate (Tharwat, 2020). 

Strategies to overcome the challenge of class imbalance may include re-sampling techniques 

such as oversampling, under-sampling and synthetic minority oversampling (Chawla et al., 

2002). Such methods of circumventing class imbalances hold in cases below 50:1 imbalance. In 

case of high-class imbalance, the samples generated become less representative of the true 

sample distribution leading to under- or over-fitting the model. 



Chapter 8 

Page | 168  

 

Figure 8.1 Distribution of ewe body condition scores by stage of the annual production cycle 
from 18,354 individual records of 5761 ewes during their fourth year (43−54 months) of age. Bar 
colours (grey, yellow, blue and green) indicate BCS proportions at pre-breeding, pregnancy 
diagnosis, pre-lambing and weaning respectively. In 8.1(a), a BCS of 1.0−4.0-point scale was used 
and in 8.1(b), 1.0−3.0 scale (BCS 1.0−2.0: 1, 2.5−3.5: 2 and > 3.5: 3). 

To improve the balance of the BCS class distribution, a new but narrower three-class BCS 

scale was devised (BCS 1.0−2.0: 1, 2.5−3.5: 2 and > 3.5: 3) (Figure 1b). The selection of a new 

scale was guided by literature, where BCS of 2.5 to 3.5 is considered to be the range for optimal 

performance (Kenyon et al., 2014). Below this BCS range there is reduced performance while 

above this range, energy is used inefficiently. In addition, the resulting classes were re-sampled 

through minority class over-sampling to create “synthetic” data, a method popularly known as 

SMOTE (Chawla et al., 2002) using the SmoteClassif function in the UBL package (Branco et al., 

2016). Resampling improves the class-level distribution (balances the number of per class 

observations) of a categorical variable so that the assumptions of classification models can hold.  

8.2.3 Variable selection and model building  

The best variable combinations for prediction of BCS (1, 2 or 3) at each stage of the annual 

production cycle using live weight were selected through the regularization and variable 

selection technique utilizing the elasticnet method in the glmnet extension (Friedman et al., 

2010) in the caret package (Kuhn, 2008). The elasticnet method combines the power of two 

penalized-regularization methods (ridge and lasso regression) to search for significant predictors 

and handling of collinearity (Archer and Williams, 2012).  

All models were fitted and validated using four steps as described in Chapter 6. The steps 

included: i) data partitioning, ii) resampling, iii) model training and iv) validation. Data were 
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partitioned with stratification into training and testing datasets in a ratio of 3:1, with 

replacement. Resampling was done using the bootstrapping and aggregation (Tropsha et al., 

2003) procedures in the caret package (Kuhn, 2008). During resampling, 10-equal sized sub-

samples, repeated three times were selected from the dataset. Prediction models were trained 

on nine sub-sample sets which were used to compute the parameters and the 10th was used to 

evaluate the model as well as compute the error. The procedure was run 30 times (10-folds 

repeated three times) and the average parameter values and their probabilities were computed 

and computed through bootstrapping as described in Chapter 6.  

The algorithms used for this work were selected from a range of probabilistic and non-

probabilistic methods in order to cover the most commonly used machine learning algorithms 

(Valletta et al., 2017; Khaledian and Miller, 2020). A summary of the concepts, advantages and 

disadvantages of each algorithm is given in the appendix Table 8.1. Further, the criteria for 

selecting these methods included (i) successfully application in other animal science studies 

(Shahinfar and Kahn, 2018; Shahinfar et al., 2019; Bakoev et al., 2020), and (ii) ability to handle 

multi-class categorization (Leevy et al., 2018). Three traditional (ordinal logistic, multinomial 

regression (Agresti and Kateri, 2011; Torgo, 2016) and Linear Discriminant Analysis (LDA) (Zhao 

et al., 2018) statistical models (white box or low-level machine learning models), two low-level 

black models (Random Forest (RF) (Rennie et al., 2003) and classification and regression trees 

(CART) (Zhu et al., 2018) and four high-level black box models (Support Vector Machines (SVM) 

(Zeng et al., 2008) and K-Nearest Neighbours (KNN) (Breiman, 1998; Sun and Huang, 2010), 

Artificial Neural Networks (ANN), and Gradient boosting decision trees (XGB) (Ebrahimi et al., 

2019) were compared. Machine learning models can be categorized in two main ways namely: 

(i) whether data provides labels that classify variables (supervised) or not (unsupervised) (Fisher, 

1987), (ii) if a clear description of the analysis detailing how covariates and the target variable 

are related (classical statistical methods or white boxes), a partial description blue print (low-

level- or semi-black boxes) or no description can be given (high-level black boxes) (Khaledian 

and Miller, 2020). All algorithms were implemented in R package using several caret package 

extensions (nnet, multinom, polr, lda, rpart, svmLinear, xgblinear, rf and knn 

(http://topepo.github.io/caret/index.html). A chart summarizing the model building and 

evaluation procedures is given as in Appendix IX Figure 1. 
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Table 8.1 Key model performance characteristics of common machine learning algorithms (selecting the most appropriate algorithms).  

Model1 Concept2 Parameter and 
processes required3 

Sample size and 
data 
dimensionality 

Assumptions 
and data 
requirements 

Covariate 
pools4 

Computational 
time 

Interpretability5 Prone to 
overfitting 

References 

Ordinal Probabilistic 
regression 

No 
hyperparameters 

Affected by 
small sample 
sizes 

proportional 
odds, linearity  

No Fast White box Yes (Liao, 1994; 
Agresti, 1999; 
Agresti and 
Kateri, 2011)          

Multinom Probabilistic 
regression 

No 
hyperparameters 

Yes proportional 
odds, linearity 

No Fast White box Yes (Böhning, 1992; 
Liao, 1994; 
Agresti and 
Kateri, 2011)  

LDA Dimension 
reduction + 
separability 
between classes 

No 
hyperparameters 

Affected by 
small sample 
sizes, Good for 
high dimension 
data 

Normality, 
linearity & 
continuous 
independent 
variables  

No Fast White box Yes (Chen et al., 
2000; Yu and 
Yang, 2001; 
Zheng et al., 
2004)  

CART Decision trees 
and regression 

Hyperparameters Performs well 
with large 
datasets 

numerical or 
categorical 
outcome 

can remove 
redundant 
covariates 

Fast Low-level black 
box 

No (Quinlan, 1986; 
Quinlan, 1987) 

RF Decision trees, 
regression and 
bugging 

Up to three 
hyperparameters 

Performs well on 
small & high 
dimensionality 
data 

numerical or 
categorical 
outcome 

can remove 
redundant 
covariates 

Decreases with 
sample size 

Low-level black 
box 

No (Ho, 1995; 
Khaledian and 
Miller, 2020) 

XGB Regression trees + 
gradient boosting 

Hyperparameter Require large 
datasets 

numerical or 
categorical 
outcome 

can remove 
redundant 
covariates 

Very fast High-level black 
box 

Yes, if 
large 
number of 
trees 

(Chen and 
Guestrin, 2016; 
Zhang and Zhan, 
2017) 

KNN Regression curve 
+ hyperparameter 
(k) 

 One 
hyperparameter  

Not good for 
large & high 
dimensionality 
data 

No 
assumptions 
but requires 
scaled data 

No Decreases with 
sample size 

Fairly 
interpretable 

Yes (Imandoust and 
Bolandraftar, 
2013; Khaledian 
and Miller, 
2020) 
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SVM Maximal margins 
+ kennel functions 

Two 
hyperparameters 

Not good for 
high dimension 
data 

No 
assumptions 

No Decreases with 
sample size 

High-level black 
box 

Yes (Gunn, 1998; 
Durgesh and 
Lekha, 2010) 

ANN Nodes (artificial 
neurons) 

Up to seven 
hyperparameters  

Sensitive to 
sample size and 
data 
dimensionality 

numerical or 
categorical 
outcome 

No computationally 
very expensive 
and time 
consuming 

High-level black 
box 

Yes (Tu, 1996; 
Daniel, 2013) 

1Model (Ordinal: Ordinal logistic regression, Multinorm: Multinomial regression, LDA: Linear Discriminant Analysis, CART: Classification and regression tree, RF: Random Forest, XGB: Gradient 
boosting decision trees model, KNN: K-Nearest Neighbours, SVM: Support Vector Machines, ANN: Neural Networks). 2Concept: How the algorithm works. 3Parameter and processes: Tuning 
parameters for the algorithm. 4Covariate pools: Intrinsic ability to remove redundant variables or to select important variables. 5Interpretability: White box: clear model structure with parameters: 
black boxes: model structure and the relationship between variables is unknown.  
NB: The criteria used to summarize the key model performance characteristic was a modified version of 5-point criteria by Khaledian and Miller (2020).  
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8.2.4 Model performance evaluation 

Using a three-class BCS scale (1.0−2.0, 2.5−3.5, >3.5), model fit and ranking between 

models were assessed using overall accuracy, balanced accuracy, precision, F-measure, 

sensitivity and specificity. The metrics were computed from the number of true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) predictions as described by 

Tharwat (2020). In addition, Cohen's kappa statistic (Cohen, 1960), a common measure to 

calculate agreement between the classification of qualitative observations, was calculated as 

described by McHugh (2012) and Botchkarev (2019). To evaluate the power of the algorithms to 

correctly classify ewe BCS, measures of the balance (authenticity and prediction power) 

between sensitivity and specificity were computed. These indicators of model power and 

authenticity (Positive likelihood ratio: PLR, Negative likelihood ratio: PLN and Youden’s index) 

combine sensitivity and specificity to emphasize how good a model can predict the outcome 

(Lan et al., 2017). A detailed description of the metrics (accuracy and authenticity) used in model 

assessment is given in Table 8.2. 

Table 8.2 Model performance evaluation metrics. 

Model Definition Formula 

Balanced accuracy The proportion of correctly classified 
subjects for each class. Useful 
especially when there is class 
imbalance.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2

   

  

Precision  The proportion of correctly classified 
subjects for a given class given that 
they truly belonged to that class  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

F-measure  The harmonic mean of the precision 
and sensitivity best if there is some 
sort of balance between precision & 
sensitivity.  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

Sensitivity The proportion of correctly classified 
subjects for a given class to those who 
truly belong to that class. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity 
 

The proportion of subjects correctly 
classified as not belonging to a given 
class to those that truly do not belong 
to that class. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Positive likelihood 
ratio (PLR) 

is the ratio between the true positive 
and the false positive rates for 
“positive” events that are detected by 
a model. 

𝑃𝐿𝑅 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

Negative likelihood 
ratio (NLR) 

is the ratio between the false negative 
and true negative rates and mirrors 
the probability for “negative” events 
to be detected by a model. 

𝑁𝐿𝑅 =
1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
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Youden’s index (YI) is the sum of sensitivity and specificity 
minus one 

𝑌𝐼 = (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) − 1 

Cohen’s kappa (κ) Measures the degree of agreement 
between two raters or ratings (inter-
rater or interrater reliability) 
 

κ =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

 

 

where: TP = true positive, TN = true negative, FP = false positive, FN = false negative, 
κ = Cohen’s kappa statistic, po = actual observed agreement, and pe represents chance agreement. 

The analysis generated a dataset of 108 records (4 time points, 3 BCS classes and 9 models) 

of two groups of model performance evaluation metrics firstly, the indicators of accuracy: 

balance accuracy, precision and F-measure, and secondly measures of model authenticity: 

sensitivity and specificity). To obtaina holistic picture of the overall model performance, the two 

groups of performance metrics were examined. Initially, each group of variables was explored 

using principal component analysis (PCA) to determine the appropriate number of components 

of dimensions where the Eigen values associated with each component were compared with 

those generated through a probabilistic process based on Monte Carol PCA for parallel analysis 

simulation (Horn, 1965; Glorfeld, 1995). Monte Carlo PCA simulated Eigen values allow 

comparisons based on the same sample size and number of variables. If the Eigen value of a 

component from real data is greater than the simulated one, then that component is important. 

Otherwise, if equal to or less, such components are considered not important. Consequently, 

one component was considered important from each group of variables (Indicators of accuracy: 

explained variance = 87%, indicators of Sensitivity-Specificity: explained variance = 61%) having 

explained most of the variability in the group data. 

Principal Component Analysis is limited to continuous data. In order to decipher the 

patterns in the relationship between the categorical variable (BCS) and each model, regarding 

their overall performance, a correspondence analysis was required. Therefore, the FAMD 

function in the FactoMiner package (Lê et al., 2008) was used to analyze both groups of 

variables. The FAMD extension combines PCA and multiple correspondence analysis (MCA) to 

conduct factor analysis. Each group of variables then resulted in a single dimension (latent 

variable). A scatterplot of Accuracy and Sensitivity-Specificity latent variables was constructed 

for each of the four stages of the annual sheep weighing cycle. Models were ranked on a scale 

of 1 to 9 (where 1 is best and 9 the poorest) at each stage of the annual production cycle, to 

obtain the overall performance rank.  

8.3 Results 

8.3.1 Overall performance of machine learning models  

This section presents results for the accuracy in a broad sense, sensitivity, and specificity of 

nine models in predicting ewe BCS based on the testing dataset (Tables 8.3 and 8.4). 
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Additionally, Appendix IX Table 1 gives the model accuracy comparisons between across stages 

of the annual sheep weighing cycle in New Zealand. 

Results showed that there were significant (p < 0.05) differences in model prediction 

performance based on the Boniferroni p-value adjustment method for pairwise comparisons 

(Appendix IX Table 2). The gradient boosting decision tree algorithm (XGB) had the highest (p < 

0.05) accuracy (average = 90.3%) and kappa statistic (κ = 82.1%) at pre-breeding, pregnancy 

diagnosis, pre-lambing and weaning, making it the most accurate algorithm for ewe BCS 

prediction on the 1 to 3 (1.0−2.0; 2.5−3.5; >3.5) scale (Table 8.3). The RF (Appendix IX: Table 2, 

Figure 2) algorithm had a slightly lower but good accuracy making it the best alternative to XGB. 

The Multinorm, LDA, Ordinal and CART algorithms had moderate to fair accuracies. Pre-lambing, 

XGB and RF were comparable and had the highest accuracies. The Random Forest and K-Nearest 

Neighbours (KNN) in decreasing order were also considered good prediction models having 

scored above 80% accuracy and 70% kappa statistics at all times of the year. The CART algorithm 

consistently gave the lowest (p > 0.05) accuracy except pre-lambing where its accuracy was 

comparable (p = 0.047; Appendix D2) to that of ordinal logistic regression. The lowest average 

accuracy was 66.6% seen for the CART model at weaning (Table 8.3, parenthesis). Overall, all 

algorithms had greater accuracy than a random guess (i.e. accuracy = 33.3%) in classifying BCS.  

In terms of overall authenticity, models were biased towards being more specific than 

sensitive (Table 8.4). The ranking of model authenticity followed a trend like that of accuracy. 

The gradient boosting decision tree algorithm (XGB) had the highest sensitivity (average = 

87.7%) as well as specificity (average = 93.9%) across all stages of the annual sheep weighing 

cycle, making it the most authentic and powerful algorithm for categorizing ewe into the correct 

BCS classes on 3-point scale (1.0−2.0; 2.5−3.5; >3.5) (Table 8.3). The XGB model was closely 

followed by RF (average sensitivity = 85.5%, average specificity: 92.8%) while CART (average 

sensitivity: 58.7%, average specificity: 79.5%) was the poorest.
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Table 8.3 Accuracy and Kappa statistics of nine predictive models for ewe BCS at 43−54 months of age at different stages of the annual production cycle. 
Values in parenthesis denote the minimum and maximum accuracy, in ascending order. The superscripts 123 where 1: 1.0−2.0, 2: 2.5−3.5 and 3: >3.5 indicate 
the BCS class from which the value was observed. The first superscript indicates the class from which the minimum estimate was observed, while the second 
value indicates the class from which the maximum estimate was achieved). All models were significant (p < 0.05) and better than a random guess (i.e. 
Accuracy = 33.3%). All ewe BCS predictions were based on current and previous live weight. 

  Pre-breeding   Pregnancy diagnosis   Pre-lambing   Weaning 

Model Accuracy Kappa(κ)   Accuracy Kappa(κ)   Accuracy Kappa(κ)   Accuracy Kappa(κ) 

XGB 89.5 (85.6−97.5)3,1 79.6  91.2 (88.5−93.4)3,1 82.3  90.6 (88.8−91.4)2,1 82.9  91.7 (90.1−93.2)1,3 83.4 
RF 89.0 (84.7−96.6)2,1 78.0  90.0 (87.5−92.9)3,1 78.0  89.2 (86.6−91.6)2,3 78.5  88.6 (88.2−89.6)1,3 77.1 
KNN 87.0 (81.2−95.7)2,1 75.5  86.8 (84.7−89.8)3,1 75.5  86.2 (83.0−89.7)2,3 66.0  86.4 (84.6−88.8)2,3 77.7 
SVM 86.7 (78.8−96.6)2,1 75.9  88.5 (84.8−93.1)2,1 73.7  73.8 (72.0−74.7)2,1 71.7  88.8 (85.3−91.2)2,3 72.7 
ANN 85.2 (79.0−94.2)2,1 72.2  82.0 (80.5−85.1)2,1 65.6  78.9 (75.5−82.4)1,3 69.5  84.0 (82.0−86.9)1,3 68.0 
Multinorm 82.7 (76.4−91.7)2,1 66.8  77.6 (73.8−80.0)3,1 56.1  73.5 (71.8−75.1)1,3 48.8  75.9 (74.4−78.1)3,2 51.8 
LDA 81.2 (73.8−91.1)2,1 63.6  77.1 (72.2−79.6)3,1 54.6  73.8 (71.5−75.5)1,3 49.5  75.9 (74.4−78.7)1,2 51.7 
Ordinal 79.6 (70.7−88.4)2,1 48.4  72.7 (67.6−75.8)2,1 47.7  68.4 (58.7−74.8)2,3 37.0  72.4 (67.8−76.2)2,1 44.9 
CART 72.6 (58.6−85.1)2,1 47.3   69.8 (64.0−73.3)3,1 40.5   67.5 (62.8−71.1)1,2 41.8   66.6 (61.4−70.1)2,1 33.2 

Model: (XGB: Gradient boosting decision trees model, RF: Random Forest, KNN: K-Nearest Neighbours, SVM: Support Vector Machines, ANN: Neural Networks, Multinorm: Multinomial 
regression, LDA: Linear Discriminant Analysis, Ordinal: Ordinal logistic regression, CART: Classification and regression tree). 
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Table 8.4 Indicators of authenticity (sensitivity and specificity) of nine predictive models for ewe BCS at 43−54 months of age at different stages of the 
annual production cycle. Values in parenthesis denote the minimum and maximum sensitivity or specificity, in ascending order. The superscripts 123 
where 1: 1.0−2.0, 2: 2.5−3.5 and 3: >3.5 indicate the BCS class from which the value was observed. In their sequence, the first superscript indicates the 
class from which the minimum estimate was observed, while the second value indicates the class from which the maximum estimate was achieved). All 
ewe BCS predictions were based on current and previous live weight. 

 Pre-breeding  Pregnancy diagnosis  Pre-lambing  Weaning 

Model Sensitivity Specificity  Sensitivity Specificity  Sensitivity Specificity  Sensitivity Specificity 

XGB 86.0 (79.7−96.3)3,1 93.1 (89.1−98.9)2,1  88.2 (83.7−90.4)3,1 94.2 (93.1−96.3)2,1  87.5 (85.9−88.8)1,3 93.8 (89.7−97.5)2,1  89.0 (84.8−92.3)1,2 94.5 (91.6−96.5)2,3 
RF 85.3 (80.0−95.3)2,1 92.8 (89.3−97.9)2,1  86.7 (80.9−90.3)3,1 93.4 (90.5−95.5)2,1  85.6 (82.6−88.6)1,3 92.8 (87.5−96.4)2,1  84.8 (82.5−87.6)1,2 92.4 (88.9−93.4)2,3 
SVM 82.6 (74.8−93.8)2,1 91.4 (87.5−97.5)2,3  82.3 (75.3−84.2)3,2 91.2 (84.2−95.4)2,1  81.5 (73.5−86.1)1,3 90.8 (81.1−98.1)2,1  81.9 (77.6−85.6)3,2 90.9 (83.5−95.1)2,3 
KNN 82.2 (66.8−96.2)2,1 91.2 (85.9−97.0)3,1  84.7 (75.5−91.8)2,1 92.3 (88.4−94.5)3,1  65.0 (63.0−67.3)1,2 82.5 (76.8−86.4)2,1  85.1 (78.6−88.9)2,3 92.6 (91.9−93.6)2,3 
ANN 80.2 (71.3−91.7)2,1 90.2 (86.7−96.7)2,1  76.0 (73.2−78.0)3,1 88.0 (84.3−92.2)2,1  71.8 (56.5−80.2)1,3 85.9 (78.8−94.4)2,1  78.7 (70.5−84.1)1,2 89.3 (82.4−93.5)2,1 
Multinom 76.8 (68.5−89.0)2,1 88.5 (84.4−94.5)2,1  70.0 (62.7−71.4)3,2 85.1 (81.8−88.7)2,1  64.7 (58.6−68.7)1,3 82.4 (80.6−84.9)2,1  67.9 (63.3−76.2)3,1 83.9 (80.1−86.2)2,1 
LDA 74.9 (64.7−87.7)2,1 87.6 (82.8−94.4)2,1  69.4 (57.1−82.7)3,2 84.8 (76.6−90.7)2,1  65.0 (56.3−69.4)1,3 82.5 (79.2−86.8)2,1  67.8 (61.5−79.8)3,2 83.9 (77.6−87.4)2,3 
Ordinal 72.7 (61.6−82.4)2,1 86.5 (79.7−94.5)2,1  63.6 (60.7−67.9)2,3 81.7 (73.1−90.9)2,1  57.9 (41.4−69.3)2,3 79.0 (76.1−80.8)2,1  63.2 (58.3−68.5)3,1 81.6 (72.8−88.2)2,3 
CART 63.3 (37.0−82.5)2,1 81.9 (77.6−87.8)3,1  59.7 (41.1−77.3)3,2 80.0 (67.1−86.0)2,3  56.7 (37.9−72.3)1,2 78.3 (71.2−87.7)2,1  55.4 (39.2−62.9)2,1 77.7 (72.4−83.6)3,2 

Model: (XGB: Gradient boosting decision trees model, RF: Random Forest, KNN: K-Nearest Neighbours, SVM: Support Vector Machines, ANN: Neural Networks, Multinorm: Multinomial regression, 
LDA: Linear Discriminant Analysis, Ordinal: Ordinal logistic regression, CART: Classification and regression tree). 
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In the following section we present results for the construct or latent variables which are 

representative of the three specific measures of model accuracy (class-level or balanced 

Accuracy, Precision and F-measure) together with two indicators of predictive 

power/authenticity (Sensitivity, Specificity) across four stages of the annual sheep weighing 

cycles (Figures 8.2, 8.3, 8.4 and 8.5). A summary of the indicators of accuracy and authenticity 

was provided in Tables 8.3 and 8.4. Additionally, Appendix D4 provides extra two measures of 

accuracy (Precision and F-measure) used in the construction of the accuracy latent variable. The 

results show the patterns in the relationship between the latent variables with BCS class 

prediction for each model. The CART model having had the lowest accuracy and power measures 

across all stages of the annual sheep weighing cycle and was selected as the reference for 

comparisons.  

8.3.1.1 Pre-breeding 

At pre-breeding, the models had a clear-cut hierarchy in performance, with XGB being the 

best and CART the poorest (Figure 2). The XGB was the best algorithm with 17% more accuracy 

than CART, which was the least accurate in predicting ewe BCS (Table 8.3). The best balance 

between accuracy and authenticity (points along or touching the diagonal line) was observed in 

the moderate performing models including ANN, Multinom, LDA and Ordinal (Figure 8.3). The 

best performing models (XGB, RF, SVM and KNN) were biased towards accuracy while the 

poorest (CART) was biased towards authenticity. In terms of BCS, the best accuracy was achieved 

in the 1.0−2.0 class and the lowest in the 2.5−3.5 class for all models except for XGB which was 

least accurate in the >3.5 class. The best accuracy (97.5%) was achieved using the XGB in the 

1.0−2.0 BCS class and the lowest (58.6%) was observed using the CART algorithm in the 2.5−3.5 

class (Table 8.3, parenthesis).  
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Figure 8.2 A plot of the accuracy and sensitivity-specificity latent variables from their first 
dimension/component obtained through a factor analysis of mixed variables (a combination of 
Principal Component and Multiple Correspondence Analyses) procedure on measures of 
performance for the prediction of ewe BCS during pre-breeding. Dots (red sphere: model, blue 
square: BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity-
specificity. If dot is above, then model or BCS class was more accurate than sensitive-specific 
while the reverse indicates that the model was more sensitive than accurate. The further and 
more positive a model is along the diagonal line, the greater and better is its prediction power. 
The variance explained by each extracted first dimension for each latent variable (Accuracy, 
sensitivity-specificity) is given in parenthesis along the axes. 

All models were most sensitive to the 1.0−2.0 class and least sensitive to the 2.5−3.5 class 

except XGB which was least sensitive to the >3.5 class. The XGB was the best algorithm being 

23% more sensitive than CART, which was the least sensitive in predicting ewe BCS (Table 8.3). 

The highest BCS classification sensitivity was observed using XGB and KNN models (96.3%) in the 

1.0−2.0 BCS class while CART (37.0%) had the lowest in the 2.5−3.5 class (Table 8.4, parenthesis). 

All models had the highest specificity observed in the 1.0−2.0 BCS class except for SVM which 

had the highest specificity in the >3.5 class and both KNN and CART which had their lowest in 

the >3.5 class. The XGB was the best algorithm with 12% more specificity than CART, which had 

the least specificity in predicting ewe BCS (Table 8.4). The highest specificity (98.9%) was 

observed in the 1.0−2.0 class for XGB and the lowest (72.6%) in the >3.5 class for CART model 

(Table 8.4, parenthesis). 
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8.3.1.2 Pregnancy diagnosis 

At pregnancy diagnosis, the models had a clear-cut hierarchy in performance, with XGB 

being the best and CART the poorest (Figure 8.3). The Multinom and LDA models were closely 

juxtaposed indicating that they had comparable performance. The XGB was the best algorithm 

with 21% more accuracy than CART, which was the least accurate in predicting ewe BCS (Table 

8.3). The best balance between accuracy and authenticity was observed in the ANN model. The 

XGB, RF, SVM and KNN models were biased towards accuracy while the Multinom, LDA, Ordinal 

and CART were biased towards authenticity (Figure 8.3). In terms of BCS, the best accuracy was 

achieved in the 1.0−2.0 class and the lowest in the >3.5 class for all models except for SVM, ANN 

and Ordinal which were least accurate in the 2.5−3.5 class. The highest accuracy (93.4%) was 

achieved using the XGB in the 1.0−2.0 BCS class and the lowest (64.0%) was observed using the 

CART algorithm in either the >3.5 class (Table 8.3, parenthesis).  

There was no clear pattern in class-level model sensitivity at pregnancy diagnosis. The XGB 

was the best algorithm with 29% more sensitivity than CART, which was the least sensitive in 

predicting ewe BCS (Table 8.4). The highest BCS classification sensitivity was observed using KNN 

models (91.8%) in the 1.0−2.0 BCS class while CART (41.1%) had the lowest in the >3.5 class 

(Table 8.3, parenthesis). All models had the highest specificity observed in the 1.0−2.0 BCS class 

except for CART which had the its highest in the >3.5 class. The XGB was the best algorithm with 

14% more specificity than CART, which had the least specificity in predicting ewe BCS (Table 8.4). 

The highest specificity (96.3%) was observed in the 1.0−2.0 class for XGB and the lowest (67.1%) 

in the 2.5−3.5 class for CART model.
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Figure 8.3 A plot of the accuracy and sensitivity-specificity latent variables from their first 
dimension/component obtained through a factor analysis of mixed variables (a combination of 
Principal Component and Multiple Correspondence Analyses) procedure on measures of 
performance for the prediction of ewe BCS during pregnancy diagnosis. Dots (red sphere: model, 
blue square: BCS class). Dotted diagonal line indicates a balance between accuracy and 
sensitivity-specificity. If dot is above, then model or BCS class was more accurate than sensitive-
specific while the reverse indicates that the model was more sensitive than accurate. The further 
and more positive a model is along the diagonal line, the greater and better is its prediction 
power. The variance explained by each extracted first dimension for each latent variable 
(Accuracy, sensitivity-specificity) is given in parenthesis along the axes. 

8.3.1.3 Pre-lambing 

At pre-lambing, the models had a clear-cut hierarchy in performance, with XGB being the 

best and CART the poorest (Figure 8.3). It was worth noting that, the KNN model which had been 

among the best four models at pre-breeding and pregnancy diagnosis, was downgraded into a 

moderate model. The KNN, Multinom and LDA models had overlapping overall performance. 

The XGB was the best algorithm with 23% more accuracy than CART, which was the least 

accurate in predicting ewe BCS (Table 8.3). The best overall accuracy was achieved in the >3.5 

BCS class and the lowest in the 2.5−3.5 class (Table 8.3, parenthesis). Regarding BCS class-level 

model accuracy, there was no clear pattern. The majority of the models (RF, KNN, ANN, 

Multinom, LDA and Ordinal) were most accurate in the >3.5 BCS class and least accurate in the 

2.5−3.5 class. The least accuracy for majority of the models (XGB, RF, KNN, SVM and Ordinal) 

was observed in the 2.5−3.5 class. The highest accuracy (92%) was achieved using the RF model 

in the >3.5 BCS class and the lowest (63 %) was observed using the CART algorithm in either the 

1.0−2.0 class (Table 8.3, parenthesis).  
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Figure 8.4 A plot of the accuracy and sensitivity-specificity latent variables from their first 
dimension/component obtained through a factor analysis of mixed variables (a combination of 
Principal Component and Multiple Correspondence Analyses) procedure on measures of 
performance for the prediction of ewe BCS at pre-lambing. Dots (red sphere: model, blue 
square: BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity-
specificity. If dot is above, then model or BCS class was more accurate than sensitive-specific 
while the reverse indicates that the model was more sensitive than accurate. The further and 
more positive a model is along the diagonal line, the greater and better is its prediction power. 
The variance explained by each extracted first dimension for each latent variable (Accuracy, 
sensitivity-specificity) is given in parenthesis along the axes. 

All models were biased with XGB, RF, SVM and ANN inclined towards accuracy, while KNN, 

Multinon, LDA, Ordinal and CART were inclined towards authenticity (Figure 8.4). Further, all 

models were most sensitive to the >3.5 class and least sensitive to the 1.0−2.0 class except KNN 

and CART with the highest sensitivity in the 2.5−3.5 class and Ordinal with the lowest sensitivity 

in the 2.5−3.5 class. The XGB was the best algorithm with 31% more sensitive than CART, which 

was the least sensitive in predicting ewe BCS (Table 8.4). The highest BCS classification sensitivity 

was observed using XGB models (88.8%) in the >3.5 BCS class while CHART (37.9%) had the 

lowest in the 1.0−2.0 class (Table 8.4, parenthesis). All models had the highest specificity 

observed in the 1.0−2.0 BCS class. The XGB was the best algorithm with 16% more specificity 

than CART, which had the least specificity in predicting ewe BCS. The highest specificity (97.5%) 

was observed in the 1.0−2.0 class for XGB and the lowest (71.2%) in the 2.5−3.5 class for CART 

model (Table 8.4, parenthesis). 

XGB
RF

SVM

KNN

ANN

MultinomLDA

Ordinal
CART

1.0-2.0

2.5-3.5

>3.5

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

A
cc

u
ra

cy
 l

at
en

t 
v

ar
ia

b
le

 (
29

.2
5%

)

Sensetivity-Specificity latent variable (19.65%)



Chapter 8 

Page | 182  

8.3.1.4 Weaning 

At weaning, the models had a clear-cut hierarchy in performance, with XGB being the best 

and CART the poorest (Table 8.3; Figure 8.5). The RF and KNN models had overlapping overall 

performance. The XGB was the best algorithm with 33% more accuracy than CART, which was 

the least accurate in predicting ewe BCS (Table 8.3). The majority of the models were biased 

towards accuracy, except for Multinon, LDA, Ordinal and CART, which were inclined towards 

authenticity (Figure 8.5). The best overall accuracy was achieved in the >3.5 BCS class and the 

lowest in the 2.5−3.5 class. Regarding the BCS level model accuracy, there was no clear pattern. 

However, majority of the models (XGB, RF, SVM, KNN and ANN) were most accurate in the >3.5 

BCS class. The least model accuracy was equally observed in the 1.0−2.0 and 2.5−3.5 BCS classes, 

across models. The highest accuracy (93.2%) was achieved using the RF model in the >3.5 BCS 

class and the lowest (61.4 %) was observed using the CART algorithm in either the 2.5−3.5 class 

(Table 8.3, parenthesis).  

There was no clear pattern in class-level model sensitivity at weaning. The XGB was the best 

algorithm with 34% more sensitivity than CART, which was the least sensitive in predicting ewe 

BCS (Table 8.4). The highest BCS classification sensitivity was observed using XGB models (92.3%) 

in the 2.5−3.5 BCS class while CHART (39.2%) had the lowest in the 2.5−3.5 class (Table 8.4, 

parenthesis). All models had the highest specificity observed in the >3.5 BCS class and the least 

in the 2.5−3.5 class, except for the CART whose specificity arrangement was the opposite and 

for ANN and Multinom which had their highest specificity in the 1.0−2.0 class. The XGB was the 

best algorithm with 17% more specificity than CART, which had the least specificity in predicting 

ewe BCS (Table 8.4). The highest specificity (96.5%) was observed in the 1.0−2.0 class for XGB 

and the lowest (72.4%) in the 2.5−3.5 class for CART model (Table 8.4, parenthesis). 
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Figure 8.5 A plot of the accuracy and sensitivity-specificity latent variables from their first 
dimension/component obtained through a factor analysis of mixed variables (a combination of 
Principle Component and Multiple Correspondence Analyses) procedure on measures of 
performance for the prediction of ewe BCS at weaning. Dots (red sphere: model, blue square: 
BCS class). A plot of the accuracy and sensitivity-specificity latent variables from the first 
dimension/component obtained through a factor analysis of mixed variables (a combination of 
Principal Component Analysis and Multiple Correspondence Analysis) procedure on measures 
of performance for the prediction of ewe BCS at weaning. Dots (red sphere: model, blue square: 
BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity-specificity. 
If dot is above, then model or BCS class was more accurate than sensitive-specific while the 
reverse indicates that the model was more sensitive than accurate. The further and more 
positive a model is along the diagonal line, the greater and better is its prediction power. The 
variance explained by each extracted first dimension for each latent variable (Accuracy, 
sensitivity-specificity) is given in parenthesis along the axes. 

8.3.2 The balance between sensitivity and specificity 

The data showed that the overall specificity 86% (67−98%) was higher than sensitivity 74% 

(37−96%) values across all algorithms (Table 3). An assessment of the indicators of the balance 

between sensitivity and specificity was undertaken and the indices are summarized in Table 4. 

The positive likelihood ratio (PLR) for all models were greater than 1.0 while the negative 

likelihood ratio (NLR) were less than 1.0 across stages of the annual production cycle. The XGB 

model had the highest PLR and lowest NLR while CART had the lowest PLR and highest NLR 

across stage of the annal cycle. Similarly, Youden’s index, YI was consistently highest for XGB 

model and lowest for the CART model.
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Table 8.5 Measures of the balance between sensitivity and specificity of the BCS prediction 
models by stage of the annual production cycle. 

  Pre-breeding   Pregnancy diagnosis   Pre-lambing   Weaning 

Model PLR NLR YI   PLR NLR YI   PLR NLR YI   PLR NLR  YI 

XGB 33.41 0.15 0.79   16.48 0.13 0.82   19.39 0.13 0.81   18.32 0.12 0.83 
RF 20.49 0.16 0.78  14.45 0.14 0.80  15.33 0.16 0.78  12.25 0.16 0.77 
SVM 16.88 0.19 0.74  12.13 0.19 0.74  18.48 0.20 0.72  11.79 0.20 0.73 
KNN 15.21 0.20 0.73  12.3 0.17 0.77  3.90 0.42 0.48  11.64 0.16 0.78 
ANN 13.04 0.22 0.70  6.94 0.27 0.64  6.32 0.32 0.58  8.66 0.24 0.68 
Multinom 8.65 0.27 0.65  4.87 0.35 0.55  3.69 0.43 0.47  4.28 0.38 0.52 
LDA 8.16 0.29 0.62  5.12 0.36 0.54  3.78 0.42 0.48  4.37 0.38 0.52 
Ordinal 7.66 0.32 0.59  4.20 0.45 0.45  2.83 0.54 0.37  3.83 0.45 0.45 
CART 3.92 0.46 0.45   3.27 0.49 0.40   2.70 0.54 0.35   2.49 0.57 0.33 

Models: (XGB: Gradient boosting decision trees model, RF: Random Forest, KNN: K-Nearest Neighbours, SVM: Support 
Vector Machine, ANN: Neural Networks, Multinorm: multinomial regression, LDA: Linear Discriminant Analysis, 
Ordinal: Ordinal logistic regression, CART: Classification and Regression Tree). Measures of the balance between 
sensitivity and specificity (PLR: Positive likelihood rate, NLR: Negative likelihood rate and YI: Youden’s index). A good 
model (PLR value > 1.0 and the larger PLR is the better, NLR value less than 1.0 and the smaller the better, YI ranges 
from 0 to 1.0 and values that approach 1.0 show higher authenticity and prediction power). 

8.3.3 Overall model ranking 

Overall, black box models were better than low-level white box models (Table 5). The XGB 

was consistently the best performing while CART was the poorest model. There was change in 

model ranking across stages of the annual production cycle except for XGB, LDA, Ordinal and 

CART.   

Table 8.5. Model ranking by stage of annual production cycle and overall.  

Model Pre breeding 
Pregnancy 
diagnosis Pre-lambing Weaning Overall 

XGB 1 1 1 1 1 (1.0) 
RF 3 2 2 2 2 (2.3) 
SVM 4 3 4 3 3 (3.5) 
KNN 2 6 3 4 4 (3.8) 
ANN 5 4 5 5 5 (4.8) 
Miltinom 6 5 6 6 6 (5.8) 
LDA 7 7 7 7 7 (7.0) 
Ordinal 8 8 8 8 8 (8.0) 
CART 9 9 9 9 9 (9.0) 

Overall (overall rank with means in parenthesis). The lower the rank the greater the BCS prediction performance. 

8.4 Discussion  

The present study utilized machine learning classification algorithms to explore the 

possibility of predicting BCS from current and previous live weight in mature ewes (at 

approximately 43−54 months of age). Body condition score was treated as a categorical variable 

with three levels (1.0−2.0, 2.5−3.5; >3.5). Nine of the most recognized machine learning models 

(XGB, ANN, RF, K-NN, SVM, Ordinal, Multinom, LDA and CART models) were applied to 

preprocessed datasets. 
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We applied a strategy to reduce the accuracy and authenticity measures into two 

dimensions, to generate latent variables or constructs that were plotted to give a visual 

summary of model performance. This technique gave a visual display (a holistic picture) of 

overall model performance which made it easier to decipher the patterns in the relationship 

between the accuracy and authenticity of models in BCS prediction. Previous studies have 

suggested the use of several metrics to give an indication about a model’s accuracy and 

authenticity(Hossin and Sulaiman, 2015; Botchkarev, 2019; Dinga et al., 2019; Tharwat, 2020). 

These have, however, been piecemeal with no unifying interface. By bringing together both 

accuracy and authenticity measures in a single display, we appear to have come up with a 

solution. This innovation could serve as a platform for interrogating even better ways of model 

performance evaluation.  

8.4.1 Overall accuracy  

The findings suggest that ewe BCS prediction from current and previous live weight can be 

achieved using machine learning classification algorithms within the limited BCS range used in 

the present study. The results indicated that XGB was the most efficient and robust model 

(overall accuracy = 87.6%; sensitivity = 87.7%; specificity = 93.9%). Other good alternatives to 

XGB for predicting ewe BCS were three algorithms (KNN, RF and SVM) with accuracies > 80% 

and kappas > 70% while the remaining four (CART, Ordinal, LDA and Multinomial) were weak 

algorithms (accuracies < 70%, kappas < 60%). All models performed better than a random guess 

with the most efficient ones giving prediction errors as low as 11% and 38%. According to Galdi 

and Tagliaferri (2018), a perfect classifier has a rate of 100% while a random guess would give a 

33.3% error for three-level classifiers (Dietterich, 2000; Galdi and Tagliaferri, 2018). The weakest 

algorithms outperformed a random guess by only 8, 11, 15 and 20 %, respectively, using the 

current study data. Whereas accuracy measures can be interpreted arbitrarily, Cohen’s Kappa 

statistic has been classified (Landis and Koch, 1977; McHugh, 2012) into six different categories, 

no agreement (values ≤ 0), none to slight (0.01–0.20), fair (0.21−0.40), moderate (0.41−0.60), 

substantial (0.61−0.80), and almost perfect agreement (0.81−1.00). Further, Fleiss et al. (1981), 

suggested that kappa values greater than 0.75 may be taken to represent excellent agreement 

beyond serendipity, values below 0.40 as poor agreement, and values between 0.40 and 0.75 as 

fair to good agreement. The findings in this study suggest that using the top performing 

algorithms (XGB and RF), ewe BCS can be predicted with high accuracy across four phases of the 

annual production cycle.  
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8.4.2 Class-level accuracy 

Results also showed that at the accuracy-related, class-level, metrics including accuracy, 

precision and F-measure were highest for XGB making it the most efficient and robust model for 

ewe BCS prediction. Further, there appeared to be variability in all metrics across stages of the 

annual sheep weighing cycle and BCS class. This variation in accuracy across the stages of the 

annual production cycle suggests that with the exception of XGB, different models may be 

required to predict BCS at different stages of the annual production cycle. Similarly, different 

models may be required if there is need for greater accuracy in one BCS class than others. This 

is especially important when great accuracy is required for management decisions with far 

reaching consequences such as when limited resources must be allocated to only target classes. 

Further, results indicated that the higher- level (black box) machine learning models such as XGB 

and RF, were better at separating BCS into distinct classes than the lower-level (white box) 

models such as multinomial or ordinal logistic regression. 

In the current study, the best balance between accuracy and authenticity (sensitivity-

specificity) was achieved during pre-breeding compared with other stages of the annual 

production cycle. This observation could have been due to the “relative ease” to condition score 

a ewe pre-breeding than other stages of the annual production cycle (Kenyon et al., 2014). Prior 

to breeding most farmers enhance ewe feeding in a process known as flushing (Kenyon et al., 

2008; Kenyon et al., 2011a) which likely resulted into uniform tissue (fat and muscle) distribution 

around the body. In addition, the weight measurements recorded pre-breeding are not 

confounded by the conceptus mass which is the case at pregnancy diagnosis and pre-lambing. 

The conceptus mass influences the ewe live weight from pregnancy through the pre-lambing 

stage (Kenyon et al., 2008; Kenyon et al., 2011b) which coincides with the two time-point weight 

measurements during those stages of the annual production cycle. Further, during lactation a 

ewe has its greatest nutrient requirements for energy and protein (Nicol and Brookes, 2007) and 

at weaning a ewe is drained by the lactation process leading to variability in fat deposition 

around the body and are consequently lighter. Using the same ewe population, a decreasing 

trend in ewe BCS as a ewe aged plateauing after 43−54 months has been reported (Chapter 6). 

This was attributed to a likelihood that farmers were under feeding their aging ewes at certain 

stages or periods of the annual production cycle. Lactation period could be one of such periods, 

resulting in failure to meet ewe dietary energy and protein requirements and consequently 

leading to thinner animals. The management conditions at pregnancy diagnosis, pre-lambing 

and weaning, therefore, could lead to differences in fat deposition around the body resulting 

into variability in BCS.  
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8.4.3 Class-level model authenticity 

Among the indicators of model authenticity, the models had apparently greater specificity 

than sensitivity which could point to unbalanced distinguishing power to make predictions. An 

examination of three indicators of balance between sensitivity and specificity or model 

authenticity/power (PLR and YI) indicated that all models had values within acceptable 

authenticity and power (PLR > 1.0, NLR < 1.0 and YI > 1.0) across stage four stages of the annual 

production cycle indicating that, all models had balanced sensitivity and specificity. Results also 

showed that XGB had the highest PLR and YI and the lowest NLR. Combined with the results 

from the measures of accuracy, these results rank XBG as the most robust model for BCS 

prediction. Sensitivity is defined as the proportion of individuals or items who belong to a given 

BCS class and are correctly identified, while specificity is the proportion which do not belong to 

a given class and are excluded by the test. There exists an inverse relationship between 

sensitivity and specificity of a test or prediction model (Parikh et al., 2008; Naeger et al., 2013). 

If a model has high sensitivity, it is capable of detecting “real” BCS classes but it also faces losses 

from consuming more resources due to mandatory confirmatory tests (to rule out the false 

positives) or when the limited resources have to be given to only the right candidates. However, 

if a model has high specificity, the system benefits from a significant reduction in the 

consumption of resources, and time, but has a decreased capacity to detect “real” BCS classes, 

which can lead to failure to detect many events of importance (Lan et al., 2017). The higher 

specificity would not be advantageous, as failure to detect ewes inside or outside the BCS range 

(2.5−3.5) for optimum productivity would affect management decisions negatively. Therefore, 

a good model needs to achieve a balance between sensitivity and specificity (Obuchowski and 

Bullen, 2018).  

This study suggests that ewe BCS prediction from current and previous live weight can 

usefully be achieved using machine learning classification algorithms within a limited BCS range 

used in the present study. This study used unadjusted live weight (i.e. confounded by factors 

such fleece length variations and conceptus mass from pregnancy to lambing) records alone to 

achieve accuracies up to 89% to assign BCS to one out of three classes. It is likely that if adjusted 

live weights were used together with other key variables that affect BCS, optimum accuracy 

would be achieved from these BCS prediction algorithms. In Chapter 7, it was suggested that the 

accuracy of BCS prediction could be improved if all key variables affecting the relationship 

between live weight and BCS were accounted for. If this was the case, the efficiency of the 

machine learning models tested could also be enhanced.  
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Although not directly comparable, having used different scale ranges and different 

measures of model performance, the best ML model (XGB) in the current study had great 

efficiency (based on live weight predictors alone), achieved greater than 90% accuracies and was 

stable (Accuracy: 86−93%) across stages of the annual production cycle. In their previous study 

(Chapter 7) based on linear regression models, only, moderate goodness of fit (R2 = 50%) was 

achieved using more resources (both LW and BCS records). Further, the model goodness of fit 

and accuracy varied greatly (R2: 28–64%) across stages of the annual production cycle, making 

the linear regression models less stable. Combined, therefore, this suggests that machine 

learning models would offer better BCS predictions than the linear regression models.  

8.5 Conclusions 

The results of the present study showed that ewe BCS (grouped) can be predicted with 

great accuracy on a narrow BCS (1.0–2.0, 2.5–3.5, >3.5) scale from a ewe’s current and previous 

live weight using machine learning algorithms. The gradient boosting decision trees algorithm 

was the most efficient for ewe BCS prediction. The results of this study, therefore, support the 

hypothesis that BCS can be accurately predicted from a ewe’s current and previous live weights. 

The algorithms having been trained on a large representative dataset, should be able to give 

accurate ewe BCS predictions. These algorithms (acquired intelligence) could be incorporated 

into weighing systems to easily and quickly give farmers ewe BCS without the need for hands-

on burden. Future studies should investigate how to ameliorate the accuracy of BCS prediction 

and the possibility of individual BCS prediction on a full range (1.0−5.0).
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Abstract 

The relationship between ewe body condition score (BCS) and live weight (LW) has been 

exploited previously to predict the former from LW, LW-change and previous BCS records. It was 

hypothesized that if fleece weight- and conceptus- free live weight and LW-change, and in 

addition, height at withers were used, the accuracy of current strategies for predicting BCS 

would be enhanced. Ewes born in 2017 (n = 395) were followed from 8 months to approximately 

42 months of age in New Zealand. Individual ewe data were collected on -LW, BCS score at 

different stages of the annual production cycle (i.e. pre-breeding, at pregnancy diagnosis, pre-

lambing and weaning). Additionally, individual lambing dates, ewe fleece weight and height at 

withers data were collected. Linear regression models were fitted to predict current BCS at each 

ewe age and stage of the annual production cycle using two LW-based models namely, 

unadjusted for conceptus weight and fleece weight (LW alone1) and adjusted (LW alone2) 

models. Further, another two models based on a combination of LW, LW-change, previous BCS 

and height at withers (combined models) namely, unadjusted (combined1) and adjusted for 

fleece and conceptus weight (combined2) were fitted evaluated. Combined models gave more 

accurate (with lower Root Mean Square Error: RMSE) BCS predictions than models based on LW-

alone only. However, applying adjusted models did not improve BCS prediction accuracy (or 

reduce RMSE) or improve model goodness of fit (R2) (p > 0.05). Further, in both LW-alone and 

combined models, a great proportion of variability in BCS could not be accounted for (0.25≥ R2≥ 

0.83) and there was substantial prediction error (0.33 BCS ≥ RMSE ≥ 0.49 BCS) across age groups 

and stages of the annual production cycle and over time (years). Therefore, using additional ewe 

data which allowed for the correction of LW for fleece and conceptus weight and using height 

at withers as an additional predictor did not improve model accuracy. In fact, the findings 

suggest that adjusting LW data for conceptus and fleece weight offers no additional value to the 

BCS prediction models based on LW. Therefore, additional research to identify alternative 

methodologies to account for individual animal variability is still needed. 
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9.1 Introduction 

 Body condition score (BCS) in sheep is a commonly used subjective measure (Morris et 

al., 2002; Vieira et al., 2015) to help make flock nutritional  and management decisions. Devised 

by Jefferies (1961) and then revised by Russel et al. (1969), it subjectively quantifies the amount 

of soft tissue along the lumbar spine (Jefferies, 1961; Kenyon et al., 2014). Body condition score 

in sheep utilizes a 0.0−5.0 scale range with either half (0.5) units or quarter (0.25) units, and is 

conducted through the palpation of the lumbar vertebrae immediately caudal to the last rib and 

above the kidneys (Kenyon et al., 2014).  

Body condition score circumvents factors that can confound live weight (LW) such as 

gut-fill, physiological status, fleece weight  and frame size (Coates and Penning, 2000b; Kenyon 

et al., 2014). Despite the advantages of using BCS over LW to better manage flock nutrition, 

producers, especially under extensive flock management systems such as in the southern 

hemisphere, rarely utilise it (Jones et al., 2011; Corner-Thomas et al., 2016). Instead, farmers 

either depend on inaccurate visual inspection methods or utilise live weight measures only 

(Besier and Hopkins, 1989). This low uptake among producers is driven by the procedure being 

subjective; relatively labour intensive and requiring training (Kenyon et al., 2014). Strategies to 

increase the adoption and use of BCS among producers, such as promotion of producer training 

and regular assessor recalibration workshops, have not yielded the desired change (Kenyon et 

al., 2014). This is likely because they do not address how to lessen the additional labour burden 

related to hands-on BCS, especially in large flocks under extensive management systems. 

Therefore, it could be reasoned that reliable and precise alternative methods to estimate BCS of 

sheep that involve reduced hands-on measurement would likely be useful and improve uptake 

and acceptance of the BCS technique. This indirect method would preferably, be based on 

already existing and utilized on-farm management tools in order to reduce workload and be 

easily undertaken and not be subjective in nature. 

The relationship between BCS and LW is well established in sheep (Sezenler et al., 2011; 

Kenyon et al., 2014; McHugh et al., 2019). In Chapter 6, it was demonstrated that BCS is 

positively and linearly related with LW. This relationship is known to differ by stage of the annual 

production cycle, age, and breed of ewe (Sezenler et al., 2011; McHugh et al., 2019). This 

relationship between BCS and LW was utilised to predict current BCS on a 5-point scale from 

lifetime live weight (current and previous), liveweight change and previous BCS based on linear 

regression models (Chapter 7). It was demonstrated that with a set of established equations it 

may be possible to calculate a predicted BCS instantly, at each live weighing, for each sheep. 

However, a great proportion of variability in BCS remained unaccounted for, leading to less 
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robust models.  Further, Chapter 8, machine learning classification algorithms were successfully 

(with up to 90% accuracy) used to predict BCS using a LW predictors. However, these machine 

learning classification models were limited to a 3-point scale due to gross class imbalance in BCS 

data. Full scale BCS (5-point scale: 1.0−5.0) prediction based on linear regression, does not 

require balanced data. In Chapter 7, it was hypothesized that greater accuracy could be achieved 

if key variables affecting the relationship between BCS and LW were also accounted for. 

Morphometric measurements such as height at withers are positively correlated with LW and 

BCS in sheep (Burke et al., 2004; Holman et al., 2012). Further, pregnancy and fleece weight 

confound the relationship between BCS and LW (Kenyon et al., 2014; Brown et al., 2015). If these 

variables could be accounted for, BCS prediction accuracy may potentially be improved. 

Therefore, the aim of this study was to firstly determine if the ewe BCS prediction accuracies 

reported in Chapter 7 can be reproduced on in independent dataset and secondly to investigate 

if the accuracy and scope of BCS prediction equations could be improved by adding  information 

on the height at withers, fleece weight and physiological state of a ewe.  

9.2 Material and methods  

9.2.1 Experimental design  

The current study utilized data collected between 2017 and 2020 from one flock. 

Romney type ewes were initially raised at Riverside farm (2017−2018) and later (2019) 

transferred to Keeble farm as part of normal routine farm management. Riverside farm is 

located 11 km north to north-west of Masterton (40°50′S, 175°37′E) while Keeble farm was 5 km 

south of Palmerston North (40°24’ S and 175°36’ E), New Zealand. Ewes were maintained under 

commercial farming conditions from weaning to 42 months of age (Pettigrew et al., 2018; 

Pettigrew et al., 2019). A chronological outline of the three-year annual ewe production cycle 

observed under the current study is summarised in Figure 9.1. A total of 429 ewe lambs born in 

the same season (Aug-Sep 2017) were followed until maturity at 42 months of age. Data were 

collected on whether study ewe lambs were born to mature or ewe lambs and in which breeding 

cycle. Unfasted liveweights and BCS of ewes (born to ewe lambs or mature ewes) were recorded 

at 6 months of age, pre-breeding (PB), at pregnancy diagnosis (PD), and eight days prior to the 

start of lambing (PL: pre-lambing) and at weaning (W: Weaning; lambs on average of 3 months 

of age) in each year. All weight measurement occasions were conducted when ewes were not 

wet. All ewes were followed for three productive full years. The ewes in this study were 

themselves presented for breeding at 8 months of age. This study was approved by the Massey 

University animal ethics committee (protocol number: MUAEC 17/16). 
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Figure 9.1 Timeline showing the weighing and shearing events during the three-year study. D 
indicates day of study from 10th May 2018.  

All ewes were weighed (to the nearest 0.1 kg) using static digital weighing scales (Tru-

Test group, model XR5000). Body condition score was undertaken by one experienced assessor 

using a 1.0−5.0 scale (1 = thin, 5 = obese) with sheep assessed to the nearest 0.5 of a BCS 

(Jefferies, 1961; Kenyon et al., 2014). Ewes were shorn each year during late pregnancy (47 to 

49 days prior to the start of lambing), and fleece weights were recorded. Estimated fleece 

weights at the time of the weighing (equation 9.1) in each year were computed by multiplying 

the annual fleece weight at late pregnancy with  the relative proportion of the fleece length 

(mm) at the corresponding time assuming a shorn fleece length of 150 mm and an amplitude of 

19% of the mean (Cottle and Pacheco, 2017). 

Yt (kg) = Fwt * Rl                                                                                                9.1 

Where Yt is the estimated fleece weight (kg) at a given time (month), Fwt was the actual 

fleece weight at the annual shearing (kg), Rl is the proportion of wool length at a given time of 

the year relative to the wool length when shearing was last done (Length at shearing, mm). The 

minimum wool length left during shearing was 5.0 mm. All parameters were adapted from Cottle 

and Pacheco (2017). 

The conceptus mass can confound accurate measurement of ewe conceptus free live 

weight  especially from mid-pregnancy onwards (Kenyon et al., 2008; Kenyon et al., 2011b). 

Adjusted ewe live weight can be obtained if the conceptus mass can be corrected for. Therefore, 

to allow for the computation of adjusted live weights, lambing dates for each ewe were 
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recorded. The dates were used to estimate days of pregnancy when the live weight 

measurements were recorded at pregnancy diagnosis (PD) and pre-lambing (PL). The gestation 

time (days of pregnancy at PD or pre-lambing) was computed as the difference between 147 

days (gestation was assumed to be 147 days) and the time from the event (PD or pre-lambing 

live weight measurement) to lambing. The predicted conceptus and gravid uterus weight was 

determined using Gompertz equation (equation 9.2) below adapted by Freer et al. (2007). To 

cater for both single- and twin-bearing ewes, a pooled lamb birth weight (overall weight of both 

lambs) was computed for twin-bearing ewes. 

 

𝑌 = 𝑆𝐵𝑊 𝑒𝑥𝑝(𝐴 − 𝐵(exp(−𝐶𝑡))                                                             9.2 

Where Y is the weight of the content of the gravid uterus,  SBW is the scaled birth weight 

(the ratio of the actual birth weight to the standard birth weight of 5 kg assumed by Gompertz 

equation), t is the gestation length (days) and parameters A, B and C are constants 5.17, 8.38 

and 6.08 x 10−3, respectively. A 5 kg lamb at 147 days was used as the standard for scaling of 

birth weights. The final adjusted ewe live weights excluded fleece weight and gravid uterus 

weight. Live weights at pre-breeding and weaning were adjusted for fleece weight only, while 

at pregnancy diagnosis and pre-lambing, both conceptus and fleece weights were 

adjustedHeight at wither (HW) was recorded every six months using an automatic laser distance 

measurer (Stanley TLM130i distance meter, max range = 30 m, ± 3mm accuracy) attached to a 

sliding bar from above the weigh crate (Figures 9.2, 9.3). The height of the ewe was computed 

using the formula: 

Unadjusted Height at withers (m) = X – Z                                                              9.3 

Where, X was the distance from the laser meter (X) to the floor of the weigh crate, Z was 

the distance from the laser meter to the ewe withers.  Height at withers was later 

corrected based on predicted annual fleece growth to generate adjusted HW (Cottle and 

Pacheco, 2017).
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Figure 9.2 Measurement of ewe height at withers 

 

                                                       Figure 9.3 laser meter 

9.2.2 Statistical analyses 

Data were analysed using R program version 3.3.4 (R Core Team, 2016) with package 

extensions in the caret package (Kuhn, 2008). Similar analytical procedures including variable 

formulation and selection, model building, cross-validation and evaluation used in Chapter 7, 

were followed. Consequently, both classification and multiple linear regression approaches 

were tested. Any missing values were imputed using the preProcess function and bagimput 

method from the caret package in R (Kuhn, 2008). Additionally, non-numerical data were made 

numerical and z-transformed (scaled and centred) during analysis using the same preProcess 

function above. Z-transformed values outside the 95% CI (z ± 1.96 range) were not used in the 

final analysis. Differences among correlation coefficients were tested for significance based on 

Fisher’s r-to-z transformation. In the present analysis there was high-class BCS imbalance (Table 

9.2) making the use of classification methods to predict individual BCS inappropriate (Triguero 
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et al., 2015). In order to predict individual ewe BCS on a full scale (1.0−5.0), an alternative 

statistically robust method (Norman, 2010) to class imbalance was warranted. Consequently, 

the multivariate linear model which has been successfully utilised to predict BCS in cattle 

(Martins et al., 2020) and sheep (Chapter 7) was applied.  

9.2.3 Variable selection, model building and validation 

The predictors for each BCS were selected through a variable selection technique executed 

in the R program (R Core Team, 2016) using the elastic net method in the glmnet extension 

(Friedman et al., 2010) in the caret package (Kuhn, 2008). Models were fitted and validated using 

a four-step procedure (data partitioning, resampling, model training and validation) as described 

in Chapters 6 and 7. Using selected predictors regression equations were fitted on a training 

dataset to predict BCS from lifetime ewe live weight records (current and previous weights), 

liveweight change (difference in weight between two consecutive weights taken at different 

time points), height at withers, previous BCS scores (a record of all previous BCS scores) , their 

lamb birth and weaning weight data in one regression. Initially a total of eleven (11) regression 

equations (each representing ewe age group and stage of the annual production cycle) were 

created for BCS prediction based on unadjusted lifetime LW measurements (Liveweight alone1 

models). Lifetime measurements were defined as a conglomeration of those ewe measurements 

taken at both the same and previous time points. A previous measurement was that taken at a 

different time point (different stage of the annual production cycle) prior to the current one. 

Liveweight change refers to the change in live weight between two time points. Further, 11 more 

equations were generated incorporating liveweight change and previous BCS in addition to 

lifetime live weight (combined1 models). The process of generating BCS prediction equations 

above was repeated based on adjusted LW (adjusting for conceptus weight and fleece weight) 

(Liveweight alone2 models) and based on adjusted LW, liveweight change, height (adjusted for 

fleece growth) at withers and previous BCS (combined2 models). A description of variables is 

given in Table 9.1.
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Table 9.1 Explanation of live weight (LW), liveweight change, height at withers (H) and body 
condition score (BCS) variables by ewe age group and stage of the annual production cycle. 

Age (Months) Stage of the Annual production cycle LW* BCS§ Change in Live weight£ HW€ 

8–18 Pre-breeding WP1 BP1   PH1 

 Pregnancy diagnosis WD1 BD1 WT11(WD1–WP1) DH1 

 Pre-lambing WL1 BL1 WT12(WL1–WD1) LH1 

 Weaning WW1 BW1 WT13(WW1–WL1) WH1 
19–30 Pre-breeding WP2 BP2 DW-T1(WP2–WW1) PH2 

 Pregnancy diagnosis WD2 BP2 WT21(WD2–WP2) DH2 

 Pre-lambing WL2 BL2 WT22(WL2–WD2) LH2 

 Weaning WW2 BW2 WT23(WW2–WL2) WH2 
31–42 Pre-breeding WP3 BP3 DW-T2(WP3–WW2) PH3 

 Pregnancy diagnosis WD3 BP3 WT31(WD3–WP3) DH3 

 Pre-lambing WL3 BL3 WT32(WL3–WD3) LH3 

 Weaning WW3 BW3 WT33(WW3–WL3) WH3 
LW*; live weight at pre-breeding (WP), pregnancy diagnosis (WD), pre-lambing (WL), and weaning (WW). BCS§; body 
condition score at pre-breeding (BP), pregnancy diagnosis (BD), pre-lambing (BL), and weaning (BW). Change in live weight£: 
WT; change in live weight between successive measurements within age groups, DW-T; change in live weight between 
successive measurements between age groups. HW€; Height at withers at pre-breeding (PH), pregnancy diagnosis (DH), pre-
lambing (LH), and weaning (WH). 

 

9.2.4 Model evaluation 

Models were evaluated as described in Chapter 7. Model performance evaluation was 

conducted on training dataset using two metrics (Theil, 1958; Botchkarev, 2019) adjusted 

coefficient of determination (adj. R2) and the root mean square error (RMSE). Each BCS 

prediction model validation was conducted on the testing dataset, with each replicated 1000-

fold. The quality and success of the prediction models was assessed using the coefficient of 

determination (r2), mean bias, root mean squared error (RMSE), residual prediction deviation 

(RPD), the ratio of performance to interquartile distance (RPIQ) and percent error (RPE) 

(McDowell et al., 2012), overall adjusted R2 value and error metrics between models, were 

compared based on Wilcoxon signed-ranks test (Conover, 1973; Rahe, 1974) and a two-tailed 

paired t-test (Kim, 2015).  

9.3 Results 

9.3.1 Descriptive statistics 

The frequency of ewe BCS score across age group and stage of the annual production 

cycle is presented in Appendix X Table 1. The majority of the ewes had BCS ranging from 2.5 to 

3.0, while the extreme BCS scale values (1.5 and 5.0) were the least common. Within age groups, 

the most frequent ewe BCS at 8−18 months was 2.5 across stages of the annual production cycle, 

at 19−30 months was 3.0 across all stages of the annual production cycle except at weaning and 

at 31−42 months there was no clear pattern. 

Summaries of ewe LW, BCS and HW from 8 to 42 months of age are presented in Table 

9.2. Both BCS and HW did not significantly change (p > 0.05) over time and across stages of the 
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annual production cycle, LW varied (p < 0.05) with annual production cycle and increased with 

ewe age. Unadjusted LW continued to increase with ewe age beyond 30 months. However, 

adjusted live weight increased with age up to 30 months before plateauing.  
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Table 9.2 Mean live weight unadjusted and adjusted for conceptus and fleece weight (LW), height at withers (HW) and body condition score (BCS) with 
respective standard deviations by ewe age group and stage of annual production cycle. 

      LW HW BCS 

Age (months) Stage of annual production cycle n Unadjusted  Adjusted Unadjusted  Adjusted    

8−18 Pre-breeding 428 43.7 (5.61) 41.5 (5.46)   2.8 (0.42) 

 PD 429 48.8 (5.83) 45.7 (5.42)   2.7 (0.39) 

 Pre-lambing 428 52.6 (7.49) 52.0 (7.47) 0.61 (0.032) 0.58 (0.032) 2.8 (0.41) 

 Weaning 429 59.7 (7.10) 58.6 (7.05)   2.8 (0.53) 
19−30 Pre-breeding 427 62.8 (6.67) 59.1 (6.73) 0.61 (0.038) 0.59 (0.038) 3.0 (0.61) 

 PD 426 63.0 (7.09) 60.2 (6.74) 0.60 (0.036) 0.58 (0.036) 3.3 (0.63) 

 Pre-lambing 424 70.8 (7.70) 62.0 (6.60)   3.2 (0.63) 

 Weaning 424 66.1 (8.67) 64.2 (8.67) 0.63 (0.033) 0.59 (0.033) 2.8 (0.67) 
31−42 Pre-breeding 401 68.9 (7.71) 66.4 (7.74)    
 PD 402 70.7 (7.76) 64.8 (7.57) 0.62 (0.047) 0.59 (0.033) 3.1 (0.63) 

 Pre-lambing 399 88.8 (9.32) 64.3 (8.27)   3.4 (0.65) 
  Weaning 402 69.0 (9.74) 66.8 (9.70) 0.64 (0.033) 0.61 (0.047) 2.8 (0.78) 

Values in parenthesis indicate the standard deviation. Adjusted indicates that variables were corrected for fleece conceptus weight (LW) and fleece growth (LW and HW).  
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9.3.2 Correlation between live weights and height at withers 

The relationship between ewe live weight (LW) and height at withers (HW) was positive 

but weak to moderate across age groups and stages of the annual production cycle, regardless 

of whether unadjusted or adjusted LW was used (Appendix X Table 2). However, a negative 

association between LW and HW was observed at 19−30 months at pre-breeding. There was no 

pattern in the strength of BCS-HW association between same and different time points.  

9.3.3 Correlation between BCS and Live weights 

There was a linear association between LW and BCS in all age groups and stages of the 

annual production cycle, but the association was weak to moderate, regardless of whether 

unadjusted or adjusted LW was used (Appendix X Table 3). Further, this association was 

comparable (p > 0.05) for both unadjusted and adjusted LW. Both the weakest and strongest 

relationships were observed at weaning. The relationships, however, were strongest when live 

weight and BCS measurements were from the same time point (pair of LW-BCS measurements 

taken at the same time) except at pre-lambing 8−18 months, compared with when lifetime (i.e., 

measurements taken at different time points) records were used..  

9.3.4 Correlation between BCS and height at withers 

Generally, there was a poor linear association between ewe HW and BCS in all age groups 

and stages of the annual production cycle, regardless of whether unadjusted or adjusted HW 

(Appendix X Table 4). At any one time point, the relationship between BCS and HW did not vary 

(p > 0.05) across age and stage of the annual production cycle except for 19−30 month ewes at 

weaning (p < 0.01) and 31−42 month ewes at pre-lambing (p < 0.01) and weaning (p < 0.05). 

There was no clear pattern in the change of strength of BCS-HW association over time.  

 

9.3.5 Coefficient of Determination (R2) and Number of Predictors 

To predict BCS at any given time, all current and previous individual live weights (liveweight 

alone models) were included in linear regression equations. Separate models were formulated 

for unadjusted and adjusted LW (based on training dataset). The adjusted R2 values averaged 

across folds 0.38 (0.10 to 0.74), regardless of the time point. The adjusted R2 values were 

comparable (z = 0.37, t10 = 0.56, p > 0.05) for both adjusted and unadjusted BCS prediction 

models across age groups and stages of the annual production cycle (Figure 9.4). However, the 

average adjusted R2 value was greater for unadjusted than adjusted LW models (z = 2.40, t10 = 

2.23, p < 0.05).  Within age groups, across stages of the annual production cycle, adjusted 

R2 value varied with no clear pattern (Figure 9.4). There was a trend for adjusted R2 to improve 

at older ages, when a greater amount of previous live weight information was known. In general, 

https://www.mdpi.com/2076-2615/10/7/1182/htm#fig_body_display_animals-10-01182-f001
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the adjusted R2 value was highest at weaning with no clear pattern in the lowest value. The 

average number of live weight predictors (significant variables) for BCS prediction was 

comparable for models using unadjusted as well as adjusted LW (Average: 6, 1 to 11), and 

increased with ewe age (Figure 9.4).  

To improve the prediction of current BCS, the LW alone models were expanded by 

adding the unadjusted LW difference  (change in live weight measurements from adjacent time 

points) and all preceding BCS (combined unadjusted models) or by adding the adjusted LW 

differences and height at wither, and all preceding BCS (combined adjusted models). The overall 

proportion of variance explained (adjusted R2) improved (z=3.62, t21 = 5.71, p < 0.001) by 

approximately 1.3 times (from 0.38 to 0.50) in all combined model categories compared with 

LW models (Figure 9.4).  However, the adjusted R2 values were comparable (z = 1.07, t10 = 0.99, 

p > 0.05) for both adjusted and unadjusted models across age groups and stages of the annual 

production cycle (Figure 9.4). Further, the adjusted R2 values were marginally greater in 

combined models than liveweight alone models across age and stages of the annual production 

cycle. The highest adjusted R2 values were achieved at the weaning period with no clear pattern 

concerning the lowest value. The number of significant predictors for BCS was higher (average: 

10, from 1 to 16 for unadjusted and 1 to 21 for unadjusted) in the combined models compared 

with liveweight alone models (Figure 9.5). Overall, the number of predictors was increased 1.5 

and 2.0 times for unadjusted and adjusted combined models, respectively, compared with LW 

alone models.  
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Figure 9.4 Adjusted coefficient of variation (Adjusted R2, with standard deviations) of  models (dotted 
bar: unadjusted liveweight alone models, horizontal stripes: combined models based on unadjusted 
LW, liveweight change and previous BCS, diagonal stripes: adjusted liveweight alone, shingled: 
adjusted live weight, liveweight change, height at withers and previous BCS) for current BCS prediction 
across the stage of the annual production cycle and ewe age group. Colours (Red indicates unadjusted 
live weight while blue indicates adjusted liveweight was used). PB, PD, PL, W indicate body condition 
score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, respectively. In 
large samples where bootstrapping is applied, the standard deviations approximate the standard 
errors. 
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Figure 9.5 Number of predictors of models (solid lines with squares: unadjusted liveweight alone 
models, solid line with diamonds: adjusted liveweight alone models, dashed line with squares: 
combined models based on unadjusted LW, liveweight change and previous BCS, dashed line 
with diamonds: adjusted live weight, liveweight change, height at withers and previous BCS for 
BCS prediction at given time across the stage of the annual production cycle and ewe age group. 
PB, PD, PL, W indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior 
to lambing, and at weaning, respectively. 
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9.3.6 Prediction accuracy 

To access the accuracy of predicting BCS, several prediction error metrics (MAE, RMSE, 

RPE) were computed. The error metrics appeared to vary across (p < 0.05) age group but not (p 

> 0.05) stage of the annual production cycle except for 19−30-month-old ewes, when live weight 

or combined models were used to predict BCS (Tables 9.3, 9.4, Appendix X Figure 1). Using 

adjusted LW did not affect BCS prediction accuracy (±2SD, p > 0.05) except for the 19−30-month-

old ewes at pre-lambing. The average prediction error associated with BCS prediction in terms 

of MAE and RMSE were 0.38 and 0.45, and 0.32 and 0.40 body condition scores for liveweight 

alone and the combined models, respectively. In adjusted models, the average prediction error 

associated with BCS prediction in terms of MAE and RMSE were 0.37 and 0.45, and 0.33 and 

0.41 body condition scores for liveweight alone and the combined models, respectively. 

However, combined models improved (z = 5.41, t21 = 2.08, p > 0.001) the BCS prediction error 

by 10.7% (Average RMSE: 0.45 vs 0.40) compared with LW alone models. 

The magnitude of the BCS prediction error was moderate to high in both the live weight 

and combined models, based on the smallest unit of measurement (0.5). The BCS predictions 

using the unadjusted liveweight alone and combined models were, on average, 15.4% and 

13.5%, respectively, from the actual value. In adjusted models, the predictions deviated by 

15.9% and 13.4% respectively, for LW alone and combined models. Therefore, combined models 

improved the BCS prediction error prevalence by 9.6% compared with LW alone models. 

Models were categorized regardless of model type as weak (RPD: 1.06 to 1.35) or very poor 

to fair (RPIQ: 1.47 to 1.85). There was inconsistency in the BCS prediction model performance 

where a model with relatively good RPD (>1.4) had a poor RPIQ (<1.4) and vice versa. Using 

adjusted LW or unadjusted LW did not affect (p > 0.05) both model RPD and RPIQ metrics. 

However, both RPD and RPIQ were improved (p < 0.05) by 10 to 16% in the combined than LW 

alone models. 

https://www.mdpi.com/2076-2615/10/7/1182/htm#table_body_display_animals-10-01182-t004
https://www.mdpi.com/2076-2615/10/7/1182/htm#table_body_display_animals-10-01182-t005
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Table 9.3 Coefficient of determination (r2), bias, root mean square error (RMSE), mean absolute error 
(MAE), relative prediction error (RPE) residual prediction deviation (RPD), and the ratio of performance 
to interquartile distance (RPIQ) based on testing data for the prediction of BCS in ewes between 8 and 
42 months by stage of the annual production cycle using unadjusted live weight and adjusted live weight 
(LW) alone models. 

  8−18   19−30   31−42 

Metric PB PD PL W   PB PD PL W   PD PL W 

(a)    Liveweight alone1 models (Unadjusted) 
r2 12.90 13.89 10.30 36.70  25.50 26.61 17.50 64.02  33.20 20.33 71.10 
BIAS 0.007 −0.043 0.004 −0.013  −0.05 −0.015 0.02 −0.02  0.204 −0.047 −0.152 
RMSE 0.39 0.37 0.39 0.43  0.53 0.55 0.54 0.38  0.50 0.49 0.44 
MAE 0.32 0.3 0.32 0.33  0.43 0.45 0.46 0.31  0.43 0.44 0.35 
RPE 14.90 15.01 13.21 16.20  16.03 15.30 14.70 13.20  16.00 14.30 15.80 
RPD 1.14 1.06 1.07 1.26  1.32 1.27 1.30 1.71  1.26 1.26 1.83 
RPIQ 1.25 1.25 1.39 1.16  1.04 1.04 1.02 1.32  1.00 2.04 1.14 

(b)    Liveweight alone2 models (Adjusted) 
r2 12.30 15.81 13.50 36.78  32.67 26.70 32.40 68.31  44.16 34.60 57.60 
BIAS 0.006 0.019 0.003 −0.088  −0.002 −0.006 −0.008 −0.003  −0.037 0.038 0.063 
RMSE 0.4 0.37 0.38 0.41  0.49 0.54 0.54 0.41  0.48 0.52 0.48 
MAE 0.32 0.30 0.31 0.33  0.43 0.44 0.43 0.32  0.41 0.43 0.37 
RPE 10.6 12.95 13.38 14.75  16.33 16.12 16.72 14.64  15.53 15.25 17.2 
RPD 1.08 1.09 1.07 1.24  1.23 1.17 1.19 1.79  1.35 1.25 1.53 
RPIQ 1.25 1.35 1.32 1.22   2.04 1.39 0.93 1.22   2.08 1.92 1.04 

PB, PD, PL, W indicate the four stages of the annual production cycle including pre-breeding, pregnancy diagnosis, pre-lambing, 
and weaning, respectively. Interpretation of measures: The best model has the highest r2, RPD, and RPIQ, and the lowest RMSE 
and RPE. Ranges for values: r2 (0: Indicates that the model accounts for none of the variability of the response data around its 
mean, 1.0 indicates that the model accounts for all the variability). RPD (< 1.4: Weak, 1.4 < RPD < 2.0: Reasonable, > 2.0: 
Excellent). RPIQ (< 1.4: Very poor, 1.4 < RPIQ < 1.7: Fair, 1.7 < RPIQ < 2.0: Good, 2.0 < RPIQ < 2.5: Very good, > 2.5: Excellent). 
(a) (b) superscripts 1,2 indicate model based on unadjusted or adjusted live weight, respectively. Bias (Positive value indicates 
overestimation; negative sign indicates underestimation). Adjusted indicates that a model was based on live weight corrected 
for conceptus and fleece weight. 
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Table 9.4 Coefficient of determination ( r2), bias, root mean square error (RMSE), mean absolute 
error (MAE), relative prediction error (RPE) residual prediction deviation (RPD), and the ratio of 
performance to interquartile distance (RPIQ) based on testing data for the prediction of BCS in 
ewes between 8 and 42 months by stage of the annual production cycle using unadjusted and 
adjusted combined models. 

  8−18  19−30  31−42 

 Metric PB PD PL W  PB PD PL W  PD PL W 

(a)   Combined1 models (Unadjusted) 
r2 12.9 31.3 26.6 51.5  29.9 55.1 58.3 68.8  54.7 54 71 
BIAS 0.007 −0.025 −0.005 0.009  0.051 −0.038 0.007 0.065  −0.014 −0.155 0.011 
RMSE 0.39 0.33 0.34 0.36  0.49 0.47 0.40 0.39  0.42 0.45 0.41 
MAE 0.32 0.27 0.28 0.29  0.41 0.31 0.31 0.31  0.34 0.35 0.31 
RPE 14.90 12.13 11.97 12.86  16.69 12.18 12.42 14.08  13.64 13.20 14.96 
RPD 1.14 1.20 1.18 1.42  1.20 1.48 1.56 1.73  1.50 1.49 1.84 
RPIQ 1.25 1.52 1.47 1.39   2.00 1.83 2.50 1.28   1.19 1.11 1.22 

(b)    Combined2 models (Adjusted) 
r2 13.0 31.9 18.7 53.7  36.4 55.5 57.1 67.2  51.7 57.8 71.3 
BIAS 0.006 −0.001 −0.002 0.021  −0.01 0.005 0.054 −0.034  0.043 0.031 −0.054 
RMSE 0.40 0.33 0.39 0.35  0.49 0.46 0.41 0.42  0.44 0.42 0.40 
MAE 0.33 0.28 0.27 0.30  0.43 0.35 0.32 0.32  0.34 0.34 0.31 
RPE 10.6 11.76 13.64 12.68  16.33 13.65 12.58 15.16  14.15 12.35 14.55 
RPD 1.08 1.24 1.08 1.47  1.25 1.34 1.54 1.79  1.40 1.55 1.85 
RPIQ 1.25 1.56 1.28 1.43   2.04 1.63 1.22 1.19   2.27 2.38 1.25 

PB, PD, PL, W indicate the four stages of the annual production cycle including pre-breeding, pregnancy diagnosis, pre-
lambing, and weaning, respectively. Interpretation of measures: The best model has the highest r2, RPD, and RPIQ, and 
the lowest RMSE and RPE. Ranges for values: r2 (0: Indicates that the model accounts for none of the variability of the 
response data around its mean, 1.0 indicates that the model accounts for all the variability). RPD (< 1.4: Weak, 1.4 < RPD 
< 2.0: Reasonable, > 2.0: Excellent). RPIQ (< 1.4: Very poor, 1.4 < RPIQ < 1.7: Fair, 1.7 < RPIQ < 2.0: Good, 2.0 < RPIQ < 2.5: 
Very good, > 2.5: Excellent). (a) Unadjusted indicates that models were based on all previous and current crude and 
previous live weights, liveweight changes and previous BCS). Adjusted indicates that models were based on all previous 
and current live weights and liveweight changes corrected for conceptus and fleece weight, adjusted height at withers, 
and previous BCS. The superscripts 1,2 indicate without and with adjusted HW in the model, respectively. Bias (Positive 
value indicates overestimation; negative sign indicates underestimation). 

9.4 Discussion 

The aim of this study was to explore the possibility of improving the prediction accuracy 

of BCS using a ewe’s production characteristics as they aged from eight through to 

approximately forty-two months. This was a follow-up study to Chapter 7. Previously, using a 

different dataset, the relationship between live weight and BCS at a given time point, and the 

possibility of using a linear combination of a ewe’s unadjusted lifetime LW, liveweight change 

and previous BCS data to predict BCS at a given time, were examined (Chapter 6 and 7). Weak 

to moderate levels of BCS prediction accuracy were achieved. It was then postulated that if 

corrected live weights (corrected for conceptus and fleece weight) and wither height (corrected 

for fleece length) data were used, BCS prediction accuracy would be improved. 

In this study the majority of the ewes had BCS between 2.5 and 3.0 which falls within 

the recommended BCS range (2.5−3.5) for optimal productivity (Kenyon et al., 2014). 

Additionally, there were few thin or obese ewes in the 8 to 18-month-old group. These 

observations combined indicate that ewes were supplied with sufficient nutritional 
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requirements through their first reproductive cycle. Further, this study demonstrated 

unadjusted LW continued to increase beyond 30 months of age but adjusted LW (adjusted for 

conceptus and fleece weight) plateaued. The observed trend in adjusted LW corroborates an 

earlier study which reported that mature Romney ewe weight was achieved by 33 months 

(Pettigrew et al., 2019). It appears that the confounding effects of conceptus and fleece weight 

increase with age, causing the apparent increase in weight unadjusted LW.  

This study showed a linear relationship between LW and HW. This relationship was 

generally positive for most stages of the annual production cycle and age groups. It was, 

however, not clear why this relationship was negative for 19−30-month-old ewes at pre-

lambing. Prior to breeding, farmers enhance their feeding strategies in a process known as 

flushing to ensure as many ewes reach the required breeding weight regardless of their frame 

sizes (Kenyon et al., 2011b). Given that fact that this was the same cohort of ewes, it is possible 

that changes in nutritional effects could have randomly altered the relationship between LW 

and HW. With the moderate strength of association between LW and HW, height at withers, 

was expected to significantly affect the relationship between LW and BCS. However, HW was 

poorly correlated with BCS. There was a weak to moderate correlation between LW and BCS as 

reported in Chapter 6.   

The observation that LW alone models were not as good as combined ones and, thus, 

likely to be unreliable in predicting future BCS based on linear regression, corroborates our 

previous findings (Chapter 7). The variability in BCS explained for both live weight and combined 

models increased with the number of predictors in the model. This was expected, as it is known 

that as the number of predictors that significantly relate to the dependent variable increase, the 

proportion of the variance due to the regression increases (Li, 2017). However, in this study, a 

considerable amount of variability in BCS (0.26 ≤ R2 ≤ 0.83 and 0.25 ≤ R2 ≤ 0.72) remained 

unaccounted for in both liveweight alone models and combined models, respectively. Some of 

the reasons for the apparent failure for both liveweight alone and combined models to account 

for more of the variability in BCS include, (i) assessor consistency over time, (i) losses in live 

weight due to gut-fill and urination when ewes were weighed at different times, (iii) confounding 

effects of fleece weight, and conceptus weight (Chapter 7). The consistency between BCS 

assessors varies between from 5% to 27% and 40% to 60%, and within assessors from 16% to 

44% and 60% to 90% for inexperienced and experienced assessors, respectively (Kenyon et al., 

2014). The current study a single experienced assessor (with more than 30 years of experience 

in BCS assessment) was used to determine all BCS to ensure consistency. It is, therefore, unlikely 

that the data used in this study was affected by assessor reliability. Liveweight losses resulting 
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from fluctuations in gut-fill can account for between 5% and 23% of total live weight in 

ruminants (Hughes, 1976; Moyo and Nsahlai, 2018). Thus, the duration between feeding and 

recording an individual’s live weight can influence the accuracy of the live weight. Further, ewe 

fleece weight, pregnancy and lambing data were collected and used to correct LW. Given that 

standard equations, with little known error rates and repeatability were used to adjust live 

weight, it is possible that these strategies could have introduced some error cancelling the effect 

of adjusting for LW confounders. The study did not measure individual time off feed prior to 

weighing, a function that many electronic weighing systems now have the potential to account 

for. Future studies should examine if the accuracy of BCS prediction can be improved by 

accounting for gut-fill fluctuations. In regression models all residual error is assumed to be 

contributed by the predictors and thus, any inaccuracies in their measurement should be of 

concern (Dosne et al., 2016). Losses in live weight due to gut-fill changes and urination in relation 

to when ewes were weighed and the effect of pregnancy on live weight are therefore, of 

concern, as they affect live weight a key variable for BCS prediction. When predictor variables 

are imprecise, estimations based on the standard model assumptions can lead to inaccurate 

parameter estimates even when large samples are used (Hausman, 2001; Pischke, 2007). 

Therefore, if errors in the measurement of live weight could be minimized, the goodness-of-fit 

and accuracy of BCS prediction models should increase. In delayed weighing, accounting for 

liveweight losses with respect to time of delay (the duration from when the animal last fed to 

weight recording) using prediction equations, offers a practical solution. These time-dependent, 

live weight adjusting equations for ewes have been developed but are not regularly used 

(Burnham et al., 2009; Wishart et al., 2017). 

The BCS prediction models using liveweight alone had larger error (MAE and RMSE) and 

lower RPD and RPIQ values, compared with combined models which led to high relative error 

prevalence (RPE). Combined models reduced the magnitude of all the prediction error metrics 

but were greater than those observed in our previous study (Chapter 7). The model BCS 

prediction percentage error (RPE) was above the desired 10% (Hagerman et al., 2017; Lalic et 

al., 2018). The large BCS prediction error values (60 to 108% of the smallest unit on a 0.5 decimal 

scale) in the present study (where a 0.5-unit change in BCS changes the performance rank of a 

ewe) could lead to inaccurately predicted BCS values, thereby, greatly influencing management 

decisions. Ideally, all prediction models should have had resolutions as low as 0.02 body 

condition scores. However, due to the intractable discrete nature of the BCS scale used, such 

resolutions cannot be achieved (Chapter 7). It has been suggested that decisions concerning 

strategic feeding and management of ewes to maximise performance should be based on a 
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critical range of BCS values (i.e., 2.5 to 3.5) (Kenyon et al., 2014). The predictions found in this 

study may, therefore, overestimate or underestimate measures by 0.33 to 0.54 BCS, which could 

substantially change the ranking of a ewe, leading to less robust management decisions, which 

in turn could reduce flock productivity. The greater BCS prediction error than reported in our 

previous study (Chapter 7) could be explained by the smaller sample size used in the current 

study leading to greater variability in the outcome and predictor variable measurements.  

The findings suggest that using quantitative traits (physical and linear morphometric 

measurements) may not be sufficient to predict sheep BCS on a full range scale (1.0−5.0). 

Therefore, further studies us data such as image analysis (Computed Tomography: CT scans, 

dual-energy X-ray absorptiometry: DXA), and automated metabolic profiles to account for 

individual animal variability may be warranted. Where a narrow range of BCS such as 1.0−3.0 is 

acceptable, further research should look at extending machine learning algorithms across all age 

groups and stages of the annual production cycle. Given the limitations of predicting BCS, itself 

a predictor of body composition. It would be worthwhile investigating how accurately live 

weights and other predictors would predict total body fat and muscle weights, or proportions 

given they are more objective and continuous variables. The first step in these types of studies 

would require animals to be euthanized and/or tools such as CT scans. 

 

9.5 Conclusion 

The combined models improved the proportion of variability in BCS that could be 

accounted for, as well as the accuracy metrics across all age groups and stages of the annual 

production cycle and over time (years), compared with the liveweight alone models. Using ewe 

data to correct LW (correct for fleece weight and conceptus weight) and height at withers as 

additional predictor did not offer better model accuracy. The most common ways of determining 

BCS is through a direct hands-on method, however, if it is not possible, the equations generated 

in the current and previous study (Chapter 7) could be used to predict BCS. These equations 

could potentially be incorporated in electronic weighing systems that utilize lifetime data 

especially in large extensively run sheep flocks. However, the 30% to 90% variability in BCS that 

was unaccounted for, even in the combined models, coupled with the large prediction error 

associated with our equations dictates that they should be used with caution. Additional ways 

of accounting for individual variability in BCS could ameliorate the accuracy of BCS and warrant 

investigation. 
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10.1  Introduction 

Live weight (LW) is a broadly accepted proxy for the energy status of sheep at a 

given time, while change in live weight is indicative of whether it is in either a positive 

energy balance (liveweight gain) or a negative energy balance (liveweight loss) (Young and 

Corbett, 1972; Brown et al., 2005; Wishart et al., 2017). Therefore, live weight provides a 

basis for decision making regarding sheep management, therefore, accurate 

determination of LW is important. Live weight measurements can be affected by a number 

of factors including: growth, nutrition, health, stress, frame size, fleece weight, 

physiological state and genotype (Kenyon et al., 2014; Brown et al., 2015). Further, the 

contents of the rumen (fluid and feed) can account for between 5 and 23% of total live 

weight in ruminants (Hughes, 1976; Moyo and Nsahlai, 2018). Varying levels of weight loss 

(1.5 to 10% of initial live weight) have been reported within flocks while waiting to be 

weighed (Hughes, 1976; Burnham et al., 2009; Wilson, 2014; Wishart et al., 2017). These 

levels of liveweight loss are likely to interfere with a comparison of live weight particularly 

when small liveweight changes are being investigated or when live weight is used to make 

decisions are based on thresholds. Existing strategies to reduce liveweight variation have 

been limited to standardizing the weighing protocol (Coates and Penning, 2000a; Wishart 

et al., 2017). Such methodologies to reduce variation are cumbersome, time consuming 

and, therefore, not generally utilised except in experimental situations. Therefore, new 

approaches to determine and adjust for variations in live weight between animals and 

specific periods of time when sheep do not have access to feed and water while waiting 

to be weighed need investigation. The development of these approaches will require an 

understanding of the factors influencing liveweight loss. 

Body condition score (BCS) is  an alternative but subjective measure which 

provides an estimate of an animal’s soft tissue reserves, predominantly fat, and is used 

widely by farmers and researchers to determine the physiological state of an animal 
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(Morris et al., 2002; Vieira et al., 2015). Body condition score can circumvent the 

shortcomings of LW, which include the effect of gut-fill, frame size, fleece weight and 

physiological state (Kenyon et al., 2014; Brown et al., 2015; Morel et al., 2016). Further, 

body condition score can be easily learned and is cost-effective and requires no specialized 

equipment (Kenyon et al., 2014). Despite the advantages of using BCS over live weight to 

better manage flocks, it is uncommon for farmers (7−40%, only) especially in extensive 

production systems to regularly and objectively do so (Jones et al., 2011; Corner-Thomas 

et al., 2016). The reasons for low BCS uptake among farmers include the subjective nature, 

labour burden and constant recalibration of assessors (Kenyon et al., 2014). Strategies to 

increase the adoption and use of BCS among farmers and the reliability of measures have 

been limited to promotional workshops and hands-on training (Kenyon et al., 2014). 

However, these strategies do not directly address how to reduce the labour burden 

associated with hands-on BCS. Therefore, it is argued that, consistent and accurate 

alternative methods to estimate body condition score of sheep that require less hands-on 

measurement would likely be advantageous and improve uptake and use. These would be 

based on a management tool already utilized on farm, to reduce workload, be quick and 

not subjective in nature.   

The aims of this thesis were to gain a clearer understanding of  the factors that 

influence the rate of liveweight loss of fasting ewes, to derive equations that improve the 

measurement of live weight measurement, to understand the factors affecting the 

relationship between live weight and BCS and to develop BCS prediction equations based 

on a ewe’s characteristics.  

10.2  Chapter summaries (summary of main findings and conclusions drawn) 

In this Chapter (Chapter 10), the general outcome of the experiments, their 

results, conclusions, and implications for live weight and BCS measurement are discussed. 

In addition, limitations and weaknesses of the research are identified and discussed. This 
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Chapter ends with an overview of the main conclusions of the research and 

recommendations for future research. 

10.2.1  Chapter 3. The effect of herbage type on the rate of liveweight loss of fasting ewe lambs 

In this Chapter, it was hypothesised that liveweight loss rate in fasting ewe lambs 

would be lower when offered ryegrass-based swards than herb-clover-based swards prior 

to fasting. It was found that ewe lambs offered the herb-clover mix achieved liveweight 

loss rates 2.0 times greater than ewe lambs offered ryegrass-clover based swards. 

Although the study did not perform feed chemical analysis, the higher liveweight loss in 

ewe lambs offered the herb-clover based swards than ryegrass-clover based swards was 

attributed to likely higher concentration of readily fermentable soluble sugars and pectin, 

and lower concentrations of cellulose and hemicellulose than grass-based diets (Barry et 

al., 1999; Moyo and Nsahlai, 2018). This study confirmed the suggestion that prior to 

weight measurement, it is important to have previously fed the animals the same ration 

to eliminate ration effects on rumen gut-fill (Meyer et al., 1960).  

10.2.2  Chapter 4. The effect of herbage availability and season of year on the rate of liveweight 

loss of fasting ewe lambs 

Previous studies on fasting ewe lamb liveweight change studies utilised one diet 

type with no indication of herbage quantity offered or season. This Chapter, therefore, 

investigated the effect of herbage availability and season on the rate of ewe liveweight 

loss was examined and correction equations for delayed live weights developed for use 

under commercial conditions. It was found that the rate of liveweight loss increased with 

herbage availability. Further, this rate of liveweight loss was greater in winter than 

autumn. The higher liveweight loss rate in ewe lambs offered the High diet and lower rate 

in lambs on the Low diet was due to the consistently lower percentage dry matter (% DM) 

in the former and vice versa. The higher liveweight loss rate in winter than autumn in the 



General discussion 

Page | 214  
 

Medium and High diets was attributed to the seasonal differences in the chemical 

composition of the feeds. Applying live weight correction equations on delayed live weight 

data provided more accurate estimates (33 to 55%) of “without delay” live weight than 

using the delayed live weight.  

Combined these results suggest that beyond grazing ewe lambs on the same diet 

type and weighing them “without delay”, the quantity of herbage and season should be 

considered when weighing their ewe lambs. Where “without delay” live weights are not 

achievable, the correcting equations developed in this Chapter should be used to obtain 

more accurate “without delay” live weight estimates. These correction equations could 

be incorporated into weighing systems to automatically give real time adjusted ewe lamb 

live weights. 

10.2.3  Chapter 5. The effect of herbage availability and ewe physiological state, stage of 

pregnancy and pregnancy-rank on the rate of liveweight loss of fasting mixed-aged ewes 

Previously, physiological state has been reported to impact the rate of liveweight 

loss in ewes offered a fixed narrow range of herbage mass (Burnham et al., 2009). It is 

possible that by varying the quantity of herbage offered to ewes, their rates of weight loss 

would also vary. This study, therefore, investigated the effect of herbage availability and 

physiological state (non-pregnant vs pregnant), stage of pregnancy and pregnancy-rank) 

on the rate of ewe liveweight loss was examined and correction equations for delayed live 

weights developed for use under commercial conditions. It was found that the rate of ewe 

liveweight loss was greater in ewes offered the High than the Low herbage level across 

physiological state. Further, this rate of liveweight loss was greater in ewes at 

approximately 100 than 130 days of pregnancy. The observation that the rate of weight 

loss was greater in ewes offered the High herbage level agrees with the findings in Chapter 

4. The lower liveweight loss rate at 130 days of pregnancy has been attributed to the 

decrease in the reticulo-rumen volume during advanced pregnancy (Forbes, 1969). When 
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correction equations were applied to adjust for ewe liveweight loss, there was increase in 

accuracy (58 to 67%) in “without delay” live weight estimates.  

Combined these results suggest that in addition to weighing ewes “without 

delay”, grazing them on the same diet type and quantity prior to weighing as measures to 

ensure accurate live weight measurement, ewe physiological state should also be 

considered. Where “without delay” live weights are no achievable, the correction 

equations developed in this Chapter should be used to obtain more accurate “without 

delay” ewe live weight estimates. These correction equations could be incorporated into 

weighing systems to automatically give real time adjusted ewe live weights. 

10.2.4  Chapter 6. The effect of age, stage of the annual production cycle and pregnancy-rank 

on the relationship between live weight and body condition score of a ewe 

In this Chapter, it was hypothesised that the relationship between LW and BCS in 

Romney ewes would vary by ewe age, of stage of the annual ewe production cycle and 

pregnancy-rank. It was found that the relationship between LW and BCS increased with 

ewe age and differed by stage of the annual ewe production cycle and pregnancy-rank. 

Further, this relationship between LW and BCS was found to be sufficiently described by 

the simple linear regression model as reported in many studies (Kenyon et a., 2014; Morel 

et al., 2016; McHugh et al., 2017).  

The results highlight the substantial contribution of BCS to the differences in live 

weight of the ewe. A linear relationship suggests that, for a given breed type, a single 

incremental liveweight change across the entire BCS range can be applied. Thus, as a ewe 

ages, a greater liveweight change is required to alter BCS by one unit, which translates 

into greater energy requirements in order to make the change, which could have 

nutritional ramifications (Freer et al., 2007; Morel et al., 2016). The findings also point to 

the possibility of predicting BCS from live weight and vice versa using a linear regression 

model. If so then when predicting any of the two variables above, consideration of factors 
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such as age group, stage of the annual production cycle and pregnancy-rank is required 

and therefore, different prediction equations may be needed.     

10.2.5  Chapter 7. Predicting Ewe Body Condition Score Using Lifetime Live weight and 

Liveweight Change, and Previous Body Condition Score Record 

This study aimed to investigate the possibility of using lifetime live weight and 

liveweight change and previous body condition score to predict current body condition 

score in Romney ewes. It was found that the equations combining live weight, liveweight 

change and previous BCS (combined models) explained more variability in BCS (39.8%) 

and had less prediction error (i.e. 10 to 12%) than equations based on liveweight alone 

(liveweight alone models). However, a significant portion of the variability in BCS 

remained unaccounted for (39 to 89%) even in the combined models.  

The results indicate that a combination of lifetime live weight, liveweight change 

and previous body condition score improved body condition score prediction. Given the 

greater proportion of unexplained variability in BCS, the procedures found in this study, 

may overestimate or underestimate measures by 0.23 to 0.32 BCS and thus, should be 

used cautiously. The findings do still suggest that this BCS prediction error could be 

reduced if key variables affecting the relationship between BCS and live weight are 

accounted for. This would benefit farmers by allowing for targeted nutritional 

management of individual animals to maximize overall flock productivity. 

10.2.6  Chapter 8. Application of machine learning algorithms to predict body condition score 

from live weight records of mature Romney ewes 

This study utilized selected machine learning (ML) classification algorithms to 

explore the possibility of predicting BCS of ewes at 43 to 54 months of age on a 3-point 

scale (1.0−2.0, 2.5−3.5; >3.5) from current and previous live weights. It was found that 

greater BCS prediction accuracies were achievable (> 85%) across all stages of the annual 
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ewe production cycle using black-box ML (such as boosted trees classification: XGB) than 

the more conventional models (Ordinal, multinomial regression) or the Classification and 

Regression Tree. Additionally, all models had balanced specificity and sensitivity 

(authenticity). For the first time, the study devised a unified indicator for model prediction 

performance combining several accuracy and authenticity on a single platform.  

Combined the results suggest that with class balance, ewe BCS can be predicted 

with great accuracy and authenticity from a ewe’s current and previous live weight using 

machine learning algorithms. Further, with more variability in BCS explained, through 

accounting for key variables affecting the relationship between BCS and LW, the accuracy 

could be ameliorated, and this warrants research. These algorithms if trained on a large 

representative dataset, could be incorporated into weighing systems to easily and quickly 

give farmers accurate ewe BCS prediction/categorization without the need for hands-on 

burden. 

10.2.7  Chapter 9: Predicting ewe body condition score using adjusted live weight for conceptus 

and fleece weight, height at withers and previous body condition score record  

This study investigated the possibility of improving the accuracy of ewe BCS 

prediction by using a linear combination of adjusted live weights (correcting for conceptus 

live weight and fleece weight) and height at withers. It was found that using adjusted live 

weights and height at withers in addition to previous BCS did not improve the current BCS 

prediction accuracy. In addition, a considerable portion of unexplained variability in BCS 

remained. 

The results indicate that using adjusted LW or adding height at withers data in a 

linear combination offered no added advantage to current BCS prediction.  Given the great 

prediction error and proportions variability in BCS still unexplained, it appears that 

collecting additional production characteristics data by farmers to help account for 

conceptus and fleece weight would not be useful.  However, it is possible that if machine 
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learning models in Chapter 8 were applied on adjusted live weights, or if other 

technologies to account for individual variability in BCS were applied, more accurate BCS 

could be achieved. 

10.3  Limitations of the study 

The initial ewe lamb liveweight loss study (Chapter 3) utilised 40 ewes, across two 

groups, with group sizes of 20. As this was a study nested in an already running study, it was not 

possible to have enough sample space to randomly select ewes for the nested study trial. As a 

result, the initial live weights for the study ewes were similar with a limited range of live weight. 

This could have affected the rate of liveweight loss during fasting. Examination of the live weight 

decay curves, however, showed that there was great variability in the rate of liveweight loss 

from ewes with comparable initial live weight, suggesting that the limited diversity of initial live 

weights could have not had effect of the rate of liveweight loss. The observed individual 

variability in the rate of liveweight loss indicate that there could be innate individual differences 

altering the live weight decay curves. Such individual differences if accounted for may improve 

the accuracy of liveweight loss prediction and warrant further research. Further, in Chapter 3, 

two types of diets were evaluated (Ryegrass-based and clover-based swards). By the time this 

thesis was written, the results from analysis of feed that these ewes were consuming had not 

been obtained. Therefore, the explanations given for the differences in liveweight loss between 

Ryegrass and Clover could not be bolstered through evidence i.e. attributed to what they were 

fed (Dy matter, nutrients, minerals) and may not be conclusive. This warrants investigation. In 

the next set of studies (Chapter 4 and Chapter 5), the predominant Ryegrass-based diet was 

carried forward to investigate the effect of herbage availability (allowance), season and 

physiological state of a ewe using group sizes of 25-30 animals generated with a power of 0.9. 

In these studies, quantity and quality of feed offered was measured. These studies have given 

more conclusive results and showed that differences in Dry matter content of feed directly 

influenced the rate of ewe liveweight loss, an aspect that was not apparently substantiated in 
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Chapter 3. These studies (Chapter 4 and Chapter 5), used different ewe ages (i.e. ewe lambs in 

Chapter 4 and mixed-aged ewes in Chapter 5), subjected to different herbage availability levels 

(ewe lambs: 700-900 Kg DM/ha; 110-130, >1400; ewes: 900-1100 Kg DM/ha, >1400) making it 

not possible to directly compare the performance of both ewe groups. This was further 

confounded by the fact that studies were not conducted at the same time and on ewes in the 

same physiological state. Different times of the year come with different challenges such as 

scarcity of feed and water and physiological ewe stage. In Chapter 5, during both the calibration 

and validation stages of the non-pregnant ewe study, there were challenges of limited green 

grass. As a result, one of the farms where validation was conducted had barely any green grass 

(DM > 89%), while the calibration equations were developed using lower DM grass (DM > 30%). 

This likely greatly affected the accuracy of the live weight correction equations. In addition, in 

all liveweight loss studies, (Chapters 3, 4, and 5), ewes were removed from feed and water in 

the morning (9:00 – 10:00 am), weighed on arrival at the weighing facility and then hourly. Time 

of day relative length of day can affect the gut-fill and hence the rate of liveweight loss. It is, 

therefore, possible that if ewes were removed from pasture at any other time of day, this would 

affect the accuracy of the developed correction equations and may warrant further studies.  

In Chapters 4 and 5, herbage availability target ranges were maintained. The 

current studies were conducted on commercial farms, which limited control over the 

preparation and management of herbage availability levels in the grazing paddocks. 

Ideally, each paddock should have been maintained within a narrow range (±50 kg DM/ha) 

which equates to the error associated with the herbage availability estimating equation 

(Hodgson et al., 1999). Observance of the herbage availability target ranges was limited 

by the number and area of available paddocks and livestock available to control the 

herbage availability. Using multiple farms with similar conditions and management 

practices to provide more grazing area, and a mechanical mower to keep herbage within 

the desired availability levels would reduce the effects of the above challenges. To reduce 
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the effect of individual paddocks, new sets of paddocks were used during replication of 

the study. Further, treatment groups were replicated across both seasons, farms, years, 

and studies, providing confidence in results obtained. It is, therefore, unlikely that lack of 

strict observance of the herbage availability ranges could have affected the outcomes of 

the current studies.  

Weight measurements were carried out using static weighing systems on two different 

facilities i.e. open space and a roofed shelter. Therefore, this required the physical collection of 

ewes from their paddocks, mustering and fasting for a specific period. Differences in wind 

exposure in these weighing facilities can distort the accuracy of weight measurements. Further, 

in static facilities one may need to drive the novice ewes through the weighing crate. This may 

make it time consuming. It was assumed that the effect of wind pressure onto the loading bars 

was inconsequential. Ideally, all ewe weighing should have been conducted under the same farm 

conditions. This could not be observed as available farms had different weighing facility types 

which is typical of the commercial farms in New Zealand. To reduce the effect of abrupt wind 

pressure especially on wet days, most weighing was conducted on dry days or in roofed shelters. 

This could be overcome by standardizing the weighing protocol to ensure similar weighing 

facilities are used. However, the effect of using different weighing facility types was minimized 

by replicating the studies across these farms with different weighing facilities.  

Day of pregnancy can affect the rate of live weight (Burnham et al., 2009) and the rate 

of conceptus growth (Kleemann and Walker, 2005; Kenyon et al., 2008) affecting the 

measurement of live weight, and thus, their accuracy is of utmost importance. For a large flock 

under extensive management, it is not possible to record the mating date of an individual ewe 

to subsequently estimate its day in pregnancy. In the current studies (Chapter 6, 7, 8, 9), 

individual day of pregnancy were estimated using the midpoint of a 17-day breeding period as 

the reference day. This standardized and increased the certainty in estimation of the day of 

pregnancy and consequently the measurements associated. 
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Due to the subjective nature of BCS, reliability within and between assessors can be a 

stumbling block to the potential use and effectiveness of this technique (Kenyon et al., 2014). 

This is especially true when different inexperienced assessors are used to determine BCS 

measurements. In the BCS profiling (Chapter 6) and prediction studies (Chapter 7, 8), initially, 

BCS measurements were determined by two experienced assessors (one for the first 5 years and 

one for the final year of study) and later (Chapter 9, for all 3 years) by single assessor. For 

experienced assessors, reliability levels of up to 90% have been reported. It is, therefore, unlikely 

that the reliability of the BCS data used in the current study was greatly affected. 

BCS data (on 1.0−5.0 scale) from the current study was highly imbalanced.  This 

imbalance was most apparent in the extreme BCS values/classes (1.0−2.0 and 4.0−5.0). When 

linear regression models (as in Chapters 7 and 9) are applied on unbalanced data (BCS as 

continuous variable), the imbalance is of little consequence. However, this would likely affect 

the accuracy of results in a categorical BCS prediction study (as in Chapter 8). To reduce the 

effect of class imbalance, a less imbalanced three-point BCS scale (1.0−2.0, 2.5−3.5, >3.5) was 

devised guided by literature (Kenyon et al., 2014) for categorical BCS prediction (Chapter 8). 

Further, resampling techniques (SMOTE) were employed to generate synthetic sample sizes 

representative of the original data structure (Chawla et al., 2002), thereby restoring the 

assumption of proportional odds and providing confidence in the findings.  Therefore, the 

process of developing the current strategies for BCS prediction was less affected by the effects 

of class imbalance. 

Effects of gut-fill fluctuation and fleece weight on live weight measurement can be 

significant. These can confound the relationship between LW and other measurements. In 

Chapters 6, 7 and 8, only LW and BCS data were collected. Consequently, unadjusted LW and 

LW change were used in the analysis which could potentially have affected the accuracy of the 

models relating LW to BCS. This was solved in Chapter 9 where additional production data were 

collected and used to adjust for effects of conceptus weight and fleece weight. The results in 
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Chapter 9 suggest that adjusting for live weight had no impact on the overall accuracy the BCS 

prediction. Therefore, it is unlikely that this lack of adjusting for conceptus and fleece weight 

affected the findings in the previous Chapters. However, it was not possible to apply the 

developed LW correcting equations in Chapter 9 as both studies were running concurrently.  

In Chapter 9, standard Gompertz’s function for adjusting foetal weight and Cottle for 

fleece weight adjustment were used to correct for LW. Although such equations have been used 

for quite some time, it is not known how much error (noise) they are likely to introduce rather 

than remove. It is, therefore, likely that these equations could have introduced more noise than 

removed it and this may warrant further examination.  Additionally, in the prediction of ewe BCS 

studies, a great part of variation was not explained by the production traits. This variation is 

largely attributed to individual ewe differences. Strategies to account for these individual 

differences including accounting for individual frame sizes should be investigated.    

10.4  Next steps in research required 

Current live weight and BCS measurement improvement strategies have been 

developed using a series of studies conducted primarily in Manawatū-Whanganui and 

Wairarapa regions in New Zealand. In addition, the current study utilized one breed of 

sheep (Romney). It is not known if these live weights and BCS measurement improvement 

strategies are appropriate to other regions of New Zealand for other breeds. Therefore, 

further studies to evaluate the feasibility of these live weight and BCS measurement 

improvement strategies to improve ewe performance assessment in other regions of New 

Zealand and breeds of sheep would likely be of benefit. The current study utilized data 

from institutional research farms. It is not known if the developed strategies would be 

appropriate for privately-run farms and may warrant investigation.   

Current strategies (Chapters 3, 4 and 5) accounted effects of two herbage types 

and availability, and three seasons in a limited ewe physiological state range and no data 

for male sheep. It is not known to what extent these strategies are appropriate for all 
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herbage types, seasons, ewe physiological states, and for male sheep. Further, the results 

of this thesis indicate that there was more variability in liveweight loss rates that were not 

accounted for. It is possible that increases in accuracies greater than what is reported 

above would be achievable. This variability in liveweight loss rates was attributed to the 

wide herbage availability target ranges used in this study. Ideally, maintaining these 

herbage availability target ranges within ± 50 kg DM/ha should increase the accuracy of 

“without delay” ewe live weight. Sheep feed intake is expected to increase with herbage 

availability up to 1400 kg DM/ha beyond which it is expected to remain constant (Morris 

and Kenyon, 2004). It is possible that variations in liveweight loss rates above 1400 kg 

DM/ha, could be attributed to factors beyond herbage availability which warrant further 

research.  Additionally, the strategies developed in this study were largely based on 

ryegrass-based herbages. Herbages can vary in chemical composition (Cranston et al., 

2015; Ekanayake et al., 2019) and digesta kinetics (Moyo and Nsahlai, 2018). It is not 

known to what extent these interventions could be applicable to other herbage types (e.g. 

plantain, native shrubs). Further, the study animals were all weighed at the same time of 

day (i.e. 9:00 to 10:00am). The time of weight measurement in relation to length of day 

can influence the intake, gut-fill and digesta kinetics.  It is, therefore, worthwhile 

investigating the effect of time day sheep were removed from the pastures. In addition, 

the current strategies to correct LW, utilized a static weighing system where ewes were 

fasted. Elsewhere, Walk-over weighing systems are used by farmers. A comparative cost 

benefit study of using the developed correction equations, providing a feed supplement 

at a static weighing facility and/or using a walk-over weighing system will be vital.   

Current strategies (Chapters 7 and 9) further, examined the possibility of 

predicting BCS on a full scale (1.0−5.0) from a ewe’s production characteristics using linear 

regression. A significant proportion of the variability in BCS remained unexplained by the 

models. It implies that factors beyond the production characteristics could be responsible 
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for the unexplained variance and this warrants research. The great variability in 

unexplained ewe BCS could be attributed in individual differences. Therefore, further 

studies using data aimed such as image analysis (Computed Tomography: CT scans, dual-

energy X-ray absorptiometry: DXA), DNA profiles and automated metabolic profiles, to 

account for individual animal variability may be warranted. Further, the use of machine 

learning techniques (Chapter 8) to predict BCS from a ewe’s unadjusted live weights 

(unadjusted for conceptus and fleece weight) achieved accuracies greater than 85% on a 

narrow 3-point scale. This machine learning tool presents an opportunity for screening 

out the thin (BCS < 2.5) and obese (BCS > 3.5) ewes while preserving those in optimal 

productivity range (2.5 < BCS <3.5). It is possible that accuracies beyond and above 85% 

could be achieved if adjusted live weight and liveweight changes were used in the BCS 

prediction models. It, therefore, warrants further research to estimate the feasibility of 

increasing the accuracy of machine learning BCS prediction models when additional ewe 

characteristics are supplied.  

The current strategies used a discrete and rigid BCS scale based on a subjective 

method. A BCS scale of 1.0-5.0 with increments of 0.5 points was applied in the present 

studies. Elsewhere such as in Australia, increments of 0.25 have been used. It is possible 

that by increasing the length of the scale to include more points, more accurate BCS 

predictions can be achieved. Therefore, future studies should investigate the impact of 

using a longer scale (such as BCS: 1.0 – 10.0) or a scale with more increments (BCS: 1.0 - 

5.0; 0.25 points). Further, given the limitations of predicting BCS, itself a predictor of body 

composition. It would be worthwhile investigating how accurately live weights and other 

predictors would predict total body fat and muscle weights, or proportions given they are 

more objective and continuous variables. The first step in these types of studies would 

require animals to be euthanized and/or tools such as CT scans. 
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The supply of additional data to adjust LW for conceptus weight and fleece weight 

in the study did not appear to improve the prediction of BCS. In these strategies we used 

standard equations whose error rates and reliability are unknown. Therefore, could have 

introduced more noise than removed it. Therefore, future studies should investigate the 

reliability and extent of application of these standard equations or even develop 

customised equations for the study population. 

 

10.5  Practical implications and recommendations 

In the southern hemisphere, sheep production is mainly extensive with large flock sizes 

where management is based on average flock performance (Kenyon et al., 2014; Brown 

et al., 2015). Ewe performance is usually assessed using live weights and body condition 

score. Assessments that are based on a group rather than an individual’s performance can 

be misleading and may impede decision making and consequently proper allocation of 

resources. The results of this thesis supported the possibility of recording accurate live 

weights using a set of correcting equations and suggested that handsfree BCS 

measurement for improved ewe performance assessment was possible. Collection of 

accurate data has been shown to improve decision making regarding the management of 

ewes and consequently increased their performance (Young et al., 2004; Curnow et al., 

2011). It is possible that software incorporating live weight corrections and BCS 

estimations could be developed and made available in already existing weight electronic 

systems. These live weight correcting capabilities would adjust data based on herbage 

offered, ewe age, ewe physiological state, and season, when computing the final “without 

delay” live weight.  The farmer would be required to record the time when ewes were 

removed from pasture and enter this into the automatic weighing system. These systems 

already have individual time stamp capability for individual weights. For ewe BCS, the 

predictions would be based on their individual live weight and BCS records collected 
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routinely. The current study has shown that collection of more ewe production data 

(Chapter 9: conceptus weight, fleece weight, height at withers) would be of no benefit, 

consequently, farmers would have no extra burden of recording these additional 

variables. Therefore, it should be possible to have both corrected live weight and BCS 

recorded automatically by the weighing system if correct management information (age, 

physiological status, herbage type and availability) is pre-determined. The cost benefit of 

this would require further evaluation. If accurate equations can be developed to predict 

without delay live weight and current BCS, then farmers would be able to make more 

informed decisions.  

10.6  Overall summary and conclusions 

A series of studies have been undertaken to determine the effects of various 

factors on the rate of ewe liveweight loss during weighing, the possibility of correcting for 

live weights and predicting BCS using a ewe’s characteristics. Briefly, the studies have led 

to the following conclusions: 

- The rate of ewe liveweight loss depends on type (quality) and availability 

(quantity) of herbage, season of year and the physiological state of a ewe. Within 

physiological state, stage of pregnancy influences the rate of liveweight loss but 

not pregnancy-rank. 

- Applying correction equations reduces the error associated with delayed weights 

and improves the accuracy of “without delay” live weight estimates.  

- The relationship between ewe live weight and body condition score is linear and 

influenced by age, stage of the annual production cycle and pregnancy-rank.  

- Utilizing live weight, liveweight change and previous BCS record to predict a ewe’s 

current BCS using a general linear model improves the prediction of BCS but does 

not explain much of the variability in BCS.   
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- Machine learning improves ewe BCS prediction from a ewe’s live weight records. 

- Utilizing additional ewe information such as stage of gestation, pregnancy-rank 

and lambing records, and fleece weight to correct ewe live weights for conceptus 

and fleece weight and height at withers in addition to liveweight change and 

previous BCS does not improve the prediction of BCS.  

Overall, the findings from the current study suggest that measurement of both 

LW and BCS can be improved. Standardized feeding prior to ewe weighing and use of live 

weight correction equations improved the accuracy of delayed live weight estimates 

relative to “without delay” weights. Further, LW and BCS are linearly related and this 

relationship is influenced by ewe age, stage of the annual ewe production cycle and 

pregnancy-rank. If such factors affecting LW and BCS can be accounted for, it is possible 

to exploit this relationship between BCS and LW to predict BCS. These are important 

findings which will provide useful platform for future studies aiming to manipulate 

weighing and BCS protocols and systems to improve sheep management. 
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Appendix I. Weather data for Chapter 3 

 

 

Appendix I Figure 1 Average daily temperature (solid line: maximum, dashed: minimum) and 
precipitation (stripped bars) for the study time. Data from: https://cliflo.niwa.co.nz.
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Appendix II. Water availability study: Effect of water availability to liveweight loss rate of 

fasting ewe lambs 

Introduction 

The lambs in Chapter 3 were part of a larger study that compared the impacts of herbage type 

(grass and herb) with or without access to a reticulated water trough (corner et al unpublished), 

although the analysis in Chapter 3 focused only on herbage type. The aim of the present study 

was to investigate the effect of access to reticulated water on the rate of liveweight loss in lambs 

when removed from herbage. 

 

Materials and methods 

This trial was part of an ongoing study (Corner-Thomas et al, unpublished) conducted 

simultaneously with the herbage type study reported in Chapter 6 in which additional data on 

effect of access to reticulated water was collected. In their study, Corner-Thomas et al 

(unpublished)  allocated six-month-old ewe lambs (n = 80) to one of two dietary treatments: an 

established ryegrass and white clover dominated sward (grass, G) or a chicory, plantain, red and 

white clover mix (herb-clover, H). They were also further, allocated to one of two water 

treatments: no access to reticulated water (NW) or access to reticulated water (W). This 

allocation resulted in four treatment combinations: grass without reticulated water (GNW, n = 

20), grass with reticulated water (GW, n = 20), herb-clover without reticulated water (HNW, n = 

20) and herb-clover with reticulated water (HW, n = 20). To investigate the effect of water 

access, data were pooled by water treatment group namely, access to reticulated water (AW, n 

= 40) and no access (NW = 40), each replicated twice (i.e. by herbage type). The lambs were 

maintained on these treatments for 30 days prior to weighing. All the experimental and data 

collection conditions were as reported in Chapter 6. 

 

Statistical analyses 

Analyses were conducted using  R program version 3.4.4 (R Core Team, 2016). The analytical 

methodology utilised in this study were similar to ones applied in Chapter 3. A linear mixed-

effects model with polynomial time effect was fitted using nlme, a package for fitting regression 

for linear and nonlinear models (Pinheiro et al., 2018). Effects in the model were contrasted 

based on successive differences comparison (Liu et al., 2004) using the MASS package (Venables 

and Ripley, 2002). Access to water was fitted as a fixed variable, fasting time (linear and 

quadratic) as a covariate while an individual sheep effect was fitted as a random effect. Two-
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way interactions of access to water x fasting time were also fitted. An autoregressive correlation 

structure was fitted, to account for temporal dependency of nearby time.  

 

Results and discussion 

Initial liveweights of lambs in the AW and NW treatment groups were 40.8±1.10 kg and 

41.1±0.82 kg, while their final liveweights were 38.9±0.99 kg and 38.3±0.86 kg, respectively 

(Appendix II Figure 1). Lambs in AW and NW treatment groups lost significant amounts of 

liveweight after four (1.4±0.15 kg, and 1.6±0.14 kg or 3.4% and 3.8% liveweight) and eight hours 

(2.4±0.12 and 2.2±0.12 kg or 5.8% and 5.3% liveweight), respectively. Access to drinking water, 

had no effect (p > 0.05) on the rate of liveweight loss over the entire holding time (Appendix II 

Table 1, Appendix II Figure 2). Therefore, data were pooled for the two water treatment groups 

to generate an overall prediction equation. 

 

APPENDIX II Figure 1 Plot of liveweight decay for access to water (solid line) and no access to 
water (dashed line) treatments. 
 
APPENDIX II Table 1 Prediction parameters with standard errors in parentheses for lamb 
liveweight loss (kg) for the water access treatments (AW and NW).  

   Predictor       

Water access  Intercept Time Time2 Adjusted R2 

AW   0.05 (0.098) 0.55 (0.038) −0.035 (0.005) 0.75 

NW  0.07 (0.111) 0.47 (0.037) −0.020 (0.005) 0.79 

Overalla  0.06 (0.073) 0.51 (0.026) −0.030 (0.003) 0.78 

ab Overall liveweight loss prediction equation (LWL=0.06+0.51Time − 0.030Time2, R2 = 0.78). 
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APPENDIX II Figure 2 Change in liveweight (with 95% Confidence Interval, grey shade) after 
removal from herbage, for water (AW: solid line) and no water (NW: dashed line) treatments.  
 

In the current study, restricted access to reticulated water had no effect on the overall 

liveweight loss or rate of liveweight loss of the lambs. This finding is in agreement with Kirton et 

al. (1968) and Al-Ramamneh et al. (2012) who reported no difference in overall liveweight loss 

regardless of access to drinking water or not among Romney lambs managed under extensive 

grazing conditions  and two temperate sheep breeds kept under zero grazing. These results were 

also in agreement with studies under different environmental conditions with adult sheep who 

reported no difference in overall liveweight loss across two water access (access, no access) 

treatments (Brosh et al., 1986; Hadjigeorgiou et al., 2000). In many studies, liveweight loss in 

ruminants was associated with a reduction in water and feed intake and was influenced by 

ambient environmental temperatures and body-water loss (Silanikove, 1992; Alamer, 2009). 

Given the low dry matter (DM) percentage in the present study (AW: 16.7%, NW: 16.8%) the 

lambs were likely to have consumed a considerable amount of water in their herbage intake. 

Lambs need to consume dry matter % of approximately 2 to 3% of their liveweight (Lloyd et al., 

1978; McDonald, 2002). In the current study all lambs were offered ad libitum pasture levels 

>1200 kg DM/ha, therefore, the average daily intake of an average lamb (41.0 kg) was estimated 

at 1.23 (0.03 x 41.0) kg DM/ha. Therefore, if the herbage had a dry matter of 16.7%, lambs would 
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have consumed approximately 6.10 (1.23 kg DM/ha x 4.94) litres of water/ha assuming a water 

density of 1.0 kg/litre. The study was conducted when the ambient temperatures were relatively 

low (Average: 13°C, range: 9 to 19°C) which could have reduced their need for drinking water. It 

was unknown if the lambs allowed access to drinking water, had actually been drinking water 

which may warrant further research.  

 

Conclusions 

The present study identified that the liveweight loss profile during an eight-hour fast did not 

differ for lambs given access to reticulated water or not prior to fasting. Therefore, when 

adjusting lamb liveweight for losses associated with the duration after removal from paddock, 

whether lambs had access to drinking water or not need not to be considered.
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Appendix III. Weather data for Chapter 4.   

 

 

  

Appendix III Figure 1 Average daily precipitation (stripped bars) and temperature (solid line: 
maximum, dashed: minimum) during the calibration stage over the study time in autumn (a) and 
winter (b).  

 

 
 

Appendix III Figure 2 Daily temperature (solid line: maximum, dashed: minimum) and 
precipitation (stripped bars) during the validation stage over the study time for Tuapaka farm 
(a) and Riverside farm (b). 
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Appendix IV. Herbage mass and chemical composition for Chapter 4 

Appendix IV Table 1a Estimated post feeding herbage mass (least squares means) and proportion of 
live dry matter (%) of Low, Medium, and High herbage availability levels (kg DM/ha) offered to ewe by 
season (autumn, winter) during calibration. 

    Herbage mass (kg DM/ha) Proportion 
of live dry 
matter (%) Study  

Herbage 
availability Weighing day1 Weighing day2 Weighing day3 Overall 

Autumn Low 821.6 899.9 841.7 854.6 a 19.5 a 

 Medium 1247.1 1234.1 1167.0 1216.1 b 30.7 b 

 High 1864.9 1889 1979.8 1911.2 c 36.6 b 

    SE 33.1  
Winter Low 948.7 917.5 907.2 924.5 a 56.4 c 

 Medium 1285.1 1226.2 1146.2 1219.2 b 74.5 d 

 High 1885.1 1878.4 1847.1 1870.4 c 83.0 d 

    SE 23.2 2.15 
Model effects and comparisons      
Herbage availability level      

High vs Low     *** ** 
High vs Medium    *** ns 
Medium vs Low    *** ** 

Season (Autumn vs winter)    ns * 
Herbage availability level x Season       ns * 
Herbage availability: Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, High: ≥1400 
kg DM/ha). All tests and comparisons were based on Sidak’s multiple comparison methods. Single SEM value for live dry 
matter comparison across rows and within columns indicates a significant herbage availability x season interaction). *, **,*** 
indicate significant difference at p < 0.05, p < 0.01 and p < 0.001, respectively. ns: indicates not significant (p > 0.05). 

Appendix IV Figure 1b Herbage quality parameters for grab samples of the Low, Medium, and High 
herbage availability treatments offered to ewe lambs during autumn and winter (least square means). 
Analysis conducted using near-infrared reflectance spectroscopy (NIRS) method. 
  Herbage Chemical composition 

Study season availability  DM % CP % NDF % ADF % ME MJ/kg 

Autumn Low 26.4 16.8 52.9 30.1 9.5 

 Medium 26.1 18.3 52 30.2 9.5 

 High 26.7 18.4 50.5 28.3 9.8 
Winter Low 19.1 21.6 43.2 23.5 11.5 

 Medium 18.7 25.8 42.2 23.1 11.4 

 High 19.5 27.3 39.1 21.8 11.4 

 SE1 0.58 1.09 1.09 0.76 0.18 

 SE2 1.62 1.34 1.33 0.93 0.23 
Model effect comparisons       
Herbage availability       

High vs Low  ns * ns ns ns 
High vs Medium  ns ns ns ns ns 
Medium vs Low  ns * ns ns ns 

Season (Autumn vs winter)  * * * * * 
Herbage availability level x Season   ns ns ns ns ns 

DM: dry matter; CP: crude protein; NDF: neutral detergent fiber; ADF: acid detergent fiber (ADF); ME: metabolizable energy. 

Herbage availability: Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, High: ≥1400 
kg DM/ha. Standard error of mean difference % (SE1: comparisons across season; SE2: comparisons among herbage levels). 
* indicates significant difference at p < 0.05. ns: indicates not significant (p > 0.05).



Appendices 

Page | 261  
 

APPENDIX IV Table 2a Estimated post-feeding herbage mass (least squares means) and 
proportion of live matter (%) of Low, Medium, and High herbage availability target levels (kg 
DM/ha) offered to ewe lambs on Tuapaka farm and Riverside farm during validation. 

    Herbage mass (kg DM/ha) Proportion 
of live dry 
matter (%) Farm 

Herbage 
availability Weighing day1 Weighing day2 Overall 

Tuapaka Low 972.3 907.9 940.0 61.7 

 Medium 1318.8 1249.7 1284.3 93.4 

 High 1921.1 1900.4 1910.8 94.5 

      
Riverside Low 808.1 956.4 882.3 85.3 

 Medium 1277.2 1187.8 1232.5 71.2 

 High 1602.6 1458 1530.3 86.2 

   SE 110.0 6.2 
Model effects and comparisons     
Herbage availability level     

High vs Low    *** ** 
High vs Medium    *** ns 
Medium vs Low    *** * 

Farm (Tuapaka vs Riverside)   * * 
Herbage availability level vs Farm     * * 

Herbage availability (Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–1300, High: ≥ 1400). 
Single SEM value for herbage availability and live matter comparisons across rows and within columns indicates a 
significant herbage availability level x farm interaction). *, **,*** indicate significant difference at p < 0.05, p < 0.01 
and p < 0.001, respectively. ns: indicates not significant (p > 0.05). 

APPENDIX IV Table 2b Herbage quality parameters for grab samples of the Low, Medium, and 
High herbage availability levels offered to lambs during Winter season on Tuapaka farm and 
Riverside farm. 

  Herbage 
availability  

Chemical composition 

Farm DM % CP % NDF % ADF % ME MJ/kg 

Tuapaka Low 17.9 22.8 39.1 21.8 11.5 

 Medium 16.5 26.9 42.2 23.1 11.4 

 High 16.7 26.9 43.2 23.5 11.4 

       
Riverside Low 17.8 24.6 39.1 22.3 10.3 

 Medium 18.6 27.2 42.9 19.9 10.8 

 High 17.9 27.4 43.3 19.7 10.5 

 SE1 0.41 0.46 0.52 0.73 0.06 

 SE2 0.4 0.58 0.66 0.81 0.08 
Model effect comparisons       
Herbage availability       

High vs Low  * * ns ns ns 
High vs Medium  ns ns ns ns ns 
Medium vs Low  ns * * * ns 

Farm (Tuapaka vs Riverside)  ns ns ns ns * 
Herbage availability level x Farm   ns ns ns ns ns 

DM: dry matter; CP: crude protein, NDF: neutral detergent fiber NDF; ADF: acid detergent fiber; ME: metabolizable energy. 
Herbage availability (Low herbage availability target range: 700–900 kg DM/ha, Medium: 1100–1300, High: ≥1400). SEM values 
represent all comparisons across rows. All tests and comparisons were based on Sidak’s multiple comparison methods. Standard 
error of mean difference % (SE1: comparison across farm; SE2: comparison among herbage levels). * indicates p < 0.05, 
respectively. ns: indicates not significant (p > 0.05). 
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Appendix V: Weather data for Chapter 5 

 

 

Appendix V Figure 1a Average daily precipitation (stripped bars) and temperature (solid line: 
maximum, dashed: minimum) during the calibration stage over the study time for non-pregnant 
ewes. It did not rain during the non-pregnant study.  
 

  

Appendix V Figure 1b Average daily precipitation (stripped bars) and temperature (solid line: 
maximum, dashed: minimum) during the calibration stage over the study time for the ewes at 
approximately 100 days from the midpoint of a 17-day breeding period (b1) and 130 days (b2).  
 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

0

0.25

0.5

0.75

1

1 3 5 7 9 11 13 15

T
em

ep
ra

tu
re

 (
°C

)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)

0

5

10

15

20

0

2

4

6

8

1 3 5 7 9 11 13 15

T
em

p
er

at
u

re
 (

°C
)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)

0

5

10

15

20

0

2

4

6

8

1 3 5 7 9 11 13 15

T
em

p
er

at
u

re
 (

°C
)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)
(b1) (b2) 

https://cliflo.niwa.co.nz/


Appendices 

Page | 263  
Data from: https://cliflo.niwa.co.nz. 

 

 

  

APPENDIX V Figure 2a Average precipitation (stripped bars) and temperature (solid line: 
maximum, dashed: minimum) during the validation period for non-pregnant ewes at Keeble 
farm (a1) and Riverside farm (a2).  
 

  

APPENDIX IV Figure 2b Average precipitation (stripped bars) and temperature (solid line: 
maximum, dashed: minimum) during the validation period of ewes at approximately 100 days 
of pregnancy from the midpoint of a 17-day breeding period at Keeble farm (b1) and Tuapaka 
farm (b2). 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

0

2

4

6

8

1 3 5 7 9 11

T
em

ep
ra

tu
re

 (
°C

)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)(a1)

0

5

10

15

20

25

30

0

0.25

0.5

0.75

1

1 3 5 7 9 11

T
em

p
er

at
u

re
 (

°C
)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)

0

5

10

15

20

0

2

4

6

8

1 3 5 7 9 11

T
em

p
er

au
re

 (
°C

)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)

-5

0

5

10

15

20

0

4

8

12

16

1 3 5 7 9 11

T
em

p
er

at
u

re
 (

°C
)

P
re

ci
p

it
at

io
n

 (
m

m
)

Time of study (days)

( ) 

(b1) (b2) 

https://cliflo.niwa.co.nz/


Appendices 

Page | 264  
Data from: https://cliflo.niwa.co.nz. 

 

 

   

APPENDIX IV Figure 3c Average precipitation (stripped bars) and temperature (solid line: maximum, dashed: minimum) during the validation period of 
ewes at approximately 130 days of pregnancy from the midpoint of a 17-day breeding period at Keeble farm (c1), Tuapaka farm (c2) and Riverside farm 
(c3).
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Appendix VI: Herbage mass and chemical composition for Chapter 5 

Appendix VI Table 1a Estimated least squares mean herbage mass (kg DM/ha) and proportion of live/green 
matter (%) of Low, Medium and High herbage masses offered to ewes by study or physiological state (pregnant, 
non-pregnant), stage of pregnancy (P100: approximately 100 days of pregnancy from the midpoint of a 17-day 
breeding period, P130: approximately 130 days) and weighing day (days on which weighing was conducted: 7, 
12, 14) during the calibration. 
    Herbage mass (kg DM/ha) Proportion 

of live dry 
matter (%) Study  

Herbage 
availability Weighing day1 Weighing day2 Weighing day3 Overall 

Non-pregnant ewes       
 Low1 1168.4 1196.4 1185.9 1183. 6 38.6 

 Medium 1300.1 1296.1 1210.1 1268.8 67.3 

 High 2002 1802 1732.7 1845.6 67.7 

    SE 20.81 8.62 
Pregnant ewes       
P100 Low2 1025.5 986.8 1037.5 1016.6 80.8 

 High 1758.8 1823.5 1602.3 1728.2 75.0 
P130 Low2 1057 1083.5 1076.1 1072.2 84.6 

 High 1891.4 1839.7 1737.2 1822.8 91.4 

    SE 25.9 7.8 
Model effects and comparisons      
Non-pregnant ewe study   

Herbage availability level   
High vs Low     *** ** 
High vs Medium     *** ns 
Medium vs Low     *** ** 

Pregnant ewe study   
Herbage availability (High vs Low) *** ns 
Stage of pregnancy (P100 vs P130) ns ns 

*,**,*** indicate p < 0.05, p < 0.01 and p < 0.001, respectively. ns: indicates not significant (p > 0.05).
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Appendix VI Table 1b Herbage quality parameters (means with their standard errors in 
parenthesis) for grab samples of the Low (Low1, Low2), Medium and High herbage levels offered 
to ewes (Least square means) by study (pregnant, non-pregnant ewe study) and stage of 
pregnancy, during calibration. 
  Herbage 

availability  

Chemical composition 

Study DM % CP % NDF % ADF % ME MJ/kg 

Non-pregnant ewe study Low1 47.4 10.3 60.6 33.6 9.3 

 Medium 30.4 12.2 54.3 32.4 8.9 

 High 34.4 11.6 56.1 32.0 9.1 
 SE 2.21 2.27 3.22 2.52 0.54 
Pregnant ewe study       

P100 Low2 19.6 24.0 48.3 23.8 10.3 

 High 15.7 24.4 39.1 19.7 10.5 
P130 Low2 18.8 21.2 41.7 20.0 10.9 

 High 15.9 24.1 38.7 18.2 11.7 
 SE 0.57 0.81 1.70 1.10 0.24 
Model effect comparisons      

Non-pregnant ewe study      

Herbage availability      

High vs Low  * ns ns ns ns 
High vs Medium  ns ns ns ns ns 
Medium vs Low  * ns ns ns ns 

Pregnant ewe study       

Herbage availability (High vs Low)  ns ns * * * 
Stage of pregnancy (P100 vs P130)   ns ns ns ns ns 

DM: dry matter, neutral detergent fibre (NDF), ADF: acid detergent fibre (ADF), CP: crude protein, ME: metabolizable 
energy. Herbage availability (For non-pregnant ewe study, Low1 target range herbage mass of: 700–900 kg DM/ha, 
Medium: 1100–1300 kg DM/ha, High: ≥1400 kg DM/ha; for pregnant ewe study, Low2 herbage target range : 900–
1100 kg DM/ha, High: ≥1400 kg DM/ha). *,**,*** indicate p < 0.05, p < 0.01 and p < 0.001, respectively. ns: indicates 
not significant (p > 0.05). Means comparisons were based on Sidak’s adjustment method.
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Appendix VI Table 2a Estimated herbage mass (least squares means) and proportion of live and 
dead matter of Low, Medium and High herbage levels (kg DM/ha) offered to ewe by physiological 
state (pregnant, non-pregnant) and day of ewe weighing at different farms (Keeble, Tuapaka, 
Riverside) during the validation. 

      Herbage mass (kg DM/ha)   

Live/green 
matter (%) Study Farm 

Herbage 
availability 

*Weighing 
day one 

**Weighing day 
two Overall 

Non-pregnant 
ewes       
 Keeble Low1 1225.4 1298.1 1261.75 56.7 

  Medium 1309.2 1238.9 1274.05 71.8 

  High 2002.0 1832.6 1917.3 74.7 

  SEM1   63.2  
 Riverside Low1 - -  - 

  Medium 1147.9 1116.3 1132.1 0 

  High - -  - 
Pregnant 
ewes       
               P100 Keeble Low2 1017.5 930.0 973.7 72.3 

  High 2141.0 2026.9 2083.9 96.2 

 Tuapaka Low2 986.8 967.9 977.4 82.7 

  High 1923.5 1711.9 1817.7 88.3 

  SEM2   94.4  
              P130 Keeble Low2 1105.9 990.0 1047.9 84.6 

  High 1892.9 1815.1 1854.0 91.4 

 Tuapaka Low2 1040.0 1030.4 1035.2 75.4 

  High 2169.5 1727.3 1948.4 84.9 

 Riverside Low2 1081.6 990.0 1035.8 78.8 

  High 1681.5 1564.1 1622.8 81.4 

  SEM3   (59.4,72.3)  
Model effect comparisons   
Non-pregnant ewe study      

Herbage availability      
High vs Low    *** ** 
High vs Medium    *** Ns 
Medium vs Low    ns ** 

Pregnant ewe study      
Herbage availability (High vs Low)   ** * 
†Pregnancy stage (P100 vs P130)   ns Ns 
Farm     * Ns 
Farm x Herbage availability     
P100   ** Ns 
P130   . Ns 

Herbage availability (For non-pregnant ewes, Low1 target range: 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, 
High: ≥1400 kg DM/ha; for pregnant ewes, Low2 herbage target range: 900–1100 kg DM/ha, High: ≥ 1400;). Stage of 
pregnancy (P100: 100 days of pregnancy from the midpoint of a 17-day breeding period, P130: 130 days). - Indicates study 
not conducted. ., *,**,*** indicate marginally significant (p ≥ 0.05), significant at p < 0.05, p < 0.01 and p < 0.001, 
respectively. ns indicates not significant. † Two stages within the pregnant ewe study. SEM (1: one-way herbage 
availability; 2: two-way herbage x farm; 3: no interaction two factors (herbage availability = 59.4, farm = 72.3).
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APPENDIX VI Table 2b Herbage quality parameters for hand-plucked samples of the Low, 
Medium and High herbage levels by study (pregnant, non-pregnant ewe study), farm (Keeble, 
Tuapaka and Riverside), and stage of pregnancy (P100: 100 days of pregnancy from the midpoint 
of a 17-day breeding period, P130: 130 days) offered to ewes pre-fasting during validation.  

Study Farm 
Herbage 
availability DM % CP % NDF % ADF % ME % 

 Non-pregnant 
ewes               
  Keeble Low1 33.7 12.2 60.1 33.7 8.9 
    Medium 27.7  14.1 53.2 32.2 9.1 
    High 25.5  13.1 51.7 30.4 9.3 
                 SEM 2.29 0.75 1.83 1.03 0.26 
  Riverside Low1 - - - - - 
    Medium 87.2  7.1 66.2 36.4 8.4 
    High - - - - - 
Pregnancy ewes          
P100 Keeble Low2 19.8 20.0 51.8 30.6 9.4 
    High 16.0  24.4  37.6 20.6 11.0 
  Tuapaka Low2 16.3 24.0  41.7 24.6 10.9 
    High 13.4  27.5 38.9 20.0 12.2 
  SEM 0.68 1.82 2.20 1.60 0.41 
P130 Keeble Low2 20.9 24.0 39.5 19.9 11.5 
    High 14.4 29.9 41.8 20.2 11.7 
  Tuapaka Low2 15.7  22.2 45.3 26.0 10.3 
    High 12.7  29.6 37.8 18.2 12.0 
  Riverside Low2 18.6 16. 50.4 28.0 10.2 
    High 18.8 18.9 48.4 27.4 9.7 
                 SEM 0.80 1.70 2.16 1.56 0.33 
Model effects and comparisons        
Herbage availability (non-pregnant vs pregnant ewe 
study) ** ** * * * 
Non-pregnant ewe study        

Herbage availability        
High vs Low   ns ns * ns ns 
High vs Medium   ns ns ns ns ns 
Medium vs Low   ns ns * ns ns 

Pregnant ewe study        
Herbage availability (High vs Low)   ** ns * * ns 
†Pregnancy stage (P100 vs P130)   ** ns ns ns ns 
Farm   * ns * * ns 
Farm x Herbage availability   * ns * * ns 

DM: Dry matter, CP: Crude protein, Neutral detergent fibre (NDF), ADF: acid detergent fibre (ADF), ME: metabolizable energy. 

Herbage availability  (Non-pregnant ewes, Low1 target range herbage : 700–900 kg DM/ha, Medium: 1100–1300 kg DM/ha, 
High: ≥1400 kg DM/ha; for pregnant ewes, Low2 target range herbage: 900–1100 kg DM/ha, High (H): ≥1400). -indicates data 
not collected. *,**,*** indicate p < 0.05, p < 0.01 and p < 0.001, respectively. † Two stages within the pregnant ewe study.
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Appendix VII: Box and residual plots, liveweight and body condition score trends 

(Chapter 6) 

 
Appendix VII Figure 1a Boxplot summarizing liveweight predictions on the testing dataset; the 
bottom and top of the box show the 25th and 75th percentiles respectively, whiskers present the 
1.5 times the interquartile range of the data, and the thick black solid horizontal line is the median. 
SD is the standard deviation in kg. 
 

 
Appendix VII Figure 1b Normal quantile plots of the studentized residuals for all four models (SLM, 
QUAD, Box_Cox, SQRT) using BCS (1.0−5.0) to predict liveweight (kg). Solid blue line indicates 
simulated robust regression. Dotted lines indicate the confidence envelope estimated by 
parametric bootstrap (repeats =1000). 
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Appendix VII Figure 2a The liveweight of ewes across each age group (8−18 months, 19−30, 31−42, 
43−54, 55−66 and ≥67) and stage of the annual cycle (dotted bar: pre-breeding, grid: at pregnancy 
diagnosis, shingled: pre-lambing and stripped-diagonal: weaning). Superscripts a - u indicate 
significant differences (p < 0.05) across age group and stage of the annual cycle. 
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Appendix VII Figure 2b The liveweight of ewes across each age group (8−18 months, 19−30, 31−42, 
43−54, 55−66 and ≥67) and pregnancy diagnosis (dotted bar: non-pregnant, grid: single, shingled: 
twin). Superscripts a - f indicate significant differences (p < 0.05) across age group and stage of the 
annual cycle. 
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Appendix VII Figure 3a The BCS of ewes across each age group (8−18 months, 19−30, 31−42, 
43−54, 55−66 and ≥67) and stage of the annual cycle (dotted bar: pre-breeding, grid: at pregnancy 
diagnosis, shingled: pre-lambing and stripped-diagonal: weaning). Superscripts a - n indicate 
significant differences (p < 0.05) across age group and stage of the annual cycle. 
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Appendix VII Figure 3b The liveweight of ewes across each age group (8−18 months, 19−30, 31−42, 
43−54, 55−66 and ≥67) and pregnancy diagnosis (dotted bar: non-pregnant, grid: single, shingled: 
twin). Superscript a-d indicates significant differences (p < 0.05) across age group and pregnancy-
rank.
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Appendix VIII: Regression coefficients for BCS prediction equations in Chapter 7 

Appendix VIII Table 1a Linear regression intercepts and coefficients and adjusted R2 for the 
prediction of BCS from liveweight (liveweight alone models) between 8–18 and 32–43 months 
of ewes age across stages of reproductive cycle. 

Predictor BM1 BP1 BL1 BW1 BM2 BP2 BL2 BW2 BM3 BP3 BL3 BW3 

WM1 0.04 −0.02 −0.01 −0.02 −0.01 −0.01 −0.02  −0.01 −0.01 −0.01 −0.01 
WP1  0.04 0.02  0.01 −0.03 −0.03 −0.03 −0.01 −0.01  0.01 
WL1    −0.01 −0.02 0.02 0.02 0.02    −0.01 
WW1    0.05 0.01  0.01 −0.01  −0.01 −0.01  

WM2     0.03 0.01 0.01   −0.01  −0.01 
WP2      0.03  −0.01 −0.01  0.01 0.01 
WL2       0.01    −0.01 −0.01 
WW2        0.05 0.01    

WM3         0.04 0.01 0.01 −0.01 
WP3          0.05 0.01 −0.01 
WL3           0.02  

WW3            0.05 
WM4             

WP4             

WL4             

WW4             

WM5             

WP5             

WL5             

WW5             

WM6             

WP6             

WL6             

WW6             

Intercept 1.40 2.14 2.6 1.27 1.33 1.62 2.26 1.26 1.69 1.26 1.94 1.84 
Adjusted R2 14.1 8.19 6.2 45.4 38.4 25.5 24.8 36.4 38.7 38 14.9 48.9 
BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, 
respectively. WM, WP, WL, WW indicate liveweight prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, 
respectively. Blank space indicates coefficient non-significant at p < 0.05. Model example for BCS estimation (e.g., BM1 = 1.41 + 
0.04 WM1, adj. R2 = 14%).
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Appendix VIII Table 1b Linear regression intercepts and coefficients and adjusted R2 for the 
prediction of ewe BCS from liveweight (liveweight alone models) above 43 months of age across 
stages of reproductive cycle. 

Predictor BM4 BP4 BL4 BW4 BM5 BP5 BL5 BW5 BM6 BP6 BL6 BW6 

WM1 −0.01 −0.01    −0.01 −0.01 −0.01 −0.01 −0.02 −0.01 −0.02 
WP1 −0.01 −0.01 0.01  0.01    −0.01 −0.01   

WL1   −0.02 −0.01 −0.01     0.01  0.01 
WW1   −0.02 −0.01 −0.01 −0.01    −0.01 −0.01 −0.01 
WM2   −0.01 −0.01 −0.01 −0.01  −0.01  0.01  0.01 
WP2 −0.01  0.02 0.01 0.01    −0.01  0.01 −0.02 
WL2     0.01 0.01      0.01 
WW2 −0.01  0.01  0.01     −0.01   

WM3  −0.01 −0.01 −0.01 −0.01 −0.01   −0.01 −0.01 0.01  

WP3      0.01     −0.01  

WL3      −0.01    0.01   

WW3 0.02  0.01   −0.01   −0.01  −0.01  

WM4 0.03         −0.01   

WP4  0.04  −0.01  0.01   0.01 0.02 0.01  

WL4   0.02       −0.01 −0.01 −0.01 
WW4    0.04 0.01        

WM5     0.03 0.01 0.01 −0.01   0.01 0.01 
WP5      0.03 0.01   0.01 0.01 −0.01 
WL5       0.01 −0.01 −0.01 −0.01 −0.02 −0.01 
WW5        0.05 0.01 0.01   

WM6         0.04 0.01 0.01  

WP6          0.03  −0.01 
WL6           0.02  

WW6            0.06 
Intercept 1.59 2.30 2.40 1.72 1.46 1.59 1.92 1.65 1.71 1.60 1.96 1.05 
Adjusted R2 44.7 32.35 48.9 41.66 36.6 28.01 14.8 52.86 52.59 39.27 11.6 46.94 

BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at 
weaning, respectively. WM, WP, WL, WW indicate liveweight prior to pre-breeding, at pregnancy diagnosis, prior to 
lambing, and at weaning, respectively. Blank space indicates coefficient non-significant at p < 0.05. Model example for BCS 
estimation (e.g., BM4 = 1.59–0.01 WM1+ … + 0.03 WM4, adj. R2 = 45%).
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Appendix VIII Table 2a Linear regression intercepts and coefficients and adjusted R2 for the 
prediction of ewe BCS from combined models (that included lifetime liveweight, liveweight 
change, and previous BCS) between 8–18 and 32–43 months of ewe age across stages of 
reproductive cycle. 

 Predictor BM1 BP1 BL1 BW1 BM2 BP2 BL2 BW2 BM3 BP3 BL3 BW3 

WM1 0.04   −0.01  −0.01 −0.03  −0.01  −0.01 −0.01 
BM1  0.16 0.015 0.016 0.011 0.018 0.09 0.011 0.06 0.08 0.07 0.01 
WP1    −0.02  −0.02 0.02   −0.01   

DWT11  0.11 0.01 0.01   −0.02  −0.01   −0.01 
BP1   0.04 0.07 0.011 −0.014 −0.04 −0.019 0.08 0.01 0.07 0.013 
DWT12   0.01    0.01     −0.01 
WL1    0.04  −0.01 −0.01 −0.01   0.01  

BL1    0.01 0.09 0.012 0.04 0.05 0.05 0.01 0.04 0.08 
DWT13    0.05 0.02 −0.02 −0.01 −0.01   0.01  

WW1    0.01  0.01 0.02   −0.01 −0.02  

BW1     0.028 0.08 0.05 0.07 0.03 −0.01 0.03 0.02 
DT2-T1     0.02        

WM2     0.02    −0.01 −0.01 −0.04 −0.01 
BM2      0.013 −0.03 0.08 0.09 0.09 −0.01 0.09 
DWT21       −0.01    −0.04  

WP2      0.03   −0.01  0.02 −0.01 
BP2       0.051 0.024 0.01 0.013 0.01 0.03 
DWT22        0.02   −0.02 −0.02 
WL2        0.07  0.01 0.02 0.02 
BL2        0.011 0.09 0.07 0.015 −0.07 
DWT23        0.09  0.01   

WW2        −0.04  −0.02 −0.02  

BW2         0.023 0.018 0.03 0.04 
DT3-T2           −0.01  

WM4         0.03  −0.02 −0.01 
BM3          0.022 0.011 0.01 
DWT31           −0.03  

WP3          0.04 0.08 −0.02 
BP3           0.036 0.06 
DWT32           0.04  

WL3           −0.03  

BL3            0.025 
DWT33            0.01 
WW3            0.05 
Intercept 1.40 2.30 1.20 0.83 0.42 1.12 1.90 0.65 0.52 0.10 0.22 0.30 
Adjusted R2 14.10 10.5 34.0 51.0 50.33 32.0 43.55 58.0 54.02 55.43 33.48 56.52 
BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, 
respectively. WM, WP, WL, WW indicate liveweight prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at 
weaning, respectively. DWT, DW-T indicate liveweight change within age group and between age groups, respectively. Blank space 
indicates coefficient non-significant at p < 0.05. Model example for BCS estimation (e.g., BM1 = 1.41 + 0.04 WM1, adj. R2 = 14%).
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Appendix VIII Table 2b Linear regression intercepts and coefficients and adjusted R2 for the prediction of 
ewe BCS from combined models (that included lifetime liveweight, liveweight change, and previous BCS) 
above 43 months of ewe age across stages of reproductive cycle. 
Predictor BM4 BP4 BL4 BW4 BM5 BP5 BL5 BW5 BM6 BP6 BL6 BW6 

WM1   0.01  0.01    0.02   −0.02 
BM1 0.06 0.01  0.03 −0.01 0.03 0.02 −0.03 0.02 0.04 0.03 0.07 
WP1 −0.01 −0.01       −0.02  −0.01  

DWT11 0.01        0.01 0.01   

BP1 0.05 0.01 −0.08 0.03 0.03 0.01 0.02 0.01 0.04 −0.01 −0.02 −0.01 
DWT12  −0.01 −0.02  −0.01 −0.01    0.01 −0.01  

WL1    −0.01 −0.01  −0.01 0.01 0.01 0.01 0.01 0.01 
BL1  0.06 0.01 0.08 0.03  0.09 0.05 0.02 −0.02 0.09 0.01 
DWT13 −0.01   −0.01   −0.01   0.01 0.01 0.01 
WW1  −0.01 −0.01  −0.01 −0.01 0.01 −0.01    0.02 
BW1 0.05  −0.07 −0.01 0.04 0.02  0.03 −0.02 0.01 0.04 −0.02 
DT2-T1 −0.01 −0.02       −0.01 0.02 0.01 0.03 
WM2  0.01 −0.01   −0.01 −0.02 −0.01  −0.01 0.02 −0.06 
BM2 0.02 0.04 0.01 0.04 0.06 0.03 0.03 0.02 0.01 0.01 0.04 0.07 
DWT21  −0.01    −0.01 −0.01 −0.01   0.03 −0.02 
WP2 −0.01 −0.01 0.03 0.01  0.03 0.02 0.01 −0.02 −0.01   

BP2 0.01 0.07 0.04 0.04 0.02 0.05 0.04 0.06 0.08 0.05 −0.01 −0.05 
DWT22  −0.02 0.02   0.02 0.01 −0.01 −0.01 −0.01 0.03 −0.02 
WL2 −0.01  −0.02 0.01 0.01  −0.02 0.01 0.01 0.01 −0.02 0.05 
BL2 0.04 0.05 0.03 −0.02  0.08 0.07 −0.01 0.05 0.05 0.01 0.02 
DWT23 −0.01 −0.01  0.01 0.01 0.01 −0.01  −0.01  0.01 0.02 
WW2   0.01 −0.01 −0.01 −0.02  −0.01  −0.02 −0.05 −0.01 
BW2 0.03  0.01 0.09 0.04 0.04 0.03 0.06 0.06 0.05 −0.03 0.08 
DT3-T2   0.01     −0.01   −0.04 0.02 
WM3 −0.01  −0.02 0.01 −0.01 −0.01 −0.01  −0.01   0.01 
BM3 0.02 0.01 0.06 0.07 0.08 0.02 0.08 0.07 0.08 0.04 0.03 0.08 
DWT31  0.01  0.02  −0.01 −0.01 −0.01   −0.05 0.03 
WP3 −0.01 −0.02 −0.01 −0.02  0.01  0.01  0.01  −0.04 
BP3 0.01 0.08 0.08 0.03 0.04 0.09 0.08 0.02 0.07 0.07 −0.01 0.01 
DWT32 0.01 −0.01 −0.01  0.01  −0.01 0.01   −0.05 −0.02 
WL3   −0.01     −0.01 −0.02  0.04 0.05 
BL3 0.01 0.01 0.06  0.02 0.06 0.04 0.03 0.01 0.05 0.01 −0.05 
DWT33   −0.02    −0.01  −0.02 0.01  0.04 
WW3 0.01 −0.01 0.02 −0.01 −0.01   −0.01 0.01 −0.01 −0.01 −0.03 
BW3 0.02 0.01 0.09 0.01 0.01 −0.01 0.05 0.04 −0.02 −0.04 0.01 0.04 
DT4-T3      −0.01 −0.01   −0.01   

WM4 0.03 0.01 −0.05 −0.01 −0.01  0.01  0.01  0.03  

BM4  0.02 0.03 0.04 0.06 0.04  0.01 0.08 0.06 0.04 0.01 
DWT41  0.01 −0.05 −0.01 −0.01 0.01 0.01 0.01 0.01 0.01 0.02 −0.01 
WP4  0.03 0.04 −0.02  −0.01 −0.02 −0.01    −0.03 
BP4   0.01 0.08 0.01 0.01 0.08 0.08 0.01 0.02 −0.04 0.03 
DWT42   −0.01 −0.01 −0.01    0.01 0.01 0.03 −0.01 
WL4   0.03  0.01   0.01   −0.03 0.02 
BL4    0.02 0.01 0.01 0.08 0.06 −0.01 0.01 0.01 0.01 
DWT43    −0.01    0.01 0.01 0.02  0.02 
WW4    0.05 0.01   −0.01 −0.01 −0.02 −0.01 −0.01 
BW4     0.02 0.08 0.07 0.09 0.04 −0.04 −0.07 −0.03 
DT5-T4         0.01 −0.01 −0.01  

WM5     0.04 0.09   0.01 0.01  0.02 
BM5      0.01 0.02 0.04 0.08 0.06 0.03 0.03 
DWT51      0.09 −0.01  0.02  −0.01 0.02 
WP5      −0.06 0.03 −0.01 −0.03 −0.02 −0.01 −0.05 
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BM5       0.07 0.08 0.05 0.02 0.03 0.05 
DWT52       0.01    −0.02 −0.03 
WL5       0.01 −0.01 0.02  0.01  

BL5        0.03 0.08 0.01 0.05 0.01 
DWT53        −0.01 0.03   −0.04 
WW5        0.07 −0.02   0.02 
BW5         0.02 0.08 0.01 0.07 
DT6-T5           −0.01 −0.01 
WM6         0.05  0.02 0.01 
BM6          0.02 0.01 0.01 
DWT61          −0.01 0.01  

WP6          0.04 0.01 0.01 
BP6           0.01 0.02 
DWT62           0.01 0.03 
WL6            0.01 
BL6            0.02 
DWT63            0.04 
WW6            0.02 
Intercept 0.02 0.03 0.07 0.05 0.03 0.02 0.04 0.01 0.05 0.04 0.05 0.14 
Adjusted R2 53.98 47.73 51.48 50.88 48.92 46.22 31.43 59.05 61.4 57.96 24.19 49.67 

BM, BP, BL, BW indicate body condition score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, 
respectively. WM, WP, WL, WW indicate liveweight prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, 
respectively. DWT, DW-T indicate liveweight change within age group and between age groups, respectively. Blank space indicates 
coefficient non-significant at p < 0.05. Model example for BCS estimation (e.g., BM4 = 0.02 + 0.06 BM1+ … +0.03 WM4, adj. R2 = 54%). 
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Appendix IX: Machine learning flow chart, model comparison and summary of indicators of accuracy (Chapter 8) 

 

Appendix IX Figure 1 Machine learning flow chart for ewe BCS prediction using their current and previous liveweights. 
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Appendix IX Table 1 Accuracy measures (Precision, F-measure) of nine predictive models for ewe BCS at 43−54 months of age pre-breeding at different 
stages of the annual sheep weighing cycle (PB: pre-breeding, PD: pregnancy diagnosis, PL: pre-lambing and W: weaning). Values in parenthesis indicate 
the minimum and maximum. 

  PB  PD  PL  W 

Model Precision % F-measure %  Precision % F-measure %  Precision % F-measure %  Precision % F-measure % 

XGB 86.1 (78.2-97.7) 86.0 (80.1-96.9)  87.9 (80.8-94.5) 87.6 (84.1-90.0)  87.9 (80.8-94.5) 87.6 (84.1-90.0)  89.1 (84.2-92.8) 89.0 (87.5-91.3) 
RF 85.3 (78.1-95.9) 85.3 (79.0-95.6)  86.9 (83.2-91.1) 86.7 (83.6-90.7)  86.1 (77.0-91.7) 85.7 (81.0-89.0)  84.9 (79.3-88.8) 84.7 (83.2-86.4) 
SVM 82.7 (74.1-95.1) 82.7 (74.5-94.4)  83.4 (74.6-90.3) 82.6 (80.0-87.2)  83.5 (68.7-95.0) 81.8 (76.0-86.4)  82.8 (71.6-89.4) 82.0 (78.0-85.7) 
KNN 82.3 (75.0-94.4) 82.0 (71.8-95.3)  84.7 (77.5-89.5) 84.5 (80.9-90.6)  64.5 (58.1-68.6) 64.1 (61.8-65.5)  84.9 (79.3-88.8) 85.1 (80.5-88.1) 
ANN 80.3 (71.9-93.4) 80.3 (71.6-92.6)  76.3 (72.1-83.7) 76.1 (73.2-80.7)  73.5 (64.5-83.3) 71.5 (67.4-76.2)  79.5 (70.0-85.0) 78.7 (76.4-82.6) 
Multinom 76.8 (67.7-89.3) 76.8 (68.1-89.1)  70.2 (65.6-76.4) 70.0 (64.1-73.8)  64.8 (62.8-65.9) 64.6 (62.1-67.1)  68.1 (65.0-70.7) 67.7 (65.7-70.2) 
LDA 75.0 (64.3-89.0) 74.9 (64.5-88.3)  70.5 (65.1-79.0) 69.3 (61.8-73.3)  65.3 (61.9-67.9) 64.9 (61.5-67.7)  68.3 (63.4-70.8) 67.6 (65.8-70.7) 
Ordinal 73.2 (59.2-88.5) 72.9 (60.4-85.3)  64.9 (55.0-77.4) 63.8 (58.4-68.1)  57.3 (45.8-64.2) 57.5 (43.5-66.7)  64.2 (52.9-70.9) 63.4 (57.4-68.7) 
CART 62.1 (47.3-77.7) 62.3 (41.5-80.0)  61.1 (55.5-68.9) 59.2 (48.5-64.6)  57.3 (55.1-60.5) 55.7 (46.6-62.5)  55.4 (53.4-59.0) 54.8 (45.3-60.9) 
Model: (XGB: Gradient boosting decision tree model, RF: Random Forest, KNN: K-Nearest Neighbours, SVM: Support Vector Machines, ANN: Neural Networks, Multinorm: Multinomial 
regression, LDA: Linear Discriminant Analysis, Ordinal: ordinal logistic regression, CART: Classification and regression tree).
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Appendix IX Table 2 A pairwise comparison (Bonferroni p-value adjustment) of overall 
performance accuracy of nine predictive models for BCS, at different stages of the annual cycle 
(PB: pre-breeding, PD: pregnancy diagnosis, PL: pre-lambing, W: weaning) in 43−54-month-old 
ewes. p-value > 0.05 indicates not significant difference between models. All ewe BCS 
predictions were based on liveweight records. 

Model A Model B PB PD PL W 

XGB KNN 0.011 0.000 0.000 0.000 

 RF 1.000 0.000 0.245 0.007 

 SVM 0.010 0.000 0.000 0.000 

 ANN 0.000 0.000 0.001 0.000 

 Multinorm 0.000 0.000 0.000 0.000 

 LDA 0.000 0.000 0.000 0.000 

 Ordinal 0.000 0.000 0.000 0.000 

 CART 0.000 0.000 0.000 0.000 
KNN RF 0.003 0.281 0.000 0.041 

 SVM 1.000 1.000 0.000 1.000 

 ANN 0.231 0.000 1.000 0.000 

 Multinorm 0.000 0.000 0.779 0.000 

 LDA 0.000 0.000 1.000 0.000 

 Ordinal 0.000 0.000 0.000 0.000 

 CART 0.000 0.000 0.004 0.000 
RF SVM 0.203 0.014 0.008 0.002 

 ANN 0.002 0.000 0.002 0.000 

 Multinorm 0.000 0.000 0.000 0.000 

 LDA 0.000 0.000 0.000 0.000 

 Ordinal 0.000 0.000 0.000 0.000 

 CART 0.000 0.000 0.000 0.000 
SVM ANN 0.563 0.000 0.021 0.000 

 Multinorm 0.000 0.000 0.000 0.000 

 LDA 0.000 0.000 0.000 0.000 

 Ordinal 0.000 0.000 0.000 0.000 

 CART 0.000 0.000 0.000 0.000 
ANN Multinorm 0.002 0.000 1.000 0.000 

 LDA 0.000 0.000 1.000 0.000 

 Ordinal 0.002 0.000 0.000 0.000 

 CART 0.000 0.000 0.903 0.000 
Multinorm LDA 0.019 1.000 1.000 1.000 

 Ordinal 0.004 0.000 0.000 0.000 

 CART 0.000 0.000 0.023 0.000 
LDA Ordinal 0.019 0.000 1.000 0.006 

 CART 0.000 0.000 0.032 0.000 
Ordinal CART 0.000 0.002 0.047 0.008 

Model: (XGB: Gradient boosting decision tree model, RF: Random Forest, KNN: K-Nearest Neighbours, SVM: Support 
Vector Machines, ANN: Neural Networks, Multinorm: Multinomial regression, LDA: Linear Discriminant Analysis, 
Ordinal: ordinal logistic regression, CART: Classification and regression tree).
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Appendix IX Figure 2 Random Forest based Multi-dimensional score (MDS) plots for BCS 
prediction in 43−54 months old ewes at different stages of the annual cycle (a: pre-breeding, b: 
pregnancy diagnosis, c: pre-lambing, d: weaning). Red, blue and green, circles represent single 
data points from BCS of 1.0−2.0, 2.5−3.5 and > 3.5, respectively.
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Appendix X: Frequency of ewe BCS, correlation between BCS, LW and HW, and BCS prediction 

error (Chapter 9) 

  
Appendix X Table 1 Frequency of ewe body condition scores (BCS) by age (8−18 months, 19−30, 
31−42) and stage of the annual production cycle. 

  8−18   19−30   31−42   

BCS PB PD PL W   PB PD PL W   PD PL W Overall 

1.5    5  6 1 2 5  2  17 5 
2.0 34 38 13 47  32 5 8 84  16 7 67 32 
2.5 186 208 180 175  111 65 89 160  114 68 140 136 
3.0 156 145 171 135  131 136 127 97  119 87 63 124 
3.5 45 36 53 43  104 111 106 41  83 119 45 71 
4.0 6 2 11 22  32 67 65 20  49 76 14 33 
4.5    2  11 37 24 16  19 36 16 20 
5.0       1     4 3 3     5 10 4 

Stage of the annual production cycle (PB: pre-breeding, PD: pregnancy diagnosis, PL: pre-lambing, W: weaning). 
Empty space indicates no ewe had that body condition score.



Appendices 

Page | 282  
 

Appendix X Table 2 Correlation coefficients between individual unadjusted and/or adjusted liveweight 
(LW) and height at withers (HW) across stages of the annual production cycle in ewes between 8 and 42 
months. 

Wither   8−18   19−30   31−42 

Height 
measurement n PB PD PL W   PB PD PL W   PB PD PL W 

Unadjusted LW 
LH1 428 0.57 0.56 0.57 0.47  -0.24 0.44 0.45 0.34  0.32 0.44 0.43 0.29 
PH2 427 0.27 0.23 0.19 0.30  -0.15 0.28 0.29 0.17  0.14 0.20 0.22 0.19 
DH2 426 0.37 0.35 0.33 0.38  -0.14 0.43 0.39 0.26  0.24 0.32 0.34 0.26 
WH2 424 0.37 0.31 0.29 0.34  -0.17 0.30 0.26 0.41  0.36 0.41 0.37 0.32 
DH3 402 0.30 0.25 0.20 0.24  -0.18 0.24 0.20 0.25  0.20 0.29 0.27 0.19 
WH3 402 0.35 0.30 0.30 0.30  -0.12 0.34 0.30 0.36  0.33 0.38 0.34 0.35 

Adjusted LW 
LH1 428 0.57 0.56 0.57 0.47  -0.25 0.45 0.48 0.34  0.32 0.44 0.41 0.29 
PH2 427 0.27 0.24 0.19 0.30  -0.16 0.27 0.28 0.16  0.13 0.19 0.23 0.19 
DH2 426 0.37 0.35 0.33 0.38  -0.15 0.43 0.40 0.26  0.23 0.31 0.33 0.26 
WH2 424 0.37 0.32 0.29 0.34  -0.17 0.34 0.38 0.41  0.36 0.41 0.38 0.32 
DH3 402 0.30 0.26 0.20 0.23  -0.19 0.25 0.25 0.24  0.19 0.28 0.26 0.18 
WH3 402 0.34 0.30 0.29 0.29   -0.12 0.37 0.39 0.36   0.32 0.37 0.38 0.34 

Adjusted indicates that variables were corrected for fleece conceptus and fleece weight. All correlation coefficients were 
significant (p < 0.05). PB, PD, PL, W indicate the four stages of the annual production cycle including pre-breeding, pregnancy 
diagnosis, pre-lambing, and weaning, respectively. PH: height at withers at breeding, DH: pregnancy diagnosis, LH: pre-lambing, 
and WH: weaning. Correlations based on centred and scaled training data. Underlined values indicate correlation of both HW and 
LW measurement at the same time point. 1,2,3 denote the time (Months: 8-18, 19-30, 31-42, respectively) of measurement.
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Appendix X Table 3 Correlation coefficients between individual unadjusted or adjusted liveweight (LW) and body condition scores (BCS) across stages of the 
annual production cycle in ewes between 8 and 42 months. 

  8−18  19−30  31−42 

predictor n PB PD PL W  PB PD PL W  PD PL W 

Liveweight alone1 (Unadjusted) 
WM1 428 0.40** 0.26** 0.08 0.06  -0.11* 0.08 0.11* 0.01  0.10* 0.13* 0.05 
WP1 429 0.38** 0.34** 0.11* 0.07  -0.08 0.11* 0.16** 0.01  0.12* 0.18** 0.06 
WL1 428 0.36** 0.28** -0.01 -0.03  -0.12* 0.05 0.12* 0.05  0.16** 0.20** 0.06 
WW1 429 0.19** 0.19** 0.15** 0.41**  -0.03 0.35** 0.33** 0.07  0.23** 0.28** 0.20** 
WM2 427 0.14** -0.05 0.03 0.16**  0.54** 0.11* 0.07 -0.02  0.01 -0.03 0.10 
WP2 426 0.16** 0.20** 0.21** 0.36**  0.01 0.45** 0.34** -0.06  0.18** 0.21** 0.18** 
WL2 424 0.15** 0.19** 0.17** 0.34**  0.01 0.40** 0.26** -0.16**  0.06 0.15** 0.12* 
WW2 424 0.02 0.02 0.06 0.14**  -0.06 0.22** 0.39** 0.68**  0.55** 0.49** 0.33** 
WP3 402 0.06 0.08 0.04 0.13*  -0.06 0.23** 0.35** 0.44**  0.55** 0.53** 0.28** 
WL3 399 0.06 0.07 0.03 0.10  -0.05 0.21** 0.30** 0.29**  0.43** 0.45** 0.16** 
WW3 402 0.05 0.06 0.04 0.18**  -0.03 0.27** 0.28** 0.31**  0.41** 0.45** 0.72** 

Liveweight alone2 (Adjusted) 
WM1 428 0.40** 0.25** 0.08 0.07  -0.11* 0.08 0.12* 0.02  0.12* 0.14** 0.05 
WP1 429 0.36** 0.34** 0.14** 0.10  -0.08 0.15** 0.19** 0.02  0.14** 0.20** 0.07 
WL1 428 0.37** 0.28** -0.01 -0.03  -0.11* 0.05 0.12* 0.05  0.16** 0.20** 0.06 
WW1 429 0.19** 0.18** 0.14** 0.41**  -0.03 0.35** 0.33** 0.08  0.23** 0.28** 0.20** 
WM2 427 0.14** -0.05 0.03 0.15**  0.53** 0.10* 0.07 -0.02  0.01 -0.02 0.10 
WP2 426 0.15** 0.20** 0.22** 0.37**  0.02 0.47** 0.40** -0.03  0.25** 0.27** 0.21** 
WL2 424 0.12* 0.19** 0.19** 0.35**  0.02 0.44** 0.44** -0.10*  0.25** 0.31** 0.22** 
WW2 424 0.02 0.02 0.06 0.14**  -0.05 0.22** 0.39** 0.68**  0.55** 0.49** 0.32** 
WP3 402 0.06 0.08 0.05 0.13*  -0.05 0.23** 0.36** 0.46**  0.56** 0.55** 0.31** 
WL3 399 0.05 0.09 0.05 0.12*  -0.03 0.24** 0.34** 0.33**  0.46** 0.53** 0.29** 
WW3 402 0.05 0.07 0.04 0.18**  -0.03 0.27** 0.28** 0.31**  0.41** 0.45** 0.72** 

Adjusted indicates that variables were corrected for fleece conceptus and fleece weight. Asterisks *, ** indicate significance at p<0.05 and p<0.01 respectively. PB, PD, PL, W indicate the four 
stages of the annual production cycle including pre-breeding, pregnancy diagnosis, pre-lambing, and weaning, respectively. Underlined values indicate correlation of both BCS and LW 
measurement at the same time point. Correlations based on centred and scaled training data. 1,2,3 denote the time (Months: 8-18, 19-30, 31-42, respectively) of measurement.
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Appendix X Table 4 Correlation coefficients between individual height at withers (HW) and body condition scores (BCS) across stages of the annual production cycle 
in ewes between 8 and 42 months. 

   8−18  19−30  31−42 

HW n PB PD PL W  PB PD PL W  PD PL W 

Unadjusted WH 
LH1 428 0.08 0.11* -0.06 -0.04  -0.02 -0.02 -0.02 0.05  0.08 0.04 0.00 
PH2 427 -0.03 0.02 0.00 0.08  -0.06 -0.02 -0.03 -0.05  0.02 0.01 0.07 
DH2 426 0.09 0.10* -0.05 0.01  -0.02 0.07 0.06 -0.01  0.05 0.02 0.00 
WH2 424 -0.03 0.01 -0.06 0.00  -0.06 -0.04 0.06 0.15**  0.09 0.05 0.09 
DH3 402 0.02 -0.01 -0.01 0.04  -0.06 -0.01 -0.03 0.07  0.07 0.13* 0.03 
WH3 402 0.03 0.04 -0.02 -0.01  -0.02 0.02 0.04 0.06  0.12* 0.14** 0.14** 

Adjusted HW 
LH1 428 0.08 0.11* -0.06 -0.04  -0.02 -0.02 -0.02 0.05  0.08 0.04 0.00 
PH2 427 -0.03 0.02 0.00 0.08  -0.06 -0.02 -0.03 -0.05  0.02 0.01 0.07 
DH2 426 0.09 0.10* -0.05 0.01  -0.02 0.07 0.06 -0.01  0.05 0.02 0.00 
WH2 424 -0.03 0.01 -0.06 0.00  -0.06 -0.04 0.06 0.15**  0.09 0.05 0.09 
DH3 402 0.02 -0.01 -0.01 0.04  -0.06 -0.01 -0.03 0.07  0.07 0.13* 0.03 
WH3 402 0.03 0.04 -0.02 -0.01  -0.02 0.02 0.04 0.06  0.12* 0.14** 0.14** 

Adjusted indicates that variables were corrected for fleeceweight. Asterisks *, ** indicate significance at p<0.05 and p<0.01 respectively. PB, PD, PL, W indicate the four stages of the annual 
production cycle including pre-breeding, pregnancy diagnosis, pre-lambing, and weaning, respectively. PH: height at withers at breeding, DH: pregnancy diagnosis, LH: pre-lambing, and WH: weaning. 
Underlined values: same time point correlation coefficients. Correlations based on centred and scaled training data. 1,2,3 denote the time (Months: 8-18, 19-30, 31-42, respectively) of measurement.
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Appendix X Figure 1 Root mean square error (RMSE with standard deviations) of  models (dotted bar: 
unadjusted liveweight alone models, horizontal stripes: combined models based on unadjusted LW, 
liveweight change and previous BCS, diagonal stripes: adjusted liveweight alone, shingled: adjusted 
liveweight, liveweight change, height at withers and previous BCS) for current BCS prediction across 
the stage of the annual production cycle and ewe age group. Colours (Red indicates unadjusted 
liveweight while blue indicates adjusted liveweight was used). PB, PD, PL, W indicate body condition 
score prior to pre-breeding, at pregnancy diagnosis, prior to lambing, and at weaning, respectively. 
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