Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

TOWER FERMENTATION OF WHEY PERMEATE

AND

SUCROSE-ENRICHED WHEY PERMEATE TO ETHANOL

A thesis presented in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biotechnology at Massey University

CHATURONG BOONTANJAI

.

1983

ABSTRACT

Tower fermentation of sulphuric acid whey permeate using Kluyveromyces marxianus Y42 has been investigated. The tower fermenter used was 0.025 m in diameter and 2.69 m high. The straight section of the tower was 2.37 m. The total tower volume was 2.9 litres and the separator section made up 1.6 litres of the total volume. The operating temperature was 30°C. The optimum medium feed rate was observed at a superficial liquid velocity of 0.24 mm/s. It was found that a tower height of only 0.82 m was required, excluding the separator section, and the corresponding residence time was 1 hour. An exit ethanol concentration of 16 g/l was produced at a productivity of 16 g/lh from 45 g/l lactose in the whey permeate feed (94% utilization). This was an ethanol yield of 71% on lactose utilized. If the separator section were considered, the ethanol productivity was 5 g/lh and the exit ethanol concentration was 19 g/l, while the overall retention time was 3.7 hours. The cell concentration inside the tower varied between 10 and 100 g/l dried weight (54 and 350 g/l wet weight) being greatest at the bottom of the tower.

K. marxianus was found to be inhibited by a high level of ethanol the growth medium and unable to ferment completely a high in concentration of lactose when tested in 10 litre-scale-batch fermentation. Further tests in the presence of sucrose and lactose found that this yeast exhibited diauxic behaviour by utilizing sucrose before lactose. This behaviour generally resulted in incomplete lactose utilization in the tower. In the screening for a flocculent lactose-fermenting yeast, the yeast strain K. marxianus was found to be the only flocculent yeast, but it was only moderately flocculent. Further investigation found that it had good flocculence when grown in media which support good growth, and poor flocculence when grown in acidic media and in media which do not support good growth. A subculture of this yeast strain showed moderate flocculence when grown in whey permeate.

Tower fermentation of whey permeate enriched with molasses by mixed culture of *Saccharomyces cerevisiae* CFCC39 and *K. marxianus* Y42 was found to be difficult. The difficulty arose because of incomplete lactose utilization even at a very low feed rate (up to 0.14 mm/s) and incompatible flocculation properties of the two yeast species employed. Blockage of the separator and gas slug formation were caused by the very flocculent yeast mass of *S. cerevisiae* CFCC39. This caused

ii

K. marxianus to be slowly washed out of the tower fermenter. Sucrose was completely utilized at the bottom of the tower fermenter, while lactose utilization was slow and incomplete. The incomplete lactose utilization has been attributed to the diauxic behaviour of K. marxianus, ethanol inhibition and molasses inhibition (probably due to its reaction with whey permeate during autoclaving).

Results of tower fermentation of cane molasses have also been given for characterization of the tower fermenter used.

Experiments to isolate an ethanol tolerant K. marxianus using a serial subculture in a medium containing increasing ethanol concentrations were performed. The isolate obtained could tolerate up to 50 g/l ethanol. It could ferment lactose in whey permeate to produce ethanol at a faster rate than the parent strain and other lactose-fermenting yeast tested. The isolate was found to be stable. It was not used in the tower fermenter as it was non-flocculent.

An attempt was made to isolate a sucrose-negative K. marxianus. This was only partially successful. The mutant did not grow on sucrose agar but reverted to the wild type when grown in liquid medium containing both sucrose and lactose.

An experiment to isolate a diauxie-negative K. marxianus strain using D-glucosamine as a glucose analogue was also described. This was unsuccessful because K. marxianus was able to grow on lactose in presence of the analogue.

TO MY KIWI AND THAI PARENTS

ACKNOWLEDGEMENT

During the course of his attempt to complete this study, the author owed gratitude to many people and wishes to thank the following :

Professor R.L. Earle and Dr. Mary D. Earle for the kindness and help given to him and to the development of Food Technology and Biotechnology studies in Thailand and in particular at Khonkaen University.

The DSIR for providing financial support during part of this study.

His supervisors Drs. Vidar Friis Larsen and John D. Brooks for their guidance and advice .

Dr. Ian S. Maddox for his able guidance, advice and forever readiness to help and answer the many questions from the author on general industrial microbiology.

Dr. Graham J. Manderson for his forever readiness to give help and advice on yeast morphology and behaviour, and photomicroscopy.

Dr. Noel W. Dunn of the School of Biological Science, University of New South Wales, Sydney, Australia, for his guidance, advice and planning of the experiments on the culture improvement of *Kluyveromyces marxianus*.

Assoc. Professor Anthony M.MacQuillan of the Dept. of Microbiology, University of Maryland, College Park, Maryland, USA, for providing two lactose fermenting yeast cultures in which one of them was flocculent. Thus, enabling the completion of this study, and for his advice on *Kluyveromyces* species mutation.

Dr. Marion Ewen of the Dairy Research Institute (DRI), Palmerston North, for her various help and advice, particularly for providing references on whey technology, giving some first hand knowledge on tower fermentation and reading the manuscript.

Dr. Roy J. Thornton of the Dept. of Microbiology, Massey University, for giving consultation and advice on yeast mutation.

The staff of DRI, Palmerston North. The Whey product Section : Messrs. Peter Hobman, Mike O'Connell and John Bligh for their assistance in providing the whey permeate . The DRI library staff for their able assistance in particular Lorraine Tremain.

The technical and secretarial staff of the Faculty of Technology : John Alger, Paul Shaw, Derek Couling, Mike Stevens, Robyn Calder, Mark Lubbers, Astrid Ndzinge, Melvin Smith, Terry Gracie, Margaret Bewley,

V

Raewyn Cheer, Beverly Hawthorn and Carol Clouston for their able assistance.

The staff of Massey University Library in particular the Serials and Interloan Departments.

Claire Mudford for her assistance during the experiments on tower fermentation, and thesis preparation.

The boiler house staff for their cooperation in providing the steam outside office hours.

Bruce Walker for his assistance in the transportation of whey permeate.

His fellow students : Tom Clark, Sheelagh Wilkinson, Moazzem Hozzain, Tipavana Ngarmsak, Pisanu Vichiensanth, Tony Retter, Richard Gapes, John Mawson, Warren Hollaway, Wong Tze Sen and Pamela Palfreyman. Many thanks for their helpful and encouraging words, advice and sharing sadness during bad times.

Many thanks to the many friends in the Faculty of Technology who have provided a very friendly atmosphere to work in.

Brian Wilkinson, Dick Poll, Mr. & Mrs Meredith and their respective families for their kindness and encouraging words and for offering the warmth of their homes.

Mrs. Bunnak Wickham and (Aunty) Bertha Zurcher for finding and letting a comfortable accommodation.

Sarah Sant for proof reading part of the final manuscript.

The Computer Centre staff for their cooperation and assistance in the preparation of the manuscript.

Vivienne Mair and Joane Charles for typing part of the manuscript.

Mr. A. Eustace, Sunanta Juntakul and Priscilla Burton for their kind assistance during photocopying.

Christine Samaniego and Linda Poll for their assistance in the preparation of the manuscript for binding.

Finally, his Kiwi parents (Mr. & Mrs. Moxon) and their family for all the love, kindness, warmth, care, encouragement and help that they have given which could not be expressed in a few words. Without their assistance the completion of this study would have been extremely difficult.

vi

TABLE OF CONTENTS

	page
ABSTRACT	ii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vii
LIST OF FIGURES	xviii
LIST OF TABLES	xxi
LIST OF ABBREVIATIONS	xxiv
1 WHEY, ITS UTILIZATION AND DISPOSAL	
1.1 Introduction	1
1.2 Types of whey	1
1.3 Whey composition	1
1.4 Whey production	3
1.5 Whey utilization and disposal	3
1.5.1 Whey disposal	6
1.5.2 Protein production	6
1.5.3 Lactose production	6
1.5.4 Fermentation of whey	7
(a) Beverage production	7
(b) Lactic acid production	7
(c) Citric acid production	7
(d) Acetic acid fermentation	7
(e) Microbial protein production	8
(f) Butanol production	8
(g) Production of other fermentation products	8
(h) Ethanol production	8
1.6 Summary	9
2 LITERATURE REVIEW	
2.1 Introduction to ethanol fermentation	11
2.1.1 General biochemistry	12
2.1.2 General microbiology	12
2.2 Ethanol fermentation of whey	14

2.2.1 Microorganisms142.2.2 Metabolism of lactose to ethanol by yeast152.2.3 Yeast environmental considerations15

viii	
(a) Substrate utilization	15
Concentrated whey	16
(b) Ethanol production	17
(c) Ethanol inhibition	19
(d) Aeration	20
(e) Nutrient requirements	20
(f) Temperature	20
(g) pH	21
2.3 Ethanol fermentation processes	21
2.3.1 Alternative processes to batch fermentation	21
(a) Continuous stirred tank fermentation	21
(b) Vacuum fermentation	21
(c) Rapid batch fermentation	23
(d) Fermentation by immobilized cells	23
(e) Tower fermentation	24
2.3.2 Industrial and pilot plant processes used for the	25
production of ethanol from whey	
2.4 Ethanol production by tower fermentation	26
2.4.1 History of tower fermentation	26
2.4.2 The characteristics and operation of the tower	26
fermenter	
(a) Organisms for tower fermentation	28
(b) The effect of tower height	28
(c) Residence times in tower fermentation	29
(d) The effect of original wort specific gravity on	30
limiting volumetric efficiency	
(e) Aeration	31
2.4.3 Applications of tower fermentation	31
2.4.4 Industrial ethanol tower fermentation	31
(a) Laboratory scale investigations	31
(b) Media used and the effect of sugar concentration	32
(c) Fermentation temperature	33
(d) Operating pH	34
(e) Conclusions	34
2.5 Flocculation of yeasts	35
2.5.1 Flocculent yeast classification	35
(a) Non-flocculent	35
(b) Flocculent-physically limited	35
(c) Flocculent-fermentation limited	35

2.5.2 Quantitative measurement of yeast flocculation	n 35
(a) Burn's method as modified by Helm et al	35
(b) Burn's method as modified by Stewart	35
(c) Sharp's method	36
(d) Spectrophotometric method	37
2.5.3 Factors influencing yeast flocculence	37
2.5.3.1 Inherited flocculent properties in yeast	37
(a) Flocculent genes	37
(b) The yeast cell wall	37
(c) Comparison of the cell walls of flocculent an	d 38
non-flocculent yeasts	
(d) Chemical effects on the disulphide bridge	38
(e) The fimbria of yeast cell wall	39
(f) The cell wall ionic charge	39
2.5.3.2 Environmental effect on yeast flocculation	n 39
(a) Flocculation aids	39
(b) Mechanism of ionic induced flocculation	40
(c) Deflocculating agents	40
(d) Growth media	40
(e) Temperature	41
(f) pH	41
(g) Coflocculation	41
(h) Agitation	41
2.6 Mixed culture and mixed substrate fermentation	41
2.7 Conclusions	43
3 MATERIALS AND METHODS	
3.1 Materials	45
3.1.1 Chemicals	45
3.1.2 Gases	45
3.1.3 Media	45
(a) Whey permeate	45
(b) Molasses	45
(c) Tower fermentation start up media	45
(d) Tower fermentation media	46
(e) Culture preservation media	46
(f) Flocculation test media	46
(g) Basic nutrient base	46
(h) Whey broth and agar	46

c

	(i)	Lactose agar	47
	(j)	Sucrose broth and agar	47
	(k)	Total cell plate count agar	47
	(1)	pH adjustment of media	47
	3.1.4	Organisms	47
3.2	Equip	ment	48
	3.2.1	Tower fermenter	48
	(a)	The separator	51
	(b)	Temperature control	51
	(c)	Tower and medium aeration	53
	(d)	Air supply and filter	53
	(e)	Medium pump	53
	3.2.2	10 litres batch fermenter	53
	3.2.3	UV lamp	56
	3.2.4	Replica plating	56
	3.2.5	Glassware	56
3.3	Steri	lization	56
	3.3.1	Media and glassware	56
	3.3.2	Tower fermenter	56
3.4	Analy	tical methods	57
	3.4.1	Lactose	57
	3.4.2	Sucrose	57
	3.4.3	Ethanol	57
	3.4.4	Cell concentration	57
	(a)	Cell dried weight and wet weight	57
	(b)	Plate count	58
	(c)	Haemacytometer count	58
	3.4.5	Yeast flocculence	58
	(a)	Flocculation scale method	58
	(b)	Sharp's modified Burn's number	59
	3.4.6	pH	59
	3.4.7	Specific gravity	59
3.5	Cultu	re preservation and maintenance	59
3.6	Inocu	lum preparation	60
3.7	Ferme	entation conditions	60
3.8	Tower	fermentation	61
	3.8.1	Start up	61
	(a)	Initial start up	61
	(b)	Subsequent start un	61

	3.8.2	Sampling procedure	62
	3.8.3	Continuous operation	63
3.9	Floccu	lation tests	63
3.10	Cultur	e improvements	64
	3.10.1	Isolation of ethanol tolerant K.marxianus using	64
		ethanol gradient agar	
	3.10.2	An attempt to isolate sucrose negative K.marxianus	65
		strains	
	(a)	Determination of optimum irradiation time	65
	(b)	Replica plating and isolation	66
3.11	Calcul	ation methods	67
	3.11.1	Tower fermentation	67
	3.11.2	Batch fermentation	69
4 TO	VER FER	MENTATION OF WHEY PERMEATE	
		elationship between tower height and various	71
		ntation parameters	
		Lactose concentration and utilization	71
		Volumetric rate of lactose utilization	74
		Specific rate of lactose utilization	75
		Ethanol concentration	77
	4.1.5	Ethanol yield	79
		Volumetric rate of ethanol production	80
		Specific rate of ethanol production	81
		Cell concentration	83
	4.1.9	Medium pH	87
4.2		ffect of the residence time on various fermentation	
	param	eters	
	4.2.1	Lactose concentration	88
	4.2.2	Ethanol concentration	89
	4.2.3	The rates of lactose utilization and ethanol	91
		production	
4.3	3 The e	ffect of superficial liquid velocity on various	94
		fermentation parameters	
	4.3.1	Lactose concentration	94
	4.3.2	Ethanol concentration	96
	4.3.3	Rates of lactose utilization and ethanol	98
		production	
	4.3.4	Cell concentration	103

		4.3.5	Specific growth rate	106
	4.4	Tower	fermenter performance	107
		4.4.1	Optimum superficial liquid velocity	107
		4.4.2	Residence time and tower height	109
		4.4.3	Sugar utilization	110
		4.4.4	Yield of ethanol	110
	4.5	Optimu	um conditions for the tower fermentation of whey	110
		permea	ate	
		4.5.1	Comparison with other tower fermentation	111
			investigations	
		4.5.2	Comparison with batch fermentation of whey	113
	4.6	Contin	nuous operation and difficulties	1 14
		4.6.1	Organism	114
		4.6.2	Continuous operation monitoring curves	114
		4.6.3	Contamination	116
		4.6.4	Feed lactose concentration	118
	4.7	Conclu	isions	118
	4.8	Summar	гу	119
5		ER FERN ASSES	MENTATION OF WHEY PERMEATE ENRICHED WITH	
	5.1	The re	elationship between tower height and various	
		fermen	ntation parameters	120
		5.1.1	Sugar concentrations and utilizations	120
		(a)	Sucrose	120
		(b)	Lactose	122
		(c)	Total sugar	125
		5.1.2	Volumetric rates of sugar utilization	125
		(a)	Sucrose	125
		(b)	Lactose	125
		(c)	Total sugar	127
		5.1.3	Specific rates of sugar utilization	127
		(a)	Sucrose	127
		(b)	Lactose	127
		(c)	Total sugar	129

(c) Total sugar1295.1.4 Ethanol concentration1295.1.5 Ethanol yield1315.1.6 Volumetric rate of ethanol production1315.1.7 Specific rate of ethanol production1335.1.8 Cell concentration134

xiii

	(a)	K. marxianus	134
	(b)	S. cerevisiae	137
	(c)	Total cell concentration	137
	5.1.9	Medium pH	141
5.2	Contar	nination of continuous tower fermentation	
	cultu	ce	142
5.3	Tower	fermenter performance	142
5.4	Compan	risons between fermentation of whey permeate	
	en ri che	ed with molasses and with sucrose.	144
5.5	Fermer	ntation comparison using different ratios	146
	of mix	ked yeast culture in the inoculum.	
5.6	Effect	on floc morphology of species ratio in	
	inocul	Lum	148
5.7	Conclu	isions	150
5.8	Summan	су.	150
FLO	CCULATI	ION TESTS	
6.1	Introd	luction	152
6.2	Test n	nedia	152
	6.2.1	Glossary of abbreviations used in the	
		flocculation tests	152
6.3	Floccu	lation test results	156
	6.3.1	Modified Burn's number and flocculation testing	
		methods used	156
	(a)	Flocculation test media	156
	(b)	Technique for the determination of modified	
		Burn's number	158
	(c)	Alternative technique	158
	(d)	Flocculent scale method	158
	6.3.2	Flocculating ability of some lactose-fermenting	
		yeasts strains	158
	6.3.3	Observation of flocculence during shakeflask	
		fermentation	159
	(a)	KM Y4.2	159
	(b)	KM.Y42 (TS)	160
	(c)	S. cerevisiae FT146 (SC146)	160
	(d)	S. cerevisiae CFCC39(CCC39)	160
	(e)	SC 146 + KM Y42	160

6

	AT V		
(f)	CC 39 + KM Y42	161	
6.3.4	Flocculation of KM ¥42 grown in whey permeate	161	
	with no additive		
6.3.5	The effect of the initial medium pH on		
	flocculation of KM Y42 grown in whey permeate	162	
6.3.6	The effect of membrane filtration on flocculation		
	of KM Y42 grown in whey permeate with additives	162	
6.3.7	Flocculation of KM Y42 grown in whey permeate		
	supplemented with organic nutrients	163	
6.3.8	Flocculation of KM Y42 grown in whey permeate		
	supplemented with inorganic nutrients	164	÷.
6.3.9	Flocculation of KM Y42 grown in media		
	supplemented with flocculation aids	165	
6.3.10	Flocculation of KM Y42 grown in double sugar		
	substrates	166	
6.3.11	Flocculation of KM Y42 in different media	166	
6.3.12	Flocculation of KM Y42 grown as mixed culture	168	
	with CC 39 or SC 146 in mixed substrate		
6.3.13	Flocculation of strains CC 39 and SC 146	168	
6.3.14	Flocculation curves	169	
6.4 Discuss	sion	171	
6.4.1	Flocculation of K. marxianus Y42	171	
(a)	Initial investigation	171	
(b)	Membrane filtration	171	
(c)	The additions of yeast and malt extract broths		
	to whey permeate	172	
(d)	The addition of peptone, urea and diammonium		
	hydrogen phosphate	172	
(e)	Lactose, glucose or maltose as a carbon source	172	
(f)	Enriched whey permeate	173	
(g)	The addition of flocculation aids to the growth		
	media	173	
(h)	Medium pH	173	
(i)	Subculture of KM Y42	174	
6.4.2	Flocculation of CC39 and SC146 grown as pure		
	or mixed cultures with KM Y42	174	
	SC 146	174	
(b)	CC 39	174	
(c)	The effect of the inoculum-growth medium	174	

6	.5 Conclu	usions	175	I,
6	.6 Summa:	ry	175	í
7 M	7 MEDIUM OPTIMIZATION AND CULTURE IMPROVEMENT			
7	7.1 Introduction			
7	.2 Mediu	m optimization	177	
7	.3 Isola	tion of an ethanol tolerant K. marxianus	178	l
	4.3.1	Preliminary batch fermentations	178	
	(a)	Whey permeate containing 40 g/l lactose	178	
	(b)	Whey permeate containing 100 g/l lactose	178	
	(c)	Whey permeate enriched with molasses	180	
	7.3.2	Selection of ethanol tolerating isolate	185	
	7.3.3	The stability of ethanol-tolerant isolate	187	1
		KM 10D10		
	7.3.4	Fermentation comparison of some lactose ferment	n- 188	
		ting yeasts		
	7.3.5	10 1 batch fermentations of ethanol-tolerant	189	
		isolate		
	(a)	Whey permeate containing 100 g/l lactose	189	
	(b)	Whey permeate enriched with molasses	190	
	7.3.6	Conclusions	191	
7	.4 An at	tempt to isolate diauxie-negative K. marxianus	193	
	strai	ns		
	7.4.1	Introduction	193	
	7.4.2	Isolation experiment	193	
	(a)	First attempt	194	
	(b)	Second attempt	196	
	(c)	Fermentation test	196	
	7.4.3	The effect of D-glucosamine on growth of		
		K. ma rx ianus	197	
	7.4.4	Conclusions	198	
7	.5 A muta	ation attempt to isolate sucrose negative		
	K. mai	rxianus	198	
	7.5.1	Introduction	198	
	7.5.2	First mutation attempt	199	
	(a)	Fermentation of whey permeate by mutant		
		FSN 1 & 2	199	
			÷.	

xv

.

		(b) Fermentation of mixed substrate of lactose and	
		sucrose by mutants FSN 1 and 2	201
		(c) Fermentation comparison of mutants FSN l and	
		2 with parent strain	203
		7.5.3 Second mutation experiment	203
		(a) Isolation of mutant	203
		(b) Culture improvement of mutant FSN3	205
		7.5.4 Conclusions	209
	7.6	Summary	210
8	FINA	AL DISCUSSION AND CONCLUSIONS	211
	REFI	ERENCES	216
	ΔΡΡΙ	ENDICES	
		EED MEDIUM PUMP CAPACITY AND SAMPLING DATA SHEETS	226
		XPERIMENTAL DATA	229
		Factorial experiment	229
		Batch fermentation of whey permeate by K. marxianus	230
		¥42	
	B.3	Tower fermentation of whey permeate	231
	B.4	Tower fermentation of whey permeate enriched with	
		molasses	234
	B.5	Tower fermentation of molasses	236
	C.TC	OWER FERMENTATION OF MOLASSES	
	C.1	The relationship between tower height and various	
		fermentation parameters	238
		C.1.1 Sucrose and ethanol concentrations	238
		C.l.2 Rates of sucrose utilization and ethanol production	240
		(a) Volumetric rates	240
		(b) Specific rates	242
		C.1.3 Ethanol yield	242
		C.1.4 Cell concentration	244
		C.1.5 Medium pH	246
	C.2	The effect of the residence time on various	
		fermentation parameters	248
		C.2.1 Sucrose and ethanol concentration	248
		C.2.2 Rates of sucrose utilization and ethanol	
		production	248
	C.3	The effect of the superficial liquid velocity on	
		various fermentation parameters	252

XV	٦.	٦.
4 h w	-	-

	C.3.1	Sucrose and ethanol concentration	252
	C.3.2	Rates of sucrose utilization and ethanol production	254
	(a)	Volumetric rates	254
	(b)	Specific rates	254
	C.3.3	Cell concentration	257
	C.3.4	Specific growth rate	259
C.4	Tower	performance	259
C.5	Conclu	usions and summary	261
D.FI	LOCCUL	ATION TEST. OBSERVATIONS AND DATA	262
D.1	Obser	vations of flocculent behaviour during fermentation	262
	D.1.1	K. marxianus ¥42	262
	D.1.2	K. marxianus Y42 (TS)	264
	D.1.3	S. cerevisiae FT 146	265
	D.1.4	S. cerevisiae CFCC 39	265
D.2	Floce	ulation test data	266
E.ES	STIMAT	ION OF UNCERTAINTIES	272
E.1	Sugar	concentrations	272
E.2	Ethano	ol concentration	273
E.3	Ethano	ol yield	273
E.4	Rate o	of sugar utilization	274
	E.4.1	Volumetric rate	274
	E.4.2	Specific rate	274
E.5	Rates	of ethanol production	275
	E.5.1	Volumetric rate	275
	E.5.2	Specific rate	275
E.6	Cell d	concentration	276
	E.6.1	Haemacytometer cell count	276
	E.6.2	Plate count	276
	E.6.3	Cell dried weight and centrifuged wet weight	276
	E.6.4	Estimation of the cell dried weight of	
		K. marxianus Y42 from cell plate count number	277

LIST OF FIGURES

Figure Title page number 2 1.1 Milk utilization 4 1.2 Typical annual whey production 5 1.3 Summary of processes for whey utilization and disposal 2.1 EMP pathway 13 2.2 Schematic diagram of the APV tower fermenter 27 2.3 Progressive reduction of wort gravity in a tower fermenter 29 2.4 The relationship between wort specific gravity and apparent 30 fermentation time 2.5 The effect of original wort specific gravity on limiting 31 volumetric efficiency 2.6 The effect of fermentable sugars concentration on dilution rate 33 and productivity 2.7 Determination of modified Burn's number 36 2.8 μ - S relationship of two organisms 43 3.1 Tower fermenter set up 49 3.2 Schematic diagram of the tower fermenter 50 3.3 Schematic diagram of the separator and draught tube 52 3.4 Water heating and air filtration systems 54 3.5 Batch fermenter (10 litres working volume) 55 3.6 Replication equipment 55 3.7 Subculturing steps used in the isolation of ethanol tolerating 64 K.marxianus 3.8 Survival of cells irradiated with UV light 66 Lactose concentration vs tower height 72 4.1 4.2 74 Volumetric rate of lactose utilization vs mean tower height 4.3 Specific rate of lactose utilization vs mean tower height 76 4.4 Ethanol concentration vs tower height 78 4.5 Ethanol yield vs tower height 79 4.6 Volumetric rate of ethanol production vs mean tower height 80 4.7 Specific rate of ethanol production vs mean tower height 82 4.8 Specific rate of ethanol production vs ethanol concentration 83 4.9 Cell concentration vs tower height 84 4.10 Tower fermenter during whey permeate fermentation 86 4.11 Medium pH vs tower height 87 4.12 Lactose concentration vs residence time 89

4.13 Ethanol concentration vs residence time 90 4.14 Volumetric rate of lactose utilization vs mean residence time 92 4.15 Volumetric rate of ethanol production vs mean residence time 92 93 4.16 Specific rate of lactose utilization vs mean residence time 4.17 Specific rate of ethanol production vs mean residence time 94 4.18 Lactose concentration vs superficial liquid velocity (V) 95 4.19 Ethanol concentration vs superficial liquid velocity (V_{c}) 97 4.20 Volumetric rate of lactose utilization vs V 99 4.21 Specific rate of lactose utilization vs V_{g} 100 101 4.22 Volumetric rate of ethanol production vs V_{c} 4.23 Volumetric rate of ethanol production vs V_{c} 101 4.24 Cell concentration vs V_{c} 104 115 4.25 (a) Tower operation-monitoring curves (b) Titration curves 4.26 Bacterial contamination 117 5.1 Sugar concentrations vs tower height 121 5.2 Volumetric rates of sugar utilization vs mean tower height 126 5.3 Specific rates of sugar utilization vs mean tower height 128 5.4 Ethanol concentration vs tower height 130 5.5 Ethanol yield vs tower height 131 5.6 Volumetric rate of ethanol production vs mean tower height 132 5.7 Cell numbers vs tower height 135 5.8 Cell concentration vs tower height 138 140 5.9 Channelling inside the tower 5.10 Medium pH vs tower height 141 5.11 The effect of mixed culture ratio on floc morphology 149 6.1 Flocculation of KM Y42 (TS), SC146 and CC39 grown and tested in different media. 170 7.1 Batch fermentation of whey permeate (40 g/1 lactose) 179 7.2 Batch fermentation of whey permeate (100 g/1 lactose) 179 7.3 Batch fermentation of whey permeate enriched with molasses 181 7.4 Diauxic behaviour study in the fermentation of whey permeate 183 .

7.5 K. marxianus : total cell number ratio vs fermentation time 184

enriched with molasses

7.6 10 litre batch fermentation of whey permeate (100 g/l lactose) 190 by KM10D10

7.7	10 litre batch fermentation of whey permeate enriched with	191		
	molasses by KM10D10			
7.8	Growth of KM10D10 in lactose and glucose agars	195		
7.9	Comparison of growth of possible sucrose negative mutants	200		
7.10	Sequence of isolation of mutants 235C and 256 A	204		
7.11	Sequence of plating and streaking to check stability			
	of mutant 256 A	204		
7.12	Streaking sequence to check stability of 235 C	206		
7.13	First culture improvement sequence of mutant FSN3			
7.14	Second culture improvement sequence of mutant FSN3			
A.1	Pump capacity curves for 25mm¢ tower fermenter			
B.1	K. marxianus Y42 cell plate count number vs cell dried			
	weight	235		
B.2	Cell centrifuged wet weight vs cell dried weight	235		
C.1	(a) sucrose and (b) ethanol concentrations vs			
	tower height	239		
C.2	Volumetric rates of (a) sucrose utilization and (b)			
	ethanol production vs mean tower height	241		
C.3	Specific rates of (a) sucrose utilization and (b)			
	ethanol production vs mean tower height	243		
C.4	Ethanol yield vs tower height	244		
C.5	Cell concentration vs tower height	245		
C.6	Medium pH vs tower height	247		
C.7	(a) sucrose and (b) ethanol concentrations	249		
	vs residence time			
C.8	Volumetric rates of (a) sucrose utilization			
	and (b) ethanol production vs mean residence time	250		
C.9	Specific rates of (a) sucrose utilization and			
	(b) ethanol production vs mean residence time	251		
C.10	(a) sucrose and (b) ethanol concentrations vs super-			
	ficial liquid velocity (V _s)	253		
C.11	Volumetric rates of (a) sucrose utilization and (b)			
	ethanol production vs V	255		
C.12	Specific rates of (a) sucrose utilization and (b)			
	ethanol production vs V s	256		
C.13	Cell concentration vs V s	258		

xx

LIST OF TABLES

t

Tabl	e Title	page	
number			
1.1	Typical composition of whey	2	
1.2	Composition of deproteinated whey	2	
1.3	Estimated quantities of whey production	4	
1.4	Whey powder production	5	
2.1	Fermentation of concentrated whey	16	
2.2	Ethanol concentration, productivity, and yield in whey	18	
	fermentation		
2.3	Inductrial ethanol tower fermentation studies or processes	27	
2.4	The effect of sugar concentration on the limiting	32	
	volumetric efficiency		
2.5	Common terms for microbial interactions	42	
3.1	Typical composition of sulphuric whey permeate	45	
3.2	Yeast cultures used	47	
3.3	Plating dilutions used to determined optimum UV	66	
	irradiation time		
4.1	Lactose utilization	73	
4.2	Mean specific growth rate	106	
4.3	Comparison of optimum superficial liquid velocities	108	
4.4	Comparison of the effective tower heights and residence	109	
	time		
4.5	Exit conditions at velocity of 0.24 mm/s	111	
4.6	Comparison of tower fermentation conditions	112	
4.7	Comparison with batch fermentation	112	
5.1	Percentage sugar utilization	122	
5.2	Comparison of lactose utilization	124	
5.3	Specific rate of ethanol production	133	
5.4	The concentrations of K. marxianus and S. cerevisiae	136	
5.5	Comparison between fermentation of whey permeate enriched	145	
	with molasses and with sucrose		
5.6	Fermentation comparison using different ratios of mixed	147	
	yeast culture in the inoculum		
6.1	Whey permeate as the base medium	153	
6.2	Molasses medium	155	
6.3	Lactose as the sole sugar source	155	
6.4	Maltose as the sole sugar source	155	

xxii

Tabl	e Title	page	
6.5	Glucose as the sole sugar source		
6.6			
6.7	Flocculence measurement media		
6.8	Flocculating ability of some lactose-fermenting yeasts		
6.9	Flocculation of KM Y42 grown in whey permeate with no	161	
	additives		
6.10	Flocculation of KM Y42 grown in whey permeate with	162	
	additives at pH of 4.6 and 5.0		
6.11	Flocculation of KM Y42 grown in whey permeate and	163	
	additive : with and without membrane filtration		
6.12	Flocculation of KM Y42 grown in whey permeate supplemented	164	
	with organic nutrients		
6.13	Flocculation of KM Y42 grown in whey permeate supplemented	164	
	with inorganic nutrients		
6.14	Flocculation of KM Y42 grown in media supplemented with	165	
	flocculation aids		
6.15	Flocculation of KM Y42 grown in double-sugar substrates	166	
6.16	Flocculation of KM Y42 in different media	167	
6.17	Flocculation of KM Y42 grown as mixed culture with	168	
	S. cerevisiae in mixed substrate		
6.18	Flocculation of strains CC39 and SC146	169	
7.1	t-ratio of parameters	177	
7.2	Comparison of fermentation ability of 4 ethanol tolerant	186	
	isolates of K. marxianus UCD FST 7158		
7.3	2	187	
7.4	Summary of fermentation comparison of lactose fermenting	188	
	yeasts		
7.5	······································	190	
	of 10 litre batch fermentation of whey permeate (100 g/l)		
7 (by KM10D10 and parent strain	10/	
/.6	Observation of growth of KM10D10 in glucose and lactose	194	
	agars	106	
7.7	Observation of growth of KM10D10 in glucose and lactose	196	
7 0	agars (second attempt)	107	
7.8	Fermentation test of isolate obtained from lactose agar	197	
7.9	containing 10 g/1 DGA Fermentation of whey permeate by two possible sucrose-	201	
1.7	negative mutants of KM10D10	201	
	HERALINE MULANIS OF MILODIO		

÷

xxiii

:

Tabl	e Title	page
7.10	Fermentation of whey permeate enriched with sucrose by	202
7 11	FSN 1 and 2	203
/.11	Fermentation comparison of mutants FSN 1 and 2 with parent strain KM10D10	205
7 12	Fermentation of whey permeate (100 g/1 lactose) by	207
/.12	mutant FSN 3 (culture no.6)	207
7.13	Fermentation of whey permeate (100 g/1 lactose) by	209
	mutant FSN 3 (culture no.11)	
B.1	Variables and their concentrations used at various RUNS	229
B.2	Fermentation results of factorial experiment	229
B.3	Batch fermentation of whey permeate by K. marxianus Y42	230
B.4	A summary of the dimensions of the tower fermenter	231
B.5	Tower fermentation of whey permeate data at various	232
	sampling points	
B.6	Tower fermentation of whey permeate data at various	233
	tower sections	
B.7	Data for tower fermentation of whey permeate enriched	234
	with molasses at various sampling points	
B.8	Data for tower fermentation of whey permeate enriched	234
	with molasses at various tower sections	
B.9	Tower fermentation of molasses data, at various sampling	236
	points	
B.10	Tower fermentation of molasses data, at various tower	237
	sections	
C.1	Percentage sucrose utilization at various heights	240
C.2	Mean specific growth rate at various superficial liquid	259
	velocities	
C.3	Comparison of tower fermentation of 100 g/1 sucrose media	260

1

LIST OF ABBREVIATIONS

PREFIX

Δ	change	in	concentration,	g/1	or	%
---	--------	----	----------------	-----	----	---

SUBSCRIPTS

- a average
- E effective
- i condition at a particular tower height or section
- 1 lactose
- o overall
- r residence time
- s sucrose or superficial
- t total sugar
- u substrate utilization

NOTATIONS

A	aluminium sulphate, Al ₂ (SO ₄) ₃
AFEB	
В	broth
В	95% confidence interval uncertainty
Ca	calcium sulphate, CaSO ₄
CB	yeast cleaning buffer(CaSO4 wash)
CP	Candida pseudotropicalis
CC39	Saccharomyces cerevisiae CFCC39
CSTR	continuous stirred tank reactor
D	dilution rate
DGA	D-glucosamine
DW	cell dried weight, g/l DW
Е	ethanol concentration, g/l
Е'	volumetric rate of ethanol production, g/lh
EF	extremely flocculent
F	membrane filtration (0.45 μ m)
FM	flocculating medium (acetate buffer)
G	glucose
H,H _E	tower height, effective tower height, mm or m
H*	average tower height
KL	Kluyveromyces lactis
КM	Kluyveromyces marxianus

xxv KMY42 K. marxianus Y42 limiting volumetric efficiency LVE malt extract broth malt extract broth (Oxoid) maltose MBN modified Burn's number MBN* non-standard modified Burn's number malt extract powder medium moderately flocculent MF molasses malt extract syrup (Maltexo) whey permeate percentage uncertainty peptone P4.6 whey permeate with no pH adjustment specific rate of substrate utilization, g/gh volumetric flow rate, ml (Linear regression) correlation coefficient rough substrate concentration, g/1 volumetric rate of substrate utilization, g/lh Saccharomyces cerevisiae

Μ M*

Ma

Me

Mo

Ms Ρ

Ρ

Pe

q

Q

r R

S

S' SC

SC146 S.cerevisiae FT146 (AWRI 350) SGe exit specific gravity spent malt extract broth SM S substrate utilization, % residence time, h Tr T* average residence time, h overall residence time, h Tro TS subcultured from the tower fermenter effective tower volume, ml V_E volume of a section of the tower fermenter, ml V. superficial liquid velocity, mm/s Vs very flocculent VF WF weakly flocculent Х total cell number or cell weight, cell/ml or g/l average cell concentration, g/1 Xa

K.marxianus cell number or weight, cell/ml or g/l Х

xxvi

- Y yield cofficient, yield of ethanol on substrate utilized, % yeast extract
- 10 100 g/l whey permeate solution
- 44,46 ratio of lactose to sucrose of 40:40 g/l and 40:60 g/l $\,$
- 5 pH 5.0

٠

GREEK NOTATIONS

- μ specific growth rate, g/gh
- ν specific rate of ethanol production, g/gh
- diameter